Sample records for affects coding mrnas

  1. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  2. 5’-Terminal AUGs in Escherichia coli mRNAs with Shine-Dalgarno Sequences: Identification and Analysis of Their Roles in Non-Canonical Translation Initiation

    PubMed Central

    Beck, Heather J.; Fleming, Ian M. C.

    2016-01-01

    Analysis of the Escherichia coli transcriptome identified a unique subset of messenger RNAs (mRNAs) that contain a conventional untranslated leader and Shine-Dalgarno (SD) sequence upstream of the gene’s start codon while also containing an AUG triplet at the mRNA’s 5’- terminus (5’-uAUG). Fusion of the coding sequence specified by the 5’-terminal putative AUG start codon to a lacZ reporter gene, as well as primer extension inhibition assays, reveal that the majority of the 5’-terminal upstream open reading frames (5’-uORFs) tested support some level of lacZ translation, indicating that these mRNAs can function both as leaderless and canonical SD-leadered mRNAs. Although some of the uORFs were expressed at low levels, others were expressed at levels close to that of the respective downstream genes and as high as the naturally leaderless cI mRNA of bacteriophage λ. These 5’-terminal uORFs potentially encode peptides of varying lengths, but their functions, if any, are unknown. In an effort to determine whether expression from the 5’-terminal uORFs impact expression of the immediately downstream cistron, we examined expression from the downstream coding sequence after mutations were introduced that inhibit efficient 5’-uORF translation. These mutations were found to affect expression from the downstream cistrons to varying degrees, suggesting that some 5’-uORFs may play roles in downstream regulation. Since the 5’-uAUGs found on these conventionally leadered mRNAs can function to bind ribosomes and initiate translation, this indicates that canonical mRNAs containing 5’-uAUGs should be examined for their potential to function also as leaderless mRNAs. PMID:27467758

  3. Connections Underlying Translation and mRNA Stability.

    PubMed

    Radhakrishnan, Aditya; Green, Rachel

    2016-09-11

    Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms. Copyright © 2016. Published by Elsevier Ltd.

  4. mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation

    PubMed Central

    Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo

    1998-01-01

    It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250

  5. Long Non-Coding RNAs in Haematological Malignancies

    PubMed Central

    Garitano-Trojaola, Andoni; Agirre, Xabier; Prósper, Felipe; Fortes, Puri

    2013-01-01

    Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies. PMID:23887658

  6. Death of a dogma: eukaryotic mRNAs can code for more than one protein

    PubMed Central

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-01

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573

  7. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    PubMed

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Systematic Analysis of Long Non-Coding RNAs and mRNAs in the Ovaries of Duroc Pigs During Different Follicular Stages Using RNA Sequencing.

    PubMed

    Liu, Yi; Li, Mengxun; Bo, Xinwen; Li, Tao; Ma, Lipeng; Zhai, Tenjiao; Huang, Tao

    2018-06-11

    The dynamic process involving the selection and maturation of follicles is regulated and controlled by a highly synchronized and exquisitely timed cascade of gene expression. Studies have shown that long non-coding RNA (lncRNA) is essential for the normal maintenance of animal reproductive function and has an important regulatory function in ovarian development and hormone secretion. In this study, a total of 2076 lncRNAs (1362 known lncRNAs and 714 new lncRNAs) and 25,491 mRNAs were identified in libraries constructed from Duroc ovaries on days 0, 2 and 4 of follicle development. lncRNAs were shorter, had fewer exons, exhibited a shorter ORF (Open Reading Frame) length and lower expression levels, and were less conserved than mRNAs. Furthermore, 1694 transcripts (140 lncRNAs and 1554 mRNAs) were found to be differentially expressed in pairwise comparisons. A total of 6945 co-localized mRNAs were detected in cis in 2076 lncRNAs. The most enriched GO (Gene Ontology) terms were related to developmental processes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the differentially expressed lncRNAs targeted mRNAs, and the differentially expressed mRNAs were related to the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Retinol metabolic pathway and the Wnt signaling pathway. This study deepened our understanding of the genetic basis and molecular mechanisms of follicular development in pigs.

  9. Sequence of rat alpha- and gamma-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family.

    PubMed Central

    Hobbs, A A; Rosen, J M

    1982-01-01

    The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707

  10. Expression profile analysis of long non-coding RNA in acute myeloid leukemia by microarray and bioinformatics.

    PubMed

    Feng, Yuandong; Shen, Ying; Chen, Hongli; Wang, Xiaman; Zhang, Ru; Peng, Yue; Lei, Xiaoru; Liu, Tian; Liu, Jing; Gu, Liufang; Wang, Fangxia; Yang, Yun; Bai, Ju; Wang, Jianli; Zhao, Wanhong; He, Aili

    2018-02-01

    Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in acute myeloid leukemia (AML), we analyzed the expression profile of lncRNAs and mRNAs in AML. Five pairs of AML patients and iron deficiency anemia (IDA) controls were screened by microarray. Through coexpression analysis, differently expressed transcripts were divided into modules, and lncRNAs were functionally annotated. We further analyzed the clinical significance of crucial lncRNAs from modules in public data. Finally, the expression of three lncRNAs, RP11-222K16.2, AC092580.4, and RP11-305O.6, were validated in newly diagnosed AML, AML relapse, and IDA patient groups by quantitative RT-PCR, which may be associated with AML patients' overall survival. Further analysis showed that RP11-222K16.2 might affect the differentiation of natural killer cells, and promote the immunized evasion of AML by regulating Eomesodermin expression. Analysis of this study revealed that dysregulated lncRNAs and mRNAs in AML vs IDA controls could affect the immune system and hematopoietic cell differentiation. The biological functions of those lncRNAs need to be further validated. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    PubMed Central

    Carlile, Thomas M.; Rojas-Duran, Maria F.; Zinshteyn, Boris; Shin, Hakyung; Bartoli, Kristen M.; Gilbert, Wendy V.

    2014-01-01

    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs1, enhances the function of transfer RNA and ribosomal RNA by stabilizing RNA structure2–8. mRNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function – it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding center9,10. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological was unclear. Here we present a comprehensive analysis of pseudouridylation in yeast and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as 100 novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease11–13. PMID:25192136

  12. Transterm: a database to aid the analysis of regulatory sequences in mRNAs

    PubMed Central

    Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.

    2009-01-01

    Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623

  13. Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains.

    PubMed

    Maher-Laporte, Marjolaine; DesGroseillers, Luc

    2010-05-01

    Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Staufen2 is an mRNA-binding protein expressed in the cell bodies and cellular processes of different brain cells. It is notably involved in the transport of dendritic mRNAs along microtubules. Its knockdown expression was shown to change spine morphology and impair synaptic functions. However, the identity of Staufen2-bound mRNAs in brain cells is still completely unknown. As a mean to identify these mRNAs, we immunoprecipitated Staufen2-containing mRNPs from embryonic rat brains and used a genome wide approach to identify Staufen2-associated mRNAs. The genome wide approach identified 1780 mRNAs in Staufen2-containing mRNPs that code for proteins involved in cellular processes such as post-translational protein modifications, RNA metabolism, intracellular transport and translation. These results represent an additional and important step in the characterization of Staufen2- mediated neuronal functions in rat brains.

  14. mTOR referees memory and disease through mRNA repression and competition.

    PubMed

    Raab-Graham, Kimberly F; Niere, Farr

    2017-06-01

    Mammalian target of rapamycin (mTOR) activity is required for memory and is dysregulated in disease. Activation of mTOR promotes protein synthesis; however, new studies are demonstrating that mTOR activity also represses the translation of mRNAs. Almost three decades ago, Kandel and colleagues hypothesised that memory was due to the induction of positive regulators and removal of negative constraints. Are these negative constraints repressed mRNAs that code for proteins that block memory formation? Herein, we will discuss the mRNAs coded by putative memory suppressors, how activation/inactivation of mTOR repress protein expression at the synapse, how mTOR activity regulates RNA binding proteins, mRNA stability, and translation, and what the possible implications of mRNA repression are to memory and neurodegenerative disorders. © 2017 Federation of European Biochemical Societies.

  15. Modification of tRNALys UUU by Elongator Is Essential for Efficient Translation of Stress mRNAs

    PubMed Central

    Sansó, Miriam; Buhne, Karin; Carmona, Mercè; Paulo, Esther; Hermand, Damien; Rodríguez-Gabriel, Miguel; Ayté, José; Leidel, Sebastian; Hidalgo, Elena

    2013-01-01

    The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALys UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery. PMID:23874237

  16. Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs.

    PubMed

    Fernández-Vázquez, Jorge; Vargas-Pérez, Itzel; Sansó, Miriam; Buhne, Karin; Carmona, Mercè; Paulo, Esther; Hermand, Damien; Rodríguez-Gabriel, Miguel; Ayté, José; Leidel, Sebastian; Hidalgo, Elena

    2013-01-01

    The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNA(Lys) UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery.

  17. Identification and characterization of long noncoding RNAs and mRNAs expression profiles related to postnatal liver maturation of breeder roosters using Ribo-zero RNA sequencing.

    PubMed

    Wu, Shengru; Liu, Yanli; Guo, Wei; Cheng, Xi; Ren, Xiaochun; Chen, Si; Li, Xueyuan; Duan, Yongle; Sun, Qingzhu; Yang, Xiaojun

    2018-06-27

    The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log 2 fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. This study provides a catalog of mRNAs and lncRNAs related to postnatal liver maturation of chicken, and will contribute to a fuller understanding of biological processes or signaling pathways involved in significant functional transition during postnatal liver development that differentially expressed genes and lncRNAs could take part in.

  18. Transcriptional landscapes of Axolotl (Ambystoma mexicanum).

    PubMed

    Caballero-Pérez, Juan; Espinal-Centeno, Annie; Falcon, Francisco; García-Ortega, Luis F; Curiel-Quesada, Everardo; Cruz-Hernández, Andrés; Bako, Laszlo; Chen, Xuemei; Martínez, Octavio; Alberto Arteaga-Vázquez, Mario; Herrera-Estrella, Luis; Cruz-Ramírez, Alfredo

    2018-01-15

    The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus

    PubMed Central

    Di, Han; Madden, Joseph C.; Morantz, Esther K.; Tang, Hsin-Yao; Graham, Rachel L.; Baric, Ralph S.

    2017-01-01

    Members of the order Nidovirales express their structural protein ORFs from a nested set of 3′ subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3′ region, but some are in the 5′ ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3′ ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader–body junction sequences. Sg mRNAs encoding E′, GP2, or ORF5a as their 5′ ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses. PMID:29073030

  20. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.

    PubMed

    Korneeva, Nadejda L; Song, Anren; Gram, Hermann; Edens, Mary Ann; Rhoads, Robert E

    2016-02-12

    The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5'-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5'-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357-1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m(7)GTP-Sepharose reveals that both CGP and eIF4G(1357-1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5'-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila

    PubMed Central

    Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.

    2014-01-01

    Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175

  2. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma.

    PubMed

    Feng, Ling; Wang, Ru; Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.

  3. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

    PubMed Central

    Herbert, Kristina M.; Nag, Anita

    2016-01-01

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653

  4. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.

    PubMed

    Tani, Hidenori

    2017-03-22

    Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.

  5. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8.

    PubMed

    Shenoy, Archana; Blelloch, Robert

    2009-09-11

    The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.

  6. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-11-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  7. Profound Impact of Hfq on Nutrient Acquisition, Metabolism and Motility in the Plant Pathogen Agrobacterium tumefaciens

    PubMed Central

    Möller, Philip; Overlöper, Aaron; Förstner, Konrad U.; Wen, Tuan-Nan; Sharma, Cynthia M.; Lai, Erh-Min; Narberhaus, Franz

    2014-01-01

    As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens. PMID:25330313

  8. Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens.

    PubMed

    Möller, Philip; Overlöper, Aaron; Förstner, Konrad U; Wen, Tuan-Nan; Sharma, Cynthia M; Lai, Erh-Min; Narberhaus, Franz

    2014-01-01

    As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens.

  9. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other mRNAs[W][OA

    PubMed Central

    Shivaprasad, Padubidri V.; Chen, Ho-Ming; Patel, Kanu; Bond, Donna M.; Santos, Bruno A.C.M.; Baulcombe, David C.

    2012-01-01

    Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack. PMID:22408077

  10. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    PubMed

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  11. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    PubMed Central

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  12. Translational Redefinition of UGA Codons Is Regulated by Selenium Availability*

    PubMed Central

    Howard, Michael T.; Carlson, Bradley A.; Anderson, Christine B.; Hatfield, Dolph L.

    2013-01-01

    Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. PMID:23696641

  13. Identification of long non-coding RNA and mRNA expression in βΒ2-crystallin knockout mice.

    PubMed

    Jia, Yin; Xiong, Kang; Ren, Han-Xiao; Li, Wen-Jie

    2018-05-01

    βΒ2-crystallin (CRYBB2) is expressed at an increased level in the postnatal lens cortex and is associated with cataracts. Improved understanding of the underlying biology of cataracts is likely to be critical for the development of early detection strategies and new therapeutics. The present study aimed to identify long non-coding RNAs (lncRNAs) and mRNAs associated with CRYBB2 knockdown (KO)-induced cataracts. RNAs from 3 non-treated mice and 3 CRYBB2 KO mice were analyzed using the Affymetrix GeneChip Mouse Gene 2.0 ST array. A total of 149 lncRNAs and 803 mRNAs were identified to have upregulated expression, including Snora73b, Klk1b22 and Rnu3a, while the expression levels of 180 lncRNAs and 732 mRNAs were downregulated in CRYBB2 KO mice, including Snord82, Snhg9 and Foxn3. This lncRNA and mRNA expression profile of mice with CRYBB2 KO provides a basis for studying the genetic mechanisms of cataract progression.

  14. Long Noncoding RNA Profiling from Fasciola Gigantica Excretory/Secretory Product-Induced M2 to M1 Macrophage Polarization.

    PubMed

    Luo, Honglin; Zhang, Yaoyao; Sheng, Zhaoan; Luo, Tao; Chen, Jie; Liu, Junjie; Wang, Huifeng; Chen, Miao; Shi, Yunliang; Li, Lequn

    2018-05-22

    Long noncoding RNAs (lncRNAs) are well known regulators of gene expression that play essential roles in macrophage activation and polarization. However, the role of lncRNA in Fasciola gigantica excretory/secretory products (ESP)-induced M2 polarization into M1 macrophages is unclear. Herein, we performed lncRNA profiling of lncRNAs and mRNAs during the ESP-induced macrophage polarization process. F. gigantica ESP was used to induce peritoneal cavity M2 macrophages in BALB/c mice (5-6 weeks old) in vivo, and these cells were subsequently isolated and stimulated with IFN-γ + LPS to induce M1 cells in vitro. LncRNA and mRNA profiling was performed via microarray at the end of both polarization stages. In total, 2,844 lncRNAs (1,579 upregulated and 1,265 downregulated) and 1,782 mRNAs (789 upregulated and 993 downregulated) were differentially expressed in M2 macrophages compared to M1 macrophages, and six lncRNAs were identified during polarization. We selected 34 differentially expressed lncRNAs and mRNAs to validate the results of microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, particularly peptidase activity and carbohydrate metabolism. Furthermore, coding and non-coding gene (CNC) and mRNA-related ceRNA network analyses were conducted to predict lncRNA expression trends and the potential target genes of these lncRNAs and mRNAs. Moreover, we determined that four lncRNAs and four mRNAs might participate in F. gigantica ESP-induced M2 polarization into M1 macrophages. This study illustrates the basic profiling of lncRNAs and mRNAs during F. gigantica ESP-induced M2 polarization into M1 macrophages and deepens our understanding of the mechanism underlying this process. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes

    PubMed Central

    Furic, Luc; Maher-Laporte, Marjolaine; DesGroseillers, Luc

    2008-01-01

    Messenger RNAs are associated with multiple RNA-binding proteins to form ribonucleoprotein (mRNP) complexes. These proteins are important regulators of the fate of their target mRNAs. In human cells, Staufen1 and Staufen2 proteins, coded by two different genes, are double-stranded RNA-binding proteins involved in several cellular functions including mRNA localization, translation, and decay. Although 51% identical, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. In this paper, we used a genome-wide approach to identify and compare the mRNA targets of mammalian Staufen proteins. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with Stau155-HA, Stau259-HA, or Stau262-HA expressors. Our results indicate that 7% and 11% of the cellular RNAs expressed in HEK293T cells are found in Stau1- and in Stau2-containing mRNPs, respectively. A comparison of Stau1- and Stau2-containing mRNAs identifies a relatively low percentage of common mRNAs; the percentage of common mRNAs highly increases when mRNAs in Stau259-HA- and Stau262-containing mRNPs are compared. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes, and catalytic activity. All these subsets of mRNAs are mostly distinct from those associated with FMRP or IMP, although some mRNAs overlap. Consistent with a model of post-transcriptionnal gene regulation, our results show that Stau1- and Stau2-mRNPs associate with distinct but overlapping sets of cellular mRNAs. PMID:18094122

  16. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.

    PubMed

    Furic, Luc; Maher-Laporte, Marjolaine; DesGroseillers, Luc

    2008-02-01

    Messenger RNAs are associated with multiple RNA-binding proteins to form ribonucleoprotein (mRNP) complexes. These proteins are important regulators of the fate of their target mRNAs. In human cells, Staufen1 and Staufen2 proteins, coded by two different genes, are double-stranded RNA-binding proteins involved in several cellular functions including mRNA localization, translation, and decay. Although 51% identical, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. In this paper, we used a genome-wide approach to identify and compare the mRNA targets of mammalian Staufen proteins. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with Stau1(55)-HA, Stau2(59)-HA, or Stau2(62)-HA expressors. Our results indicate that 7% and 11% of the cellular RNAs expressed in HEK293T cells are found in Stau1- and in Stau2-containing mRNPs, respectively. A comparison of Stau1- and Stau2-containing mRNAs identifies a relatively low percentage of common mRNAs; the percentage of common mRNAs highly increases when mRNAs in Stau2(59)-HA- and Stau2(62)-containing mRNPs are compared. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes, and catalytic activity. All these subsets of mRNAs are mostly distinct from those associated with FMRP or IMP, although some mRNAs overlap. Consistent with a model of post-transcriptional gene regulation, our results show that Stau1- and Stau2-mRNPs associate with distinct but overlapping sets of cellular mRNAs.

  17. Functional role of a long non-coding RNA LIFR-AS1/miR-29a/TNFAIP3 axis in colorectal cancer resistance to pohotodynamic therapy.

    PubMed

    Liu, Kuijie; Yao, Hongliang; Wen, Yu; Zhao, Hua; Zhou, Nanjiang; Lei, Sanlin; Xiong, Li

    2018-05-25

    Colorectal Cancer (CRC) is one of the most common digestive system malignant tumors. Recently, PDT has been used as a first-line treatment for colon cancer; however, limited curative effect was obtained due to resistance of CRC to PDT. During the past decades, accumulating CRC-related long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs have been reported to exert diverse functions through various biological processes; their dysregulation might trigger and/or promote the pathological changes. Herein, we performed microarrays analysis to identify dysregulated lncRNAs, miRNAs and mRNAs in PDT-treated HCT116 cells to figure out the lncRNA-miRNA interactions related to the resistance of CRC to PDT treatment, and the downstream mRNA target, as well as the molecular mechanism. We found a total of 1096 lncRNAs dysregulated in PDT-treated CRC HCT116 cells; among them, LIFR-AS1 negatively interacted with miR-29a, one of the dysregulated miRNAs in PDT-treated CRC cells, to affect the resistance of CRC to PDT. LIFR-AS1 knockdown attenuated, whereas miR-29a inhibition enhanced the cellular effect of PDT on HCT116 cell proliferation and apoptosis. Furthermore, among the dysregulated mRNAs, TNFAIP3 was confirmed to be a direct target of miR-29a and exerted a similar effect to LIFR-AS1 on the cellular effects of PDT. In summary, LIFR-AS1 serves as a competitive endogenous RNA (ceRNA) for miR-29a to inhibit its expression and up-regulate downstream target TNFAIP3 expression, finally modulating the resistance of CRC to PDT. We provide an experimental basis for this lncRNA/miRNA/mRNA network being a promising target in CRC resistance to PDT treatment. Copyright © 2018. Published by Elsevier B.V.

  18. Long non-coding RNAs regulate effects of β-crystallin B2 on mouse ovary development.

    PubMed

    Gao, Qian; Ren, Hanxiao; Chen, Mingkun; Niu, Ziguang; Tao, Haibo; Jia, Yin; Zhang, Jianrong; Li, Wenjie

    2016-11-01

    β-crystallin B2 (CRYBB2) knockout mice exhibit morphological and functional abnormalities in the ovary. Long non‑coding RNAs (lncRNAs) regulate gene transcription and translation, and epigenetic modification of genomic DNA. The present study investigated the role of lncRNAs in mediating the effects of CRYBB2 in the regulation of ovary development in mice. In the current study, ovary tissues from wild‑type (WT) and CRYBB2 knockout mice were subjected to lncRNA and mRNA microarray profiling. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to group the differentially expressed lncRNAs into regulated gene pathways and functions. The correlation matrix method was used to establish a network of lncRNA and mRNA co‑expression. Quantitative reverse transcription-polymerase chain reaction (RT‑qPCR) was used to verify expression of a number of these differentially expressed lncRNAs and mRNAs. There were 157 differentially expressed lncRNAs and 1,085 differentially expressed mRNAs between ovary tissues from WT and CRYBB2 knockout mice. The GO and KEGG analyses indicated that these differentially expressed lncRNAs and mRNAs were important in Ca2+ signaling and ligand and receptor interactions. The correlation matrix method established an lncRNA and mRNA co‑expression network, consisting of 53 lncRNAs and 45 mRNAs with 98 nodes and 75 connections. RT‑qPCR confirmed downregulation of lncRNA A‑30‑P01019163 expression, which further downregulated its downstream gene purinergic receptor P2X, ligand‑gated ion channel, 7 (P2rx7) expression in ovary tissues from CRYBB2 knockout mice. In conclusion, CRYBB2 regulates expression of different lncRNAs to influence ovary development. lncRNA A‑30‑P01019163 may affect ovarian cell cycle and proliferation by regulating P2rx7 expression in the ovary.

  19. Identification and characterization of long non-coding RNAs in rainbow trout eggs

    USDA-ARS?s Scientific Manuscript database

    Long non-coding RNAs (lncRNAs) are in general considered as a diverse class of transcripts longer than 200 nucleotides that structurally resemble mRNAs but do not encode proteins. Recent advances in RNA sequencing (RNA-Seq) and bioinformatics methods have provided an opportunity to indentify and ana...

  20. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR includingmore » components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.« less

  1. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  2. Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression

    PubMed Central

    Fahey, Ciara; Kenny, Elaine M; Terenin, Ilya M; Dmitriev, Sergey E; Cormican, Paul; Morris, Derek W; Shatsky, Ivan N; Baranov, Pavel V

    2015-01-01

    Eukaryotic cells rapidly reduce protein synthesis in response to various stress conditions. This can be achieved by the phosphorylation-mediated inactivation of a key translation initiation factor, eukaryotic initiation factor 2 (eIF2). However, the persistent translation of certain mRNAs is required for deployment of an adequate stress response. We carried out ribosome profiling of cultured human cells under conditions of severe stress induced with sodium arsenite. Although this led to a 5.4-fold general translational repression, the protein coding open reading frames (ORFs) of certain individual mRNAs exhibited resistance to the inhibition. Nearly all resistant transcripts possess at least one efficiently translated upstream open reading frame (uORF) that represses translation of the main coding ORF under normal conditions. Site-specific mutagenesis of two identified stress resistant mRNAs (PPP1R15B and IFRD1) demonstrated that a single uORF is sufficient for eIF2-mediated translation control in both cases. Phylogenetic analysis suggests that at least two regulatory uORFs (namely, in SLC35A4 and MIEF1) encode functional protein products. DOI: http://dx.doi.org/10.7554/eLife.03971.001 PMID:25621764

  3. On BC1 RNA and the fragile X mental retardation protein

    PubMed Central

    Iacoangeli, Anna; Rozhdestvensky, Timofey S.; Dolzhanskaya, Natalia; Tournier, Barthélémy; Schütt, Janin; Brosius, Jürgen; Denman, Robert B.; Khandjian, Edouard W.; Kindler, Stefan; Tiedge, Henri

    2008-01-01

    The fragile X mental retardation protein (FMRP), the functional absence of which causes fragile X syndrome, is an RNA-binding protein that has been implicated in the regulation of local protein synthesis at the synapse. The mechanism of FMRP's interaction with its target mRNAs, however, has remained controversial. In one model, it has been proposed that BC1 RNA, a small non-protein-coding RNA that localizes to synaptodendritic domains, operates as a requisite adaptor by specifically binding to both FMRP and, via direct base-pairing, to FMRP target mRNAs. Other models posit that FMRP interacts with its target mRNAs directly, i.e., in a BC1-independent manner. Here five laboratories independently set out to test the BC1–FMRP model. We report that specific BC1–FMRP interactions could be documented neither in vitro nor in vivo. Interactions between BC1 RNA and FMRP target mRNAs were determined to be of a nonspecific nature. Significantly, the association of FMRP with bona fide target mRNAs was independent of the presence of BC1 RNA in vivo. The combined experimental evidence is discordant with a proposed scenario in which BC1 RNA acts as a bridge between FMRP and its target mRNAs and rather supports a model in which BC1 RNA and FMRP are translational repressors that operate independently. PMID:18184799

  4. Transcriptome-Wide Analysis of UTRs in Non-Small Cell Lung Cancer Reveals Cancer-Related Genes with SNV-Induced Changes on RNA Secondary Structure and miRNA Target Sites

    PubMed Central

    Novotny, Peter; Tang, Xiaojia; Kalari, Krishna R.; Gorodkin, Jan

    2014-01-01

    Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study, transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations (SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472 SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48 that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher's exact test p-value = 0.032) than the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to alter the expression of known cancer genes or genes linked to cancer-associated pathways. PMID:24416147

  5. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites.

    PubMed

    Sabarinathan, Radhakrishnan; Wenzel, Anne; Novotny, Peter; Tang, Xiaojia; Kalari, Krishna R; Gorodkin, Jan

    2014-01-01

    Traditional mutation assessment methods generally focus on predicting disruptive changes in protein-coding regions rather than non-coding regulatory regions like untranslated regions (UTRs) of mRNAs. The UTRs, however, are known to have many sequence and structural motifs that can regulate translational and transcriptional efficiency and stability of mRNAs through interaction with RNA-binding proteins and other non-coding RNAs like microRNAs (miRNAs). In a recent study, transcriptomes of tumor cells harboring mutant and wild-type KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) genes in patients with non-small cell lung cancer (NSCLC) have been sequenced to identify single nucleotide variations (SNVs). About 40% of the total SNVs (73,717) identified were mapped to UTRs, but omitted in the previous analysis. To meet this obvious demand for analysis of the UTRs, we designed a comprehensive pipeline to predict the effect of SNVs on two major regulatory elements, secondary structure and miRNA target sites. Out of 29,290 SNVs in 6462 genes, we predict 472 SNVs (in 408 genes) affecting local RNA secondary structure, 490 SNVs (in 447 genes) affecting miRNA target sites and 48 that do both. Together these disruptive SNVs were present in 803 different genes, out of which 188 (23.4%) were previously known to be cancer-associated. Notably, this ratio is significantly higher (one-sided Fisher's exact test p-value = 0.032) than the ratio (20.8%) of known cancer-associated genes (n = 1347) in our initial data set (n = 6462). Network analysis shows that the genes harboring disruptive SNVs were involved in molecular mechanisms of cancer, and the signaling pathways of LPS-stimulated MAPK, IL-6, iNOS, EIF2 and mTOR. In conclusion, we have found hundreds of SNVs which are highly disruptive with respect to changes in the secondary structure and miRNA target sites within UTRs. These changes hold the potential to alter the expression of known cancer genes or genes linked to cancer-associated pathways.

  6. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections

    PubMed Central

    Sadek, Jouliana

    2016-01-01

    ABSTRACT During lytic herpes simplex virus (HSV) infections, the virion host shutoff (Vhs) (UL41) endoribonuclease degrades many cellular and viral mRNAs. In uninfected cells, spliced mRNAs emerge into the cytoplasm bound by exon junction complexes (EJCs) and are translated several times more efficiently than unspliced mRNAs that have the same sequence but lack EJCs. Notably, most cellular mRNAs are spliced, whereas most HSV mRNAs are not. To examine the effect of splicing on gene expression during HSV infection, cells were transfected with plasmids harboring an unspliced renilla luciferase (RLuc) reporter mRNA or RLuc constructs with introns near the 5′ or 3′ end of the gene. After splicing of intron-containing transcripts, all three RLuc mRNAs had the same primary sequence. Upon infection in the presence of actinomycin D, spliced mRNAs were much less sensitive to degradation by copies of Vhs from infecting virions than were unspliced mRNAs. During productive infections (in the absence of drugs), RLuc was expressed at substantially higher levels from spliced than from unspliced mRNAs. Interestingly, the stimulatory effect of splicing on RLuc expression was significantly greater in infected than in uninfected cells. The translational stimulatory effect of an intron during HSV-1 infections could be replicated by artificially tethering various EJC components to an unspliced RLuc transcript. Thus, the splicing history of an mRNA, and the consequent presence or absence of EJCs, affects its level of translation and sensitivity to Vhs cleavage during lytic HSV infections. IMPORTANCE Most mammalian mRNAs are spliced. In contrast, of the more than 80 mRNAs harbored by herpes simplex virus 1 (HSV-1), only 5 are spliced. In addition, synthesis of the immediate early protein ICP27 causes partial inhibition of pre-mRNA splicing, with the resultant accumulation of both spliced and unspliced versions of some mRNAs in the cytoplasm. A common perception is that HSV-1 infection necessarily inhibits the expression of spliced mRNAs. In contrast, this study demonstrates two instances in which pre-mRNA splicing actually enhances the synthesis of proteins from mRNAs during HSV-1 infections. Specifically, splicing stabilized an mRNA against degradation by copies of the Vhs endoribonuclease from infecting virions and greatly enhanced the amount of protein synthesized from spliced mRNAs at late times after infection. The data suggest that splicing, and the resultant presence of exon junction complexes on an mRNA, may play an important role in gene expression during HSV-1 infections. PMID:27681125

  7. Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development.

    PubMed

    Calder, Michele D; Watson, Patricia H; Watson, Andrew J

    2011-11-01

    During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.

  8. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  9. Microprocessor-dependent processing of Splice site Overlapping microRNA exons does not result in changes in alternative splicing.

    PubMed

    Pianigiani, Giulia; Licastro, Danilo; Fortugno, Paola; Castiglia, Daniele; Petrovic, Ivana; Pagani, Franco

    2018-06-12

    MicroRNAs are found throughout the genome and are processed by the microprocessor complex (MPC) from longer precursors. Some precursor miRNAs overlap intron:exon junctions. These Splice site Overlapping microRNAs (SO-miRNAs) are mostly located in coding genes. It has been intimated, in the rarer examples of SO-miRNAs in non-coding RNAs, that the competition between the spliceosome and the MPC modulates alternative splicing. However, the effect of this overlap on coding transcripts is unknown. Unexpectedly, we show that neither Drosha silencing nor SF3b1 silencing changed the inclusion ratio of SO-miRNA exons. Two SO-miRNAs, located in genes that code for basal membrane proteins, are known to inhibit proliferation in primary keratinocytes. These SO-miRNAs were upregulated during differentiation and the host mRNAs were downregulated, but again there was no change in inclusion ratio of the SO-miRNA exons. Interestingly, Drosha silencing increased nascent RNA density, on chromatin, downstream of SO-miRNA exons. Overall our data suggest a novel mechanism for regulating gene expression in which MPC-dependent cleavage of SO-miRNA exons could cause premature transcriptional termination of coding genes rather than affecting alternative splicing. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Polysome Fractionation to Analyze mRNA Distribution Profiles.

    PubMed

    Panda, Amaresh C; Martindale, Jennifer L; Gorospe, Myriam

    2017-02-05

    Eukaryotic cells adapt to changes in external or internal signals by precisely modulating the expression of specific gene products. The expression of protein-coding genes is controlled at the transcriptional and post-transcriptional levels. Among the latter steps, the regulation of translation is particularly important in cellular processes that require rapid changes in protein expression patterns. The translational efficiency of mRNAs is altered by RNA-binding proteins (RBPs) and noncoding (nc)RNAs such as microRNAs (Panda et al. , 2014a and 2014b; Abdelmohsen et al. , 2014). The impact of factors that regulate selective mRNA translation is a critical question in RNA biology. Polyribosome (polysome) fractionation analysis is a powerful method to assess the association of ribosomes with a given mRNA. It provides valuable information about the translational status of that mRNA, depending on the number of ribosomes with which they are associated, and identifies mRNAs that are not translated (Panda et al. , 2016). mRNAs associated with many ribosomes form large polysomes that are predicted to be actively translated, while mRNAs associated with few or no ribosomes are expected to be translated poorly if at all. In sum, polysome fractionation analysis allows the direct determination of translation efficiencies at the level of the whole transcriptome as well as individual mRNAs.

  11. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences

    PubMed Central

    Šulc, Miroslav; Marín, Ray M.; Robins, Harlan S.; Vaníček, Jiří

    2015-01-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3′ untranslated regions (3′ UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3′ UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA–mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA–mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. PMID:25948580

  12. Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria.

    PubMed

    Cahoon, A Bruce; Qureshi, Ali A

    2018-06-01

    The mitochondrial genome of Chlamydomonas reinhardtii encodes eight protein coding genes transcribed on two polycistronic primary transcripts. The mRNAs are endonucleolytically cleaved from these transcripts directly upstream of their AUG start codons, creating leaderless mRNAs with 3' untranslated regions (UTR) comprised of most or all of their downstream intergenic regions. In this report, we provide evidence that these processed linear mRNAs are circularized, which places the 3' UTR upstream of the 5' start codon, creating a leader sequence ex post facto. The circular mRNAs were found to be ribosome associate by polysome profiling experiments suggesting they are translated. Sequencing of the 3'-5' junctions of the circularized mRNAs found the intra-molecular ligations occurred between fully processed 5' ends (the start AUG) and a variable 3' terminus. For five genes (cob, cox, nd2, nd4, and nd6), some of the 3' ends maintained an oligonucleotide addition during ligation, and for two of them, cob and nd6, these 3' termini were the most commonly recovered sequence. Previous reports have shown that after cleavage, three untemplated oligonucleotide additions may occur on the 3' termini of these mRNAs-adenylation, uridylylation, or cytidylation. These results suggest oligo(U) and oligo(C) additions may be part of the maturation process since they are maintained in the circular mRNAs. Circular RNAs occur in organisms across the biological spectrum, but their purpose in some systems, such as organelles (mitochondria and chloroplasts) is unclear. We hypothesize, that in C. reinhardtii mitochondria it may create a leader sequence to facilitate translation initiation, which may negate the need for an alternative translation initiation mechanism in this system, as previously speculated. In addition, circularization may play a protective role against exonucleases, and/or increase translational productivity.

  13. Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein

    PubMed Central

    Larkins-Ford, Jonah; McCormick, Craig; Gaglia, Marta M.

    2016-01-01

    Influenza A viruses (IAVs) inhibit host gene expression by a process known as host shutoff. Host shutoff limits host innate immune responses and may also redirect the translation apparatus to the production of viral proteins. Multiple IAV proteins regulate host shutoff, including PA-X, a ribonuclease that remains incompletely characterized. We report that PA-X selectively targets host RNA polymerase II (Pol II) transcribed mRNAs, while sparing products of Pol I and Pol III. Interestingly, we show that PA-X can also target Pol II-transcribed RNAs in the nucleus, including non-coding RNAs that are not destined to be translated, and reporter transcripts with RNA hairpin structures that block ribosome loading. Transcript degradation likely occurs in the nucleus, as PA-X is enriched in the nucleus and its nuclear localization correlates with reduction in target RNA levels. Complete degradation of host mRNAs following PA-X-mediated endonucleolytic cleavage is dependent on the host 5’->3’-exonuclease Xrn1. IAV mRNAs are structurally similar to host mRNAs, but are synthesized and modified at the 3’ end by the action of the viral RNA-dependent RNA polymerase complex. Infection of cells with wild-type IAV or a recombinant PA-X-deficient virus revealed that IAV mRNAs resist PA-X-mediated degradation during infection. At the same time, loss of PA-X resulted in changes in the synthesis of select viral mRNAs and a decrease in viral protein accumulation. Collectively, these results significantly advance our understanding of IAV host shutoff, and suggest that the PA-X causes selective degradation of host mRNAs by discriminating some aspect of Pol II-dependent RNA biogenesis in the nucleus. PMID:26849127

  14. Transcriptomes of six mutants in the Sen1 pathway reveal combinatorial control of transcription termination across the Saccharomyces cerevisiae genome

    PubMed Central

    Carver, Melissa N.; Müller, Ulrika; Bekiranov, Stefan; Auble, David T.

    2017-01-01

    Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. PMID:28665995

  15. Advances in RNA Structure Determination | Center for Cancer Research

    Cancer.gov

    The recent years have witnessed a revolution in the field of RNA structure and function. Until recently the main contribution of RNA in cellular and disease functions was considered to be a role defined by the central dogma, namely DNA codes for mRNAs, which in turn encode for proteins, a notion facilitated by non-coding ribosomal RNA and tRNA. It was also assumed at the time

  16. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries

    PubMed Central

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-01-01

    Small Tail Han sheep, including the FecBBFecBB (Han BB) and FecB+ FecB+ (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs. PMID:27982099

  17. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-12-16

    Small Tail Han sheep, including the FecB B FecB B (Han BB) and FecB + FecB + (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs.

  18. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences.

    PubMed

    Šulc, Miroslav; Marín, Ray M; Robins, Harlan S; Vaníček, Jiří

    2015-07-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3' untranslated regions (3' UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3' UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA-mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA-mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Differentially Expressed Long Non-Coding RNAs Were Predicted to Be Involved in the Control of Signaling Pathways in Pediatric Astrocytoma.

    PubMed

    Ruiz Esparza-Garrido, Ruth; Rodríguez-Corona, Juan Manuel; López-Aguilar, Javier Enrique; Rodríguez-Florido, Marco Antonio; Velázquez-Wong, Ana Claudia; Viedma-Rodríguez, Rubí; Salamanca-Gómez, Fabio; Velázquez-Flores, Miguel Ángel

    2017-10-01

    Expression changes for long non-coding RNAs (lncRNAs) have been identified in adult glioblastoma multiforme (GBM) and in a mixture of adult and pediatric astrocytoma. Since adult and pediatric astrocytomas are molecularly different, the mixture of both could mask specific features in each. We determined the global expression patterns of lncRNAs and messenger RNA (mRNAs) in pediatric astrocytoma of different histological grades. Transcript expression changes were determined with an HTA 2.0 array. lncRNA interactions with microRNAs and mRNAs were predicted by using an algorithm and the LncTar tool, respectively. Interactomes were constructed with the HIPPIE database and visualized with the Cytoscape platform. The array showed expression changes in 156 and 207 lncRNAs in tumors (versus the control) and in pediatric GBM (versus low-grade astrocytoma), respectively. Predictions identified lncRNAs that have putative microRNA binding sites, which might suggest that they function as sponges in these tumors. Also, lncRNAs were shown to interact with many mRNAs, such as Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and sulfatase 2 (SULF2). For example, qPCR found long intergenic non-coding RNA regulator of reprogramming (linc-RoR) expression levels upregulated in pediatric GBM when they were compared with control tissues or with low-grade tumors. Meanwhile, PHLDA1 and ELAV-like RNA binding protein 1 (ELAV1) showed expression changes in tumors relative to the control. Our data showed many lncRNAs with expression changes in pediatric astrocytoma, which might be involved in the regulation of different signaling pathways.

  20. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro.

    PubMed

    Xiong, Kun; Long, Lingling; Zhang, Xudong; Qu, Hongke; Deng, Haixiao; Ding, Yanjun; Cai, Jifeng; Wang, Shuchao; Wang, Mi; Liao, Lvshuang; Huang, Jufang; Yi, Chun-Xia; Yan, Jie

    2017-10-01

    Long non-coding RNAs (lncRNAs) display multiple functions including regulation of neuronal injury. However, their impact in methamphetamine (METH)-induced neurotoxicity has rarely been reported. Here, using microarray analysis, we investigated the expression profiling of lncRNAs and mRNAs in primary cultured prefrontal cortical neurons after METH treatment. We observed a difference in lncRNA and mRNA expression between the experimental and sham control groups. Using bioinformatics, we analyzed the highest enriched gene ontology (GO) terms of biological process, cellular component, and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and pathway network analysis. Furthermore, an lncRNA-mRNA co-expression sub-network for aberrantly expressed terms revealed possible interactions of lncRNA NR_110713 and NR_027943 with their related genes. Afterwards, three lncRNAs (NR_110713, NR_027943, GAS5) and two mRNAs (Ddit3, Casp12) were targeted to validate the microarray data by qRT-PCR. This presented an overview of lncRNA and mRNA expression profiling and indicated that lncRNA might participate in METH-induced neuronal apoptosis by regulating the coding genes of neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A systems biology approach for miRNA-mRNA expression patterns analysis in non-small cell lung cancer.

    PubMed

    Najafi, Ali; Tavallaei, Mahmood; Hosseini, Sayed Mostafa

    2016-01-01

    Non-small cell lung cancers (NSCLCs) is a prevalent and heterogeneous subtype of lung cancer accounting for 85 percent of patients. MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, incorporate into regulation of gene expression post-transcriptionally. Therefore, deregulation of miRNAs' expression has provided further layers of complexity to the molecular etiology and pathogenesis of different diseases and malignancies. Although, until now considerable number of studies has been carried out to illuminate this complexity in NSCLC, they have remained less effective in their goal due to lack of a holistic and integrative systems biology approach which considers all natural elaborations of miRNAs' function. It is able to reliably nominate most affected signaling pathways and therapeutic target genes by deregulated miRNAs during a particular pathological condition. Herein, we utilized a holistic systems biology approach, based on appropriate re-analyses of microarray datasets followed by reliable data filtering, to analyze integrative and combinatorial deregulated miRNA-mRNA interaction network in NSCLC, aiming to ascertain miRNA-dysregulated signaling pathway and potential therapeutic miRNAs and mRNAs which represent a lion' share during various aspects of NSCLC's pathogenesis. Our systems biology approach introduced and nominated 1) important deregulated miRNAs in NSCLCs compared with normal tissue 2) significant and confident deregulated mRNAs which were anti-correlatively targeted by deregulated miRNA in NSCLCs and 3) dysregulated signaling pathways in association with deregulated miRNA-mRNAs interactions in NSCLCs. These results introduce possible mechanism of function of deregulated miRNAs and mRNAs in NSCLC that could be used as potential therapeutic targets.

  2. Characterization of calpastatin gene in fish: its potential role in muscle growth and fillet quality.

    PubMed

    Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E; Kenney, P Brett; Semmens, Kenneth; Killefer, John; Nath, Joginder

    2005-08-01

    Calpastatin (CAST), the specific inhibitor of the calpain proteases, plays a role in muscle growth and meat quality. In rainbow trout (RBT), we identified cDNAs coding for two CAST isoforms, a long (CAST-L) and a short isoform (CAST-S), apparently derived from two different genes. Zebrafish and pufferfish CAST cDNA and genomic sequences were retrieved from GenBank and their exon/intron structures were characterized. Fish CASTs are novel in that they have fewer repetitive inhibitory domains as compared to their mammalian counterparts (one or two vs. four). The expressions of CAST mRNAs were measured in three RBT strains with different growth rates and fillet firmness that were fed either high energy or control diets. CAST-L and S expressions were significantly lower (p<0.01) in the strain that has the slowest growth rate and yielded the softest fillet. Strain or diet did not affect level of calpain mRNAs. However, the decrease in the CAST/calpain ratio at the mRNA level did not lead to a corresponding change in the calpain catalytic activity. Further investigation should reveal a potential use of the CAST gene as a tool to monitor fish muscle growth and fillet firmness.

  3. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling

    PubMed Central

    Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W.; Asmann, Yan W.; Thompson, E. Aubrey

    2017-01-01

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. PMID:28877994

  4. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs

    PubMed Central

    Soheilypour, M.; Mofrad, M. R. K.

    2016-01-01

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus. PMID:27805000

  5. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs.

    PubMed

    Soheilypour, M; Mofrad, M R K

    2016-11-02

    Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.

  6. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling.

    PubMed

    Kourtidis, Antonis; Necela, Brian; Lin, Wan-Hsin; Lu, Ruifeng; Feathers, Ryan W; Asmann, Yan W; Thompson, E Aubrey; Anastasiadis, Panos Z

    2017-10-02

    Cumulative evidence demonstrates that most RNAs exhibit specific subcellular distribution. However, the mechanisms regulating this phenomenon and its functional consequences are still under investigation. Here, we reveal that cadherin complexes at the apical zonula adherens (ZA) of epithelial adherens junctions recruit the core components of the RNA-induced silencing complex (RISC) Ago2, GW182, and PABPC1, as well as a set of 522 messenger RNAs (mRNAs) and 28 mature microRNAs (miRNAs or miRs), via PLEKHA7. Top canonical pathways represented by these mRNAs include Wnt/β-catenin, TGF-β, and stem cell signaling. We specifically demonstrate the presence and silencing of MYC, JUN, and SOX2 mRNAs by miR-24 and miR-200c at the ZA. PLEKHA7 knockdown dissociates RISC from the ZA, decreases loading of the ZA-associated mRNAs and miRNAs to Ago2, and results in a corresponding increase of MYC, JUN, and SOX2 protein expression. The present work reveals a mechanism that directly links junction integrity to the silencing of a set of mRNAs that critically affect epithelial homeostasis. © 2017 Kourtidis et al.

  7. Comprehensive analysis of lncRNAs and mRNAs in skeletal muscle of rainbow trout (Oncorhynchus mykiss) exposed to estradiol

    USDA-ARS?s Scientific Manuscript database

    Estradiol (E2) is a steroid hormone that negatively affects muscle growth in rainbow trout, but the mechanisms directing with this response are not fully understood. To better characterize the effects of E2 in muscle, we identified differentially regulated mRNAs and lncRNAs in juvenile rainbow trout...

  8. MicroRNA signature of the human developing pancreas.

    PubMed

    Rosero, Samuel; Bravo-Egana, Valia; Jiang, Zhijie; Khuri, Sawsan; Tsinoremas, Nicholas; Klein, Dagmar; Sabates, Eduardo; Correa-Medina, Mayrin; Ricordi, Camillo; Domínguez-Bendala, Juan; Diez, Juan; Pastori, Ricardo L

    2010-09-22

    MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase algorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas.

  9. MicroRNA signature of the human developing pancreas

    PubMed Central

    2010-01-01

    Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas. PMID:20860821

  10. Biosynthesis of reovirus-specified polypeptides: the reovirus s1 mRNA encodes two primary translation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, B.L.; Samuel, C.E.

    1985-05-01

    Reovirus serotypes 1 (Lang strain) and 3 (Dearing strain) code for a hitherto unrecognized low-molecular-weight polypeptide of Mr approximately 12,000. This polypeptide (p12) was synthesized in vitro in L-cell-free protein synthesizing systems programmed with either reovirus serotype 1 mRNA, reovirus serotype 3 mRNA, or with denatured reovirus genome double-stranded RNA, and in vivo in L-cell cultures infected with either reovirus serotype. Pulse-chase experiments in vivo, and the relative kinetics of synthesis of p12 in vitro, indicate that it is a primary translation product. Fractionation of reovirus mRNAs by velocity sedimentation and translation of separated mRNAs in vitro suggests that p12more » is coded for by the s1 mRNA, which also codes for the previously recognized sigma 1 polypeptide. Synthesis of both p12 and sigma 1 in vitro in L-cell-free protein synthesizing systems programmed with denatured reovirus genome double-stranded RNA also suggests that these two polypeptides can be coded by the same mRNA species. It is proposed that the Mr approximately 12,000 polypeptide encoded by the S1 genome segment be designated sigma 1bNS, and that the polypeptide previously designated sigma 1 be renamed sigma 1a.« less

  11. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    PubMed

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  12. Synaptic control of local translation: the plot thickens with new characters.

    PubMed

    Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia

    2014-06-01

    The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.

  13. A-to-I editing of coding and non-coding RNAs by ADARs

    PubMed Central

    Nishikura, Kazuko

    2016-01-01

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264

  14. Antisense transcriptional interference mediates condition-specific gene repression in budding yeast.

    PubMed

    Nevers, Alicia; Doyen, Antonia; Malabat, Christophe; Néron, Bertrand; Kergrohen, Thomas; Jacquier, Alain; Badis, Gwenael

    2018-05-18

    Pervasive transcription generates many unstable non-coding transcripts in budding yeast. The transcription of such noncoding RNAs, in particular antisense RNAs (asRNAs), has been shown in a few examples to repress the expression of the associated mRNAs. Yet, such mechanism is not known to commonly contribute to the regulation of a given class of genes. Using a mutant context that stabilized pervasive transcripts, we observed that the least expressed mRNAs during the exponential phase were associated with high levels of asRNAs. These asRNAs also overlapped their corresponding gene promoters with a much higher frequency than average. Interrupting antisense transcription of a subset of genes corresponding to quiescence-enriched mRNAs restored their expression. The underlying mechanism acts in cis and involves several chromatin modifiers. Our results convey that transcription interference represses up to 30% of the 590 least expressed genes, which includes 163 genes with quiescence-enriched mRNAs. We also found that pervasive transcripts constitute a higher fraction of the transcriptome in quiescence relative to the exponential phase, consistent with gene expression itself playing an important role to suppress pervasive transcription. Accordingly, the HIS1 asRNA, normally only present in quiescence, is expressed in exponential phase upon HIS1 mRNA transcription interruption.

  15. RNA Nuclear Export: From Neurological Disorders to Cancer.

    PubMed

    Hautbergue, Guillaume M

    2017-01-01

    The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.

  16. Comprehensive analysis of microRNA-Seq and target mRNAs of rice sheath blight pathogen provides new insights into pathogenic regulatory mechanisms.

    PubMed

    Lin, Runmao; He, Liye; He, Jiayu; Qin, Peigang; Wang, Yanran; Deng, Qiming; Yang, Xiaoting; Li, Shuangcheng; Wang, Shiquan; Wang, Wenming; Liu, Huainian; Li, Ping; Zheng, Aiping

    2016-07-03

    MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    PubMed Central

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2018-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications. PMID:29375311

  18. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    PubMed

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications.

  19. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis.

    PubMed

    Yang, W; Du, W W; Li, X; Yee, A J; Yang, B B

    2016-07-28

    It has recently been shown that the upregulation of a pseudogene specific to a protein-coding gene could function as a sponge to bind multiple potential targeting microRNAs (miRNAs), resulting in increased gene expression. Similarly, it was recently demonstrated that circular RNAs can function as sponges for miRNAs, and could upregulate expression of mRNAs containing an identical sequence. Furthermore, some mRNAs are now known to not only translate protein, but also function to sponge miRNA binding, facilitating gene expression. Collectively, these appear to be effective mechanisms to ensure gene expression and protein activity. Here we show that expression of a member of the forkhead family of transcription factors, Foxo3, is regulated by the Foxo3 pseudogene (Foxo3P), and Foxo3 circular RNA, both of which bind to eight miRNAs. We found that the ectopic expression of the Foxo3P, Foxo3 circular RNA and Foxo3 mRNA could all suppress tumor growth and cancer cell proliferation and survival. Our results showed that at least three mechanisms are used to ensure protein translation of Foxo3, which reflects an essential role of Foxo3 and its corresponding non-coding RNAs.

  20. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    PubMed Central

    Nicolas, Francisco Esteban; Moxon, Simon; de Haro, Juan P.; Calo, Silvia; Grigoriev, Igor V.; Torres-Martínez, Santiago; Moulton, Vincent; Ruiz-Vázquez, Rosa M.; Dalmay, Tamas

    2010-01-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi. PMID:20427422

  1. Translatome analysis at the egg-to-embryo transition in sea urchin

    PubMed Central

    Chassé, Héloïse; Aubert, Julie; Boulben, Sandrine; Le Corguillé, Gildas; Corre, Erwan; Cormier, Patrick

    2018-01-01

    Abstract Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis. PMID:29660001

  2. Translatome analysis at the egg-to-embryo transition in sea urchin.

    PubMed

    Chassé, Héloïse; Aubert, Julie; Boulben, Sandrine; Le Corguillé, Gildas; Corre, Erwan; Cormier, Patrick; Morales, Julia

    2018-05-18

    Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.

  3. RhoA/ROCK pathway activity is essential for the correct localization of the germ plasm mRNAs in zebrafish embryos.

    PubMed

    Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi

    2017-01-01

    Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Wang, Yue; Xu, Tingting; He, Weiyi; Shen, Xiujing; Zhao, Qian; Bai, Jianlin; You, Minsheng

    2018-01-01

    Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients.

    PubMed

    Huang, Xin; Hao, Cuifang; Bao, Hongchu; Wang, Meimei; Dai, Huangguan

    2016-01-01

    To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed that lncRNAs differentially expressed in PCOS and normal women may contribute to the occurrence of PCOS and affect oocyte development.

  6. The expression profiling and ontology analysis of non-coding RNAs in dexamethasone induced steatosis in hepatoma cell.

    PubMed

    Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan

    2018-04-15

    Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Alternative 3' UTRs Modify the Localization, Regulatory Potential, Stability, and Plasticity of mRNAs in Neuronal Compartments.

    PubMed

    Tushev, Georgi; Glock, Caspar; Heumüller, Maximilian; Biever, Anne; Jovanovic, Marko; Schuman, Erin M

    2018-05-02

    Neurons localize mRNAs near synapses where their translation can be regulated by synaptic demand and activity. Differences in the 3' UTRs of mRNAs can change their localization, stability, and translational regulation. Using 3' end RNA sequencing of microdissected rat brain slices, we discovered a huge diversity in mRNA 3' UTRs, with many transcripts showing enrichment for a particular 3' UTR isoform in either somata or the neuropil. The 3' UTR isoforms of localized transcripts are significantly longer than the 3' UTRs of non-localized transcripts and often code for proteins associated with axons, dendrites, and synapses. Surprisingly, long 3' UTRs add not only new, but also duplicate regulatory elements. The neuropil-enriched 3' UTR isoforms have significantly longer half-lives than somata-enriched isoforms. Finally, the 3' UTR isoforms can be significantly altered by enhanced activity. Most of the 3' UTR plasticity is transcription dependent, but intriguing examples of changes that are consistent with altered stability, trafficking between compartments, or local "remodeling" remain. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Discrimination of heterogenous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides.

    PubMed Central

    Akagi, H; Patton, D E; Miledi, R

    1989-01-01

    Three synthetic oligodeoxynucleotides complementary to different parts of an RNA encoding a glycine receptor subunit were used to discriminate heterogenous mRNAs coding for glycine receptors in adult and neonatal rat spinal cord. Injection of the three antisense oligonucleotides into Xenopus oocytes specifically inhibited the expression of glycine receptors by adult spinal cord mRNA. In contrast, the antisense oligonucleotides were much less potent in inhibiting the expression of glycine receptors encoded by neonatal spinal cord mRNA. Northern blot analysis revealed that the oligonucleotides hybridized mostly to an adult cord transcript of approximately 10 kilobases in size. This band was also present in neonatal spinal cord mRNA but its density was about one-fourth of the adult cord message. There was no intense band in the low molecular weight position (approximately 2 kilobases), the existence of which was expected from electrophysiological studies with size-fractionated mRNA of neonatal spinal cord. Our results suggest that in the rat spinal cord there are at least three different types of mRNAs encoding functional strychnine-sensitive glycine receptors. Images PMID:2479016

  9. The Human T-Lymphotropic Virus Type 1 Tax Protein Inhibits Nonsense-Mediated mRNA Decay by Interacting with INT6/EIF3E and UPF1

    PubMed Central

    Mocquet, Vincent; Neusiedler, Julia; Rende, Francesca; Cluet, David; Robin, Jean-Philippe; Terme, Jean-Michel; Duc Dodon, Madeleine; Wittmann, Jürgen; Morris, Christelle; Le Hir, Hervé; Ciminale, Vincenzo

    2012-01-01

    In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation. PMID:22553336

  10. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA.

    PubMed

    Pang, Wei; Lian, Fu-Zhi; Leng, Xue; Wang, Shu-Min; Li, Yi-Bo; Wang, Zi-Yu; Li, Kai-Ren; Gao, Zhi-Xian; Jiang, Yu-Gang

    2018-05-01

    A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.

  11. Identification of human microRNA targets from isolated argonaute protein complexes.

    PubMed

    Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter

    2007-06-01

    MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.

  12. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    PubMed

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p in 3'UTRs, 5'UTRs and CDSs are conservative in the orthologous mammalian genes.

  13. The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk.

    PubMed Central

    Kuraishi, T; Sun, Y; Aoki, F; Imakawa, K; Sakai, S

    2000-01-01

    The length of casein mRNA from the lactating mouse mammary gland, as assessed on Northern blots, is shorter after weaning, but is elongated following the removal of milk. In order to investigate this phenomenon, the molecular structures of beta- and gamma-casein mRNAs were analysed. The coding and non-coding regions of the two forms were the same length, but the long form of casein mRNA had a longer poly(A) tail than the short form (P<0.05). In order to examine the stability of casein mRNA under identical conditions, casein mRNAs with the long and short poly(A) tails were incubated in the rabbit reticulocyte lysate (RRL) cell-free translation system. Casein mRNA with the long poly(A) tail had a longer half-life than that with the short tail (P<0.05). The beta- and gamma-casein mRNAs were first degraded into 0.92 and 0.81 kb fragments respectively. With undegraded mRNA, the poly(A) tail shortening by exoribonuclease was not observed until the end of the incubation. Northern blot analysis showed that casein mRNA with the long poly(A) tail was protected efficiently from endoribonucleases. We conclude that the length of the poly(A) tail of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of the gland's milk, and we show that the longer poly(A) tail potentially protects the mRNA from degradation by endoribonucleases. PMID:10749689

  14. Cloning and Expression Analysis of Genes Encoding Lytic Endopeptidases L1 and L5 from Lysobacter sp. Strain XL1

    PubMed Central

    Lapteva, Y. S.; Zolova, O. E.; Shlyapnikov, M. G.; Tsfasman, I. M.; Muranova, T. A.; Stepnaya, O. A.; Kulaev, I. S.

    2012-01-01

    Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5. PMID:22865082

  15. Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1.

    PubMed

    Lapteva, Y S; Zolova, O E; Shlyapnikov, M G; Tsfasman, I M; Muranova, T A; Stepnaya, O A; Kulaev, I S; Granovsky, I E

    2012-10-01

    Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5.

  16. Trans‐acting translational regulatory RNA binding proteins

    PubMed Central

    Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa

    2018-01-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429

  17. Trans-acting translational regulatory RNA binding proteins.

    PubMed

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  18. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information

    PubMed Central

    2017-01-01

    Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658

  19. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay.

    PubMed

    Trypsteen, Wim; Mohammadi, Pejman; Van Hecke, Clarissa; Mestdagh, Pieter; Lefever, Steve; Saeys, Yvan; De Bleser, Pieter; Vandesompele, Jo; Ciuffi, Angela; Vandekerckhove, Linos; De Spiegelaere, Ward

    2016-10-26

    Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.

  20. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes.

    PubMed

    Thomas, María G; Martinez Tosar, Leandro J; Loschi, Mariela; Pasquini, Juana M; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.

  1. Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4

    PubMed Central

    Venkatesh, Madhukumar; Mukherjee, Subhajit; Wang, Hongwei; Li, Hao; Sun, Katherine; Benechet, Alaxandre P.; Qiu, Zhijuan; Maher, Leigh; Redinbo, Matthew R.; Phillips, Robert S.; Fleet, James C.; Kortagere, Sandhya; Mukherjee, Paromita; Fasano, Alessio; Le Ven, Jessica; Nicholson, Jeremy K.; Dumas, Marc E.; Khanna, Kamal M.; Mani, Sridhar

    2014-01-01

    SUMMARY Intestinal microbial metabolites are conjectured to affect mucosal integrity through an incompletely characterized mechanism. Here we showed microbial-specific indoles regulated intestinal barrier function through the xenobiotic sensor, pregnane X receptor (PXR). Indole 3-propionic acid (IPA), in the context of indole, is as a ligand for PXR in vivo, and IPA down-regulated enterocyte TNF–α while up-regulated junctional protein-coding mRNAs. PXR-deficient (Nr1i2−/−) mice showed a distinctly “leaky” gut physiology coupled with up-regulation of the Toll-like receptor (TLR) signaling pathway. These defects in the epithelial barrier were corrected in Nr1i2−/−Tlr4−/− mice. Our results demonstrate that a direct chemical communication between the intestinal symbionts and PXR regulates mucosal integrity through a pathway which involves luminal sensing and signaling by TLR4. PMID:25065623

  2. RNA‑sequencing analysis of aberrantly expressed long non‑coding RNAs and mRNAs in a mouse model of ventilator‑induced lung injury.

    PubMed

    Xu, Bo; Wang, Yizhou; Li, Xiujuan; Mao, Yanfei; Deng, Xiaoming

    2018-05-17

    Long non-coding RNAs (lncRNAs) are closely associated with the regulation of various biological processes and are involved in the pathogenesis of numerous diseases. However, to the best of our knowledge, the role of lncRNAs in ventilator‑induced lung injury (VILI) has yet to be evaluated. In the present study, high‑throughput sequencing was applied to investigate differentially expressed lncRNAs and mRNAs (fold change >2; false discovery rate <0.05). Bioinformatics analysis was employed to predict the functions of differentially expressed lncRNAs. A total of 104 lncRNAs (74 upregulated and 30 downregulated) and 809 mRNAs (521 upregulated and 288 downregulated) were differentially expressed in lung tissues from the VILI group. Gene ontology analysis demonstrated that the differentially expressed lncRNAs and mRNAs were mainly associated with biological functions, including apoptosis, angiogenesis, neutrophil chemotaxis and skeletal muscle cell differentiation. The top four enriched pathways were the tumor necrosis factor (TNF) signaling pathway, P53 signaling pathway, neuroactive ligand‑receptor interaction and the forkhead box O signaling pathway. Several lncRNAs were predicted to serve a vital role in VILI. Subsequently, three lncRNAs [mitogen‑activated protein kinase kinase 3, opposite strand (Map2k3os), dynamin 3, opposite strand and abhydrolase domain containing 11, opposite strand] and three mRNAs (growth arrest and DNA damage‑inducible α, claudin 4 and thromboxane A2 receptor) were measured by reverse transcription‑quantitative polymerase chain reaction, in order to confirm the veracity of RNA‑sequencing analysis. In addition, Map2k3os small interfering RNA transfection inhibited the expression of stretch‑induced cytokines [TNF‑α, interleukin (IL)‑1β and IL‑6] in MLE12 cells. In conclusion, the results of the present study provided a profile of differentially expressed lncRNAs in VILI. Several important lncRNAs may be involved in the pathological process of VILI, which may be useful to guide further investigation into the pathogenesis for this disease.

  3. Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia.

    PubMed

    Klahre, U; Hemmings-Mieszczak, M; Filipowicz, W

    1995-06-01

    We have previously characterized nuclear cDNA clones encoding two RNA binding proteins, CP-RBP30 and CP-RBP-31, which are targeted to chloroplasts in Nicotiana plumbaginifolia. In this report we describe the analysis of the 3'-untranslated regions (3'-UTRs) in 22 CP-RBP30 and 8 CP-RBP31 clones which reveals that mRNAs encoding both proteins have a very complex polyadenylation pattern. Fourteen distinct poly(A) sites were identified among CP-RBP30 clones and four sites among the CP-RBP31 clones. The authenticity of the sites was confirmed by RNase A/T1 mapping of N. plumbaginifolia RNA. CP-RBP30 provides an extreme example of the heterogeneity known to be a feature of mRNA polyadenylation in higher plants. Using PCR we have demonstrated that CP-RBP genes in N. plumbaginifolia and N. sylvestris, in addition to the previously described introns interrupting the coding region, contain an intron located in the 3' non-coding part of the gene. In the case of the CP-RBP31, we have identified one polyadenylation event occurring in this intron.

  4. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis

    PubMed Central

    Wang, Zhe; Xu, Panpan; Chen, Biyue; Zhang, Zheyu; Zhang, Chunhu; Zhan, Qiong; Huang, Siqi; Xia, Zi-an

    2018-01-01

    Alzheimer’s disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ1-42-induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p-value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs. PMID:29706607

  5. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis.

    PubMed

    Wang, Zhe; Xu, Panpan; Chen, Biyue; Zhang, Zheyu; Zhang, Chunhu; Zhan, Qiong; Huang, Siqi; Xia, Zi-An; Peng, Weijun

    2018-04-27

    Alzheimer's disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ 1-42 -induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p -value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs.

  6. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  7. Microarray analysis of long non-coding RNA expression profiles in monocytic myeloid-derived suppressor cells in Echinococcus granulosus-infected mice.

    PubMed

    Yu, Aiping; Wang, Ying; Yin, Jianhai; Zhang, Jing; Cao, Shengkui; Cao, Jianping; Shen, Yujuan

    2018-05-30

    Cystic echinococcosis is a worldwide chronic zoonotic disease caused by infection with the larval stage of Echinococcus granulosus. Previously, we found significant accumulation of myeloid-derived suppressor cells (MDSCs) in E. granulosus infection mouse models and that they play a key role in immunosuppressing T lymphocytes. Here, we compared the long non-coding RNA (lncRNA) and mRNA expression patterns between the splenic monocytic MDSCs (M-MDSCs) of E. granulosus protoscoleces-infected mice and normal mice using microarray analysis. LncRNA functions were predicted using Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Cis- and trans-regulation analyses revealed potential relationships between the lncRNAs and their target genes or related transcription factors. We found that 649 lncRNAs were differentially expressed (fold change ≥ 2, P < 0.05): 582 lncRNAs were upregulated and 67 lncRNAs were downregulated; respectively, 28 upregulated mRNAs and 1043 downregulated mRNAs were differentially expressed. The microarray data was validated by quantitative reverse transcription-PCR. The results indicated that mRNAs co-expressed with the lncRNAs are mainly involved in regulating the actin cytoskeleton, Salmonella infection, leishmaniasis, and the vascular endothelial growth factor (VEGF) signaling pathway. The lncRNA NONMMUT021591 was predicted to cis-regulate the retinoblastoma gene (Rb1), whose expression is associated with abnormal M-MDSCs differentiation. We found that 372 lncRNAs were predicted to interact with 60 transcription factors; among these, C/EBPβ (CCAAT/enhancer binding protein beta) was previously demonstrated to be a transcription factor of MDSCs. Our study identified dysregulated lncRNAs in the M-MDSCs of E. granulosus infection mouse models; they might be involved in M-MDSC-derived immunosuppression in related diseases.

  8. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  9. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs

    PubMed Central

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-01-01

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC. PMID:28685749

  10. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs.

    PubMed

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-07-07

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNA Lys (UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC.

  11. Bioinformatics of prokaryotic RNAs

    PubMed Central

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes. PMID:24755880

  12. Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants.

    PubMed

    Tsuzuki, Masayuki; Motomura, Kazuki; Kumakura, Naoyoshi; Takeda, Atsushi

    2017-03-01

    Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.

  13. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

    PubMed

    Mascarenhas, Roshan; Pietrzak, Maciej; Smith, Ryan M; Webb, Amy; Wang, Danxin; Papp, Audrey C; Pinsonneault, Julia K; Seweryn, Michal; Rempala, Grzegorz; Sadee, Wolfgang

    2015-01-01

    mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs), and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs) in lymphoblast cell lines (LCL) and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T) in ABCB1 (MDR1) on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq) in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs) affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.

  14. New Method for Producing Significant Amounts of RNA Labeled at Specific Sites | Center for Cancer Research

    Cancer.gov

    Among biomacromolecules, RNA is the most versatile, and it plays indispensable roles in almost all aspects of biology. For example, in addition to serving as mRNAs coding for proteins, RNAs regulate gene expression, such as controlling where, when, and how efficiently a gene gets expressed, participate in RNA processing, encode the genetic information of some viruses, serve as

  15. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form.

    PubMed Central

    Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J

    1988-01-01

    In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125

  16. Linking nuclear mRNP assembly and cytoplasmic destiny.

    PubMed

    Kuersten, Scott; Goodwin, Elizabeth B

    2005-06-01

    From the very beginning, mRNAs have a complex existence. They are transcribed, capped, spliced, modified at the 3'end, exported from the nucleus, translated, and eventually degraded. These many events not only affect the overall survival and properties of an mRNA, but are also carefully co-ordinated and integrated with quality control mechanisms that function to ensure that only 'proper' mRNAs are translated at the correct developmental time and place. This does not mean that all mRNAs follow a single or uniform path from synthesis to death. Instead, there are diverse means by which the activities of specific mRNAs are regulated, and these controls often depend upon multiple events in the mRNA's life. mRNAs are not found naked in the cell, instead they are part of complex RNPs (ribonucleoproteins) that consist of many factors. These RNPs are highly dynamic structures that change during the lifetime of a given RNA; linking events such as synthesis and processing to the final fate of the mRNA. Here, we will discuss what is known of the assembly of RNPs in general, with specific reference to the myriad of connections between different nuclear events and the cytoplasmic activity of an mRNA. Due to space limitations this review is not comprehensive, instead we focus on specific examples to illustrate these emerging themes in gene expression.

  17. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry.

    PubMed

    Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.

  18. Systematical analysis of lncRNA-mRNA competing endogenous RNA network in breast cancer subtypes.

    PubMed

    Zhou, Shunheng; Wang, Lihong; Yang, Qian; Liu, Haizhou; Meng, Qianqian; Jiang, Leiming; Wang, Shuyuan; Jiang, Wei

    2018-06-01

    Breast cancer is one of the most common solid tumors in women involving multiple subtypes. However, the mechanism for subtypes of breast cancer is still complicated and unclear. Recently, several studies indicated that long non-coding RNAs (lncRNAs) could act as sponges to compete miRNAs with mRNAs, participating in various biological processes. We concentrated on the competing interactions between lncRNAs and mRNAs in four subtypes of breast cancer (basal-like, HER2+, luminal A and luminal B), and analyzed the impacts of competing endogenous RNAs (ceRNAs) on each subtype systematically. We constructed four breast cancer subtype-related lncRNA-mRNA ceRNA networks by integrating the miRNA target information and the expression data of lncRNAs, miRNAs and mRNAs. We constructed the ceRNA network for each breast cancer subtype. Functional analysis revealed that the subtype-related ceRNA networks were enriched in cancer-related pathways in KEGG, such as pathways in cancer, miRNAs in cancer, and PI3k-Akt signaling pathway. In addition, we found three common lncRNAs across the four subtype-related ceRNA networks, NEAT1, OPI5-AS1 and AC008124.1, which played specific roles in each subtype through competing with diverse mRNAs. Finally, the potential drugs for treatment of basal-like subtype could be predicted through reversing the differentially expressed lncRNA in the ceRNA network. This study provided a novel perspective of lncRNA-involved ceRNA network to dissect the molecular mechanism for breast cancer.

  19. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    PubMed

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of K-strategists, perhaps because domestication increases reproductive output.

  20. Nucleotide sequences of bovine alpha S1- and kappa-casein cDNAs.

    PubMed Central

    Stewart, A F; Willis, I M; Mackinlay, A G

    1984-01-01

    The nucleotide sequences corresponding to bovine alpha S1- and kappa-casein mRNAs are presented. An unusual alpha S1-casein cDNA has been characterised whose 5' end commences upstream from its putative TATA box. The alpha S1-casein mRNA is compared to rat alpha-casein mRNA and two components of divergence are identified. Firstly, the two sequences have diverged at a high point mutation rate and the rate of amino acid replacement by this mechanism is at least as great as the rate of divergence of any other part of the mRNAs. Secondly, the protein coding sequence has been subjected to several insertion/deletion events, one of which may be an example of exon shuffling . The kappa-casein mRNA sequence verifies the proposition that it has arisen from a different ancestral gene to the other caseins. Images PMID:6328443

  1. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood

    PubMed Central

    Peters, Oliver; Rajewsky, Nikolaus

    2015-01-01

    Covalently closed circular RNA molecules (circRNAs) have recently emerged as a class of RNA isoforms with widespread and tissue specific expression across animals, oftentimes independent of the corresponding linear mRNAs. circRNAs are remarkably stable and sometimes highly expressed molecules. Here, we sequenced RNA in human peripheral whole blood to determine the potential of circRNAs as biomarkers in an easily accessible body fluid. We report the reproducible detection of thousands of circRNAs. Importantly, we observed that hundreds of circRNAs are much higher expressed than corresponding linear mRNAs. Thus, circRNA expression in human blood reveals and quantifies the activity of hundreds of coding genes not accessible by classical mRNA specific assays. Our findings suggest that circRNAs could be used as biomarker molecules in standard clinical blood samples. PMID:26485708

  2. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  3. Effects of Regulatory BC1 RNA Deletion on Synaptic Plasticity, Learning, and Memory

    ERIC Educational Resources Information Center

    Chung, Ain; Dahan, Nessy; Alarcon, Juan Marcos; Fenton, André A.

    2017-01-01

    Nonprotein coding dendritic BC1 RNA regulates translation of mRNAs in neurons. We examined two lines of BC1 knockout mice and report that loss of BC1 RNA exaggerates group I mGluR-stimulated LTD of the Schaffer collateral synapse, with one of the lines showing a much more enhanced DHPG-induced LTD than the other. When the animals were given the…

  4. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice.

    PubMed

    McAdams, Ryan M; McPherson, Ronald J; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Juul, Sandra E

    2015-01-01

    Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine-mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning.

  5. Dose-Dependent Effects of Morphine Exposure on mRNA and microRNA (miR) Expression in Hippocampus of Stressed Neonatal Mice

    PubMed Central

    McAdams, Ryan M.; McPherson, Ronald J.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Juul, Sandra E.

    2015-01-01

    Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine–mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning. PMID:25844808

  6. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth

    PubMed Central

    Ivanchenko, Maria G.; den Os, Désirée; Monshausen, Gabriele B.; Dubrovsky, Joseph G.; Bednářová, Andrea; Krishnan, Natraj

    2013-01-01

    Background and Aims The hormone auxin and reactive oxygen species (ROS) regulate root elongation, but the interactions between the two pathways are not well understood. The aim of this study was to investigate how auxin interacts with ROS in regulating root elongation in tomato, Solanum lycopersicum. Methods Wild-type and auxin-resistant mutant, diageotropica (dgt), of tomato (S. lycopersicum ‘Ailsa Craig’) were characterized in terms of root apical meristem and elongation zone histology, expression of the cell-cycle marker gene Sl-CycB1;1, accumulation of ROS, response to auxin and hydrogen peroxide (H2O2), and expression of ROS-related mRNAs. Key Results The dgt mutant exhibited histological defects in the root apical meristem and elongation zone and displayed a constitutively increased level of hydrogen peroxide (H2O2) in the root tip, part of which was detected in the apoplast. Treatments of wild-type with auxin increased the H2O2 concentration in the root tip in a dose-dependent manner. Auxin and H2O2 elicited similar inhibition of cell elongation while bringing forth differential responses in terms of meristem length and number of cells in the elongation zone. Auxin treatments affected the expression of mRNAs of ROS-scavenging enzymes and less significantly mRNAs related to antioxidant level. The dgt mutation resulted in resistance to both auxin and H2O2 and affected profoundly the expression of mRNAs related to antioxidant level. Conclusions The results indicate that auxin regulates the level of H2O2 in the root tip, so increasing the auxin level triggers accumulation of H2O2 leading to inhibition of root cell elongation and root growth. The dgt mutation affects this pathway by reducing the auxin responsiveness of tissues and by disrupting the H2O2 homeostasis in the root tip. PMID:23965615

  7. Accurate, Streamlined Analysis of mRNA Translation by Sucrose Gradient Fractionation

    PubMed Central

    Aboulhouda, Soufiane; Di Santo, Rachael; Therizols, Gabriel; Weinberg, David

    2017-01-01

    The efficiency with which proteins are produced from mRNA molecules can vary widely across transcripts, cell types, and cellular states. Methods that accurately assay the translational efficiency of mRNAs are critical to gaining a mechanistic understanding of post-transcriptional gene regulation. One way to measure translational efficiency is to determine the number of ribosomes associated with an mRNA molecule, normalized to the length of the coding sequence. The primary method for this analysis of individual mRNAs is sucrose gradient fractionation, which physically separates mRNAs based on the number of bound ribosomes. Here, we describe a streamlined protocol for accurate analysis of mRNA association with ribosomes. Compared to previous protocols, our method incorporates internal controls and improved buffer conditions that together reduce artifacts caused by non-specific mRNA–ribosome interactions. Moreover, our direct-from-fraction qRT-PCR protocol eliminates the need for RNA purification from gradient fractions, which greatly reduces the amount of hands-on time required and facilitates parallel analysis of multiple conditions or gene targets. Additionally, no phenol waste is generated during the procedure. We initially developed the protocol to investigate the translationally repressed state of the HAC1 mRNA in S. cerevisiae, but we also detail adapted procedures for mammalian cell lines and tissues. PMID:29170751

  8. Translation regulation of mammalian selenoproteins.

    PubMed

    Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent

    2018-05-09

    Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.

  9. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5.

    PubMed

    Han, Jingjing; Sun, Yuena; Song, Weihua; Xu, Tianjun

    2017-03-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  11. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations

    PubMed Central

    Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.

    2015-01-01

    Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087

  12. Untangling the Web: The Diverse Functions of the PIWI/piRNA Pathway

    PubMed Central

    Mani, Sneha Ramesh; Juliano, Celina E.

    2014-01-01

    SUMMARY Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function. PMID:23712694

  13. Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation.

    PubMed

    Di Francesco, Andrea; Di Germanio, Clara; Panda, Amaresh C; Huynh, Phu; Peaden, Robert; Navas-Enamorado, Ignacio; Bastian, Paul; Lehrmann, Elin; Diaz-Ruiz, Alberto; Ross, David; Siegel, David; Martindale, Jennifer L; Bernier, Michel; Gorospe, Myriam; Abdelmohsen, Kotb; de Cabo, Rafael

    2016-10-01

    NAD(P)H: quinone oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3' untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3'UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase (NE), one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as an RNA-binding protein may help to explain its pleiotropic biological effects. Published by Elsevier Inc.

  14. 2,3,7,8-tetrachlorodibenzo-p-dioxin potentially attenuates the gene expression of pituitary gonadotropin β-subunits in a fetal age-specific fashion: a comparative study using cultured pituitaries.

    PubMed

    Takeda, Tomoki; Yamamoto, Midori; Himeno, Masaru; Takechi, Shinji; Yamaguchi, Tadatoshi; Ishida, Takumi; Ishii, Yuji; Yamada, Hideyuki

    2011-04-01

    Our previous studies have demonstrated that maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a reduction in gonadotropin biosynthesis in the fetal pituitary, resulting in the attenuated expression of steroidogenic proteins in the fetal gonads and the impairment of sexual behaviors in adulthood. However, the mechanism of the attenuation remains unknown. To address this issue, we investigated whether TCDD affects the pituitary production of gonadotropins, using cultured pituitary. In the absence of gonadotropin-releasing hormone (GnRH), a regulator of gonadotropin biosynthesis, TCDD did not affect the expression of gonadotropin mRNAs both in fetal and postnatal pituitaries. On the other hand, in the presence of GnRH, TCDD interfered with the synthesis of gonadotropin β-subunit mRNAs only in the fetal pituitary. A protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) and a PKA activator (8-bromoadenosine-3' 5'-cyclic monophosphate) induced the expression of gonadotropin mRNAs in the fetal pituitary. Among the subunits, only the induction of β-subunit was reduced by TCDD treatment. These results suggest that TCDD reduces gonadotropin biosynthesis via damage to GnRH-stimulated PKC and PKA signaling in a β-subunit- and fetal age-specific manner.

  15. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  16. Genetic and Molecular Characterization of the Caenorhabditis Elegans Spermatogenesis-Defective Gene Spe-17

    PubMed Central

    L'Hernault, S. W.; Benian, G. M.; Emmons, R. B.

    1993-01-01

    Two self-sterile mutations that define the spermatogenesis-defective gene spe-17 have been analyzed. These mutations affect unc-22 and fail to complement each other for both Unc-22 and spermatogenesis defects. Both of these mutations are deficiencies (hcDf1 and hDf13) that affect more than one transcription unit. Genomic DNA adjacent to and including the region deleted by the smaller deficiency (hcDf1) has been sequenced and four mRNAs (including unc-22) have been localized to this sequenced region. The three non unc-22 mRNAs are shown to be sex-specific: a 1.2-kb mRNA that can be detected in sperm-free hermaphrodites and 1.2- and 0.56-kb mRNAs found in males. hDf13 deletes at least 55 kb of chromosome IV, including all of unc-22, both male-specific mRNAs and at least part of the female-specific mRNA. hcDf1, which is approximately 15.6 kb, deletes only the 5' end of unc-22 and the gene that encodes the 0.56-kb male-specific mRNA. The common defect that apparently accounts for the defective sperm in hcDf1 and hDf13 homozygotes is deletion of the spe-17 gene, which encodes the 0.56-kb mRNA. Strains carrying two copies of either deletion are self-fertile when they are transgenic for any of four extrachromosomal array that include spe-17. We have sequenced two spe-17 cDNAs, and the deduced 142 amino acid protein sequence is highly charged and rich in serine and threonine, but shows no significant homology to any previously determined protein sequence. PMID:8349108

  17. A Bioinformatics-Based Alternative mRNA Splicing Code that May Explain Some Disease Mutations Is Conserved in Animals.

    PubMed

    Qu, Wen; Cingolani, Pablo; Zeeberg, Barry R; Ruden, Douglas M

    2017-01-01

    Deep sequencing of cDNAs made from spliced mRNAs indicates that most coding genes in many animals and plants have pre-mRNA transcripts that are alternatively spliced. In pre-mRNAs, in addition to invariant exons that are present in almost all mature mRNA products, there are at least 6 additional types of exons, such as exons from alternative promoters or with alternative polyA sites, mutually exclusive exons, skipped exons, or exons with alternative 5' or 3' splice sites. Our bioinformatics-based hypothesis is that, in analogy to the genetic code, there is an "alternative-splicing code" in introns and flanking exon sequences, analogous to the genetic code, that directs alternative splicing of many of the 36 types of introns. In humans, we identified 42 different consensus sequences that are each present in at least 100 human introns. 37 of the 42 top consensus sequences are significantly enriched or depleted in at least one of the 36 types of introns. We further supported our hypothesis by showing that 96 out of 96 analyzed human disease mutations that affect RNA splicing, and change alternative splicing from one class to another, can be partially explained by a mutation altering a consensus sequence from one type of intron to that of another type of intron. Some of the alternative splicing consensus sequences, and presumably their small-RNA or protein targets, are evolutionarily conserved from 50 plant to animal species. We also noticed the set of introns within a gene usually share the same splicing codes, thus arguing that one sub-type of splicesosome might process all (or most) of the introns in a given gene. Our work sheds new light on a possible mechanism for generating the tremendous diversity in protein structure by alternative splicing of pre-mRNAs.

  18. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry

    PubMed Central

    Taylor, Ethan Will; Ruzicka, Jan A.; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818

  19. Defining age- and lactocrine-sensitive elements of the neonatal porcine uterine microRNA–mRNA interactome†,‡

    PubMed Central

    George, Ashley F.; Rahman, Kathleen M.; Camp, Meredith E.; Prasad, Nripesh; Bartol, Frank F.; Bagnell, Carol A.

    2017-01-01

    Abstract Factors delivered to offspring in colostrum within 2 days of birth support neonatal porcine uterine development. The uterine mRNA transcriptome is affected by age and nursing during this period. Whether uterine microRNA (miRNA) expression is affected similarly is unknown. Objectives were to (1) determine effects of age and nursing on porcine uterine miRNA expression between birth and postnatal day (PND) 2 using miRNA sequencing (miRNAseq) and; (2) define affected miRNA–mRNA interactions and associated biological processes using integrated target prediction analysis. At birth (PND 0), gilts were euthanized, nursed ad libitum, or gavage-fed milk replacer for 48 h. Uteri were collected at birth or 50 h postnatal. MicroRNAseq data were validated using quantitative real-time PCR. Targets were predicted using an established mRNA database generated from the same tissues. For PND 2 versus PND 0 comparisons, 31 differentially expressed (DE) miRNAs were identified for nursed, and 42 DE miRNAs were identified for replacer-fed gilts. Six DE miRNAs were identified for nursed versus replacer-fed gilts on PND 2. Target prediction for inversely correlated DE miRNA–mRNA pairings indicated 20 miRNAs targeting 251 mRNAs in nursed, versus 29 miRNAs targeting 585 mRNAs in replacer-fed gilts for PND 2 versus PND 0 comparisons, and 5 miRNAs targeting 81 mRNAs for nursed versus replacer-fed gilts on PND 2. Biological processes predicted to be affected by age and nursing included cell-to-cell signaling, cell morphology, and tissue morphology. Results indicate novel age- and lactocrine-sensitive miRNA–mRNA relationships associated with porcine neonatal uterine development between birth and PND 2. PMID:28203709

  20. Mechanisms and consequences of alternative polyadenylation

    PubMed Central

    Di Giammartino, Dafne Campigli; Nishida, Kensei; Manley, James L.

    2011-01-01

    Summary Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3’UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechansims governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenlyation. PMID:21925375

  1. Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection.

    PubMed

    Chang, Ming Xian; Zhang, Jie

    2017-07-15

    Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.

  2. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor

    PubMed Central

    Macias, Sara; Plass, Mireya; Stajuda, Agata; Michlewski, Gracjan; Eyras, Eduardo; Cáceres, Javier F.

    2012-01-01

    The Drosha-DGCR8 complex (Microprocessor) is required for microRNA (miRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as the endonuclease. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) was used to identify RNA targets of DGCR8 in human cells. Unexpectedly, miRNAs were not the most abundant targets. DGCR8-bound RNAs also comprised several hundred mRNAs as well as snoRNAs and long non-coding RNAs. We found that the Microprocessor controls the abundance of several mRNAs as well as of MALAT-1. By contrast, DGCR8-mediated cleavage of snoRNAs is independent of Drosha, suggesting the involvement of DGCR8 in cellular complexes with other endonucleases. Interestingly, binding of DGCR8 to cassette exons, acts as a novel mechanism to regulate the relative abundance of alternatively spliced isoforms. Collectively, these data provide new insights in the complex role of DGCR8 in controlling the fate of several classes of RNAs. PMID:22796965

  3. Ribosomes slide on lysine-encoding homopolymeric A stretches

    PubMed Central

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  4. Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain

    PubMed Central

    2012-01-01

    Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826

  5. Organization patterns of the AGFG genes: an evolutionary study.

    PubMed

    Panaro, Maria Antonietta; Acquafredda, Angela; Calvello, Rosa; Lisi, Sabrina; Dragone, Teresa; Cianciulli, Antonia

    2011-03-01

    A number of proteins which are needed for the building of new immunodeficiency virus type 1 virions can only be translated from unspliced virus-derived pre-mRNAs. These unspliced mRNAs are shuttled through the nuclear pores reaching the cytosol when bound to the viral protein Rev. However, as a cellular co-factor Rev requires a Rev-binding protein of the AGFG family (nucleoporin-related Arf-GAP domain and FG repeats-containing proteins). In this article we address the evolution of the AGFGs by analyzing the first section of the coding mRNAs. This contains a "core module" which can be traced from Drosophilae to fish, amphibia, birds, and mammals, including man. In the subfamily of AGFG1 molecules the estimated conservation from Drosophilae to primates is 67% (with limited gaps). In some Drosophilae the core module is preceded by a long stretch of more than 300 coding nucleotides, but this additional module is absent in other Drosophilae and in all AGFG1s of other species. The AGFG2 molecules emerged later in evolution, possibly deriving from a duplication of AGFG1s. AGFG2s, present in mammals only, exhibit an additional module of about 50 coding nucleotides ahead of the core module, which is significantly less conserved (54%, with more remarkable gaps). This additional module does not seem to have homologies with the additional module of Drosophilae nor with the precoding section of AGFG1s. Interestingly, in birds a highly re-edited form of the AGFG1 core module (Gallus gallus, Galliformes) coexists with a typical form of the AGFG1 core module (Taeniopygia guttata, Passeriformes).

  6. Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.

    PubMed

    Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel

    2013-09-01

    RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system

    PubMed Central

    Sahr, Tobias; Rusniok, Christophe; Impens, Francis; Oliva, Giulia; Sismeiro, Odile; Coppée, Jean-Yves

    2017-01-01

    The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle. PMID:28212376

  8. Decreased expression of lysyl hydroxylase 2 (LH2) in skin fibroblasts from three Ehlers-Danlos patients does not result from mutations in either the coding or proximal promoter region of the LH2 gene.

    PubMed

    Walker, L C; Teebi, A S; Marini, J C; De Paepe, A; Malfait, F; Atsawasuwan, P; Yamauchi, M; Yeowell, H N

    2004-12-01

    The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of inherited connective tissue disorders characterized by tissue fragility, hyperelasticity of the skin and joint hypermobility. This phenotype, accompanied by kyphoscoliosis and/or ocular fragility, is present in patients with the autosomal recessive type VI form of EDS. These patients have significantly decreased levels of lysyl hydroxylase (LH) activity, due to mutations in the LH1 gene. LH hydroxylates specific lysine residues in the collagen molecule that are precursors for the formation of cross-links which provide collagen with its tensile strength. No disorder has been directly linked to decreased expression of LH2 and LH3, two other isoforms of LH. This study describes 3 patients with mixed phenotypes of EDS, who have significantly decreased mRNAs for LH2, but normal levels of LH1 and LH3 mRNAs, in their skin fibroblasts. In contrast to the effect of LH1 deficiency in EDS VI patients, the decreased expression of LH2 does not affect LH activity, bifunctional collagen cross-links (measured after reduction as dihydroxylysinonorleucine (DHLNL) and hydroxylysinonorleucine (HLNL)), or helical lysine hydroxylation in these cell lines. Sequence analysis of full length LH2 cDNAs and 1kb of the promoter region of LH2 does not show mutations that could explain the decreased expression of LH2. These results suggest that the deficiency of LH2 in these fibroblasts may be caused by changes in other factors required for the expression of LH2.

  9. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    PubMed

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-07

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition

    PubMed Central

    Madina, Bhaskara R.; Kumar, Vikas; Metz, Richard; Mooers, Blaine H.M.; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-01-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. PMID:24865612

  11. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

    PubMed Central

    Hansen, Thomas B; Wiklund, Erik D; Bramsen, Jesper B; Villadsen, Sune B; Statham, Aaron L; Clark, Susan J; Kjems, Jørgen

    2011-01-01

    MicroRNAs (miRNAs) are ∼22 nt non-coding RNAs that typically bind to the 3′ UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels. PMID:21964070

  12. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs

    PubMed Central

    Hu, Yuanxin; Matkovich, Scot J.; Hecker, Peter A.; Zhang, Yan; Edwards, John R.; Dorn, Gerald W.

    2012-01-01

    Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu. PMID:23150554

  13. Shwachman–Bodian–Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs

    PubMed Central

    In, Kyungmin; Zaini, Mohamad A.; Müller, Christine; Warren, Alan J.; von Lindern, Marieke; Calkhoven, Cornelis F.

    2016-01-01

    Mutations in the Shwachman–Bodian–Diamond Syndrome (SBDS) gene cause Shwachman–Diamond Syndrome (SDS), a rare congenital disease characterized by bone marrow failure with neutropenia, exocrine pancreatic dysfunction and skeletal abnormalities. The SBDS protein is important for ribosome maturation and therefore SDS belongs to the ribosomopathies. It is unknown, however, if loss of SBDS functionality affects the translation of specific mRNAs and whether this could play a role in the development of the clinical features of SDS. Here, we report that translation of the C/EBPα and -β mRNAs, that are indispensible regulators of granulocytic differentiation, is altered by SBDS mutations or knockdown. We show that SBDS function is specifically required for efficient translation re-initiation into the protein isoforms C/EBPα-p30 and C/EBPβ-LIP, which is controlled by a single cis-regulatory upstream open reading frame (uORF) in the 5′ untranslated regions (5′ UTRs) of both mRNAs. Furthermore, we show that as a consequence of the C/EBPα and -β deregulation the expression of MYC is decreased with associated reduction in proliferation, suggesting that failure of progenitor proliferation contributes to the haematological phenotype of SDS. Therefore, our study provides the first indication that disturbance of specific translation by loss of SBDS function may contribute to the development of the SDS phenotype. PMID:26762974

  14. Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes.

    PubMed

    Luo, Xiucui; Pan, Jing; Wang, Leilei; Wang, Peirong; Zhang, Meijiao; Liu, Meilin; Dong, Ziqing; Meng, Qian; Tao, Xuguang; Zhao, Xinliang; Zhong, Julia; Ju, Weina; Gu, Yang; Jenkins, Edmund C; Brown, W Ted; Shi, Qingxi; Zhong, Nanbert

    2015-02-15

    Preterm premature rupture of membranes (PPROM) is responsible for one third of all preterm births (PTBs). We have recently demonstrated that long noncoding RNAs (lncRNAs) are differentially expressed in human placentas derived from PPROM, PTB, premature rupture of the membranes (PROM), and full-term birth (FTB), and determined the major biological pathways involved in PPROM. Here, we further investigated the relationship of lncRNAs, which are differentially expressed in spontaneous PTB (sPTB) and PPROM placentas and are found to overlap a coding locus, with the differential expression of transcribed mRNAs at the same locus. Ten lncRNAs (five up-regulated and five down-regulated) and the lncRNA-associated 10 mRNAs (six up- and four down-regulated), which were identified by microarray in comparing PPROM vs. sPTB, were then validated by real-time quantitative PCR. A total of 62 (38 up- and 24 down-regulated) and 1,923 (790 up- and 1,133 down-regulated) lncRNAs were identified from placentas of premature labor (sPTB + PPROM), as compared to those from full-term labor (FTB + PROM) and from premature rupture of membranes (PPROM + PROM), as compared to those from non-rupture of membranes (sPTB + FTB), respectively. We found that a correlation existed between differentially expressed lncRNAs and their associated mRNAs, which could be grouped into four categories based on the gene strand (sense or antisense) of lncRNA and its paired transcript. These findings suggest that lncRNA regulates mRNA transcription through differential mechanisms. Differential expression of the transcripts PPP2R5C, STAM, TACC2, EML4, PAM, PDE4B, STAM, PPP2R5C, PDE4B, and EGFR indicated a co-expression among these mRNAs, which are involved in the ubiquitine-proteasome system (UPS), in addition to signaling transduction and beta adrenergic signaling, suggesting that imbalanced regulation of UPS may present an additional mechanism underlying the premature rupture of membrane in PPROM. Differentially expressed lncRNAs that were identified from the human placentas of sPTB and PPROM may regulate their associated mRNAs through differential mechanisms and connect the ubiquitin-proteasome system with infection-inflammation pathways. Although the detailed mechanisms by which lncRNAs regulate their associated mRNAs in sPTB and PPROM are yet to be clarified, our findings open a new approach to explore the pathogenesis of sPTB and PPROM.

  15. The splicing of tiny introns of Paramecium is controlled by MAGO.

    PubMed

    Contreras, Julia; Begley, Victoria; Marsella, Laura; Villalobo, Eduardo

    2018-07-15

    The exon junction complex (EJC) is a key element of the splicing machinery. The EJC core is composed of eIF4A3, MAGO, Y14 and MLN51. Few accessory proteins, such as CWC22 or UPF3, bind transiently to the EJC. The EJC has been implicated in the control of the splicing of long introns. To ascertain whether the EJC controls the splicing of short introns, we used Paramecium tetraurelia as a model organism, since it has thousands of very tiny introns. To elucidate whether EJC affects intron splicing in P. tetraurelia, we searched for EJC protein-coding genes, and silenced those genes coding for eIF4A3, MAGO and CWC22. We found that P. tetraurelia likely assembles an active EJC with only three of the core proteins, since MLN51 is lacking. Silencing of eIF4A3 or CWC22 genes, but not that of MAGO, caused lethality. Silencing of the MAGO gene caused either an increase, decrease, or no change in intron retention levels of some intron-containing mRNAs used as reporters. We suggest that a fine-tuning expression of EJC genes is required for steady intron removal in P. tetraurelia. Taking into consideration our results and those published by others, we conclude that the EJC controls splicing independently of the intron size. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium.

    PubMed

    Ryan, Daniel; Mukherjee, Mohana; Nayak, Ritu; Dutta, Ria; Suar, Mrutyunjay

    2018-05-03

    Salmonella Typhimurium is an enteric pathogen that has evolved masterful strategies to enable survival under stress conditions both within and outside a host. The acid tolerance response (ATR) is one such mechanism that enhances the viability of acid adapted bacteria to lethal pH levels. While numerous studies exist on the protein coding components of this response, there is very little data on the roles of small RNAs (sRNAs). These non-coding RNA molecules have recently been shown to play roles as regulators of bacterial stress response and virulence pathways. They function through complementary base pairing interactions with target mRNAs and affect their translation and/or stability. There are also a few that directly bind to proteins by mimicking their respective targets. Here, we identify several sRNAs expressed during the ATR of S. Typhimurium and characterize one highly induced candidate, RyeC. Further, we identify ptsI as a trans-encoded target that is directly regulated by this sRNA. From a functional perspective, over-expression of RyeC in Salmonella produced a general attenuation of several in vitro phenotypes including acid survival, motility, adhesion and invasion of epithelial cell lines as well as replication within macrophages. Together, this study highlights the diverse roles played by sRNAs in acid tolerance and virulence of S. Typhimurium. Copyright © 2018. Published by Elsevier B.V.

  17. Hippocampal microRNA-mRNA regulatory network is affected by physical exercise.

    PubMed

    Fernandes, Jansen; Vieira, Andre Schwambach; Kramer-Soares, Juliana Carlota; Da Silva, Eduardo Alves; Lee, Kil Sun; Lopes-Cendes, Iscia; Arida, Ricardo Mario

    2018-05-08

    It is widely known that physical activity positively affects the overall health and brain function. Recently, microRNAs (miRNAs) have emerged as potential regulators of numerous biological processes within the brain. These molecules modulate gene expression post-transcriptionally by inducing mRNA degradation and inhibiting the translation of target mRNAs. To verify whether the procognitive effects of physical exercise are accompanied by changes in the activity of miRNA-mRNA network in the brain, differential expression analysis was performed in the hippocampus of control (CTL) and exercised (Ex) rats subjected to 4 weeks of treadmill exercise. Cognition was evaluated by a multiple trial inhibitory avoidance (MTIA) task and Illumina next-generation sequencing (NGS) was used for miRNA and mRNA profiling. Exercise improved memory retention but not acquisition in the MTIA task. It was observed that 4 miRNAs and 54 mRNAs were significantly altered in the hippocampus of Ex2 (euthanized 2 h after the last exercise bout) group when compared to CTL group. Bioinformatic analysis showed an inverse correlation between 3 miRNAs and 6 target mRNAs. The miRNAs miR-129-1-3p and miR-144-5p were inversely correlated to the Igfbp5 and Itm2a, respectively, and the miR-708-5p presented an inverse correlation with Cdkn1a, Per2, Rt1-a2. The exercise-induced memory improvements are accompanied by changes in hippocampal miRNA-mRNA regulatory network. Physical exercise can affect brain function through modulation of epigenetics mechanisms involving miRNA regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SMN is essential for the biogenesis of U7 snRNP and 3′-end formation of histone mRNAs

    PubMed Central

    Tisdale, Sarah; Lotti, Francesco; Saieva, Luciano; Van Meerbeke, James P.; Crawford, Thomas O.; Sumner, Charlotte J.; Mentis, George Z.; Pellizzoni, Livio

    2013-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the survival motor neuron (SMN) protein. SMN mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) and possibly other RNPs. Here we investigated SMN requirement for the biogenesis and function of U7—an snRNP specialized in the 3′-end formation of replication-dependent histone mRNAs that normally are not polyadenylated. We show that SMN deficiency impairs U7 snRNP assembly and decreases U7 levels in mammalian cells. The SMN-dependent U7 reduction affects endonucleolytic cleavage of histone mRNAs leading to abnormal accumulation of 3′-extended and polyadenylated transcripts, followed by downstream changes in histone gene expression. Importantly, SMN deficiency induces defects of histone mRNA 3′-end formation in both SMA mice and human patients. These findings demonstrate that SMN is essential for U7 biogenesis and histone mRNA processing in vivo, and identify a novel RNA pathway disrupted in SMA. PMID:24332368

  20. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  1. Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression

    PubMed Central

    Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.

    2014-01-01

    Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered. Antioxid. Redox Signal. 21, 835–849. PMID:24274065

  2. eQTL networks unveil enriched mRNA master integrators downstream of complex disease-associated SNPs.

    PubMed

    Li, Haiquan; Pouladi, Nima; Achour, Ikbel; Gardeux, Vincent; Li, Jianrong; Li, Qike; Zhang, Hao Helen; Martinez, Fernando D; 'Skip' Garcia, Joe G N; Lussier, Yves A

    2015-12-01

    The causal and interplay mechanisms of Single Nucleotide Polymorphisms (SNPs) associated with complex diseases (complex disease SNPs) investigated in genome-wide association studies (GWAS) at the transcriptional level (mRNA) are poorly understood despite recent advancements such as discoveries reported in the Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTex). Protein interaction network analyses have successfully improved our understanding of both single gene diseases (Mendelian diseases) and complex diseases. Whether the mRNAs downstream of complex disease genes are central or peripheral in the genetic information flow relating DNA to mRNA remains unclear and may be disease-specific. Using expression Quantitative Trait Loci (eQTL) that provide DNA to mRNA associations and network centrality metrics, we hypothesize that we can unveil the systems properties of information flow between SNPs and the transcriptomes of complex diseases. We compare different conditions such as naïve SNP assignments and stringent linkage disequilibrium (LD) free assignments for transcripts to remove confounders from LD. Additionally, we compare the results from eQTL networks between lymphoblastoid cell lines and liver tissue. Empirical permutation resampling (p<0.001) and theoretic Mann-Whitney U test (p<10(-30)) statistics indicate that mRNAs corresponding to complex disease SNPs via eQTL associations are likely to be regulated by a larger number of SNPs than expected. We name this novel property mRNA hubness in eQTL networks, and further term mRNAs with high hubness as master integrators. mRNA master integrators receive and coordinate the perturbation signals from large numbers of polymorphisms and respond to the personal genetic architecture integratively. This genetic signal integration contrasts with the mechanism underlying some Mendelian diseases, where a genetic polymorphism affecting a single protein hub produces a divergent signal that affects a large number of downstream proteins. Indeed, we verify that this property is independent of the hubness in protein networks for which these mRNAs are transcribed. Our findings provide novel insights into the pleiotropy of mRNAs targeted by complex disease polymorphisms and the architecture of the information flow between the genetic polymorphisms and transcriptomes of complex diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity.

    PubMed

    Tajaddod, Mansoureh; Tanzer, Andrea; Licht, Konstantin; Wolfinger, Michael T; Badelt, Stefan; Huber, Florian; Pusch, Oliver; Schopoff, Sandy; Janisiw, Michael; Hofacker, Ivo; Jantsch, Michael F

    2016-10-25

    Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. Finally, we demonstrate a novel mechanism by which inverted SINEs can impact on gene expression by interfering with RNA polymerase II.

  4. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3′ untranslated region AU-rich regulatory element

    PubMed Central

    Yoo, Soonmoon; Kim, Hak Hee; Kim, Paul; Donnelly, Christopher J.; Kalinski, Ashley L.; Vuppalanchi, Deepika; Park, Michael; Lee, Seung Joon; Merianda, Tanuja T.; Perrone-Bizzozero, Nora I.; Twiss, Jeffery L.

    2013-01-01

    Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β-actin and GAP-43 mRNAs. β-actin 3′UTR has a defined element for interaction with ZBP1, but GAP-43 mRNA shows no homology to this RNA sequence. Here, we show that an AU-rich element (ARE) in GAP-43’s 3′UTR is necessary and sufficient for its axonal localization. Axonal GAP-43 mRNA levels increase after in vivo injury, and GAP-43 mRNA shows an increased half-life in regenerating axons. GAP-43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 coimmunoprecipitate in an RNA-dependent fashion. Reporter mRNA with the GAP-43 ARE competes with endogenous β-actin mRNA for axonal localization and decreases axon length and branching similar to the β-actin 3′UTR competing with endogenous GAP-43 mRNA. Conversely, overexpressing GAP-43 coding sequence with it’s 3′UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP-43’s 3′UTR. PMID:23586486

  5. A hairpin within YAP mRNA 3′UTR functions in regulation at post-transcription level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yuen; Wang, Yuan; Feng, Jinyan

    2015-04-03

    The central dogma of gene expression is that DNA is transcribed into messenger RNAs, which in turn serve as the template for protein synthesis. Recently, it has been reported that mRNAs display regulatory roles that rely on their ability to compete for microRNA binding, independent of their protein-coding function. However, the regulatory mechanism of mRNAs remains poorly understood. Here, we report that a hairpin within YAP mRNA 3′untranslated region (3′UTR) functions in regulation at post-transcription level through generating endogenous siRNAs (esiRNAs). Bioinformatics analysis for secondary structure showed that YAP mRNA displayed a hairpin structure (termed standard hairpin, S-hairpin) within itsmore » 3′UTR. Surprisingly, we observed that the overexpression of S-hairpin derived from YAP 3′UTR (YAP-sh) increased the luciferase reporter activities of transcriptional factor NF-κB and AP-1 in 293T cells. Moreover, we identified that a fragment from YAP-sh, an esiRNA, was able to target mRNA 3′UTR of NF2 (a member of Hippo-signaling pathway) and YAP mRNA 3′UTR itself in hepatoma cells. Thus, we conclude that the YAP-sh within YAP mRNA 3′UTR may serve as a novel regulatory element, which functions in regulation at post-transcription level. Our finding provides new insights into the mechanism of mRNAs in regulatory function. - Highlights: • An S-hairpin within YAP mRNA 3′UTR possesses regulatory function. • YAP-sh acts as a regulatory element for YAP at post-transcription level. • YAP-sh-3p20, an esiRNA derived from YAP-sh, targets mRNAs of YAP and NF2. • YAP-sh-3p20 depresses the proliferation of HepG2 cells in vitro.« less

  6. Genome-Wide Characterization of Light-Regulated Genes in Neurospora crassa

    PubMed Central

    Wu, Cheng; Yang, Fei; Smith, Kristina M.; Peterson, Matthew; Dekhang, Rigzin; Zhang, Ying; Zucker, Jeremy; Bredeweg, Erin L.; Mallappa, Chandrashekara; Zhou, Xiaoying; Lyubetskaya, Anna; Townsend, Jeffrey P.; Galagan, James E.; Freitag, Michael; Dunlap, Jay C.; Bell-Pedersen, Deborah; Sachs, Matthew S.

    2014-01-01

    The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed. PMID:25053707

  7. REDIdb 3.0: A Comprehensive Collection of RNA Editing Events in Plant Organellar Genomes.

    PubMed

    Lo Giudice, Claudio; Pesole, Graziano; Picardi, Ernesto

    2018-01-01

    RNA editing is an important epigenetic mechanism by which genome-encoded transcripts are modified by substitutions, insertions and/or deletions. It was first discovered in kinetoplastid protozoa followed by its reporting in a wide range of organisms. In plants, RNA editing occurs mostly by cytidine (C) to uridine (U) conversion in translated regions of organelle mRNAs and tends to modify affected codons restoring evolutionary conserved aminoacid residues. RNA editing has also been described in non-protein coding regions such as group II introns and structural RNAs. Despite its impact on organellar transcriptome and proteome complexity, current primary databases still do not provide a specific field for RNA editing events. To overcome these limitations, we developed REDIdb a specialized database for RNA editing modifications in plant organelles. Hereafter we describe its third release containing more than 26,000 events in a completely novel web interface to accommodate RNA editing in its genomics, biological and evolutionary context through whole genome maps and multiple sequence alignments. REDIdb is freely available at http://srv00.recas.ba.infn.it/redidb/index.html.

  8. Parallel computation of genome-scale RNA secondary structure to detect structural constraints on human genome.

    PubMed

    Kawaguchi, Risa; Kiryu, Hisanori

    2016-05-06

    RNA secondary structure around splice sites is known to assist normal splicing by promoting spliceosome recognition. However, analyzing the structural properties of entire intronic regions or pre-mRNA sequences has been difficult hitherto, owing to serious experimental and computational limitations, such as low read coverage and numerical problems. Our novel software, "ParasoR", is designed to run on a computer cluster and enables the exact computation of various structural features of long RNA sequences under the constraint of maximal base-pairing distance. ParasoR divides dynamic programming (DP) matrices into smaller pieces, such that each piece can be computed by a separate computer node without losing the connectivity information between the pieces. ParasoR directly computes the ratios of DP variables to avoid the reduction of numerical precision caused by the cancellation of a large number of Boltzmann factors. The structural preferences of mRNAs computed by ParasoR shows a high concordance with those determined by high-throughput sequencing analyses. Using ParasoR, we investigated the global structural preferences of transcribed regions in the human genome. A genome-wide folding simulation indicated that transcribed regions are significantly more structural than intergenic regions after removing repeat sequences and k-mer frequency bias. In particular, we observed a highly significant preference for base pairing over entire intronic regions as compared to their antisense sequences, as well as to intergenic regions. A comparison between pre-mRNAs and mRNAs showed that coding regions become more accessible after splicing, indicating constraints for translational efficiency. Such changes are correlated with gene expression levels, as well as GC content, and are enriched among genes associated with cytoskeleton and kinase functions. We have shown that ParasoR is very useful for analyzing the structural properties of long RNA sequences such as mRNAs, pre-mRNAs, and long non-coding RNAs whose lengths can be more than a million bases in the human genome. In our analyses, transcribed regions including introns are indicated to be subject to various types of structural constraints that cannot be explained from simple sequence composition biases. ParasoR is freely available at https://github.com/carushi/ParasoR .

  9. Gene expression in the developing cerebellum during perinatal hypo- and hyperthyroidism.

    PubMed

    Figueiredo, B C; Almazan, G; Ma, Y; Tetzlaff, W; Miller, F D; Cuello, A C

    1993-03-01

    The intensity of p75NGFR receptor-like immunoreactivity and the mRNAs encoding p75NGFR, T alpha 1 alpha-tubulin, GAP-43 and the myelin proteins MBP and PLP were measured in the developing cerebellum to study the effects of perinatal thyroid hormone imbalance in rats. Results compared to age-matched controls provide in vivo evidence for differential gene regulation by thyroid hormone in the developing cerebellum. We found that p75NGFR immunoreactivity was strikingly elevated in hypothyroid rats, whereas p75NGFR mRNA content remained only twice as high as that of control levels on postnatal day 15 (P15). When p75NGFR immunoreactivity was still elevated in hypothyroid rats, Purkinje cells exhibited proximal axonal varicosities, axonal twisting and differences in axonal caliber. The mRNAs encoding proteins involved with neurite growth-promoting elements, T alpha 1 alpha-tubulin and GAP-43, were also increased in hypothyroidism, possibly reflecting a neuronal response to a deficiency in, or damage to, cerebellar neurons, or a general delay in their down regulation. Similar increases were not observed for the myelin specific genes. MBP and PLP mRNAs were first detected on P2 of hyperthyroid rats, and they increased with age. Hypo- or hyperthyroidism did not affect the initial onset of MBP and PLP expression, however, hyperthyroidism increased levels of PLP and MBP mRNAs between P2 and P10. By contrast, the most consistent decrease in MBP and PLP mRNAs in rats with thyroid hormone deficiency was observed only on P10. At later times (P15 and P30), the two mRNA levels were similar to controls in all groups. These results are consistent with a role for thyroid hormone in the earlier stages of cerebellar myelination. Hypothryoidism led to specific increases in T alpha 1 alpha-tubulin and GAP-43 mRNAs, and in the immunoreactivity and mRNA levels of p75NGFR receptor--all changes that may play a role in the observed abnormal neuronal outgrowth.

  10. Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons.

    PubMed

    Liu, Huaxiang; Liu, Zhen; Xu, Xiaobo; Yang, Xiangdong; Wang, Huaijing; Li, Zhengzhong

    2010-03-01

    Both galanin and neuropeptide Y (NPY) are expressed in superior cervical ganglion (SCG) neurons. Following nerve transection or axotomy galanin is strongly upregulated and NPY is downregulated in SCG neurons because target-derived nerve growth factor (NGF) content decreased. It is not known whether or to what extent NGF affects both galanin and NPY expression in primary cultured SCG neurons. In the present study we examine whether exogenous NGF affects expression of neuropeptides for galanin and NPY in primary cultured SCG neurons. In addition, we explore whether mRNAs for galanin and NPY are affected by administration of exogenous NGF in SCG cultures. The significance of expression of galanin and NPY and their mRNAs was revealed by performing experiments without and with administration of exogenous NGF. Galanin and its mRNA expression was attenuated by administration of exogenous NGF in SCG cultures. The enhancement of NPY and its mRNA expression by administration of exogenous NGF in SCG cultures was dose-dependent. The physiological or pathophysiological mechanisms of the alterations of galanin and NPY expression affected by NGF in primary cultured SCG neurons are still unknown. The present data provide basic knowledge about the expression of galanin and NPY in primary cultured SCG neurons of rats, which may further improve our understanding of the functional significance of galanin and NPY expression affected by NGF.

  11. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-05-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for ..cap alpha..-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with /sup 32/P cDNA probes for ..cap alpha..-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4more » wks. D ..cap alpha..-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized ..cap alpha..-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and ..cap alpha..-actin mRNAs are decreased. Insulin treatment reverses these changes.« less

  12. RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera.

    PubMed Central

    Schuster, W; Brennicke, A

    1991-01-01

    An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921

  13. Peculiar Evolutionary History of miR390-Guided TAS3-Like Genes in Land Plants

    PubMed Central

    Krasnikova, Maria S.; Goryunov, Denis V.; Troitsky, Alexey V.; Solovyev, Andrey G.; Ozerova, Lydmila V.; Morozov, Sergey Y.

    2013-01-01

    PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of all Physcomitrella patens miR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing of Marchantia polymorpha genomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads of M. polymorpha at NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution. PMID:24302881

  14. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease

    PubMed Central

    Li, Darrick K.; Tisdale, Sarah; Lotti, Francesco; Pellizzoni, Livio

    2014-01-01

    At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease. PMID:24769255

  15. Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease.

    PubMed

    Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel

    2018-06-28

    Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.

  16. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload.

    PubMed

    Dauber, Bianca; Saffran, Holly A; Smiley, James R

    2014-09-01

    We recently demonstrated that the virion host shutoff (vhs) protein, an mRNA-specific endonuclease, is required for efficient herpes simplex virus 1 (HSV-1) replication and translation of viral true-late mRNAs, but not other viral and cellular mRNAs, in many cell types (B. Dauber, J. Pelletier, and J. R. Smiley, J. Virol. 85:5363-5373, 2011, http://dx.doi.org/10.1128/JVI.00115-11). Here, we evaluated whether the structure of true-late mRNAs or the timing of their transcription is responsible for the poor translation efficiency in the absence of vhs. To test whether the highly structured 5' untranslated region (5'UTR) of the true-late gC mRNA is the primary obstacle for translation initiation, we replaced it with the less structured 5'UTR of the γ-actin mRNA. However, this mutation did not restore translation in the context of a vhs-deficient virus. We then examined whether the timing of transcription affects translation efficiency at late times. To this end, we engineered a vhs-deficient virus mutant that transcribes the true-late gene US11 with immediate-early kinetics (IEUS11-ΔSma). Interestingly, IEUS11-ΔSma showed increased translational activity on the US11 transcript at late times postinfection, and US11 protein levels were restored to wild-type levels. These results suggest that mRNAs can maintain translational activity throughout the late stage of infection if they are present before translation factors and/or ribosomes become limiting. Taken together, these results provide evidence that in the absence of the mRNA-destabilizing function of vhs, accumulation of viral mRNAs overwhelms the capacity of the host translational machinery, leading to functional exclusion of the last mRNAs that are made during infection. The process of mRNA translation accounts for a significant portion of a cell's energy consumption. To ensure efficient use of cellular resources, transcription, translation, and mRNA decay are tightly linked and highly regulated. However, during virus infection, the overall amount of mRNA may increase drastically, possibly overloading the capacity of the translation apparatus. Our results suggest that the HSV-1 vhs protein, an mRNA-specific endoribonuclease, prevents mRNA overload during infection, thereby allowing translation of late viral mRNAs. The requirement for vhs varies between cell types. Further studies of the basis for this difference likely will offer insights into how cells regulate overall mRNA levels and access to the translational apparatus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor

    PubMed Central

    Enuka, Yehoshua; Lauriola, Mattia; Feldman, Morris E.; Sas-Chen, Aldema; Ulitsky, Igor; Yarden, Yosef

    2016-01-01

    Circular RNAs (circRNAs) are widespread circles of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and microRNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms with no detectable circRNAs. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes. PMID:26657629

  18. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes

    PubMed Central

    Trapphoff, T.; Heiligentag, M.; Dankert, D.; Demond, H.; Deutsch, D.; Fröhlich, T.; Arnold, G.J.; Grümmer, R.; Horsthemke, B.; Eichenlaub-Ritter, U.

    2016-01-01

    Abstract STUDY QUESTION Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? SUMMARY ANSWER Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. WHAT IS KNOWN ALREADY Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. STUDY DESIGN, SIZE, DURATION Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). MATERIAL AND METHODS GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). MAIN RESULTS AND ROLE OF CHANCE The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. LIMITATION, REASONS FOR CAUTION We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. WIDER IMPLICATIONS OF THE FINDINGS Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. STUDY FUNDING/COMPETING INTERESTS The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest. PMID:26577303

  19. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes.

    PubMed

    Trapphoff, T; Heiligentag, M; Dankert, D; Demond, H; Deutsch, D; Fröhlich, T; Arnold, G J; Grümmer, R; Horsthemke, B; Eichenlaub-Ritter, U

    2016-01-01

    Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways.

    PubMed

    Cerny, K L; Garbacik, S; Skees, C; Burris, W R; Matthews, J C; Bridges, P J

    2016-01-01

    In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4 months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2 days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.

  1. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    PubMed

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?

    PubMed

    Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K

    2017-06-15

    Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.

  3. The PUF binding landscape in metazoan germ cells

    PubMed Central

    Prasad, Aman; Porter, Douglas F.; Kroll-Conner, Peggy L.; Mohanty, Ipsita; Ryan, Anne R.; Crittenden, Sarah L.; Wickens, Marvin; Kimble, Judith

    2016-01-01

    PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their “binding landscape”). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF–RNA interactions. FBF-1 and FBF-2 can bind sites in the 5′UTR, coding region, or 3′UTR, but have a strong bias for the 3′ end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2. PMID:27165521

  4. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.

    PubMed

    Hogan, Daniel J; Riordan, Daniel P; Gerber, André P; Herschlag, Daniel; Brown, Patrick O

    2008-10-28

    RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3'-untranslated regions, others in 5'-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate.

  5. Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system.

    PubMed

    Calliari, Aldo; Farías, Joaquina; Puppo, Agostina; Canclini, Lucía; Mercer, John A; Munroe, David; Sotelo, José R; Sotelo-Silveira, José R

    2014-03-01

    Sorting of specific mRNAs to particular cellular locations and regulation of their translation is an essential mechanism underlying cell polarization. The transport of RNAs by kinesins and dyneins has been clearly established in several cell models, including neurons in culture. A similar role appears to exist in higher eukaryotes for the myosins. Myosin Va (Myo5a) has been described as a component of ribonucleoprotein particles (RNPs) in the adult rat nervous system and associated to ZBP1 and ribosomes in ribosomal periaxoplasmic plaques (PARPs), making it a likely candidate for mediating some aspects of RNA transport in neurons. To test this hypothesis, we have characterized RNPs containing Myo5a in adult brains of rats and mice. Microarray analysis of RNAs co-immunoprecipitated with Myo5a indicates that this motor may associate with a specific subpopulation of neuronal mRNAs. We found mRNAs encoding α-synuclein and several proteins with functions in translation in these RNPs. Immunofluorescence analyses of RNPs showed apparent co-localization of Myo5a with ribosomes, mRNA and RNA-binding proteins in discrete structures present both in axons of neurons in culture and in myelinated fibers of medullary roots. Our data suggest that PARPs include RNPs bearing the mRNA coding for Myo5a and are equipped with kinesin and Myo5a molecular motors. In conclusion, we suggest that Myo5a is involved in mRNA trafficking both in the central and peripheral nervous systems. Copyright © 2013 Wiley Periodicals, Inc.

  6. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus.

    PubMed

    Luo, Qing; Li, Xue; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming

    2018-03-01

    Thousands of long noncoding RNAs (lncRNAs) have been reported and represent an important subset of pervasive genes associated with a broad range of biological functions. Abnormal expression levels of lncRNAs have been demonstrated in multiple types of human disease. However, the role of lncRNAs in systemic lupus erythematosus (SLE) remains poorly understood. In the present study, the expression patterns of lncRNAs and messenger RNAs (mRNAs) were investigated in peripheral blood mononuclear cells (PBMCs) in SLE using Human lncRNA Array v3.0 (8x60 K; Arraystar, Inc., Rockville, MD, USA). The microarray results indicated that 8,868 lncRNAs (3,657 upregulated and 5,211 downregulated) and 6,876 mRNAs (2,862 upregulated and 4,014 downregulated) were highly differentially expressed in SLE samples compared with the healthy group. Gene ontology (GO) analysis of lncRNA target prediction indicated the presence of 474 matched lncRNA‑mRNA pairs for 293 differentially expressed lncRNAs (fold change, ≥3.0) and 381 differentially expressed mRNAs (fold change, ≥3.0). The most enriched pathways were 'Transcriptional misregulation in cancer' and 'Valine, leucine and isoleucine degradation'. Furthermore, reverse transcription‑quantitative polymerase chain reaction data verified six abnormal lncRNAs and mRNAs in SLE. The results indicate that the lncRNA expression profile in SLE was significantly changed. In addition, a range of SLE‑associated lncRNAs were identified. Thus, the present results provide important insights regarding lncRNAs in the pathogenesis of SLE.

  7. Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat.

    PubMed

    Zhan, Siyuan; Dong, Yao; Zhao, Wei; Guo, Jiazhong; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping

    2016-08-22

    Long non-coding RNAs (lncRNAs) have been studied extensively over the past few years. Large numbers of lncRNAs have been identified in mouse, rat, and human, and some of them have been shown to play important roles in muscle development and myogenesis. However, there are few reports on the characterization of lncRNAs covering all the development stages of skeletal muscle in livestock. RNA libraries constructed from developing longissimus dorsi muscle of fetal (45, 60, and 105 days of gestation) and postnatal (3 days after birth) goat (Capra hircus) were sequenced. A total of 1,034,049,894 clean reads were generated. Among them, 3981 lncRNA transcripts corresponding to 2739 lncRNA genes were identified, including 3515 intergenic lncRNAs and 466 anti-sense lncRNAs. Notably, in pairwise comparisons between the libraries of skeletal muscle at the different development stages, a total of 577 transcripts were differentially expressed (P < 0.05) which were validated by qPCR using randomly selected six lncRNA genes. The identified goat lncRNAs shared some characteristics, such as fewer exons and shorter length, with the lncRNAs in other mammals. We also found 1153 lncRNAs genes were neighbored 1455 protein-coding genes (<10 kb upstream and downstream) and functionally enriched in transcriptional regulation and development-related processes, indicating they may be in cis-regulatory relationships. Additionally, Pearson's correlation coefficients of co-expression levels suggested 1737 lncRNAs and 19,422 mRNAs were possibly in trans-regulatory relationships (r > 0.95 or r < -0.95). These co-expressed mRNAs were enriched in development-related biological processes such as muscle system processes, regulation of cell growth, muscle cell development, regulation of transcription, and embryonic morphogenesis. This study provides a catalog of goat muscle-related lncRNAs, and will contribute to a fuller understanding of the molecular mechanism underpinning muscle development in mammals.

  8. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.

    PubMed

    Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen

    2003-11-14

    This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.

  9. A multigene locus containing the Manx and bobcat genes is required for development of chordate features in the ascidian tadpole larva.

    PubMed

    Swalla, B J; Just, M A; Pederson, E L; Jeffery, W R

    1999-04-01

    The Manx gene is required for the development of the tail and other chordate features in the ascidian tadpole larva. To determine the structure of the Manx gene, we isolated and sequenced genomic clones from the tailed ascidian Molgula oculata. The Manx gene contains 9 exons and encodes both major and minor Manx mRNAs, which differ in the length of their 5' untranslated regions. The coding region of the single-copy bobcat gene, which encodes a DEAD-box RNA helicase, is embedded within the first Manx intron. The organization of the bobcat and Manx transcription units was determined by comparing genomic and cDNA clones. The Manx-bobcat gene locus has an unusual organization in which a non-coding first exon is alternatively spliced at the 5' end of two different mRNAs. The bobcat and Manx genes are expressed coordinately during oogenesis and embryogenesis, but not during spermatogenesis, in which bobcat mRNA accumulates independently of Manx mRNA. Similar to Manx, zygotic bobcat transcripts accumulate in the embryonic primordia responsible for generating chordate features, including the dorsal neural tube and notochord, are downregulated during embryogenesis in the tailless species Molgula occulta and are upregulated in M. occulta X M. oculata hybrids, which restore these chordate features. Antisense experiments indicate that zygotic bobcat expression is required for development of the same suite of chordate features as Manx. The results show that the Manx-bobcat gene complex has a role in the development of chordate features in ascidian tadpole larvae.

  10. beamter/deltaC and the role of Notch ligands in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation.

    PubMed

    Jülich, Dörthe; Hwee Lim, Chiaw; Round, Jennifer; Nicolaije, Claudia; Schroeder, Joshua; Davies, Alexander; Geisler, Robert; Lewis, Julian; Jiang, Yun-Jin; Holley, Scott A

    2005-10-15

    The Tübingen large-scale zebrafish genetic screen completed in 1996 identified a set of five genes required for orderly somite segmentation. Four of them have been molecularly identified and three were found to code for components of the Notch pathway, which are required for the coordinated oscillation of gene expression, known as the segmentation clock, in the presomitic mesoderm (PSM). Here, we show that the final member of the group, beamter (bea), codes for the Notch ligand DeltaC, and we present and characterize two new alleles, including one allele encoding for a protein truncated in the 7th EGF repeat and an allele deleting only the DSL domain which was previously shown to be necessary for ligand function. Interestingly however, when we over-express any of the mutant deltaC mRNAs, we observe antimorphic effects on both hindbrain neurogenesis and hypochord formation. Expression of bea/deltaC oscillates in the PSM, and a triple fluorescent in situ analysis of its oscillation in relation to that of other oscillating genes in the PSM reveals differences in subcellular localization of the oscillating mRNAs in individual cells in different oscillation phases. Mutations in aei/deltaD and bea/deltaC differ in the way they disrupt the oscillating expression of her1 and deltaC. Furthermore, we find that the double mutants have significantly stronger defects in hypochord formation but not in somitogenesis or hindbrain neurogenesis, indicating genetically that the two delta's may function either semi-redundantly or distinctly, depending upon context.

  11. Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction.

    PubMed

    Ren, Jindong; Du, Xue; Zeng, Tao; Chen, Li; Shen, Junda; Lu, Lizhi; Hu, Jianhong

    2017-10-01

    Long noncoding RNAs (lncRNAs) and divergently expressed genes exist widely in different tissues of mammals and birds, in which they are involved in various biological processes. However, there is limited information on their role in the regulation of normal biological processes during differentiation, development, and reproduction in birds. In this study, whole transcriptome strand-specific RNA sequencing of the ovary from young ducks (60days), first-laying ducks (160days), and old ducks, i.e., ducks that stopped laying eggs (490days) was performed. The lncRNAs and mRNAs from these ducks were systematically analyzed and identified by duck genome sequencing in the three study groups. The transcriptome from the duck ovary comprised 15,011 protein-coding genes and 2905 lncRNAs; all the lncRNAs were identified as novel long noncoding transcripts. The comparison of transcriptome data from different study groups identified 2240 divergent transcription genes and 135 divergently expressed lncRNAs, which differed among the groups; most of them were significantly downregulated with age. Among the divergent genes, 38 genes were related to the reproductive process and 6 genes were upregulated. Further prediction analysis revealed that 52 lncRNAs were closely correlated with divergent reproductive mRNAs. More importantly, 6 remarkable lncRNAs were correlated significantly with the conversion of the ovary in different phases. Our results aid in the understanding of the divergent transcriptome of duck ovary in different phases and the underlying mechanisms that drive the specificity of protein-coding genes and lncRNAs in duck ovary. Copyright © 2017. Published by Elsevier B.V.

  12. Role of Alternative Polyadenylation during Adipogenic Differentiation: An In Silico Approach

    PubMed Central

    Spangenberg, Lucía; Correa, Alejandro; Dallagiovanna, Bruno; Naya, Hugo

    2013-01-01

    Post-transcriptional regulation of stem cell differentiation is far from being completely understood. Changes in protein levels are not fully correlated with corresponding changes in mRNAs; the observed differences might be partially explained by post-transcriptional regulation mechanisms, such as alternative polyadenylation. This would involve changes in protein binding, transcript usage, miRNAs and other non-coding RNAs. In the present work we analyzed the distribution of alternative transcripts during adipogenic differentiation and the potential role of miRNAs in post-transcriptional regulation. Our in silico analysis suggests a modest, consistent, bias in 3′UTR lengths during differentiation enabling a fine-tuned transcript regulation via small non-coding RNAs. Including these effects in the analyses partially accounts for the observed discrepancies in relative abundance of protein and mRNA. PMID:24143171

  13. Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics

    PubMed Central

    Kim, Tae Kyung; Sul, Jai-Yoon; Helmfors, Henrik; Langel, Ulo; Kim, Junhyong; Eberwine, James

    2014-01-01

    SUMMARY Protein synthesis in neuronal dendrites underlies long-term memory formation in the brain. Local translation of reporter mRNAs has demonstrated translation in dendrites at focal points called translational hotspots. Various reports have shown that hundreds to thousands of mRNAs are localized to dendrites, yet the dynamics of translation of multiple dendritic mRNAs has remained elusive. Here, we show that the protein translational activities of two dendritically localized mRNAs are spatiotemporally complex but constrained by the translational hotspots in which they are colocalized. Cotransfection of glutamate receptor 2 (GluR2) and GluR4 mRNAs (engineered to encode different fluorescent proteins) into rat hippocampal neurons demonstrates a heterogeneous distribution of translational hotspots for the two mRNAs along dendrites. Stimulation with s-3,5-dihydroxy-phenylglycine modifies the translational dynamics of both of these RNAs in a complex saturable manner. These results suggest that the translational hotspot is a primary structural regulator of the simultaneous yet differential translation of multiple mRNAs in the neuronal dendrite. PMID:24075992

  14. nanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Hulea, Laura; Gravel, Simon-Pierre; Cargnello, Marie; McLaughlan, Shannon; Cai, Yutian; Balanathan, Preetika; Morita, Masahiro; Rajakumar, Arjuna; Furic, Luc; Pollak, Michael; Porco, John A.; St-Pierre, Julie; Pelletier, Jerry; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    The diversity of MTOR-regulated mRNA translation remains unresolved. Whereas ribosome-profiling suggested that MTOR almost exclusively stimulates translation of the TOP (terminal oligopyrimidine motif) and TOP-like mRNAs, polysome-profiling indicated that MTOR also modulates translation of mRNAs without the 5′ TOP motif (non-TOP mRNAs). We demonstrate that in ribosome-profiling studies, detection of MTOR-dependent changes in non-TOP mRNA translation was obscured by low sensitivity and methodology biases. Transcription start site profiling using nano-cap analysis of gene expression (nanoCAGE) revealed that not only do many MTOR-sensitive mRNAs lack the 5′ TOP motif but that 5′ UTR features distinguish two functionally and translationally distinct subsets of MTOR-sensitive mRNAs: (1) mRNAs with short 5′ UTRs enriched for mitochondrial functions, which require EIF4E but are less EIF4A1-sensitive; and (2) long 5′ UTR mRNAs encoding proliferation- and survival-promoting proteins, which are both EIF4E- and EIF4A1-sensitive. Selective inhibition of translation of mRNAs harboring long 5′ UTRs via EIF4A1 suppression leads to sustained expression of proteins involved in respiration but concomitant loss of those protecting mitochondrial structural integrity, resulting in apoptosis. Conversely, simultaneous suppression of translation of both long and short 5′ UTR mRNAs by MTOR inhibitors results in metabolic dormancy and a predominantly cytostatic effect. Thus, 5′ UTR features define different modes of MTOR-sensitive translation of functionally distinct subsets of mRNAs, which may explain the diverse impact of MTOR and EIF4A inhibitors on neoplastic cells. PMID:26984228

  15. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Multiple Transcript Properties Related to Translation Affect mRNA Degradation Rates in Saccharomyces cerevisiae

    PubMed Central

    Neymotin, Benjamin; Ettorre, Victoria; Gresham, David

    2016-01-01

    Degradation of mRNA contributes to variation in transcript abundance. Studies of individual mRNAs have shown that both cis and trans factors affect mRNA degradation rates. However, the factors underlying transcriptome-wide variation in mRNA degradation rates are poorly understood. We investigated the contribution of different transcript properties to transcriptome-wide degradation rate variation in the budding yeast, Saccharomyces cerevisiae, using multiple regression analysis. We find that multiple transcript properties are significantly associated with variation in mRNA degradation rates, and that a model incorporating these properties explains ∼50% of the genome-wide variance. Predictors of mRNA degradation rates include transcript length, ribosome density, biased codon usage, and GC content of the third position in codons. To experimentally validate these factors, we studied individual transcripts expressed from identical promoters. We find that decreasing ribosome density by mutating the first translational start site of a transcript increases its degradation rate. Using coding sequence variants of green fluorescent protein (GFP) that differ only at synonymous sites, we show that increased GC content of the third position of codons results in decreased rates of mRNA degradation. Thus, in steady-state conditions, a large fraction of genome-wide variation in mRNA degradation rates is determined by inherent properties of transcripts, many of which are related to translation, rather than specific regulatory mechanisms. PMID:27633789

  17. The expanding regulatory universe of p53 in gastrointestinal cancer.

    PubMed

    Fesler, Andrew; Zhang, Ning; Ju, Jingfang

    2016-01-01

    Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs.  Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology.  With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.

  18. SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes

    PubMed Central

    Mix, Heiko; Lobanov, Alexey V.; Gladyshev, Vadim N.

    2007-01-01

    Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3′-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins. PMID:17169995

  19. Normalization for Relative Quantification of mRNA and microRNA in Soybean Exposed to Various Abiotic Stresses

    PubMed Central

    Zhou, Yonggang; Chen, Huan; Dong, Yuanyuan; Wang, Nan; Li, Xiaowei; Jameel, Aysha; Yang, He; Zhang, Min; Chen, Kai; Wang, Fawei; Li, Haiyan

    2016-01-01

    Plant microRNAs are small non-coding, endogenic RNA molecule (containing 20–24 nucleotides) produced from miRNA precursors (pri-miRNA and pre-miRNA). Evidence suggests that up and down regulation of the miRNA targets the mRNA genes involved in resistance against biotic and abiotic stresses. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful technique to analyze variations in mRNA levels. Normalizing the data using reference genes is essential for the analysis of reliable RT-qPCR data. In this study, two groups of candidate reference mRNAs and miRNAs in soybean leaves and roots treated with various abiotic stresses (PEG-simulated drought, salinity, alkalinity, salinity+alkalinity, and abscisic acid) were analyzed by RT-qPCR. We analyzed the most appropriate reference mRNA/miRNAs using the geNorm, NormFinder, and BestKeeper algorithms. According to the results, Act and EF1b were the most suitable reference mRNAs in leaf and root samples, for mRNA and miRNA precursor data normalization. The most suitable reference miRNAs found in leaf and root samples were 166a and 167a for mature miRNA data normalization. Hence the best combinations of reference mRNAs for mRNA and miRNA precursor data normalization were EF1a + Act or EF1b + Act in leaf samples, and EF1a + EF1b or 60s + EF1b in root samples. For mature miRNA data normalization, the most suitable combinations of reference miRNAs were 166a + 167d in leaf samples, and 171a + 156a or 167a + 171a in root samples. We identified potential reference mRNA/miRNAs for accurate RT-qPCR data normalization for mature miRNA, miRNA precursors, and their targeted mRNAs. Our results promote miRNA-based studies on soybean plants exposed to abiotic stress conditions. PMID:27176476

  20. The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs.

    PubMed

    Root-Bernstein, Robert; Root-Bernstein, Meredith

    2016-05-21

    We have proposed that the ribosome may represent a missing link between prebiotic chemistries and the first cells. One of the predictions that follows from this hypothesis, which we test here, is that ribosomal RNA (rRNA) must have encoded the proteins necessary for ribosomal function. In other words, the rRNA also functioned pre-biotically as mRNA. Since these ribosome-binding proteins (rb-proteins) must bind to the rRNA, but the rRNA also functioned as mRNA, it follows that rb-proteins should bind to their own mRNA as well. This hypothesis can be contrasted to a "null" hypothesis in which rb-proteins evolved independently of the rRNA sequences and therefore there should be no necessary similarity between the rRNA to which rb-proteins bind and the mRNA that encodes the rb-protein. Five types of evidence reported here support the plausibility of the hypothesis that the mRNA encoding rb-proteins evolved from rRNA: (1) the ubiquity of rb-protein binding to their own mRNAs and autogenous control of their own translation; (2) the higher-than-expected incidence of Arginine-rich modules associated with RNA binding that occurs in rRNA-encoded proteins; (3) the fact that rRNA-binding regions of rb-proteins are homologous to their mRNA binding regions; (4) the higher than expected incidence of rb-protein sequences encoded in rRNA that are of a high degree of homology to their mRNA as compared with a random selection of other proteins; and (5) rRNA in modern prokaryotes and eukaryotes encodes functional proteins. None of these results can be explained by the null hypothesis that assumes independent evolution of rRNA and the mRNAs encoding ribosomal proteins. Also noteworthy is that very few proteins bind their own mRNAs that are not associated with ribosome function. Further tests of the hypothesis are suggested: (1) experimental testing of whether rRNA-encoded proteins bind to rRNA at their coding sites; (2) whether tRNA synthetases, which are also known to bind to their own mRNAs, are encoded by the tRNA sequences themselves; (3) and the prediction that archaeal and prokaryotic (DNA-based) genomes were built around rRNA "genes" so that rRNA-related sequences will be found to make up an unexpectedly high proportion of these genomes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria.

    PubMed

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R; Voß, Björn

    2015-04-22

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5'UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5'UTR. Such an sRNA/mRNA structure, which we name 'actuaton', represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.

  2. PCR localization of C-type natriuretic peptide and B-type receptor mRNAs in rat nephron segments.

    PubMed

    Terada, Y; Tomita, K; Nonoguchi, H; Yang, T; Marumo, F

    1994-08-01

    The present study was undertaken to investigate the presence of C-type natriuretic peptide (CNP) mRNA and its receptor, natriuretic peptide B-type receptor (ANPR-B) mRNA, in rat renal structures. The microlocalization of mRNAs coding for CNP and ANPR-B was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction (RT-PCR) in individual microdissected renal tubule segments, glomeruli, vasa recta bundle, and arcuate arteries. The PCR signal for CNP was detected in glomerulus, vasa recta bundle, and arcuate artery. The PCR product of ANPR-B was widely present in renal structures. Relatively large amounts of ANPR-B PCR product were detected in glomerulus, vasa recta bundle, arcuate artery, and distal nephron segments. A relatively high concentration of CNP (10(-7) M) stimulated guanosine 3',5'-cyclic monophosphate accumulation in glomerulus, medullary thick ascending limb, cortical collecting duct, and inner medullary collecting duct. Our data demonstrate that CNP can be produced locally in the glomerulus and renal vascular system and that ANPR-B is widely distributed in renal structures. Thus CNP may influence renal function and act in autocrine and paracrine fashions in the kidney.

  3. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome

    PubMed Central

    Sakurai, Masayuki; Ueda, Hiroki; Yano, Takanori; Okada, Shunpei; Terajima, Hideki; Mitsuyama, Toutai; Toyoda, Atsushi; Fujiyama, Asao; Kawabata, Hitomi; Suzuki, Tsutomu

    2014-01-01

    Inosine is an abundant RNA modification in the human transcriptome and is essential for many biological processes in modulating gene expression at the post-transcriptional level. Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosines to inosines (A-to-I editing) in double-stranded regions. We previously established a biochemical method called “inosine chemical erasing” (ICE) to directly identify inosines on RNA strands with high reliability. Here, we have applied the ICE method combined with deep sequencing (ICE-seq) to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome of human adult brain. Taken together with the sites identified by the conventional ICE method, we mapped 19,791 novel sites and newly found 1258 edited mRNAs, including 66 novel sites in coding regions, 41 of which cause altered amino acid assignment. ICE-seq detected novel editing sites in various repeat elements as well as in short hairpins. Gene ontology analysis revealed that these edited mRNAs are associated with transcription, energy metabolism, and neurological disorders, providing new insights into various aspects of human brain functions. PMID:24407955

  4. UPF1 silenced cellular model systems for screening of read-through agents active on β039 thalassemia point mutation.

    PubMed

    Salvatori, Francesca; Pappadà, Mariangela; Breveglieri, Giulia; D'Aversa, Elisabetta; Finotti, Alessia; Lampronti, Ilaria; Gambari, Roberto; Borgatti, Monica

    2018-05-15

    Nonsense mutations promote premature translational termination, introducing stop codons within the coding region of mRNAs and causing inherited diseases, including thalassemia. For instance, in β 0 39 thalassemia the CAG (glutamine) codon is mutated to the UAG stop codon, leading to premature translation termination and to mRNA destabilization through the well described NMD (nonsense-mediated mRNA decay). In order to develop an approach facilitating translation and, therefore, protection from NMD, ribosomal read-through molecules, such as aminoglycoside antibiotics, have been tested on mRNAs carrying premature stop codons. These findings have introduced new hopes for the development of a pharmacological approach to the β 0 39 thalassemia therapy. While several strategies, designed to enhance translational read-through, have been reported to inhibit NMD efficiency concomitantly, experimental tools for systematic analysis of mammalian NMD inhibition by translational read-through are lacking. We developed a human cellular model of the β 0 39 thalassemia mutation with UPF-1 suppressed and showing a partial NMD suppression. This novel cellular model could be used for the screening of molecules exhibiting preferential read-through activity allowing a great rescue of the mutated transcripts.

  5. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana

    PubMed Central

    Merret, Rémy; Nagarajan, Vinay K.; Carpentier, Marie-Christine; Park, Sunhee; Favory, Jean-Jacques; Descombin, Julie; Picart, Claire; Charng, Yee-yung; Green, Pamela J.; Deragon, Jean-Marc; Bousquet-Antonelli, Cécile

    2015-01-01

    The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5′-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5′-ribosome pausing leading to the XRN4-mediated 5′-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of ‘non-aberrant’ mRNAs. PMID:25845591

  6. Transcriptional regulation of coordinate changes in flagellar mRNAs during differentiation of Naegleria gruberi amoebae into flagellates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Walsh, C.J.

    1988-06-01

    The nuclear run-on technique was used to measure the rate of transcription of flagellar genes during the differentiation of Naegleria gruberi amebae into flagellates. Synthesis of mRNAs for the axonemal proteins ..cap alpha..- and BETA-tubulin and flagellar calmodulin, as well as a coordinately regulated poly(A)/sup +/ RNA that codes for an unidentified protein, showed transient increases averaging 22-fold. The rate of synthesis of two poly(A)/sup +/ RNAs common to ameobae and flagellates was low until the transcription of the flagellar genes began to decline, at which time synthesis of the RNAs found in ameobae increased 3- to 10-fold. The observedmore » changes in the rate of transcription can account quantitatively for the 20-fold increase in flagellar mRNA concentration during the differentiation. The data for the flagellar calmodulin gene demonstrate transcriptional regulation for a nontubulin axonemal protein. The data also demonstrate at least two programs of transcriptional regulation during the differentiation and raise the intriguing possibility that some significant fraction of the nearly 200 different proteins of the flagellar axoneme is transcriptionally regulated during the 1 h it takes N. gruberi amebae to form visible flagella.« less

  7. Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus).

    PubMed

    Huang, Yong; Ma, Xiu Ying; Yang, You Bing; Ren, Hong Tao; Sun, Xi Hong; Wang, Li Rui

    MicroRNAs (miRNAs) are a class of small single-stranded, endogenous 21-22 nt non-coding RNAs that regulate their target mRNA levels by causing either inactivation or degradation of the mRNAs. In recent years, miRNA genes have been identified from mammals, insects, worms, plants, and viruses. In this research, bioinformatics approaches were used to predict potential miRNAs and their targets in Nile tilapia from the expressed sequence tag (EST) and genomic survey sequence (GSS) database, respectively, based on the conservation of miRNAs in many animal species. A total of 19 potential miRNAs were detected following a range of strict filtering criteria. To test the validity of the bioinformatics method, seven predicted Nile tilapia miRNA genes were selected for further biological validation, and their mature miRNA transcripts were successfully detected by stem-loop RT-PCR experiments. Using these potential miRNAs, we found 56 potential targets in this species. Most of the target mRNAs appear to be involved in development, metabolism, signal transduction, transcription regulation and stress responses. Overall, our findings will provide an important foundation for further research on miRNAs function in the Nile tilapia.

  8. Current knowledge of microRNA-mediated regulation of drug metabolism in humans.

    PubMed

    Nakano, Masataka; Nakajima, Miki

    2018-05-01

    Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.

  9. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    PubMed

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  10. The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy.

    PubMed

    Hernández-Arranz, Sofía; Moreno, Renata; Rojo, Fernando

    2013-01-01

    Metabolically versatile bacteria usually perceive aromatic compounds and hydrocarbons as non-preferred carbon sources, and their assimilation is inhibited if more preferable substrates are available. This is achieved via catabolite repression. In Pseudomonas putida, the expression of the genes allowing the assimilation of benzoate and n-alkanes is strongly inhibited by catabolite repression, a process controlled by the translational repressor Crc. Crc binds to and inhibits the translation of benR and alkS mRNAs, which encode the transcriptional activators that induce the expression of the benzoate and alkane degradation genes respectively. However, sequences similar to those recognized by Crc in benR and alkS mRNAs exist as well in the translation initiation regions of the mRNA of several structural genes of the benzoate and alkane pathways, which suggests that Crc may also regulate their translation. The present results show that some of these sites are functional, and that Crc inhibits the induction of both pathways by limiting not only the translation of their transcriptional activators, but also that of genes coding for the first enzyme in each pathway. Crc may also inhibit the translation of a gene involved in benzoate uptake. This multi-tier approach probably ensures the rapid regulation of pathway genes, minimizing the assimilation of non-preferred substrates when better options are available. A survey of possible Crc sites in the mRNAs of genes associated with other catabolic pathways suggested that targeting substrate uptake, pathway induction and/or pathway enzymes may be a common strategy to control the assimilation of non-preferred compounds. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs.

    PubMed

    Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V

    2018-05-01

    Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. © 2018 Hsu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.

    PubMed

    Das, Sulagna; Moon, Hyungseok C; Singer, Robert H; Park, Hye Yoon

    2018-06-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca 2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  13. Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties.

    PubMed

    Ponsuksili, Siriluck; Du, Yang; Hadlich, Frieder; Siengdee, Puntita; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2013-08-05

    Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.

  14. The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease.

    PubMed

    da Costa, Paulo J; Menezes, Juliane; Romão, Luísa

    2017-10-01

    Alternative pre-mRNA splicing (AS) affects gene expression as it generates proteome diversity. Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and selectively degrades mRNAs carrying premature translation-termination codons (PTCs), preventing the production of truncated proteins that could result in disease. Several studies have also implicated NMD in the regulation of steady-state levels of physiological mRNAs. In addition, it is known that several regulated AS events do not lead to generation of protein products, as they lead to transcripts that carry PTCs and thus, they are committed to NMD. Indeed, an estimated one-third of naturally occurring, alternatively spliced mRNAs is targeted for NMD, being AS coupled to NMD (AS-NMD) an efficient strategy to regulate gene expression. In this review, we will focus on how AS mechanism operates and how can be coupled to NMD to fine-tune gene expression levels. Furthermore, we will demonstrate the physiological significance of the interplay among AS and NMD in human disease, such as cancer and neurological disorders. The understanding of how AS-NMD orchestrates expression of vital genes is of utmost importance for the advance in diagnosis, prognosis and treatment of many human disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Eukaryotic Translation Initiation Factor 4E Availability Controls the Switch between Cap-Dependent and Internal Ribosomal Entry Site-Mediated Translation†

    PubMed Central

    Svitkin, Yuri V.; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum

    2005-01-01

    Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5′ end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection. PMID:16287867

  16. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.

    PubMed

    Svitkin, Yuri V; Herdy, Barbara; Costa-Mattioli, Mauro; Gingras, Anne-Claude; Raught, Brian; Sonenberg, Nahum

    2005-12-01

    Translation of m7G-capped cellular mRNAs is initiated by recruitment of ribosomes to the 5' end of mRNAs via eukaryotic translation initiation factor 4F (eIF4F), a heterotrimeric complex comprised of a cap-binding subunit (eIF4E) and an RNA helicase (eIF4A) bridged by a scaffolding molecule (eIF4G). Internal translation initiation bypasses the requirement for the cap and eIF4E and occurs on viral and cellular mRNAs containing internal ribosomal entry sites (IRESs). Here we demonstrate that eIF4E availability plays a critical role in the switch from cap-dependent to IRES-mediated translation in picornavirus-infected cells. When both capped and IRES-containing mRNAs are present (as in intact cells or in vitro translation extracts), a decrease in the amount of eIF4E associated with the eIF4F complex elicits a striking increase in IRES-mediated viral mRNA translation. This effect is not observed in translation extracts depleted of capped mRNAs, indicating that capped mRNAs compete with IRES-containing mRNAs for translation. These data explain numerous reported observations where viral mRNAs are preferentially translated during infection.

  17. A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development.

    PubMed

    Paranjpe, Sarita S; Jacobi, Ulrike G; van Heeringen, Simon J; Veenstra, Gert Jan C

    2013-11-06

    Dynamics of polyadenylation vs. deadenylation determine the fate of several developmentally regulated genes. Decay of a subset of maternal mRNAs and new transcription define the maternal-to-zygotic transition, but the full complement of polyadenylated and deadenylated coding and non-coding transcripts has not yet been assessed in Xenopus embryos. To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted total RNA were harvested across six developmental stages and subjected to high throughput sequencing. The maternally loaded transcriptome is highly diverse and consists of both polyadenylated and deadenylated transcripts. Many maternal genes show peak expression in the oocyte and include genes which are known to be the key regulators of events like oocyte maturation and fertilization. Of all the transcripts that increase in abundance between early blastula and larval stages, about 30% of the embryonic genes are induced by fourfold or more by the late blastula stage and another 35% by late gastrulation. Using a gene model validation and discovery pipeline, we identified novel transcripts and putative long non-coding RNAs (lncRNA). These lncRNA transcripts were stringently selected as spliced transcripts generated from independent promoters, with limited coding potential and a codon bias characteristic of noncoding sequences. Many lncRNAs are conserved and expressed in a developmental stage-specific fashion. These data reveal dynamics of transcriptome polyadenylation and abundance and provides a high-confidence catalogue of novel and long non-coding RNAs.

  18. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs.

    PubMed

    Zucchelli, Silvia; Patrucco, Laura; Persichetti, Francesca; Gustincich, Stefano; Cotella, Diego

    2016-01-01

    Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.

  19. mTORC1 activity as a determinant of cancer risk--rationalizing the cancer-preventive effects of adiponectin, metformin, rapamycin, and low-protein vegan diets.

    PubMed

    McCarty, Mark F

    2011-10-01

    Increased plasma levels of adiponectin, metformin therapy of diabetes, rapamycin administration in transplant patients, and lifelong consumption of low-protein plant-based diets have all been linked to decreased risk for various cancers. These benefits may be mediated, at least in part, by down-regulated activity of the mTORC1 complex, a key regulator of protein translation. By boosting the effective availability of the translation initiator eIF4E, mTORC1 activity promotes the translation of a number of "weak" mRNAs that code for proteins, often up-regulated in cancer, that promote cellular proliferation, invasiveness, and angiogenesis, and that abet cancer promotion and chemoresistance by opposing apoptosis. Measures which inhibit eIF4E activity, either directly or indirectly, may have utility not only for cancer prevention, but also for the treatment of many cancers in which eIF4E drives malignancy. Since eIF4E is overexpressed in many cancers, strategies which target eIF4E directly--some of which are now being assessed clinically--may have the broadest efficacy in this regard. Many of the "weak" mRNAs coding for proteins that promote malignant behavior or chemoresistance are regulated transcriptionally by NF-kappaB and/or Stat3, which are active in a high proportion of cancers; thus, regimens concurrently targeting eIF4E, NF-kappaB, and Stat3 may suppress these proteins at both the transcriptional and translational levels, potentially achieving a very marked reduction in their expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression

    PubMed Central

    Lioliou, Efthimia; Sharma, Cynthia M.; Caldelari, Isabelle; Helfer, Anne-Catherine; Fechter, Pierre; Vandenesch, François; Vogel, Jörg; Romby, Pascale

    2012-01-01

    RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. PMID:22761586

  1. Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in β-thalassemia and hereditary persistence of fetal hemoglobin.

    PubMed

    Lai, Ketong; Jia, Siyuan; Yu, Shanjuan; Luo, Jianming; He, Yunyan

    2017-07-25

    The implications of lncRNAs regarding fetal hemoglobin (HbF) induction in hemoglobin disorders remain poorly understood. In this study, microarray analysis was performed to profile lncRNAs, miRNAs and mRNAs in individuals with hereditary persistence of fetal hemoglobin (HPFH), β-thalassemia carriers with high HbF levels and healthy controls. The results show aberrant expression of 862 lncRNAs, 568 mRNAs and 63 miRNAs in the high-HbF group compared with the control group. Altered NR_001589, NR_120526, T315543, miR-486-3p, miR-19b-1-5p and miR-20a-3p expression was confirmed by quantitative reverse transcription-polymerase chain reaction, and Spearman correlation coefficients revealed significant positive correlations with HbF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed the hematopoietic cell lineage and apoptosis to be most significantly dysregulated in HbF induction. We analyzed coding genes near the lncRNAs and constructed a coding-noncoding co-expression network. Based on the results, lncRNAs likely contribute to increased HbF levels by activating expression of HBE1 and hematopoietic cell lineage-inducible molecules and by inhibiting that of apoptosis-inducible molecules. Finally, through construction of a competing endogenous RNA network, we found that 6 lncRNAs could bind competitively with miR-486-3p, resulting in increased HbF levels. Taken together, our findings provide new insights into the mechanisms of HbF induction and potentially provide new targets for the treatment of β-thalassemia major.

  2. Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in β-thalassemia and hereditary persistence of fetal hemoglobin

    PubMed Central

    Yu, Shanjuan; Luo, Jianming; He, Yunyan

    2017-01-01

    The implications of lncRNAs regarding fetal hemoglobin (HbF) induction in hemoglobin disorders remain poorly understood. In this study, microarray analysis was performed to profile lncRNAs, miRNAs and mRNAs in individuals with hereditary persistence of fetal hemoglobin (HPFH), β-thalassemia carriers with high HbF levels and healthy controls. The results show aberrant expression of 862 lncRNAs, 568 mRNAs and 63 miRNAs in the high-HbF group compared with the control group. Altered NR_001589, NR_120526, T315543, miR-486-3p, miR-19b-1-5p and miR-20a-3p expression was confirmed by quantitative reverse transcription-polymerase chain reaction, and Spearman correlation coefficients revealed significant positive correlations with HbF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed the hematopoietic cell lineage and apoptosis to be most significantly dysregulated in HbF induction. We analyzed coding genes near the lncRNAs and constructed a coding-noncoding co-expression network. Based on the results, lncRNAs likely contribute to increased HbF levels by activating expression of HBE1 and hematopoietic cell lineage-inducible molecules and by inhibiting that of apoptosis-inducible molecules. Finally, through construction of a competing endogenous RNA network, we found that 6 lncRNAs could bind competitively with miR-486-3p, resulting in increased HbF levels. Taken together, our findings provide new insights into the mechanisms of HbF induction and potentially provide new targets for the treatment of β-thalassemia major. PMID:28624809

  3. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns.

    PubMed

    Mohorianu, Irina; Schwach, Frank; Jing, Runchun; Lopez-Gomollon, Sara; Moxon, Simon; Szittya, Gyorgy; Sorefan, Karim; Moulton, Vincent; Dalmay, Tamas

    2011-07-01

    Plants feature a particularly diverse population of short (s)RNAs, the central component of all RNA silencing pathways. Next generation sequencing techniques enable deeper insights into this complex and highly conserved mechanism and allow identification and quantification of sRNAs. We employed deep sequencing to monitor the sRNAome of developing tomato fruits covering the period between closed flowers and ripened fruits by profiling sRNAs at 10 time-points. It is known that microRNAs (miRNAs) play an important role in development but very little information is available about the majority of sRNAs that are not miRNAs. Here we show distinctive patterns of sRNA expression that often coincide with stages of the developmental process such as flowering, early and late fruit maturation. Moreover, thousands of non-miRNA sRNAs are differentially expressed during fruit development and ripening. Some of these differentially expressed sRNAs derived from transposons but many derive from protein coding genes or regions that show homology to protein coding genes, several of which are known to play a role in flower and fruit development. These findings raise the possibility of a regulative role of these sRNAs during fruit onset and maturation in a crop species. We also identified six new miRNAs and experimentally validated two target mRNAs. These two mRNAs are targeted by the same miRNA but do not belong to the same gene family, which is rare for plant miRNAs. Expression pattern and putative function of these targets indicate a possible role in glutamate accumulation, which contributes to establishing the taste of the fruit. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. Comprehensive analysis of lncRNAs microarray profile and mRNA-lncRNA co-expression in oncogenic HPV-positive cervical cancer cell lines.

    PubMed

    Yang, LingYun; Yi, Ke; Wang, HongJing; Zhao, YiQi; Xi, MingRong

    2016-08-02

    Long non-coding RNAs are emerging to be novel regulators in gene expression. In current study, lncRNAs microarray and lncRNA-mRNA co-expression analysis were performed to explore the alternation and function of lncRNAs in cervical cancer cells. We identified that 4750 lncRNAs (15.52%) were differentially expressed in SiHa (HPV-16 positive) (2127 up-regulated and 2623 down-regulated) compared with C-33A (HPV negative), while 5026 lncRNAs (16.43%) were differentially expressed in HeLa (HPV-18 positive) (2218 up-regulated and 2808 down-regulated) respectively. There were 5008 mRNAs differentially expressed in SiHa and 4993 in HeLa, which were all cataloged by GO terms and KEGG pathway. With the help of mRNA-lncRNA co-expression network, we found that ENST00000503812 was significantly negative correlated with RAD51B and IL-28A expression in SiHa, while ENST00000420168, ENST00000564977 and TCONS_00010232 had significant correlation with FOXQ1 and CASP3 expression in HeLa. Up-regulation of ENST00000503812 may inhibit RAD51B and IL-28A expression and result in deficiency of DNA repair pathway and immune responses in HPV-16 positive cervical cancer cell. Up-regulation of ENST00000420168, ENST00000564977 and down-regulation of TCONS_00010232 might stimulate FOXQ1 expression and suppress CASP3 expression in HPV-18 positive cervical cancer cell, which lead to HPV-induced proliferation and deficiency in apoptosis. These results indicate that changes of lncRNAs and related mRNAs might impact on several cellular pathways and involve in HPV-induced proliferation, which enriches our understanding of lncRNAs and coding transcripts anticipated in HPV oncogenesis of cervical cancer.

  5. Genome-Wide Analysis of Long Noncoding RNA (lncRNA) Expression in Hepatoblastoma Tissues

    PubMed Central

    Xue, Ping; Cui, Ximao; Li, Kai; Zheng, Shan; He, Xianghuo; Dong, Kuiran

    2014-01-01

    Long noncoding RNAs (lncRNAs) have crucial roles in cancer biology. We performed a genome-wide analysis of lncRNA expression in hepatoblastoma tissues to identify novel targets for further study of hepatoblastoma. Hepatoblastoma and normal liver tissue samples were obtained from hepatoblastoma patients. The genome-wide analysis of lncRNA expression in these tissues was performed using a 4×180 K lncRNA microarray and Sureprint G3 Human lncRNA Chips. Quantitative RT-PCR (qRT-PCR) was performed to confirm these results. The differential expressions of lncRNAs and mRNAs were identified through fold-change filtering. Gene Ontology (GO) and pathway analyses were performed using the standard enrichment computation method. Associations between lncRNAs and adjacent protein-coding genes were determined through complex transcriptional loci analysis. We found that 2736 lncRNAs were differentially expressed in hepatoblastoma tissues. Among these, 1757 lncRNAs were upregulated more than two-fold relative to normal tissues and 979 lncRNAs were downregulated. Moreover, in hepatoblastoma there were 420 matched lncRNA-mRNA pairs for 120 differentially expressed lncRNAs, and 167 differentially expressed mRNAs. The co-expression network analysis predicted 252 network nodes and 420 connections between 120 lncRNAs and 132 coding genes. Within this co-expression network, 369 pairs were positive, and 51 pairs were negative. Lastly, qRT-PCR data verified six upregulated and downregulated lncRNAs in hepatoblastoma, plus endothelial cell-specific molecule 1 (ESM1) mRNA. Our results demonstrated that expression of these aberrant lncRNAs could respond to hepatoblastoma development. Further study of these lncRNAs could provide useful insight into hepatoblastoma biology. PMID:24465615

  6. The rat alpha-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing.

    PubMed Central

    Wieczorek, D F; Smith, C W; Nadal-Ginard, B

    1988-01-01

    Tropomyosin (TM), a ubiquitous protein, is a component of the contractile apparatus of all cells. In nonmuscle cells, it is found in stress fibers, while in sarcomeric and nonsarcomeric muscle, it is a component of the thin filament. Several different TM isoforms specific for nonmuscle cells and different types of muscle cell have been described. As for other contractile proteins, it was assumed that smooth, striated, and nonmuscle isoforms were each encoded by different sets of genes. Through the use of S1 nuclease mapping, RNA blots, and 5' extension analyses, we showed that the rat alpha-TM gene, whose expression was until now considered to be restricted to muscle cells, generates many different tissue-specific isoforms. The promoter of the gene appears to be very similar to other housekeeping promoters in both its pattern of utilization, being active in most cell types, and its lack of any canonical sequence elements. The rat alpha-TM gene is split into at least 13 exons, 7 of which are alternatively spliced in a tissue-specific manner. This gene arrangement, which also includes two different 3' ends, generates a minimum of six different mRNAs each with the capacity to code for a different protein. These distinct TM isoforms are expressed specifically in nonmuscle and smooth and striated (cardiac and skeletal) muscle cells. The tissue-specific expression and developmental regulation of these isoforms is, therefore, produced by alternative mRNA processing. Moreover, structural and sequence comparisons among TM genes from different phyla suggest that alternative splicing is evolutionarily a very old event that played an important role in gene evolution and might have appeared concomitantly with or even before constitutive splicing. Images PMID:3352602

  7. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export.

    PubMed

    Larsen, Sean; Bui, Steven; Perez, Veronica; Mohammad, Adeba; Medina-Ramirez, Hilario; Newcomb, Laura L

    2014-08-28

    Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we conclude that in both A549 and 293 T cells, PA, PB1, and PB2 mRNA nuclear export is Nxf1 and Crm1 independent. Our data support the hypothesis that PA, PB1, and PB2 mRNAs, encoding the influenza RdRP, utilize atypical mRNA nuclear export.

  8. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  9. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia

    PubMed Central

    Boczonadi, Veronika; Müller, Juliane S.; Pyle, Angela; Munkley, Jennifer; Dor, Talya; Quartararo, Jade; Ferrero, Ileana; Karcagi, Veronika; Giunta, Michele; Polvikoski, Tuomo; Birchall, Daniel; Princzinger, Agota; Cinnamon, Yuval; Lützkendorf, Susanne; Piko, Henriett; Reza, Mojgan; Florez, Laura; Santibanez-Koref, Mauro; Griffin, Helen; Schuelke, Markus; Elpeleg, Orly; Kalaydjieva, Luba; Lochmüller, Hanns; Elliott, David J.; Chinnery, Patrick F.; Edvardson, Shimon; Horvath, Rita

    2014-01-01

    The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. PMID:24989451

  10. Hacking RNA: Hakai promotes tumorigenesis by switching on the RNA-binding function of PSF

    PubMed Central

    Figueroa, Angélica; Fujita, Yasuyuki; Gorospe, Myriam

    2009-01-01

    Hakai, an E3 ubiquitin ligase for the E-cadherin complex, plays a crucial role in lowering cell-cell contacts in epithelial cells, a hallmark feature of tumor progression. Recently, Hakai was also found to interact with PSF (PTB-associated splicing factor). While PSF can function as a DNA-binding protein with a tumor suppressive function, its association with Hakai promotes PSF’s RNA-binding ability and post-transcriptional influence on target mRNAs. Hakai overexpression enhanced the binding of PSF to mRNAs encoding cancer-related proteins, while knockdown of Hakai reduced the RNA-binding ability of PSF. Furthermore, the knockdown of PSF suppressed Hakai-induced cell proliferation. Thus, Hakai can affect the oncogenic phenotype both by altering E-cadherin-based intercellular adhesions and by increasing PSF’s ability to bind RNAs that promote cancer-related gene expression. PMID:19855157

  11. Characterization of variegate porphyria mutations using a minigene approach.

    PubMed

    Granata, Barbara Xoana; Baralle, Marco; De Conti, Laura; Parera, Victoria; Rossetti, Maria Victoria

    2015-01-01

    Porphyrias are a group of metabolic diseases that affect the skin and/or nervous system. In 2008, three unrelated patients were diagnosed with variegate porphyria at the CIPYP (Centro de Investigaciones sobre Porfirinas y Porfirias). Sequencing of the protoporphyrinogen oxidase gene, the gene altered in this type of porphyria, revealed three previously undescribed mutations: c.338+3insT, c.807G>A, and c.808-1G>C. As these mutations do not affect the protein sequence, we hypothesized that they might be splicing mutations. RT-PCRs performed on the patient's mRNAs showed normal mRNA or no amplification at all. This result indicated that the aberrant spliced transcript is possibly being degraded. In order to establish whether they were responsible or not for the patient's disease by causing aberrant splicing, we utilized a minigene approach. We found that the three mutations lead to exon skipping; therefore, the abnormal mRNAs are most likely degraded by a mechanism such as nonsense-mediated decay. In conclusion, these mutations are responsible for the disease because they alter the normal splicing pathway, thus providing a functional explanation for the appearance of disease and highlighting the use of minigene assays to complement transcript analysis.

  12. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes. PMID:25264628

  13. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the protein-coding genes for CALD1, FTX, and HNRNPH1. In conclusion, a number of differentially expressed lncRNAs have been identified with relation to cancer-related protein-coding genes.

  14. The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia

    PubMed Central

    Wang, Xiao-Shuang; Zhang, Jun-Wu

    2008-01-01

    Abstract MicroRNAs (miRNAs) are endogenously expressed, functional RNAs that interact with native coding mRNAs to cleave mRNA or repress translation. Several miRNAs contribute to normal haematopoietic processes and some miRNAs act both as tumour suppressors and oncogenes in the pathology of haematological malignancies. While most effort is engaged in identifying and investigating the target genes of miRNAs, miRNA gene promoter methylation or transcriptional regulation is another important field of investigation, since these two main mechanisms can form a regulatory circuit. This review focuses on recent researches on miRNAs with important roles in myeloid cells. PMID:18554315

  15. Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of MicroRNA-Regulation

    PubMed Central

    Thomas, Laurent F.; Sætrom, Pål

    2012-01-01

    Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998

  16. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Drosophila germ granules are structured and contain homotypic mRNA clusters

    PubMed Central

    Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothée; Lehmann, Ruth

    2015-01-01

    Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into ‘homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323

  18. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenda; Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; He, Kaiyu

    The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6 h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), themore » plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity. - Highlights: • We compared effects of DON congeners on biomarker proinflammatory genes in mice. • Oral DON induced splenic IL-1β, IL-6, TNF-α,CXCL-2, CCL-2 and CCL-7 mRNAs. • 8-Ketotrichothecene ranking for biomarkers was FX ≈ DON > 15ADON > 3ADON > NIV. • Plant metabolite DON-3-glucoside failed to induce proinflammatory biomarkers. • Synthetic DON congeners EN139528 and EN139544 did not affect biomarkers.« less

  19. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria

    PubMed Central

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R.; Voß, Björn

    2015-01-01

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5′UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5′UTR. Such an sRNA/mRNA structure, which we name ‘actuaton’, represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation. PMID:25902393

  20. A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons.

    PubMed

    Aschrafi, Armaz; Kar, Amar N; Gale, Jenna R; Elkahloun, Abdel G; Vargas, Jose Noberto S; Sales, Naomi; Wilson, Gabriel; Tompkins, Miranda; Gioio, Anthony E; Kaplan, Barry B

    2016-09-01

    Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV) and ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two-fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function. Published by Elsevier B.V.

  1. Reducing the genetic code induces massive rearrangement of the proteome

    PubMed Central

    O’Donoghue, Patrick; Prat, Laure; Kucklick, Martin; Schäfer, Johannes G.; Riedel, Katharina; Rinehart, Jesse; Söll, Dieter; Heinemann, Ilka U.

    2014-01-01

    Expanding the genetic code is an important aim of synthetic biology, but some organisms developed naturally expanded genetic codes long ago over the course of evolution. Less than 1% of all sequenced genomes encode an operon that reassigns the stop codon UAG to pyrrolysine (Pyl), a genetic code variant that results from the biosynthesis of Pyl-tRNAPyl. To understand the selective advantage of genetically encoding more than 20 amino acids, we constructed a markerless tRNAPyl deletion strain of Methanosarcina acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on trimethylamine. Phenotypic defects in the ΔpylT strain were evident in minimal medium containing methanol. Proteomic analyses of wild type (WT) M. acetivorans and ΔpylT cells identified 841 proteins from >7,000 significant peptides detected by MS/MS. Protein production from UAG-containing mRNAs was verified for 19 proteins. Translation of UAG codons was verified by MS/MS for eight proteins, including identification of a Pyl residue in PylB, which catalyzes the first step of Pyl biosynthesis. Deletion of tRNAPyl globally altered the proteome, leading to >300 differentially abundant proteins. Reduction of the genetic code from 21 to 20 amino acids led to significant down-regulation in translation initiation factors, amino acid metabolism, and methanogenesis from methanol, which was offset by a compensatory (100-fold) up-regulation in dimethyl sulfide metabolic enzymes. The data show how a natural proteome adapts to genetic code reduction and indicate that the selective value of an expanded genetic code is related to carbon source range and metabolic efficiency. PMID:25404328

  2. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons

    PubMed Central

    2018-01-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3′ untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  3. Predicted RNA Binding Proteins Pes4 and Mip6 Regulate mRNA Levels, Translation, and Localization during Sporulation in Budding Yeast.

    PubMed

    Jin, Liang; Zhang, Kai; Sternglanz, Rolf; Neiman, Aaron M

    2017-05-01

    In response to starvation, diploid cells of Saccharomyces cerevisiae undergo meiosis and form haploid spores, a process collectively referred to as sporulation. The differentiation into spores requires extensive changes in gene expression. The transcriptional activator Ndt80 is a central regulator of this process, which controls many genes essential for sporulation. Ndt80 induces ∼300 genes coordinately during meiotic prophase, but different mRNAs within the NDT80 regulon are translated at different times during sporulation. The protein kinase Ime2 and RNA binding protein Rim4 are general regulators of meiotic translational delay, but how differential timing of individual transcripts is achieved was not known. This report describes the characterization of two related NDT80 -induced genes, PES4 and MIP6 , encoding predicted RNA binding proteins. These genes are necessary to regulate the steady-state expression, translational timing, and localization of a set of mRNAs that are transcribed by NDT80 but not translated until the end of meiosis II. Mutations in the predicted RNA binding domains within PES4 alter the stability of target mRNAs. PES4 and MIP6 affect only a small portion of the NDT80 regulon, indicating that they act as modulators of the general Ime2/Rim4 pathway for specific transcripts. Copyright © 2017 American Society for Microbiology.

  4. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1.

    PubMed

    Miki, Takashi; Kamikawa, Yasunao; Kurono, Sadamu; Kaneko, Yuka; Katahira, Jun; Yoneda, Yoshihiro

    2011-11-16

    dendritic mRNA transport machines. Although Stau2 is thought to be involved in the dendritic targeting of several mRNAs in neurons, the mechanism whereby Stau2 regulates these mRNAs is unknown. To elucidate the functions of Stau2, we screened for novel binding partners by affinity purification of GST-tagged Stau2 from 293F cells. Three RNA helicases, RNA helicase A, Upf1 and Mov10, were identified in Stau2-containing complexes. We focused our studies on Upf1, a key player in nonsense-mediated mRNA decay. Stau2 was found to bind directly to Upf1 in an RNA-independent manner in vitro. Tethering Stau2 to the 3'-untranslated region (UTR) of a reporter gene had little effect on its expression in HeLa cells. In contrast, when the same tethering assay was performed in 293F cells, we observed an increase in reporter protein levels. This upregulation of protein expression by Stau2 turned out to be dependent on Upf1. Moreover, we found that in 293F cells, Stau2 upregulates the reporter mRNA level in an Upf1-independent manner. These results indicate that the recruitment of Stau2 alone or in combination with Upf1 differentially affects the fate of mRNAs. Moreover, the results suggest that Stau2-mediated fate determination could be executed in a cell type-specific manner.

  5. Genome-wide investigation of the role of the tRNA nuclear-cytoplasmic trafficking pathway in regulation of the yeast Saccharomyces cerevisiae transcriptome and proteome.

    PubMed

    Chu, Hui-Yi; Hopper, Anita K

    2013-11-01

    In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis.

  6. Genome-Wide Investigation of the Role of the tRNA Nuclear-Cytoplasmic Trafficking Pathway in Regulation of the Yeast Saccharomyces cerevisiae Transcriptome and Proteome

    PubMed Central

    Chu, Hui-Yi

    2013-01-01

    In eukaryotic cells, tRNAs are transcribed and partially processed in the nucleus before they are exported to the cytoplasm, where they have an essential role in protein synthesis. Surprisingly, mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm, and tRNA subcellular distribution is nutrient dependent. At least three members of the β-importin family, Los1, Mtr10, and Msn5, function in tRNA nuclear-cytoplasmic intracellular movement. To test the hypothesis that the tRNA retrograde pathway regulates the translation of particular transcripts, we compared the expression profiles from nontranslating mRNAs and polyribosome-associated translating mRNAs collected from msn5Δ, mtr10Δ, and wild-type cells under fed or acute amino acid depletion conditions. Our microarray data revealed that the methionine, arginine, and leucine biosynthesis pathways are targets of the tRNA retrograde process. We confirmed the microarray data by Northern and Western blot analyses. The levels of some of the particular target mRNAs were reduced, while others appeared not to be affected. However, the protein levels of all tested targets in these pathways were greatly decreased when tRNA nuclear import or reexport to the cytoplasm was disrupted. This study provides information that tRNA nuclear-cytoplasmic dynamics is connected to the biogenesis of proteins involved in amino acid biosynthesis. PMID:23979602

  7. The RNA Binding Protein Tudor-SN Is Essential for Stress Tolerance and Stabilizes Levels of Stress-Responsive mRNAs Encoding Secreted Proteins in Arabidopsis[C][W][OA

    PubMed Central

    dit Frey, Nicolas Frei; Muller, Philippe; Jammes, Fabien; Kizis, Dimosthenis; Leung, Jeffrey; Perrot-Rechenmann, Catherine; Bianchi, Michele Wolfe

    2010-01-01

    Tudor-SN (TSN) copurifies with the RNA-induced silencing complex in animal cells where, among other functions, it is thought to act on mRNA stability via the degradation of specific dsRNA templates. In plants, TSN has been identified biochemically as a cytoskeleton-associated RNA binding activity. In eukaryotes, it has recently been identified as a conserved primary target of programmed cell death–associated proteolysis. We have investigated the physiological role of TSN by isolating null mutations for two homologous genes in Arabidopsis thaliana. The double mutant tsn1 tsn2 displays only mild growth phenotypes under nonstress conditions, but germination, growth, and survival are severely affected under high salinity stress. Either TSN1 or TSN2 alone can complement the double mutant, indicating their functional redundancy. TSN accumulates heterogeneously in the cytosol and relocates transiently to a diffuse pattern in response to salt stress. Unexpectedly, stress-regulated mRNAs encoding secreted proteins are significantly enriched among the transcripts that are underrepresented in tsn1 tsn2. Our data also reveal that TSN is important for RNA stability of its targets. These findings show that TSN is essential for stress tolerance in plants and implicate TSN in new, potentially conserved mechanisms acting on mRNAs entering the secretory pathway. PMID:20484005

  8. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844

  9. RsmV a small non-coding regulatory RNA in Pseudomonas aeruginosa that sequesters RsmA and RsmF from target mRNAs.

    PubMed

    Janssen, Kayley H; Diaz, Manisha R; Gode, Cindy J; Wolfgang, Matthew C; Yahr, Timothy L

    2018-06-04

    The Gram-negative opportunistic pathogen Pseudomonas aeruginosa has distinct genetic programs that favor either acute or chronic virulence gene expression. Acute virulence is associated with twitching and swimming motility, expression of a type III secretion system (T3SS), and the absence of alginate, Psl, or Pel polysaccharide production. Traits associated with chronic infection include growth as a biofilm, reduced motility, and expression of a type VI secretion system (T6SS). The Rsm post-transcriptional regulatory system plays important roles in the inverse control of phenotypes associated with acute and chronic virulence. RsmA and RsmF are RNA-binding proteins that interact with target mRNAs to control gene expression at the post-transcriptional level. Previous work found that RsmA activity is controlled by at least three small, non-coding regulatory RNAs (RsmW, RsmY, and RsmZ). In this study, we took an in-silico approach to identify additional sRNAs that might function in the sequestration of RsmA and/or RsmF and identified RsmV, a 192 nt transcript with four predicted RsmA/RsmF consensus binding sites. RsmV is capable of sequestering RsmA and RsmF in vivo to activate translation of tssA1 , a component of the T6SS, and to inhibit T3SS gene expression. Each of the predicted RsmA/RsmF consensus binding sites contribute to RsmV activity. Electrophoretic mobility shifts assays show that RsmF binds RsmV with >10-fold higher affinity than RsmY and RsmZ. Gene expression studies revealed that the temporal expression pattern of RsmV differs from RsmW, RsmY, and RsmZ. These findings suggest that each sRNA may play distinct roles in controlling RsmA and RsmF activity. IMPORTANCE The CsrA/RsmA family of RNA-binding proteins play important roles in post-transcriptional control of gene expression. The activity of CsrA/RsmA proteins is controlled by small non-coding RNAs that function as decoys to sequester CsrA/RsmA from target mRNAs. Pseudomonas aeruginosa has two CsrA family proteins (RsmA and RsmF) and at least four sequestering sRNAs (RsmV [identified in this study], RsmW, RsmY, RsmZ) that control RsmA/RsmF activity. RsmY and RsmZ are the primary sRNAs that sequester RsmA/RsmF, and RsmV and RsmW appear to play smaller roles. Differences in the temporal expression and absolute levels of the sRNAs and in their binding affinities for RsmA/RsmF may provide a mechanism of fine-tuning the output of the Rsm system in response to environmental cues. Copyright © 2018 American Society for Microbiology.

  10. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.

    PubMed

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2015-01-15

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. ©2014 American Association for Cancer Research.

  11. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition.

    PubMed

    Duss, Olivier; Michel, Erich; Diarra dit Konté, Nana; Schubert, Mario; Allain, Frédéric H-T

    2014-04-01

    The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein-RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.

  12. Quality control of mRNP biogenesis: networking at the transcription site.

    PubMed

    Eberle, Andrea B; Visa, Neus

    2014-08-01

    Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)

    PubMed Central

    Zhu, Bin; Li, Xiuxia; Liu, Ying; Gao, Xiwu; Liang, Pei

    2017-01-01

    The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects. PMID:28098189

  14. A trans-acting leader RNA from a Salmonella virulence gene

    PubMed Central

    Choi, Eunna; Han, Yoontak; Cho, Yong-Joon; Nam, Daesil; Lee, Eun-Jin

    2017-01-01

    Bacteria use flagella to move toward nutrients, find its host, or retract from toxic substances. Because bacterial flagellum is one of the ligands that activate the host innate immune system, its synthesis should be tightly regulated during host infection, which is largely unknown. Here, we report that a bacterial leader mRNA from the mgtCBR virulence operon in the intracellular pathogen Salmonella enterica serovar Typhimurium binds to the fljB coding region of mRNAs in the fljBA operon encoding the FljB phase 2 flagellin, a main component of bacterial flagella and the FljA repressor for the FliC phase 1 flagellin, and degrades fljBA mRNAs in an RNase E-dependent fashion during infection. A nucleotide substitution of the fljB flagellin gene that prevents the mgtC leader RNA-mediated down-regulation increases the fljB-encoded flagellin synthesis, leading to a hypermotile phenotype inside macrophages. Moreover, the fljB nucleotide substitution renders Salmonella hypervirulent, indicating that FljB-based motility must be compromised in the phagosomal compartment where Salmonella resides. This suggests that this pathogen promotes pathogenicity by producing a virulence protein and limits locomotion by a trans-acting leader RNA from the same virulence gene during infection. PMID:28874555

  15. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Luke A., E-mail: luke@strubi.ox.ac.uk; Durrant, Benjamin P.; Barber, Michael

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting themmore » for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.« less

  16. Integrated analysis of long noncoding RNA and mRNA profiling ox-LDL-induced endothelial dysfunction after atorvastatin administration.

    PubMed

    Jiang, Ling-Yu; Jiang, Yue-Hua; Qi, Ying-Zi; Shao, Lin-Lin; Yang, Chuan-Hua

    2018-06-01

    Long noncoding RNAs (lncRNAs) play a key role in the development of endothelial dysfunction. However, few lncRNAs associated with endothelial dysfunction after atorvastatin administration have been reported. In the present study, differentially expressed (DE) genes in ox-LDL versus control and ox-LDL + atorvastatin versus control were detected. Bioinformatics analysis and integrated analysis of mRNAs and lncRNAs were conducted to study the mechanisms of endothelial dysfunction after atorvastatin administration and to explore the regulation functions of lncRNAs. Here, 532 DE mRNAs and 532 DE lncRNAs were identified (among them, 195 mRNAs and 298 lncRNAs were upregulated, 337 mRNAs and 234 lncRNAs were downregulated) after ox-LDL treatment for 24 hours (fold change ≥2.0, P < .05). After ox-LDL treatment following atorvastatin administration, 750 DE mRNAs and 502 DE lncRNAs were identified (among them, 149 mRNAs and 218 lncRNAs were upregulated and 601 mRNAs and 284 lncRNAs were downregulated). After atorvastatin administration, 167 lncRNAs and 262 mRNAs were still DE. Q-PCR validated the results of microarrays. Chronic inflammatory response, nitric oxide biosynthetic process, microtubule cytoskeleton, cell proliferation and cell migration are regulated by lncRNAs, which also participated in the mainly molecular function and biological processes underlying endothelial dysfunction. Atorvastatin partly improved endothelial dysfunction, but the aspects beyond recovery were mainly concentrated in cell cycle, mitosis, and metabolism. Further exploration is required to explicit the mechanism by which lncRNAs participate in endothelial dysfunction.

  17. Escherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation

    PubMed Central

    Duval, Mélodie; Korepanov, Alexey; Fuchsbauer, Olivier; Fechter, Pierre; Haller, Andrea; Fabbretti, Attilio; Choulier, Laurence; Micura, Ronald; Klaholz, Bruno P.; Romby, Pascale; Springer, Mathias; Marzi, Stefano

    2013-01-01

    Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5′ untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we used a combination of experimental approaches in vitro (kinetic of mRNA unfolding and binding experiments to analyze mRNA–protein or mRNA–ribosome complexes, toeprinting assays to follow the formation of ribosomal initiation complexes) and in vivo (genetic) to monitor the action of ribosomal protein S1 on the initiation of structured and regulated mRNAs. We demonstrate that r-protein S1 endows the 30S with an RNA chaperone activity that is essential for the docking and the unfolding of structured mRNAs, and for the correct positioning of the initiation codon inside the decoding channel. The first three OB-fold domains of S1 retain all its activities (mRNA and 30S binding, RNA melting activity) on the 30S subunit. S1 is not required for all mRNAs and acts differently on mRNAs according to the signals present at their 5′ ends. This work shows that S1 confers to the ribosome dynamic properties to initiate translation of a large set of mRNAs with diverse structural features. PMID:24339747

  18. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    PubMed

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  19. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    PubMed

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

  20. Characterization and distribution of GHRH, PACAP, TRH, SST and IGF1 mRNAs in the green iguana.

    PubMed

    Ávila-Mendoza, José; Pérez-Rueda, Ernesto; Urban-Sosa, Valeria; Carranza, Martha; Martínez-Moreno, Carlos G; Luna, Maricela; Arámburo, Carlos

    2018-01-01

    The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH 2 ), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs

    PubMed Central

    Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L

    2017-01-01

    Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation. PMID:28990926

  2. IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs.

    PubMed

    Zhou, Hao; Bulek, Katarzyna; Li, Xiao; Herjan, Tomasz; Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L; Li, Xiaoxia

    2017-10-09

    Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation.

  3. Spatial organization shapes the turnover of a bacterial transcriptome

    PubMed Central

    Moffitt, Jeffrey R; Pandey, Shristi; Boettiger, Alistair N; Wang, Siyuan; Zhuang, Xiaowei

    2016-01-01

    Spatial organization of the transcriptome has emerged as a powerful means for regulating the post-transcriptional fate of RNA in eukaryotes; however, whether prokaryotes use RNA spatial organization as a mechanism for post-transcriptional regulation remains unclear. Here we used super-resolution microscopy to image the E. coli transcriptome and observed a genome-wide spatial organization of RNA: mRNAs encoding inner-membrane proteins are enriched at the membrane, whereas mRNAs encoding outer-membrane, cytoplasmic and periplasmic proteins are distributed throughout the cytoplasm. Membrane enrichment is caused by co-translational insertion of signal peptides recognized by the signal-recognition particle. Time-resolved RNA-sequencing revealed that degradation rates of inner-membrane-protein mRNAs are on average greater that those of the other mRNAs and that this selective destabilization of inner-membrane-protein mRNAs is abolished by dissociating the RNA degradosome from the membrane. Together, these results demonstrate that the bacterial transcriptome is spatially organized and suggest that this organization shapes the post-transcriptional dynamics of mRNAs. DOI: http://dx.doi.org/10.7554/eLife.13065.001 PMID:27198188

  4. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    PubMed

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  5. mRNA quality control is bypassed for immediate export of stress-responsive transcripts.

    PubMed

    Zander, Gesa; Hackmann, Alexandra; Bender, Lysann; Becker, Daniel; Lingner, Thomas; Salinas, Gabriela; Krebber, Heike

    2016-12-12

    Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.

  6. MicroRNA-200c Modulates the Expression of MUC4 and MUC16 by Directly Targeting Their Coding Sequences in Human Pancreatic Cancer

    PubMed Central

    Radhakrishnan, Prakash; Mohr, Ashley M.; Grandgenett, Paul M.; Steele, Maria M.; Batra, Surinder K.; Hollingsworth, Michael A.

    2013-01-01

    Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer. PMID:24204560

  7. MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer.

    PubMed

    Radhakrishnan, Prakash; Mohr, Ashley M; Grandgenett, Paul M; Steele, Maria M; Batra, Surinder K; Hollingsworth, Michael A

    2013-01-01

    Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer.

  8. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?

    PubMed Central

    Knap, Primoz; Tebaldi, Toma; Di Leva, Francesca; Biagioli, Marta; Dalla Serra, Mauro; Viero, Gabriella

    2017-01-01

    Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e., host translation—to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections. PMID:29469820

  9. MiR-29a: a potential therapeutic target and promising biomarker in tumors

    PubMed Central

    Wang, Jin-yan; Zhang, Qian; Wang, Dan-dan; Yan, Wei; Sha, Huan-huan; Zhao, Jian-hua; Yang, Su-jin; Zhang, He-da; Hou, Jun-chen; Xu, Han-zi; He, Yun-jie; Hu, Jia-hua

    2017-01-01

    MiRNAs, small non-coding RNA molecules, were recognized to be associated with the incidence and development of diverse neoplasms. MiRNAs were small non-coding RNAs that could regulate post-transcriptional level by binding to 3′-UTR of target mRNAs. Amongst which, miR-29a was demonstrated that it had significant impact on oncogenicity in various neoplasms through binding to critical genes which enhanced or inhibited the progression of cancers. MiR-29a participated in kinds of physiological and pathological processes, including virus replication, cell proliferation, differentiation, apoptosis, fibrosis, angiogenesis, tumorigenicity, metastasis, drug-resistance, and so on. According to its sufficient sensitivity and specificity, many studies showed that miR-29a might serve as a potential therapeutic target and promising biomarker in various tumors. In this review, we discussed the functions of miR-29a and its potential application in the diagnosis, treatment and stages of carcinoma, which could provide additional insight to develop a novel therapeutic strategy. PMID:29217524

  10. tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer.

    PubMed

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2016-11-07

    Non-coding RNAs play important roles in cellular homeostasis and are involved in many human diseases including cancer. Intermolecular RNA-RNA interactions are the basis for the diverse functions of many non-coding RNAs. Herein, we show how the presence of tRNA influences the equilibrium between hairpin and G-quadruplex conformations in the 5' untranslated regions of oncogenes and model sequences. Kinetic and equilibrium analyses of the hairpin to G-quadruplex conformational transition of purified RNA as well as during co-transcriptional folding indicate that tRNA significantly shifts the equilibrium toward the hairpin conformer. The enhancement of relative translation efficiency in a reporter gene assay is shown to be due to the tRNA-mediated shift in hairpin-G-quadruplex equilibrium of oncogenic mRNAs. Our findings suggest that tRNA is a possible therapeutic target in diseases in which RNA conformational equilibria is dysregulated. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation.

    PubMed

    Xu, Xiao-Min; Zhang, Hong-Jie

    2016-02-21

    Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn's disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3'-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD.

  12. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol.

    PubMed

    Cencic, Regina; Carrier, Marilyn; Galicia-Vázquez, Gabriela; Bordeleau, Marie-Eve; Sukarieh, Rami; Bourdeau, Annie; Brem, Brigitte; Teodoro, Jose G; Greger, Harald; Tremblay, Michel L; Porco, John A; Pelletier, Jerry

    2009-01-01

    Flavaglines are a family of natural products from the genus Aglaia that exhibit anti-cancer activity in vitro and in vivo and inhibit translation initiation. They have been shown to modulate the activity of eIF4A, the DEAD-box RNA helicase subunit of the eukaryotic initiation factor (eIF) 4F complex, a complex that stimulates ribosome recruitment during translation initiation. One flavagline, silvestrol, is capable of modulating chemosensitivity in a mechanism-based mouse model. Among a number of flavagline family members tested herein, we find that silvestrol is the more potent translation inhibitor among these. We find that silvestrol impairs the ribosome recruitment step of translation initiation by affecting the composition of the eukaryotic initiation factor (eIF) 4F complex. We show that silvestrol exhibits significant anticancer activity in human breast and prostate cancer xenograft models, and that this is associated with increased apoptosis, decreased proliferation, and inhibition of angiogenesis. We demonstrate that targeting translation by silvestrol results in preferential inhibition of weakly initiating mRNAs. Our results indicate that silvestrol is a potent anti-cancer compound in vivo that exerts its activity by affecting survival pathways as well as angiogenesis. We propose that silvestrol mediates its effects by preferentially inhibiting translation of malignancy-related mRNAs. Silvestrol appears to be well tolerated in animals.

  13. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein

    PubMed Central

    2014-01-01

    Background Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. Results To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Conclusions Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism. PMID:24393533

  14. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

    PubMed

    Chen, Linan; Dumelie, Jason G; Li, Xiao; Cheng, Matthew Hk; Yang, Zhiyong; Laver, John D; Siddiqui, Najeeb U; Westwood, J Timothy; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2014-01-07

    Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown. To gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug's target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes. Smaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.

  15. Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury.

    PubMed

    Wetmore, Barbara A; Brees, Dominique J; Singh, Reetu; Watkins, Paul B; Andersen, Melvin E; Loy, James; Thomas, Russell S

    2010-06-01

    Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.

  16. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    PubMed Central

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  17. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed Central

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-01-01

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress. PMID:9461558

  18. Effects of nutrient deprivation and differentiation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

    PubMed

    Fleming, J V; Hay, S M; Harries, D N; Rees, W D

    1998-02-15

    The growth-arrest genes (gas and gadd) are widely expressed during mammalian embryogenesis and may be useful as markers of nutritional stress in the embryo. F9 embryonal carcinoma cells have been used to characterize the effect of serum or amino acid deficiency on growth-arrest gene expression in a differentiating embryonic cell. The differentiation markers, homeobox B2 (HoxB2), collagen type IV and laminin B2, were not induced by growth arrest. Treatment with all-trans retinoic acid (RA) produced a dose-dependent increase in alkaline phosphatase activity, which was unchanged in lysine-deficient medium and reduced in low-serum medium. Low-serum medium also reduced HoxB2 expression. There was a transient 2-6-fold increase in mRNAs for C/EBP-beta, gadd153/CHOP-10 and gas5 genes 24 h after transfer to amino-acid-deficient media. The mRNAs for the gas2 and gas6 genes began to rise slowly by 5-10-fold after a delay of approx. 24 h. The transient increases did not occur in low-serum medium where there was a much smaller and slower increase. Differentiation caused 1-2-fold increases in gas2, gas3 and gas6 mRNA levels. The transient overexpression of gas5, gadd153/CHOP-10 and CCAAT-enhancer-binding protein-beta, and the later expression of gas6 mRNAs in response to amino acid deficiency, were not affected by differentiation. RA treatment increased the expression of gas3 and caused gas2 to be transiently overexpressed in amino-acid-deficient medium. Differentiation in serum-deficient medium did not significantly alter the levels of the growth-arrest gene mRNAs. These results show that in F9 cells the growth-arrest genes are expressed sequentially as a result of nutrient stress.

  19. An UPF3-based nonsense-mediated decay in Paramecium.

    PubMed

    Contreras, Julia; Begley, Victoria; Macias, Sandra; Villalobo, Eduardo

    2014-12-01

    Nonsense-mediated decay recognises mRNAs containing premature termination codons. One of its components, UPF3, is a molecular link bridging through its binding to the exon junction complex nonsense-mediated decay and splicing. In protists UPF3 has not been identified yet. We report that Paramecium tetraurelia bears an UPF3 gene and that it has a role in nonsense-mediated decay. Interestingly, the identified UPF3 has not conserved the essential amino acids required to bind the exon junction complex. Though, our data indicates that this ciliate bears genes coding for core proteins of the exon junction complex. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss).

    PubMed

    White, Samantha L; Sakhrani, Dionne; Danzmann, Roy G; Devlin, Robert H

    2013-10-02

    Release of domesticated strains of fish into nature may pose a threat to wild populations with respect to their evolved genetic structure and fitness. Understanding alterations that have occurred in both physiology and genetics as a consequence of domestication can assist in evaluating the risks posed by introgression of domesticated genomes into wild genetic backgrounds, however the molecular causes of these consequences are currently poorly defined. The present study has examined levels of mRNA in fast-growing pure domesticated (D), slow-growing age-matched pure wild (Wa), slow-growing size-matched pure wild (Ws), and first generation hybrid cross (W/D) rainbow trout (Oncorhynchus mykiss) to investigate the influence of genotype (domesticated vs. wild, and their interactions in hybrids) and developmental stage (age- or size-matched animals) on genetic responses (i.e. dominant vs. recessive) and specific physiological pathways. Highly significant differences in mRNA levels were found between domesticated and wild-type rainbow trout genotypes (321 mRNAs), with many mRNAs in the wild-domesticated hybrid progeny showing intermediate levels. Differences were also found between age-matched and size-matched wild-type trout groups (64 mRNAs), with unique mRNA differences for each of the wild-type groups when compared to domesticated trout (Wa: 114 mRNAs, Ws: 88 mRNAs), illustrating an influence of fish developmental stage affecting findings when used as comparator groups to other genotypes. Analysis of differentially expressed mRNAs (found for both wild-type trout to domesticated comparisons) among the genotypes indicates that 34.8% are regulated consistent with an additive genetic model, whereas 39.1% and 26.1% show a recessive or dominant mode of regulation, respectively. These molecular data are largely consistent with phenotypic data (growth and behavioural assessments) assessed in domesticated and wild trout strains. The present molecular data are concordant with domestication having clearly altered rainbow trout genomes and consequent phenotype from that of native wild populations. Although mainly additive responses were noted in hybrid progeny, the prevalence of dominant and non-additive responses reveals that introgression of domesticated and wild genotypes alters the type of genetic control of mRNA levels from that of wild-type, which may lead to disruption of gene regulation systems important for developing phenotypes for optimal fitness in nature. A clear influence of both fish age and size (developmental stage) on mRNA levels was also noted in this study, which highlights the importance of examining multiple control samples to provide a comprehensive understanding of changes observed between strains possessing differences in growth rate.

  1. Genome wide responses of murine lungs to dietary α-tocopherol

    PubMed Central

    Oommen, Saji; Vasu, Vihas T.; Leonard, Scott W.; Traber, Maret G.; Cross, Carroll E.; Gohil, Kishorchandra

    2009-01-01

    α-tocopherol (α-T) may affect biological processes by modulating mRNA concentrations. This study screened the responses of ~15,000 lung mRNAs to dietary α-T in mice. The lung was chosen as the target organ because it is subjected to cyclical variations in oxidant and inflammatory stressors and α-T has been implicated in their modulations. The analysis identified ~400 mRNAs sensitive to α-T status of lungs determined by dietary α-T. The female lung transcriptome appears to be more sensitive to the α-T status than that of the male lungs. Here, we focus on the induction of 13 cytoskeleton genes by dietary α-T because they were similarly induced in the male and the female lungs. Their inductions were confirmed by quantitative-real-time-polymerase chain reaction (qRT-PCR). Immunohistochemical analyses of three of the encoded proteins suggest that they are expressed in lung vasculature and alveolar regions. The data suggest that the lung α-T status may modulate cytoarchitecture of lungs. PMID:17164183

  2. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  3. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonenberg, N.; Guertin, D.; Lee, K.A.W.

    1982-12-01

    Extracts form poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, the authors demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosiac virus 4 RNA, which is most probable devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.

  4. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.

    PubMed

    DeVincenzo, John P

    2009-10-01

    A revolution in the understanding of RNA biological processing and control is leading to revolutionary new concepts in human therapeutics. It has become increasingly clear that the so called "non-coding RNA" exerts specific and profound functional control on regulation of protein production and indeed controls the expression of all genes. Harnessing this naturally-occurring RNA-mediated regulation of protein production has immense human therapeutic potential. These processes are collectively known as RNA interference (RNAi). RNAi is a recently discovered, naturally-occurring intracellular process that regulates gene expression through the silencing of specific mRNAs. Methods of harnessing this natural pathway are being developed that allow the catalytic degradation of targeted mRNAs using specifically designed complementary small inhibitory RNAs (siRNA). siRNAs are being chemically modified to acquire drug-like properties. Numerous recent high profile publications have provided proofs of concept that RNA interference may be useful therapeutically. Much of the design of these siRNAs can be accomplished bioinformatically, thus potentially expediting drug discovery and opening new avenues of therapy for many uncommon, orphan, or emerging diseases. This makes this approach very attractive for developing therapies targeting orphan diseases including neonatal diseases. Theoretically, any disease that can be ameliorated through knockdown of any endogenous or exogenous protein is a potential therapeutic target for RNAi-based therapeutics. Lung diseases are particularly attractive targets for RNAi therapeutics since the affected cells' location increases their accessibility to topical administration of siRNA, for example by aerosol. Respiratory viral infections and chronic lung disease are examples of such diseases. RNAi therapeutics have been shown to be active against RSV, parainfluenza and human metapneumoviruses in vitro and in vivo resulting in profound antiviral effects. The first proof of concept test of efficacy of an RNAi-based therapeutic in man has been initiated. A discussion of the science behind RNA interference is followed by a presentation of the potential practical issues in applying this technology to neonatal respiratory viral diseases. RNAi may offer new strategies for the treatment of a variety of orphan diseases including neonatal diseases, RSV infections, and other respiratory viruses.

  5. Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms.

    PubMed

    Chastanet, Arnaud; Losick, Richard

    2011-11-01

    The response regulator Spo0A governs multiple developmental processes in Bacillus subtilis, including most conspicuously sporulation. Spo0A is activated by phosphorylation via a multicomponent phosphorelay. Previous work has shown that the Spo0A protein is not rate limiting for sporulation. Rather, Spo0A is present at high levels in growing cells, rapidly rising to yet higher levels under sporulation-inducing conditions, suggesting that synthesis of the response regulator is subject to a just-in-time control mechanism. Transcription of spo0A is governed by a promoter switching mechanism, involving a vegetative, σ(A)-recognized promoter, P(v), and a sporulation σ(H)-recognized promoter, P(s), that is under phosphorylated Spo0A (Spo0A∼P) control. The spo0A regulatory region also contains four (including one identified in the present work) conserved elements that conform to the consensus binding site for Spo0A∼P binding sites. These are herein designated O(1), O(2), O(3), and O(4) in reverse order of their proximity to the coding sequence. Here we report that O(1) is responsible for repressing P(v) during the transition to stationary phase, that O(2) is responsible for repressing P(s) during growth, that O(3) is responsible for activating P(s) at the start of sporulation, and that O(4) is dispensable for promoter switching. We also report that Spo0A synthesis is subject to a posttranscriptional control mechanism such that translation of mRNAs originating from P(v) is impeded due to RNA secondary structure whereas mRNAs originating from P(s) are fully competent for protein synthesis. We propose that the opposing actions of O(2) and O(3) and the enhanced translatability of mRNAs originating from P(s) create a highly sensitive, self-reinforcing switch that is responsible for producing a burst of Spo0A synthesis at the start of sporulation.

  6. [Long non-coding RNAs in the pathophysiology of atherosclerosis].

    PubMed

    Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav

    2018-01-01

    The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words: atherosclerosis - lincRNA - lncRNA - MALAT - MIAT.

  7. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation

    NASA Technical Reports Server (NTRS)

    Jagoe, R. Thomas; Lecker, Stewart H.; Gomes, Marcelo; Goldberg, Alfred L.

    2002-01-01

    During fasting and many systemic diseases, muscle undergoes rapid loss of protein and functional capacity. To define the transcriptional changes triggering muscle atrophy and energy conservation in fasting, we used cDNA microarrays to compare mRNAs from muscles of control and food-deprived mice. Expression of >94% of genes did not change, but interesting patterns emerged among genes that were differentially expressed: 1) mRNAs encoding polyubiquitin, ubiquitin extension proteins, and many (but not all) proteasome subunits increased, which presumably contributes to accelerated protein breakdown; 2) a dramatic increase in mRNA for the ubiquitin ligase, atrogin-1, but not most E3s; 3) a significant suppression of mRNA for myosin binding protein H (but not other myofibrillar proteins) and IGF binding protein 5, which may favor cell protein loss; 4) decreases in mRNAs for several glycolytic enzymes and phosphorylase kinase subunits, and dramatic increases in mRNAs for pyruvate dehydrogenase kinase 4 and glutamine synthase, which should promote glucose sparing and gluconeogenesis. During fasting, metallothionein mRNA increased dramatically, mRNAs for extracellular matrix components fell, and mRNAs that may favor cap-independent mRNA translation rose. Significant changes occurred in mRNAs for many growth-related proteins and transcriptional regulators. These transcriptional changes indicate a complex adaptive program that should favor protein degradation and suppress glucose oxidation in muscle. Similar analysis of muscles atrophying for other causes is allowing us to identify a set of atrophy-specific changes in gene expression.

  8. MicroRNAs and cancer.

    PubMed

    Cowland, Jack B; Hother, Christoffer; Grønbaek, Kirsten

    2007-10-01

    MicroRNAs (miRNAs) are a recently discovered group of small RNA molecules involved in the regulation of gene expression. Analogously to mRNAs, the non-protein-encoding pri-miRNAs are synthesized by RNA polymerase II and post-transcriptionally modified by addition of a 5'-cap and a 3'-poly (A) tail. Subsequently, the pri-miRNA undergoes a number of processing steps in the nucleus and cytoplasm, and ends up as a mature approximately 22 nt miRNA, which can exert its function by binding to the 3'-untranslated region of a subset of mRNAs. Binding of the miRNA to the mRNA results in a reduced translation rate and/or increased degradation of the mRNA. In this way a large number of cellular pathways, such as cellular proliferation, differentiation, and apoptosis, are regulated by mi-RNAs. As corruption of these pathways is the hallmark of many cancers, dysregulation of miRNA biogenesis or expression levels may lead to tumorigenesis. The mechanisms that alter the expression of miRNAs are similar to those that change the expression levels of mRNAs of tumor suppressor- and oncogenes, i.e. gross genomic aberrations, epigenetic changes, and minor mutations affecting the expression level, processing, or target-interaction potential of the miRNA. Furthermore, expression profiling of miRNAs has been found to be useful for classification of different tumor types. Taken together, miRNAs can be classified as onco-miRs or tumor suppressor-miRs, and may turn out to be potential targets for cancer therapy.

  9. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    PubMed

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  10. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-boxmore » of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.« less

  11. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis

    PubMed Central

    El Khodiry, Aya; Afify, Menna; El Tayebi, Hend M

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren’t as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future. PMID:29434445

  12. Long non-coding RNA expression profile in cervical cancer tissues

    PubMed Central

    Zhu, Hua; Chen, Xiangjian; Hu, Yan; Shi, Zhengzheng; Zhou, Qing; Zheng, Jingjie; Wang, Yifeng

    2017-01-01

    Cervical cancer (CC), one of the most common types of cancer of the female population, presents an enormous challenge in diagnosis and treatment. Long non-coding (lnc)RNAs, non-coding (nc)RNAs with length >200 nucleotides, have been identified to be associated with multiple types of cancer, including CC. This class of nc transcripts serves an important role in tumor suppression and oncogenic signaling pathways. In the present study, the microarray method was used to obtain the expression profile of lncRNAs and protein-coding mRNAs and to compare the expression of lncRNAs between CC tissues and corresponding adjacent non-cancerous tissues in order to screen potential lncRNAs for associations with CC. Overall, 3356 lncRNAs with significantly different expression pattern in CC tissues compared with adjacent non-cancerous tissues were identified, while 1,857 of them were upregulated. These differentially expressed lncRNAs were additionally classified into 5 subgroups. Reverse transcription quantitative polymerase chain reactions were performed to validate the expression pattern of 5 random selected lncRNAs, and 2lncRNAs were identified to have significantly different expression in CC samples compared with adjacent non-cancerous tissues. This finding suggests that those lncRNAs with different expression may serve important roles in the development of CC, and the expression data may provide information for additional study on the involvement of lncRNAs in CC. PMID:28789353

  13. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.

    PubMed

    Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.

  14. Long non-coding RNA Gm2199 rescues liver injury and promotes hepatocyte proliferation through the upregulation of ERK1/2.

    PubMed

    Gao, Qiang; Gu, Yunyan; Jiang, Yanan; Fan, Li; Wei, Zixiang; Jin, Haobin; Yang, Xirui; Wang, Lijuan; Li, Xuguang; Tai, Sheng; Yang, Baofeng; Liu, Yan

    2018-05-22

    Long non-coding RNAs (lncRNAs) are a new class of regulators of various human diseases. This study was designed to explore the potential role of lncRNAs in experimental hepatic damage. In vivo hepatic damage in mice and in vitro hepatocyte damage in AML12 and NCTC1469 cells were induced by carbon tetrachloride (CCl 4 ) treatments. Expression profiles of lncRNAs and mRNAs were analyzed by microarray. Bioinformatics analyses were conducted to predict the potential functions of differentially expressed lncRNAs with respect to hepatic damage. Overexpression of lncRNA Gm2199 was achieved by transfection of the pEGFP-N1-Gm2199 plasmid in vitro and adeno-associated virus-Gm2199 in vivo. Cell proliferation and viability was detected by cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assay. Protein and mRNA expressions of extracellular signal-regulated kinase-1/2 (ERK1/2) were detected by western blot and quantitative real-time reverse-transcription PCR (qRT-PCR). Microarray analysis identified 190 and 148 significantly differentially expressed lncRNAs and mRNAs, respectively. The analyses of lncRNA-mRNA co-expression and lncRNA-biological process networks unraveled potential roles of the differentially expressed lncRNAs including Gm2199 in the pathophysiological processes leading to hepatic damage. Gm2199 was downregulated in both damaged livers and hepatocyte lines. Overexpression of Gm2199 restored the reduced proliferation of damaged hepatocyte lines and increased the expression of ERK1/2. Overexpression of Gm2199 also promoted the proliferation and viability of normal hepatocyte lines and increased the level of p-ERK1/2. Overexpression of Gm2199 in vivo also protected mouse liver injury induced by CCl 4 , evidenced by more proliferating hepatocytes, less serum alanine aminotransferase, less serum aspartate aminotransferase, and decreased hepatic hydroxyproline. The ability of Gm2199 to maintain hepatic proliferation capacity indicates it as a novel anti-liver damage lncRNA.

  15. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    PubMed Central

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  16. Granules harboring translationally active mRNAs provide a platform for P-body formation following stress.

    PubMed

    Lui, Jennifer; Castelli, Lydia M; Pizzinga, Mariavittoria; Simpson, Clare E; Hoyle, Nathaniel P; Bailey, Kathryn L; Campbell, Susan G; Ashe, Mark P

    2014-11-06

    The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Hypermethylated-capped selenoprotein mRNAs in mammals

    PubMed Central

    Wurth, Laurence; Gribling-Burrer, Anne-Sophie; Verheggen, Céline; Leichter, Michael; Takeuchi, Akiko; Baudrey, Stéphanie; Martin, Franck; Krol, Alain; Bertrand, Edouard; Allmang, Christine

    2014-01-01

    Mammalian mRNAs are generated by complex and coordinated biogenesis pathways and acquire 5′-end m7G caps that play fundamental roles in processing and translation. Here we show that several selenoprotein mRNAs are not recognized efficiently by translation initiation factor eIF4E because they bear a hypermethylated cap. This cap modification is acquired via a 5′-end maturation pathway similar to that of the small nucle(ol)ar RNAs (sn- and snoRNAs). Our findings also establish that the trimethylguanosine synthase 1 (Tgs1) interacts with selenoprotein mRNAs for cap hypermethylation and that assembly chaperones and core proteins devoted to sn- and snoRNP maturation contribute to recruiting Tgs1 to selenoprotein mRNPs. We further demonstrate that the hypermethylated-capped selenoprotein mRNAs localize to the cytoplasm, are associated with polysomes and thus translated. Moreover, we found that the activity of Tgs1, but not of eIF4E, is required for the synthesis of the GPx1 selenoprotein in vivo. PMID:25013170

  18. LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs.

    PubMed

    Hong, Sungki; Freeberg, Mallory A; Han, Ting; Kamath, Avani; Yao, Yao; Fukuda, Tomoko; Suzuki, Tsukasa; Kim, John K; Inoki, Ken

    2017-06-26

    The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.

  19. Chronic periodontitis can affect the levels of potential oral cancer salivary mRNA biomarkers.

    PubMed

    Cheng, Y-S L; Jordan, L; Chen, H-S; Kang, D; Oxford, L; Plemons, J; Parks, H; Rees, T

    2017-06-01

    More than 100 salivary constituents have been found to show levels significantly different in patients with oral squamous cell carcinoma (OSCC) from those found in healthy controls, and therefore have been suggested to be potential salivary biomarkers for OSCC detection. However, many of these potential OSCC salivary biomarkers are also involved in chronic inflammation, and whether the levels of these biomarkers could be affected by the presence of chronic periodontitis was not known. The objective of this pilot study was therefore to measure the levels of seven previously reported potential OSCC salivary mRNA biomarkers in patients with chronic periodontitis and compare them to levels found in patients with OSCC and healthy controls. The seven salivary mRNAs were interleukin (IL)-8, IL-1β, dual specificity phosphatase 1, H3 histone family 3A, ornithine decarboxylase antizyme 1, S100 calcium-binding protein P (S100P) and spermidine/spermine N1-acetyltransferase 1. Unstimulated whole saliva samples were collected from a total of 105 human subjects from the following four study groups: OSCC; CPNS (chronic periodontitis, moderate to severe degree, non-smokers); CPS (chronic periodontitis, moderate to severe degree, smokers); and healthy controls. Levels of each mRNA in patient groups (OSCC or chronic periodontitis) relative to the healthy controls were determined by a pre-amplification reverse transcription-quantitative polymerase chain reaction approach with nested gene-specific primers. Results were recorded and analyzed by the Bio-Rad CFX96 Real-Time System. Mean fold changes between each pair of patient vs. control groups were analyzed by the Mann-Whitney U-test with Bonferroni corrections. Only S100P showed significantly higher levels in patients with OSCC compared to both patients with CPNS (p = 0.003) and CPS (p = 0.007). The difference in S100P levels between patients with OSCC and healthy controls was also marginally significant (p = 0.009). There was no significant difference in the levels of salivary IL-8, IL-1β and dual specificity phosphatase 1 mRNAs between patients with OSCC and patients with CPNS (p = 0.510, 0.058 and 0.078, respectively); no significant difference in levels of salivary ornithine decarboxylase antizyme 1 and spermine N1-acetyltransferase mRNAs between patients with OSCC and patients with CPS (p = 0.318 and 0.764, respectively); and no significant difference in levels of the H3 histone family 3A mRNA between patients with OSCC and either CPS (p = 0.449) or healthy controls (p = 0.107). Salivary S100P mRNA could be a reliable biomarker for OSCC detection, regardless of the presence of chronic periodontitis. The presence of chronic periodontitis could significantly affect the levels of the other six mRNAs, and negatively influence reliability for using them as biomarkers for oral cancer detection. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues.

    PubMed

    Lyons, Shawn M; Cunningham, Clark H; Welch, Joshua D; Groh, Beezly; Guo, Andrew Y; Wei, Bruce; Whitfield, Michael L; Xiong, Yue; Marzluff, William F

    2016-11-02

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Light-regulated and organ-specific expression of types 1, 2, and 3 light-harvesting complex b mRNAs in Ginkgo biloba.

    PubMed Central

    Chinn, E; Silverthorne, J; Hohtola, A

    1995-01-01

    In a prior study (E. Chinn and J. Silverthorne [1993] Plant Physiol 103: 727-732) we showed that the gymnosperm Ginkgo biloba was completely dependent on light for chlorophyll synthesis and chloroplast development and that expression of light-harvesting complex b (Lhcb) mRNAs was substantially increased by light. However, dark-grown seedlings that were transferred to constant white light took significantly longer than angiosperm seedlings to initiate a program of photomorphogenesis and the stems failed to green completely. We have prepared type-specific probes for mRNAs encoding major polypeptides of light-harvesting complex II (Lhcb1, Lhcb2, and Lhcb3) and have used these to analyze the expression of individual Lhcb mRNAs during greening. All three sequences accumulated in the top portions of dark-grown seedlings transferred to light, but, as was seen previously for total Lhcb mRNAs, there was a transient, reproducible decline in the levels of all three mRNAs after 4 d in the light. This transient decrease in Lhcb mRNA levels was not paralleled by a decrease in Chl accumulation. By contrast, there were significantly lower levels of all three Lhcb mRNAs in the lower portions of greening dark-grown stems as well as lower Chl levels. We conclude that although the tops of the plants have the capacity to etiolate and green, Gingko seedling stems continue a program of development into woody tissue in darkness that precludes greening when the seedlings are transferred to the light. PMID:7724674

  2. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors.

    PubMed

    Müller, Simon; Bley, Nadine; Glaß, Markus; Busch, Bianca; Rousseau, Vanessa; Misiak, Danny; Fuchs, Tommy; Lederer, Marcell; Hüttelmaier, Stefan

    2018-04-12

    The oncofetal IGF2 mRNA binding proteins (IGF2BPs) are upregulated in most cancers but their paralogue-specific roles in tumor cells remain poorly understood. In a panel of five cancer-derived cell lines, IGF2BP1 shows highly conserved oncogenic potential. Consistently, the deletion of IGF2BP1 impairs the growth and metastasis of ovarian cancer-derived cells in nude mice. Gene expression analyses in ovarian cancer-derived cells reveal that the knockdown of IGF2BPs is associated with the downregulation of mRNAs that are prone to miRNA regulation. All three IGF2BPs preferentially associate upstream of miRNA binding sites (MBSs) in the 3'UTR of mRNAs. The downregulation of mRNAs co-regulated by miRNAs and IGF2BP1 is abrogated at low miRNA abundance or when miRNAs are depleted. IGF2BP1 associates with these target mRNAs in RISC-free complexes and its deletion enhances their association with AGO2. The knockdown of most miRNA-regulated target mRNAs of IGF2BP1 impairs tumor cell properties. In four primary cancers, elevated synthesis of these target mRNAs is largely associated with upregulated IGF2BP1 mRNA levels. In ovarian cancer, the enhanced expression of IGF2BP1 and most of its miRNA-controlled target mRNAs is associated with poor prognosis. In conclusion, these findings indicate that IGF2BP1 enhances an aggressive tumor cell phenotype by antagonizing miRNA-impaired gene expression.

  3. Determination of in vivo regulation kinetics of small non-coding RNA in bacteria

    NASA Astrophysics Data System (ADS)

    Fei, Jingyi

    Small RNAs (sRNAs) play important roles in regulating gene expression through a variety of mechanisms. As one of the most common strategies, sRNA induced target messenger RNA (mRNA) includes two major steps: target search by base-pairing interactions with the and downstream execution by modulating translation or the stability of the mRNA. Here we describe a new imaging and analysis platform based on super-resolution fluorescence microscopy, which enabled the first in vivo kinetic measurement of sRNA-mediated gene regulation. Specifically, this platform was used to investigate a sugar-phosphate stress-induced bacterial sRNA that induces the degradation of target mRNAs. The data reveal that the sRNA binds to a primary target mRNA in a reversible and dynamic fashion, and that formation of the sRNA-mRNA complexes is the rate-limiting step, dictating the overall efficiency of regulation in vivo; whereas the downstream co-degradation of sRNA-mRNA complex can kinetically compete with the fast complex disassembly. Examination of a secondary target of this sRNA indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other sRNA systems and other target search processes.

  4. LncRNA and mRNA expression profiles of glioblastoma multiforme (GBM) reveal the potential roles of lncRNAs in GBM pathogenesis.

    PubMed

    Li, Qi; Jia, Hongmei; Li, Haowen; Dong, Chengya; Wang, Yajie; Zou, Zhongmei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common brain malignancy. Long non-coding RNAs (lncRNAs) are aberrantly expressed in many cancers and are involved in their cell proliferation, apoptosis, angiogenesis, and invasion. The functional roles of lncRNAs in GBM are less known. We analyzed a cohort of exon microarray datasets from The Cancer Genome Atlas. The differently expressed lncRNAs and mRNA were subjected to construct lncRNA-mRNA co-expression network. Probable functions for lncRNAs were predicted according to lncRNA-mRNA network and genomic adjacency by GO and pathway analysis. The expression of lncRNAs and mRNAs in GBM tissues versus normal brain tissues was examined by quantitative reverse transcription polymerase chain reaction. The 398 lncRNAs and 1995 mRNAs were identified as distinctively expressed in GBM. Probable functional roles for 98 lncRNAs were involved in 30 pathways and 32 gene functions related to tumorigenesis, development, and metastasis. The identified sets of key lncRNAs specific to GBM were subsequently verified by experiment in GBM tissues. Our reports predict the biological functions of a multitude of lncRNAs in GBM that could be potential diagnostic and prognostic biomarkers as well as therapeutic targets. Moreover, our research provides a road map for the identification and analysis of lncRNAs in tumors.

  5. Microfluidic molecular assay platform for the detection of miRNAs, mRNAs, proteins, and post-translational modifications at single-cell resolution

    DOE PAGES

    Wu, Meiye; Singh, Anup K.

    2014-07-15

    In this study, cell signaling is a dynamic and complex process. A typical signaling pathway may begin with activation of cell surface receptors, leading to activation kinase cascade that culminates in induction of mRNA and non-coding miRNA production in the nucleus, followed by modulation of mRNA expression by miRNAs in the cytosol, and end with production of proteins in response to the signaling pathway. Signaling pathways involve proteins, miRNA, and mRNAs, along with various forms of transient post-translational modifications, and detecting each type of signaling molecule requires categorically different sample preparation methods such as Western blotting for proteins, PCR formore » nucleic acids, and flow cytometry for post-translational modifications. Since we know that cells in populations behave heterogeneously1, especially in the cases of stem cells, cancer, and hematopoiesis, there is need for a new technology that provides capability to detect and quantify multiple categories of signaling molecules in intact single cells to provide a comprehensive view of the cell’s physiological state. In this technical brief, we describe our microfluidic platform with a portfolio of customized molecular assays that can detect nucleic acids, proteins, and post-translational modifications in single intact cells with >95% reduction in reagent requirement in under 8 hours.« less

  6. Highly Efficient Targeted Mutagenesis in Mice Using TALENs

    PubMed Central

    Panda, Sudeepta Kumar; Wefers, Benedikt; Ortiz, Oskar; Floss, Thomas; Schmid, Bettina; Haass, Christian; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms. PMID:23979585

  7. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases

    PubMed Central

    Li, Wencheng; Laishram, Rakesh S.; Hoque, Mainul; Ji, Zhe

    2017-01-01

    Abstract Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3′ end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues. PMID:28911096

  8. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor

    PubMed Central

    Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi

    1999-01-01

    Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722

  9. Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse

    PubMed Central

    Filippini, Alice; Bonini, Daniela; Lacoux, Caroline; Zingariello, Maria; Sancillo, Laura; Bosisio, Daniela; Salvi, Valentina; Mingardi, Jessica; La Via, Luca; Zalfa, Francesca; Bagni, Claudia

    2017-01-01

    ABSTRACT The fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the absence of FMRP, a protein regulating RNA metabolism. Recently, an unexpected function of FMRP in modulating the activity of Adenosine Deaminase Acting on RNA (ADAR) enzymes has been reported both in Drosophila and Zebrafish. ADARs are RNA-binding proteins that increase transcriptional complexity through a post-transcriptional mechanism called RNA editing. To evaluate the ADAR2-FMRP interaction in mammals we analyzed several RNA editing re-coding sites in the fmr1 knockout (KO) mice. Ex vivo and in vitro analysis revealed that absence of FMRP leads to an increase in the editing levels of brain specific mRNAs, indicating that FMRP might act as an inhibitor of editing activity. Proximity Ligation Assay (PLA) in mouse primary cortical neurons and in non-neuronal cells revealed that ADAR2 and FMRP co-localize in the nucleus. The ADAR2-FMRP co-localization was further observed by double-immunogold Electron Microscopy (EM) in the hippocampus. Moreover, ADAR2-FMRP interaction appeared to be RNA independent. Because changes in the editing pattern are associated with neuropsychiatric and neurodevelopmental disorders, we propose that the increased editing observed in the fmr1-KO mice might contribute to the FXS molecular phenotypes. PMID:28640668

  10. Modulations of RNA sequences by cytokinin in pumpkin cotyledons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.; Ertl, J.; Chen, C.

    1987-04-01

    Polyadenylated mRNAs from excised pumpkin cotyledons treated with or without 10/sup -4/ M benzyladenine (BA) for various time periods in suspension culture were assayed by in vitro translation in the presence of (/sup 35/S) methionine. The radioactive polypeptides were analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Specific sequences of mRNAs were enhanced, reduced, induced, or suppressed by the hormone within 60 min of the application of BA to the cotyledons. Four independent cDNA clones of cytokinin-modulated mRNAs have been selected and characterized. RNA blot hybridization using the four cDNA probes also indicates that the levels of specific mRNAs aremore » modulated upward or downward by the hormone.« less

  11. Alternative Polyadenylation of mRNAs: 3′-Untranslated Region Matters in Gene Expression

    PubMed Central

    Yeh, Hsin-Sung; Yong, Jeongsik

    2016-01-01

    Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3′ untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3′ UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed. PMID:26912084

  12. Identification and verification of differentially expressed genes in the caprine hypothalamic-pituitary-gonadal axis that are associated with litter size.

    PubMed

    Feng, Tao; Cao, Gui-Ling; Chu, Ming-Xing; Di, Ran; Huang, Dong-Wei; Liu, Qiu-Yue; Pan, Zhang-Yuan; Jin, Mei; Zhang, Ying-Jie; Li, Ning

    2015-02-01

    Litter size is a favorable economic trait for the goat industry, but remains a complex trait controlled by multiple genes in multiple organs. Several genes have been identified that may affect embryo survival, follicular development, and the health of fetuses during pregnancy. Jining Grey goats demonstrate the largest litter size among goat breeds indigenous to China. In order to better understand the genetic basis of this trait, six suppression subtractive hybridization (SSH) cDNA libraries were constructed using pooled mRNAs from hypothalamuses, pituitaries, and ovaries of sexually mature and adult polytocous Jining Grey goats, as testers, versus the pooled corresponding mRNAs of monotocous Liaoning Cashmere goats, as drivers. A total of 1,458 true-positive clones--including 955 known genes and 481 known and 22 unknown expressed sequence tags--were obtained from the SSH libraries by sequencing and alignment. The known genes were categorized into cellular processes and signaling information storage and processing, and metabolism. Three genes (FTH1, GH, and SAA) were selected to validate the SSH results by quantitative real-time PCR; all three were up-regulated in the corresponding tissues in the tester group indicating that these are candidate genes associated with the large litter size of Jining Grey goats. Several other identified genes may affect embryo survival, follicular development, and health during pregnancy. This study provides insights into the mechanistic basis by which the caprine hypothalamic-pituitary-gonadal axis affects reproductive traits and provides a theoretical basis for goat production and breeding. © 2015 Wiley Periodicals, Inc.

  13. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation

    PubMed Central

    Miles, Wayne O.; Lembo, Antonio; Volorio, Angela; Brachtel, Elena; Tian, Bin; Sgroi, Dennis; Provero, Paolo; Dyson, Nicholas

    2017-01-01

    Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3′ untranslated region (3′ UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3′ UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype–specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. PMID:27758885

  14. Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol

    PubMed Central

    Cencic, Regina; Carrier, Marilyn; Galicia-Vázquez, Gabriela; Bordeleau, Marie-Eve; Sukarieh, Rami; Bourdeau, Annie; Brem, Brigitte; Teodoro, Jose G.; Greger, Harald; Tremblay, Michel L.; Porco, John A.; Pelletier, Jerry

    2009-01-01

    Background Flavaglines are a family of natural products from the genus Aglaia that exhibit anti-cancer activity in vitro and in vivo and inhibit translation initiation. They have been shown to modulate the activity of eIF4A, the DEAD-box RNA helicase subunit of the eukaryotic initiation factor (eIF) 4F complex, a complex that stimulates ribosome recruitment during translation initiation. One flavagline, silvestrol, is capable of modulating chemosensitivity in a mechanism-based mouse model. Methodology/Principal Findings Among a number of flavagline family members tested herein, we find that silvestrol is the more potent translation inhibitor among these. We find that silvestrol impairs the ribosome recruitment step of translation initiation by affecting the composition of the eukaryotic initiation factor (eIF) 4F complex. We show that silvestrol exhibits significant anticancer activity in human breast and prostate cancer xenograft models, and that this is associated with increased apoptosis, decreased proliferation, and inhibition of angiogenesis. We demonstrate that targeting translation by silvestrol results in preferential inhibition of weakly initiating mRNAs. Conclusions/Significance Our results indicate that silvestrol is a potent anti-cancer compound in vivo that exerts its activity by affecting survival pathways as well as angiogenesis. We propose that silvestrol mediates its effects by preferentially inhibiting translation of malignancy-related mRNAs. Silvestrol appears to be well tolerated in animals. PMID:19401772

  15. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.

    PubMed

    Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Fang, Zhide; Deininger, Prescott; Zhang, Kun

    2013-08-28

    The exonization of transposable elements (TEs) has proven to be a significant mechanism for the creation of novel exons. Existing knowledge of the retention patterns of TE exons in mRNAs were mainly established by the analysis of Expressed Sequence Tag (EST) data and microarray data. This study seeks to validate and extend previous studies on the expression of TE exons by an integrative statistical analysis of high throughput RNA sequencing data. We collected 26 RNA-seq datasets spanning multiple tissues and cancer types. The exon-level digital expressions (indicating retention rates in mRNAs) were quantified by a double normalized measure, called the rescaled RPKM (Reads Per Kilobase of exon model per Million mapped reads). We analyzed the distribution profiles and the variability (across samples and between tissue/disease groups) of TE exon expressions, and compared them with those of other constitutive or cassette exons. We inferred the effects of four genomic factors, including the location, length, cognate TE family and TE nucleotide proportion (RTE, see Methods section) of a TE exon, on the exons' expression level and expression variability. We also investigated the biological implications of an assembly of highly-expressed TE exons. Our analysis confirmed prior studies from the following four aspects. First, with relatively high expression variability, most TE exons in mRNAs, especially those without exact counterparts in the UCSC RefSeq (Reference Sequence) gene tables, demonstrate low but still detectable expression levels in most tissue samples. Second, the TE exons in coding DNA sequences (CDSs) are less highly expressed than those in 3' (5') untranslated regions (UTRs). Third, the exons derived from chronologically ancient repeat elements, such as MIRs, tend to be highly expressed in comparison with those derived from younger TEs. Fourth, the previously observed negative relationship between the lengths of exons and the inclusion levels in transcripts is also true for exonized TEs. Furthermore, our study resulted in several novel findings. They include: (1) for the TE exons with non-zero expression and as shown in most of the studied biological samples, a high TE nucleotide proportion leads to their lower retention rates in mRNAs; (2) the considered genomic features (i.e. a continuous variable such as the exon length or a category indicator such as 3'UTR) influence the expression level and the expression variability (CV) of TE exons in an inverse manner; (3) not only the exons derived from Alu elements but also the exons from the TEs of other families were preferentially established in zinc finger (ZNF) genes.

  16. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships.

    PubMed

    Masud Karim, S M; Liu, Lin; Le, Thuc Duy; Li, Jiuyong

    2016-01-11

    microRNAs (miRNAs) play an essential role in the post-transcriptional gene regulation in plants and animals. They regulate a wide range of biological processes by targeting messenger RNAs (mRNAs). Evidence suggests that miRNAs and mRNAs interact collectively in gene regulatory networks. The collective relationships between groups of miRNAs and groups of mRNAs may be more readily interpreted than those between individual miRNAs and mRNAs, and thus are useful for gaining insight into gene regulation and cell functions. Several computational approaches have been developed to discover miRNA-mRNA regulatory modules (MMRMs) with a common aim to elucidate miRNA-mRNA regulatory relationships. However, most existing methods do not consider the collective relationships between a group of miRNAs and the group of targeted mRNAs in the process of discovering MMRMs. Our aim is to develop a framework to discover MMRMs and reveal miRNA-mRNA regulatory relationships from the heterogeneous expression data based on the collective relationships. We propose DIscovering COllective group RElationships (DICORE), an effective computational framework for revealing miRNA-mRNA regulatory relationships. We utilize the notation of collective group relationships to build the computational framework. The method computes the collaboration scores of the miRNAs and mRNAs on the basis of their interactions with mRNAs and miRNAs, respectively. Then it determines the groups of miRNAs and groups of mRNAs separately based on their respective collaboration scores. Next, it calculates the strength of the collective relationship between each pair of miRNA group and mRNA group using canonical correlation analysis, and the group pairs with significant canonical correlations are considered as the MMRMs. We applied this method to three gene expression datasets, and validated the computational discoveries. Analysis of the results demonstrates that a large portion of the regulatory relationships discovered by DICORE is consistent with the experimentally confirmed databases. Furthermore, it is observed that the top mRNAs that are regulated by the miRNAs in the identified MMRMs are highly relevant to the biological conditions of the given datasets. It is also shown that the MMRMs identified by DICORE are more biologically significant and functionally enriched.

  17. Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes

    PubMed Central

    Cenik, Can; Chua, Hon Nian; Zhang, Hui; Tarnawsky, Stefan P.; Akef, Abdalla; Derti, Adnan; Tasan, Murat; Moore, Melissa J.; Palazzo, Alexander F.; Roth, Frederick P.

    2011-01-01

    In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export. PMID:21533221

  18. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons

    PubMed Central

    2014-01-01

    Background Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. PMID:24898526

  19. Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons.

    PubMed

    Pfeiffer-Guglielmi, Brigitte; Dombert, Benjamin; Jablonka, Sibylle; Hausherr, Vanessa; van Thriel, Christoph; Schöbel, Nicole; Jansen, Ralf-Peter

    2014-06-04

    Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.

  20. The domain structure and distribution of Alu elements in long noncoding RNAs and mRNAs

    PubMed Central

    Kim, Eugene Z.; Wespiser, Adam R.; Caffrey, Daniel R.

    2016-01-01

    Approximately 75% of the human genome is transcribed and many of these spliced transcripts contain primate-specific Alu elements, the most abundant mobile element in the human genome. The majority of exonized Alu elements are located in long noncoding RNAs (lncRNAs) and the untranslated regions of mRNA, with some performing molecular functions. To further assess the potential for Alu elements to be repurposed as functional RNA domains, we investigated the distribution and evolution of Alu elements in spliced transcripts. Our analysis revealed that Alu elements are underrepresented in mRNAs and lncRNAs, suggesting that most exonized Alu elements arising in the population are rare or deleterious to RNA function. When mRNAs and lncRNAs retain exonized Alu elements, they have a clear preference for Alu dimers, left monomers, and right monomers. mRNAs often acquire Alu elements when their genes are duplicated within Alu-rich regions. In lncRNAs, reverse-oriented Alu elements are significantly enriched and are not restricted to the 3′ and 5′ ends. Both lncRNAs and mRNAs primarily contain the Alu J and S subfamilies that were amplified relatively early in primate evolution. Alu J subfamilies are typically overrepresented in lncRNAs, whereas the Alu S dimer is overrepresented in mRNAs. The sequences of Alu dimers tend to be constrained in both lncRNAs and mRNAs, whereas the left and right monomers are constrained within particular Alu subfamilies and classes of RNA. Collectively, these findings suggest that Alu-containing RNAs are capable of forming stable structures and that some of these Alu domains might have novel biological functions. PMID:26654912

  1. Identification of potential tumor-educated platelets RNA biomarkers in non-small-cell lung cancer by integrated bioinformatical analysis.

    PubMed

    Xue, Linlin; Xie, Li; Song, Xingguo; Song, Xianrang

    2018-04-17

    Platelets have emerged as key players in tumorigenesis and tumor progression. Tumor-educated platelet (TEP) RNA profile has the potential to diagnose non-small-cell lung cancer (NSCLC). The objective of this study was to identify potential TEP RNA biomarkers for the diagnosis of NSCLC and to explore the mechanisms in alternations of TEP RNA profile. The RNA-seq datasets GSE68086 and GSE89843 were downloaded from Gene Expression Omnibus DataSets (GEO DataSets). Then, the functional enrichment of the differentially expressed mRNAs was analyzed by the Database for Annotation Visualization and Integrated Discovery (DAVID). The miRNAs which regulated the differential mRNAs and the target mRNAs of miRNAs were identified by miRanda and miRDB. Then, the miRNA-mRNA regulatory network was visualized via Cytoscape software. Twenty consistently altered mRNAs (2 up-regulated and 18 down-regulated) were identified from the two GSE datasets, and they were significantly enriched in several biological processes, including transport and establishment of localization. Twenty identical miRNAs were found between exosomal miRNA-seq dataset and 229 miRNAs that regulated 20 consistently differential mRNAs in platelets. We also analyzed 13 spliceosomal mRNAs and their miRNA predictions; there were 27 common miRNAs between 206 differential exosomal miRNAs and 338 miRNAs that regulated 13 distinct spliceosomal mRNAs. This study identified 20 potential TEP RNA biomarkers in NSCLC for diagnosis by integrated bioinformatical analysis, and alternations in TEP RNA profile may be related to the post-transcriptional regulation and the splicing metabolisms of spliceosome. © 2018 Wiley Periodicals, Inc.

  2. Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma.

    PubMed

    Kim, Sang Hoon; Han, Seung-Ho; Byun, Jae Yong; Park, Moon Suh; Kim, Young Il; Yeo, Seung Geun

    2017-06-01

    The levels of expression of various C-type lectin receptors (CLRs) messenger ribo nucleic acids (mRNAs) were significantly higher in cholesteatomas than in normal skin, suggesting that these CLRs may be involved in the pathogenesis of cholesteatoma. Altered expression of pattern recognition receptors may be associated with immune responses in patients with cholesteatoma. This study assessed the levels of expression of CLR mRNAs in normal skin and in cholesteatoma. Cholesteatoma specimens were obtained from 38 patients with acquired cholesteatoma. The levels of expression of various CLR mRNAs were assessed quantitatively using real-time RT-PCR (Reverse transcription polymerase chain reaction) and correlated with age, sex, the presence of bacteria, hearing level, frequency of surgery, and degree of ossicle destruction. The levels of CD206 (cluster of differentiation 206), DEC-205 (Dendritic and epithelial cell-205), MGL (monoacylglycerol lipase), CLEC5A (C-type lectin domain family 5 member A), Dectin-2 (dendrite cell-associated C-type lectin-2), BDCA2 (Blood dendritic cell antigen 2), Mincle, DCIR (dendritic cell immunoreceptor), Dectin-1, MICL (Myeloid inhibitory C type-like lectin), and CLEC12B (C-type lectin domain family 12, member B) mRNAs were significantly higher in cholesteatoma than in control skin samples (p < 0.05). The levels of CLEC5A (C-type lectin domain family 5 member) and Dectin-1 mRNAs were significantly higher in cholesteatomas with ≥2 than ≤1 destroyed ossicles (p < 0.05), and the levels of MGL, Mincle, Dectin-1, and CLEC12B mRNAs were significantly higher in recurrent than initial cholesteatoma specimens (p < 0.05). The level of CLEC5A mRNAs was significantly higher in patients with severe than mild-to-moderate hearing loss (p < 0.05).

  3. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars.

    PubMed

    Mason, H S; Dewald, D B; Creelman, R A; Mullet, J E

    1992-03-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.

  4. Coregulation of Soybean Vegetative Storage Protein Gene Expression by Methyl Jasmonate and Soluble Sugars 1

    PubMed Central

    Mason, Hugh S.; DeWald, Daryll B.; Creelman, Robert A.; Mullet, John E.

    1992-01-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves. ImagesFigure 1Figure 4Figure 5 PMID:16668757

  5. Identification and analysis of pig chimeric mRNAs using RNA sequencing data

    PubMed Central

    2012-01-01

    Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs. PMID:22925561

  6. Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells.

    PubMed

    Chocu, Sophie; Evrard, Bertrand; Lavigne, Régis; Rolland, Antoine D; Aubry, Florence; Jégou, Bernard; Chalmel, Frédéric; Pineau, Charles

    2014-11-01

    Spermatogenesis is a complex process, dependent upon the successive activation and/or repression of thousands of gene products, and ends with the production of haploid male gametes. RNA sequencing of male germ cells in the rat identified thousands of novel testicular unannotated transcripts (TUTs). Although such RNAs are usually annotated as long noncoding RNAs (lncRNAs), it is possible that some of these TUTs code for protein. To test this possibility, we used a "proteomics informed by transcriptomics" (PIT) strategy combining RNA sequencing data with shotgun proteomics analyses of spermatocytes and spermatids in the rat. Among 3559 TUTs and 506 lncRNAs found in meiotic and postmeiotic germ cells, 44 encoded at least one peptide. We showed that these novel high-confidence protein-coding loci exhibit several genomic features intermediate between those of lncRNAs and mRNAs. We experimentally validated the testicular expression pattern of two of these novel protein-coding gene candidates, both highly conserved in mammals: one for a vesicle-associated membrane protein we named VAMP-9, and the other for an enolase domain-containing protein. This study confirms the potential of PIT approaches for the discovery of protein-coding transcripts initially thought to be untranslated or unknown transcripts. Our results contribute to the understanding of spermatogenesis by characterizing two novel proteins, implicated by their strong expression in germ cells. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD000872. © 2014 by the Society for the Study of Reproduction, Inc.

  7. Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0135 TITLE: Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation 5b. GRANT NUMBER 8W1XWH-16-1...Sclerosis Complex (TSC) 1 or 2 gene leads to deregulated mTOR activation and consequent cell proliferation/growth. Thus, studying the mTOR pathway

  8. Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans

    PubMed Central

    Mitrovich, Quinn M.; Anderson, Philip

    2000-01-01

    Messenger RNA surveillance, the selective and rapid degradation of mRNAs containing premature stop codons, occurs in all eukaryotes tested. The biological role of this decay pathway, however, is not well understood. To identify natural substrates of mRNA surveillance, we used a cDNA-based representational difference analysis to identify mRNAs whose abundance increases in Caenorhabditis elegans smg(−) mutants, which are deficient for mRNA surveillance. Alternatively spliced mRNAs of genes encoding ribosomal proteins L3, L7a, L10a, and L12 are abundant natural targets of mRNA surveillance. Each of these genes expresses two distinct mRNAs. A productively spliced mRNA, whose abundance does not change in smg(−) mutants, encodes a normal, full-length, ribosomal protein. An unproductively spliced mRNA, whose abundance increases dramatically in smg(−) mutants, contains premature stop codons because of incomplete removal of an alternatively spliced intron. In transgenic animals expressing elevated quantities of RPL-12, a greater proportion of endogenous rpl-12 transcript is spliced unproductively. Thus, RPL-12 appears to autoregulate its own splicing, with unproductively spliced mRNAs being degraded by mRNA surveillance. We demonstrate further that alternative splicing of rpl introns is conserved among widely diverged nematodes. Our results suggest that one important role of mRNA surveillance is to eliminate unproductive by-products of gene regulation. PMID:10970881

  9. Upf1 senses 3′UTR length to potentiate mRNA decay

    PubMed Central

    Hogg, J. Robert; Goff, Stephen P.

    2010-01-01

    Summary The selective degradation of mRNAs by the nonsense-mediated decay pathway is a quality control process with important consequences for human disease. From initial studies using RNA hairpin-tagged mRNAs for purification of messenger ribonucleoproteins assembled on transcripts with HIV-1 3′ untranslated region (3′UTR) sequences, we uncover a two-step mechanism for Upf1-dependent degradation of mRNAs with long 3′UTRs. We demonstrate that Upf1 associates with mRNAs in a 3′UTR length-dependent manner and is highly enriched on transcripts containing 3′UTRs known to elicit NMD. Surprisingly, Upf1 recruitment and subsequent RNA decay can be antagonized by retroviral RNA elements that promote translational readthrough. By modulating the efficiency of translation termination, recognition of long 3′UTRs by Upf1 is uncoupled from the initiation of decay. We propose a model for 3′UTR length surveillance in which equilibrium binding of Upf1 to mRNAs precedes a kinetically distinct commitment to RNA decay. PMID:21029861

  10. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1

    PubMed Central

    2011-01-01

    Background Staufen2 (Stau2), a double-stranded RNA-binding protein, is a component of neuronal RNA granules, which are dendritic mRNA transport machines. Although Stau2 is thought to be involved in the dendritic targeting of several mRNAs in neurons, the mechanism whereby Stau2 regulates these mRNAs is unknown. To elucidate the functions of Stau2, we screened for novel binding partners by affinity purification of GST-tagged Stau2 from 293F cells. Results Three RNA helicases, RNA helicase A, Upf1 and Mov10, were identified in Stau2-containing complexes. We focused our studies on Upf1, a key player in nonsense-mediated mRNA decay. Stau2 was found to bind directly to Upf1 in an RNA-independent manner in vitro. Tethering Stau2 to the 3'-untranslated region (UTR) of a reporter gene had little effect on its expression in HeLa cells. In contrast, when the same tethering assay was performed in 293F cells, we observed an increase in reporter protein levels. This upregulation of protein expression by Stau2 turned out to be dependent on Upf1. Moreover, we found that in 293F cells, Stau2 upregulates the reporter mRNA level in an Upf1-independent manner. Conclusions These results indicate that the recruitment of Stau2 alone or in combination with Upf1 differentially affects the fate of mRNAs. Moreover, the results suggest that Stau2-mediated fate determination could be executed in a cell type-specific manner. PMID:22087843

  11. Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma

    PubMed Central

    Sharma, Vivek; Salwan, Richa; Sharma, P. N.; Gulati, Arvind

    2017-01-01

    Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different “omics” approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms. PMID:28900417

  12. Overlapping regional distribution of CCK and TPPII mRNAs in Cynomolgus monkey brain and correlated levels in human cerebral cortex (BA 10).

    PubMed

    Radu, Diana; Tomkinson, Birgitta; Zachrisson, Olof; Weber, Günther; de Belleroche, Jacqueline; Hirsch, Steven; Lindefors, Nils

    2006-08-09

    Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.

  13. Minute virus of mice (MVM) mRNAs predominantly polyadenylate at a single site.

    PubMed

    Clemens, K E; Pintel, D

    1987-10-01

    The polyadenylation sites for MVM(p) and MVM(i) mRNAs were determined by a quantitative hybridization-S1 protection assay. mRNAs produced by MVM(p) both early and late in infection of mouse A9 fibroblasts, and by MVM(p) and MVM(i) late in infection of human NB324K cells, polyadenylate predominantly at a single site, at nucleotide 4908 +/- 2 for MVM(p) and 4843 +/- 2 for MVM(i), shortly downstream of the final AATAAA in each viral genome. These results demonstrate that although the right-hand end of MVM has multiple AATAAA signals, and MVM(p) and MVM(i) vary significantly within this region, 3' end processing of viral mRNAs is not a prevalent mechanism for the regulation of MVM gene expression.

  14. RNA Transport and Local Control of Translation

    PubMed Central

    Kindler, Stefan; Wang, Huidong; Richter, Dietmar; Tiedge, Henri

    2007-01-01

    In eukaryotes, the entwined pathways of RNA transport and local translational regulation are key determinants in the spatio-temporal articulation of gene expression. One of the main advantages of this mechanism over transcriptional control in the nucleus lies in the fact that it endows local sites with independent decision-making authority, a consideration that is of particular relevance in cells with complex cellular architecture such as neurons. Localized RNAs typically contain codes, expressed within cis-acting elements, that specify subcellular targeting. Such codes are recognized by trans-acting factors, adaptors that mediate translocation along cytoskeletal elements by molecular motors. Most transported mRNAs are assumed translationally dormant while en route. In some cell types, especially in neurons, it is considered crucial that translation remains repressed after arrival at the destination site (e.g., a postsynaptic microdomain) until an appropriate activation signal is received. Several candidate mechanisms have been suggested to participate in the local implementation of translational repression and activation, and such mechanisms may target translation at the level of initiation and/or elongation. Recent data indicate that untranslated RNAs may play important roles in the local control of translation. PMID:16212494

  15. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    PubMed Central

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  16. Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease.

    PubMed

    Hirano, Minato; Muto, Memi; Sakai, Mizuki; Kondo, Hirofumi; Kobayashi, Shintaro; Kariwa, Hiroaki; Yoshii, Kentaro

    2017-09-12

    Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus , is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5' untranslated region of TBEV genomic RNA that act as a cis -acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We show that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound an RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. These results demonstrated a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.

  17. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

    PubMed

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-07-30

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

  18. Sequence and RT-PCR expression analysis of two peroxidases from Arabidopsis thaliana belonging to a novel evolutionary branch of plant peroxidases.

    PubMed

    Kjaersgård, I V; Jespersen, H M; Rasmussen, S K; Welinder, K G

    1997-03-01

    cDNA clones encoding two new Arabidopsis thaliana peroxidases, ATP 1a and ATP 2a, have been identified by searching the Arabidopsis database of expressed sequence tags (dbEST). They represent a novel branch of hitherto uncharacterized plant peroxidases which is only 35% identical in amino acid sequence to the well characterized group of basic plant peroxidases represented by the horseradish (Armoracia rusticana) isoperoxidases HRP C, HRP E5 and the similar Arabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1a is 87% identical in amino acid sequence to a peroxidase encoded by an mRNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae and Crucifereae, respectively), in contrast with Arabidopsis and horseradish (both Crucifereae), the high degree of sequence identity indicates that this novel type of peroxidase, albeit of unknown function, is likely to be widespread in plant species. The atp 1 and atp 2 types of cDNA sequences were the most redundant among the 28 different isoperoxidases identified among about 200 peroxidase encoding ESTs. Interestingly, 8 out of totally 38 EST sequences coding for ATP 1 showed three identical nucleotide substitutions. This variant form is designated ATP 1b. Similarly, six out of totally 16 EST sequences coding for ATP 2 showed a number of deletions and nucleotide changes. This variant form is designated ATP 2b. The selected EST clones are full-length and contain coding regions of 993 nucleotides for atp 1a, and 984 nucleotides for atp 2a. These regions show 61% DNA sequence identity. The predicted mature proteins ATP 1a, and ATP 2a are 57% identical in sequence and contain the structurally and functionally important residues, characteristic of the plant peroxidase superfamily. However, they do show two differences of importance to peroxidase catalysis: (1) the asparagine residue linked with the active site distal histidine via hydrogen bonding is absent; (2) an N-glycosylation site is located right at the entrance to the heme channel. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to identify mRNAs coding for ATP 1a/b and ATP 2a/b in germinating seeds, seedlings, roots, leaves, stems, flowers and cell suspension culture using elongation factor 1alpha (EF-1alpha) for the first time as a positive control. Both mRNAs were transcribed at levels comparable to EF-1alpha in all plant tissues investigated which were more than two days old, and in cell suspension culture. In addition, the mRNA coding for ATP 1a/b was found in two day old germinating seeds. The abundant transcription of ATP 1a/b and ATP 2a/b is in line with their many entries in dbEST, and indicates essential roles for these novel peroxidases.

  19. The Herpes Simplex Virus Virion Host Shutoff Protein Enhances Translation of Viral True Late mRNAs Independently of Suppressing Protein Kinase R and Stress Granule Formation.

    PubMed

    Dauber, Bianca; Poon, David; Dos Santos, Theodore; Duguay, Brett A; Mehta, Ninad; Saffran, Holly A; Smiley, James R

    2016-07-01

    The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Glucocorticoid Repression of Inflammatory Gene Expression Shows Differential Responsiveness by Transactivation- and Transrepression-Dependent Mechanisms

    PubMed Central

    King, Elizabeth M.; Chivers, Joanna E.; Rider, Christopher F.; Minnich, Anne; Giembycz, Mark A.; Newton, Robert

    2013-01-01

    Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes. PMID:23349769

  1. Expression of HSP 70 and its mRNAS during ischemia-reperfusion in the rat bladder.

    PubMed

    Saito, Motoaki; Tominaga, Lika; Nanba, Eiji; Kinoshita, Yukako; Housi, Daisuke; Miyagawa, Ikuo; Satoh, Keisuke

    2004-08-27

    HSP 70 is an important protein that repairs damaged tissue after injury. In the present study, we investigated the expression of HSP 70 and its mRNAs during ischemia-reperfusion in the rat bladder. Rat abdominal aorta was clamped with a small clip to induce ischemia-reperfusion injury in the bladder dome. Male Wistar rats, 8 weeks old, were divided into six groups: controls, 30-min ischemia, 30-min ischemia and 30-, 60-minute, 1- and 7-day reperfusion, groups A, B, C, D, E, and F, respectively. In functional studies, contractile responses to carbachol were measured in these groups. The expression of HSP 70-1/2 mRNAs was quantified using a real-time PCR method, and that of HSP 70 proteins was measured using ELISA in the bladders. In the functional study, Emax values of carbachol to bladders in the A, B, C, D, E and F groups were 9.3 +/- 1.3, 7.9 +/- 1.7, 4.3 +/- 0.8, 4.2 +/- 0.7, 4.5 +/- 0.6, and 8.1 +/- 1.2 g/mm2, respectively. In the control group, the expression of HSP 70-1/2 mRNA was detected, and the expression of HSP 70-1 mRNAs was significantly higher than that of HSP 70-2 mRNAs in each group. The expression of HSP 70-1 mRNA increased in groups B and C, but decreased in groups D, E, and F. The expression of HSP 70-2 mRNA in group C was significantly higher than that of groups A, D, E, and F. The expression of HSP 70-1/2 mRNAs after 1 day or 1 week of reperfusion was similar to control levels. The expression of HSP 70 proteins was increased shortly after the expression of their mRNAs. The expression of HSP 70 after 1 day or 1 week of reperfusion was almost identical to control levels. Our data indicate that contractile responses of the bladder were decreased by ischemia reperfusion, and that expression of HSP 70 and its mRNAs appeared to increase after a short period of the insult.

  2. Next-Generation Sequencing of Protein-Coding and Long Non-protein-Coding RNAs in Two Types of Exosomes Derived from Human Whole Saliva.

    PubMed

    Ogawa, Yuko; Tsujimoto, Masafumi; Yanoshita, Ryohei

    2016-01-01

    Exosomes are small extracellular vesicles containing microRNAs and mRNAs that are produced by various types of cells. We previously used ultrafiltration and size-exclusion chromatography to isolate two types of human salivary exosomes (exosomes I, II) that are different in size and proteomes. We showed that salivary exosomes contain large repertoires of small RNAs. However, precise information regarding long RNAs in salivary exosomes has not been fully determined. In this study, we investigated the compositions of protein-coding RNAs (pcRNAs) and long non-protein-coding RNAs (lncRNAs) of exosome I, exosome II and whole saliva (WS) by next-generation sequencing technology. Although 11% of all RNAs were commonly detected among the three samples, the compositions of reads mapping to known RNAs were similar. The most abundant pcRNA is ribosomal RNA protein, and pcRNAs of some salivary proteins such as S100 calcium-binding protein A8 (protein S100-A8) were present in salivary exosomes. Interestingly, lncRNAs of pseudogenes (presumably, processed pseudogenes) were abundant in exosome I, exosome II and WS. Translationally controlled tumor protein gene, which plays an important role in cell proliferation, cell death and immune responses, was highly expressed as pcRNA and pseudogenes in salivary exosomes. Our results show that salivary exosomes contain various types of RNAs such as pseudogenes and small RNAs, and may mediate intercellular communication by transferring these RNAs to target cells as gene expression regulators.

  3. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis

    PubMed Central

    Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233

  4. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.

    PubMed

    Wucher, Valentin; Legeai, Fabrice; Hédan, Benoît; Rizk, Guillaume; Lagoutte, Lætitia; Leeb, Tosso; Jagannathan, Vidhya; Cadieu, Edouard; David, Audrey; Lohi, Hannes; Cirera, Susanna; Fredholm, Merete; Botherel, Nadine; Leegwater, Peter A J; Le Béguec, Céline; Fieten, Hille; Johnson, Jeremy; Alföldi, Jessica; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Derrien, Thomas

    2017-05-05

    Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Full-length genome sequences of porcine epidemic diarrhoea virus strain CV777; Use of NGS to analyse genomic and sub-genomic RNAs

    PubMed Central

    Rasmussen, Thomas Bruun; Boniotti, Maria Beatrice; Papetti, Alice; Grasland, Béatrice; Frossard, Jean-Pierre; Dastjerdi, Akbar; Hulst, Marcel; Hanke, Dennis; Pohlmann, Anne; Blome, Sandra; van der Poel, Wim H. M.; Steinbach, Falko; Blanchard, Yannick; Lavazza, Antonio; Bøtner, Anette

    2018-01-01

    Porcine epidemic diarrhoea virus, strain CV777, was initially characterized in 1978 as the causative agent of a disease first identified in the UK in 1971. This coronavirus has been widely distributed among laboratories and has been passaged both within pigs and in cell culture. To determine the variability between different stocks of the PEDV strain CV777, sequencing of the full-length genome (ca. 28kb) has been performed in 6 different laboratories, using different protocols. Not surprisingly, each of the different full genome sequences were distinct from each other and from the reference sequence (Accession number AF353511) but they are >99% identical. Unique and shared differences between sequences were identified. The coding region for the surface-exposed spike protein showed the highest proportion of variability including both point mutations and small deletions. The predicted expression of the ORF3 gene product was more dramatically affected in three different variants of this virus through either loss of the initiation codon or gain of a premature termination codon. The genome of one isolate had a substantially rearranged 5´-terminal sequence. This rearrangement was validated through the analysis of sub-genomic mRNAs from infected cells. It is clearly important to know the features of the specific sample of CV777 being used for experimental studies. PMID:29494671

  6. The expression of miR-181a-5p and miR-371b-5p in chondrosarcoma.

    PubMed

    Mutlu, S; Mutlu, H; Kirkbes, S; Eroglu, S; Kabukcuoglu, Y S; Kabukcuoglu, F; Duymus, T M; ISık, M; Ulasli, M

    2015-07-01

    Chondrosarcomas are malignant tumors of chondrocytes that affect bones and joints, and it represents the third most common type of primary bone tumors. Chondrosarcoma is difficult to treat because it is relatively resistant to both chemotherapy and radiation. Thus, surgery remains the best available treatment. It is important to find new diagnostic markers and improve treatment options. miRNAs are small non-coding transcripts (19-25 nucleotides) that regulate gene expression via targeting complementary sequences within messenger RNAs (mRNAs). miRNAs have been shown to be involved in regulation of many biochemical pathways. Dysregulated expression of many miRNAs has also been associated with multiple human diseases, such as cancer. 18 surgical chondrosarcoma specimens were obtained from patients. RNA extractions were performed from decalcified paraffin embedded tissues. The aim of this study was to investigate the expression levels of miR-181a and miR-371b in patients with chondrosarcoma by using RT-PCR and to evaluate the relationship between these miRNAs and chondrosarcoma. miR-181a was found to be upregulated in chondrosarcoma specimens whereas no significant alteration was found for miR-371b expression. It has been proposed that miRNA expression studies might be used as diagnostic, prognostic marker in cancer. miRNA expression data produced in our study may contribute future chondrosarcoma diagnosis and therapy.

  7. Epigenetic remodelling and dysregulation of DLGAP4 is linked with early-onset cerebellar ataxia

    PubMed Central

    Minocherhomji, Sheroy; Hansen, Claus; Kim, Hyung-Goo; Mang, Yuan; Bak, Mads; Guldberg, Per; Papadopoulos, Nickolas; Eiberg, Hans; Doh, Gerald Dayebga; Møllgård, Kjeld; Hertz, Jens Michael; Nielsen, Jørgen E.; Ropers, Hans-Hilger; Tümer, Zeynep; Tommerup, Niels; Kalscheuer, Vera M.; Silahtaroglu, Asli

    2014-01-01

    Genome instability, epigenetic remodelling and structural chromosomal rearrangements are hallmarks of cancer. However, the coordinated epigenetic effects of constitutional chromosomal rearrangements that disrupt genes associated with congenital neurodevelopmental diseases are poorly understood. To understand the genetic–epigenetic interplay at breakpoints of chromosomal translocations disrupting CG-rich loci, we quantified epigenetic modifications at DLGAP4 (SAPAP4), a key post-synaptic density 95 (PSD95) associated gene, truncated by the chromosome translocation t(8;20)(p12;q11.23), co-segregating with cerebellar ataxia in a five-generation family. We report significant epigenetic remodelling of the DLGAP4 locus triggered by the t(8;20)(p12;q11.23) translocation and leading to dysregulation of DLGAP4 expression in affected carriers. Disruption of DLGAP4 results in monoallelic hypermethylation of the truncated DLGAP4 promoter CpG island. This induced hypermethylation is maintained in somatic cells of carriers across several generations in a t(8;20) dependent-manner however, is erased in the germ cells of the translocation carriers. Subsequently, chromatin remodelling of the locus-perturbed monoallelic expression of DLGAP4 mRNAs and non-coding RNAs in haploid cells having the translocation. Our results provide new mechanistic insight into the way a balanced chromosomal rearrangement associated with a neurodevelopmental disorder perturbs allele-specific epigenetic mechanisms at breakpoints leading to the deregulation of the truncated locus. PMID:24986922

  8. KH-type splicing regulatory protein is regulated by nuclear factor-κB signaling to mediate innate immunity in Caco-2 cells infected by Salmonella enteritidis.

    PubMed

    Nie, Yuanyang; Cao, Mei; Wu, Daoyan; Li, Ningzhe; Peng, Jingshan; Yi, Sijun; Yang, Xiaofan; Zhang, Mao; Hu, Guoku; Zhao, Jian

    2018-05-04

    Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.

  9. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.

    PubMed

    Panja, Subrata; Santiago-Frangos, Andrew; Schu, Daniel J; Gottesman, Susan; Woodson, Sarah A

    2015-11-06

    Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex.

    PubMed

    Sousa, C; Johansson, C; Charon, C; Manyani, H; Sautter, C; Kondorosi, A; Crespi, M

    2001-01-01

    A diversity of mRNAs containing only short open reading frames (sORF-RNAs; encoding less than 30 amino acids) have been shown to be induced in growth and differentiation processes. The early nodulin gene enod40, coding for a 0.7-kb sORF-RNA, is expressed in the nodule primordium developing in the root cortex of leguminous plants after infection by symbiotic bacteria. Ballistic microtargeting of this gene into Medicago roots induced division of cortical cells. Translation of two sORFs (I and II, 13 and 27 amino acids, respectively) present in the conserved 5' and 3' regions of enod40 was required for this biological activity. These sORFs may be translated in roots via a reinitiation mechanism. In vitro translation products starting from the ATG of sORF I were detectable by mutating enod40 to yield peptides larger than 38 amino acids. Deletion of a Medicago truncatula enod40 region between the sORFs, spanning a predicted RNA structure, did not affect their translation but resulted in significantly decreased biological activity. Our data reveal a complex regulation of enod40 action, pointing to a role of sORF-encoded peptides and structured RNA signals in developmental processes involving sORF-RNAs.

  11. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors.

    PubMed

    Olivares-Navarrete, Rene; Hyzy, Sharon L; Slosar, Paul J; Schneider, Jennifer M; Schwartz, Zvi; Boyan, Barbara D

    2015-03-15

    An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Histologically, implants fabricated from PEEK have a fibrous connective tissue surface interface whereas Ti-alloy implants demonstrate close approximation with surrounding bone. Ti-alloy surfaces with complex micron/submicron scale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation whereas PEEK favors fibrous tissue formation. Human mesenchymal stem cells were cultured on tissue culture polystyrene, PEEK, smooth TiAlV, or macro-/micro-/nano-textured rough TiAlV (mmnTiAlV) disks. Osteoblastic differentiation and secreted inflammatory interleukins were assessed after 7 days. Fold changes in mRNAs for inflammation, necrosis, DNA damage, or apoptosis with respect to tissue culture polystyrene were measured by low-density polymerase chain reaction array. Data were analyzed by analysis of variance, followed by Bonferroni's correction of Student's t-test. Cells on PEEK upregulated mRNAs for chemokine ligand-2, interleukin (IL) 1β, IL6, IL8, and tumor necrosis factor. Cells grown on the mmnTiAlV had an 8-fold reduction in mRNAs for toll-like receptor-4. Cells grown on mmnTiAlV had reduced levels of proinflammatory interleukins. Cells on PEEK had higher mRNAs for factors strongly associated with cell death/apoptosis, whereas cells on mmnTiAlV exhibited reduced cytokine factor levels. All results were significant (P < 0.05). These results suggest that fibrous tissue around PEEK implants may be due to several factors: reduced osteoblastic differentiation of progenitor cells and production of an inflammatory environment that favors cell death via apoptosis and necrosis. Ti alloy surfaces with complex macro/micro/nanoscale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation. N/A.

  12. The structure of affective action representations: temporal binding of affective response codes.

    PubMed

    Eder, Andreas B; Müsseler, Jochen; Hommel, Bernhard

    2012-01-01

    Two experiments examined the hypothesis that preparing an action with a specific affective connotation involves the binding of this action to an affective code reflecting this connotation. This integration into an action plan should lead to a temporary occupation of the affective code, which should impair the concurrent representation of affectively congruent events, such as the planning of another action with the same valence. This hypothesis was tested with a dual-task setup that required a speeded choice between approach- and avoidance-type lever movements after having planned and before having executed an evaluative button press. In line with the code-occupation hypothesis, slower lever movements were observed when the lever movement was affectively compatible with the prepared evaluative button press than when the two actions were affectively incompatible. Lever movements related to approach and avoidance and evaluative button presses thus seem to share a code that represents affective meaning. A model of affective action control that is based on the theory of event coding is discussed.

  13. Translational coregulation of 5′TOP mRNAs by TIA-1 and TIAR

    PubMed Central

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2011-01-01

    The response of cells to changes in their environment often requires coregulation of gene networks, but little is known about how this can occur at the post-transcriptional level. An important example of post-transcriptional coregulation is the selective translational regulation in response to growth conditions of mammalian mRNAs that encode protein biosynthesis factors and contain hallmark 5′-terminal oligopyrimidine tracts (5′TOP). However, the responsible trans-factors and the mechanism by which they coregulate 5′TOP mRNAs have remained elusive. Here we identify stress granule-associated TIA-1 and TIAR proteins as key factors in human 5′TOP mRNA regulation, which upon amino acid starvation assemble onto the 5′ end of 5′TOP mRNAs and arrest translation at the initiation step, as evidenced by TIA-1/TIAR-dependent 5′TOP mRNA translation repression, polysome release, and accumulation in stress granules. This requires starvation-mediated activation of the GCN2 (general control nonderepressible 2) kinase and inactivation of the mTOR (mammalian target of rapamycin) signaling pathway. Our findings provide a mechanistic explanation to the long-standing question of how the network of 5′TOP mRNAs are coregulated according to amino acid availability, thereby allowing redirection of limited resources to mount a nutrient deprivation response. This presents a fundamental example of how a group of mRNAs can be translationally coregulated in response to changes in the cellular environment. PMID:21979918

  14. Topoisomerase 3β is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction.

    PubMed

    Ahmad, Muzammil; Shen, Weiping; Li, Wen; Xue, Yutong; Zou, Sige; Xu, Dongyi; Wang, Weidong

    2017-03-17

    Human cells contain five topoisomerases in the nucleus and cytoplasm, but which one is the major topoisomerase for mRNAs is unclear. To date, Top3β is the only known topoisomerase that possesses RNA topoisomerase activity, binds mRNA translation machinery and interacts with an RNA-binding protein, FMRP, to promote synapse formation; and Top3β gene deletion has been linked to schizophrenia. Here, we show that Top3β is also the most abundant mRNA-binding topoisomerase in cells. Top3β, but not other topoisomerases, contains a distinctive RNA-binding domain; and deletion of this domain diminishes the amount of Top3β that associates with mRNAs, indicating that Top3β is specifically targeted to mRNAs by its RNA binding domain. Moreover, Top3β mutants lacking either its RNA-binding domain or catalytic residue fail to promote synapse formation, suggesting that Top3β requires both its mRNA-binding and catalytic activity to facilitate neurodevelopment. Notably, Top3β proteins bearing point mutations from schizophrenia and autism individuals are defective in association with FMRP; whereas one of the mutants is also deficient in binding mRNAs, catalyzing RNA topoisomerase reaction, and promoting synapse formation. Our data suggest that Top3β is the major topoisomerase for mRNAs, and requires both RNA binding and catalytic activity to promote neurodevelopment and prevent mental dysfunction. Published by Oxford University Press on behalf of Nucleic Acids Research 2016.

  15. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  16. BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development.

    PubMed

    Schratt, Gerhard M; Nigh, Elizabeth A; Chen, Wen G; Hu, Linda; Greenberg, Michael E

    2004-08-18

    Local regulation of mRNA translation plays an important role in axon guidance, synaptic development, and neuronal plasticity. Little is known, however, regarding the mechanisms that control translation in neurons, and only a few mRNAs have been identified that are locally translated within axon and dendrites. Using Affymetrix gene arrays to identify mRNAs that are newly associated with polysomes after exposure to BDNF, we identified subsets of mRNAs for which translation is enhanced in neurons at different developmental stages. In mature neurons, many of these mRNAs encode proteins that are known to function at synapses, including CamKIIalpha, NMDA receptor subunits, and the postsynaptic density (PSD) scaffolding protein Homer2. BDNF regulates the translation of Homer2 locally in the synaptodendritic compartment by activating translational initiation via a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway. These findings suggest that BDNF likely regulates synaptic function by inducing the local synthesis of numerous synaptic proteins. The local translation of the cytoskeleton-associated protein Homer2 in particular might have important implications for growth cone dynamics and dendritic spine development.

  17. Failure of FIV-infected cats to control Toxoplasma gondii correlates with reduced IL2, IL6, and IL12 and elevated IL10 expression by lymph node T cells.

    PubMed

    Levy, Julie K; Liang, Yinghua; Ritchey, Jerry W; Davidson, Michael G; Tompkins, Wayne A; Tompkins, Mary B

    2004-03-01

    Increased susceptibility to intracellular pathogens in HIV-infected individuals and FIV-infected cats is attributed to a defective T-helper 1 (Th1) immune response. However, little is known about specific cytokine responses to secondary pathogens. To address this question, control and FIV-infected cats were challenged with Toxoplasma gondii, and lymph node cells analyzed for cytokine mRNA expression. Twenty-four weeks post-FIV infection, prior to T. gondii challenge, IL2 and IL12 mRNAs were depressed, whereas IL10 and IFNgamma mRNAs were increased in CD4+ and CD8+ subsets. Following T. gondii challenge, control cats showed increased expression of IL2, IFNgamma, IL10, IL12, and IL6 mRNAs. In contrast, IL2, IL6, IFNgamma, and IL12 mRNAs were suppressed in FIV-T. gondii co-infected cats, whereas IL10 remained at the high prechallenge levels. IFNgamma and IL10 mRNAs were produced by both CD4+ and CD8+ cells in FIV-T. gondii cats. Elevated IL10 may suppress a Th1 cytokine response to T. gondii challenge.

  18. Role of TAR RNA splicing in translational regulation of simian immunodeficiency virus from rhesus macaques.

    PubMed Central

    Viglianti, G A; Rubinstein, E P; Graves, K L

    1992-01-01

    The untranslated leader sequences of rhesus macaque simian immunodeficiency virus mRNAs form a stable secondary structure, TAR. This structure can be modified by RNA splicing. In this study, the role of TAR splicing in virus replication was investigated. The proportion of viral RNAs containing a spliced TAR structure is high early after infection and decreases at later times. Moreover, proviruses containing mutations which prevent TAR splicing are significantly delayed in replication. These mutant viruses require approximately 20 days to achieve half-maximal virus production, in contrast to wild-type viruses, which require approximately 8 days. We attribute this delay to the inefficient translation of unspliced-TAR-containing mRNAs. The molecular basis for this translational effect was examined in in vitro assays. We found that spliced-TAR-containing mRNAs were translated up to 8.5 times more efficiently than were similar mRNAs containing an unspliced TAR leader. Furthermore, these spliced-TAR-containing mRNAs were more efficiently associated with ribosomes. We postulate that the level of TAR splicing provides a balance for the optimal expression of both viral proteins and genomic RNA and therefore ultimately controls the production of infectious virions. Images PMID:1629957

  19. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response

    PubMed Central

    Loughran, Gary; Jungreis, Irwin; Tzani, Ioanna; Power, Michael; Dmitriev, Ruslan I.; Ivanov, Ivaylo P.; Kellis, Manolis; Atkins, John F.

    2018-01-01

    Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid–long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor. PMID:29386352

  20. A Non-Canonical Initiation Site Is Required for Efficient Translation of the Dendritically Localized Shank1 mRNA

    PubMed Central

    Studtmann, Katrin; Ölschläger-Schütt, Janin; Buck, Friedrich; Richter, Dietmar; Sala, Carlo; Bockmann, Jürgen; Kindler, Stefan; Kreienkamp, Hans-Jürgen

    2014-01-01

    Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5′ region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG+1 and AUG+214), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5′UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG+1), directing translation initiation to the second in frame start codon (AUG+214). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG+1, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5′UTR. PMID:24533096

  1. Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.

    PubMed

    Kusmierek, Maria; Dersch, Petra

    2018-02-01

    A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of the cDNA coding for rat brain cysteine sulfinate decarboxylase: brain and liver enzymes are identical proteins encoded by two distinct mRNAs.

    PubMed

    Tappaz, M; Bitoun, M; Reymond, I; Sergeant, A

    1999-09-01

    Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.

  3. Structural variant of the intergenic internal ribosome entry site elements in dicistroviruses and computational search for their counterparts

    PubMed Central

    HATAKEYAMA, YOSHINORI; SHIBUYA, NORIHIRO; NISHIYAMA, TAKASHI; NAKASHIMA, NOBUHIKO

    2004-01-01

    The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES. We examined whether the side stem is responsible for translation activity mediated by the IGR using constructs with compensatory mutations. In vitro translation analysis showed that TSV has an IGR-IRES that is structurally distinct from those previously described. Because IGR-IRES elements determine the translation initiation site by virtue of their own tertiary structure formation, the discovery of this initiation mechanism suggests the possibility that eukaryotic mRNAs might have more extensive coding regions than previously predicted. To test this hypothesis, we searched full-length cDNA databases and whole genome sequences of eukaryotes using the pattern matching program, Scan For Matches, with parameters that can extract sequences containing secondary structure elements resembling those of IGR-IRES. Our search yielded several sequences, but their predicted secondary structures were suggested to be unstable in comparison to those of dicistroviruses. These results suggest that RNAs structurally similar to dicistroviruses are not common. If some eukaryotic mRNAs are translated independently of an initiator methionine tRNA, their structures are likely to be significantly distinct from those of dicistroviruses. PMID:15100433

  4. Assignment of chromosomal locus and evidence for alternatively spliced mRNAs of a human sperm membrane protein (hSMP-1).

    PubMed

    Wang, H; Miao, S; Chen, D; Wang, L; Koide, S S

    1999-10-06

    The gene (HSD-1) coding a human sperm membrane protein (hSMP-1) was isolated from a human testis cDNA expression library using antibodies found in the serum of an infertile woman. HSD-1 was localized to a single locus on chromosome 9 and assigned to band 9p12-p13 by fluorescent in situ hybridization (FISH) mapping and DAPI (4,6-diamidino-2-phenylindole) banding, using rat/human somatic cell hybrids and metaphase chromosomes of human lymphocytes. In rescreening a testis lambdagt10 cDNA expression library, the full-length cDNA (HSD-1) and several truncated cDNAs with heterologous regions were isolated from positive clones. The heterology consisted of deletion, insertion and alteration of the 5'-end. These heterologous truncated fragments may be produced by alternative splicing of mRNAs. Two recombinant prokaryotic expression vectors were constructed with one of the heterologous fragment (clone #26) with and without the alternative 5'-end. Escherichia coli transfected with the construct containing the alternative 5'-end failed to produce the recombinant product, whereas those transfected with the vector lacking the 5'-end produced hSMP-1. DNASIS analysis of the structure of #26 mRNA suggests that the 5'-end has a stable secondary configuration that may maintain the mRNA in an inactivated state, whereby hindering its translation and preventing the expression of the gene.

  5. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.

    PubMed

    Jackson, D A; Pombo, A; Iborra, F

    2000-02-01

    The control of RNA synthesis from protein-coding genes is fundamental in determining the various cell types of higher eukaryotes. The activation of these genes is driven by promoter complexes, and RNA synthesis is performed by an enzyme mega-complex-the RNA polymerase II holoenzyme. These two complexes are the fundamental components required to initiate gene expression and generate the primary transcripts that, after processing, yield mRNAs that pass to the cytoplasm where protein synthesis occurs. But although this gene expression pathway has been studied intensively, aspects of RNA metabolism remain difficult to comprehend. In particular, it is unclear why >95% of RNA polymerized by polymerase II remains in the nucleus, where it is recycled. To explain this apparent paradox, this review presents a detailed description of nuclear RNA (nRNA) metabolism in mammalian cells. We evaluate the number of active transcription units, discuss the distribution of polymerases on active genes, and assess the efficiency with which the products mature and pass to the cytoplasm. Differences between the behavior of mRNAs on this productive pathway and primary transcripts that never leave the nucleus lead us to propose that these represent distinct populations. We discuss possible roles for nonproductive RNAs and present a model to describe the metabolism of these RNAs in the nuclei of mammalian cells.-Jackson, D. A., Pombo, A., Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.

  6. Translation Regulation and RNA Granule Formation after Heat Shock of Procyclic Form Trypanosoma brucei: Many Heat-Induced mRNAs Are also Increased during Differentiation to Mammalian-Infective Forms.

    PubMed

    Minia, Igor; Merce, Clementine; Terrao, Monica; Clayton, Christine

    2016-09-01

    African trypanosome procyclic forms multiply in the midgut of tsetse flies, and are routinely cultured at 27°C. Heat shocks of 37°C and above result in general inhibition of translation, and severe heat shock (41°C) results in sequestration of mRNA in granules. The mRNAs that are bound by the zinc-finger protein ZC3H11, including those encoding refolding chaperones, escape heat-induced translation inhibition. At 27°C, ZC3H11 mRNA is predominantly present as an untranslated cytosolic messenger ribonucleoprotein particle, but after heat shocks of 37°C-41°C, the ZC3H11 mRNA moves into the polysomal fraction. To investigate the scope and specificities of heat-shock translational regulation and granule formation, we analysed the distributions of mRNAs on polysomes at 27°C and after 1 hour at 39°C, and the mRNA content of 41°C heat shock granules. We found that mRNAs that bind to ZC3H11 remained in polysomes at 39°C and were protected from sequestration in granules at 41°C. As previously seen for starvation stress granules, the mRNAs that encode ribosomal proteins were excluded from heat-shock granules. 70 mRNAs moved towards the polysomal fraction after the 39°C heat shock, and 260 increased in relative abundance. Surprisingly, many of these mRNAs are also increased when trypanosomes migrate to the tsetse salivary glands. It therefore seems possible that in the wild, temperature changes due to diurnal variations and periodic intake of warm blood might influence the efficiency with which procyclic forms develop into mammalian-infective forms.

  7. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay.

    PubMed

    Kleene, Kenneth C

    2016-03-01

    Many mRNAs encoding proteins needed for the construction of the specialized organelles of spermatozoa are stored as translationally repressed, free messenger ribonucleoproteins in round spermatids, to be actively translated in elongating and elongated spermatids. The factors that repress translation in round spermatids, however, have been elusive. Two lines of evidence implicate the highly abundant and well-known translational repressor, Y-box protein 2 (YBX2), as a critical factor: First, protamine 1 (Prm1) and sperm-mitochondria cysteine-rich protein (Smcp) mRNAs are prematurely recruited onto polysomes in Ybx2-knockout mouse round spermatids. Second, mutations in 3' untranslated region (3'UTR) cis-elements that abrogate YBX2 binding activate translation of Prm1 and Smcp mRNAs in round spermatids of transgenic mice. The abundance of YBX2 and its affinity for variable sequences, however, raise questions of how YBX2 targets specific mRNAs for repression. Mutations to the Prm1 and Smcp mRNAs in transgenic mice reveal that strong repression in round spermatids requires YBX2 binding sites located near the 3' ends of their 3'UTRs as locating the same sites in upstream positions produce negligible repression. This location-dependence implies that the assembly of repressive complexes is nucleated by adjacent cis-elements that enable cooperative interactions of YBX2 with co-factors. The available data suggest that, in vertebrates, YBX2 has the important role of coordinating the storage of translationally repressed mRNAs in round spermatids by inhibiting translational activity and the degradation of transcripts via translation-dependent deadenylation. These insights should facilitiate future experiments designed to unravel how YBX2 targets mRNAs for repression in round spermatids and how mutations in the YBX2 gene cause infertility in humans. Mol. Reprod. Dev. 83: 190-207, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation.

    PubMed Central

    He, W; Parker, R

    2001-01-01

    A key aspect of understanding eukaryotic gene regulation will be the identification and analysis of proteins that bind mRNAs and control their function. Recently, a complex of seven Lsm proteins and the Pat1p have been shown to interact with yeast mRNAs and promote mRNA decapping. In this study we present several observations to indicate that the LsmI/Pat1 complex has a second distinct function in protecting the 3'-UTR of mRNAs from trimming. First, mutations in the LSM1 to LSM7, as well as PAT1, genes led to the accumulation of MFA2pG and PGK1pG transcripts that had been shortened by 10-20 nucleotides at their 3' ends (referred to as trimming). Second, the trimming of these mRNAs was more severe at the high temperature, correlating with the inability of these mutant strains to grow at high temperature. In contrast, trimming did not occur in a dcp1 Delta strain, wherein the decapping enzyme is lacking. This indicates that trimming is not simply a consequence of the inhibition of mRNA decapping. Third, the temperature-sensitive growth of lsm and pat1 mutants was suppressed by mutations in the exosome or the functionally related Ski proteins, which are required for efficient 3' to 5' mRNA degradation of mRNA. Moreover, in lsm ski double mutants, higher levels of the trimmed mRNAs accumulated, indicating that exosome function is not required for mRNA trimming but that the exosome does degrade the trimmed mRNAs. These results raise the possibility that the temperature-sensitive growth of the lsm1-7 and pat1 mutants is at least partially due to mRNA trimming, which either inactivates the function of the mRNAs or makes them available for premature 3' to 5' degradation by the exosome. PMID:11514438

  9. Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization.

    PubMed Central

    Bozzoni, I; Beccari, E; Luo, Z X; Amaldi, F

    1981-01-01

    Poly-A+ mRNA from Xenopus laevis oocytes, partially enriched for r-protein coding capacity has been used as starting material for preparing a cDNA bank in plasmid pBR322. The clones containing sequences specific for r-proteins have been selected by translation of the complementary mRNAs. Clones for six different r-proteins have been identified and utilized as probes for studying their genomic organization. Two gene copies per haploid genome were found for r-proteins L1, L14, S19, and four-five for protein S1, S8 and L32. Moreover a population polymorphism has been observed for the genomic regions containing sequences for r-protein S1, S8 and L14. Images PMID:6112733

  10. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3' untranslated region AU-rich regulatory element.

    PubMed

    Yoo, Soonmoon; Kim, Hak H; Kim, Paul; Donnelly, Christopher J; Kalinski, Ashley L; Vuppalanchi, Deepika; Park, Michael; Lee, Seung J; Merianda, Tanuja T; Perrone-Bizzozero, Nora I; Twiss, Jeffery L

    2013-09-01

    Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β-actin and GAP-43 mRNAs. β-actin 3'UTR has a defined element for interaction with ZBP1, but GAP-43 mRNA shows no homology to this RNA sequence. Here, we show that an AU-rich regulatory element (ARE) in GAP-43's 3'UTR is necessary and sufficient for its axonal localization. Axonal GAP-43 mRNA levels increase after in vivo injury, and GAP-43 mRNA shows an increased half-life in regenerating axons. GAP-43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co-immunoprecipitate in an RNA-dependent fashion. Reporter mRNA with the GAP-43 ARE competes with endogenous β-actin mRNA for axonal localization and decreases axon length and branching similar to the β-actin 3'UTR competing with endogenous GAP-43 mRNA. Conversely, over-expressing GAP-43 coding sequence with its 3'UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP-43's 3'UTR. We have recently found that over-expression of GAP-43 using an axonally targeted construct with the 3'UTRs of GAP-43 promoted elongating growth of axons, while restricting the mRNA to the cell body with the 3'UTR of γ-actin had minimal effect on axon length. In this study, we show that the ARE in GAP-43's 3'UTR is responsible for localization of GAP-43 mRNA into axons and is sufficient for GAP-43 protein's role in elongating axonal growth. © 2013 International Society for Neurochemistry.

  11. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation

    NASA Technical Reports Server (NTRS)

    Krichevsky, A. M.; Kosik, K. S.

    2001-01-01

    RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.

  12. Regulated capture by exosomes of mRNAs for cytoplasmic tRNA synthetases.

    PubMed

    Wang, Feng; Xu, Zhiwen; Zhou, Jie; Lo, Wing-Sze; Lau, Ching-Fun; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2013-10-11

    Although tRNA synthetases are enzymes that catalyze the first step of translation in the cytoplasm, surprising functions unrelated to translation have been reported. These studies, and the demonstration of novel activities of splice variants, suggest a far broader reach of tRNA synthetases into cell biology than previously recognized. Here we show that mRNAs for most tRNA synthetases can be detected in exosomes. Also detected in exosomes was an mRNA encoding a unique splice variant that others had associated with prostate cancer. The exosomal mRNAs encoding the native synthetase and its cancer-associated splice variant could be translated in vitro and in mammalian cells into stable proteins. Other results showed that selection by exosomes of the splice variant mRNA could be regulated by an external stimulus. Thus, a broad and diverse regulated pool of tRNA synthetase-derived mRNAs is packaged for genetic exchange.

  13. Alternative Ways to Think about Cellular Internal Ribosome Entry*

    PubMed Central

    Gilbert, Wendy V.

    2010-01-01

    Internal ribosome entry sites (IRESs) are specialized mRNA elements that allow recruitment of eukaryotic ribosomes to naturally uncapped mRNAs or to capped mRNAs under conditions in which cap-dependent translation is inhibited. Putative cellular IRESs have been proposed to play crucial roles in stress responses, development, apoptosis, cell cycle control, and neuronal function. However, most of the evidence for cellular IRES activity rests on bicistronic reporter assays, the reliability of which has been questioned. Here, the mechanisms underlying cap-independent translation of cellular mRNAs and the contributions of such translation to cellular protein synthesis are discussed. I suggest that the division of cellular mRNAs into mutually exclusive categories of “cap-dependent” and “IRES-dependent” should be reconsidered and that the implications of cellular IRES activity need to be incorporated into our models of cap-dependent initiation. PMID:20576611

  14. Non-coding landscapes of colorectal cancer

    PubMed Central

    Ragusa, Marco; Barbagallo, Cristina; Statello, Luisa; Condorelli, Angelo Giuseppe; Battaglia, Rosalia; Tamburello, Lucia; Barbagallo, Davide; Di Pietro, Cinzia; Purrello, Michele

    2015-01-01

    For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy. PMID:26556998

  15. Fragile X Mental Retardation Protein Regulates the Levels of Scaffold Proteins and Glutamate Receptors in Postsynaptic Densities*

    PubMed Central

    Schütt, Janin; Falley, Katrin; Richter, Dietmar; Kreienkamp, Hans-Jürgen; Kindler, Stefan

    2009-01-01

    Functional absence of fragile X mental retardation protein (FMRP) causes the fragile X syndrome, a hereditary form of mental retardation characterized by a change in dendritic spine morphology. The RNA-binding protein FMRP has been implicated in regulating postsynaptic protein synthesis. Here we have analyzed whether the abundance of scaffold proteins and neurotransmitter receptor subunits in postsynaptic densities (PSDs) is altered in the neocortex and hippocampus of FMRP-deficient mice. Whereas the levels of several PSD components are unchanged, concentrations of Shank1 and SAPAP scaffold proteins and various glutamate receptor subunits are altered in both adult and juvenile knock-out mice. With the exception of slightly increased hippocampal SAPAP2 mRNA levels in adult animals, altered postsynaptic protein concentrations do not correlate with similar changes in total and synaptic levels of corresponding mRNAs. Thus, loss of FMRP in neurons appears to mainly affect the translation and not the abundance of particular brain transcripts. Semi-quantitative analysis of RNA levels in FMRP immunoprecipitates showed that in the mouse brain mRNAs encoding PSD components, such as Shank1, SAPAP1–3, PSD-95, and the glutamate receptor subunits NR1 and NR2B, are associated with FMRP. Luciferase reporter assays performed in primary cortical neurons from knock-out and wild-type mice indicate that FMRP silences translation of Shank1 mRNAs via their 3′-untranslated region. Activation of metabotropic glutamate receptors relieves translational suppression. As Shank1 controls dendritic spine morphology, our data suggest that dysregulation of Shank1 synthesis may significantly contribute to the abnormal spine development and function observed in brains of fragile X syndrome patients. PMID:19640847

  16. Annexin II is associated with mRNAs which may constitute a distinct subpopulation.

    PubMed Central

    Vedeler, A; Hollås, H

    2000-01-01

    Protein-mRNA interactions affect mRNA transport, anchorage, stability and translatability in the cytoplasm. During the purification of three subpopulations of polysomes, it was observed that a 36-kDa protein, identified as annexin II, is associated with only one specific population of polysomes, namely cytoskeleton-associated polysomes. This association appears to be calcium-dependent since it was sensitive to EGTA and could be reconstituted in vitro. UV irradiation resulted in partial, EGTA-resistant cross-linking of annexin II to the polysomes. Binding of (32)P-labelled total RNA to proteins isolated from the cytoskeleton-bound polysomes on a NorthWestern blot resulted in a radioactive band having the same mobility as annexin II and, most importantly, purified native annexin II immobilized on nitrocellulose specifically binds mRNA. The mRNA population isolated from cytoskeleton-bound polysomes binds to annexin II with the highest affinity as compared with those isolated from free or membrane-bound polysomes. Interestingly, the annexin II complex, isolated from porcine small intestinal microvilli was a far better substrate for mRNA binding than the complex derived from transformed Krebs II ascites cells. When cytoskeleton-associated polysomes were split into 60 S and 40 S ribosomal subunits, and a peak containing mRNA complexes, annexin II fractionated with the mRNAs. Finally, using affinity purification of mRNA on poly(A)(+)-coupled magnetic beads, annexin II was only detected in association with messenger ribonucleoproteins (mRNPs) present in the cytoskeletal fraction (non-polysomal mRNPs). These results, derived from both in vitro experiments and cell fractionation, suggest that annexin II binds directly to the RNA moiety of mRNP complexes containing a specific population of mRNAs. PMID:10839987

  17. Testosterone stimulates progesterone production and STAR, P450 cholesterol side-chain cleavage and LH receptor mRNAs expression in hen (Gallus domesticus) granulosa cells.

    PubMed

    Rangel, P L; Rodríguez, A; Rojas, S; Sharp, P J; Gutierrez, C G

    2009-12-01

    The chicken ovary is organized into a hierarchy of yellow yolky follicles that ovulate on successive days. Active or passive immunization of laying hens against testosterone blocks ovulation without affecting follicle development. Testosterone may play a role in pre-ovulatory follicle maturation by stimulating granulosa progesterone production. We assessed whether this stimulus is dose-related and depends on the maturity of the donor follicle, and if it does so by stimulating granulosa cell STAR, P450 cholesterol side-chain cleavage (P450scc), and LH receptor (LHCGR) mRNAs expression. Progesterone production by granulosa cells from F1, F3, and F4 follicles, cultured for 3 h without testosterone was greater in cells collected 11-14 h than 1-4 h after ovulation. These differences in progesterone production were less pronounced after granulosa cells had been cultured for 24 h. Culture of granulosa cells for 3 or 24 h with testosterone (1-100 ng/ml) stimulated progesterone production in cells collected from F4, F3, or F1 follicles 1-4, or 11-14 h after ovulation. Testosterone (0-4000 ng/ml) alone or in combination with LH (0-100 ng/ml) increased progesterone production by F1 granulosa cells, collected 1-4 and 11-14 h after ovulation and cultured for 3 h. Finally, testosterone (10 or 100 ng/ml) increased STAR, P450scc, and LHCGR mRNAs, when added to 3 h cultures of F1 granulosa cells. In conclusion, testosterone stimulates granulosa cell progesterone production in hen pre-ovulatory hierarchical follicles irrespective of maturational state, acting alone or additively with LH. We propose that testosterone promotes granulosa cell maturation to facilitate the pre-ovulatory release of LH.

  18. Developmental expression of the G protein-coupled receptor 54 and three GnRH mRNAs in the teleost fish cobia.

    PubMed

    Mohamed, J Shaik; Benninghoff, Abby D; Holt, G Joan; Khan, Izhar A

    2007-02-01

    The cDNAs of the G protein-coupled receptor 54 (GPR54) and three prepro-gonadotropin-releasing hormones, GnRH-I (seabream GnRH), GnRH-II (chicken GnRH-II), and GnRH-III (salmon GnRH) were isolated and cloned from the brain of the teleost fish cobia, Rachycentron canadum. The cobia GPR54 cDNA was 95 and 51-56% identical to those of tilapia and mammalian models respectively. The GnRH cDNA sequences of cobia showed strong identities to those of tilapia, Atlantic croaker, red drum, and the seabass and seabream species. The real-time quantitative RT-PCR methods allowed detection of all three GnRH mRNAs on the first day after hatching (DAH). The GnRH-I mRNA levels, which were the lowest among the three GnRHs, increased gradually with two distinct peaks in larvae at 3 and 4 DAH. On the other hand, GnRH-II and GnRH-III mRNAs were significantly higher in larvae at 2 and 6 DAH compared with those on the preceding days. In addition, significant peaks of all the three GnRH mRNAs were observed in the brains of 26-day-old fish. The finding of higher GnRH-I and GnRH-II mRNAs in males than females at 153 DAH may be related to early puberty observed during the first year in laboratory-reared male cobia. Moreover, this study demonstrates for the first time the expression of GPR54 mRNA during larval development in a vertebrate species. The concomitant expression patterns of GPR54 and GnRH mRNAs during different stages of larval and juvenile developments, and during early puberty in male cobia suggest a potential relationship between GPR54 and multiple GnRHs during these stages of development consistent with the role of GPR54 in controlling GnRH release in mammals. The increase in GPR54 and GnRH mRNAs observed during early puberty in cobia is consistent with a similar change reported in pubertal rats. This finding together with the localization of GPR54 mRNAs on GnRH neurons in fish and mammals suggests that the GPR54-GnRH interactions may be conserved in different vertebrate groups.

  19. Perspectives of Long Non-Coding RNAs in Cancer Diagnostics

    PubMed Central

    Reis, Eduardo M.; Verjovski-Almeida, Sergio

    2012-01-01

    Long non-coding RNAs (lncRNAs) transcribed from intergenic and intronic regions of the human genome constitute a broad class of cellular transcripts that are under intensive investigation. While only a handful of lncRNAs have been characterized, their involvement in fundamental cellular processes that control gene expression highlights a central role in cell homeostasis. Not surprisingly, aberrant expression of regulatory lncRNAs has been increasingly documented in different types of cancer, where they can mediate both oncogenic or tumor suppressor effects. Interaction with chromatin remodeling complexes that promote silencing of specific genes or modulation of splicing factor proteins seem to be two general modes of lncRNA regulation, but it is conceivable that additional mechanisms of action are yet to be unveiled. LncRNAs show greater tissue specificity compared to protein-coding mRNAs making them attractive in the search of novel diagnostics/prognostics cancer biomarkers in body fluid samples. In fact, lncRNA prostate cancer antigen 3 can be detected in urine samples and has been shown to improve diagnosis of prostate cancer. We suggest that an unbiased screening of the presence of RNAs in easily accessible body fluids such as serum and urine might reveal novel circulating lncRNAs as potential biomarkers in many types of cancer. Annotation and functional characterization of the lncRNA complement of the cancer transcriptome will conceivably provide new venues for early diagnosis and treatment of the disease. PMID:22408643

  20. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts.

    PubMed

    Sanford, Jeremy R; Wang, Xin; Mort, Matthew; Vanduyn, Natalia; Cooper, David N; Mooney, Sean D; Edenberg, Howard J; Liu, Yunlong

    2009-03-01

    Metazoan genes are encrypted with at least two superimposed codes: the genetic code to specify the primary structure of proteins and the splicing code to expand their proteomic output via alternative splicing. Here, we define the specificity of a central regulator of pre-mRNA splicing, the conserved, essential splicing factor SFRS1. Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) identified 23,632 binding sites for SFRS1 in the transcriptome of cultured human embryonic kidney cells. SFRS1 was found to engage many different classes of functionally distinct transcripts including mRNA, miRNA, snoRNAs, ncRNAs, and conserved intergenic transcripts of unknown function. The majority of these diverse transcripts share a purine-rich consensus motif corresponding to the canonical SFRS1 binding site. The consensus site was not only enriched in exons cross-linked to SFRS1 in vivo, but was also enriched in close proximity to splice sites. mRNAs encoding RNA processing factors were significantly overrepresented, suggesting that SFRS1 may broadly influence the post-transcriptional control of gene expression in vivo. Finally, a search for the SFRS1 consensus motif within the Human Gene Mutation Database identified 181 mutations in 82 different genes that disrupt predicted SFRS1 binding sites. This comprehensive analysis substantially expands the known roles of human SR proteins in the regulation of a diverse array of RNA transcripts.

  1. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes.

    PubMed

    Shatsky, Ivan N; Dmitriev, Sergey E; Andreev, Dmitri E; Terenin, Ilya M

    2014-01-01

    The conventional paradigm of translation initiation in eukaryotes states that the cap-binding protein complex eIF4F (consisting of eIF4E, eIF4G and eIF4A) plays a central role in the recruitment of capped mRNAs to ribosomes. However, a growing body of evidence indicates that this paradigm should be revised. This review summarizes the data which have been mostly accumulated in a post-genomic era owing to revolutionary techniques of transcriptome-wide analysis. Unexpectedly, these techniques have uncovered remarkable diversity in the recruitment of cellular mRNAs to eukaryotic ribosomes. These data enable a preliminary classification of mRNAs into several groups based on their requirement for particular components of eIF4F. They challenge the widely accepted concept which relates eIF4E-dependence to the extent of secondary structure in the 5' untranslated regions of mRNAs. Moreover, some mRNA species presumably recruit ribosomes to their 5' ends without the involvement of either the 5' m(7)G-cap or eIF4F but instead utilize eIF4G or eIF4G-like auxiliary factors. The long-standing concept of internal ribosome entry site (IRES)-elements in cellular mRNAs is also discussed.

  2. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    PubMed

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  3. The race to decipher the top secrets of TOP mRNAs.

    PubMed

    Meyuhas, Oded; Kahan, Tamar

    2015-07-01

    Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action--a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs

    PubMed Central

    Zhou, Chan; Molinie, Benoit; Daneshvar, Kaveh; Pondick, Joshua V.; Wang, Jinkai; Van Wittenberghe, Nicholas O.; Xing, Yi; Giallourakis, Cosmas C.; Mullen, Alan C.

    2017-01-01

    Summary N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs and is implicated in all aspects of post-transcriptional RNA metabolism. However, little is known about m6A modifications to circular (circ) RNAs. We developed a computational pipeline (AutoCirc) that together with depletion of ribosomal RNA and m6A immunoprecipitation defined thousands of m6A-circRNAs, with cell-type-specific expression. The presence of m6A-circRNAs is corroborated by interaction between circRNAs and YTHDF1/YTHDF2, proteins that read m6A sites in mRNAs, and by reduced m6A levels upon depletion of METTL3, the m6A writer. Despite sharing m6A readers and writers, m6A-circRNAs are frequently derived from exons that are not methylated in mRNAs, while mRNAs that are methylated on the same exons that compose m6A-circRNAs exhibit less stability, in a process regulated by YTHDF2. These results expand our understanding of the breadth of m6A modifications and uncover regulation of circRNAs through m6A modification. PMID:28854373

  5. Separate analysis of human papillomavirus E6 and E7 messenger RNAs to predict cervical neoplasia progression

    PubMed Central

    Liu, Shuling; Lachkar, Bouchra; Zhang, Shuang; Xu, Chenyang; Tenjimbayashi, Yuri; Shikama, Ayumi; Tasaka, Nobutaka; Akiyama, Azusa; Sakurai, Manabu; Nakao, Sari; Ochi, Hiroyuki; Onuki, Mamiko; Matsumoto, Koji; Yoshikawa, Hiroyuki; Satoh, Toyomi

    2018-01-01

    A few studies previously suggested that human papillomavirus (HPV) E6 messenger RNA (mRNA) may exist uniformly in all grades of cervical intraepithelial neoplasia (CIN), whereas the detection rate of E7 mRNA may increase with disease progression from low-grade CIN to invasive carcinoma. The aim of this study was to clarify the different roles of E6 and E7 mRNAs in cervical carcinogenesis. The presence of each E6 and E7 mRNA was analyzed in 171 patients with pathologically-diagnosed CIN or cervical carcinoma. We utilized a RT-PCR assay based on consensus primers which could detect E6 mRNA (full-length E6/E7 transcript) and E7 mRNAs (spliced E6*/E7 transcripts) separately for various HPV types. E7 mRNAs were detected in 6% of CIN1, 12% of CIN2, 24% of CIN3, and 54% of cervical carcinoma. The presence of E7 mRNAs was significantly associated with progression from low-grade CIN to invasive carcinoma in contrast with E6 mRNA or high-risk HPV (HR-HPV) DNA (p = 0.00011, 0.80 and 0.54). The presence of both E6 and E7 mRNAs was significantly associated with HPV16/18 DNA but not with HR-HPV DNA (p = 0.0079 and 0.21), while the presence of E6 mRNA was significantly associated with HR-HPV DNA but not with HPV16/18 DNA (p = 0.036 and 0.089). The presence of both E6 and E7 mRNAs showed high specificity and low sensitivity (100% and 19%) for detecting CIN2+ by contrast with the positivity for HR-HPV DNA showing low specificity and high sensitivity (19% and 89%). The positive predictive value for detecting CIN2+ was even higher by the presence of both E6 and E7 mRNAs than by the positivity for HR-HPV DNA (100% vs. 91%). In 31 patients followed up for CIN1-2, the presence of both E6 and E7 mRNAs showed significant association with the occurrence of upgraded abnormal cytology in contrast with E6 mRNA, HR-HPV DNA, or HPV16/18 DNA (p = 0.034, 0.73, 0.53, and 0.72). Our findings support previous studies according to which E7 mRNA is more closely involved in cervical carcinogenesis than E6 mRNA. Moreover, the separate analysis of E6 and E7 mRNAs may be more useful than HR-HPV DNA test for detecting CIN2+ precisely and predicting disease progression. Further accumulation of evidence is warranted to validate our findings. PMID:29466435

  6. Genome-wide Integration Study of Circulating miRNAs and Peripheral Whole-Blood mRNAs of Male Acute Ischemic Stroke Patients.

    PubMed

    Xue, Yang; Yin, Pengqi; Li, Guozhong; Zhong, Di

    2018-06-01

    Several circulating microRNAs (miRNAs) have been proved to serve as stable biomarkers in blood for acute ischemic stroke (AIS). However, the functions of these biomarkers remain elusive. By conducting the integration analysis of circulating miRNAs and peripheral whole-blood mRNAs using bioinformatics methods, we explored the biological role of these circulating markers in peripheral whole blood at the genome-wide level. Stroke-related circulating miRNA profile data (GSE86291) and peripheral whole-blood mRNA expression data (GSE16561) were collected from the Gene Expression Omnibus (GEO) datasets. We selected male patients to avoid any gender differences in stroke pathology. Male stroke-related miRNAs (M-miRNAs) and mRNAs (M-mRNAs) were detected using GEO2R. Nine M-miRNAs (five up- and four down-regulated) were applied to TargetScan to predict the possible target mRNAs. Next, we intersected these targets with the M-mRNAs (38 up- and three down-regulated) to obtain the male stroke-related overlapped mRNAs (Mo-mRNAs). Finally, we analyzed biological functions of Mo-mRNAs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and constructed networks among the Mo-mRNAs, overlapped M-miRNAs (Mo-miRNAs), and their functions. The Mo-mRNAs were enriched in functions such as platelet degranulation, immune response, and pathways associated with phagosome biology and Staphylococcus aureus infection. This study provides an integrated view of interactions among circulating miRNAs and peripheral whole-blood mRNAs involved in the pathophysiological processes of male AIS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  8. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    PubMed

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.

  9. The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation

    PubMed Central

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A. Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  10. Neonatal oxytocin treatment modulates oxytocin receptor, atrial natriuretic peptide, nitric oxide synthase and estrogen receptor mRNAs expression in rat heart

    PubMed Central

    Pournajafi-Nazarloo, Hossein; Perry, Adam; Partoo, Leila; Papademeteriou, Eros; Azizi, Feridoun; Carter, C. Sue; Cushing, Bruce S.

    2007-01-01

    Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERα) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of following treatments; (a) 50 µl i.p. injection of 7 µg OT, (b) 0.7 µg of OT antagonist (OTA), or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERα and estrogen receptor beta (ERβ) were compared by age, treatment, and sex utilizing Real Time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERα increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21 there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERα mRNAs and that these effects are mitigated by D21. Also with the exception of ERα mRNA, the effects are the same in both sexes. PMID:17537544

  11. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition.

    PubMed

    Laver, John D; Li, Xiao; Ray, Debashish; Cook, Kate B; Hahn, Noah A; Nabeel-Shah, Syed; Kekis, Mariana; Luo, Hua; Marsolais, Alexander J; Fung, Karen Yy; Hughes, Timothy R; Westwood, J Timothy; Sidhu, Sachdev S; Morris, Quaid; Lipshitz, Howard D; Smibert, Craig A

    2015-05-12

    Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.

  12. Expression of CXCL4 and aquaporin 3 and 10 mRNAs in patients with otitis media with effusion.

    PubMed

    Jin, Zhe; Cha, Sung Ho; Choi, Yong-Sung; Kim, Young Il; Choi, Sun A; Yeo, Seung Geun

    2016-02-01

    Bacterial infections in children with underdeveloped Eustachian tubes are a major cause of otitis media with effusion (OEM), and persistent effusion in the middle ear in these patients is a major cause of surgical intervention. CXCL4 is associated with bacterial infection, and aquaporins 3 and 10 are associated with water metabolism. This study assessed the expression of mRNAs encoding CXCL-4 and aquaporins 3 and 10 in the effusion of pediatric OME patients, and the association of this expression with clinical manifestations. Levels of CXCL4 and aquaporin 3 and 10 mRNA were assayed by real-time RT-PCR in the middle ear effusion of 38 pediatric patients with OME requiring ventilation tube insertion. The relationships of these mRNA levels with the presence of bacteria; concomitant diseases such as allergic rhinitis, sinusitis, and adenoid disease; recurrence of OME; and number of ventilation tube insertions were evaluated. CXCL4 and aquaporin 3 and 10 mRNAs were expressed in middle ear effusion of all OME patients. CXCL-4 mRNA levels were significantly lower when bacteria were present and in patients with concomitant diseases (p<0.05 each). Levels of all three mRNAs were unrelated to OME recurrence or number of ventilation tube insertions (p>0.05 each). The levels of CXCL4 and aquaporin 10 mRNAs were significantly correlated (p<0.05). Expression of CXCL4 and aquaporin 3 and 10 mRNAs in middle ear effusion is associated with the pathophysiology of OME. CXCL4 mRNA levels are significantly lower in patients with than without concomitant diseases or bacterial infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods

    PubMed Central

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John

    2018-01-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs. PMID:29474390

  14. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins

    PubMed Central

    Arvola, René M.

    2017-01-01

    ABSTRACT Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control. PMID:28318367

  15. Combinatorial control of messenger RNAs by Pumilio, Nanos and Brain Tumor Proteins.

    PubMed

    Arvola, René M; Weidmann, Chase A; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2017-11-02

    Eukaryotes possess a vast array of RNA-binding proteins (RBPs) that affect mRNAs in diverse ways to control protein expression. Combinatorial regulation of mRNAs by RBPs is emerging as the rule. No example illustrates this as vividly as the partnership of 3 Drosophila RBPs, Pumilio, Nanos and Brain Tumor, which have overlapping functions in development, stem cell maintenance and differentiation, fertility and neurologic processes. Here we synthesize 30 y of research with new insights into their molecular functions and mechanisms of action. First, we provide an overview of the key properties of each RBP. Next, we present a detailed analysis of their collaborative regulatory mechanism using a classic example of the developmental morphogen, hunchback, which is spatially and temporally regulated by the trio during embryogenesis. New biochemical, structural and functional analyses provide insights into RNA recognition, cooperativity, and regulatory mechanisms. We integrate these data into a model of combinatorial RNA binding and regulation of translation and mRNA decay. We then use this information, transcriptome wide analyses and bioinformatics predictions to assess the global impact of Pumilio, Nanos and Brain Tumor on gene regulation. Together, the results support pervasive, dynamic post-transcriptional control.

  16. The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae

    PubMed Central

    Chu, Dominique; Barnes, David J.; von der Haar, Tobias

    2011-01-01

    Protein synthesis translates information from messenger RNAs into functional proteomes. Because of the finite nature of the resources required by the translational machinery, both the overall protein synthesis activity of a cell and activity on individual mRNAs are controlled by the allocation of limiting resources. Upon introduction of heterologous sequences into an organism—for example for the purposes of bioprocessing or synthetic biology—limiting resources may also become overstretched, thus negatively affecting both endogenous and heterologous gene expression. In this study, we present a mean-field model of translation in Saccharomyces cerevisiae for the investigation of two particular translational resources, namely ribosomes and aminoacylated tRNAs. We firstly use comparisons of experiments with heterologous sequences and simulations of the same conditions to calibrate our model, and then analyse the behaviour of the translational system in yeast upon introduction of different types of heterologous sequences. Our main findings are that: competition for ribosomes, rather than tRNAs, limits global translation in this organism; that tRNA aminoacylation levels exert, at most, weak control over translational activity; and that decoding speeds and codon adaptation exert strong control over local (mRNA specific) translation rates. PMID:21558172

  17. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs.

    PubMed

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods.

    PubMed

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John; Clayton, Christine

    2018-02-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.

  19. A New Framework for Understanding IRES-mediated Translation

    PubMed Central

    Komar, Anton A.; Mazumder, Barsanjit; Merrick, William C.

    2012-01-01

    Studies over the past 5 or so years have indicated that the traditional clustering of mechanisms for translation initiation in eukaryotes into cap-dependent and cap-independent (or IRES-mediated) is far too narrow. From individual studies of a number of mRNAs encoding proteins that are regulatory in nature (i.e. likely to be needed in small amounts such as transcription factors, protein kinases, etc.), it is now evident that mRNAs exist that blur these boundaries. This review seeks to set the basic ground rules for the analysis of different initiation pathways that are associated with these new mRNAs as well as related to the more traditional mechanisms, especially the cap-dependent translational process that is the major route of initiation of mRNAs for housekeeping proteins and thus, the bulk of protein synthesis in most cells. It will become apparent that a mixture of descriptions is likely to become the norm in the near future (i.e. m7G-assisted internal initiation). PMID:22555019

  20. Development of an in situ hybridization assay for the detection of ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas.

    PubMed

    Corbeil, Serge; Faury, Nicole; Segarra, Amélie; Renault, Tristan

    2015-01-01

    An in situ hybridization protocol for detecting mRNAs of ostreid herpesvirus type 1 (OsHV-1) which infects Pacific oysters, Crassostrea gigas, was developed. Three RNA probes were synthesized by cloning three partial OsHV-1 genes into plasmids using three specific primer pairs, and performing a transcription in the presence of digoxigenin dUTP. The RNA probes were able to detect the virus mRNAs in paraffin sections of experimentally infected oysters 26 h post-injection. The in situ hybridization showed that the OsHV-1 mRNAs were mainly present in connective tissues in gills, mantle, adductor muscle, digestive gland and gonads. DNA detection by in situ hybridization using a DNA probe and viral DNA quantitation by real-time PCR were also performed and results were compared with those obtained using RNA probes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Transcript profiling of pattern recognition receptors in a semi domesticated breed of buffalo, Toda, of India.

    PubMed

    Vignesh, A R; Dhanasekaran, S; Raj, G Dhinakar; Balachandran, C; Pazhanivel, N; Sreekumar, C; Tirumurugaan, K G; Raja, A; Kumanan, K

    2012-06-15

    The primary objective of this study was to assess the expression profile and levels of toll-like receptor (TLR) mRNAs in the spleen, lung, mediastinal lymph node (MLN), jejunum, rectum, skin and peripheral blood mononuclear cells (PBMC) of Toda and Murrah buffalos. Spleen and PBMC had increased expression of TLR mRNAs 2, 4, 5, 6, 8, 9 and 10; lung had increased expression of TLR mRNAs 2, 4, 5, 6 and 8, MLN TLR mRNA 6, 9, 10 and decrease in TLR 3 and 7 mRNAs in skin. No significant differences were observed in the expression levels of any of the TLR mRNA in jejunum and rectum. Toda buffaloes showed significantly higher expression levels of TLR 9 mRNA in MLN, TLR mRNAs 1, 5, 6, 9 and 10 in skin and TLR mRNAs 2, 4, 7 and 9 in PBMC than Murrah buffaloes living in the vicinity. Toda and Murrah buffaloes were inoculated with TLR5 (flagellin) and TLR9 (CpG ODN) ligands in vivo and expression levels of the respective TLRs analyzed 12h later. Following CpG inoculation, Toda buffaloes had significantly higher levels of TLR 9 mRNA expression but not in Murrah. However, flagellin induction did not increase TLR 5 mRNA expression in both these breeds. Histological sections of the skin were made and infiltrating cell clusters were graded and quantified. Following CpG inoculation, Toda buffaloes showed higher numbers of infiltrating grade 1 and grade 3 cell clusters while Murrah showed lower numbers of infiltrating grade 1 cells as compared to mock-inoculated skin sections. Flagellin treatment revealed no significant differences in infiltrating cell clusters in both the breeds. The results have shown differential expression of TLR mRNAs in various tissues between two divergent buffalo breeds with the highest difference in TLR expression profile seen in the skin, the largest portal of entry of pathogens, of Toda. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Preparation of highly multiplexed small RNA sequencing libraries.

    PubMed

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  3. Identification of differentially expressed lncRNAs involved in transient regeneration of the neonatal C57BL/6J mouse heart by next-generation high-throughput RNA sequencing.

    PubMed

    Chen, Yu-Mei; Li, Hua; Fan, Yi; Zhang, Qi-Jun; Li, Xing; Wu, Li-Jie; Chen, Zi-Jie; Zhu, Chun; Qian, Ling-Mei

    2017-04-25

    Previous studies have shown that mammalian cardiac tissue has a regenerative capacity. Remarkably, neonatal mice can regenerate their cardiac tissue for up to 6 days after birth, but this capacity is lost by day 7. In this study, we aimed to explore the expression pattern of long noncoding RNA (lncRNA) during this period and examine the mechanisms underlying this process. We found that 685 lncRNAs and 1833 mRNAs were differentially expressed at P1 and P7 by the next-generation high-throughput RNA sequencing. The coding genes associated with differentially expressed lncRNAs were mainly involved in metabolic processes and cell proliferation, and also were potentially associated with several key regeneration signalling pathways, including PI3K-Akt, MAPK, Hippo and Wnt. In addition, we identified some correlated targets of highly-dysregulated lncRNAs such as Igfbp3, Trnp1, Itgb6, and Pim3 by the coding-noncoding gene co-expression network. These data may offer a reference resource for further investigation about the mechanisms by which lncRNAs regulate cardiac regeneration.

  4. Applications of RNA Indexes for Precision Oncology in Breast Cancer.

    PubMed

    Ma, Liming; Liang, Zirui; Zhou, Hui; Qu, Lianghu

    2018-05-09

    Precision oncology aims to offer the most appropriate treatments to cancer patients mainly based on their individual genetic information. Genomics has provided numerous valuable data on driver mutations and risk loci; however, it remains a formidable challenge to transform these data into therapeutic agents. Transcriptomics describes the multifarious expression patterns of both mRNAs and non-coding RNAs (ncRNAs), which facilitates the deciphering of genomic codes. In this review, we take breast cancer as an example to demonstrate the applications of these rich RNA resources in precision medicine exploration. These include the use of mRNA profiles in triple-negative breast cancer (TNBC) subtyping to inform corresponding candidate targeted therapies; current advancements and achievements of high-throughput RNA interference (RNAi) screening technologies in breast cancer; and microRNAs as functional signatures for defining cell identities and regulating the biological activities of breast cancer cells. We summarize the benefits of transcriptomic analyses in breast cancer management and propose that unscrambling the core signaling networks of cancer may be an important task of multiple-omic data integration for precision oncology. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Integrated analysis of long non-coding RNAs in human gastric cancer: An in silico study.

    PubMed

    Han, Weiwei; Zhang, Zhenyu; He, Bangshun; Xu, Yijun; Zhang, Jun; Cao, Weijun

    2017-01-01

    Accumulating evidence highlights the important role of long non-coding RNAs (lncRNAs) in a large number of biological processes. However, the knowledge of genome scale expression of lncRNAs and their potential biological function in gastric cancer is still lacking. Using RNA-seq data from 420 gastric cancer patients in The Cancer Genome Atlas (TCGA), we identified 1,294 lncRNAs differentially expressed in gastric cancer compared with adjacent normal tissues. We also found 247 lncRNAs differentially expressed between intestinal subtype and diffuse subtype. Survival analysis revealed 33 lncRNAs independently associated with patient overall survival, of which 6 lncRNAs were validated in the internal validation set. There were 181 differentially expressed lncRNAs located in the recurrent somatic copy number alterations (SCNAs) regions and their correlations between copy number and RNA expression level were also analyzed. In addition, we inferred the function of lncRNAs by construction of a co-expression network for mRNAs and lncRNAs. Together, this study presented an integrative analysis of lncRNAs in gastric cancer and provided a valuable resource for further functional research of lncRNAs in gastric cancer.

  6. Human La binds mRNAs through contacts to the poly(A) tail.

    PubMed

    Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A

    2018-05-04

    In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3'OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3'OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.

  7. Influence of JuA in evoking communication changes between the small intestines and brain tissues of rats and the GABAA and GABAB receptor transcription levels of hippocampal neurons.

    PubMed

    Wang, Xi-Xi; Ma, Gu-Ijie; Xie, Jun-Bo; Pang, Guang-Chang

    2015-01-15

    Jujuboside A (JuA) is a main active ingredient of semen ziziphi spinosae, which can significantly reduce spontaneous activity in mammals, increase the speed of falling asleep, prolong the sleeping time as well as improve the sleeping efficiency. In this study, the mechanism and the pathway of the sedative and hypnotic effect of JuA were investigated. After being treated with JuA (in vitro), the rat׳s small intestine tissues cultures were used to stimulate the brain tissues. Then 27 cytokine levels were detected in the two kinds of tissue culture via liquid protein chip technology; In addition, the cultured hippocampal neurons of rat were treated with JuA, and γ-aminobutyric acid (GABA) receptor subunits (GABAAα1, GABAAα5, GABAAβ1 and GABABR1) mRNAs were evaluated by Real-time PCR. The levels of IL-1α, MIP-1α, IL-1β and IL-2 were reduced significantly after 3h of treating the small intestine tissues with JuA (200µl/ml), and the concentration change rates, in order, were -59.3%, -3.59%, -50.1% and -49.4%; these cytokines were transmitted to brain tissues 2h later, which could lead to significant levels of reduction of IL-1α, IFN-γ, IP-10 and TNF-α; the concentration change rates were -62.4%, -25.7%, -55.2% and -38.5%, respectively. Further, the intercellular communication network diagram was mapped out, which could suggest the mechanism and the pathway of the sedative and hypnotic effect of JuA. The results also indicated that JuA (50µl/ml) increased significantly GABAAα1 receptor mRNAs and reduced GABABR1, mRNAs in hippocampal neurons after 24h of stimulation; however, all the mRNA transcription levels of GABAAα1,GABAAα5, GABAAβ1 and GABABR1 receptors increased significantly after 48h. JuA performed its specific sedative and hypnotic effect through not only adjusting GABA receptors subunit mRNAs expression, but also down-regulating the secretion of relevant inflammation cytokines on the intestinal mucosal system to affect the intercellular cytokine network between nerve cells in the brain. This mechanism is similar to that of melatonin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5' UTR of tumor-associated mRNAs.

    PubMed

    Serikawa, Tatsuo; Spanos, Christos; von Hacht, Annekathrin; Budisa, Nediljko; Rappsilber, Juri; Kurreck, Jens

    2018-01-01

    G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions are not only important for the fine-tuning of translation but are also relevant to the regulation of mRNA maturation and may play an important role in tumor biology. Proteomic data are available via ProteomeXchange with identifier PXD005761. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    PubMed Central

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  10. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    PubMed Central

    Kosaka, Nobuyoshi

    2016-01-01

    One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs). EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs), are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer. PMID:26861408

  11. Genetic therapy for the nervous system.

    PubMed

    Bowers, William J; Breakefield, Xandra O; Sena-Esteves, Miguel

    2011-04-15

    Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state.

  12. microRNA therapies in cancer.

    PubMed

    Rothschild, Sacha I

    2014-01-01

    MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs" Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.

  13. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq

    PubMed Central

    Shepard, Peter J.; Choi, Eun-A; Lu, Jente; Flanagan, Lisa A.; Hertel, Klemens J.; Shi, Yongsheng

    2011-01-01

    Alternative polyadenylation (APA) of mRNAs has emerged as an important mechanism for post-transcriptional gene regulation in higher eukaryotes. Although microarrays have recently been used to characterize APA globally, they have a number of serious limitations that prevents comprehensive and highly quantitative analysis. To better characterize APA and its regulation, we have developed a deep sequencing-based method called Poly(A) Site Sequencing (PAS-Seq) for quantitatively profiling RNA polyadenylation at the transcriptome level. PAS-Seq not only accurately and comprehensively identifies poly(A) junctions in mRNAs and noncoding RNAs, but also provides quantitative information on the relative abundance of polyadenylated RNAs. PAS-Seq analyses of human and mouse transcriptomes showed that 40%–50% of all expressed genes produce alternatively polyadenylated mRNAs. Furthermore, our study detected evolutionarily conserved polyadenylation of histone mRNAs and revealed novel features of mitochondrial RNA polyadenylation. Finally, PAS-Seq analyses of mouse embryonic stem (ES) cells, neural stem/progenitor (NSP) cells, and neurons not only identified more poly(A) sites than what was found in the entire mouse EST database, but also detected significant changes in the global APA profile that lead to lengthening of 3′ untranslated regions (UTR) in many mRNAs during stem cell differentiation. Together, our PAS-Seq analyses revealed a complex landscape of RNA polyadenylation in mammalian cells and the dynamic regulation of APA during stem cell differentiation. PMID:21343387

  14. An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export

    PubMed Central

    Jackson, Brian R.; Boyne, James R.; Noerenberg, Marko; Taylor, Adam; Hautbergue, Guillaume M.; Walsh, Matthew J.; Wheat, Rachel; Blackbourn, David J.; Wilson, Stuart A.; Whitehouse, Adrian

    2011-01-01

    The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs. PMID:21814512

  15. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culturemore » extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.« less

  16. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures

    PubMed Central

    Vakulskas, Christopher A.; Pannuri, Archana; Cortés-Selva, Diana; Zere, Tesfalem R.; Ahmer, Brian M.; Babitzke, Paul; Romeo, Tony

    2014-01-01

    Summary In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two noncoding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance basepairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function. PMID:24708042

  17. Investigative and extrapolative role of microRNAs' genetic expression in breast carcinoma.

    PubMed

    Usmani, Ambreen; Shoro, Amir Ali; Shirazi, Bushra; Memon, Zahida

    2016-01-01

    MicroRNAs (miRs) are non-coding ribonucleic acids consisting of about 18-22 nucleotide bases. Expression of several miRs can be altered in breast carcinomas in comparison to healthy breast tissue, or between various subtypes of breast cancer. These are regulated as either oncogene or tumor suppressors, this shows that their expression is misrepresented in cancers. Some miRs are specifically associated with breast cancer and are affected by cancer-restricted signaling pathways e.g. downstream of estrogen receptor-α or HER2/neu. Connection of multiple miRs with breast cancer, and the fact that most of these post transcript structures may transform complex functional networks of mRNAs, identify them as potential investigative, extrapolative and predictive tumor markers, as well as possible targets for treatment. Investigative tools that are currently available are RNA-based molecular techniques. An additional advantage related to miRs in oncology is that they are remarkably stable and are notably detectable in serum and plasma. Literature search was performed by using database of PubMed, the keywords used were microRNA (52 searches) AND breast cancer (169 searches). PERN was used by database of Bahria University, this included literature and articles from international sources; 2 articles from Pakistan on this topic were consulted (one in international journal and one in a local journal). Of these, 49 articles were shortlisted which discussed relation of microRNA genetic expression in breast cancer. These articles were consulted for this review.

  18. A conserved α-proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots.

    PubMed

    Robledo, Marta; Peregrina, Alexandra; Millán, Vicenta; García-Tomsig, Natalia I; Torres-Quesada, Omar; Mateos, Pedro F; Becker, Anke; Jiménez-Zurdo, José I

    2017-07-01

    Small non-coding RNAs (sRNAs) are expected to have pivotal roles in the adaptive responses underlying symbiosis of nitrogen-fixing rhizobia with legumes. Here, we provide primary insights into the function and activity mechanism of the Sinorhizobium meliloti trans-sRNA NfeR1 (Nodule Formation Efficiency RNA). Northern blot probing and transcription tracking with fluorescent promoter-reporter fusions unveiled high nfeR1 expression in response to salt stress and throughout the symbiotic interaction. The strength and differential regulation of nfeR1 transcription are conferred by a motif, which is conserved in nfeR1 promoter regions in α-proteobacteria. NfeR1 loss-of-function compromised osmoadaptation of free-living bacteria, whilst causing misregulation of salt-responsive genes related to stress adaptation, osmolytes catabolism and membrane trafficking. Nodulation tests revealed that lack of NfeR1 affected competitiveness, infectivity, nodule development and symbiotic efficiency of S. meliloti on alfalfa roots. Comparative computer predictions and a genetic reporter assay evidenced a redundant role of three identical NfeR1 unpaired anti Shine-Dalgarno motifs for targeting and downregulation of translation of multiple mRNAs from transporter genes. Our data provide genetic evidence of the hyperosmotic conditions of the endosymbiotic compartments. NfeR1-mediated gene regulation in response to this cue could contribute to coordinate nutrient uptake with the metabolic reprogramming concomitant to symbiotic transitions. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Trans splicing in Leishmania enriettii and identification of ribonucleoprotein complexes containing the spliced leader and U2 equivalent RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.I.; Wirth, D.F.

    1988-06-01

    The 5' ends of Leishmania mRNAs contain an identical 35-nucleotide sequence termed the spliced leader (SL) or 5' mini-exon. The SL sequence is at the 5' end of an 85-nucleotide primary transcript that contains a consensus eucaryotic 5' intron-exon splice junction immediately 3' to the SL. The SL is added to protein-coding genes immediately 3' to a consensus eucaryotic 3' intron-exon splice junction. The authors' previous work demonstrated possible intermediates in discontinuous mRNA processing that contain the 50 nucleotides of the SL primary transcript 3' to the SL, the SL intron sequence (SLIS). These RNAs have a 5' terminus atmore » the splice junction of the SL and the SLIS. The authors examined a Leishmania nuclear extract for these RNAs in ribonucleoprotein (RNP) particles. Density centrifugation analysis showed that the SL RNA is predominately in RNP complexes at 60S, while the SLIS-containing RNAs are in complexes at 40S. They also demonstrated that the SLIS can be released from polyadenylated RNA by incubation with a HeLa cell extract containing debranching enzymatic activity. These data suggested that Leishmania enriettii mRNAs are assembled by bimolecular or trans splicing as has been recently demonstrated for Trypanosoma brucei. Furthermore, they determined the partial sequence of the Leishmania U2 equivalent RNA and demonstrated that it cosediments with the SL RNA at 60S in a nuclear extract. These RNP particles may be analogous to so-called spliceosomes that have been demonstrated in other systems.« less

  20. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    PubMed

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  1. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  2. A survey of small RNAs in human sperm

    PubMed Central

    Krawetz, Stephen A.; Kruger, Adele; Lalancette, Claudia; Tagett, Rebecca; Anton, Ester; Draghici, Sorin; Diamond, Michael P.

    2011-01-01

    BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24 000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18–30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈7%), Piwi-interacting piRNAs (≈17%), repeat-associated small RNAs (≈65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization. PMID:21989093

  3. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein

    PubMed Central

    Kaltimbacher, Valérie; Bonnet, Crystel; Lecoeuvre, Gaëlle; Forster, Valérie; Sahel, José-Alain; Corral-Debrinski, Marisol

    2006-01-01

    As previously established in yeast, two sequences within mRNAs are responsible for their specific localization to the mitochondrial surface—the region coding for the mitochondrial targeting sequence and the 3′UTR. This phenomenon is conserved in human cells. Therefore, we decided to use mRNA localization as a tool to address to mitochondria, a protein that is not normally imported. For this purpose, we associated a nuclear recoded ATP6 gene with the mitochondrial targeting sequence and the 3′UTR of the nuclear SOD2 gene, which mRNA exclusively localizes to the mitochondrial surface in HeLa cells. The ATP6 gene is naturally located into the organelle and encodes a highly hydrophobic protein of the respiratory chain complex V. In this study, we demonstrated that hybrid ATP6 mRNAs, as the endogenous SOD2 mRNA, localize to the mitochondrial surface in human cells. Remarkably, fusion proteins localize to mitochondria in vivo. Indeed, ATP6 precursors synthesized in the cytoplasm were imported into mitochondria in a highly efficient way, especially when both the MTS and the 3′UTR of the SOD2 gene were associated with the re-engineered ATP6 gene. Hence, these data indicate that mRNA targeting to the mitochondrial surface represents an attractive strategy for allowing the mitochondrial import of proteins originally encoded by the mitochondrial genome without any amino acid change in the protein that could interfere with its biologic activity. PMID:16751614

  4. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.

    PubMed

    Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  5. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ

    PubMed Central

    Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele

    2012-01-01

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125

  6. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    PubMed

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  7. SV40-IMMORTALIZED NON-TUMORIGENIC AND TUMORIGENIC CELL LINES DIFFER IN EXPRESSION OF HALLMARK VIRAL RESPONSE MRNAS

    EPA Science Inventory

    SV40-Immortalized Non-Tumorigenic and Tumorigenic Cell Lines Differ in Expression of Hallmark Viral Response mRNAs.

    Prior to the use of an in vitra/in viva transformation system to examine the tumorigenic activity of environmental contaminants, in vitra gene expression pa...

  8. Cytoplasmic Control of Sense-Antisense mRNA Pairs.

    PubMed

    Sinturel, Flore; Navickas, Albertas; Wery, Maxime; Descrimes, Marc; Morillon, Antonin; Torchet, Claire; Benard, Lionel

    2015-09-22

    Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs.

    PubMed Central

    Travis, G H; Sutcliffe, J G

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, we developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA. Images PMID:2894033

  10. High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs.

    PubMed

    Endo, Kei; Hayashi, Karin; Saito, Hirohide

    2016-02-23

    The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.

  11. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    PubMed Central

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  12. UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs

    PubMed Central

    Mignone, Flavio; Grillo, Giorgio; Licciulli, Flavio; Iacono, Michele; Liuni, Sabino; Kersey, Paul J.; Duarte, Jorge; Saccone, Cecilia; Pesole, Graziano

    2005-01-01

    The 5′ and 3′ untranslated regions of eukaryotic mRNAs play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization and message stability. UTRdb is a curated database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs, derived from several sources of primary data. Experimentally validated functional motifs are annotated (and also collated as the UTRsite database) and cross-links to genomic and protein data are provided. The integration of UTRdb with genomic and protein data has allowed the implementation of a powerful retrieval resource for the selection and extraction of UTR subsets based on their genomic coordinates and/or features of the protein encoded by the relevant mRNA (e.g. GO term, PFAM domain, etc.). All internet resources implemented for retrieval and functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNAs are accessible at http://www.ba.itb.cnr.it/UTR/. PMID:15608165

  13. Expression of the tachykinin receptor mRNAs in healthy human colon.

    PubMed

    Jaafari, Nadia; Hua, Guoqiang; Adélaïde, José; Julé, Yvon; Imbert, Jean

    2008-12-03

    Tachykinins are a family of neuropeptides, involved in a variety of physiological and pathological processes occurring in the gastrointestinal tract. They act via three distinct types of receptors, tachykinin NK(1), NK(2), and NK(3) receptors, which belong to the family of G protein-coupled receptors. The aim of the present study was to characterize, for the first time in the healthy human colon, the TACR(1), TACR(2) and TACR(3) mRNAs encoding the three different tachykinin receptors and to measure their relative expression by quantitative reverse transcription-PCR assay. Our results confirm the broad distribution of the tachykinin receptors but evidenced significant differences in the expression level of their respective mRNAs. A higher expression level of the TACR2 mRNA alpha isoform, the gene encoding the functional tachykinin NK(2) receptor, was observed in comparison to TACR1 and TACR3 mRNAs genes encoding for NK(1) and NK(3) receptors respectively. The prevalence of the TACR2 mRNA alpha isoform strongly suggests a major involvement of tachykinin NK(2) receptor in the regulation of human colonic functions.

  14. CUP promotes deadenylation and inhibits decapping of mRNA targets

    PubMed Central

    Igreja, Catia; Izaurralde, Elisa

    2011-01-01

    CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from further degradation. Translational repression and deadenylation are independent of eIF4E binding and require both the middle and C-terminal regions of CUP, which collectively we termed the effector domain. This domain associates with the deadenylase complex CAF1–CCR4–NOT and decapping activators. Accordingly, in isolation, the effector domain is a potent trigger of mRNA degradation and promotes deadenylation, decapping and decay. However, in the context of the full-length CUP protein, the decapping and decay mediated by the effector domain are inhibited, and target mRNAs are maintained in a deadenylated, repressed form. Remarkably, an N-terminal regulatory domain containing a noncanonical eIF4E-binding motif is required to protect CUP-associated mRNAs from decapping and further degradation, suggesting that this domain counteracts the activity of the effector domain. Our findings indicate that the mode of action of CUP is more complex than previously thought and provide mechanistic insight into the regulation of mRNA expression by 4E-BPs. PMID:21937713

  15. Induction of cap-independent BiP (hsp-3) and Bcl-2 (ced-9) translation in response to eIF4G (IFG-1) depletion in C. elegans

    PubMed Central

    Morrison, J Kaitlin; Friday, Andrew J; Henderson, Melissa A; Hao, Enhui; Keiper, Brett D

    2014-01-01

    During apoptosis, activated caspases cleave the translation initiation factor eIF4G. This cleavage disrupts cap-dependent mRNA translation initiation within the cell. However, a specific subset of mRNAs can still be recruited for protein synthesis in a cap-independent manner by the residual initiation machinery. Many of these mRNAs, including cell death related mRNAs, contain internal ribosome entry sites (IRESes) that promote their enhanced translation during apoptosis. Still other mRNAs have little dependence on the cap recognition mechanism. The expression of the encoded proteins, both anti- and pro-apoptotic, allows for an initial period of attempted cell survival, then commitment to cell death when damage is extensive. In this study we address the translational regulation of the stress and apoptosis-related mRNAs in C. elegans: BiP (hsp-3) (hsp-4), Hif-1 (hif-1), p53 (cep-1), Bcl-2 (ced-9) and Apaf-1 (ced-4). Altered translational efficiency of these messages was observed upon depletion of cap-dependent translation and induction of apoptosis within the C. elegans gonad. Our findings suggest a physiological link between the cap-independent mechanism and the enhanced translation of hsp-3 and ced-9. This increase in the efficiency of translation may be integral to the stress response during the induction of physiological apoptosis. PMID:26779406

  16. Identification of microRNA-mRNA modules using microarray data.

    PubMed

    Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Yang, Yee H

    2011-03-06

    MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA expression and are involved in numerous cellular processes. Consequently, miRNAs are an important component of gene regulatory networks and an improved understanding of miRNAs will further our knowledge of these networks. There is a many-to-many relationship between miRNAs and mRNAs because a single miRNA targets multiple mRNAs and a single mRNA is targeted by multiple miRNAs. However, most of the current methods for the identification of regulatory miRNAs and their target mRNAs ignore this biological observation and focus on miRNA-mRNA pairs. We propose a two-step method for the identification of many-to-many relationships between miRNAs and mRNAs. In the first step, we obtain miRNA and mRNA clusters using a combination of miRNA-target mRNA prediction algorithms and microarray expression data. In the second step, we determine the associations between miRNA clusters and mRNA clusters based on changes in miRNA and mRNA expression profiles. We consider the miRNA-mRNA clusters with statistically significant associations to be potentially regulatory and, therefore, of biological interest. Our method reduces the interactions between several hundred miRNAs and several thousand mRNAs to a few miRNA-mRNA groups, thereby facilitating a more meaningful biological analysis and a more targeted experimental validation.

  17. Correlation analysis of the mRNA and miRNA expression profiles in the nascent synthetic allotetraploid Raphanobrassica

    PubMed Central

    Ye, Bingyuan; Wang, Ruihua; Wang, Jianbo

    2016-01-01

    Raphanobrassica is an allopolyploid species derived from inter-generic hybridization that combines the R genome from R. sativus and the C genome from B. oleracea var. alboglabra. In the present study, we used a high-throughput sequencing method to identify the mRNA and miRNA profiles in Raphanobrassica and its parents. A total of 33,561 mRNAs and 283 miRNAs were detected, 9,209 mRNAs and 134 miRNAs were differentially expressed respectively, 7,633 mRNAs and 39 miRNAs showed ELD expression, 5,219 mRNAs and 57 miRNAs were non-additively expressed in Raphanobrassica. Remarkably, differentially expressed genes (DEGs) were up-regulated and maternal bias was detected in Raphanobrassica. In addition, a miRNA-mRNA interaction network was constructed based on reverse regulated miRNA-mRNAs, which included 75 miRNAs and 178 mRNAs, 31 miRNAs were non-additively expressed target by 13 miRNAs. The related target genes were significantly enriched in the GO term ‘metabolic processes’. Non-additive related target genes regulation is involved in a range of biological pathways, like providing a driving force for variation and adaption in this allopolyploid. The integrative analysis of mRNA and miRNA profiling provides more information to elucidate gene expression mechanism and may supply a comprehensive and corresponding method to study genetic and transcription variation of allopolyploid. PMID:27874043

  18. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn's disease.

    PubMed

    Chen, Dong; Liu, Jiang; Zhao, Hui-Ying; Chen, Yi-Peng; Xiang, Zun; Jin, Xi

    2016-05-21

    To investigate the expression pattern of plasma long noncoding RNAs (lncRNAs) in Chrohn's disease (CD) patients. Microarray screening and qRT-PCR verification of lncRNAs and mRNAs were performed in CD and control subjects, followed by hierarchy clustering, GO and KEGG pathway analyses. Significantly dysregulated lncRNAs were categorized into subgroups of antisense lncRNAs, enhancer lncRNAs and lincRNAs. To predict the regulatory effect of lncRNAs on mRNAs, a CNC network analysis was performed and cross linked with significantly changed lncRNAs. The overlapping lncRNAs were randomly selected and verified by qRT-PCR in a larger cohort. Initially, there were 1211 up-regulated and 777 down-regulated lncRNAs as well as 1020 up-regulated and 953 down-regulated mRNAs after microarray analysis; a heat map based on these results showed good categorization into the CD and control groups. GUSBP2 and AF113016 had the highest fold change of the up- and down-regulated lncRNAs, whereas TBC1D17 and CCL3L3 had the highest fold change of the up- and down-regulated mRNAs. Six (SNX1, CYFIP2, CD6, CMTM8, STAT4 and IGFBP7) of 10 mRNAs and 8 (NR_033913, NR_038218, NR_036512, NR_049759, NR_033951, NR_045408, NR_038377 and NR_039976) of 14 lncRNAs showed the same change trends on the microarray and qRT-PCR results with statistical significance. Based on the qRT-PCR verified mRNAs, 1358 potential lncRNAs with 2697 positive correlations and 2287 negative correlations were predicted by the CNC network. The plasma lncRNAs profiles provide preliminary data for the non-invasive diagnosis of CD and a resource for further specific lncRNA-mRNA pathway exploration.

  19. A human haploid gene trap collection to study lncRNAs with unusual RNA biology.

    PubMed

    Kornienko, Aleksandra E; Vlatkovic, Irena; Neesen, Jürgen; Barlow, Denise P; Pauler, Florian M

    2016-01-01

    Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator.

  20. The Long Noncoding RNA Transcriptome of Dictyostelium discoideum Development.

    PubMed

    Rosengarten, Rafael D; Santhanam, Balaji; Kokosar, Janez; Shaulsky, Gad

    2017-02-09

    Dictyostelium discoideum live in the soil as single cells, engulfing bacteria and growing vegetatively. Upon starvation, tens of thousands of amoebae enter a developmental program that includes aggregation, multicellular differentiation, and sporulation. Major shifts across the protein-coding transcriptome accompany these developmental changes. However, no study has presented a global survey of long noncoding RNAs (ncRNAs) in D. discoideum To characterize the antisense and long intergenic noncoding RNA (lncRNA) transcriptome, we analyzed previously published developmental time course samples using an RNA-sequencing (RNA-seq) library preparation method that selectively depletes ribosomal RNAs (rRNAs). We detected the accumulation of transcripts for 9833 protein-coding messenger RNAs (mRNAs), 621 lncRNAs, and 162 putative antisense RNAs (asRNAs). The noncoding RNAs were interspersed throughout the genome, and were distinct in expression level, length, and nucleotide composition. The noncoding transcriptome displayed a temporal profile similar to the coding transcriptome, with stages of gradual change interspersed with larger leaps. The transcription profiles of some noncoding RNAs were strongly correlated with known differentially expressed coding RNAs, hinting at a functional role for these molecules during development. Examining the mitochondrial transcriptome, we modeled two novel antisense transcripts. We applied yet another ribosomal depletion method to a subset of the samples to better retain transfer RNA (tRNA) transcripts. We observed polymorphisms in tRNA anticodons that suggested a post-transcriptional means by which D. discoideum compensates for codons missing in the genomic complement of tRNAs. We concluded that the prevalence and characteristics of long ncRNAs indicate that these molecules are relevant to the progression of molecular and cellular phenotypes during development. Copyright © 2017 Rosengarten et al.

  1. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development

    PubMed Central

    Fox, Catherine A.; Dowdle, Megan E.; Blaser, Susanne Imboden; Chung, Andy; Park, Sookhee

    2017-01-01

    The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation. PMID:27975270

  2. Widespread seasonal gene expression reveals annual differences in human immunity and physiology

    PubMed Central

    Dopico, Xaquin Castro; Evangelou, Marina; Ferreira, Ricardo C.; Guo, Hui; Pekalski, Marcin L.; Smyth, Deborah J.; Cooper, Nicholas; Burren, Oliver S.; Fulford, Anthony J.; Hennig, Branwen J.; Prentice, Andrew M.; Ziegler, Anette-G.; Bonifacio, Ezio; Wallace, Chris; Todd, John A.

    2015-01-01

    Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease. PMID:25965853

  3. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    DOE PAGES

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E.; ...

    2015-03-31

    Here, we document a collection of ~7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstratemore » reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates.« less

  4. Translation Control: A Multifaceted Regulator of Inflammatory Response

    PubMed Central

    Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen

    2010-01-01

    A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxicshock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation. PMID:20304832

  5. Translation control: a multifaceted regulator of inflammatory response.

    PubMed

    Mazumder, Barsanjit; Li, Xiaoxia; Barik, Sailen

    2010-04-01

    A robust innate immune response is essential to the protection of all vertebrates from infection, but it often comes with the price tag of acute inflammation. If unchecked, a runaway inflammatory response can cause significant tissue damage, resulting in myriad disorders, such as dermatitis, toxic shock, cardiovascular disease, acute pelvic and arthritic inflammatory diseases, and various infections. To prevent such pathologies, cells have evolved mechanisms to rapidly and specifically shut off these beneficial inflammatory activities before they become detrimental. Our review of recent literature, including our own work, reveals that the most dominant and common mechanism is translational silencing, in which specific regulatory proteins or complexes are recruited to cis-acting RNA structures in the untranslated regions of single or multiple mRNAs that code for the inflammatory protein(s). Enhancement of the silencing function may constitute a novel pharmacological approach to prevent immunity-related inflammation.

  6. Genetic therapy for the nervous system

    PubMed Central

    Bowers, William J.; Breakefield, Xandra O.; Sena-Esteves, Miguel

    2011-01-01

    Genetic therapy is undergoing a renaissance with expansion of viral and synthetic vectors, use of oligonucleotides (RNA and DNA) and sequence-targeted regulatory molecules, as well as genetically modified cells, including induced pluripotent stem cells from the patients themselves. Several clinical trials for neurologic syndromes appear quite promising. This review covers genetic strategies to ameliorate neurologic syndromes of different etiologies, including lysosomal storage diseases, Alzheimer's disease and other amyloidopathies, Parkinson's disease, spinal muscular atrophy, amyotrophic lateral sclerosis and brain tumors. This field has been propelled by genetic technologies, including identifying disease genes and disruptive mutations, design of genomic interacting elements to regulate transcription and splicing of specific precursor mRNAs and use of novel non-coding regulatory RNAs. These versatile new tools for manipulation of genetic elements provide the ability to tailor the mode of genetic intervention to specific aspects of a disease state. PMID:21429918

  7. The Cell Cycle Regulator CCDC6 Is a Key Target of RNA-Binding Protein EWS

    PubMed Central

    Duggimpudi, Sujitha; Larsson, Erik; Nabhani, Schafiq; Borkhardt, Arndt; Hoell, Jessica I

    2015-01-01

    Genetic translocation of EWSR1 to ETS transcription factor coding region is considered as primary cause for Ewing sarcoma. Previous studies focused on the biology of chimeric transcription factors formed due to this translocation. However, the physiological consequences of heterozygous EWSR1 loss in these tumors have largely remained elusive. Previously, we have identified various mRNAs bound to EWS using PAR-CLIP. In this study, we demonstrate CCDC6, a known cell cycle regulator protein, as a novel target regulated by EWS. siRNA mediated down regulation of EWS caused an elevated apoptosis in cells in a CCDC6-dependant manner. This effect was rescued upon re-expression of CCDC6. This study provides evidence for a novel functional link through which wild-type EWS operates in a target-dependant manner in Ewing sarcoma. PMID:25751255

  8. New Method for Producing Significant Amounts of RNA Labeled at Specific Sites | Center for Cancer Research

    Cancer.gov

    Among biomacromolecules, RNA is the most versatile, and it plays indispensable roles in almost all aspects of biology. For example, in addition to serving as mRNAs coding for proteins, RNAs regulate gene expression, such as controlling where, when, and how efficiently a gene gets expressed, participate in RNA processing, encode the genetic information of some viruses, serve as scaffolds, and even possess enzymatic activity. To study these RNAs and their biological functions and to make use of those RNA activities for biomedical applications, researchers first need to make various types of RNA. For structural biologists incorporating modified or labeled nucleotides at specific sites in RNA molecules of interest is critical to gain structural insight into RNA functions. However, placing labeled or modified residue(s) in desired positions in a large RNA has not been possible until now.

  9. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells.

    PubMed

    Salasc, F; Mutuel, D; Debaisieux, S; Perrin, A; Dupressoir, T; Grenet, A-S Gosselin; Ogliastro, M

    2016-01-01

    The phosphatidylinositol-3-kinase (PI3K)/Akt/target of rapamycin (TOR) signalling pathway controls cell growth and survival, and is targeted by a number of viruses at different phases of their infection cycle to control translation. Whether and how insect viruses interact with this pathway remain poorly addressed. Here, we investigated the role of PI3K/Akt/TOR signalling during lethal infection of insect cells with an insect parvovirus. Using Junonia coenia densovirus (JcDV; lepidopteran ambidensovirus 1) and susceptible insect cells as experimental models, we first described JcDV cytopathology, and showed that viral infection affects cell size, cell proliferation and survival. We deciphered the role of PI3K/Akt/TOR signalling in the course of infection and found that non-structural (NS) protein expression correlates with the inhibition of TOR and the shutdown of cellular synthesis, concomitant with the burst of viral protein expression. Together, these results suggest that NS proteins control the cellular translational machinery to favour the translation of viral mRNAs at the expense of cellular mRNAs. As a consequence of TOR inhibition, cell autophagy is activated. These results highlight new functions for NS proteins in the course of multiplication of an insect parvovirus.

  10. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei *

    PubMed Central

    McDermott, Suzanne M.; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth

    2015-01-01

    Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3′-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. PMID:26304125

  11. Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene.

    PubMed

    Fechir, Marcel; Linker, Katrin; Pautz, Andrea; Hubrich, Thomas; Förstermann, Ulrich; Rodriguez-Pascual, Fernando; Kleinert, Hartmut

    2005-06-01

    The expression of human inducible NO synthase (iNOS) is regulated both by transcriptional and post-transcriptional mechanisms. Stabilization of mRNAs often depends on activation of p38 mitogen-activated protein kinase (p38 MAPK). In human DLD-1 cells, inhibition of p38 MAPK by the compound 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) or by overexpression of a dominant-negative p38 MAPKalpha protein resulted in a reduction of human iNOS mRNA and protein expression, whereas human iNOS promoter activity was not affected. An important RNA binding protein regulated by the p38 MAPK pathway and involved in the regulation of the stability of several mRNAs is tristetraprolin. RNase protection, quantitative real-time polymerase chain reaction, and Western blot experiments showed that cytokines used to induce iNOS expression in DLD-1 cells also enhanced tristetraprolin expression. SB203580 incubation reduced cytokine-mediated enhancement of tristetraprolin expression. Overexpression or down-regulation of tristetraprolin in stably transfected DLD-1- or A549/8 cells consistently resulted in enhanced or reduced iNOS expression by modulating iNOS-mRNA stability. In UV cross-linking experiments, recombinant tristetraprolin did not interact with the human iNOS mRNA. However, coimmunoprecipitation experiments showed interaction of tristetraprolin with the KH-type splicing regulatory protein (KSRP), which is known to recruit mRNAs containing AU-rich elements to the exosome for degradation. This tristetraprolin-KSRP interaction was enhanced by cytokines and reduced by SB203580 treatment. We conclude that tristetraprolin positively regulates human iNOS expression by enhancing the stability of human iNOS mRNA. Because tristetraprolin does not directly bind to the human iNOS mRNA but interacts with KSRP, tristetraprolin is likely to stabilize iNOS mRNA by capturing the KSRP-exosome complex.

  12. Embryotrophic factor-3 from human oviductal cells affects the messenger RNA expression of mouse blastocyst.

    PubMed

    Lee, Y L; Lee, K F; Xu, J S; Kwok, K L; Luk, J M; Lee, W M; Yeung, W S B

    2003-02-01

    Our previous results showed that embryotrophic factor-3 (ETF-3) from human oviductal cells increased the size and hatching rate of mouse blastocysts in vitro. The present study investigated the production of ETF-3 by an immortalized human oviductal cell line (OE-E6/E7) and the effects of ETF-3 on the mRNA expression of mouse embryos. The ETF-3 was purified from primary oviductal cell conditioned media using sequential liquid chromatographic systems, and antiserum against ETF-3 was raised. The ETF-3-supplemented Chatot-Ziomek-Bavister medium was used to culture Day 1 MF1 x BALB/c mouse embryos for 4 days. The ETF-3 treatment significantly enhanced the mouse embryo blastulation and hatching rate. The antiserum, at concentrations of 0.03-3%, abolished the embryotrophic effect of ETF-3. Positive ETF-3 immunoreactivity was detected in the primary oviductal cells, OE-E6/E7, and blastocysts derived from ETF-3 treatment. Vero cells (African Green Monkey kidney cell line), fibroblasts, and embryos cultured in control medium did not possess ETF-3 immunoreactivity. The mRNA expression patterns of the treated embryos were studied at the blastocyst stage by mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The DDRT-PCR showed that some of the mRNAs were differentially expressed after ETF-3 treatment. Twelve of the differentially expressed mRNAs that had high homology with cDNA sequences in the GenBank were selected for further characterization. The differential expression of seven of these mRNAs (ezrin, heat shock 70-kDa protein, cytochrome c oxidase subunit VIIa-L precursor, proteinase-activated receptor 2, eukaryotic translation initiation factor 2beta, cullin 1, and proliferating cell nuclear antigen) was confirmed by semiquantitative RT-PCR. In conclusion, immortalized oviductal cells produce ETF-3, which influences mRNA expression of mouse blastocyst.

  13. Identification of the miRNA-mRNA regulatory network of small cell osteosarcoma based on RNA-seq.

    PubMed

    Xie, Lin; Liao, Yedan; Shen, Lida; Hu, Fengdi; Yu, Sunlin; Zhou, Yonghong; Zhang, Ya; Yang, Yihao; Li, Dongqi; Ren, Minyan; Yuan, Zhongqin; Yang, Zuozhang

    2017-06-27

    Small cell osteosarcoma (SCO) is a rare subtype of osteosarcoma characterized by highly aggressive progression and a poor prognosis. The miRNA and mRNA expression profiles of peripheral blood mononuclear cells (PBMCs) were obtained in 3 patients with SCO and 10 healthy individuals using high-throughput RNA-sequencing. We identified 37 dysregulated miRNAs and 1636 dysregulated mRNAs in patients with SCO compared to the healthy controls. Specifically, the 37 dysregulated miRNAs consisted of 27 up-regulated miRNAs and 10 down-regulated miRNAs; the 1636 dysregulated mRNAs consisted of 555 up-regulated mRNAs and 1081 down-regulated mRNAs. The target-genes of miRNAs were predicted, and 1334 negative correlations between miRNAs and mRNAs were used to construct an miRNA-mRNA regulatory network. Dysregulated genes were significantly enriched in pathways related to cancer, mTOR signaling and cell cycle signaling. Specifically, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p were significantly dysregulated miRNAs and exhibited a high degree of connectivity with target genes. Overall, the expression of dysregulated genes in tumor tissues and peripheral blood samples of patients with SCO measured by quantitative real-time polymerase chain reaction corroborated with our bioinformatics analyses based on the expression profiles of PBMCs from patients with SCO. Thus, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p may be involved in SCO tumorigenesis.

  14. Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules.

    PubMed

    Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R

    2018-06-18

    The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Deep Sequencing Reveals Direct Targets of Gammaherpesvirus-Induced mRNA Decay and Suggests That Multiple Mechanisms Govern Cellular Transcript Escape

    PubMed Central

    Clyde, Karen; Glaunsinger, Britt A.

    2011-01-01

    One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023

  16. TH and DCX mRNAs in peripheral blood and bone marrow predict outcome in metastatic neuroblastoma patients.

    PubMed

    Yáñez, Yania; Hervás, David; Grau, Elena; Oltra, Silvestre; Pérez, Gema; Palanca, Sarai; Bermúdez, Mar; Márquez, Catalina; Cañete, Adela; Castel, Victoria

    2016-03-01

    In metastatic neuroblastoma (NB) patients, accurate risk stratification and disease monitoring would reduce relapse probabilities. This study aims to evaluate the independent prognostic significance of detecting tyrosine hydroxylase (TH) and doublecortin (DCX) mRNAs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral blood (PB) and bone marrow (BM) samples from metastatic NB patients. RT-qPCR was performed on PB and BM samples from metastatic NB patients at diagnosis, post-induction therapy and at the end of treatment for TH and DCX mRNAs detection. High levels of TH and DCX mRNAs when detected in PB and BM at diagnosis independently predicted worse outcome in a cohort of 162 metastatic NB. In the subgroup of high-risk metastatic NB, TH mRNA detected in PB remained as independent predictor of EFS and OS at diagnosis. After the induction therapy, high levels of TH mRNA in PB and DCX mRNA in BM independently predicted poor EFS and OS. Furthermore TH mRNA when detected in BM predicted worse EFS. TH mRNA in PB samples at the end of treatment is an independent predictor of worse outcome. TH and DCX mRNAs levels in PB and BM assessed by RT-qPCR should be considered in new pre-treatment risk stratification strategies to reliable estimate outcome differences in metastatic NB patients. In those high-risk metastatic NB, TH and DCX mRNA quantification could be used for the assessment of response to treatment and for early detection of progressive disease or relapses.

  17. Urine podocyte mRNAs mark disease activity in IgA nephropathy

    PubMed Central

    Fukuda, Akihiro; Sato, Yuji; Iwakiri, Takashi; Komatsu, Hiroyuki; Kikuchi, Masao; Kitamura, Kazuo; Wiggins, Roger C.; Fujimoto, Shouichi

    2015-01-01

    Background Podocyte depletion is a major mechanism driving glomerulosclerosis. We and others have previously projected from model systems that podocyte-specific mRNAs in the urine pellet might serve as glomerular disease markers. We evaluated IgA nephropathy (IgAN) to test this concept. Methods From 2009 to 2013, early morning voided urine samples and kidney biopsies from IgAN patients (n = 67) were evaluated in comparison with urine samples from healthy age-matched volunteers (n = 28). Urine podocyte (podocin) mRNA expressed in relation to either urine creatinine concentration or a kidney tubular marker (aquaporin 2) was tested as markers. Results Urine podocyte mRNAs were correlated with the severity of active glomerular lesions (segmental glomerulosclerosis and acute extracapillary proliferation), but not with non-glomerular lesions (tubular atrophy/interstitial fibrosis) or with clinical parameters of kidney injury (serum creatinine and estimated glomerular filtration rate), or with degree of accumulated podocyte loss at the time of biopsy. In contrast, proteinuria correlated with all histological and clinical markers. Glomerular tuft podocyte nuclear density (a measure of cumulative podocyte loss) correlated with tubular atrophy/interstitial fibrosis, estimated-glomerular filtration rate and proteinuria, but not with urine podocyte markers. In a subset of the IgA cohort (n = 19, median follow-up period = 37 months), urine podocyte mRNAs were significantly decreased after treatment, in contrast to proteinuria which was not significantly changed. Conclusions Urine podocyte mRNAs reflect active glomerular injury at a given point in time, and therefore provide both different and additional clinical information that can complement proteinuria in the IgAN decision-making paradigm. PMID:25956757

  18. Efficient generation of transgenic reporter strains and analysis of expression patterns in Caenorhabditis elegans using Library MosSCI

    PubMed Central

    Kaymak, Ebru; Farley, Brian M.; Hay, Samantha A.; Li, Chihua; Ho, Samantha; Hartman, Daniel J.; Ryder, Sean P.

    2016-01-01

    Background In C. elegans, germline development and early embryogenesis rely on post-transcriptional regulation of maternally transcribed mRNAs. In many cases, the 3′UTR is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3′UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. Results In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RBPs that control the expression pattern of five different maternal mRNAs. Conclusions The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. PMID:27294288

  19. Glucose-Regulated Phosphorylation of the PUF Protein Puf3 Regulates the Translational Fate of Its Bound mRNAs and Association with RNA Granules.

    PubMed

    Lee, Chien-Der; Tu, Benjamin P

    2015-06-16

    PUF proteins are post-transcriptional regulators that bind to the 3' UTRs of mRNA transcripts. Herein, we show how a yeast PUF protein, Puf3p, responds to glucose availability to switch the fate of its bound transcripts that encode proteins required for mitochondrial biogenesis. Upon glucose depletion, Puf3p becomes heavily phosphorylated within its N-terminal region of low complexity, associates with polysomes, and promotes translation of its target mRNAs. Such nutrient-responsive phosphorylation toggles the activity of Puf3p to promote either degradation or translation of these mRNAs according to the needs of the cell. Moreover, activation of translation of pre-existing mRNAs might enable rapid adjustment to environmental changes without the need for de novo transcription. Strikingly, a Puf3p phosphomutant no longer promotes translation but becomes trapped in intracellular foci in an mRNA-dependent manner. Our findings suggest that the inability to properly resolve Puf3p-containing RNA-protein granules via a phosphorylation-based mechanism might be toxic to a cell. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. An Easy Method for Plant Polysome Profiling.

    PubMed

    Lecampion, Cécile; Floris, Maïna; Fantino, Jean Raphaël; Robaglia, Christophe; Laloi, Christophe

    2016-08-28

    Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues. A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After centrifugation, six fractions are directly collected from the bottom to the top of the gradient, without piercing the ultracentrifugation tube. During collection, the absorbance at 260 nm is read continuously to generate a polysome profile that gives a snapshot of global translational activity. Fractions are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis thaliana seedlings and adult plants, Nicotiana benthamiana, Solanum lycopersicum, and Oryza sativa leaves.

  1. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs.

    PubMed

    Lahr, Roni M; Fonseca, Bruno D; Ciotti, Gabrielle E; Al-Ashtal, Hiba A; Jia, Jian-Jun; Niklaus, Marius R; Blagden, Sarah P; Alain, Tommy; Berman, Andrea J

    2017-04-07

    The 5'terminal oligopyrimidine (5'TOP) motif is a cis -regulatory RNA element located immediately downstream of the 7-methylguanosine [m 7 G] cap of TOP mRNAs, which encode ribosomal proteins and translation factors. In eukaryotes, this motif coordinates the synchronous and stoichiometric expression of the protein components of the translation machinery. La-related protein 1 (LARP1) binds TOP mRNAs, regulating their stability and translation. We present crystal structures of the human LARP1 DM15 region in complex with a 5'TOP motif, a cap analog (m 7 GTP), and a capped cytidine (m 7 GpppC), resolved to 2.6, 1.8 and 1.7 Å, respectively. Our binding, competition, and immunoprecipitation data corroborate and elaborate on the mechanism of 5'TOP motif binding by LARP1. We show that LARP1 directly binds the cap and adjacent 5'TOP motif of TOP mRNAs, effectively impeding access of eIF4E to the cap and preventing eIF4F assembly. Thus, LARP1 is a specialized TOP mRNA cap-binding protein that controls ribosome biogenesis.

  2. The translational landscape of Arabidopsis mitochondria.

    PubMed

    Planchard, Noelya; Bertin, Pierre; Quadrado, Martine; Dargel-Graffin, Céline; Hatin, Isabelle; Namy, Olivier; Mireau, Hakim

    2018-06-05

    Messenger RNA translation is a complex process that is still poorly understood in eukaryotic organelles like mitochondria. Growing evidence indicates though that mitochondrial translation differs from its bacterial counterpart in many key aspects. In this analysis, we have used ribosome profiling technology to generate a genome-wide snapshot view of mitochondrial translation in Arabidopsis. We show that, unlike in humans, most Arabidopsis mitochondrial ribosome footprints measure 27 and 28 bases. We also reveal that respiratory subunits encoding mRNAs show much higher ribosome association than other mitochondrial mRNAs, implying that they are translated at higher levels. Homogenous ribosome densities were generally detected within each respiratory complex except for complex V, where higher ribosome coverage corroborated with higher requirements for specific subunits. In complex I respiratory mutants, a reorganization of mitochondrial mRNAs ribosome association was detected involving increased ribosome densities for certain ribosomal protein encoding transcripts and a reduction in translation of a few complex V mRNAs. Taken together, our observations reveal that plant mitochondrial translation is a dynamic process and that translational control is important for gene expression in plant mitochondria. This study paves the way for future advances in the understanding translation in higher plant mitochondria.

  3. IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins.

    PubMed

    Dai, Ning; Zhao, Liping; Wrighting, Diedra; Krämer, Dana; Majithia, Amit; Wang, Yanqun; Cracan, Valentin; Borges-Rivera, Diego; Mootha, Vamsi K; Nahrendorf, Matthias; Thorburn, David R; Minichiello, Liliana; Altshuler, David; Avruch, Joseph

    2015-04-07

    Although variants in the IGF2BP2/IMP2 gene confer risk for type 2 diabetes, IMP2, an RNA binding protein, is not known to regulate metabolism. Imp2(-/-) mice gain less lean mass after weaning and have increased lifespan. Imp2(-/-) mice are highly resistant to diet-induced obesity and fatty liver and display superior glucose tolerance and insulin sensitivity, increased energy expenditure, and better defense of core temperature on cold exposure. Imp2(-/-) brown fat and Imp2(-/-) brown adipocytes differentiated in vitro contain more UCP1 polypeptide than Imp2(+/+) despite similar levels of Ucp1 mRNA; the Imp2(-/-)adipocytes also exhibit greater uncoupled oxygen consumption. IMP2 binds the mRNAs encoding Ucp1 and other mitochondrial components, and most exhibit increased translational efficiency in the absence of IMP2. In vitro IMP2 inhibits translation of mRNAs bearing the Ucp1 untranslated segments. Thus IMP2 limits longevity and regulates nutrient and energy metabolism in the mouse by controlling the translation of its client mRNAs. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  5. Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway

    PubMed Central

    Ge, Zhiyun; Quek, Bao Lin; Beemon, Karen L; Hogg, J Robert

    2016-01-01

    The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs containing long 3'UTRs to perform dual roles in mRNA quality control and gene expression regulation. However, expansion of vertebrate 3'UTR functions has required a physical expansion of 3'UTR lengths, complicating the process of detecting nonsense mutations. We show that the polypyrimidine tract binding protein 1 (PTBP1) shields specific retroviral and cellular transcripts from NMD. When bound near a stop codon, PTBP1 blocks the NMD protein UPF1 from binding 3'UTRs. PTBP1 can thus mark specific stop codons as genuine, preserving both the ability of NMD to accurately detect aberrant mRNAs and the capacity of long 3'UTRs to regulate gene expression. Illustrating the wide scope of this mechanism, we use RNA-seq and transcriptome-wide analysis of PTBP1 binding sites to show that many human mRNAs are protected by PTBP1 and that PTBP1 enrichment near stop codons correlates with 3'UTR length and resistance to NMD. DOI: http://dx.doi.org/10.7554/eLife.11155.001 PMID:26744779

  6. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP

    PubMed Central

    Wickramasinghe, Vihandha O.; Andrews, Robert; Ellis, Peter; Langford, Cordelia; Gurdon, John B.; Stewart, Murray; Venkitaraman, Ashok R.; Laskey, Ronald A.

    2014-01-01

    The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. PMID:24510098

  7. Stable Membrane-Association of mRNAs in Etiolated, Greening and Mature Plastids.

    PubMed

    Legen, Julia; Schmitz-Linneweber, Christian

    2017-08-31

    Chloroplast genes are transcribed as polycistronic precursor RNAs that give rise to a multitude of processing products down to monocistronic forms. Translation of these mRNAs is realized by bacterial type 70S ribosomes. A larger fraction of these ribosomes is attached to chloroplast membranes. This study analyzed transcriptome-wide distribution of plastid mRNAs between soluble and membrane fractions of purified plastids using microarray analyses and validating RNA gel blot hybridizations. To determine the impact of light on mRNA localization, we used etioplasts, greening plastids and mature chloroplasts from Zea mays as a source for membrane and soluble extracts. The results show that the three plastid types display an almost identical distribution of RNAs between the two organellar fractions, which is confirmed by quantitative RNA gel blot analyses. Furthermore, they reveal that different RNAs processed from polycistronic precursors show transcript-autonomous distribution between stroma and membrane fractions. Disruption of ribosomes leads to release of mRNAs from membranes, demonstrating that attachment is likely a direct consequence of translation. We conclude that plastid mRNA distribution is a stable feature of different plastid types, setting up rapid chloroplast translation in any plastid type.

  8. Targeting of cytosolic mRNA to mitochondria: naked RNA can bind to the mitochondrial surface.

    PubMed

    Michaud, Morgane; Maréchal-Drouard, Laurence; Duchêne, Anne-Marie

    2014-05-01

    Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat

    PubMed Central

    Sillivan, Stephanie E.; Konradi, Christine

    2011-01-01

    The timeline of dopamine (DA) system maturation and the signaling properties of dopamine receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared to the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein (CREB), extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3 beta (GSK3β) were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Since activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development. PMID:22015925

  10. Analysis of Post-transcriptional Gene Regulation of Nod-Like Receptors via the 3'UTR.

    PubMed

    Haneklaus, Moritz

    2016-01-01

    Innate immune signaling is the front line of defense against pathogens, leading to an appropriate response of immune cells upon activation of their pattern recognition receptors (PRRs) by microbial products, such as Toll-like receptors (TLRs). Apart from transcriptional control, gene expression in the innate immune system is also highly regulated at the post-transcriptional level. miRNA or RNA-binding protein can bind to the 3' untranslated region (UTR) of target mRNAs and affect their mRNA stability and translation efficiency, which ultimately affects the amount of protein that is produced. In recent years, a new group of PRRs, the Nod-like receptors (NLR) have been discovered. They often cooperate with TLR signaling to induce potent inflammatory responses. Many NLRs can form inflammasomes, which facilitate the production of the potent pro-inflammatory cytokine IL-1β and other inflammatory mediators. In contrast to TLRs, the importance of post-transcriptional regulators in the context of inflammasomes has not been well defined. This chapter describes a series of experimental approaches to determine the effect of post-transcriptional regulation for a gene of interest using the best-studied NLR, NLRP3, as an example. To start investigating post-transcriptional regulation, 3'UTR luciferase experiments can be performed to test if regulatory sequences in the 3'UTR are functional. An RNA pull-down approach followed by mass spectrometry provides an unbiased assay to identify RNA-binding proteins that target the 3'UTR. Candidate binding proteins can then be further validated by RNA immunoprecipitation (RNA-IP), where the candidate protein is isolated using a specific antibody and bound mRNAs are analyzed by qPCR.

  11. The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events.

    PubMed

    Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D

    2017-02-01

    We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.

  12. Altered emotionality, hippocampus-dependent performance and expression of NMDA receptor subunit mRNAs in chronically stressed mice.

    PubMed

    Costa-Nunes, João; Zubareva, Olga; Araújo-Correia, Margarida; Valença, Andreia; Schroeter, Careen A; Pawluski, Jodi L; Vignisse, Julie; Steinbusch, Hellen; Hermes, Denise; Phillipines, Marjan; Steinbusch, Harry M W; Strekalova, Tatyana

    2014-01-01

    N-Methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission in the hippocampus is implicated in cognitive and emotional disturbances during stress-related disorders. Here, using quantitative RT-PCR, we investigated the hippocampal expression of NR2A, NR2B and NR1 subunit mRNAs in a mouse stress paradigm that mimics clinically relevant conditions of simultaneously affected emotionality and hippocampus-dependent functions. A 2-week stress procedure, which comprised ethologically valid stressors, exposure to a rat and social defeat, was applied to male C57BL/6J mice. For predation stress, mice were introduced into transparent containers that were placed in a rat home cage during the night; social defeat was applied during the daytime using aggressive CD1 mice. This treatment impaired hippocampus-dependent performance during contextual fear conditioning. A correlation between this behavior and food displacement performance was demonstrated, suggesting that burrowing behavior is affected by the stress procedure and is hippocampus-dependent. Stressed mice (n = 22) showed behavioral invigoration and anomalous anxiolytic-like profiles in the O-maze and brightly illuminated open field, unaltered short-term memory in the step-down avoidance task and enhanced aggressive traits, as compared to non-stressed mice (n = 10). Stressed mice showed increased basal serum corticosterone concentrations, hippocampal mRNA expression for the NR2A subunit of the NMDAR and in the NR2A/NR2B ratio; mRNA expression of NR2B and NR1 was unchanged. Thus, stress-induced aberrations in both hippocampal-dependent performance and emotional abnormalities are associated with alterations in hippocampal mRNA NR2A levels and the NR2A/NR2B ratio and not with mRNA expression of NR2B or NR1.

  13. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin β

    PubMed Central

    Sato, Hanae; Maquat, Lynne E.

    2009-01-01

    Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)–protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)–CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon–exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin β (IMPβ): Inhibiting the binding of IMPβ to the complex of CBC–IMPα at an mRNA cap using the IMPα IBB (IMPβ-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPβ and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured. PMID:19884259

  14. The specificity of long noncoding RNA expression.

    PubMed

    Gloss, Brian S; Dinger, Marcel E

    2016-01-01

    Over the last decade, long noncoding RNAs (lncRNAs) have emerged as a fundamental molecular class whose members play pivotal roles in the regulation of the genome. The observation of pervasive transcription of mammalian genomes in the early 2000s sparked a revolution in the understanding of information flow in eukaryotic cells and the incredible flexibility and dynamic nature of the transcriptome. As a molecular class, distinct loci yielding lncRNAs are set to outnumber those yielding mRNAs. However, like many important discoveries, the road leading to uncovering this diverse class of molecules that act through a remarkable repertoire of mechanisms, was not a straight one. The same characteristic that most distinguishes lncRNAs from mRNAs, i.e. their developmental-stage, tissue-, and cell-specific expression, was one of the major impediments to their discovery and recognition as potentially functional regulatory molecules. With growing numbers of lncRNAs being assigned to biological functions, the specificity of lncRNA expression is now increasingly recognized as a characteristic that imbues lncRNAs with great potential as biomarkers and for the development of highly targeted therapeutics. Here we review the history of lncRNA research and how technological advances and insight into biological complexity have gone hand-in-hand in shaping this revolution. We anticipate that as increasing numbers of these molecules, often described as the dark matter of the genome, are characterized and the structure-function relationship of lncRNAs becomes better understood, it may ultimately be feasible to decipher what these non-(protein)-coding genes encode. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA.

    PubMed Central

    Rodermel, S; Haley, J; Jiang, C Z; Tsai, C H; Bogorad, L

    1996-01-01

    Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 PMID:8632983

  16. Antisense RNA: effect of ribosome binding sites, target location, size, and concentration on the translation of specific mRNA molecules.

    PubMed

    Daugherty, B L; Hotta, K; Kumar, C; Ahn, Y H; Zhu, J D; Pestka, S

    1989-01-01

    A series of plasmids were constructed to generate RNA complementary to the beta-galactosidase messenger RNA under control of the phage lambda PL promoter. These plasmids generate anti-lacZ mRNA bearing or lacking a synthetic ribosome binding site adjacent to the lambda PL promoter and/or the lacZ ribosome binding site in reverse orientation. Fragments of lacZ DNA from the 5' and/or the 3' region were used in these constructions. When these anti-mRNA molecules were produced in Escherichia coli 294, maximal inhibition of beta-galactosidase synthesis occurred when a functional ribosome binding site was present near the 5' end of the anti-mRNA and the anti-mRNA synthesized was complementary to the 5' region of the mRNA corresponding to the lacZ ribosome binding site and/or the 5'-coding sequence. Anti-mRNAs producing maximal inhibition of beta-galactosidase synthesis exhibited an anti-lacZ mRNA:normal lacZ mRNA ratio of 100:1 or higher. Those showing lower levels of inhibition exhibited much lower anti-lacZ mRNA:normal lacZ mRNA ratios. A functional ribosome binding site at the 5'-end was found to decrease the decay rate of the anti-lacZ mRNAs. In addition, the incorporation of a transcription terminator just downstream of the antisense segment provided for more efficient inhibition of lacZ mRNA translation due to synthesis of smaller and more abundant anti-lacZ mRNAs. The optimal constructions produced undetectable levels of beta-galactosidase synthesis.

  17. Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins.

    PubMed

    Barnavon, L; Doco, T; Terrier, N; Ageorges, A; Romieu, C; Pellerin, P

    2001-11-01

    Grape berries (Vitis vinifera L., cv Ugni blanc) were harvested at 12 different weeks of development in 1996 and 1997. Ripening was induced at veraison, the crucial stage of berry softening, and was followed by a rapid accumulation of glucose and fructose and an increase of pH. Total RNAs, crude proteins and cell wall material were isolated from each developmental stage. A partial length cDNA (pme1, accession number AF159122, GenBank) encoding a pectin methyl-esterase (PME, EC 3.1.1.11) was cloned by RT-PCR with degenerate primers. Northern blots revealed that mRNAs coding for PME accumulate from one week before the onset of ripening until complete maturity, indicating that this transcript represents an early marker of veraison and could be involved in berry softening. However, PME activity was detected during all developmental stages. Total activity per berry increased, whereas "specific" activity, on a fresh weight basis, decreased during development. The amount of cell wall material (per berry and per g of berry) followed the same pattern as that of PME activity (total and "specific" respectively), indicating they were tightly correlated and that PME levels varied very little in the cell walls. Nevertheless, the degree of methyl-esterification of insoluble pectins decreased throughout the development from 68% in green stages to less than 20% for the ripe berries, and this observation is consistent with the induction of PME mRNAs during ripening. Relations between transcript expression, PME activity, the DE of insoluble pectic polysaccharides and their involvement in grape berry ripening are discussed.

  18. Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011

    PubMed Central

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with 15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti. PMID:23119037

  19. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011.

    PubMed

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with (15)N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti.

  20. Effect of Green and Brown Propolis Extracts on the Expression Levels of microRNAs, mRNAs and Proteins, Related to Oxidative Stress and Inflammation.

    PubMed

    Zaccaria, Vincenzo; Curti, Valeria; Di Lorenzo, Arianna; Baldi, Alessandra; Maccario, Cristina; Sommatis, Sabrina; Mocchi, Roberto; Daglia, Maria

    2017-10-01

    A large body of evidence highlights that propolis exerts many biological functions that can be ascribed to its antioxidant and anti-inflammatory components, including different polyphenol classes. Nevertheless, the molecular mechanisms are yet unknown. The aim of this study is to investigate the mechanisms at the basis of propolis anti-inflammatory and antioxidant activities. The effects of two brown and green propolis extracts-chemically characterized by RP-HPLC-PDA-ESI-MSn-on the expression levels of miRNAs associated with inflammatory responses (miR-19a-3p and miR-203a-3p) and oxidative stress (miR-27a-3p and miR-17-3p), were determined in human keratinocyte HaCat cell lines, treated with non-cytotoxic concentrations. The results showed that brown propolis, whose major polyphenolic components are flavonoids, induced changes in the expression levels of all miRNAs, and was more active than green propolis (whose main polyphenolic components are hydroxycinnamic acid derivatives) which caused changes only in the expression levels of miR-19a-3p and miR-27a-3p. In addition, only brown propolis was able to modify (1) the expression levels of mRNAs, the target of the reported miRNAs, which code for Tumor Necrosis Factor-α (TNF-α), Nuclear Factor, Erythroid 2 Like 2 (NFE2L2) and Glutathione Peroxidase 2 (GPX2), and (2) the protein levels of TNF-α and NFE2L2. In conclusion, brown and green propolis, which showed different metabolite profiles, exert their biological functions through different mechanisms of action.

  1. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    PubMed

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    PubMed Central

    Lee, Daniel Y.; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W.; Deng, Zhaoqun; Yang, Burton B.

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy. PMID:19223980

  3. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines.

    PubMed

    Custer, Thomas C; Walter, Nils G

    2017-07-01

    RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling. © 2016 The Protein Society.

  4. MicroRNAs and non-coding RNAs in virus-infected cells

    PubMed Central

    Ouellet, Dominique L.; Provost, Patrick

    2010-01-01

    Within the past few years, microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have emerged as elements with critically high importance in post-transcriptional control of cellular and, more recently, viral processes. Endogenously produced by a component of the miRNA-guided RNA silencing machinery known as Dicer, miRNAs are known to control messenger RNA (mRNA) translation through recognition of specific binding sites usually located in their 3′ untranslated region. Recent evidences indicate that the host miRNA pathway may represent an adapted antiviral defense mechanism that can act either by direct miRNA-mediated modulation of viral gene expression or through recognition and inactivation of structured viral RNA species by the protein components of the RNA silencing machinery, such as Dicer. This latter process, however, is a double-edge sword, as it may yield viral miRNAs exerting gene regulatory properties on both host and viral mRNAs. Our knowledge of the interaction between viruses and host RNA silencing machineries, and how this influences the course of infection, is becoming increasingly complex. This review article aims to summarize our current knowledge about viral miRNAs/ncRNAs and their targets, as well as cellular miRNAs that are modulated by viruses upon infection. PMID:20217543

  5. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs

    PubMed Central

    Łabno, Anna; Warkocki, Zbigniew; Kuliński, Tomasz; Krawczyk, Paweł Szczepan; Bijata, Krystian; Tomecki, Rafał; Dziembowski, Andrzej

    2016-01-01

    The exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here, we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5′ UTR. Importantly, DIS3L2 contributes to surveillance of maturing snRNAs during their cytoplasmic processing. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3′ RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis. PMID:27431325

  6. Human La binds mRNAs through contacts to the poly(A) tail

    PubMed Central

    Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A

    2018-01-01

    Abstract In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail. PMID:29447394

  7. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis.

    PubMed

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B

    2011-04-01

    The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.

  8. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis

    PubMed Central

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B.

    2011-01-01

    The non-coding 3′-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3′-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3′-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3′-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3′-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3′-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed. PMID:21149267

  9. Live-cell imaging of multiple endogenous mRNAs permits the direct observation of RNA granule dynamics.

    PubMed

    Yatsuzuka, Kenji; Sato, Shin-Ichi; Pe, Kathleen Beverly; Katsuda, Yousuke; Takashima, Ippei; Watanabe, Mizuki; Uesugi, Motonari

    2018-06-08

    Here, we developed two pairs of high-contrast chemical probes and their RNA aptamers with distinct readout channels that permitted simultaneous live-cell imaging of endogenous β-actin and cortactin mRNAs. Application of this technology allowed the direct observation of the formation process of stress granules, protein-RNA assemblies essential for cellular response to the environment.

  10. eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G

    PubMed Central

    Sen, Neelam Dabas; Zhou, Fujun; Harris, Michael S.; Ingolia, Nicholas T.

    2016-01-01

    DEAD-box RNA helicases eukaryotic translation initiation factor 4A (eIF4A) and Ded1 promote translation by resolving mRNA secondary structures that impede preinitiation complex (PIC) attachment to mRNA or scanning. Eukaryotic translation initiation factor 4B (eIF4B) is a cofactor for eIF4A but also might function independently of eIF4A. Ribosome profiling of mutants lacking eIF4B or with impaired eIF4A or Ded1 activity revealed that eliminating eIF4B reduces the relative translational efficiencies of many more genes than does inactivation of eIF4A, despite comparable reductions in bulk translation, and few genes display unusually strong requirements for both factors. However, either eliminating eIF4B or inactivating eIF4A preferentially impacts mRNAs with longer, more structured 5′ untranslated regions (UTRs). These findings reveal an eIF4A-independent role for eIF4B in addition to its function as eIF4A cofactor in promoting PIC attachment or scanning on structured mRNAs. eIF4B, eIF4A, and Ded1 mutations also preferentially impair translation of longer mRNAs in a fashion mitigated by the ability to form closed-loop messenger ribonucleoprotein particles (mRNPs) via eIF4F–poly(A)-binding protein 1 (Pab1) association, suggesting cooperation between closed-loop assembly and eIF4B/helicase functions. Remarkably, depleting eukaryotic translation initiation factor 4G (eIF4G), the scaffold subunit of eukaryotic translation initiation factor 4F (eIF4F), preferentially impacts short mRNAs with strong closed-loop potential and unstructured 5′ UTRs, exactly the opposite features associated with hyperdependence on the eIF4B/helicases. We propose that short, highly efficient mRNAs preferentially depend on the stimulatory effects of eIF4G-dependent closed-loop assembly. PMID:27601676

  11. Exosome secretion affects social motility in Trypanosoma brucei

    PubMed Central

    Shaked, Hadassa; Arvatz, Gil; Tkacz, Itai Dov; Binder, Lior; Waldman Ben-Asher, Hiba; Okalang, Uthman; Chikne, Vaibhav; Cohen-Chalamish, Smadar; Michaeli, Shulamit

    2017-01-01

    Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. PMID:28257521

  12. Metabolic syndrome alters expression of insulin signaling-related genes in swine mesenchymal stem cells.

    PubMed

    Conley, Sabena M; Zhu, Xiang-Yang; Eirin, Alfonso; Tang, Hui; Lerman, Amir; van Wijnen, Andre J; Lerman, Lilach O

    2018-02-20

    Metabolic syndrome (MetS) is associated with insulin resistance (IR) and impaired glucose metabolism in muscle, fat, and other cells, and may induce inflammation and vascular remodeling. Endogenous reparative systems, including adipose tissue-derived mesenchymal stem/stromal cells (MSC), are responsible for repair of damaged tissue. MSC have also been proposed as an exogenous therapeutic intervention in patients with cardiovascular and chronic kidney disease (CKD). The feasibility of using autologous cells depends on their integrity, but whether in MetS IR involves adipose tissue-derived MSC remains unknown. The aim of this study was to examine the expression of mRNA involved in insulin signaling in MSC from subjects with MetS. Domestic pigs consumed a lean or obese diet (n=6 each) for 16weeks. MSC were collected from subcutaneous abdominal fat and analyzed using high-throughput RNA-sequencing for expression of genes involved in insulin signaling. Expression profiles for enriched (fold change>1.4, p<0.05) and suppressed (fold change<0.7, p<0.05) mRNAs in MetS pigs were functionally interpreted by gene ontology analysis. The most prominently upregulated and downregulated mRNAs were further probed. We identified in MetS-MSC 168 up-regulated and 51 down-regulated mRNAs related to insulin signaling. Enriched mRNAs were implicated in biological pathways including hepatic glucose metabolism, adipocyte differentiation, and transcription regulation, and down-regulated mRNAs in intracellular calcium signaling and cleaving peptides. Functional analysis suggested that overall these alterations could increase IR. MetS alters mRNA expression related to insulin signaling in adipose tissue-derived MSC. These observations mandate caution during administration of autologous MSC in subjects with MetS. Copyright © 2017. Published by Elsevier B.V.

  13. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton.

    PubMed

    Mamon, L A; Ginanova, V R; Kliver, S F; Yakimova, A O; Atsapkina, A A; Golubkova, E V

    2017-04-01

    The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr 10 and sbr 5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr 12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton. © 2017 Wiley Periodicals, Inc.

  14. Role of Mex67-Mtr2 in the Nuclear Export of 40S Pre-Ribosomes

    PubMed Central

    Occhipinti, Laura; Kemmler, Stefan; Panse, Vikram G.

    2012-01-01

    Nuclear export of mRNAs and pre-ribosomal subunits (pre40S and pre60S) is fundamental to all eukaryotes. While genetic approaches in budding yeast have identified bona fide export factors for mRNAs and pre60S subunits, little is known regarding nuclear export of pre40S subunits. The yeast heterodimeric transport receptor Mex67-Mtr2 (TAP-p15 in humans) binds mRNAs and pre60S subunits in the nucleus and facilitates their passage through the nuclear pore complex (NPC) into the cytoplasm by interacting with Phe-Gly (FG)-rich nucleoporins that line its transport channel. By exploiting a combination of genetic, cell-biological, and biochemical approaches, we uncovered an unanticipated role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. We show that recruitment of Mex67-Mtr2 to pre40S subunits requires loops emanating from its NTF2-like domains and that the C-terminal FG-rich nucleoporin interacting UBA-like domain within Mex67 contributes to the transport of pre40S subunits to the cytoplasm. Remarkably, the same loops also recruit Mex67-Mtr2 to pre60S subunits and to the Nup84 complex, the respective interactions crucial for nuclear export of pre60S subunits and mRNAs. Thus Mex67-Mtr2 is a unique transport receptor that employs a common interaction surface to participate in the nuclear export of both pre-ribosomal subunits and mRNAs. Mex67-Mtr2 could engage a regulatory crosstalk among the three major export pathways for optimal cellular growth and proliferation. PMID:22956913

  15. Polysome Profiling in Leishmania, Human Cells and Mouse Testis.

    PubMed

    Karamysheva, Zemfira N; Tikhonova, Elena B; Grozdanov, Petar N; Huffman, James C; Baca, Kristen R; Karamyshev, Alexander; Denison, R Brian; MacDonald, Clinton C; Zhang, Kai; Karamyshev, Andrey L

    2018-04-08

    Proper protein expression at the right time and in the right amounts is the basis of normal cell function and survival in a fast-changing environment. For a long time, the gene expression studies were dominated by research on the transcriptional level. However, the steady-state levels of mRNAs do not correlate well with protein production, and the translatability of mRNAs varies greatly depending on the conditions. In some organisms, like the parasite Leishmania, the protein expression is regulated mostly at the translational level. Recent studies demonstrated that protein translation dysregulation is associated with cancer, metabolic, neurodegenerative and other human diseases. Polysome profiling is a powerful method to study protein translation regulation. It allows to measure the translational status of individual mRNAs or examine translation on a genome-wide scale. The basis of this technique is the separation of polysomes, ribosomes, their subunits and free mRNAs during centrifugation of a cytoplasmic lysate through a sucrose gradient. Here, we present a universal polysome profiling protocol used on three different models - parasite Leishmania major, cultured human cells and animal tissues. Leishmania cells freely grow in suspension and cultured human cells grow in adherent monolayer, while mouse testis represents an animal tissue sample. Thus, the technique is adapted to all of these sources. The protocol for the analysis of polysomal fractions includes detection of individual mRNA levels by RT-qPCR, proteins by Western blot and analysis of ribosomal RNAs by electrophoresis. The method can be further extended by examination of mRNAs association with the ribosome on a transcriptome level by deep RNA-seq and analysis of ribosome-associated proteins by mass spectroscopy of the fractions. The method can be easily adjusted to other biological models.

  16. Protein Phosphatase 2A (PP2A)-specific Ubiquitin Ligase MID1 Is a Sequence-dependent Regulator of Translation Efficiency Controlling 3-Phosphoinositide-dependent Protein Kinase-1 (PDPK-1)*

    PubMed Central

    Aranda-Orgillés, Beatriz; Rutschow, Désirée; Zeller, Raphael; Karagiannidis, Antonios I.; Köhler, Andrea; Chen, Changwei; Wilson, Timothy; Krause, Sven; Roepcke, Stefan; Lilley, David; Schneider, Rainer; Schweiger, Susann

    2011-01-01

    We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells. PMID:21930711

  17. Kinetic models of gene expression including non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  18. RNA mobility in parasitic plant - host interactions.

    PubMed

    Westwood, James H; Kim, Gunjune

    2017-04-03

    The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication.

  19. Reactivation of stalled polyribosomes in synaptic plasticity

    PubMed Central

    Graber, Tyson E.; Hébert-Seropian, Sarah; Khoutorsky, Arkady; David, Alexandre; Yewdell, Jonathan W.; Lacaille, Jean-Claude; Sossin, Wayne S.

    2013-01-01

    Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably paused polyribosomes. Remarkably, we show that metabotropic glutamate receptor activation allows the synthesis of proteins that lead to a functional long-term depression phenotype even when translation initiation has been greatly reduced. Thus, neurons evolved a unique mechanism to swiftly translate synaptic mRNAs into functional protein upon synaptic signaling using stalled polyribosomes to bypass the rate-limiting step of translation initiation. Because dysregulated plasticity is implicated in neurodevelopmental and psychiatric disorders such as fragile X syndrome, this work uncovers a unique translational target for therapies. PMID:24043809

  20. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): structure characterization, mRNA expression, temperature and nutritional regulation.

    PubMed

    Ren, Hong-tao; Zhang, Guang-qin; Li, Jian-lin; Tang, Yong-kai; Li, Hong-xia; Yu, Ju-hua; Xu, Pao

    2013-08-01

    Δ6-Desaturase is the rate-limiting enzyme involved in highly unsaturated fatty acid (HUFA) biosynthesis. There is very little information on the evolution and functional characterization of Δ6Fad-a and Δ6Fad-b in common carp (Cyprinus carpio var. Jian). In the present study, the genomic sequences and structures of two putative Δ6-desaturase-like genes in common carp genome were obtained. We investigated the mRNA expression patterns of Δ6Fad-a and Δ6Fad-b in tissue, hatching carp embryos, larvae by temperature shock and juveniles under nutritional regulation. Our results showed that the two Δ6Fad genes had identical coding exon structures, being comprised of 12 coding exons, and with introns of distinct size and sequence composition. They were not allelic variants of a single gene. Both Δ6Fad genes were highly expressed in liver, intestine (pyloric caeca) and brain. The Δ6Fad-a and Δ6Fad-b mRNAs showed an increase in expression from newly hatched to 25 days after hatching. The expression levels of Δ6Fad-a were obviously regulated by temperature, whereas Δ6Fad-b was not affected by temperature. The regulation of Δ6Fad-a and Δ6Fad-b in response to dietary fatty acid composition was determined in liver, brain and intestine (pyloric caeca) of common carp fed with diets: diet1with fish oil (FO) rich in n-3 HUFA, diet2 with corn oil (CO, 18:2n-6) and diet3 with linseed oil (LO, 18:3n-3). The differential expression of Δ6Fad-a and Δ6Fad-b genes in liver, brain and intestine in common carps was fed with different oil sources, respectively. Further work is in progress to determine the mechanism of differential expression of the Δ6Fad-a and Δ6Fad-b genes in different tissues and the roles of transcription factors in regulating HUFA synthesis. Copyright © 2013 Elsevier B.V. All rights reserved.

Top