Simulation of runaway electrons, transport affected by J-TEXT resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Wang, X. H.; Chen, Z. Y.; Huang, D. W.; Sun, X. F.; Xu, T.; Zhuang, G.
2016-09-01
The topology of a magnetic field and transport properties of runaway electrons can be changed by a resonant magnetic perturbation field. The J-TEXT magnetic topology can be effectively altered via static resonant magnetic perturbation (SRMP) and dynamic resonant magnetic perturbation (DRMP). This paper studies the effect of resonant magnetic perturbation (RMP) on the confinement of runaway electrons via simulating their drift orbits in the magnetic perturbation field and calculating the orbit losses for different runaway initial energies and different runaway electrons, initial locations. The model adopted is based on Hamiltonian guiding center equations for runaway electrons, and the J-TEXT magnetic turbulences and RMP are taken into account. The simulation indicates that the loss rate of runaway electrons is sensitive to the radial position of electrons. The loss of energetic runaway beam is dominated by the shrinkage of the confinement region. Outside the shrinkage region of the runaway electrons are lost rapidly. Inside the shrinkage region the runaway beam is confined very well and is less sensitive to the magnetic perturbation. The experimental result on the response of runaway transport to the application RMP indicates that the loss of runaway electrons is dominated by the shrinkage of the confinement region, other than the external magnetic perturbation.
Biological Electron Transport Systems
Cowan, Dwaine O.; Pasternak, Gavril; Kaufman, Frank
1970-01-01
The solid-state electrical conductivities of a number of ferredoxin model compounds are reported. For one of these compounds, (KFeS2)n, an electron transfer rate for a 25 Å unit is shown to be at least 1 × 108 electrons sec-1. The rate becomes proportionally larger for smaller molecular units. This rapid rate is consistant with a short pipe model for electron transport between two reaction sites. Some of the factors leading to this rapid transfer rate are considered. PMID:5269247
Electronic transport in graphene
NASA Astrophysics Data System (ADS)
Zhang, Yuanbo
This dissertation focuses on the electronic transport properties of graphene, a single atomic layer of graphite. Graphene is a novel two-dimensional system in which electron transport is effectively governed by the relativistic quantum theory. We discover a variety of new phenomenon which stem from the "relativistic" nature of the electron dynamics in graphene. An unusual quantum Hall (QH) effect is discovered in graphene at low temperatures and strong magnetic fields. Unlike conventional two-dimensional electron systems, in graphene the observed quantization condition is characterized by half integers rather than integers. Our investigation of the magneto-oscillations in resistance reveals a Berry's phase of pi associated with the electron motion in graphene. The half-integer quantization, as well as the Berry's phase, is attributed to the peculiar topology of the graphene band structure with a linear dispersion relation and vanishing mass near the Dirac point, which can be described by relativistic quantum electrodynamics. This is further confirmed by our measurement of the effective carrier mass, m*, which obeys Einstein's equation: E = m*c*2 where c* ≈ c/300 is the effective speed of light for electrons in graphene. The availability of high magnetic fields up to 45 Tesla allows us to study the magneto-transport in graphene in the extreme quantum limit. Under such condition, we discover new sets of QH states at filling factors nu = 0, +/-1, +/-4, indicating the lifting of the four-fold degeneracy of the previously observed QH states at nu = +/-4(|n|+1/2), where n is the Landau level index. In particular, the presence of the nu = 0, +/-1 QH states indicates that the Landau level at the charge neutral Dirac point splits into four sub-levels, lifting both sublattice and spin degeneracy, thereby potentially indicating a many-body correlation in this LL. The QH effect at nu = +/-4 is investigated in tilted magnetic fields and is attributed to lifting of the n
Methods development for electron transport
NASA Astrophysics Data System (ADS)
Ganapol, Barry D.
1992-04-01
This report consists of two code manuals and an article recently published in the proceedings of the American Nuclear Society Mathematics and Computation Topical Meeting held in Pittsburgh. In these presentations, deterministic calculational methods simulating electron transport in solids are detailed. The first method presented (Section 2) is for the solution of the Spencer-Lewis equation in which electron motion is characterized by continuous slowing down theory and a pathlength formulation. The FN solution to the standard monoenergetic transport equation for electron transport with isotropic scattering in finite media is given in Section 3. For both codes, complete flow charts, operational instructions and sample problems are included. Finally, in Section 4, an application of the multigroup formulation of electron transport in an infinite medium is used to verify an equivalent SN formulation. For this case, anisotropic scattering is also included.
Regimes of suprathermal electron transport
Glinsky, M.E.
1995-07-01
Regimes of the one-dimensional (1-D) transport of suprathermal electrons into a cold background plasma are delineated. A well ordered temporal progression is found through eras where {ital J}{center_dot}{ital E} heating, hot electron--cold electron collisional heating, and diffusive heat flow dominate the cold electron energy equation. Scaling relations for how important quantities such as the width and temperature of the heated layer of cold electrons evolve with time are presented. These scaling relations are extracted from a simple 1-D model of the transport which can be written in dimensionless form with one free parameter. The parameter is shown to be the suprathermal electron velocity divided by the drift velocity of cold electrons which balances the suprathermal current. Special attention is paid to the assumptions which allow the reduction from the collisional Vlasov equation, using a Fokker--Planck collision operator, to this simple model. These model equations are numerically solved and compared to both the scaling relations and a more complete multigroup electron diffusion transport. Implications of the scaling relations on fast ion generation, magnetic field generation, and electric field inhibition of electron transport are examined as they apply to laser heated plasmas. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Electron transport in bipyridinium films.
Raymo, Françisco M; Alvarado, Robert J
2004-01-01
Bipyridinium dications are versatile building blocks for the assembly of functional materials. In particular, their reliable electrochemical response has encouraged the design of electroactive films. Diverse and elegant experimental strategies to coat metallic and semiconducting electrodes with bipyridinium compounds have, in fact, emerged over the past two decades. The resulting interfacial assemblies span from a few nanometers to several micrometers in thickness. They incorporate from a single molecular layer to large collections of entangled polymer chains. They transport electrons efficiently from the electrode surface to the film/solution interface and vice versa. Electron self-exchange between and the physical diffusion of the bipyridinium building blocks conspire in defining the charge transport properties of these fascinating electroactive assemblies. Often, the matrix of electron-deficient bipyridinium dications can be exploited to entrap electron-rich analytes. Electrostatic interactions promote the supramolecular association of the guests with the surface-confined host matrix. Furthermore, chromophoric sites can be coupled to the bipyridinium dications to produce photosensitive arrays capable of harvesting light and generating current. Thus, thorough investigations on the fundamental properties of these functional molecule-based materials can lead to promising applications in electroanalysis and solar energy conversion, while contributing to advances in the basic understanding of electron transport in interfacial assemblies.
Electronic Transport in Carbon Nanomaterials
Lopez-Benzanilla, Alejandro; Meunier, Vincent; Sumpter, Bobby G; Roche, Stephan; Cruz Silva, Eduardo
2012-01-01
Over the past decade, transport measurements on individual single-wall nanotubes have played a prominent role in developing our understanding of this novel carbon conductor. These measurements have identified both metallic and semiconducting nanotubes, determined their dominant electronic scattering mechanisms, and elucidated in great detail the properties of their quantized energy spectrum. Recent technological breakthroughs in nanotube device fabrication and electronic measurement have made possible experiments of unprecedented precision that reveal new and surprising phenomena. In this review, we present the fundamental properties of nanotubes side by side with the newest discoveries and also discuss some of the most exciting emerging directions.
Mesoscopic electronics beyond DC transport
NASA Astrophysics Data System (ADS)
di Carlo, Leonardo
Since the inception of mesoscopic electronics in the 1980's, direct current (dc) measurements have underpinned experiments in quantum transport. Novel techniques complementing dc transport are becoming paramount to new developments in mesoscopic electronics, particularly as the road is paved toward quantum information processing. This thesis describes seven experiments on GaAs/AlGaAs and graphene nanostructures unified by experimental techniques going beyond traditional dc transport. Firstly, dc current induced by microwave radiation applied to an open chaotic quantum dot is investigated. Asymmetry of mesoscopic fluctuations of induced current in perpendicular magnetic field is established as a tool for separating the quantum photovoltaic effect from classical rectification. A differential charge sensing technique is next developed using integrated quantum point contacts to resolve the spatial distribution of charge inside a double quantum clot. An accurate method for determining interdot tunnel coupling and electron temperature using charge sensing is demonstrated. A two-channel system for detecting current noise in mesoscopic conductors is developed, enabling four experiments where shot noise probes transmission properties not available in dc transport and Johnson noise serves as an electron thermometer. Suppressed shot noise is observed in quantum point contacts at zero parallel magnetic field, associated with the 0.7 structure in conductance. This suppression evolves with increasing field into the shot-noise signature of spin-lifted mode degeneracy. Quantitative agreement is found with a phenomenological model for density-dependent mode splitting. Shot noise measurements of multi-lead quantum-dot structures in the Coulomb blockade regime distill the mechanisms by which Coulomb interaction and quantum indistinguishability correlate electron flow. Gate-controlled sign reversal of noise cross correlation in two capacitively-coupled dots is observed, and shown to
Electron Transport in Hall Thrusters
NASA Astrophysics Data System (ADS)
McDonald, Michael Sean
Despite high technological maturity and a long flight heritage, computer models of Hall thrusters remain dependent on empirical inputs and a large part of thruster development to date has been heavily experimental in nature. This empirical approach will become increasingly unsustainable as new high-power thrusters tax existing ground test facilities and more exotic thruster designs stretch and strain the boundaries of existing design experience. The fundamental obstacle preventing predictive modeling of Hall thruster plasma properties and channel erosion is the lack of a first-principles description of electron transport across the strong magnetic fields between the cathode and anode. In spite of an abundance of proposed transport mechanisms, accurate assessments of the magnitude of electron current due to any one mechanism are scarce, and comparative studies of their relative influence on a single thruster platform simply do not exist. Lacking a clear idea of what mechanism(s) are primarily responsible for transport, it is understandably difficult for the electric propulsion scientist to focus his or her theoretical and computational tools on the right targets. This work presents a primarily experimental investigation of collisional and turbulent Hall thruster electron transport mechanisms. High-speed imaging of the thruster discharge channel at tens of thousands of frames per second reveals omnipresent rotating regions of elevated light emission, identified with a rotating spoke instability. This turbulent instability has been shown through construction of an azimuthally segmented anode to drive significant cross-field electron current in the discharge channel, and suggestive evidence points to its spatial extent into the thruster near-field plume as well. Electron trajectory simulations in experimentally measured thruster electromagnetic fields indicate that binary collisional transport mechanisms are not significant in the thruster plume, and experiments
Electron transport in granular metals.
Altland, Alexander; Glazman, Leonid I; Kamenev, Alex
2004-01-16
We consider thermodynamic and transport properties of a long granular array with strongly connected grains (intergrain conductance g>1). We find that the system's conductance and differential capacitance exhibits activated behavior, approximately exp([-T(*)/T]. The gap T(*) represents the energy needed to create a long single-electron charge soliton propagating through the array. This scale is parametrically larger than the energy at which conventional perturbation theory breaks down.
Electronic transport in unconventional superconductors
Graf, M.J.
1998-12-31
The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.
Terahertz electromodulation spectroscopy of electron transport in GaN
Engelbrecht, S. G.; Arend, T. R.; Kersting, R.; Zhu, T.; Kappers, M. J.
2015-03-02
Time-resolved terahertz (THz) electromodulation spectroscopy is applied to investigate the high-frequency transport of electrons in gallium nitride at different doping concentrations and densities of threading dislocations. At THz frequencies, all structures reveal Drude transport. The analysis of the spectral response provides the fundamental transport properties, such as the electron scattering time and the electrons' conductivity effective mass. We observe the expected impact of ionized-impurity scattering and that scattering at threading dislocations only marginally affects the high-frequency mobility.
Small agricultural impoundments affect pollutant transport
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2013-03-01
Reservoirs created by dams intercept runoff from upslope areas and thus are often sinks for fertilizers and other pollutants that would otherwise flow downstream. Most studies of solute transport through impoundments have focused on large, long-lived systems. However, small impoundments, such as those created for irrigation or livestock watering, are common in agricultural regions, and their total global surface area is comparable to that of large reservoirs. As these small systems mature, the impoundments fill with sediment, creating ecosystems with wetland-like characteristics. Because dams that create these small impoundments are more likely to be degraded, poorly maintained, or removed by their owners, it is important to understand how changes in such systems may affect pollutant transport.
Coupled electron-photon radiation transport
Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.
2000-01-17
Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport.
Conditions and processes affecting radionuclide transport
Simmons, Ardyth M.; Neymark, Leonid A.
2012-01-01
Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.
Transport experiments with Dirac electrons
NASA Astrophysics Data System (ADS)
Checkelsky, Joseph George
This thesis presents transport experiments performed on solid state systems in which the behavior of the charge carriers can be described by the Dirac equation. Unlike the massive carriers in a typical material, in these systems the carriers behave like massless fermions with a photon-like dispersion predicted to greatly modify their spin and charge transport properties. The first system studied is graphene, a crystalline monolayer of carbon arranged in a hexagonal lattice. The band structure calculated from the hexagonal lattice has the form of the massless Dirac Hamiltonian. At the charge neutral Dirac point, we find that application of a magnetic field drives a transition to an insulating state. We also study the thermoelectric properties of graphene and find that the states near the Dirac point have a unique response compared to those at higher charge density. The second system is the 3D topological insulator Bi2Se3, where a Dirac-like dispersion for states on the 2D surface of the insulating 3D crystal arises as a result of the topology of the 3D bands and time reversal symmetry. To access the transport properties of the 2D states, we suppress the remnant bulk conduction channel by chemical doping and electrostatic gating. In bulk crystals we find strong quantum corrections to transport at low temperature when the bulk conduction channel is maximally suppressed. In microscopic crystals we are able better to isolate the surface conduction channel properties. We identify in-gap conducting states that have relatively high mobility compared to the bulk and exhibit weak anti-localization, consistent with predictions for protected 2D surface states with strong spin-orbit coupling.
The Electron Transport Chain: An Interactive Simulation
ERIC Educational Resources Information Center
Romero, Chris; Choun, James
2014-01-01
This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…
Monte Carlo electron/photon transport
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs.
Electron transport through single carbon nanotubes
Schenkel, Thomas; Chai, G.; Heinrich, H.; Chow, L.; Schenkel, T.
2007-08-01
We report on the transport of energetic electrons through single, well aligned multi-wall carbon nanotubes (CNT). Embedding of CNTs in a protective carbon fiber coating enables the application of focused ion beam based sample preparation techniques for the non-destructive isolation and alignment of individual tubes. Aligned tubes with lengths of 0.7 to 3 mu m allow transport of 300 keV electrons in a transmission electron microscope through their hollow cores at zero degree incident angles and for a misalignment of up to 1 degree.
Electronic Transport in Organic Molecules
NASA Astrophysics Data System (ADS)
Tian, W.; Samanta, M. P.; Henderson, J. I.; Kubiak, C. P.; Datta, S.
1996-03-01
A systematic theoretical study of the conductance of a class of organic molecules connected between two gold cantact pads will be presented. This class of molecules consists of oligomers of benzene rings linked at their para-positions and terminated with suitable ligand end groups designed to bond to gold substrates. Such molecules are currently being investigated experimentally for use as interconnectors in nanoscale electronic devices (J.Guay et al, J.Am.Chem.Soc., 115,1869, (1993); M.Dorogi et al, Phys. Rev. B52,9071,(1995); D.B.Janes et al, Superlatt. and Microstruc., in press). Analytical and numerical results will be presented illustrating effects of Metal Induced Gap States (MIGS), end group atoms, geometric and molecular structure on the measured conductance.
Li, Qian; Duan, Yuai; Gao, Hong-Ze; Su, Zhong-Мin; Geng, Yun
2015-06-01
In this work, we concentrate on systematic investigation on the fluorination and carbonylation effect on electron transport properties of thiophene-based materials with the aim of seeking and designing electron transport materials. Some relative factors, namely, frontier molecular orbital (FMO), vertical electron affinity (VEA), electron reorganization energy (λele), electron transfer integral (tele), electron drift mobility (μele) and band structures have been calculated and discussed based on density functional theory. The results show that the introduction of fluorine atoms and carbonyl group especially for the latter could effectively increase EA and reduce λele, which is beneficial to the improvement of electron transport performance. Furthermore, these introductions could also affect the tele by changing molecular packing manner and distribution of FMO. Finally, according to our calculation, the 3d system is considered to be a promising electron transport material with small λele, high electron transport ability and good ambient stability.
Li, Qian; Duan, Yuai; Gao, Hong-Ze; Su, Zhong-Мin; Geng, Yun
2015-06-01
In this work, we concentrate on systematic investigation on the fluorination and carbonylation effect on electron transport properties of thiophene-based materials with the aim of seeking and designing electron transport materials. Some relative factors, namely, frontier molecular orbital (FMO), vertical electron affinity (VEA), electron reorganization energy (λele), electron transfer integral (tele), electron drift mobility (μele) and band structures have been calculated and discussed based on density functional theory. The results show that the introduction of fluorine atoms and carbonyl group especially for the latter could effectively increase EA and reduce λele, which is beneficial to the improvement of electron transport performance. Furthermore, these introductions could also affect the tele by changing molecular packing manner and distribution of FMO. Finally, according to our calculation, the 3d system is considered to be a promising electron transport material with small λele, high electron transport ability and good ambient stability. PMID:25909689
Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F
2015-02-01
Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.
Resistive Plate Chambers: electron transport and modeling
NASA Astrophysics Data System (ADS)
Bošnjaković, D.; Petrović, Z. Lj; Dujko, S.
2014-12-01
We study the electron transport in gas mixtures used by Resistive Plate Chambers (RPCs) in high energy physics experiments at CERN. Calculations are performed using a multi term theory for solving the Boltzmann equation. We identify the effects induced by non-conservative nature of electron attachment, including attachment heating of electrons and negative differential conductivity (NDC). NDC was observed only in the bulk component of drift velocity. Using our Monte Carlo technique, we calculate the spatially resolved transport properties in order to investigate the origin of these effects. We also present our microscopic approach to modeling of RPCs which is based on Monte Carlo method. Calculated results for a timing RPC show good agreement with an analytical model and experimental data. Different cross section sets for electron scattering in C2H2F4 are used for comparison and analysis.
Contactless electronic transport in a bio-molecular junction
Hossain, Faruque M. Al-Dirini, Feras; Skafidas, Efstratios
2014-07-28
Molecular electronics hold promise for next generation ultra-low power, nano-scale integrated electronics. The main challenge in molecular electronics is to make a reliable interface between molecules and metal electrodes. Interfacing metals and molecules detrimentally affects the characteristics of nano-scale molecular electronic devices. It is therefore essential to investigate alternative arrangements such as contact-less tunneling gaps wherever such configurations are feasible. We conduct ab initio density functional theory and non-equilibrium Green's functions calculations to investigate the transport properties of a biocompatible glycine molecular junction. By analyzing the localized molecular orbital energy distributions and transmission probabilities in the transport-gap, we find a glycine molecule confined between two gold electrodes, without making a contact, is energetically stable and possesses high tunneling current resembling an excellent ohmic-like interface.
Numerical solution of the electron transport equation
NASA Astrophysics Data System (ADS)
Woods, Mark
The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.
Electron Transport Through Single Fullerene Molecules (abstract)
NASA Astrophysics Data System (ADS)
Stróżecka, Anna; Muthukumar, Kaliappan; Larsson, J. Andreas; Voigtländer, Bert
2009-04-01
Fullerenes show potential for applications in nanotechnology due to the possibility of tuning their properties by doping or functionalization. In particular, the endohedral doping of the hollow carbon cage with metal atoms allows changing the electronic and magnetic properties of the molecule without distorting the geometry of the outer shell. Here we present a low temperature scanning tunneling microscopy (STM) and spectroscopy study of the vibrational and transport properties of Ce2atC80 metallofullerenes. We observe that electron transport through the endohedral fullerene is strongly mediated by excitation of molecular vibrations, especially the dynamics of encapsulated atoms. We measure the conductance of the single-molecule junction upon contact between the molecule and the STM tip. To determine the role of doping atoms we compare the results obtained for the endohedrally doped species with those for a hollow fullerene. Analysis shows that localization of electron density on encapsulated atoms hinders the conduction process through the fullerene.
Regulation of Photosynthetic Electron Transport and Photoinhibition
Roach, Thomas; Krieger-Liszkay, Anja Krieger
2014-01-01
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670
Kahnoj, Sina Soleimani; Touski, Shoeib Babaee; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at
2014-09-08
The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.
Electron ripple injection concept for transport control
Choe, W.; Ono, M.; Hwang, Y.S.
1992-01-01
Recent experiments in many devices have provided firm evidence that the edge radial electric field profile differs between L- and H-modes, and that these fields can greatly modify transport in tokamak plasmas. A nonintrusive method for inducing radial electric field based on electron ripple injection is being developed by the CDX-U group. This technique utilizes a pair of special coils to create a local magnetic field ripple to trap the electrons at the edge of the plasma. The trapped electrons then drift into the plasma due to the [del]B drift. An ECH power is applied to accelerate electrons to sufficient perpendicular energy to penetrate into the plasma. Application of ECH power to the trapped electrons should provide the desired 20 A of electron current with electrons of a few keV of energy and v[perpendicular]/v[parallel] [much gt] 1. A controlled experiment to investigate the physics of ECH aided ripple injection has been designed on CDX-U. With the set of ripple coils designed for CDX-U, a ripple fraction of [delta] ([double bond] [del]B/B[sub av]) [approximately] 5% is attainable. At this ripple fraction, electrons are trapped if v[perpendicular]/v[parallel] [much gt] 1> (2[delta])[sup [minus][1/2
Self-consistent electron transport in tokamaks
Gatto, R.; Chavdarovski, I.
2007-09-15
Electron particle, momentum, and energy fluxes in axisymmetric toroidal devices are derived from a version of the action-angle collision operator that includes both diffusion and drag in action-space [D. A. Hitchcock, R. D. Hazeltine, and S. M. Mahajan, Phys. Fluids 26, 2603 (1983); H. E. Mynick, J. Plasma Phys. 39, 303 (1988)]. A general result of the theory is that any contribution to transport originating directly from the toroidal frequency of the particle motion is constrained to be zero when the electron temperature is equal to the ion temperature. In particular, this constraint applies to those components of the particle and energy fluxes that are proportional to the magnetic shear, independent of the underlying turbulence and of whether the particles are trapped or untrapped. All the total fluxes describing collisionless transport of passing electrons in steady-state magnetic turbulence contain contributions proportional to the conventional thermodynamic drives, which are always outward, and contributions proportional to the magnetic shear, which have both magnitude and sign dependent on the ion-electron temperature ratio. The turbulent generalization of Ohm's law includes a hyper-resistive term, which flattens the current density profile on a fast time scale, and a turbulent electric field, which can have both signs depending on the electron-ion temperature ratio.
Single-molecule junctions beyond electronic transport.
Aradhya, Sriharsha V; Venkataraman, Latha
2013-06-01
The idea of using individual molecules as active electronic components provided the impetus to develop a variety of experimental platforms to probe their electronic transport properties. Among these, single-molecule junctions in a metal-molecule-metal motif have contributed significantly to our fundamental understanding of the principles required to realize molecular-scale electronic components from resistive wires to reversible switches. The success of these techniques and the growing interest of other disciplines in single-molecule-level characterization are prompting new approaches to investigate metal-molecule-metal junctions with multiple probes. Going beyond electronic transport characterization, these new studies are highlighting both the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the atomic and molecular scales. Furthermore, experimental demonstrations of quantum interference and manipulation of electronic and nuclear spins in single-molecule circuits are heralding new device concepts with no classical analogues. In this Review, we present the emerging methods being used to interrogate multiple properties in single molecule-based devices, detail how these measurements have advanced our understanding of the structure-function relationships in molecular junctions, and discuss the potential for future research and applications.
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping
Electronic transport in methylated fragments of DNA
Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L. Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; Moura, F. A. B. F. de; Lyra, M. L.
2015-11-16
We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.
Electronic transport in methylated fragments of DNA
NASA Astrophysics Data System (ADS)
de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.
2015-11-01
We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.
Electron transport fluxes in potato plateau regime
Shaing, K.C.; Hazeltine, R.D.
1997-12-01
Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}
Electron ripple injection concept for transport control
Choe, W.; Ono, M.; Hwang, Y.S.
1992-10-01
Recent experiments in many devices have provided firm evidence that the edge radial electric field profile differs between L- and H-modes, and that these fields can greatly modify transport in tokamak plasmas. A nonintrusive method for inducing radial electric field based on electron ripple injection is being developed by the CDX-U group. This technique utilizes a pair of special coils to create a local magnetic field ripple to trap the electrons at the edge of the plasma. The trapped electrons then drift into the plasma due to the {del}B drift. An ECH power is applied to accelerate electrons to sufficient perpendicular energy to penetrate into the plasma. Application of ECH power to the trapped electrons should provide the desired 20 A of electron current with electrons of a few keV of energy and v{perpendicular}/v{parallel} {much_gt} 1. A controlled experiment to investigate the physics of ECH aided ripple injection has been designed on CDX-U. With the set of ripple coils designed for CDX-U, a ripple fraction of {delta} ({double_bond} {del}B/B{sub av}) {approximately} 5% is attainable. At this ripple fraction, electrons are trapped if v{perpendicular}/v{parallel} {much_gt} 1> (2{delta}){sup {minus}{1/2}} {approx}3. A resonant cavity box was fabricated for efficient heating of the trapped electrons. It is also capable of measuring the effect of the field ripple in conjunction with trapped electrons. Some preliminary results are given.
Transport of electrons in monolithic hot electron Si transistors
NASA Astrophysics Data System (ADS)
Berz, F.
1986-12-01
The transport of electrons across the base of monolithic hot electron transistors is studied using a simplified model. The base is assumed to be limited by abrupt barriers and no account is taken of backscattering from the collector region. The collisions in the base are considered to be of only one type which represents an average between interactions with optical and acoustic phonons. A fundamental part in the analysis is played by the function PEX( i, x), ( i = 1, 2, …) which gives the total probability of exit into the collector of an electron whose ith collision occurs at a point of abscissa x within the base. The function PEX( i, x) is determined iteratively for decreasing values of i, using the theorem of compound probabilities, and from there the transport factor α across the base is derived. Programs have been written to this effect, and the results are illustrated by means of examples which demonstrate the effect on the transport factor α of the various parameters of the device, and show some comparisons with a previous theory[4].
Conditioner for a helically transported electron beam
Wang, Changbiao
1992-05-01
The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.
Electron transport parameters in NF3
NASA Astrophysics Data System (ADS)
Lisovskiy, V.; Yegorenkov, V.; Ogloblina, P.; Booth, J.-P.; Martins, S.; Landry, K.; Douai, D.; Cassagne, V.
2014-03-01
We present electron transport parameters (the first Townsend coefficient, the dissociative attachment coefficient, the fraction of electron energy lost by collisions with NF3 molecules, the average and characteristic electron energy, the electron mobility and the drift velocity) in NF3 gas calculated from published elastic and inelastic electron-NF3 collision cross-sections using the BOLSIG+ code. Calculations were performed for the combined RB (Rescigno 1995 Phys. Rev. E 52 329, Boesten et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5475) momentum-transfer cross-section, as well as for the JB (Joucoski and Bettega 2002 J. Phys. B: At. Mol. Opt. Phys. 35 783) momentum-transfer cross-section. In addition, we have measured the radio frequency (rf) breakdown curves for various inter-electrode gaps and rfs, and from these we have determined the electron drift velocity in NF3 from the location of the turning point in these curves. These drift velocity values are in satisfactory agreement with those calculated by the BOLSIG+ code employing the JB momentum-transfer cross-section.
Electronic transport in graphene-based heterostructures
Tan, J. Y.; Avsar, A.; Balakrishnan, J.; Taychatanapat, T.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Koon, G. K. W.; Özyilmaz, B.; Watanabe, K.; Taniguchi, T.
2014-05-05
While boron nitride (BN) substrates have been utilized to achieve high electronic mobilities in graphene field effect transistors, it is unclear how other layered two dimensional (2D) crystals influence the electronic performance of graphene. In this Letter, we study the surface morphology of 2D BN, gallium selenide (GaSe), and transition metal dichalcogenides (tungsten disulfide (WS{sub 2}) and molybdenum disulfide (MoS{sub 2})) crystals and their influence on graphene's electronic quality. Atomic force microscopy analysis shows that these crystals have improved surface roughness (root mean square value of only ∼0.1 nm) compared to conventional SiO{sub 2} substrate. While our results confirm that graphene devices exhibit very high electronic mobility (μ) on BN substrates, graphene devices on WS{sub 2} substrates (G/WS{sub 2}) are equally promising for high quality electronic transport (μ ∼ 38 000 cm{sup 2}/V s at room temperature), followed by G/MoS{sub 2} (μ ∼ 10 000 cm{sup 2}/V s) and G/GaSe (μ ∼ 2200 cm{sup 2}/V s). However, we observe a significant asymmetry in electron and hole conduction in G/WS{sub 2} and G/MoS{sub 2} heterostructures, most likely due to the presence of sulphur vacancies in the substrate crystals. GaSe crystals are observed to degrade over time even under ambient conditions, leading to a large hysteresis in graphene transport making it a less suitable substrate.
Electron Transport in Short Peptide Single Molecules
NASA Astrophysics Data System (ADS)
Cui, Jing; Brisendine, Joseph; Ng, Fay; Nuckolls, Colin; Koder, Ronald; Venkarataman, Latha
We present a study of the electron transport through a series of short peptides using scanning tunneling microscope-based break junction method. Our work is motivated by the need to gain a better understanding of how various levels of protein structure contribute to the remarkable capacity of proteins to transport charge in biophysical processes such as respiration and photosynthesis. We focus here on short mono, di and tri-peptides, and probe their conductance when bound to gold electrodes in a native buffer environment. We first show that these peptides can bind to gold through amine, carboxyl, thiol and methyl-sulfide termini. We then focus on two systems (glycine and alanine) and show that their conductance decays faster than alkanes terminated by the same linkers. Importantly, our results show that the peptide bond is less conductive than a sigma carbon-carbon bond. This work was supported in part by NSF-DMR 1507440.
Electronic transport in benzodifuran single-molecule transistors
NASA Astrophysics Data System (ADS)
Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui
2015-04-01
Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single
Electronic transport properties of silicon clusters
NASA Astrophysics Data System (ADS)
Matsuura, Yukihito
2016-02-01
The electronic transport properties of silicon clusters were examined via theoretical calculations using the first-principles method. Additionally, p-type doping and n-type doping were analyzed by calculating conductance and current of boron- and phosphorus-doped silicon clusters. The p-type doping and n-type doping provided a new transmission peak at an energy level around the Fermi level to increase conductance. Furthermore, simultaneous boron and phosphorus doping resulted in noticeable rectifying characteristics, with the current drive in forward bias being three times higher than that in the reverse bias. A p-n junction was achieved even on a molecular scale.
Inelastic electron transport in granular arrays
Altland, A.; Glazman, L.I.; Kamenev, A.; Meyer, J.S. . E-mail: jmeyer@mps.ohio-state.edu
2006-11-15
Transport properties of granular systems are governed by Coulomb blockade effects caused by the discreteness of the electron charge. We show that, in the limit of vanishing mean level spacing on the grains, the low-temperature behavior of 1d and 2d arrays is insulating at any inter-grain coupling (characterized by a dimensionless conductance g). In 2d and g >> 1, there is a sharp Berezinskii-Kosterlitz-Thouless crossover to the conducting phase at a certain temperature, T {sub BKT}. These results are obtained by applying an instanton analysis to map the conventional 'phase' description of granular arrays onto the dual 'charge' representation.
Inelastic electron transport in granular arrays.
Altland, A.; Glazman, L. I.; Kamenev, A.; Meyer, J. S.; Materials Science Division; Univ. zu Koln; Univ. Minnesota; Ohio State Univ.
2006-01-01
Transport properties of granular systems are governed by Coulomb blockade effects caused by the discreteness of the electron charge. We show that, in the limit of vanishing mean level spacing on the grains, the low-temperature behavior of 1d and 2d arrays is insulating at any inter-grain coupling (characterized by a dimensionless conductance g). In 2d and g 1, there is a sharp Berezinskii-Kosterlitz-Thouless crossover to the conducting phase at a certain temperature, T{sub BKT}. These results are obtained by applying an instanton analysis to map the conventional 'phase' description of granular arrays onto the dual 'charge' representation.
Electron heat transport down steep temperature gradients
Matte, J.P.; Virmont, J.
1982-12-27
Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.
Electronic transport properties of (fluorinated) metal phthalocyanine
NASA Astrophysics Data System (ADS)
Fadlallah, M. M.; Eckern, U.; Romero, A. H.; Schwingenschlögl, U.
2016-01-01
The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S-Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.
Conditioner for a helically transported electron beam
Wang, Changbiao.
1992-05-01
The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.
Status of electron transport in MCNP{trademark}
Hughes, H.G.
1995-09-01
In recent years, an ongoing project within the radiation transport group (XTM) at Los Alamos National Laboratory has been the implementation and validation of an electron transport capability in the Monte Carlo code NICNP. In this paper the authors document the continuous-energy electron transport methods currently in use in MCNP, and describes a recent improvement of the energy-loss straggling algorithm. MCNP also supports electron transport calculations in a multigroup mode.
Electronic transport of recrystallized freestanding graphene nanoribbons.
Qi, Zhengqing John; Daniels, Colin; Hong, Sung Ju; Park, Yung Woo; Meunier, Vincent; Drndić, Marija; Johnson, A T Charlie
2015-01-01
The use of graphene and other two-dimensional materials in next-generation electronics is hampered by the significant damage caused by conventional lithographic processing techniques employed in device fabrication. To reduce the density of defects and increase mobility, Joule heating is often used since it facilitates lattice reconstruction and promotes self-repair. Despite its importance, an atomistic understanding of the structural and electronic enhancements in graphene devices enabled by current annealing is still lacking. To provide a deeper understanding of these mechanisms, atomic recrystallization and electronic transport in graphene nanoribbon (GNR) devices are investigated using a combination of experimental and theoretical methods. GNR devices with widths below 10 nm are defined and electrically measured in situ within the sample chamber of an aberration-corrected transmission electron microscope. Immediately after patterning, we observe few-layer polycrystalline GNRs with irregular sp(2)-bonded edges. Continued structural recrystallization toward a sharp, faceted edge is promoted by increasing application of Joule heat. Monte Carlo-based annealing simulations reveal that this is a result of concentrated local currents at lattice defects, which in turn promotes restructuring of unfavorable edge structures toward an atomically sharp state. We establish that intrinsic conductance doubles to 2.7 e(2)/h during the recrystallization process following an almost 3-fold reduction in device width, which is attributed to improved device crystallinity. In addition to the observation of consistent edge bonding in patterned GNRs, we further motivate the use of bonded bilayer GNRs for future nanoelectronic components by demonstrating how electronic structure can be tailored by an appropriate modification of the relative twist angle of the bonded bilayer.
Transport of the plasma sheet electrons to the geostationary distances
NASA Astrophysics Data System (ADS)
Ganushkina, N. Y.; Amariutei, O. A.; Shprits, Y. Y.; Liemohn, M. W.
2013-01-01