Science.gov

Sample records for affects groundwater quality

  1. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  2. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China

    NASA Astrophysics Data System (ADS)

    Jiang, Yongjun; Wu, Yuexia; Groves, Chris; Yuan, Daoxian; Kambesis, Pat

    2009-10-01

    The Nandong Underground River System (NURS) is located in a typical karst agriculture dominated area in the southeast Yunnan Province, China. Groundwater plays an important role for social and economical development in the area. However, with the rapid increase in population and expansion of farm land, groundwater quality has degraded. 42 groundwater samples collected from springs in the NURS showed great variation of chemical compositions across the study basin. With increased anthropogenic contamination in the area, the groundwater chemistry has changed from the typical Ca-HCO 3 or Ca (Mg)-HCO 3 type in karst groundwater to the Ca-Cl (+ NO 3) or Ca (Mg)-Cl (+ NO 3), and Ca-Cl (+ NO 3 + SO 4) or Ca (Mg)-Cl (+ NO 3 + SO 4) type, indicating increases in NO 3-, Cl - and SO 42- concentrations that were caused most likely by human activities in the region. This study implemented the R-mode factor analysis to investigate the chemical characteristics of groundwater and to distinguish the natural and anthropogenic processes affecting groundwater quality in the system. The R-mode factor analysis together with geology and land uses revealed that: (a) contamination from human activities such as sewage effluents and agricultural fertilizers; (b) water-rock interaction in the limestone-dominated system; and (c) water-rock interaction in the dolomite-dominated system were the three major factors contributing to groundwater quality. Natural dissolution of carbonate rock (water-rock interaction) was the primary source of Ca 2+ and HCO 3- in groundwater, water-rock interaction in dolomite-dominated system resulted in higher Mg 2+ in the groundwater, and human activities were likely others sources. Sewage effluents and fertilizers could be the main contributor of Cl -, NO 3-, SO 42-, Na + and K + to the groundwater system in the area. This study suggested that both natural and anthropogenic processes contributed to chemical composition of groundwater in the NURS, human activities

  3. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    PubMed

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. PMID:26938497

  4. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: a multivariate statistical approach.

    PubMed

    Mohapatra, P K; Vijay, R; Pujari, P R; Sundaray, S K; Mohanty, B P

    2011-01-01

    Variability of groundwater quality parameters is linked to various processes such as weathering, organic matter degradation, aerobic respiration, iron reduction, mineral dissolution and precipitation, cation exchange and mixing of salt water with fresh water. Multivariate statistical analyses such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the standardized data set of eleven groundwater quality parameters (i.e. pH, Ca2+, Mg2+, Na+, K+, Fe3+, alkalinity, NO3-, Cl-, SO4(2-), TDS) collected during the post-monsoon and the summer seasons in order to elicit hydrologic and biogeochemical processes affecting water quality in the unconfined aquifer beneath Puri city in eastern India. The application of PCA resulted in four factors explaining 73% variance in post-monsoon and 81% variance in summer. The HCA using Ward's method and squared Euclidean distance measure classified the parameters into four clusters based on their similarities. PCA and HCA allowed interpretation of processes. During both post-monsoon and summer seasons, anthropogenic pollution and organic matter degradation/Fe(III) reduction were found dominant due to contribution from on-site sanitation in septic tanks and soak pits in the city. Cation exchange and mineral precipitation were possible causes for increase in Na+ and decrease in Ca2+ concentration in summer. Fresh water recharge during monsoon and Sea water intrusion in summer are attributed as significant hydrologic processes to variations of the groundwater quality at the study site. PMID:22097065

  5. Integrated groundwater quality management in urban areas

    NASA Astrophysics Data System (ADS)

    Swartjes, F. A.; Otte, P. F.

    2012-04-01

    Traditionally, groundwater assessments and remediations are approached at the scale of individual groundwater plumes. In urban areas, however, this management of individual groundwater plumes is often problematic for technical, practical or financial reasons, since the groundwater quality is often affected by a combination of sources, including (former) industrial activities, spills and leachate from uncontrolled landfills and building materials. As a result, often a whole series of intermingling contamination plumes is found in large volumes of groundwater. In several countries in the world, this led to stagnation of groundwater remediation in urban areas. Therefore, in the Netherlands there is a tendency managing groundwater in urban areas from an integrated perspective and on a larger scale. This so-called integrated groundwater quality management is often more efficient and hence, cheaper, since the organisation of the management of a cluster of groundwater plumes is much easier than it would be if all individual groundwater plumes were managed at different points in time. Integrated groundwater quality management should follow a tailor-made approach. However, to facilitate practical guidance was developed. This guidance relates to the delineation of the domain, the management of sources for groundwater contamination, procedures for monitoring, and (risk-based) assessment of the groundwater quality. Function-specific risk-based groundwater quality criteria were derived to support the assessment of the groundwater quality.

  6. Trends in groundwater quality

    NASA Astrophysics Data System (ADS)

    Loftis, Jim C.

    1996-02-01

    The term trend takes on a variety of meanings for groundwater quality in both a temporal and spatial context. Most commonly, trends are thought of as changes over time at either a regional or localized spatial scale. Generally water quality managers are most interested in changes associated with some form of human activity. Carefully defining what is meant by trend is a critical step in trend analysis and may be accomplished by formulating a statistical model which includes a trend component. Although there are a great many regional groundwater studies which provide a snapshot description of water quality conditions over an area at one point in time, there are relatively few which consider changes over time and fewer still which include a statistical analysis of long-term trend. This review covers both regional and localized studies of groundwater quality around the world, including a few snapshots, but focusing primarily on those studies which include an evaluation of temporal changes in groundwater quality. The studies include national assessments, agricultural case studies (the largest group, mostly regional in scope), urban case studies, and point source and hazardous waste case studies.

  7. Trend Analysis for Groundwater Quality at Different Depths for National Groundwater Quality Monitoring Network of Korea

    NASA Astrophysics Data System (ADS)

    An, Hyeonsil; Jeen, Sung-Wook; Hyun, Yunjung; Lee, Soo Jae; Yoon, Heesung; Kim, Rak-Hyeon

    2015-04-01

    Continuous groundwater monitoring is necessary to investigate the changes of groundwater quality with time, and trend analysis using a statistical method can be used to evaluate if the changes are significant. While groundwater quality is typically monitored and evaluated at one depth, in many cases groundwater quality can be different with depths; thus it is required that monitoring and assessment of trends of groundwater quality should be performed at different depths. In this study, we carried out trend analysis for groundwater quality data of National Groundwater Quality Monitoring Network of Korea to investigate the changes of groundwater quality between 2007 and 2013. The monitoring network has wells with different depths at each site, of which screens are located at about 10 m, 30 m, and 80 m. We analyzed three of the groundwater quality parameters that have sufficient time series data: pH, nitrate-nitrogen, and chloride ion. Sen's test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of groundwater quality data. The trend analyses were conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99 % confidence levels). The results of groundwater monitoring and trend analysis at each location were compared with groundwater quality management standards and were classified to establish a new groundwater quality management framework of Korea. The results were further plotted in a regional scale to identify whether the trends, if any, can be grouped regionally. The results showed that wells with significant increasing or decreasing trends are far less than wells with no trends, and chloride ion has more wells with significant trends compared to pH and nitrate-nitrogen. The trends were more or less affected by local characteristics rather than reflecting a regional trend. The number of wells with trends decreased as the confidence level increased as expected, indicating that it is necessary to set an

  8. Arkansas Groundwater-Quality Network

    USGS Publications Warehouse

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  9. Groundwater quality in the San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.

  10. GROUNDWATER QUALITY PROTECTION: THE ISSUE IN PERSPECTIVE

    EPA Science Inventory

    The importance of protecting groundwater resources cannot be overstated, and many people throughout the world seem anxious to physically and financially support a rational program to this end. Public complacency regarding the quality of groundwater was destroyed with headline-gra...

  11. Processes Controlling Temporal Changes in Agriculturally-Affected Groundwater

    NASA Astrophysics Data System (ADS)

    Burow, K. R.; Belitz, K.; Jurgens, B. C.

    2014-12-01

    The National Water Quality Assessment (NAWQA) program of the U.S. Geological Survey includes assessment of groundwater-quality changes with time. To better understand changes at a national scale, NAWQA has implemented smaller scale flow-path studies to evaluate the processes affecting these changes. Flow path studies are designed to sample groundwater of different ages. Wells are sampled for a suite of constituents, including tracers of groundwater age. In the 1990s, a 4.6 km transect of monitoring wells was installed near Fresno in the southern Central Valley of California. The region is dominated by intensive agriculture. The wells were sampled in 1994-95, 2003, and 2013 to provide data on changes in water quality and groundwater age. In 2013, the flow path was extended to a regional scale (30 km) by using existing production wells. Preliminary interpretation of the local-scale flow path indicates that nitrate concentrations in the upper 25 m of the aquifer are higher than the USEPA Maximum Contaminant Level (MCL) for drinking water and variably increase or decrease with time. At intermediate depths (25-40 m), nitrate concentrations are lower and show small to moderate increases. The legacy pesticide 1,2-dibromo-3-chloropropane (DBCP) is degrading at a half-life of about 4-6 years. DBCP is present above the MCL at intermediate depths even though it is has been banned from use for more than 30 years. Both nitrate and DBCP appear to be moving vertically downward through the aquifer. Whereas uranium concentrations are generally below the MCL in the local-scale flow path, concentrations increase along the regional transect, with concentrations nearly an order of magnitude above the MCL in some wells. Further evaluation of processes affecting these constituents (such as source, redox, and mobilization factors) will provide important insight that can be applied to other regions and will assist local water managers.

  12. A groundwater quality index map for Namibia

    NASA Astrophysics Data System (ADS)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  13. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  14. Groundwater Quality in Mura Valley (Slovenia)

    NASA Astrophysics Data System (ADS)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.

    2012-04-01

    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  15. Groundwater quality in the San Fernando--San Gabriel groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Fernando and San Gabriel groundwater basins constitute one of the study units being evaluated.

  16. RESEARCH FOR GROUNDWATER QUALITY MANAGEMENT

    EPA Science Inventory

    Ground water is an excellent resource due to its quality and availability. In the United States it is available at almost any location in quantities large enough to provide for domestic needs and over one-third of the Country is underlain by aquifers capable of yielding 100,000 g...

  17. Assessment of Groundwater Quality by Chemometrics.

    PubMed

    Papaioannou, Agelos; Rigas, George; Kella, Sotiria; Lokkas, Filotheos; Dinouli, Dimitra; Papakonstantinou, Argiris; Spiliotis, Xenofon; Plageras, Panagiotis

    2016-07-01

    Chemometric methods were used to analyze large data sets of groundwater quality from 18 wells supplying the central drinking water system of Larissa city (Greece) during the period 2001 to 2007 (8.064 observations) to determine temporal and spatial variations in groundwater quality and to identify pollution sources. Cluster analysis grouped each year into three temporal periods (January-April (first), May-August (second) and September-December (third). Furthermore, spatial cluster analysis was conducted for each period and for all samples, and grouped the 28 monitoring Units HJI (HJI=represent the observations of the monitoring site H, the J-year and the period I) into three groups (A, B and C). Discriminant Analysis used only 16 from the 24 parameters to correctly assign 97.3% of the cases. In addition, Factor Analysis identified 7, 9 and 8 latent factors for groups A, B and C, respectively. PMID:27329059

  18. Groundwater quality in the Antelope Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  19. Groundwater quality in the North San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2010-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The basins north of San Francisco constitute one of the study units being evaluated.

  20. Groundwater quality in the South Coast Interior Basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.

  1. Effects Of Leaky Sewers On Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  2. Factors Affecting Medical Service Quality

    PubMed Central

    MOSADEGHRAD, Ali Mohammad

    2014-01-01

    Abstract Background A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Methods Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Results Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Conclusion Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality. PMID:26060745

  3. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-01-01

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  4. Spatial assessment of groundwater quality based on minor ions

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Elango, L.

    2011-12-01

    Use of water for domestic, agricultural and industrial purpose depends on the desirable range of concentration of various ions. As the suitability of groundwater for different use depends on concentration of several ions, delineation of a region having groundwater of suitable quality relies on integrating the quality of groundwater with respect to each ion. This can be brought out with the aid of advanced tools such as GIS (geographical information system). This study was carried out with the objective of assessing the groundwater quality based on EC (electrical conductivity), fluoride, bromide and nitrate using GIS techniques and the regions requiring attention for groundwater treatment was identified in a part of Nalgonda district, Andhra Pradesh, southern India. Forty five groundwater samples were collected and their EC, fluoride, nitrate and bromide concentration was analysed. Groundwater was not suitable for consumption in 6.6% of the samples based on EC. Fluoride, nitrate and bromide concentration in groundwater was not permissible as per BIS and WHO standards in 57%, 22% and 11% of the groundwater samples respectively. The areas having groundwater suitable or unsuitable for domestic use was delineated using GIS. The groundwater samples collected from 69% of the locations exceeded the desirable limit for drinking for atleast one parameter. The groundwater was unsuitable for domestic use in the northeastern and southeastern parts of this area. The source for the concentration of these parameters exceeding the limit is different for each parameter. Hence it is important to take a suitable collective measure in improving the groundwater quality. Considering the various options available for redeeming the groundwater quality, artificial recharge of groundwater by rainwater harvesting will be suitable to reduce the concentration of all ions in this area.

  5. Effects of variations in recharge on groundwater quality

    USGS Publications Warehouse

    Whittemore, D.O.; McGregor, K.M.; Marotz, G.A.

    1989-01-01

    The predominant regional effect of recharge on municipal groundwater quality in Kansas is the dilution of mineralized water in aquifers with relatively shallow water tables. The individual dissolved constituents contributing most to the water-quality variations are sulfate and chloride, and the calcium and sodium accompanying them, which are derived from the dissolution of evaporite minerals within the aquifer or from saline formation water in bedrock underlying the aquifer. The relationship between recharge and groundwater-quality variation can be quantified by associating certain climatic indices, especially the Palmer Drought Index, with quality observations. The response time of the maximum water-quality change relative to the occurrence of drought or substantial recharge ranges from a month to 3 years depending on the aquifer characteristics, and is generally proportional to the saturated thickness and specific yield. The response time is also affected by discharge to and recharge from nearby streams and by the well construction, particularly the placement of the screened interval, and pumping stress. ?? 1989.

  6. Groundwater quality in western New York, 2011

    USGS Publications Warehouse

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  7. Urbanization effect on groundwater quality (Paleohydrogeological study)

    NASA Astrophysics Data System (ADS)

    Sabri, Raghid; Merkel, Broder; Tichomirowa, Marion

    2015-04-01

    Speleothem growing in caves usually contain hydrological information. Carbonates precipitation growing in tunnels under cities contain information about anthropological influence on water system. Carbonate samples were taken from Roman tunnels in rural and urban area in Nablus district- Palestine. These laminated samples were analyzed for rare earth elements (REE), 13C and 18O. For REE, five samples were examined, each lamination was extracted and diluted with 0.1 ml 65% HNO3 and measured using ICP-MS. Yet, limited number of lamination was used for isotope analysis using Isotope ratio mass spectrometry. Total concentration of rare earth elements were calculated for each of the five samples. In all examined samples, the newer laminations show higher peaks than the older one of each sample. On the other hand, one sample (8 measurements) of 13C show values between -31.6° and -36°. These values mean that the carbonate is from organic origin. In an urban area, wastewater infiltration into groundwater system can be the source of organic matter. 18O measurements show continues enrichments within the growth of the carbonate. This increase of the 18O values reflects drier weather. Our results can be explained by the increase of water consumption in the household in the recent 100 years, rather than the increase of using detergents and cleaning products which have influenced groundwater quality as appeared in the carbonate samples. On the other hand, 18O results could be linked with the expansion of the building up area in the city and subsequently reduction of groundwater recharge

  8. Optimizing the monitoring scheme for groundwater quality in the Lusatian mining region

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Hildmann, Christian; Haubold-Rosar, Michael

    2014-05-01

    Opencast lignite mining always requires the lowering of the groundwater table. In Lusatia, strong mining activities during the GDR era were associated with low groundwater levels in huge parts of the region. Pyrite (iron sulfide) oxidation in the aerated sediments is the cause for a continuous regional groundwater pollution with sulfates, acids, iron and other metals. The contaminated groundwater poses danger to surface water bodies and may also affect soil quality. Due to the decline of mining activities after the German reunification, groundwater levels have begun to recover towards the pre-mining stage, which aggravates the environmental risks. Given the relevance of the problem and the need for effective remediation measures, it is mandatory to know the temporal and spatial distribution of potential pollutants. The reliability of these space-time models, in turn, relies on a well-designed groundwater monitoring scheme. So far, the groundwater monitoring network in the Lusatian mining region represents a purposive sample in space and time with great variations in the density of monitoring wells. Moreover, groundwater quality in some of the areas that face pronounced increases in groundwater levels is currently not monitored at all. We therefore aim to optimize the monitoring network based on the existing information, taking into account practical aspects such as the land-use dependent need for remedial action. This contribution will discuss the usefulness of approaches for optimizing spatio-temporal mapping with regard to groundwater pollution by iron and aluminum in the Lusatian mining region.

  9. Appraisal of ground-water quality near wastewater-treatment facilities, Glacier National Park, Montana

    USGS Publications Warehouse

    Moreland, Joe A.; Wood, Wayne A.

    1982-01-01

    Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system. Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant. Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts. (USGS)

  10. Groundwater quality in central New York, 2012

    USGS Publications Warehouse

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and

  11. Salinization process and coastal groundwater quality in Chaouia, Morocco

    NASA Astrophysics Data System (ADS)

    Najib, Saliha; Fadili, Ahmed; Mehdi, Khalid; Riss, Joëlle; Makan, Abdelhadi; Guessir, Hakima

    2016-03-01

    The coastal aquifer system of Chaouia is recognized as one of the most important aquifers in Morocco that is affected by salinization in the coastal fringe. The purpose of this study is to highlight the origin of salinization by sampling and analyzing groundwater from 44 wells for major elements. This study was carried out in May 2011. The results indicate that, in the central and downstream parts, the dominant facies are Mg2+, Na+ and Cl-, while Ca2+ and HCO3- dominate in the upstream zones. Ion exchange processes, under seawater intrusion, control the concentration of ions such as calcium, magnesium and sodium. Moreover, groundwater is oversaturated with respect to carbonate minerals (calcite and dolomite), and under-saturated with respect to evaporate minerals (gypsum, halite). The contribution of dissolved halite and gypsum in the groundwater mineralization is revealed by their positive correlation between (Na + Cl) and (Ca + SO4), respectively. Furthermore, the comparison of the hydrochemical results to drinking water quality standards by World Health Organization (2008) shows that more than a half of the water sampled is not suitable for drinking purposes, especially with respect to high levels of EC, TDS, Cl- and NO3-. In addition, high mineralization is found to be a consequence of seawater intrusion and anthropogenic activities.

  12. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality.

    PubMed

    Muellegger, Christian; Weilhartner, Andreas; Battin, Tom J; Hofmann, Thilo

    2013-01-15

    Groundwater-fed gravel pit lakes (GPLs) affect the biological, organic, and inorganic parameters of inflowing groundwater through combined effects of bank filtration at the inflow, reactions within the lake, and bank filtration at the outflow. GPLs result from wet dredging for sand and gravel and may conflict with groundwater protection programs by removing the protective soil cover and exposing groundwater to the atmosphere. We have investigated the impact on groundwater of five GPLs with different sizes, ages, and mean residence times, and all having low post-excavation anthropogenic usage. The results revealed highly active biological systems within the lake water, in which primary producers significantly reduced inflowing nitrate concentrations. Decalcification also occurred in lake water, reducing water hardness, which could be beneficial for waterworks in hard groundwater areas. Downgradient groundwater nitrate and calcium concentrations were found to be stable, with only minor seasonal variations. Biological degradation of organic material and organic micropollutants was also observed in the GPLs. For young GPLs adequate sediment deposits may not yet have formed and degradation processes at the outflow may consequently not yet be well established. However, our results showed that within 5 years from the cessation of excavation a protective sediment layer is established that is sufficient to prevent the export of dissolved organic carbon to downgradient groundwater. GPLs can improve groundwater quality in anthropogenically (e.g., pesticides and nitrate) or geologically (e.g., hardness) challenging situations. However, post-excavation usage of GPLs is often dominated by human activities such as recreational activities, water sports, or fish farming. These activities will affect lake and groundwater quality and the risks involved are difficult to predict and monitor and can lead to overall negative impacts on groundwater quality. PMID:23178886

  13. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2 + ), Hexavalent Chromium (Cr6 + ), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6 + and Fe2 + , which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  14. Groundwater Quality in Central New York, 2007

    USGS Publications Warehouse

    Eckhardt, David A.V.; Reddy, J.E.; Shaw, Stephen B.

    2009-01-01

    Water samples were collected from 7 production wells and 28 private residential wells in central New York from August through December 2007 and analyzed to characterize the chemical quality of groundwater. Seventeen wells are screened in sand and gravel aquifers, and 18 are finished in bedrock aquifers. The wells were selected to represent areas of greatest groundwater use and to provide a geographical sampling from the 5,799-square-mile study area. Samples were analyzed for 6 physical properties and 216 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and 4 types of bacteria. Results indicate that groundwater used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at several wells. The cations detected in the highest concentrations were calcium, magnesium, and sodium; anions detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia, but no nutrients exceeded Maximum Contaminant Levels (MCLs). The trace elements barium, boron, lithium, and strontium were detected in every sample; the trace elements present in the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Fifteen pesticides, including seven pesticide degradates, were detected in water from 17 of the 35 wells, but none of the concentrations exceeded State or Federal MCLs. Sixteen volatile organic compounds were detected in water from 15 of the 35 wells. Nine analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which typically are identical. One sample had a water color that exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) and the New York State MCL of 10 color

  15. Estimating impacts of land use on groundwater quality using trilinear analysis.

    PubMed

    Ouyang, Ying; Zhang, Jia En; Cui, Lihua

    2014-09-01

    Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses for a 6-year period were used for the analysis. Results showed that among the three nitrogen species (i.e., nitrate and nitrite (NO(x)), dissolved organic nitrogen (DON), and total organic nitrogen (TON)), NO(x) had a high percentage and was a dominant species in the groundwater beneath the septic tank lands, whereas TON was a major species in groundwater beneath the forest lands. Among the three phosphorus species, namely the particulate phosphorus (PP), dissolved ortho phosphorus (PO4(3-)) and dissolved organic phosphorus (DOP), there was a high percentage of PP in the groundwater beneath the septic tank, forest, and agricultural lands. In general, Ca was a dominant cation in the groundwater beneath the septic tank lands, whereas Na was a dominant cation in the groundwater beneath the forest lands. For the three major anions (i.e., F(-), Cl(-), and SO4(2-)), F(-) accounted for <1% of the total anions in the groundwater beneath the forest, wastewater, and agricultural lands. Impacts of land uses on groundwater Cd and Cr distributions were not profound. This study suggests that trilinear analysis is a useful technique to characterize the relationship between land use and groundwater quality. PMID:24802588

  16. Factors Affecting the Sustainability of Groundwater-Source Cooling

    NASA Astrophysics Data System (ADS)

    Ferguson, G. A.; Woodbury, A. D.

    2004-12-01

    The use of groundwater in thermal applications has grown in popularity due to increases in environmental awareness and rising energy costs. While this source of energy is generally seen as beneficial to the environment, changes in subsurface temperatures resulting from thermal development and other factors may make this practice unsustainable. An example of such changes in subsurface temperatures has been observed in Winnipeg, Manitoba, where groundwater is extensively used for cooling applications. Temperatures in a regional aquifer beneath the city were found to be as much as ten degrees Celsius greater than those measured in surrounding rural areas. Numerical modeling indicates increases in temperature of up to 5 degrees Celsius can be attributed to downward heat flow originating in buildings in many cases. Areas where increases in temperature were found to be greater corresponded to areas where water is being injected into the aquifer. This water is being produced in the process of using groundwater for cooling applications, such as air conditioning and industrial cooling, and is being injected back into the aquifer to maintain hydraulic head and reduce the demand on Winnipeg's sewer system. In most cases, the heat introduced by injecting this water is significantly affecting temperatures at the production well of the same system and numerical modeling indicates that this is inevitable with the current method of development. The combination of heat loss from buildings and injection of heated water is largely responsible for a reduction in the efficiency of groundwater as a coolant and may eventually make the use of groundwater in cooling applications unsustainable.

  17. Baseline assessment of groundwater quality in Wayne County, Pennsylvania, 2014

    USGS Publications Warehouse

    Senior, Lisa A.; Cravotta, III, Charles A.; Sloto, Ronald A.

    2016-01-01

    The Devonian-age Marcellus Shale and the Ordovician-age Utica Shale, geologic formations which have potential for natural gas development, underlie Wayne County and neighboring counties in northeastern Pennsylvania. In 2014, the U.S. Geological Survey, in cooperation with the Wayne Conservation District, conducted a study to assess baseline shallow groundwater quality in bedrock aquifers in Wayne County prior to potential extensive shale-gas development. The 2014 study expanded on previous, more limited studies that included sampling of groundwater from 2 wells in 2011 and 32 wells in 2013 in Wayne County. Eighty-nine water wells were sampled in summer 2014 to provide data on the presence of methane and other aspects of existing groundwater quality throughout the county, including concentrations of inorganic constituents commonly present at low levels in shallow, fresh groundwater but elevated in brines associated with fluids extracted from geologic formations during shale-gas development. Depths of sampled wells ranged from 85 to 1,300 feet (ft) with a median of 291 ft. All of the groundwater samples collected in 2014 were analyzed for bacteria, major ions, nutrients, selected inorganic trace constituents (including metals and other elements), radon-222, gross alpha- and gross beta-particle activity, selected man-made organic compounds (including volatile organic compounds and glycols), dissolved gases (methane, ethane, and propane), and, if sufficient methane was present, the isotopic composition of methane.Results of the 2014 study show that groundwater quality generally met most drinking-water standards, but some well-water samples had one or more constituents or properties, including arsenic, iron, pH, bacteria, and radon-222, that exceeded primary or secondary maximum contaminant levels (MCLs). Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 4 of 89 samples (4.5 percent) with concentrations as high as 20 µg/L; arsenic

  18. Groundwater monitoring: Guidelines and methodology for developing and implementing a ground-water quality monitoring program

    SciTech Connect

    Everett, L.G.

    1984-01-01

    The handbook attempts to structure a cost-effective, generic groundwater pollution monitoring methodology that can be applied either on a regional basis or to site-specific, alternative approaches to monitoring the quality of groundwater at a considerable saving of time and money. Extensive detail is given to the relation of groundwater quality to the geohydrologic framework, constituents in the polluted groundwater, sources and causes of pollution, and use of water. Information is also given about groundwater monitoring techniques used in top soil, the vadose zone, ad the saturated zone. The costs of these techniques are described in figures and tables. Groundwater databases and their applicability to water resources information systems are also covered. Comprehensive site-specific examples are given of how to use the material in the handbook to monitoring major sources of groundwater pollution. Included are in-depth models of hazardous waste disposal, brine disposal, landfill leachate control, oxidation ponds and percolation ponds, septic fields, and agricultural return flow, as well as descriptions of cases of multiple-source municipal and agricultural pollution.

  19. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  20. Regional monitoring of temporal changes in groundwater quality

    NASA Astrophysics Data System (ADS)

    Broers, Hans Peter; van der Grift, Bas

    2004-08-01

    Changes in agricultural practices are expected to affect groundwater quality by changing the loads of nutrients and salts in recharging groundwater, but regional monitoring networks installed to register the changes often fail to detect them and interpretation of trend analysis results is difficult. This study aims to improve the detection and understanding of groundwater quality changes with time, combining time series information, concentration-depth profiles, age dating and concentration-depth prognoses based on the historical inputs of solutes. For trend detection, a combination of trend analysis on time series at specific depths and time-averaged concentration-depth profiles was used. To reveal trends that have become obscured by chemical reactions, additional conditionally conservative indicators were introduced that are insensitive to those reactions under specific conditions. Detected trends were matched with prognoses of conservative and reactive transport to aid the understanding of trends. Data of the regional networks in 2 area-types with intensive livestock farming in the Dutch province of Noord-Brabant were used to illustrate the approach. The downward movement of the agricultural pollution front was demonstrated for the 2 area-types. However, many targeted contaminants have become retarded or delayed and quality changes were hard to detect for many reactive solutes, including nitrate. Pollution fronts of these targeted chemical components are still limited to the first 15 m of the subsoil. At deeper level, about 20-25 m, the effects of agricultural pollution and acidification were indicated by chemical indicators that have not been considered by others: oxidation capacity, the sum of cations and chloride. Increasing trends of the conditionally conservative indicators 'oxidation capacity' and 'sum of cations' were found at a depth of 18-25 m below surface. Increasing trends for potassium were found at shallower depth (7-13 m), which is explained by

  1. Impacts of swine manure pits on groundwater quality

    USGS Publications Warehouse

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and ??15N and ??18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites

  2. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  3. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  4. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. PMID:25687808

  5. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking

  6. Groundwater flow and hydrochemistry in mountain areas affected by DSGSDs

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Frattini, Paolo; Pena Reyes, Fredy; Riva, Federico

    2014-05-01

    Large slope instabilities such as DSGSD and rockslides locally affect the groundwater flow at the slope scale. These phenomena present morphostructures (scarps, counterscarps and trenches) parallel to the slope direction that control the surface water runoff, directing it transversal to the slope dip and favouring its percolation within the slope through the more conductive materials aligned with the trench . This also affects the slope hydrochemistry, locally controlling the solute transport and circulation. The upper Valtellina (Central European Alps, Northern Italy) is characterize by a high density of DSGSD phenomena, with 29 DSGSDs within an area of about 900 km2 (Crosta et al, 2013). The study area ranges from 1150 to 3500 m in altitude, and shows a clear glacial imprint, which significantly influenced the geomorphology and water distribution in the study area. In order to characterize the groundwater flow and the hydrochemistry of the area, we collected historical data analysis (4070 samples from springs, wells, lakes, rivers and public fountains), and we performed four seasonal campaigns, from summer 2012 to spring 2013, to complete a hydrologic year. During these campaigns, we measured the spring discharge, and we collected samples for chemical (anions and cations) and isotopic (tritium, deuterium and O18) analyses in more almost 40 selected spring located throughout the study area. These springs were selected because representative of main spring clusters, with a particular attention to problems related to the presence of Arsenic in high concentration. In this study, we analyze the effect of DSGSD phenomena on the aquifers of upper Valtellina through the quantitative analysis of hydro-chemical and isotopic data. We show how these phenomena affect the ground water flow also in relation to the presence of geological structures that are associated and locally reactivated by DSGSDs.

  7. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards

  8. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    PubMed

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes. PMID:25004765

  9. Groundwater Quality Assessment for Waste Management Area U: First Determination

    SciTech Connect

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  10. Impacts of afforestation on groundwater resources and quality

    NASA Astrophysics Data System (ADS)

    Allen, Alistair; Chapman, Deborah

    2001-07-01

    Plans to double the proportion of land under forest cover in Ireland by the year 2035 have been initiated. The plan, primarily financially driven, ignores potential environmental impacts of forestry, particularly impacts on groundwater resources and quality. Since groundwater supplies almost 25% of Ireland's total potable water, these impacts are important. Field investigations indicate that afforestation leads to a reduction in runoff by as much as 20%, mainly due to interception of rainfall by forest canopies. Clearfelling has the opposite impact. Implications are that uncoordinated forestry practices can potentially exacerbate flooding. Groundwater recharge is affected by forestry, largely due to greater uptake of soil water by trees and to increased water-holding capacity of forest soils, arising from higher organic contents. Recharge rates under forests can be reduced to one tenth that under grass or heathland. Groundwater quality may be affected by enhanced acidification and nitrification under forests, due partly to scavenging of atmospheric pollutants by forest canopies, and partly to greater deposition of highly acid leaf litter. The slower recharge rates of groundwater under forests lead to significant delays in manifestation of deterioration in groundwater quality. Résumé. Des plans sont à l'étude pour doubler la proportion du couvert forestier en Irlande d'ici à 2035. Le plan, primitivement déterminé sur une base financière, ignore les impacts environnementaux potentiels de la foresterie, et particulièrement les impacts sur les ressources en eau souterraine et leur qualité. Du fait que les eaux souterraines satisfont presque 25% du total de l'eau potable de l'Irlande, ces impacts sont importants. Les études de terrain montrent que le reboisement conduit à une réduction du ruissellement d'au moins 20%, principalement à cause d'une interception de la pluie par le couvert forestier. Les coupes ont un impact contraire. Les implications sont

  11. Hydrochemical processes regulating groundwater quality in the coastal plain of Al Musanaah, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Askri, Brahim

    2015-06-01

    The Al Batinah coastal aquifer is the principal source of water in northwestern Oman. The rainfall in the Jabal Al Akhdar mountain region recharges the plain with freshwater that allowed agricultural and industrial activities to develop. The over-exploitation of this aquifer since the 1970s for municipal, agricultural and industrial purposes, excessive use of fertilizers in agriculture and leakage from septic tanks led to the deterioration of groundwater quality. The objective of this study was to investigate the hydrochemical processes regulating the groundwater quality in the southwestern section of Al Batinah. From available data collected during the spring of 2010 from 58 wells located in Al Musanaah wilayat, it was determined that the groundwater salinity increased in the direction from the south to the north following the regional flow direction. In addition to salinisation, the groundwater in the upstream and intermediate regions was contaminated with nitrate, while groundwater in the downstream region was affected by fluoride. Calculations of ionic ratios and seawater fraction indicated that seawater intrusion was not dominant in the study area. The primary factors controlling the groundwater chemistry in Al Musanaah appear to be halite dissolution, reverse ion exchange with clay material and anthropogenic pollutants.

  12. GROUNDWATER QUALITY MONITORING RECOMMENDATIONS FOR IN SITU OIL SHALE DEVELOPMENT

    EPA Science Inventory

    This study addresses the two primary groups of uncertainties regarding the implementation of a groundwater quality monitoring program for MIS oil shale development such as proposed for Federal Prototype Lease Tracts C-a and C-b. Hydrogeologic characterization, an essential elemen...

  13. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  14. Statistical comparisons of ground-water quality underlying different land uses in central Florida

    SciTech Connect

    Rutledge, A.T.; German, E.R. Geological Survey, Altamonte Springs, FL )

    1988-09-01

    Human activities at land surface can affect the quality of water recharging groundwater systems. Because ground water is the principal source of drinking water in many areas, it is necessary to know the relation between land use and ground-water quality. This study is 1 of 7 being made throughout the US as part of the Toxic Waste - Ground-Water Contamination Program of the US Geological Survey. This report documents statistical comparisons of ground-water quality for three test areas in central Florida: (1) a control area where land use is minimal, (2) a citrus-growing area where effects of agriculture may be expected, and (3) a phosphate-mining area where effects of mining activities may be expected. This study addresses water-quality conditions in the surficial aquifer, which consists of sand and shell beds of Pleistocene and Holocene age. The two developed areas are representative of land uses that characterize large areas of Florida, and the control area is representative of near-pristine conditions that exist over a large area, so results of this study may be transferable. The water-quality variables of interest include physical properties, major ions, nutrients, and trace elements.

  15. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    NASA Astrophysics Data System (ADS)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  16. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling

  17. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  18. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    USGS Publications Warehouse

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  19. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    SciTech Connect

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  20. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.

    2011-12-01

    with groundwater can complicate the use of tritium alone for age dating. The presence of radiogenic helium-4 in several samples with measurable tritium provides evidence of mixing between pre-modern and younger groundwater. Groundwater age-depth relationships are complicated, consistent with transient flow patterns in shallow agricultural groundwaters affected by irrigation pumping and recharge. For the multi-level installations in the southern dairies, both depth profiles and re-sampling after significant changes in groundwater elevation emphasize the need to sample groundwater within 3 meters of the water table to obtain "first-encounter" groundwater with a tritium/helium-3 age of less than 5 years, and to use age tracers to identify wells and groundwater conditions suitable for monitoring and assessment of best management practice impacts on underlying groundwater quality. This work was carried out with funding from Sustainable Conservation and the California State Water Resources Control Board in collaboration with UC-Davis, and was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  1. Groundwater Quality Assessment for Waste Management Area U: First Determination

    SciTech Connect

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  2. Effects of stormwater infiltration on quality of groundwater beneath retention and detention basins

    USGS Publications Warehouse

    Fischer, D.; Charles, E.G.; Baehr, A.L.

    2003-01-01

    Infiltration of storm water through detention and retention basins may increase the risk of groundwater contamination, especially in areas where the soil is sandy and the water table shallow, and contaminants may not have a chance to degrade or sorb onto soil particles before reaching the saturated zone. Groundwater from 16 monitoring wells installed in basins in southern New Jersey was compared to the quality of shallow groundwater from 30 wells in areas of new-urban land use. Basin groundwater contained much lower levels of dissolved oxygen, which affected concentrations of major ions. Patterns of volatile organic compound and pesticide occurrence in basin groundwater reflected the land use in the drainage areas served by the basins, and differed from patterns in background samples, exhibiting a greater occurrence of petroleum hydrocarbons and certain pesticides. Dilution effects and volatilization likely decrease the concentration and detection frequency of certain compounds commonly found in background groundwater. High recharge rates in storm water basins may cause loading factors to be substantial even when constituent concentrations in infiltrating storm water are relatively low.

  3. Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007

    USGS Publications Warehouse

    Senior, Lisa A.

    2009-01-01

    Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or

  4. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran.

    PubMed

    Nematollahi, M J; Ebrahimi, P; Razmara, M; Ghasemi, A

    2016-01-01

    Hydrogeochemical investigations of groundwater in Torbat-Zaveh plain have been carried out to assess the water quality for drinking and irrigation purposes. In this study, 190 groundwater samples were collected and analyzed for physicochemical parameters and major ion concentrations. The abundance of major cations and anions was in the following order: Na(+) > Mg(2+) > Ca(2+) > K(+), and Cl(-) > [Formula: see text] > [Formula: see text] > [Formula: see text]. As a result, alkaline element (Na(+)) exceeds alkaline earth elements (Mg(2+) and Ca(2+)), and strong acids (Cl(-) and [Formula: see text]) dominate weak acids ([Formula: see text] and [Formula: see text]) in majority of the groundwater samples. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na(+), Mg(2+), Ca(2+), Cl(-) and [Formula: see text]. The results display that rock-weathering interactions and ion-exchange processes play important role in controlling groundwater chemistry. Saturation index values also indicate that water chemistry is significantly affected by carbonate minerals such as calcite, aragonite and dolomite. US Salinity Laboratory(USSL) and Wilcox diagrams together with permeability index values reveal that most of the groundwater samples are suitable for irrigation purpose. However, in some regions, the water samples do not indicate required irrigational quality. PMID:26627207

  5. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    affecting groundwater quality. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. Benchmarks used in this study were either health-based (regulatory and non-regulatory) or aesthetic based (non-regulatory). For inorganic constituents, relative-concentrations were classified as high (equal to or greater than 1.0), indicating relative-concentrations greater than benchmarks; moderate (equal to or greater than 0.5, and less than 1.0); or, low (less than 0.5). For organic and special- interest constituents [1,2,3-trichloropropane (1,2,3-TCP), N-nitrosodimethylamine (NDMA), and perchlorate], relative- concentrations were classified as high (equal to or greater than 1.0); moderate (equal to or greater than 0.1 and less than 1.0); or, low (less than 0.1). Aquifer-scale proportion was used as the primary metric in the status assessment for groundwater quality. High aquifer- scale proportion is defined as the percentage of the primary aquifer with relative-concentrations greater than 1.0; moderate and low aquifer-scale proportions are defined as the percentage of the primary aquifer with moderate and low relative- concentrations, respectively. The methods used to calculate aquifer-scale proportions are based on an equal-area grid; thus, the proportions are areal rather than volumetric. Two statistical approaches - grid-based, which used one value per grid cell, and spatially weighted, which used the full dataset - were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90-percent confidence intervals of the grid-based estimates in all cases. The understanding assessment used statistical correlations between constituent relative-concentrations and

  6. Groundwater quality in West Virginia, 1993-2008

    USGS Publications Warehouse

    Chambers, Douglas B.; Kozar, Mark D.; White, Jeremy S.; Paybins, Katherine S.

    2012-01-01

    Approximately 42 percent of all West Virginians rely on groundwater for their domestic water supply. However, prior to 2008, the quality of the West Virginia’s groundwater resource was largely unknown. The need for a statewide assessment of groundwater quality prompted the U.S. Geological Survey (USGS), in cooperation with West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management, to develop an ambient groundwater-quality monitoring program. The USGS West Virginia Water Science Center sampled 300 wells, of which 80 percent were public-supply wells, over a 10-year period, 1999–2008. Sites for this statewide ambient groundwater-quality monitoring program were selected to provide wide areal coverage and to represent a variety of environmental settings. The resulting 300 samples were supplemented with data from a related monitoring network of 24 wells and springs. All samples were analyzed for field measurements (water temperature, pH, specific conductance, and dissolved oxygen), major ions, trace elements, nutrients, volatile organic compounds, fecal indicator bacteria, and radon-222. Sub-sets of samples were analyzed for pesticides or semi-volatile organic compounds; site selection was based on local land use. Samples were grouped for comparison by geologic age of the aquifer, Groups included Cambrian, Ordovician, Silurian, Devonian, Pennsylvanian, Permian, and Quaternary aquifers. A comparison of samples indicated that geologic age of the aquifer was the largest contributor to variability in groundwater quality. This study did not attempt to characterize drinking water provided through public water systems. All samples were of raw, untreated groundwater. Drinking-water criteria apply to water that is served to the public, not to raw water. However, drinking water criteria, including U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL), non-enforceable secondary maximum contaminant level (SMCL

  7. Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China Plain.

    PubMed

    Wu, Ming; Wu, Jianfeng; Liu, Jie; Wu, Jichun; Zheng, Chunmiao

    2015-08-01

    The North China Plain (NCP) is one of the most severe water shortage areas in China. Due to the scarcity of surface water in the NCP, groundwater system is seriously over-exploited and use of nitrogen fertilizers is greatly increasing year by year to improve soil fertility and crop production, causing a variety of environmental issues in the processes of abstracting groundwater. Considering that previous research was limited on approaches to assess sustainability of groundwater through flow modeling and water level decline, this study focuses on addressing the implications of groundwater contaminant for water resource sustainability in the central part of NCP. Based on the previously developed groundwater flow model, a reaction modular code for the reactive transport in three-dimensional aquifers (RT3D) is developed for simulating the reactive process of nitrogen species transport in groundwater system. The management optimization model coupled with the nitrogen reactive transport model under consideration of water quality constraints is then conducted to quantify and improve the sustainability of groundwater utilization in the study area. Thus, the optimal pumping well locations and pumping rates that lead to the maximum total yield or the minimum total management costs subjecting to a series of groundwater level constraints are obtained from the optimization models. Compared with the optimization model without water quality constraints, this study could provide a more useful tool for developing cost-effective strategies for sustainable management of groundwater resource in the NCP, and greatly improve groundwater management level and water quality. PMID:26102477

  8. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification - The National Groundwater Monitoring Programme of New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Daughney, Christopher J.

    2012-08-01

    SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land

  9. Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  10. Motivation of synthesis, with an example on groundwater quality sustainability

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Labolle, Eric M.

    2006-03-01

    Synthesis of ideas and theories from disparate disciplines is necessary for addressing the major problems faced by society. The best motivation for broad, effective synthesis is the "big idea" that is sufficiently important and inspiring to marshal the appropriate collaborative efforts. Groundwater quality sustainability is posed as an example of one such idea that would potentially unify research efforts in both the sciences and social sciences toward a common, pressing objective.

  11. The Impact of Climate Change on Groundwater Resources and Groundwater Quality in the Patcham Catchment, England.

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.; Smith, M.; Pope, D. J.; Gumm, L.

    2012-04-01

    The CLIMAWAT project is an EU-Regional Development Fund Interreg IV funded research programme to study the impacts of climate change on groundwater resources and groundwater quality from the Chalk aquifer of SE England. The use of partially treated wastewater for artificial recharge will also be extensively studied in both the field and laboratory. The Chalk is a major aquifer and regionally supplies 70% of potable water supplies. The long term sustainable use of this resource is of paramount importance and the outcomes of this project will better inform and enhance long term management strategies for this. Project partners include water companies, regulatory bodies and industry consultancies. The four main objectives of the CLIMAWAT project are: i) better improve the prediction of the impact of climate change on this groundwater resource; ii) better understand and quantify how recharge mechanisms will vary due to the uncertainty associated with climate change; iii) better understand the storage mechanisms and fate of contaminants (e.g. nitrates and pesticides) in this aquifer and iv) investigate the impact of using partially treated wastewater for artificial recharge. An extensive field monitoring and data collection programme is underway in the Patcham Catchment (SE of England). Simultaneous monitoring of climatic, unsaturated zone potentiometric, groundwater level and chemistry data will allow for a better understanding of how changes in recharge patterns will effect groundwater quality and quantity. Isoptopic analysis of sampled groundwaters has allowed for interpretations and a better understanding of the storage and movement of water through this aquifer. The laboratory experimental programme is also underway and the results from this will compliment the field based studies to further enhance the understanding of contaminant behaviour in the both unsaturated and saturated zones. Core experiments are being used to investigate how nutrient and other

  12. Importance of mineralogical data for groundwater quality affectedby CO2 leakage

    SciTech Connect

    Xu, Tianfu

    2006-02-13

    Recently, geological storage of CO{sub 2} has been extensively investigated. The impact of leakage from CO{sub 2} storage reservoirs on groundwater quality is one of the concerns. Dissolution of CO{sub 2} in groundwater results in a decrease in pH. Such acidic condition can affect the dissolution and sorption mechanisms of many minerals (Jaffe and Wang, 2004). Some heavy-metal-bearing minerals dissolve under acidic conditions. For example, galena (PbS) can dissolve and increase significantly Pb concentrations and diminish groundwater quality. If calcite is present in the rock, it can buffer the pH and decrease galena dissolution. Therefore, mineralogical composition and distribution in caprock, overlying aquifers, and along the leakage paths are important data that should be obtained from site characterization. Insight into which minerals and compounds are most important for groundwater quality can be obtained from reactive geochemical transport simulations. Here we present results of simulations using the code TOUGHREACT, whose physical and chemical process capabilities have been discussed by Xu et al. (2006). The simulator can be applied to one-, two-, or three-dimensional porous and fractured media with physical and chemical heterogeneity, and can accommodate any number of chemical species present in liquid, gas and solid phases.

  13. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  14. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  15. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river].

    PubMed

    Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma

    2011-04-01

    Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river

  16. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    USGS Publications Warehouse

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  17. Assessing groundwater quality for irrigation using indicator kriging method

    NASA Astrophysics Data System (ADS)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2014-09-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  18. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  19. Using the conceptual site model approach to characterize groundwater quality

    SciTech Connect

    Shephard, E.; Glucksberg, N.; Walter, N.

    2007-07-01

    To understand groundwater quality, the first step is to develop a conceptual site model (CSM) that describes the site history, describes the geology and the hydrogeology of the site, identifies potential release areas or sources, and evaluates the fate and transport of site related compounds. After the physical site setting is understood and potential release areas are identified, appropriate and representative groundwater monitoring wells may be used to evaluate groundwater quality at a site and provide a network to assess impacts from potential future releases. To develop the CSM, the first step to understand the different requirements from each of the regulatory stakeholders. Each regulatory agency may have different approaches to site characterization and closure (i.e., different groundwater and soil remediation criteria). For example, the United States Environmental Protection Agency (EPA) and state governments have published guidance documents that proscribe the required steps and information needed to develop a CSM. The Nuclear Regulatory Commission (NRC) has a proscriptive model for the Historical Site Assessment under the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), and contains requirements for developing a conceptual site model in NUREG 1757. Federal and state agencies may also have different closure criteria for potential contaminants of concern. Understanding these differences before starting a groundwater monitoring program is important because the minimum detectable activity (MDA), lowest limit detection (LLD), and sample quantitation limit (SQL) must be low enough so that data may be evaluated under each of the programs. After a Historical Site Assessment is completed a work plan is developed and executed to not only collect physical data that describes the geology and hydrogeology, but to also characterize the soil, groundwater, sediments, and surface water quality of each potentially impacted areas. Although the primary

  20. Groundwater Quality Modeling with a Small Data Set.

    PubMed

    Sakizadeh, Mohamad; Malian, Abbass; Ahmadpour, Eisa

    2016-01-01

    Seventeen groundwater quality variables collected during an 8-year period (2006 to 2013) in Andimeshk, Iran, were used to implement an artificial neural network (NN) with the purpose of constructing a water quality index (WQI). The method leading to the WQI avoids instabilities and overparameterization, two problems common when working with relatively small data sets. The groundwater quality variables used to construct the WQI were selected based on principal component analysis (PCA) by which the number of variables were decreased to six. To fulfill the goals of this study, the performance of three methods (1) bootstrap aggregation with early stopping; (2) noise injection; and (3) ensemble averaging with early stopping was compared. The criteria used for performance analysis was based on mean squared error (MSE) and coefficient of determination (R(2) ) of the test data set and the correlation coefficients between WQI targets and NN predictions. This study confirmed the importance of PCA for variable selection and dimensionality reduction to reduce the risk of overfitting. Ensemble averaging with early stopping proved to be the best performed method. Owing to its high coefficient of determination (R(2)  = 0.80) and correlation coefficient (r=0.91), we recommended ensemble averaging with early stopping as an accurate NN modeling procedure for water quality prediction in similar studies. PMID:25572437

  1. Changes in shallow groundwater quality beneath recently urbanized areas in the Memphis, Tennessee area

    USGS Publications Warehouse

    Barlow, Jeannie R.; Kingsbury, James A.; Coupe, Richard H.

    2012-01-01

    Memphis, the largest city in the state of Tennessee, and its surrounding suburbs depend on a confined aquifer, the Memphis aquifer, for drinking water. Concern over the potential for downward movement of water from an overlying shallow aquifer to the underlying Memphis aquifer provided impetus for monitoring groundwater quality within the shallow aquifer. The occurrence of volatile organic compounds (VOCs), nitrate, and pesticides in samples from the shallow well network indicate a widespread affect on water quality from the overlying urban land use. Total pesticide concentration was generally higher in more recently recharged groundwater indicating that as the proportion of recent water increases, the occurrence of pesticides related to the current urban land use also increases. Groundwater samples with nitrate concentrations greater than 1.5 mg/l and detectable concentrations of the pesticides atrazine and simazine also had higher concentrations of chloroform, a VOC primarily associated with urban land use, than in other samples. The age of the water from these wells indicates that these concentrations are most likely not representative of past agricultural use, but of more recent urban use of these chemicals. Given that the median age of water represented by the shallow well network was 21 years, a lag time likely exists between changes in land use and the occurrence of constituents related to urbanization in shallow groundwater.

  2. Factors Affecting the Quality of Staff Development.

    ERIC Educational Resources Information Center

    Purcell, Larry O.

    A review of the literature concerning the effectiveness and quality of staff development programs focuses on factors that affect the success of such programs. These factors include: individual concerns, training activities, applications, qualifications of consultants, scheduling, strategies, facilities, feedback, collaboration, and outcomes. It is…

  3. Affect, Meaning and Quality of Life

    ERIC Educational Resources Information Center

    Hughes, Michael

    2006-01-01

    Research on quality of life in sociology is largely focused on a narrow range of dimensions including affect, happiness and satisfaction. It largely avoids a concern with the meanings that provide people with the purpose, significance, validity and coherence that are a basis of social relationships and social integration. Evidence is presented…

  4. Watermelon quality traits as affected by ploidy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers offering high quality watermelons [Citrullus lanatus (Thumb.), Matsum & Nakai] that are also high in phytonutrients will have stronger market opportunities. In order to offer highly nutritious fruit, the industry must understand the nature of phytonutrient accumulation as it is affected by ...

  5. Nonmotion factors which can affect ride quality

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1975-01-01

    Data pertaining to nonmotion factors affecting ride quality of transport aircraft were obtained as part of NASA in-house and sponsored research studies carried out onboard commuter-airline and research aircraft. From these data, quantitative effects on passenger discomfort of seat width, seat legroom, change in cabin pressure, and cabin noise are presented. Visual cue effects are also discussed.

  6. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  7. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste- management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of the three regimes defined for the purposes of groundwater quality monitoring and remediation (Figure 2). The Health, Safety, Environment, and Accountability (HSEA) Division of the Y-12 Plant Environmental Management Department manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  8. Applying Factor Analysis Combined with Kriging and Information Entropy Theory for Mapping and Evaluating the Stability of Groundwater Quality Variation in Taiwan

    PubMed Central

    Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo

    2011-01-01

    In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030

  9. Methods of Statistical Control for Groundwater Quality Indicators

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Nevidimova, O.; Yankovich, K.

    2016-06-01

    The article describes the results of conducted groundwater quality control. Controlled quality indicators included the following microelements - barium, manganese, iron, mercury, iodine, chromium, strontium, etc. Quality control charts - X-bar chart and R chart - were built. For the upper and the lower threshold limits, maximum permissible concentration of components in water and the lower limit of their biologically significant concentration, respectively, were selected. The charts analysis has shown that the levels of microelements content in water at the area of study are stable. Most elements in the underground water are contained in concentrations, significant for human organisms consuming the water. For example, such elements as Ba, Mn, Fe have concentrations that exceed maximum permissible levels for drinking water.

  10. Index of ground-water quality data for Florida

    USGS Publications Warehouse

    Seaber, P.R.; Williams, O.O.

    1985-01-01

    The Master Water Data Index of the U.S. Geological Survey contains records and information for 13,925 ground-water quality collection sites in Florida as follows: 2,180 active and 11,559 inactive well sites, and 39 active and 147 inactive spring sites. Ground-water quality data have been and are being collected at more sites in Florida than are other types of ground- and surface-water hydrologic data. Information available from the Master Water Data Index includes location (county, hydrologic unit, and latitude-longitude); reporting agency; agency identifying number; period and frequency of record; types of data (parameter sampled); and for wells, the principal aquifer sampled and well depth. This information may be retrieved, upon request, in a variety of formats. This report contains an index of the information available, not the actual water-quality data itself. The actual data may be obtained from the reporting agency that collected and stored the data. (USGS)

  11. Hydrogeochemistry and Water Quality Index in the Assessment of Groundwater Quality for Drinking Uses.

    PubMed

    Batabyal, Asit Kumar; Chakraborty, Surajit

    2015-07-01

    The present investigation is aimed at understanding the hydrogeochemical parameters and development of a water quality index (WQI) to assess groundwater quality of a rural tract in the northwest of Bardhaman district of West Bengal, India. Groundwater occurs at shallow depths with the maximum flow moving southeast during pre-monsoon season and south in post-monsoon period. The physicochemical analysis of groundwater samples shows the major ions in the order of HCO3>Ca>Na>Mg>Cl>SO4 and HCO3>Ca>Mg>Na>Cl>SO4 in pre- and post-monsoon periods, respectively. The groundwater quality is safe for drinking, barring the elevated iron content in certain areas. Based on WQI values, groundwater falls into one of three categories: excellent water, good water, and poor water. The high value of WQI is because of elevated concentration of iron and chloride. The majority of the area is occupied by good water in pre-monsoon and poor water in post-monsoon period. PMID:26163496

  12. Soil-aquifer phenomena affecting groundwater under vertisols: a review

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Baram, S.; Dahan, O.

    2015-09-01

    Vertisols are cracking clayey soils that: (i) usually form in alluvial lowlands where normally, groundwater pools into aquifers, (ii) have different types of voids (due to cracking) which make flow and transport of water, solutes and gas complex, and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants; in this section lysimeter- to basin-scale observations that show the significance of cracks as preferential flow paths in vertisols which bypass matrix blocks in the unsaturated zone are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed, (2) soil cracks as deep evaporators and unsaturated-zone salinity; deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed, (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization; the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils, (4) relatively little nitrate contamination in aquifers under vertisols; In this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related

  13. Soil-aquifer phenomena affecting groundwater under vertisols: a review

    NASA Astrophysics Data System (ADS)

    Kurtzman, D.; Baram, S.; Dahan, O.

    2016-01-01

    Vertisols are cracking clayey soils that (i) usually form in alluvial lowlands where, normally, groundwater pools into aquifers; (ii) have different types of voids (due to cracking), which make flow and transport of water, solutes and gas complex; and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants: in this section lysimeter-to basin-scale observations that show the significance of cracks as preferential-flow paths in vertisols, which bypass matrix blocks in the unsaturated zone, are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed; (2) soil cracks as deep evaporators and unsaturated-zone salinity: deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed; (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization: the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils; (4) relatively little nitrate contamination in aquifers under vertisols: in this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related

  14. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  15. Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India.

    PubMed

    Vasanthavigar, M; Srinivasamoorthy, K; Vijayaragavan, K; Ganthi, R Rajiv; Chidambaram, S; Anandhan, P; Manivannan, R; Vasudevan, S

    2010-12-01

    An attempt has been made to understand the hydrogeochemical parameters to develop water quality index in Thirumanimuttar sub-basin. A total of 148 groundwater samples were collected and analyzed for major cations and anions. The domination of cations and anions was in the order of Na>Mg>Ca>K for cations and Cl>HCO(3) >SO(4) in anions. The hydrogeochemical facies indicate alkalis (Na and K) exceed alkaline earths (Ca and Mg) and strong acids (Cl and SO(4)) exceed weak acid (HCO(3)). Water quality index rating was calculated to quantify overall water quality for human consumption. The PRM samples exhibit poor quality in greater percentage when compared with POM due to effective leaching of ions, over exploitation of groundwater, direct discharge of effluents and agricultural impact. The overlay of WQI with chloride and EC correspond to the same locations indicating the poor quality of groundwater in the study area. SAR, Na%, and TH were noted higher during both the seasons indicating most of the groundwater locations not suitable for irrigation purposes. PMID:20091344

  16. Groundwater Quality in the North San Francisco Bay Groundwater Basins, CA

    NASA Astrophysics Data System (ADS)

    Kulongoski, J. T.; Belitz, K.

    2010-12-01

    Groundwater quality in the ~2,600 km2 North San Francisco Bay groundwater basins was investigated as part of the Priority Basin Project of the GAMA Program, a collaboration of the California State Water Resources Control Board, U.S. Geological Survey and Lawrence Livermore National Laboratory. Samples from 96 wells and 1 hydrothermal spring were analyzed for water chemistry, isotopic abundances, and dissolved gases. The study, designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems, was based on water-quality and ancillary data from 84 of the wells sampled and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the CDPH database. Inorganic constituents with human-health benchmarks were present at high concentrations in 14%, moderate in 35.8%, and low in 50.2% of the primary aquifers. Arsenic, boron, and lead were the trace elements that most frequently occurred at high concentrations. Fluoride is a minor element, and nitrate, a nutrient were present at high concentrations in ~1% of the primary aquifers. In contrast, organic constituents (one or more) with human-health benchmarks were present at high concentrations in 1.4%, moderate in 4.9%, and low in 93.7% (not detected in 64.8%) of the primary aquifers. The high proportion of organic constituents primarily reflected high concentrations of PCE (1.3%), TCE (0.1%), and 1,1-dichloroethene (0.1%). Of the 255 organic constituents analyzed for, 26 constituents were detected. Two organic constituents were frequently detected (detected in 10% or more of samples): the trihalomethane chloroform and the herbicide simazine, but both were detected at low concentrations. In this study, arsenic is the constituent which most frequently exists at high concentrations (about 10%) in the primary aquifers. Natural sources

  17. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  18. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  19. Biogeochemical factors affecting the presence of 210Po in groundwater

    USGS Publications Warehouse

    Seiler, R.L.; Stillings, L.L.; Cutler, N.; Salonen, L.; Outola, I.

    2011-01-01

    The discovery of natural 210Po enrichment at levels exceeding 500 mBq/L in numerous domestic wells in northern Nevada, USA, led to a geochemical investigation of the processes responsible for its mobilization. 210Po activities in 63 domestic and public-supply wells ranged from below 1 mBq/L to 6590 ± 590 mBq/L, among the highest reported levels in the USA. There is little spatial or depth variability in 210Pb activity in study-area sediments and mobilization of a few percent of the 210Po in the sediments would account for all of the 210Po in water. Stable-isotope measurements indicate SO4 reduction has occurred in all 210Po contaminated wells. Sulfide species are not accumulating in the groundwater in much of Lahontan Valley, probably because of S cycling involving microbial SO4 reduction, abiotic oxidation of H2S to S0 by Mn(IV), followed by microbial disproportionation of S0 to H2S and SO4. The high pH, Ca depletion, MnCO3 saturation, and presence of S0 in Lahontan Valley groundwater may be consequences of the anaerobic S cycling. Consistent with data from naturally-enriched wells in Florida, 210Po activities begin to decrease when aqueous sulfide species begin to accumulate. This may be due to formation and precipitation of PoS, however, Eh–pH diagrams suggest PoS would not be stable in study-area groundwater. An alternative explanation for the study area is that H2S accumulation begins when anaerobic S cycling stops because Mn oxides are depleted and their reduction is no longer releasing 210Po. Common features of 210Po-enriched groundwater were identified by comparing the radiological and geochemical data from Nevada with data from naturally-enriched wells in Finland, and Florida and Maryland in the USA. Values of pH ranged from 9 in Nevada wells, indicating that pH is not critical in determining whether 210Po is present. Where U is present in the sediments, the data suggest 210Po levels may be elevated in aquifers with (1) SO4-reducing waters with low H2S

  20. Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review

    PubMed Central

    Polizzotto, Matthew L.

    2013-01-01

    Background: Pit latrines are one of the most common human excreta disposal systems in low-income countries, and their use is on the rise as countries aim to meet the sanitation-related target of the Millennium Development Goals. There is concern, however, that discharges of chemical and microbial contaminants from pit latrines to groundwater may negatively affect human health. Objectives: Our goals were to a) calculate global pit latrine coverage, b) systematically review empirical studies of the impacts of pit latrines on groundwater quality, c) evaluate latrine siting standards, and d) identify knowledge gaps regarding the potential for and consequences of groundwater contamination by latrines. Methods: We used existing survey and population data to calculate global pit latrine coverage. We reviewed the scientific literature on the occurrence of contaminants originating from pit latrines and considered the factors affecting transport of these contaminants. Data were extracted from peer-reviewed articles, books, and reports identified using Web of ScienceSM, PubMed, Google, and document reference lists. Discussion: We estimated that approximately 1.77 billion people use pit latrines as their primary means of sanitation. Studies of pit latrines and groundwater are limited and have generally focused on only a few indicator contaminants. Although groundwater contamination is frequently observed downstream of latrines, contaminant transport distances, recommendations based on empirical studies, and siting guidelines are variable and not well aligned with one another. Conclusions: In order to improve environmental and human health, future research should examine a larger set of contextual variables, improve measurement approaches, and develop better criteria for siting pit latrines. PMID:23518813

  1. Calendar year 1994 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y- 12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The GWQR for the Chestnut Ridge Regime is completed in two-parts: Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference containing the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY). Part 2 of the annual groundwater report, to be issued mid-year, will contain a regime-wide evaluation of groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis activities.

  2. Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.

    ERIC Educational Resources Information Center

    East Michigan Environmental Action Council, Troy.

    This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…

  3. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  4. Hydrochemical evaluation of groundwater quality in the Çavuşçayı basin, Sungurlu-Çorum, Turkey

    NASA Astrophysics Data System (ADS)

    Çelik, Mehmet; Yıldırım, Turgut

    2006-06-01

    The purpose of this study is to investigate the quality and usage possibility of groundwater in the Çavuşçayı basin and suggest the best water structure for the groundwater use. Results from hydrochemical analyses reveal that groundwater is mostly affected by salty (Na+ Cl-) waters of the Incik Formation and brackish (Ca2+, Mg2+ SO{4/2-}) waters of the Bayındır Formation. The Alibaba saltpan discharged (2 l/s) from the Incik Formation is used for salt production. In the basin, salinity risk increases with depth and along the groundwater flow direction. Therefore, shallow water and trenches opened in the alluvium aquifer at the east of the basin were determined to yield suitable water with no Na+ and Cl- contamination. Following the heavy rainy period, waters of less salinity and conductivity are possibly used for agriculture.

  5. Groundwater Quality Assessment in the Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Apambire, W. B.

    2001-05-01

    In Ghana, West Africa, fluoride occurs as a natural pollutant in some groundwaters, while the presence of isolated high levels of nitrate and arsenic in groundwater is due to human activities such as poor sanitation, garbage disposal and mining practices. The challenge for Ghana is to ensure that groundwater quality and environmental adversities such as water level decline are not compromised by attempts to increase water quantity. Concentrations of groundwater fluoride in the study area range from 0.11 to 4.60 mg/L, with the highest concentrations found in the fluorine-enriched Bongo granitoids. Eighty-five out of 400 wells sampled have fluoride concentrations above the World Health Organization maximum guideline value of 1.5 mg/L and thus causes dental fluorosis in children drinking from the wells. The distribution of fluoride in groundwater is highly related to the distribution of dental fluorosis in the UER. Nitrate concentrations ranged from 0.03 to 211.00 mg/L and the mean value was 16.11 mg/L. Twenty-one samples had concentrations in excess of the guideline value of 45 mg/L. Consumption of water in excess of the guideline value, by infants, may cause an infantile disease known as methaemoglobinaemia. It is inferred that groundwaters with exceptionally high NO3 values have been contaminated principally through human activities such as farming and waste disposal. This is because wells with high nitrate concentrations are all located in and around towns and sizable villages. Also, there is good correlation between Cl and NO3 (r = +0.74), suggesting that both elements come from the same sources of pollution. Only two well waters had concentrations of iron in excess of the guideline value of 0.3 mg/L. These samples come from shallow hand-dug wells. The maximum concentration of iron in groundwaters is 3.5 mg/L. The recommended guideline limit for Al in drinking water is 0.2 mg/L; two wells had Al concentrations of 12.0 and 4.0 mg/L, respectively. Other high

  6. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  7. Groundwater quality in the Genesee River Basin, New York, 2010

    USGS Publications Warehouse

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  8. Hydrogeochemistry of the shallow dutch groundwater: Interpretation of the National Groundwater Quality Monitoring Network

    NASA Astrophysics Data System (ADS)

    Frapporti, G.; Vriend, P.; Van Gaans, P. F. M.

    1993-09-01

    Since 1979 the Dutch National Institute of Public Health and Environmental Protection (RIVM) has been developing the Dutch Groundwater Quality Monitoring Network (LMG). This network presently consists of about 350 monitoring sites. At each site, well screens are placed at two depths: 10 and 25 m below surface level. Samples are collected every year and are analyzed for all macrochemical parameters and some trace elements. Tritium contents were measured in the first sampling round. The geochemistry of Dutch groundwater is complex, due to the different sources (seawater, surface water and rainwater), complicated hydrogeology, and human impact on flow systems and pollution. Structuring or data analysis is required for the interpretation of the large number of hydrogeochemical data from such a monitoring network. An exploratory approach is to look within the data set for homogeneous groups, each with a typical (macro)chemistry. The selection criteria for the location of the monitoring sites of the LMG are mainly based on soil type and land use, and to some extent on the hydrogeological situation. However, a classification based on the two most reliable criteria, soil type and land use, does not result in chemically distinguishable homogeneous groups or water types. Fuzzy c means clustering was successfully used to discern structure and natural groups in the LMG data for 1 year. A seven-cluster model was adopted. The number of clusters was decided heuristically with the aid of nonlinear mapping, on the basis of the geographic distribution, the hydrogeochemical interpretability, and the unimodality of the distribution of the parameters per cluster. The consistency of the model is illustrated by the reproducibility of the clusters in different years. The clusters are related to geochemical processes, natural sources, and anthropogenic input and are designated as follows: (1) "seawater" in coastal areas, (2) "desalinization" in organic-rich Holocene marine and peat

  9. Groundwater-Quality Data in the Madera-Chowchilla Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen

  10. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  11. Quality and age of shallow groundwater in the Bakken Formation production area, Williston Basin, Montana and North Dakota.

    PubMed

    McMahon, P B; Caldwell, R R; Galloway, J M; Valder, J F; Hunt, A G

    2015-04-01

    The quality and age of shallow groundwater in the Bakken Formation production area were characterized using data from 30 randomly distributed domestic wells screened in the upper Fort Union Formation. Comparison of inorganic and organic chemical concentrations to health based drinking-water standards, correlation analysis of concentrations with oil and gas well locations, and isotopic data give no indication that energy-development activities affected groundwater quality. It is important, however, to consider these results in the context of groundwater age. Most samples were recharged before the early 1950s and had 14C ages ranging from <1000 to >30,000 years. Thus, domestic wells may not be as well suited for detecting contamination associated with recent surface spills as shallower wells screened near the water table. Old groundwater could be contaminated directly by recent subsurface leaks from imperfectly cemented oil and gas wells, but horizontal groundwater velocities calculated from 14C ages imply that the contaminants would still be less than 0.5 km from their source. For the wells sampled in this study, the median distance to the nearest oil and gas well was 4.6 km. Because of the slow velocities, a long-term commitment to groundwater monitoring in the upper Fort Union Formation is needed to assess the effects of energy development on groundwater quality. In conjunction with that effort, monitoring could be done closer to energy-development activities to increase the likelihood of early detection of groundwater contamination if it did occur. PMID:25392910

  12. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  13. Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities.

    PubMed

    Vijay, Ritesh; Khobragade, Puja; Mohapatra, P K

    2011-06-01

    Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city. PMID:20714928

  14. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  15. Motivation of synthesis, with an example on groundwater quality sustainability

    NASA Astrophysics Data System (ADS)

    Fogg, G. E.; Labolle, E. M.

    2007-12-01

    Synthesis of ideas and theories from disparate disciplines is necessary for addressing the major problems faced by society. Such integration happens neither via edict nor via lofty declarations of what is needed or what is best. It happens mainly through two mechanisms: limited scope collaborations (e.g., ~2-3 investigators) in which the researchers believe deeply in their need for each other's expertise and much larger scope collaborations driven by the 'big idea.' Perhaps the strongest motivation for broad, effective synthesis is the 'big idea' that is sufficiently important and inspiring to marshal the appropriate collaborative efforts. Examples include the Manhattan Project, the quest for cancer cures, predicting effects of climate change, and groundwater quality sustainability. The latter is posed as an example of a 'big idea' that would potentially unify research efforts in both the sciences and social sciences toward a common, pressing objective.

  16. Influence of animal waste disposal pits on groundwater quality

    NASA Astrophysics Data System (ADS)

    Lee, Seongwon; Hosaka, Akiko; Tase, Norio

    Since the implementation of the Law on Promoting Proper Management and Use of Livestock Excreta in 1999, the number of the farmers that do not meet the management criteria is on the decline. However, there is a possibility that many of the animal waste disposal pits that have been either abandoned or refilled according to the law have been the potential contamination source. In this study, we discussed the impacts of the abandoned disposal pits to groundwater quality. The results showed that high concentrations of nitrate (above 100mg/L) were observed in the downstream of the disposal pits. It suggests that the abandoned animal waste disposal pits have been the potential pollution source even after the period of 15 years since the termination of use. Implementation of immediate countermeasure is necessary because the animal waste disposal pits are the long-term-sources of high levels of nitrate.

  17. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  18. Multivariate analysis of groundwater quality and modeling impact of ground heat pump system

    NASA Astrophysics Data System (ADS)

    Thuyet, D. Q.; Saito, H.; Muto, H.; Saito, T.; Hamamoto, S.; Komatsu, T.

    2013-12-01

    The ground source heat pump system (GSHP) has recently become a popular building heating or cooling method, especially in North America, Western Europe, and Asia, due to advantages in reducing energy consumption and greenhouse gas emission. Because of the stability of the ground temperature, GSHP can effectively exchange the excess or demand heat of the building to the ground during the building air conditioning in the different seasons. The extensive use of GSHP can potentially disturb subsurface soil temperature and thus the groundwater quality. Therefore the assessment of subsurface thermal and environmental impacts from the GSHP operations is necessary to ensure sustainable use of GSHP system as well as the safe use of groundwater resources. This study aims to monitor groundwater quality during GSHP operation and to develop a numerical model to assess changes in subsurface soil temperature and in groundwater quality as affected by GSHP operation. A GSHP system was installed in Fuchu city, Tokyo, and consists of two closed double U-tubes (50-m length) buried vertically in the ground with a distance of 7.3 m from each U-tube located outside a building. An anti-freezing solution was circulated inside the U-tube for exchanging the heat between the building and the ground. The temperature at every 5-m depth and the groundwater quality including concentrations of 16 trace elements, pH, EC, Eh and DO in the shallow aquifer (32-m depth) and the deep aquifer (44-m depth) were monitored monthly since 2012, in an observation well installed 3 m from the center of the two U-tubes.Temporal variations of each element were evaluated using multivariate analysis and geostatistics. A three-dimensional heat exchange model was developed in COMSOL Multiphysics4.3b to simulate the heat exchange processes in subsurface soils. Results showed the difference in groundwater quality between the shallow and deep aquifers to be significant for some element concentrations and DO, but

  19. Effects of land use on ground-water quality in central Florida - Preliminary results: U. S. Geological Survey Toxic Waste - Ground-Water Contamination Program

    SciTech Connect

    Rutledge, A.T.

    1987-01-01

    Activities of man in areas of recharge to the Floridian aquifer system that may be affecting groundwater quality include: (1) the use of drainage wells for stormwater disposal in urban areas, (2) the use of pesticides and fertilizers in citrus groves, and (3) the mining and processing of phosphate ore in mining areas. Preliminary findings about the impact of these land uses on groundwater quality are presented. Drainage wells convey excess urban stormwater directly to the Upper Floridian aquifer. The volatile organic compounds are the most common contaminants in ground water. Trace elements such as chromium and lead are entering the aquifer but their movement is apparently attenuated by precipitation reactions associated with high pH or by cation-exchange reactions. Among the trace elements and organic chemicals, most ground-water contamination in citrus production areas is caused by pesticide; other contaminants include benzene, toluene, naphthalene, and indene compounds. In the phosphate mining area, constituents of concern are arsenic, selenium, and mercury, and secondarily lead, chromium, cadmium, and others. Organic compounds such as fluorene, naphthalene, di-n-butyl phthalate, alkylated benzenes and naphthalenes, and indene compounds also are entering groundwater. 29 refs., 13 figs., 16 tabs.

  20. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    PubMed

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  1. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  2. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. PMID:26745299

  3. Impact of the leaked CO2 from deep reservoirs on quality of shallow groundwater

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Keating, E. H.; Viswanathan, H. S.; Pawar, R. J.; Bacon, D. H.; Carroll, S.

    2012-12-01

    One of the areas of concerns for geologic CO2 sequestration is the potential leakage of CO2 and brine from deeper storage reservoirs to shallow groundwater resources. This could lead to changes in shallow groundwater chemistry degrading water quality. As part of the National Risk Assessment Partnership (NRAP) for geologic CO2 sequestration project, we perform experimental and modeling studies to understand the mechanisms of the leaked CO2 and brine flow, transport and reaction with aquifer water and minerals. We have developed a 3-dimensional heterogeneous numerical model for an un-confined shallow aquifer that is being used to simulate the CO2 leakage and the associated geochemical interactions over 200 years. A Monte-Carlo analysis is performed to estimate the probability of plume sizes of the pH less than 6.5 and TDS larger than 500 ppm in the shallow aquifer. The metrics were chosen as proxies that indicate how groundwater quality is affected by leakage. The uncertain parameters in our study include five for describing geologic heterogeneity in the permeability (permeability mean, variance, integral range, anisotropic factor and porosity), one for lateral flow rate and five for defining the CO2 leakage rate in temporal and spatial domains. A global sensitivity analysis is conducted for three outputs (the amount of CO2 leaving the top of aquifer, the plume sizes of pH below 6.5 and TDS over 500 ppm). Finally, we derive one-, two- and three-dimensional response surfaces developed based on the 2000 process modeling results of CO2 and brine reactive transport models. These response surfaces have been incorporated into the system model CO2-PENS in order to calculate risk profiles that consider uncertainty in the sequestration reservoir, leaky wellbore and the shallow groundwater aquifer.

  4. Groundwater quality in the Chemung River Basin, New York, 2008

    USGS Publications Warehouse

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    The second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (?C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as Ca

  5. Groundwater quality appraisal and its hydrochemical characterization in Ghaziabad (a region of indo-gangetic plain), Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Singh, Uday Veer; Abhishek, Amar; Singh, Kunwar P.; Dhakate, Ratnakar; Singh, Netra Pal

    2014-06-01

    India's growing population enhances great pressure on groundwater resources. The Ghaziabad region is located in the northern Indo-Gangetic alluvium plain of India. Increased population and industrial activities make it imperative to appraise the quality of groundwater system to ensure long-term sustainability of resources. A total number of 250 groundwater samples were collected in two different seasons, viz., pre-monsoon and post monsoon and analyzed for major physico-chemical parameters. Broad range and great standard deviation occurs for most parameters, indicating chemical composition of groundwater affected by process, including water-rock interaction and anthropogenic effect. Iron was found as predominant heavy metal in groundwater samples followed by copper and lead. An exceptional high concentration of Chromium was found in some locations. Industrial activities as chrome plating and wood preservative are the key source to metal pollution in Ghaziabad region. On the basis of classification the area water shows normal sulfate, chloride and bi-carbonate type, respectively. Base-exchange indices classified 76 % of the groundwater sources was the sodium-bicarbonate type. The meteoric genesis indices demonstrated that 80 % of groundwater sources belong to a shallow meteoric water percolation type. Chadha's diagram suggested that the hydro-chemical faces belong to the HCO3 - dominant Ca2+-Mg2+ type along with Cl--dominant Ca2+-Mg2+-type. There was no significant change in pollution parameters in the selected seasons. Comparison of groundwater quality with Indian standards proves that majority of water samples are suitable for irrigation purposes but not for drinking.

  6. Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia

    USGS Publications Warehouse

    McCoy; Kurt, J.; Kozar, Mark D.

    2007-01-01

    The average apparent age of ground water in fractured-bedrock aquifers in West Virginia was determined using chlorofluorocarbon (CFC) dating methods. Since the introduction of CFC gases as refrigerants in the late 1930s, atmospheric concentrations have increased until production ceased in the mid-1990s. CFC dating methods are based on production records that date to the early 1940s, and the preservation of atmospheric CFC concentrations in ground water at the time of recharge. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Ambient Ground-Water Monitoring Network (AGN) programs in West Virginia from 1997 to 2005, 80 samples from the Appalachian Plateaus Physiographic Province, 27 samples from the Valley and Ridge Physiographic Province, and 5 samples from the Ohio River alluvial aquifers were collected to estimate ground-water ages in aquifers of West Virginia. Apparent CFC ages of water samples from West Virginia aquifers ranged from 5.8 to 56 years. In the Appalachian Plateaus, topographically driven ground-water flow is evident from apparent ages of water samples from hilltop, hillside, and valley settings (median apparent ages of 12, 14, and 25 years, respectively). Topographic setting was the only factor that was found to be related to apparent ground-water age in the Plateaus at the scale of this study. Similar relations were not found in Valley and Ridge aquifers, indicating that other factors such as bedding or geologic structure may serve larger roles in controlling ground-water flow in that physiographic province. Degradation of CFCs was common in samples collected from methanogenic/anoxic aquifers in the Appalachian Plateaus and suboxic to anoxic aquifers in the Valley and Ridge. CFC contamination was most common in Ohio River alluvial aquifers and carbonate units of the Valley and Ridge, indicating that these highly transmissive surficial aquifers are the most vulnerable to water-quality degradation and may

  7. Influence of Sungun copper mine on groundwater quality, NW Iran

    NASA Astrophysics Data System (ADS)

    Nasrabadi, T.; Nabi Bidhendi, G. R.; Karbassi, A. R.; Hoveidi, H.; Nasrabadi, I.; Pezeshk, H.; Rashidinejad, F.

    2009-08-01

    Sungun mine is the largest open-cast copper mine in northwest of Iran and is in the primary stages of extraction. The influence of mining activity on the quality of regional groundwater has been taken in to consideration in this study. Accordingly, sampling was done from 22 springs in the study area. The concentrations of major anions and cations as well as Al, Cu, Cd, Cr, Fe, Mn, and Zn were determined for all 22 spring samples in mid-August 2005. The results showed that the concentrations of most of these elements were below the USA Environmental Protection Agency (EPA) limits; however, Al and Fe concentrations are considered to be more than limits in a couple of samples. Despite the fact that geological formations are highly weathered and fractured, the dissolution of minerals within the study area is low. This may be justified by the relatively high alkalinity of local underground water which keeps metals in solid phase and does not let them enter dissolved phase. Additionally, this may be attributed to the high velocity of groundwater flows, which do not give enough time for minerals to dissolve. Correlation coefficients among water chemistry components were determined and the weighted-pair group method was chosen for cluster analysis. Accordingly, high correlation among Al, Fe and Cr, Cd ,and Cu, sodium absorption ratio (SAR) and Na as well as total hardness (TH), Ca, and Mg were observed. The chemical characteristics of water compositions on the basis of major ion concentrations were evaluated on a Schoeller and Piper diagram. Accordingly, the dominant type of water in the region is considered to be Ca-HCO3 (calcium-bicarbonate type). However, this type of water is also rich in Na, K, and especially Mg. Regarding Schoeller diagram, the current status of local underground water is good for drinking purposes. By commencing mining excavation with designed capacity in near future, the minerals will come into contact with air and water resulting in dissolution

  8. [Factors that affect inpatients' quality of sleep].

    PubMed

    da Costa, Shíntia Viana; Ceolim, Maria Filomena

    2013-02-01

    The aim of this study was to identify factors that interfere with the sleep quality of patients admitted to a university hospital in a city in the state of São Paulo, Brazil. This was an exploratory, cross sectional study using non-probability sampling. Participants were 117 patients (59% men, mean age 48.0 years, standard deviation 16.9) hospitalized for at least 72 hours in stable clinical condition. The data were collected with an identification questionnaire and the Factors Affecting Sleep Quality (FASQ) questionnaire. Data processing was performed with descriptive statistics; each item of the FASQ underwent a test and a retest. The factors most often reported were waking up early (55.6%), disrupted sleep (52.1%), excessive lighting (34.2%), receipt of care by nursing staff (33.3%) and organic disorders such as pain and fatigue (26.5%). It is suggested that nurses should plan interventions to modify factors that require intense noise and lighting at night in order to reduce disruption and, consequently, sleep deprivation among patients. PMID:23515802

  9. Hydrogeochemical assessment of groundwater quality in a river delta using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Botsou, Fotini; Dassenakis, Manolis; Lazogiannis, Konstantinos; Ghionis, George; Poulos, Serafim

    2016-04-01

    The knowledge of the factors controlling the regional groundwater quality regime is important for planning and management of the groundwater resources. This work applies conventional hydrogeochemical and multivariate statistical techniques to identify the main factors and mechanisms controlling the hydrogeochemistry of groundwater in the deltaic environment of River Pinios (Thessaly) as well as possible areas of interactions between groundwater and surface water bodies. Hierarchical Cluster Analysis (HCA) and Principal Components Analysis (PCA) are performed using a data set of physical-chemical parameters from surface water and groundwater sites. Through HCA the paper's objective is to group together surface water and groundwater monitoring sites based on similarities in hydrochemistry in order to indicate areas of groundwater-surface water interaction. On the other hand, PCA aims at indicating factors responsible for the hydrogeochemical characteristics of the water bodies in the river delta (e.g., water-rock interaction, seawater intrusion, anthropogenic activities).

  10. Impact of Tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake on groundwater usage and quality in Asahi-city, Chiba Prefecture Japan

    NASA Astrophysics Data System (ADS)

    Sugita, Fumi

    The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011 was followed by massive Tsunami which had a devastating effect on the coastal area of eastern Japan. The impact of the Tsunami on groundwater usage and quality in Asahi-city, Chiba prefecture was investigated. The maximum height of the Tsunami reached Asahi-city was estimated to be 7.6 m. All wells that covered by the Tsunami higher than human knee level lost their groundwater usage due to electric pump failure. Only 3 out of 67 wells investigated were collapsed by the Tsunami. Many wells and pumps were repaired/replaced within one week after the Tsunami and all wells are in use 2 month after the Tsunami. This suggests that groundwater could be obtained through the wells right after the Tsunami if proper pumping measure would have been implemented. Most groundwater affected by the Tsunami showed high electric conductivity (EC) of more than 1,000μS/cm, indicating broad area of groundwater contamination by seawater. The seawater entered into the shallow aquifer by infiltrating through the ground surface during the inundation, and also by flowing downward along/through the wells. The large variation in EC was observed among the affected wells. The EC value was, however, correlated with height of the Tsunami reached, topography and also with post-tsunami groundwater pumping. The post-tsunami pumping is effective in reducing salt concentration in the groundwater. The groundwater quality should recover naturally in the long term. It was, however, suggested that removing salt containing deposits on the ground surface to avoid further salt infiltration, and groundwater pumping with careful monitoring to remove contaminated groundwater from the aquifer would be effective for faster recovery of the groundwater quality.

  11. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  12. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1998. The East Fork Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality at the Y-12 Plant. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  13. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  14. Assessment of Groundwater Quality Using Multivariate Statistical Techniques and Kriging Method

    NASA Astrophysics Data System (ADS)

    Kim, T.; Chung, S.; Kim, B.; Kang, D.

    2008-12-01

    The study area is located at the southern part of Korean Peninsula, and adjacent to the South Sea. 20 chemical components in 64 groundwater samples were used for the assessment of groundwater quality. The groundwater was classified into Ca(HCO3)2 type, NaCl type, NaHCO3 type and CaCl2 type by Piper's trilinear diagram. Cluster analysis divided the groundwater samples into three groups: Group 1 for fresh groundwater, Group 2 for groundwater contaminated by Cl, NO3, and Fe, and Group 3 for groundwater contaminated by NaCl. Discriminant analysis showed that the correctness of cluster analysis was 92%. Ca, Mg, HCO3, Cl, and pH were important factor for the discrimination of cluster analysis. In factor analysis, 3 factors determined the groundwater quality with 80 % in total variance: Factor 1 for the characteristics of fresh water and saline water, Factor 2 for the characteristics of contamination by nitrate, and Factor 3 for the characteristics of contamination by iron (Fe). Factor analysis showed that the groundwater was influenced by seawater intrusion, human activity and geological origin, because the study area was located near the sea and had the urban and rural functions. The contamination of anthropogenic origin was derived from fertilizer, sewage, exhaust gas of vehicles and excrement of livestocks. The geology of the study area was composed of shale, sandstone, andesite, andesitic tuff, biotite granite and amphibole granite. Using ordinary kriging, the distribution maps of 3 factor scores were compared to those of 3 contamination components, i.e., Cl, NO3, and Fe. The distributions of 3 factor scores coincide well with those of 3 contamination components. Cluster analysis and discriminant analysis were very useful for the classification of groundwater samples by groundwater quality. Factor analysis provided valuable aids for the determinations of contamination components and contamination origins. Kriging was very helpful for the assessment of the spatial

  15. Empirical estimation of groundwater quality changes using remote sensing

    NASA Astrophysics Data System (ADS)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2015-12-01

    Recent groundwater availability studies estimate large-scale aquifer depletion rates and aquifer stress using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. To further evaluate available groundwater resources, assessing potability of groundwater is necessary. Statistical relationships are initially developed at individual well locations to discern our ability to predict groundwater geochemistry as a function of groundwater levels. Next, up-scaled multivariate relationships to estimate total dissolved solid (TDS) concentrations as a function of GRACE-derived subsurface storage anomalies, dominant land use, and other physical parameters are developed in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. A goodness of fit test was performed to evaluate model strength. Results demonstrate the potential to characterize global groundwater potability variations using remote sensing.

  16. Groundwater quality in the Mohawk River Basin, New York, 2011

    USGS Publications Warehouse

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  17. Field-scale relationships among soil properties and shallow groundwater quality.

    PubMed

    Derby, Nathan E; Korom, Scott F; Casey, Francis X M

    2013-01-01

    It is important to understand the link between land surface/soil properties and shallow groundwater quality. To that end, soil properties and near-water-table groundwater chemistry of a shallow, unconfined aquifer were measured on a 100-m grid on a 64-ha irrigated field in southeastern North Dakota. Soil properties and hydrochemistry were compared via multivariate analysis that included product-moment correlations and factor analysis/principal component analysis. Topographic low areas where the water table was in close proximity to the soil surface generally had higher apparent electrical conductivity (ECa ) and higher percent silt and clay than higher positions on the landscape. The majority of the groundwater was characterized by Ca- and Mg-HCO3 type water and was associated with topographic high areas with lower ECa and net groundwater recharge. Small topographic depressions were areas of higher ECa (net groundwater discharge) where salts that precipitated via evapotranspiration and evaporative discharge dissolved and leached to the groundwater during short-term depression-focused recharge events. At this site, groundwater quality and soil ECa were related to surface topography. High-resolution topography and EC(a) measurements are necessary to characterize the land surface/soil properties and surficial groundwater quality at the field-scale and to delineate areas where the shallow groundwater is most susceptible to contamination. PMID:22913586

  18. Groundwater quality suitable zones identification: application of GIS, Chittoor area, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Yammani, Srinivasarao

    2007-09-01

    Due to uneven spatial and temporal distribution of rainfall and lack of sufficient water management technologies, the development activities of the society are totally depending on groundwater resources. In addition to the prevailing drought-prone conditions, the improperly treated and unplanned release of effluents of industry, municipal and domestic into the nearby streams and ponds and the majority usage of groundwater for irrigation are increasing the ionic concentration of the groundwater and making it more saline. The analytical results of the collected groundwater samples show that the groundwater is alkaline, and sodium and bicarbonate are the dominant cation and anion, respectively. Gibbs variation diagram shows that the control of the chemistry of groundwater in the study area is the weathering of granitic gneisses and also the leaching of evaporated and crystallized ions from the topsoil of the irrigated areas and improperly treated industrial effluent ponds. GIS, a potential tool for facilitating the generation and use of thematic information, has been applied and analyzed for identification of groundwater quality suitable zones for domestic and irrigation purposes. 30.06% of the area is with suitable, 67.45% of the area is with moderately suitable and 2.45% of the area is with unsuitable quality of groundwater for domestic purpose. 46% of the area is with suitable, 53.36% of the area is with moderately suitable and 0.64% of the area is with unsuitable quality of groundwater for irrigation purpose.

  19. Characterization of Ground-Water Quality, Upper Republican Natural Resources District, Nebraska, 1998-2001

    USGS Publications Warehouse

    Frankforter, Jill D.; Chafin, Daniele T.

    2004-01-01

    Nearly all rural inhabitants and livestock in the Upper Republican Natural Resources District (URNRD) in southwestern Nebraska use ground water that can be affected by elevated nitrate concentrations. The development of ground-water irrigation in this area has increased the vulnerability of ground water to the introduction of fertilizers and other agricultural chemicals. In 1998, the U.S. Geological Survey, in cooperation with the Upper Republican Natural Resources District, began a study to characterize the quality of ground water in the Upper Republican Natural Resources District area with respect to physical properties and concentrations of major ions, coliform bacteria, nitrate, and pesticides, and to assess the presence of nitrogen concentrations in the unsaturated zone. At selected well sites, the ground-water characterization also included tritium and nitrogen-isotope analyses to provide information about the approximate age of the ground water and potential sources of nitrogen detected in ground-water samples, respectively. In 1998, ground-water samples were collected from 101 randomly selected domestic-well sites. Of the 101 samples collected, 26 tested positive for total coliform bacteria, exceeding the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) of zero colonies. In 1999, ground-water samples were collected from 31 of the 101 well sites, and 16 tested positive for coliform bacteria. Nitrates were detected in ground water from all domestic-well samples and from all but four of the irrigation-well samples collected from 1998 to 2001. Eight percent of the domestic-well samples and 3 percent of the irrigation-well samples had nitrate concentrations exceeding the U.S. Environmental Protection Agency's MCL for drinking water of 10 milligrams per liter. Areas with nitrate concentrations exceeding 6 milligrams per liter, the URNRD's ground-water management-plan action level, were found predominantly in north-central Chase, western and

  20. Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India.

    PubMed

    Kumar, S Krishna; Rammohan, V; Sahayam, J Dajkumar; Jeevanandam, M

    2009-12-01

    Groundwater quality assessment study was carried out around Manimuktha river basin, Tamil Nadu, India. Twenty six bore well samples were analyzed for geochemical variations and quality of groundwater. Four major hydrochemical facies (Ca-HCO(3), Na-Cl, Mixed CaNaHCO(3), and mixed CaMgCl) were identified using a Piper trilinear diagram. Comparison of geochemical results with World Health Organization, United States Environmental Protection Agency, and Indian Standard Institution drinking water standards shows that all groundwater samples except few are suitable for drinking and irrigation purposes. The major groundwater pollutions are nitrate and phosphate ions due to sewage effluents and fertilizer applications. The study reveals that the groundwater quality changed due to anthropogenic and natural influence such as agricultural, natural weathering process. PMID:19089596

  1. Undernutrition affects embryo quality of superovulated ewes.

    PubMed

    Abecia, J A; Forcada, F; Palacín, I; Sánchez-Prieto, L; Sosa, C; Fernández-Foren, A; Meikle, A

    2015-02-01

    To determine the effect of undernutrition on embryo production and quality in superovulated sheep, 45 ewes were allocated into two groups to be fed diets that provided 1.5 (control, C; n = 20) or 0.5 (low nutrition, L; n = 25) times daily requirements for maintenance, from oestrous synchronization with intravaginal sponges to embryo collection. Embryos were collected 7 days after the onset of oestrus (day 0). Low nutrition resulted in lower live weight and body condition at embryo collection (P < 0.05). Diet (P < 0.01) and day of sampling (P < 0.001) significantly affected plasma non-esterified fatty acid (NEFA) and insulin concentrations. Plasma leptin concentrations decreased on day 7 only in L ewes. A significant effect of dietary treatment (P < 0.05) and day (P < 0.0001) was observed on plasma insulin-like growth factor (IGF)-I concentrations. The number of recovered oocytes and embryos did not differ between the groups (L: 15.4 ± 0.4; C: 12.4 ± 0.4). Recovery rate was lower (P < 0.05) in the L (60%) than in the C group (73%). The total number of embryos and number of viable-transferable embryos (5.0 ± 0.3 and 3.4 ± 0.3 embryos, respectively) of the L group were lower (P < 0.1) when compared with controls (8.4 ± 0.4 and 6.2 ± 0.4 embryos, respectively). Undernutrition during the period of superovulation and early embryonic development reduced total and viable number of embryos. These effects might be mediated by disruption of endocrine homeostasis, oviduct environment and/or oocyte quality. PMID:24103562

  2. Hydrochemical Assessment of Surfacewater and Groundwater Quality at Bank Infiltration Site

    NASA Astrophysics Data System (ADS)

    Shamsuddin, M. K. N.; Suratman, S.; Ramli, M. F.; Sulaiman, W. N. A.; Sefie, A.

    2016-07-01

    Groundwater and surface water quantity and quality are an important factor that contribute for drinking water demand and agriculture use. The water quality analysis was assessed using multivariate statistical analyses based on analytical quantitative data that include Discriminant Analysis (DA) and Principal Component Analysis (PCA), based on 36 water quality parameters from the rivers, lakes, and groundwater sites at Jenderam Hilir, which were collected from 2013 to 2014 (56 observations). The DA identified six significant parameters (pH, NO2-, NO3-, F, Fe2+, and Mn2+) from 36 variables to distinguish between the river, lake, and groundwater groups (classification accuracy = 98%). The PCA had confirmed 10 possible causes of variation in the groundwater quality with an eigenvalue greater than 1, which explained 82.931% of the total variance in the water quality data set.

  3. Impacts of Sewer Leaks on Surrounding Groundwater and Surface Water Quality in Singapore

    NASA Astrophysics Data System (ADS)

    Ly, D.; Chui, T. M.

    2011-12-01

    Underground sewers deteriorate over time resulting in cracks and joint defects. Sewage thus leaks out of the sewers and contaminates the surrounding groundwater. Singapore does not directly use groundwater as a water supply. However, contaminated groundwater flows into the drains nearby through weep holes, and subsequently enters water supply reservoirs. This study examines the impacts of sewage leaks on surrounding groundwater and surface water quality by modeling the interactions between leaky sewers, groundwater and drains. It first explores the representations of important yet challenging boundary conditions, namely weep holes and leaky sewers, so that their fluxes vary realistically with water pressure throughout a simulation. It then simulates groundwater flow and contaminant transport from leaky sewers to nearby drains over a period of ten years. It further rehabilitates the sewers and models the attenuation of contamination plume for another ten years. The results of this project contribute to the modeling and understanding of the potential impacts of sewer leaks on surrounding groundwater and surface water quality. For example, groundwater quality changes with hydrologic conditions, and it is highest during heavy rainfall and times of high water table because of the low leakage and high dilution rates. Water quality fluctuates daily or even hourly in the vicinity of the sewers, but is more stable in the flow through the weep holes into the drains. Overall, this study benefits the sewer leak monitoring and sewer rehabilitation in many urban areas worldwide.

  4. Risk Communication of Groundwater Quality in Northern Malawi, Africa

    NASA Astrophysics Data System (ADS)

    Holm, R.

    2011-12-01

    Malawi lies in Africa's Great Rift Valley. Its western border is defined by Lake Malawi, the third largest lake in Africa. Over 80% of Malawians live in rural areas and 90% of the labor force is associated with agriculture. More than half of the population lives below the poverty line. Area characteristics indicate a high likelihood of nitrate and total coliform in community drinking water. Infants exposed to high nitrate are at risk of developing methemoglobinemia. In addition, diarrheal diseases from unsafe drinking water are one of the top causes of mortality in children under five. Without sufficient and sustainable supplies of clean water, these challenges will continue to threaten Malawi's ability to overcome the devastating impact of diarrheal diseases on its population. Therefore, Malawi remains highly dependent on outside assistance and influence to reduce or eliminate the threat posed by unsafe drinking water. This research presents a literature review of nitrate and total coliform groundwater quality and a proposed risk communication plan for drinking water in northern Malawi.

  5. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  6. Monitoring the Remediation of Salt-Affected Soils and Groundwater

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Callaghan, M. V.; Cey, E. E.

    2008-12-01

    Salt-affected soil is one of the most common environmental issues facing the petroleum hydrocarbon industry. Large quantities of brines are often co-produced with gas and oil and have been introduced into the environment through, for example, flare pits, drilling operations and pipe line breaks. Salt must be flushed from the soil and tile drain systems can be used to collect salt water which is then be routed for disposal. A flushing experiment over a 2 m deep tile drain system is being monitored by arrays of tensiometers, repeated soil coring, direct push electrical conductivity profiles (PTC), electromagnetic surveys and electrical resistivity tomography (ERT) surveys. Water table elevation is monitored with pressure transducers. Thermocouple arrays provide temperature profiles that are used to adjust electrical conductivity data to standard temperature equivalents. A 20 m by 20 m plot was deep tilled and treated with soil amendments. Numerous infiltration tests were conducted inside and outside the plot area using both a tension infiltrometer and Guelph permeameter to establish changes in soil hydraulic properties and macroporosity as a result of deep tillage. The results show that till greatly diminished the shallow macroporosity and increased the matrix saturated hydraulic conductivity. A header system is used to evenly flood the plot with 10 m3 of water on each of three consecutive days for an approximate total of 7.5 cm of water. The flood event is being repeated four times over a period of 6 weeks. Baseline PTC and ERT surveys show that the salt is concentrated in the upper 2 to 3 m of soil. Tensiometer data show that the soil at 30 cm depth responds within 2 to 3 hours to flooding events once the soil is wetted and begins to dry again after one week. Soil suction at 1.5 m does not show immediate response to the daily flooding events, but is steadily decreasing in response to the flooding and rainfall events. An ERT survey in October will provide the first

  7. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  8. Reduced order models for prediction of groundwater quality impacts from CO₂ and brine leakage

    DOE PAGESBeta

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore » efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.« less

  9. Reduced order models for prediction of groundwater quality impacts from CO₂ and brine leakage

    SciTech Connect

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.

  10. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  11. Zonal management of multi-purposes groundwater utilization based on water quality and impact on the aquifer.

    PubMed

    Liang, Ching-Ping; Jang, Cheng-Shin; Chen, Ching-Fang; Chen, Jui-Sheng

    2016-07-01

    Groundwater is widely used for drinking, irrigation, and aquaculture in the Pingtung Plain, Southwestern Taiwan. The overexploitation and poor quality of groundwater in some areas of the Pingtung Plain pose great challenges for the safe use and sustainable management of groundwater resources. Thus, establishing an effective management plan for multi-purpose groundwater utilization in the Pingtung Plain is imperative. Considerations of the quality of the groundwater and potential impact on the aquifer of groundwater exploitation are paramount to multi-purpose groundwater utilization management. This study proposes a zonal management plan for the multi-purpose use of groundwater in the Pingtung Plain. The zonal management plan is developed by considering the spatial variability of the groundwater quality and the impact on the aquifer, which is defined as the ratio of the actual groundwater extraction rate to transmissivity. A geostatistical Kriging approach is used to spatially delineate the safe zones based on the water quality standards applied in the three groundwater utilization sectors. Suitable zones for the impact on the aquifer are then spatially determined. The evaluation results showing the safe water quality zones for the three types of utilization demands and suitable zones for the impact on aquifer are integrated to create a zonal management map for multi-purpose groundwater utilization which can help government administrators to establish a water resource management strategy for safe and sustainable use of groundwater to meet multi-purpose groundwater utilization requirements in the Pingtung Plain. PMID:27343131

  12. Groundwater: A Community Action Guide.

    ERIC Educational Resources Information Center

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  13. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  14. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  15. Waste deposit influences on groundwater quality as a tool for waste type and site selection for final storage quality

    NASA Astrophysics Data System (ADS)

    Arneth, Jan-Dirk; Milde, Gerald; Kerndorff, Helmut; Schleyer, Ruprecht

    Leachates from deposits of wastes may, in the long run, adversely influence groundwater quality. Since tipping still constitutes the most important form of waste disposal, strategies must be developed which are capable of protecting groundwater against contamination from leachates. In the first instance such protective measures must provide for a minimization of contamination by setting up optimal barriers. Since it would seem difficult to reach this goal in a forseeable future, the avoidance of substances with a high potential for groundwater hazards has to be attributed much importance. In former times, little attention was given to impermeability or avoidance of substances with a high potential for groundwater hazards contained in wastes. Therefore, results of the investigation of groundwater near abandoned sites can be used to optimize groundwater protection on future tipping sites. In the present study, the results of chemical investigation of groundwater from the vicinity of 92 waste disposal sites in the Federal Republic of Germany are presented and the changes in groundwater quality owing to the penetration of leachates are discussed separately for inorganic and organic contaminants.

  16. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  17. Ground-water flow and water quality in the sand aquifer of Long Beach Peninsula, Washington

    USGS Publications Warehouse

    Thomas, B.E.

    1995-01-01

    This report describes a study that was undertaken to improve the understanding of ground-water flow and water quality in the coastal sand aquifer of the Long Beach Peninsula of southwestern Washington. Data collected for the study include monthly water levels at 103 wells and 28 surface-water sites during 1992, and water-quality samples from about 40 wells and 13 surface-water sites in February and July 1992. Ground water generally flows at right angles to a ground-water divide along the spine of the low-lying peninsula. Historical water-level data indicate that there was no long-term decline in the water table from 1974 to 1992. The water quality of shallow ground water was generally good with a few local problems. Natural concentrations of dissolved iron were higher than 0.3 milligrams per liter in about one-third of the samples. The dissolved-solids concentrations were generally low, with a range of 56 to 218 milligrams per liter. No appreciable amount of seawater has intruded into the sand aquifer, chloride concentrations were low, with a maximum of 52 milligrams per liter. Agricultural activities do not appear to have significantly affected the quality of ground water. Concentrations of nutrients were low in the cranberry-growing areas, and selected pesticides were not found above the analytical detection limits. Septic systems probably caused an increase in the concentration of nitrate from medians of less than 0.05 milligrams per liter in areas of low population density to 0.74 milligrams per liter in areas of high density.

  18. Water-quality and hydrogeologic data used to evaluate the effects of farming systems on ground-water quality at the Management Systems Evaluation Area near Princeton,Minnesota, 1991-95

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.

    1997-01-01

    The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.

  19. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    characterize the quality of groundwater resources within the primary aquifers of the San Diego study unit, not the treated drinking water delivered to consumers by water purveyors. The second component of this study-the understanding assessment-identified the natural and human factors that affect groundwater quality by evaluating land use, well construction, and geochemical conditions of the aquifer. Results from these evaluations were used to help explain the occurrence and distribution of selected constituents in the study unit. Relative-concentrations (sample concentration divided by benchmark concentration) were used as the primary metric for relating concentrations of constituents in groundwater samples to water-quality benchmarks for those constituents that have Federal and (or) California benchmarks. For organic and special-interest constituents, relative-concentrations were classified as high (> 1.0), moderate (> 0.1 and ≤1.0), and low (≤0.1). For inorganic constituents, relative concentrations were classified as high (> 1.0), moderate (> 0.5 and ≤1.0), and low (≤0.5). Grid-based and spatially weighted approaches were then used to evaluate the proportion of the primary aquifers (aquifer-scale proportions) with high, moderate, and low relative-concentrations for individual compounds and classes of constituents. One or more of the inorganic constituents with health-based benchmarks were high (relative to those benchmarks) in 17.6 percent of the primary aquifers in the Temecula Valley, Warner Valley, and Alluvial Basins study areas (hereinafter also collectively referred to as the Alluvial Fill study areas because they are composed of alluvial fill aquifers), and in 25.0 percent of the Hard Rock study area. Inorganic constituents with health-based benchmarks that were frequently detected at high relative-concentrations included vanadium (V), arsenic (As), and boron (B). Vanadium and As concentrations were not significantly correlated to either urban or

  20. Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.

    2015-09-01

    The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - } . The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.

  1. Geohydrology, water quality, and estimation of ground-water recharge in San Francisco, California, 1987-92

    USGS Publications Warehouse

    Phillips, S.P.; Hamlin, S.N.; Yates, E.B.

    1993-01-01

    The city of San Francisco is considering further development of local groundwater resources as a supplemental source of water for potable or nonpotable use. By the year 2010, further water demand is projected to exceed the delivery capacity of the existing supply system, which is fed by surface-water sources; thus supplies are susceptible to drought conditions and damage to conveyance lines by earthquakes. The primary purpose of this study is to describe local geohydrology and water quality and to estimate groundwater recharge in the area of the city of San Francisco. Seven groundwater basins were identified in San Francisco on the basis of geologic and geophysical data. Basins on the east side of the city are relatively thin and contain a greater percentage of fine-grained sediments than those on the west side. The relatively small capacity of the basins and greater potential for contamination from sewer sources may limit the potential for groundwater development on the east side. Basins on the west side of the city have a relatively large capacity and low density sewer network. Water-level data indicate that the southern part of the largest basin on the west side of the city (Westside basin) probably cannot accommodate additional groundwater development without adversely affecting water levels and water quality in Lake Merced; however, the remainder of the basin, which is largely undeveloped, could be developed further. A hydrologic routing model was developed for estimating groundwater recharge throughout San Francisco. The model takes into account climatic factors, land and water use, irrigation, leakage from underground pipes, rainfall runoff, evapotranspiration, and other factors associated with an urban environment. Results indicate that area recharge rates for water years 1987-88 for the 7 groundwater basins ranged from 0.32 to 0.78 feet per year. Recharge for the Westside basin was estimated at 0.51 feet per year. Average annual groundwater recharge

  2. In situ study of the effect of ground source heat pump on shallow ground-water quality in the late Pleistocene terrace area of Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Uemura, K.; Akiba, Y.; Ota, M.

    2015-12-01

    The implementation of ground source heat pump (GSHP) systems has rapidly increased around the world, since they reduce carbon dioxide emissions and save electric energy. The GSHP system transfer heat into the geosphere zone when air conditioners are used to cool rooms or buildings. However, the effects of temperature increase on the quality of underground water has yet to be fully investigated. In order to reduce the risks of ground-water pollution by the installed GSHPs, it is important to evaluate the effect of temperature change on the ground-water quality. In this study, we installed a closed loop GSHP system on a heat exchange well along with a monitoring well drilled to measure ground-water quality and temperature. The monitoring well was drilled at 0.1cm away from the heat exchange well. We observed that changes of temperature in the heat exchange well affected the water quality, especially turbidity, in gravelly layer.

  3. Hydrochemistry of urban groundwater, Seoul, Korea: the impact of subway tunnels on groundwater quality.

    PubMed

    Chae, Gi-Tak; Yun, Seong-Taek; Choi, Byoung-Young; Yu, Soon-Young; Jo, Ho-Young; Mayer, Bernhard; Kim, Yun-Jong; Lee, Jin-Yong

    2008-10-23

    Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year(-1)) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3(-), turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L(-1), max. 5.58 mg L(-1)), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes. Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels. PMID:18725171

  4. Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea

    NASA Astrophysics Data System (ADS)

    Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

    2001-12-01

    Mn are presumed to be affected from decrepit pipelines under inproper management. The correlation matrix between hydrochemical data and local land-use data was examined, based on the areal calculation of land use (road, building for housing and official work, industrial building, forest, and agricultural land) within a circular (radius = 500 m) around a well. The results show that the areal percentage of road correlates positively with the concentrations of TDS, Na, Ca, HCO3, Br, Mn, and Ni, whereas the areal percentage of industrial building correlates well with Mg, SO4, Fe, TCE, and PCE. The present study suggests that urban groundwaters in Seoul are strongly affected by anthropogenic sources and show a strong effect by local land-use characteristics. As an useful guideline for evaluating the groundwater quality, we have obtained background water quality criteria as follows: Na (10.8 mg/l), K (1.2 mg/l), Ca (19.9 mg/l), Mg (1.6 mg/l), NO3 (8.3 mg/l), Cl (9.0 mg/l), SO4 (12.9 mg/l), and HCO3 (54.8 mg/l).

  5. Factors affecting enhanced video quality preferences

    PubMed Central

    Satgunam, PremNandhini; Woods, Russell L; Bronstad, P Matthew; Peli, Eli

    2013-01-01

    The development of video quality metrics requires methods for measuring perceived video quality. Most such metrics are designed and tested using databases of images degraded by compression and scored using opinion ratings. We studied video quality preferences for enhanced images of normally-sighted participants using the method of paired comparisons with a thorough statistical analysis. Participants (n=40) made pair-wise comparisons of high definition (HD) video clips enhanced at four different levels using a commercially available enhancement device. Perceptual scales were computed with binary logistic regression to estimate preferences for each level and to provide statistical inference of the differences among levels and the impact of other variables. While moderate preference for enhanced videos was found, two unexpected effects were also uncovered: (1) Participants could be broadly classified into two groups: those who preferred enhancement ("Sharp") and those who disliked enhancement ("Smooth"). (2) Enhancement preferences depended on video content, particularly for human faces to be enhanced less. The results suggest that algorithms to evaluate image quality (at least for enhancement) may need to be adjusted or applied differentially based on video content and viewer preferences. The possible impact of similar effects on image quality of compressed video needs to be evaluated. PMID:24107400

  6. Non-intrusive characterization methods for wastewater-affected groundwater plumes discharging to an alpine lake.

    PubMed

    Roy, James W; Robillard, Jasen M; Watson, Susan B; Hayashi, Masaki

    2009-02-01

    Streams and lakes in rocky environments are especially susceptible to nutrient loading from wastewater-affected groundwater plumes. However, the use of invasive techniques such as drilling wells, installing piezometers or seepage meters, to detect and characterize these plumes can be prohibitive. In this work, we report on the use of four non-intrusive methods for this purpose at a site in the Rocky Mountains. The methods included non-invasive geophysical surveys of subsurface electrical conductivity (EC), in-situ EC measurement of discharging groundwater at the lake-sediment interface, shoreline water sampling and nutrient analysis, and shoreline periphyton sampling and analysis of biomass and taxa relative abundance. The geophysical surveys were able to detect and delineate two high-EC plumes, with capacitively coupled ERI (OhmMapper) providing detailed two-dimensional images. In situ measurements at the suspected discharge locations confirmed the presence of high-EC water in the two plumes and corroborated their spatial extent. The nutrient and periphyton results showed that only one of the two high-EC plumes posed a current eutrophication threat, with elevated nitrogen and phosphorus levels, high localized periphyton biomass and major shifts in taxonomic composition to taxa that are commonly associated with anthropogenic nutrient loading. This study highlights the need to use non-intrusive methods in combination, with geophysical and water EC-based methods used for initial detection of wastewater-affected groundwater plumes, and nutrient or periphyton sampling used to characterize their ecological effects. PMID:18253851

  7. Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey

    NASA Astrophysics Data System (ADS)

    Yesilnacar, M. Irfan; Gulluoglu, M. Said

    2008-03-01

    Improper design, faulty planning, mismanagement and incorrect operation of irrigation schemes are the principle reasons for the deterioration of groundwater quality in a large number of countries, in particular in semi-arid and arid regions. The aim of this study is to determine the dimensions of groundwater quality after surface irrigation was begun in the semi-arid Harran Plain. Physical and chemical parameters of the groundwater including pH, temperature, electrical conductivity (EC), sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate, nitrate, nitrite, ammonium, total phosphorus, total organic carbon and turbidity were determined monthly during the 2006 water year. The quality of the groundwater in the study area was assessed hydrochemically in order to determine its suitability for human consumption and agricultural purposes. In the general plain, the EC values measured were considerably above the guide level of 650 μS/cm, while nitrate in particular was found in almost all groundwater samples to be significantly above the maximum admissible concentration of 50 mg/l for the quality of water intended for human consumption as per the international and national standards. Total hardness reveals that a majority of the groundwater samples fall in the very hard water category. Interpretation of analytical data shows that Ca HCO3 and Ca SO4 are the dominant hydrochemical facies in the study area.

  8. The impact of river restoration on the water quality of the surface water and groundwater in an Alpine catchment.

    NASA Astrophysics Data System (ADS)

    Chittoor Viswanathan, V.; Schirmer, M.

    2012-04-01

    The importance of river restoration projects can only be realized upon evaluating their success or failure in a region mainly with regards to water quality, ecological adaptations and flood mitigation. The Thur catchment in North eastern Switzerland is chosen as the study area. The water quality along the entire river reach (with the corresponding groundwater monitoring wells) will be analyzed with regard to the existing land use and a comparison shall be made with the water quality in the restored river sections of the river. A restored river section at Niederneunforn has been heavily monitored as part of the RECORD project and this data shall be vital for the present work. The water quality changes are to be observed by relating to some of the basic parameters like pH, electrical conductivity, dissolved oxygen, total organic carbon (TOC), total inorganic carbon (TIC) , the concentration of ions like chloride, nitrate, nitrite, ortho-phosphate, ammonium and calcium. These are to be measured in both the surface and the groundwater upstream and downstream of the restored section in the study river. Both long-term monitoring as well as localized water sampling campaigns are planned as part of the study. Use of the stable isotopes of oxygen and nitrogen is to be done to trace the possible sources of contamination in the river reach. This study shall aim to answer the following questions: 1. What are the diurnal and seasonal water quality changes in the Thur river; upstream and downstream of the restored section? 2. Are there any links between the different water quality parameters and how does the restored section influence these links? 3. How does the water quality change from the river to the groundwater (due to the recharge) between the restored and the unrestored river sections? 4. How does the land use in the catchment affect / alter the water quality in the river? -Is there high pollutant load from a particular waste water treatment or more agricultural runoff

  9. Factors Affecting School Quality in Florida

    ERIC Educational Resources Information Center

    Thornton, Barry; Arbogast, Gordon

    2014-01-01

    This paper examines the factors that are theorized to be determinants of school quality in the 67 counties of Florida from 2000 to 2011. The model constructed for this purpose is comprised of a mix of independent variables that include county educational attainment (number of high school graduates and State University System enrollees) and…

  10. Chemical substance transport in soils and its effect on groundwater quality.

    PubMed Central

    Khublarian, M G

    1989-01-01

    The problems of chemical substance applications in different spheres of industry and agriculture and their effects on groundwater quality and human health are described. Sources of groundwater contamination from industrial and municipal wastes, agricultural pollutants, etc., are listed. The experience in the application of chemical fertilizers and pesticides in the USSR is described. A brief estimation of groundwater salinity is given for various regions of the USSR where irrigation is practiced, as well as the experience in environmental protection. Special attention is given to methods of simulating water seepage and chemical substance transport in soils. Boundary problems for free-surface seepage and dissolved solids transport in porous media are stated, and methods of solution are described in the example of the hydrodynamic theory of seepage and dispersion. Some results of calculations with this method are presented. The influence of groundwater quality on the morbidity of the population is given and the main diseases and associated medical problems are listed. PMID:2559843

  11. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  12. Quality of groundwater in the Agbabu oil sands area of the Ondo State, Nigeria

    NASA Astrophysics Data System (ADS)

    Ajayi, Owolabi

    1998-08-01

    The Agbabu area is currently the focus of geological investigations for oil sands by several multinational companies. Mining and associated activities will require substantial quantities of water, hence the aim of this study is to evaluate the groundwater quality in the area. Total dissolved solids in the range 1260-1460 mg I -1 exceed the upper limit of 1000 mg I -1 for fresh water, and indicate brackish, non-potable water. Using relevant indices, the groundwater is found to be not suitable for irrigated agriculture and most industrial uses without further treatment. On the basis of dominant cations and anions, the groundwater is classified as a sodium chloride (NaCl) type. Detailed and systematic hydrogeological study of the entire oil sands area is recommended to provide information on the nature, origin, occurrence and quality characteristics of the groundwater found in this area.

  13. Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki

    The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.

  14. Quality of groundwater in the Coastal Plain Sands aquifer of the Akwa Ibom State, Nigeria

    NASA Astrophysics Data System (ADS)

    Ajayi, Owolabi; Umoh, Obot A.

    1998-08-01

    The Coastal Plain Sands Formation is exploited by most of the population of the Akwa Ibom State in southeastern Nigeria. The aquifer is mostly coarse-grained, pebbly and poorly sorted sands with minor clay intercalations. It is up to 1500 m thick near the coast, but only a few metres thick along the northeastern boundary. Groundwater occurs principally under unconfined conditions. Boreholes penetrating less than 130 m yield over 300 m 3 hr -1. The main groundwater flow direction is seaward from north to south. The probable location of the fresh water-sea water interface is seaward. Forty-two groundwater and two surface water samples were analysed. Groundwater quality meets the WHO standards for potability and is dominated by bicarbonates of Na, Ca and Mg. The Sodium Adsorption Ratio lies between 0.2 and 2.0, indicating that the water is suitable for irrigation. The area has very high annual rainfall exceeding 2000 mm annually. Groundwater recharge should be high, although it is recommended that groundwater levels and quality near the coast be monitored regularly, especially in urban areas with high groundwater abstraction, to detect the onset of sea water intrusion which remains a potential hazard in this area.

  15. Ground-Water Quality in Western New York, 2006

    USGS Publications Warehouse

    Eckhardt, David A.V.; Reddy, James E.; Tamulonis, Kathryn L.

    2008-01-01

    Water samples were collected from 7 production wells and 26 private residential wells in western New York from August through December 2006 and analyzed to characterize the chemical quality of ground water. Wells at 15 of the sites were screened in sand and gravel aquifers, and 18 were finished in bedrock aquifers. The wells were selected to represent areas of greatest ground-water use and to provide a geographical sampling from the 5,340-square-mile study area. Samples were analyzed for 5 physical properties and 219 constituents that included nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds (VOC), phenolic compounds, organic carbon, and bacteria. Results indicate that ground water used for drinking supply is generally of acceptable quality, although concentrations of some constituents or bacteria exceeded at least one drinking-water standard at 27 of the 33 wells. The cations that were detected in the highest concentrations were calcium, magnesium, and sodium; anions that were detected in the highest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrients were nitrate and ammonia; nitrate concentrations were higher in samples from sand and gravel aquifers than in samples from bedrock. The trace elements barium, boron, copper, lithium, nickel, and strontium were detected in every sample; the trace elements with the highest concentrations were barium, boron, iron, lithium, manganese, and strontium. Eighteen pesticides, including 9 pesticide degradates, were detected in water from 14 of the 33 wells, but none of the concentrations exceeded State or Federal Maximum Contaminant Levels (MCLs). Fourteen volatile organic compounds were detected in water from 12 of the 33 wells, but none of the concentrations exceeded MCLs. Eight chemical analytes and three types of bacteria were detected in concentrations that exceeded Federal and State drinking-water standards, which are typically identical

  16. Groundwater quality of porous aquifers in Greece: a synoptic review

    NASA Astrophysics Data System (ADS)

    Daskalaki, P.; Voudouris, K.

    2008-04-01

    Greece is dependent on groundwater resources for its water supply. The main aquifers are within carbonate rocks (karstic aquifers) and coarse grained Neogene and Quaternary deposits (porous aquifers). The use of groundwater resources has become particularly intensive in coastal areas during the last decades with the intense urbanization, tourist development and irrigated land expansion. Sources of groundwater pollution are the seawater intrusion due to over-exploitation of coastal aquifers, the fertilizers from agricultural activities and the disposal of untreated wastewater in torrents or in old pumping wells. In the last decades the total abstractions from coastal aquifers exceed the natural recharge; so the aquifer systems are not used safely. Over-exploitation causes a negative water balance, triggering seawater intrusion. Seawater intrusion phenomena are recorded in coastal aquifer systems. Nitrate pollution is the second major source of groundwater degradation in many areas in Greece. The high levels of nitrate are probably the result of over-fertilization and the lack of sewage systems in some urban areas.

  17. Protecting groundwater quality with high frequency subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  18. Assessment of groundwater quality data for the Turtle Mountain Indian Reservation, Rolette County, North Dakota

    USGS Publications Warehouse

    Lundgren, Robert F.; Vining, Kevin C.

    2013-01-01

    The Turtle Mountain Indian Reservation relies on groundwater supplies to meet the demands of community and economic needs. The U.S. Geological Survey, in cooperation with the Turtle Mountain Band of Chippewa Indians, examined historical groundwater-level and groundwater-quality data for the Fox Hills, Hell Creek, Rolla, and Shell Valley aquifers. The two main sources of water-quality data for groundwater were the U.S. Geological Survey National Water Information System database and the North Dakota State Water Commission database. Data included major ions, trace elements, nutrients, field properties, and physical properties. The Fox Hills and Hell Creek aquifers had few groundwater water-quality data. The lack of data limits any detailed assessments that can be made about these aquifers. Data for the Rolla aquifer exist from 1978 through 1980 only. The concentrations of some water-quality constituents exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. No samples were analyzed for pesticides and hydrocarbons. Numerous water-quality samples have been obtained from the Shell Valley aquifer. About one-half of the water samples from the Shell Valley aquifer had concentrations of iron, manganese, sulfate, and dissolved solids that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. Overall, the data did not indicate obvious patterns in concentrations.

  19. Estimation of impacts on groundwater quality in an urban area of Ljubljana

    NASA Astrophysics Data System (ADS)

    Janža, Mitja; Prestor, Joerg; Pestotnik, Simona; Jamnik, Brigita

    2016-04-01

    Groundwater is a major source of drinking water supply in many cities worldwide. It is relatively stable and better-protected water resource compared to surface water and will have a vital role in assuring water-supply security in the future. In urbanized catchments numerous human activities (e.g. settling, industry, traffic, agriculture) take place which pose a threat to groundwater quality. For sustainable management of urban groundwater resources an integrated and adaptive approach based on continuous monitoring supported by modeling is needed. The aim of presented study was to develop a model of environmental pressures and impacts on Ljubljansko polje aquifer which is the main source exploited for the public drinking water supply of the city of Ljubljana. It is based on estimation of contaminants emissions from different sources, coupled with numerical transport modelling which is used to assess the impact on groundwater quality. The model was built up on detailed analysis of nitrogen mass balance and validated with monitoring data - concentration measurements of relevant chemical parameters. Based on the model simulations impacts of different sources of pollution on groundwater quality was estimated and priority of measures for improvement of chemical status of groundwater was defined.

  20. Assessment of groundwater quality using geographical information system (GIS), at north-east Cairo, Egypt.

    PubMed

    El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H

    2016-04-01

    The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped. PMID:27105417

  1. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  2. Assessing potential toxicity of chloride-affected groundwater discharging to an urban stream using juvenile freshwater mussels (Lampsilis siliquoidea).

    PubMed

    Roy, James W; McInnis, Rodney; Bickerton, Greg; Gillis, Patricia L

    2015-11-01

    Groundwater contaminants, such as chloride from road salt, pose a threat to aquatic ecosystems when and where they discharge to surface waters. Here we study the application of a laboratory toxicity bioassay to field-collected samples from contaminated groundwater discharging to an urban stream. The objectives were to assess the potential toxicity of the discharging groundwater, while also exploring the suitability of such standard tests to site groundwater. Juvenile freshwater mussels were chosen as a groundwater-appropriate (endobenthic) test organism. Groundwater was sampled from 6 sites at approximate depths of 0, 10, and 50 cm below the sediment. Concentrations of chloride and several metals were above aquatic life guidelines in some samples. Exposure (96-h) to site groundwater resulted in survival of 90-100% and 80-100% for the 0-cm and deeper samples, respectively, indicating that groundwater may pose a toxicological threat to freshwater mussels. Several samples with high chloride had a survival rate of 80%, but generally there was poor correlation between survival and individual contaminants. Parallel juvenile mussel exposures using reconstituted water and NaCl predicted survival in the natural groundwater below 50% based on chloride concentrations. This indicates some protective ability of groundwater, possibly associated with water hardness. Finally, some technical issues with performing bioassays with groundwater were noted. First, aeration of previously anoxic groundwater samples caused marked changes in water quality (especially metal concentrations). Second, calcite crystals formed on the mussel shells in samples with elevated chloride and water hardness, though with no apparent negative effects. PMID:26081733

  3. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  4. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  5. Groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts, California

    USGS Publications Warehouse

    Parsons, Mary C.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.

  6. Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan.

    PubMed

    Lu, K-L; Liu, C-W; Jang, C-S

    2012-10-01

    Groundwater is a major water resource in Southwestern Taiwan; hence, long-term monitoring of water quality is essential. The study aims to assess the hydrochemical characteristics of water in the arsenic-contaminated aquifers of Choushui River alluvial fan and Chianan Plain, Taiwan using multivariate statistical methods, namely, factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA). Factor analysis is applied to reveal the processes controlling the hydrochemistry of groundwater. Cluster analysis is applied to spatially categorize the collected water samples based on the water quality. Discriminant analysis is then applied to elucidate key parameters associated with the occurrence of elevated As concentration (>10 μg L(-1)) in groundwater. Major water types are characterized as Na-Ca-Cl and Na-Mg-Cl in the Choushui River alluvial fan and Chianan Plain, respectively. Inorganic species of arsenic (As), particularly As(III), prevail in these two groundwater catchments, and their levels are higher in the Chianan Plain than in the Choushui River alluvial fan. Through FA, three factors, namely, the degree of salination, As reduction, and iron (Fe) reduction, are determined and denoted irrespective of some differences between the factorial compositions. Spatial distribution patterns of factors As reduction and Fe reduction imply that the redox zonation is delineated by As- and Fe-dominance zones separately. The results of CA demonstrate that three main groups can be properly explained by the factors extracted via FA. Three- (Fe(2+), Fe(3+), and NH (4) (+) ) and four-parameters (Fe(2+), Fe(3+), NH (4) (+) , and Ca(2+)) derived from discriminant analysis for Choushui River alluvial fan and Chianan Plain are elucidated as key parameters affecting the distribution of As-contained groundwater. The analytical results indicate that the reductive dissolution of Fe minerals is prerequisite for the mobilization of As, whereas the shift of redox condition from

  7. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana

    NASA Astrophysics Data System (ADS)

    Anku, Yvonne S.; Banoeng-Yakubo, Bruce; Asiedu, Daniel K.; Yidana, Sandow M.

    2009-09-01

    Hydrochemical data are presented for groundwater samples, collected from fractured aquifers in parts of northern Ghana. The data was collected to assess the groundwater suitability for domestic and agricultural use. Results of the study reveal that the pH of the groundwater in the area is slightly acidic to slightly alkaline. The electrical conductivity values, total dissolved solids (TDS) values and calcium, magnesium and sodium concentrations in the groundwater are generally below the limit set by the WHO for potable water supply. On the basis of activity diagrams, groundwater from the fractured aquifers appears to be stable within the montmorillonite field, suggesting weathering of silicate minerals. An inverse distance weighting interpolator with a power of 2 was applied to the data points to produce prediction maps for nitrate and fluoride. The distribution maps show the presence of high nitrate concentrations (50-194 mg/l) in some of the boreholes in the western part of the study area indicating anthropogenic impact on the groundwater. Elevated fluoride level (1.5-4 mg/l), higher than the WHO allowable fluoride concentration of 1.5, is recorded in the groundwater underlying the northeastern part of the study area, more specifically Bongo and its surrounding communities of the Upper East region. Results of this study suggest that groundwater from the fractured aquifers in the area exhibit low sodicity-low salinity (S1-C1), low sodicity-medium salinity (S1-C2) characteristics [United States Salinity Laboratory (USSL) classification scheme]. All data points from this study plot within the ‘Excellent to good’ category on a Wilcox diagram. Groundwater in this area thus appears to provide irrigation water of excellent quality. The hydrochemical results indicate that, although nitrate and fluoride concentrations in some boreholes are high, the groundwater in the study area, based on the parameters analyzed, is chemically potable and suitable for domestic and

  8. Groundwater quality and hydrochemical properties of Al-Ula Region, Saudi Arabia.

    PubMed

    Toumi, Naji; Hussein, Belal H M; Rafrafi, Sarra; El Kassas, Neama

    2015-03-01

    Groundwater quality monitoring is one of the most important aspects in groundwater studies in arid environments particularly in developing countries, like Saudi Arabia, due to the fast population growth and the expansion of irrigated agriculture and industrial uses. Groundwater samples have been collected from eight locations in Al-Ula in Saudi Arabia during June 2012 and January 2013 in order to investigate the hydrochemical characteristics and the groundwater quality and to understand the sources of dissolved ions. Physicochemical parameters of groundwater such as electrical conductivity, pH, total dissolved solid, and major cations and anions were determined. Chloride was found to be the dominant anion followed by HCO(-) 3 and SO4 (2-). Groundwater of the study area is characterized by the dominance of alkaline earths (Ca(2+) + Mg(2+)) over alkali metals (Na(+) + K(+)). The analytical results show that the groundwater is generally moderately hard and slightly alkaline in nature. The binary relationships of the major ions reveal that water quality of the Al-Ula region is mainly controlled by rock weathering, evaporation, and ion exchange reactions. Piper diagram was constructed to identify hydrochemical facies, and it was found that majority of the samples belong to Ca-Cl and mixed Ca-Mg-Cl facies. Chemical indices like chloro-alkali indices, sodium adsorption ratio, percentage of sodium, residual sodium carbonate, and permeability index were calculated. Also, the results show that the chemical composition of groundwater sources of Al-Ula is strongly influenced by lithology of country rocks rather than anthropogenic activities. PMID:25655124

  9. Mind Wandering, Sleep Quality, Affect and Chronotype: An Exploratory Study

    PubMed Central

    Carciofo, Richard; Du, Feng; Song, Nan; Zhang, Kan

    2014-01-01

    Poor sleep quality impairs cognition, including executive functions and concentration, but there has been little direct research on the relationships between sleep quality and mind wandering or daydreaming. Evening chronotype is associated with poor sleep quality, more mind wandering and more daydreaming; negative affect is also a mutual correlate. This exploratory study investigated how mind wandering and daydreaming are related to different aspects of sleep quality, and whether sleep quality influences the relationships between mind wandering/daydreaming and negative affect, and mind wandering/daydreaming and chronotype. Three surveys (Ns = 213; 190; 270) were completed with Chinese adults aged 18–50, including measures of sleep quality, daytime sleepiness, mind wandering, daydreaming, chronotype and affect (positive and negative). Higher frequencies of mind wandering and daydreaming were associated with poorer sleep quality, in particular with poor subjective sleep quality and increased sleep latency, night-time disturbance, daytime dysfunction and daytime sleepiness. Poor sleep quality was found to partially mediate the relationships between daydreaming and negative affect, and mind wandering and negative affect. Additionally, low positive affect and poor sleep quality, in conjunction, fully mediated the relationships between chronotype and mind wandering, and chronotype and daydreaming. The relationships between mind wandering/daydreaming and positive affect were also moderated by chronotype, being weaker in those with a morning preference. Finally, while daytime sleepiness was positively correlated with daydream frequency, it was negatively correlated with a measure of problem-solving daydreams, indicating that more refined distinctions between different forms of daydreaming or mind wandering are warranted. Overall, the evidence is suggestive of a bi-directional relationship between poor sleep quality and mind wandering/daydreaming, which may be

  10. Influences on water quality in a groundwater dependent wetland system

    NASA Astrophysics Data System (ADS)

    Shanafield, M.; Rigosi, A.; Wood, C.; White, N.; Liu, Y.; Brookes, J. D.; Cook, P. G.

    2014-12-01

    Ewens Ponds is a unique series of connected wetlands situated within the Gambier Limestone formation in the Gambier Basin on the southeastern coast in South Australia. The system is composed of three consecutive ponds, each with a total depth of 9 to 13 m deep. Groundwater is the sole water source for the ponds, and the clear water, lush flora, and rare indigenous fish that characterize these wetlands typically lure thousands of divers to the Ponds each year. Over the past century, agricultural practices in the area have changed the hydrology of this system in many ways; first with an extensive system of drains on both sides of the Ponds to make the surrounding area viable for agricultural use, subsequently with the dredging of the outflow of the Ponds and addition of synthetic fertilizers, and most recently with heavy aquifer pumping for widespread use of center pivot irrigation systems. Beginning in the 1970s, diebacks in the Ponds' flora were documented, concurrent with spikes in nutrient concentrations. In nearby waters, reductions in key wetland species have been observed during periods of high alkalinity (pH>10). Following these concerns, the current study aims to quantify the water budget within the ponds, identify sources of nutrients, and estimate the age of groundwaters entering the wetlands for correlation with longterm agricultural trends. Groundwater ages were sampled in May 2014 and analysed for Carbon 14 and SF6, in addition to the installation of salinity and water level sensors and flow gaging. Preliminary results show that approximately 70 percent of the water enters the system through groundwater inflow in the first pond, with the remaining water entering within the third pond. A slight increase in the electrical conductivity of the ponds (average 750 μS in the first pond, up to 800 μS in the third pond) also differentiates the water.

  11. Groundwater quality in the Northern Coast Ranges Basins, California

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Recharge to the groundwater system is primarily from mixture of ambient sources, including direct percolation of precipitation and irrigation waters, infiltration of runoff from surrounding hills/areas, seepage from rivers and creeks, and subsurface inflow (from non-alluvial geologic units that bound the alluvial basins). The primary sources of discharge are evaporation, discharge to streams, and water pumped for municipal supply and irrigation.

  12. Quality of our groundwater resources: arsenic and fluoride

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  13. The vulnerability index calculation for determination of groundwater quality

    SciTech Connect

    Kurtz, D.A.; Parizek, R.R.

    1995-12-01

    Non-point source pollutants, such as pesticides, enter groundwater systems in a variety of means at wide-ranging concentrations. Risks in using groundwater in human consumption vary depending on the amounts of contaminants, the type of groundwater aquifer, and various use factors. We have devised a method of determining the vulnerability of an aquifer towards contamination with the Vulnerability Index. The Index can be used either as a comparative or an absolute index (comparative with a pure water source or aquifer spring or without comparison, assuming no peaks in the compared sample). Data for the calculation is obtained by extraction of a given water sample followed by analysis with a nitrogen/phosphorus detector on gas chromatography. The calculation uses the sum of peak heights as its determination. An additional peak number factor is added to emphasize higher numbers of compounds found in a given sample. Karst aquifers are considered to be highly vulnerable due to the large solution openings in its structure. Examples will be given of Vulnerability Indices taken from springs emanating from karst, intermediate, and diffuse flow aquifers taken at various times of the 1992 sampling year and compared with rainfall during that time. Comparisons will be made of the Index vs. rainfall events and vs. pesticide application data. The risk of using contaminated drinking water sources can be evaluated with the use of this index.

  14. Groundwater quality assessment/corrective action feasibility plan

    SciTech Connect

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  15. Assessment of the Hydrogeochemistry and Groundwater Quality of the Tarim River Basin in an Extreme Arid Region, NW China

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca2+-HCO3 - water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na+-Cl- water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B3+, F-, and SO4 2- and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  16. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    PubMed

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future. PMID:24221557

  17. Assessing Risks of Shallow Riparian Groundwater Quality Near an Oil Sands Tailings Pond.

    PubMed

    Roy, J W; Bickerton, G; Frank, R A; Grapentine, L; Hewitt, L M

    2016-07-01

    The potential discharge of groundwater contaminated by oil sands process-affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For "pond-site" samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, "non-pond" samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond-site and non-pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na-Cl ratio, were noted between a small subset of samples from two pond-site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator-based screening suggests that OSPW-affected groundwater may be reaching Athabasca River sediments at a few locations. PMID:26743232

  18. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    PubMed

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality. PMID:22899457

  19. Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin

    USGS Publications Warehouse

    Saad, D.A.

    2008-01-01

    Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia.

    PubMed Central

    Benes, V; Pĕkný, V; Skorepa, J; Vrba, J

    1989-01-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844

  1. Regional assessment of groundwater for drinking purpose subject to water-quality parameters

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin

    2010-05-01

    Owing to limited surface water during a long term drought, this work attempted to locate safe groundwater for drinking in aquifers of the Choushui River alluvial fan, Taiwan subject to its water-quality parameters. Because the aquifers contained multiple pollutions, such as the salinity pollution, the organic pollution, the nitrogen pollution and the heavy metal pollution, multiple-variable indicator kriging (MVIK) was adopted to estimate integration of several pollutions in groundwater based on water-quality standards for drinking and to characterize spatial uncertainty. According to probabilities estimated by MVIK, safe scopes were determined for four treatment conditions - no treatment, ammonium-N removal, manganese removal, and ammonium-N and manganese removals. The analyzed results reveal that, because of exceeding the standards of manganese and/or ammonium-N, groundwater in proximal-fan aquifers (a natural recharging zone) has to be treated appropriately, such as dilution and removals with some treatment approaches, before being drunk. The proximal-fan, southeastern and central regions are the best locations to pump clean and safe groundwater for drinking when devices of ammonium-N and manganese removals are available. Deep aquifers of exceeding 200 m depth have wider safe regions to obtain excellent groundwater for drinking than shallow aquifers do. Keywords: Multiple-variable indicator kriging; groundwater; pollution; drinking

  2. Hydrogeochemistry and groundwater quality assessment along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alhumidan, S. M.; Alfaifi, H. J.; Ibrahim, E. K. E.; Abdel Rahman, K.

    2015-12-01

    In the present study, the hydrochemistry and geologic characteristics of the shallow groundwater aquifer along Wadi Al Showat, Khamis Mushiet District, Southwest Saudi Arabia was evaluated and assessed. Along this wadi the fractured/weathered basement rocks house significant quantity of groundwater that usually used by local people for agricultural and domestic purposes. Assessing and evaluation of the quality of the groundwater in such shallow aquifers is very important; especially the groundwater is generally occurred within the fractured basement rocks at shallow depths, thus exposing the groundwater to surface or near-surface contaminants is expected. For this purpose hydrochemical and biological analysis was conducted for 25 water samples collected from the available shallow dug wells along the studied wadi. The study reveals that the groundwater quality changed due to the agriculture and urbanization practices along the wadi. The effect of domestic waste water and septic tanks was obvious. In addition, the field investigation indicates that the basement rocks in the area is dissected by two main sets of fractures that oriented in the west-northwest and east-west directions. In some places, the basement rocks is intruded by coarse-grained, quartz-rich quartzite grained monzogranite, and pegmatite veins that have a coarse-grained weathering product, therefore, they tend to develop and preserve open joint systems between the granitic blocks. These fracturing system are important from the hydrogeological point of view, as they facilitate the storage, water flow movement through them and also facilitate the vertical infiltration of the surface pollutants. These results led to a better understanding of the groundwater characteristics that is important in groundwater management in the study area.

  3. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability. This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  4. Groundwater quality assessment in the village of Lutfullapur Nawada, Loni, District Ghaziabad, Uttar Pradesh, India.

    PubMed

    Singh, Vinod K; Bikundia, Devendra Singh; Sarswat, Ankur; Mohan, Dinesh

    2012-07-01

    The groundwater quality for drinking, domestic and irrigation in the village Lutfullapur Nawada, Loni, district Ghaziabad, U.P., India, has been assessed. Groundwater samples were collected, processed and analyzed for temperature, pH, conductivity, salinity, total alkalinity, carbonate alkalinity, bicarbonate alkalinity, total hardness, calcium hardness, magnesium hardness, total solids, total dissolved solids, total suspended solids, nitrate-nitrogen, chloride, fluoride, sulfate, phosphate, silica, sodium, potassium, calcium, magnesium, total chromium, cadmium, copper, iron, nickel, lead and zinc. A number of groundwater samples showed levels of electrical conductivity (EC), alkalinity, chloride, calcium, sodium, potassium and iron exceeding their permissible limits. Except iron, the other metals (Cr, Cd, Cu, Ni, Pb, and Zn) were analyzed below the permissible limits. The correlation matrices for 28 variables were performed. EC, salinity, TS and TDS had significant positive correlations among themselves and also with NO (3) (-) , Cl(-), alkalinity, Na(+), K(+), and Ca(2+). Fluoride was not significantly correlated with any of the parameters. NO (3) (-) was significantly positively correlated with Cl(-), alkalinity, Na(+), K(+) and Ca(2+). Chloride also correlated significantly with alkalinity, Na(+), K(+) and Ca(2+). Sodium showed a strong and positive correlation with K(+) and Ca(2+). pH was negatively correlated with most of the physicochemical parameters. This groundwater is classified as a normal sulfate and chloride type. Base-exchange indices classified 73% of the groundwater sources as the Na(+)-SO (4) (2-) type. The meteoric genesis indices demonstrated that 67% of groundwater sources belong to a deep meteoric water percolation type. Hydrochemical groundwater evaluations revealed that most of the groundwaters belong to the Na(+)-K(+)-Cl(-)-SO (4) (2-) type followed by Na(+)-K(+)-HCO (3) (-) type. Salinity, chlorinity and SAR indices indicated that majority

  5. Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.

    2015-11-01

    Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, HCO3^{ - } , Cl-, SO4^{2 - } , Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > HCO3^{ - } > SO4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.

  6. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    PubMed

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6-0.7), permissible (0.7-0.8), good (0.8-0.9), and excellent (0.9-1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area. PMID:27034240

  7. Assessment of groundwater quality using DEA and AHP: a case study in the Sereflikochisar region in Turkey.

    PubMed

    Kavurmaci, Murat; Üstün, A Korkut

    2016-04-01

    This study investigated the spatial distribution of groundwater quality in Sereflikochisar Basin, in the Central Anatolian region of Turkey using different hydrochemical, statistical, and geostatistical methods. A total of 51 groundwater samples were collected from the observation wells in the study area to evaluate the characteristics of the groundwater quality. As a relatively simple and practical method, a groundwater quality index (GWQI) was developed to evaluate the overall groundwater quality. In this process, complex decision-making techniques such as analytic hierarchy process (AHP) and data envelopment analysis (DEA) were used. Based on these models, two new indices (A-GWQI and D-GWQI) were proposed. According to the D-GWQI score (from 0.6 to 1), water quality was classified in four categories as unsuitable (0.6–0.7), permissible (0.7–0.8), good (0.8–0.9), and excellent (0.9–1). The spatial distribution maps of the groundwater quality were created using the Kriging method. For each map, seven different semivariogram models were tested and the best-fitted model was chosen based on their root mean square standardized error. These maps showed that the areas with high groundwater quality were in the eastern and southern parts of the study area where the D-GWQI scores were greater than 0.8. Depending on the distance from the Salt Lake, the characteristics of groundwater changed from NaCl to NaHCO3 and CaHCO3 facies. This study shows how to determine the spatial distribution of the groundwater quality and identify the impact of salt lakes on the groundwater quality in inland aquifers. The findings of this study can be applied to ensure the quality of groundwater used for drinking and irrigation purposes in the study area. PMID:27359000

  8. [Assessment of groundwater quality of different aquifers in Tongzhou area in Beijing Plain and its chemical characteristics analysis].

    PubMed

    Guo, Gao-Xuan; Ju, Yi-Wen; Zhai, Hang; Xu, Liang; Shen, Yuan-Yuan; Ji, Yi-Qun

    2014-06-01

    In order to evaluate the groundwater quality of Tongzhou area in Beijing Plain and to discuss the characteristics of its distribution by the view of hydrochemistry, a total of 151 groundwater samples, collected within study area in the dry period of 2008 according to the geological and hydrogeololgical condition of Tongzhou area, were classified as shallow, middle and deep groundwater, respectively. Based on the data, the groundwater quality was evaluated by the method of F value. The mean and variance of main chemical constituents of groundwater samples were presented. Almost all the quaternary groundwater of Chaobai river pluvial fan belonged to the alkaline water type. The evaluation results based on the analysis results showed that from shallow to deep, the quality of groundwater in Beijing became better. The total areas of groundwater belonging to class IV and V area were 884 km2, 599 km2 and 94 km2 respectively for shallow, middle and deep groundwater. The evaluation results showed that the main exceeding chemical constituents were TDS, hardness, NH4(+), F(-) and total Fe. Most exceeding samples belonged to middle and deep aquifers. The main types of shallow groundwater were HCO2-Ca x Mg- and HCO3 x Cl-Ca x Na x Mg, while the chemical types of mid-deep groundwater were mostly HCO3-Na x Ca- and HCO3 x SO4(2-) -Na x Ca type due to the increased Na(+), SO4(2-) and Cl(-) concentration. Study results showed that the quality of shallow groundwater became worse mainly due to human activities. The deterioration of groundwater quality in mid-deep aquifers was due to both human activities and natural occurrence of poor-quality water. PMID:25158485

  9. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Zaidi, Faisal K.; Mogren, Saad; Mukhopadhyay, Manoj; Ibrahim, Elkhedr

    2016-08-01

    The present study deals with the assessment of groundwater with respect to the main hydrological processes controlling its chemistry and its subsequent impact on groundwater quality for drinking and irrigation purposes in the eastern part of the Central Arabian graben and trough system. Groundwater samples were collected from 73 bore wells tapping the Cretaceous Biyadh and Wasia sandstone aquifers. The main groundwater facies in the area belong to the mixed Casbnd Mgsbnd SO4/Cl type and the SO4sbnd Cl type. Prolonged rock water interaction has resulted in high TDS (average of 2131 mg/l) and high EC (average of 2725 μS/cm) of the groundwater. The average nitrate (56.38 mg/l) value in the area is higher than the WHO prescribed limits of 50 mg/l in drinking water and is attributed to agricultural activities. The Drinking Water Quality Index (DWQI) shows that 33% of the water samples fall within the excellent to good category whereas the remaining samples fall in the poor to unsuitable for drinking category. In terms of Sodium Adsorption Ratio (SAR), Sodium percentage (Na %) and Residual Sodium Carbonate (RSC) the groundwater is suitable for irrigation however the high salinity values can adversely affect the plant physiology.

  10. Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet Al-Samra wastewater treatment plant/Jordan

    NASA Astrophysics Data System (ADS)

    Bajjali, William; Al-Hadidi, Kheir; Ismail, Ma'mmon

    2015-01-01

    Groundwater in the northeastern Amman-Zarqa basin is an important source of water for irrigation. The quality and quantity of water has deteriorated due to mismanagement and misunderstanding of the hydrogeological system. Overexploitation of groundwater resources upstream of the Khirbet Al-Samra wastewater treatment plant (KSWTP) has lowered the water table 43 m since the beginning of groundwater development in 1968. Heavy pumping of groundwater downstream of KSWTP has not dropped the water level due to constant recharge from the Zarqa river bed. The water level of groundwater is rising continuously at a rate of 20 cm per year since building the KSWTP in 1985. Groundwater salinity has also shifted the quality of the aquifer from fresh to brackish. Continual irrigation from the groundwater upstream of KSWTP dissolves accumulated salt from the soil formed by evaporation, and the contaminated water infiltrates back to the aquifer, thereby increasing both salt and nitrate concentrations. The intense irrigation from the reclaimed water downstream of KSWTP and leakage of treated wastewater from the Zarqa River to the shallow groundwater is a secondary source of salt and nitrates. The isotopic composition of groundwater varies over a wide range and is associated with the meteoric water line affected by Mediterranean Sea air moisture. The isotopic composition of groundwater is represented by evaporation line (EL) with a low slope of 3.6. The enrichment of groundwater in δ18O and δD is attributed mainly to the two processes of evaporation before infiltration of return flow and mixing of different types of water in KSWTP originating from different aquifers. The EL starts from a location more depleted than the weighted mean value of the Amman rainfall station on the Eastern Meteoric Water Line indicating that the recharge took place under the climate regime prevailing today in Jordan and the recharge of the groundwater originates from a greater elevation than that of the

  11. Calendar year 1995 groundwater quality report for the Bear Creek Hydrogeologic Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the Groundwater Protection Program (GWPP) is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

  12. Ground-water quality and data on wells and springs in Pennsylvania; Volume I, Ohio and St. Lawrence River basins

    USGS Publications Warehouse

    Koester, Harry E.; Miller, Denise R.

    1980-01-01

    Volume I of the Groundwater Quality and Data on Wells and Springs in Pennsylvania presents groundwater quality and physical data on about 1,200 well and spring sites in the Ohio and St. Lawrence River basins. Locations are shown on site-location maps derived from the hydrologic unit map. Codes showing the geologic age and aquifer are provided. (USGS)

  13. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George Luther, V; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  14. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    USGS Publications Warehouse

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  15. Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India

    NASA Astrophysics Data System (ADS)

    Senthilkumar, M.; Elango, L.

    2013-04-01

    Hydrogeochemical study of groundwater was carried out in a part of the lower Palar river basin, southern India to determine the geochemical processes controlling the groundwater quality. Thirty-nine groundwater samples were collected from the study area and analysed for pH, Eh, EC, Ca, Mg, Na, K, HCO3, CO3, Cl and SO4. The analysed parameters of the groundwater in the study area were found to be well within the safe range in general with respect to the Bureau of Indian Standards for drinking water except for few locations. The results of these analyses were used to identify the geochemical processes that are taking place in this region. Cation exchange and silicate weathering are the important processes controlling the major ion distribution of the study area. Mass balance reaction model NETPATH was used to assess the ion exchange processes. High concentration of Ca in groundwater of the study area is due to the release of Ca by aquifer material and adsorption of Na due to ion exchange processes. Groundwater of the study area is suitable for drinking and irrigation purposes except for few locations.

  16. Impacts of a large Sahelian city on groundwater hydrodynamics and quality: example of Niamey (Niger)

    NASA Astrophysics Data System (ADS)

    Hassane, Aïssata B.; Leduc, Christian; Favreau, Guillaume; Bekins, Barbara A.; Margueron, Thomas

    2016-03-01

    The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na-NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca-HCO3, Ca-NO3, and Na-NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L-1 NO3-N (8 meq L-1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.

  17. Effects of Stormwater Infiltration on Quality of Groundwater Beneath Retention and Detention Basins

    EPA Science Inventory

    Use of stormwater retention and detention basins has become a popular method for managing urban and suburban stormwater runoff. Infiltration of stormwater through these basins may increase the risk to ground-water quality, especially in areas where the soil is sandy and the wate...

  18. MONITORING GROUNDWATER QUALITY: THE IMPACT OF IN-SITU OIL SHALE RETORTING

    EPA Science Inventory

    This report presents the initial phase of a research program which will develop a planning methodology for the design and implementation of cost-effective groundwater quality monitoring programs for modified in-situ (MIS) oil shale retorting. This initial phase includes (1) a rev...

  19. GROUNDWATER QUALITY MONITORING OF WESTERN OIL SHALE DEVELOPMENT: IDENTIFICATION AND PRIORITY RANKING OF POTENTIAL POLLUTION SOURCES

    EPA Science Inventory

    This report presents the development of a preliminary priority ranking of potential pollution sources with respect to groundwater quality and the associated pollutants for oil shale operations such as proposed for Federal Prototype Leases U-a and U-b in Eastern Utah. The methodol...

  20. GROUNDWATER QUALITY MONITORING OF WESTERN OIL SHALE DEVELOPMENT: MONITORING PROGRAM DEVELOPMENT

    EPA Science Inventory

    This report presents the development of a preliminary design of a groundwater quality monitoring program for oil shale operations, such as proposed for Federal Prototype Lease Tracts U-a and U-b in eastern Utah. A preliminary decision framework for monitoring design for this type...

  1. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    SciTech Connect

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  2. Validation of Student Generated Data for Assessment of Groundwater Quality

    ERIC Educational Resources Information Center

    Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe

    2012-01-01

    As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…

  3. Relationship of Shallow Groundwater Quality to Hydraulic Fracturing Activities in Antrim and Kalkaska Counties, MI

    NASA Astrophysics Data System (ADS)

    Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.

    2015-12-01

    Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises

  4. Evaluating the human impact on groundwater quality discharging into a coastal reef lagoon

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Soto, M.; Lecossec, A.; Monroy-Rios, E.

    2008-12-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean. In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. No seasonal parameters differences were observed, suggesting that groundwater composition reaching the reef lagoon is not changing seasonally. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  5. Assessment of human activities impact on groundwater quality discharging into a reef lagoon

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.

    2010-03-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  6. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia

    SciTech Connect

    Benes, V.; Pekny, V.; Skorepa, J.; Vrba, J. )

    1989-11-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making.

  7. Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data.

    PubMed

    Singh, Elangbam J K; Gupta, Abhik; Singh, N R

    2013-04-01

    The aim of this paper was to analyze the groundwater quality of Imphal West district, Manipur, India, and assess its suitability for drinking, domestic, and agricultural use. Eighteen physico-chemical variables were analyzed in groundwater from 30 different hand-operated tube wells in urban, suburban, and rural areas in two seasons. The data were subjected to uni-, bi-, and multivariate statistical analysis, the latter comprising cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA). Arsenic concentrations exceed the Indian standard in 23.3% and the WHO limit in 73.3% of the groundwater sources with only 26.7% in the acceptable range. Several variables like iron, chloride, sodium, sulfate, total dissolved solids, and turbidity are also beyond their desirable limits for drinking water in a number of sites. Sodium concentrations and sodium absorption ratio (SAR) are both high to render the water from the majority of the sources unsuitable for agricultural use. Multivariate statistical techniques, especially varimax rotation of PCA data helped to bring to focus the hidden yet important variables and understand their roles in influencing groundwater quality. Widespread arsenic contamination and high sodium concentration of groundwater pose formidable constraints towards its exploitation for drinking and other domestic and agricultural use in the study area, although urban anthropogenic impacts are not yet pronounced. PMID:22935861

  8. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    USGS Publications Warehouse

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  9. The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran

    USGS Publications Warehouse

    Khazaei, E.; Mackay, R.; Warner, J.W.

    2004-01-01

    This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the

  10. Integration of social perceptions, behaviors, and economic valuations of groundwater quality as an ecosystem service following exurban development

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Larson, D. M.; Ohr, C. A.; Kobs-Nawotniak, S. E.; Lohse, K. A.; Lybecker, D.; Hale, R. L.; Stoutenborough, J.

    2015-12-01

    Millions of people rely on groundwater as a key, provisioning ecosystem service (ES). Our previous data suggested that drinking water nitrate concentrations and exurban development have significantly increased in the last three decades in Pocatello, Idaho, USA. Increased nitrate can lead to changes in ES and human values (such as water quality, people's knowledge, and housing values). We predicted people who tested their water quality would be aware of nitrate contamination and its potential to affect their housing prices, and they would choose to invest in home drinking water treatment systems. To test these hypotheses, we measured nitrate concentrations in hundreds of drinking water wells in years 1985, 1994, 2004, and 2015. We conducted a randomized public survey to determine the degrees to which: (1) people tested their private well water for nitrate and (2) were concerned about health issues related to contamination; (3) how important water quality is for determining local property values; and (4) if people treat their drinking water. We then developed a biophysical model to understand how exurban growth, local geology, and time influenced groundwater nitrate. Finally, we applied an economic, hedonic model to determine if groundwater nitrate concentrations negatively correlated to property values. Aquifer boundaries, slope, rock and soil type were significant predictors of nitrate (ordinary least squares, α <0.05). The hedonic model suggested that although nitrate and local housing values were spatially heterogeneous and increasing through time, exurban growth and nitrate alone were not strong predictors of water quality or property values. We also present an integrated biophysical, economic, and social model to better understand people's perceptions and behaviors of local nitrate pollution. Interdisciplinary ES and valuation may require multiple data types and integrated models to understand how ES and human values are influenced by exurban growth.

  11. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce.

    PubMed

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-10-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  12. Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

    PubMed Central

    Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying

    2015-01-01

    This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better

  13. Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2013-01-01

    Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for

  14. Assessing the potential risks of burial practices on groundwater quality in rural north-central Nigeria.

    PubMed

    Zume, Joseph T

    2011-09-01

    Several cultures of north-central Nigeria do not use community cemeteries. Instead, human remains are buried in and around family compounds, often in shallow and sometimes unmarked graves. At several locations, graves and drinking water wells end up too close to be presumed environmentally safe. This paper reports findings of a pilot study that explored the potential for groundwater contamination from gravesites in some rural settlements of north-central Nigeria. Preliminary results suggest that the long-standing burial practices among some cultures of rural north-central Nigeria may potentially compromise groundwater quality, which is, by far, their most important source of drinking water. PMID:21976208

  15. The relation of ground-water quality to housing density, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Persky, J.H.

    1986-01-01

    Correlation of median nitrate concentration in groundwater with housing density for 18 sample areas on Cape Cod yields a Pearson correlation coefficient of 0.802, which is significant at the 95 % confidence level. In five of nine sample areas where housing density is greater than one unit/acre, nitrate concentrations exceed 5 mg of nitrate/L (the Barnstable County planning goal for nitrate) in 25% of wells. Nitrate concentrations exceed 5 mg of nitrogen/L in 25% of wells in only one of nine sample areas where housing density is less than one unit/acre. Median concentrations of sodium and iron, and median levels of pH and specific conductance, are not significantly correlated with housing density. A computer generated map of nitrate shows a positive relation between nitrate concentration and housing density on Cape Cod. However, the presence of septage- or sewage-disposal sites and fertilizer use are also important factors that affect the nitrate concentration. A map of specific conductance also shows a positive relation to housing density, but little or no relation between housing density and sodium, ammonia, pH, or iron is apparent on the maps. Chemical analyses of samples collected from 3,468 private- and public-supply wells between January 1980 and June 1984 were used to examine the extent to which housing density determines water quality on Cape Cod, an area largely unsewered and underlain by a sole source aquifer. (Author 's abstract)

  16. Wellbore-wall compression effects on monitored groundwater levels and qualities.

    PubMed

    Eguchi, S; Sawamoto, M; Shiba, M; Iiyama, I; Hasegawa, S

    2013-01-01

    The effects of wellbore-wall compression from rough excavation on monitored groundwater levels and qualities under natural hydraulic gradient conditions were investigated in a shallow clayey Andisol aquifer. Nine wellbores reaching the underlying aquitard at about 2.6-m depth were constructed by dynamic cone penetrometry to mimic rough wellbore construction. Five of these were constructed under wet aquifer soil conditions and the remaining four under dry conditions. A 15-month period monitoring showed that the groundwater levels in the wellbores constructed under wet conditions responded significantly in retard of, and in narrower ranges than, those constructed under dry conditions. The wellbore-wall hydraulic conductivities at the former wellbores were calculated to be more than one to two orders of magnitude lower than those at the latter ones. Furthermore, remarkable nitrate removal attributable to the occurrence of a heterotrophic denitrification was observed in one of the former wellbores. In contrast, the groundwater levels and qualities in the latter wellbores appeared to be generally similar to those monitored in the conventional soil coring and augering-derived wellbores. Our results suggest that the wellbore-wall compression induced by rough excavation under wet and soft aquifer soil conditions leads to a substantial decrease in the wellbore-wall hydraulic conductivity, which in turn can lead to unreliable groundwater levels and qualities. This problem can occur in clayey Andisols whenever the aquifer soil is wet; however, the problem can be largely avoided by constructing the wellbore under dry and hard aquifer soil conditions. PMID:22924593

  17. Use of environmental tracers to evaluate ground-water age and water-quality trends in a buried-valley aquifer, Dayton area, southwestern, Ohio

    USGS Publications Warehouse

    Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter

    1999-01-01

    Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate

  18. Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,500 square-mile Mojave (MOJO) study unit was investigated from February to April 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). MOJO was the 23rd of 37 study units to be sampled as part of the GAMA Priority Basin Project. The MOJO study was designed to provide a spatially unbiased assessment of the quality of untreated ground water used for public water supplies within MOJO, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 59 wells in San Bernardino and Los Angeles Counties. Fifty-two of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seven were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, and pharmaceutical compounds], constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]) naturally occurring inorganic constituents (nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (stable isotopes of hydrogen, oxygen, and carbon, stable isotopes of nitrogen and oxygen in nitrate, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled

  19. Groundwater sustainability strategies

    USGS Publications Warehouse

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  20. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A.; Rosenberg, D.; McKee, M.

    2012-12-01

    methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by managers' recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  1. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150/person and 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300/person or the bottled water cost increases to 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.

  2. Ground-water quality at the Management Systems Evaluation Area (MSEA) near Princeton, Minnesota, 1991

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Guo, Laodong

    1993-01-01

    The northern cornbelt sand-plains Management Systems Evaluation Area (MSEA) program is a multiagency, multistate initiative to evaluate the effects of modified and prevailing fanning systems on water quality in a sand-plain area in Minnesota and at satellite areas in North and South Dakota, and Wisconsin (Delin and others, 1992). The primary objective of the northern cornbelt sand-plains MSEA is to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The Minnesota MSEA program is a cooperative study primarily between the U.S. Department of Agriculture-Agricultural Research Service, the University of Minnesota Soil Science Department, and the U.S. Geological Survey. The Minnesota Pollution Control Agency and the Department of Geology and Geophysics at the University of Minnesota are also cooperating in the evaluation of ground-water quality at the MSEA.

  3. Ground-water quality at the Management Systems Evaluation Area near Princeton, Minnesota, 1991-92

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Guo, Lei

    1993-01-01

    The northern cornbelt sand-plains Management Systems Evaluation Area (MSEA) program is a multiagency, multistate initiative to evaluate the effects of modified and prevailing farming systems on water quality in a sand-plain area in Minnesota and at satellite areas in North and South Dakota, and Wisconsin. The primary objective of Minnesota MSEA is to evaluate the effects of ridge-tillage practices in a corn and soybean farming system on ground-water quality. The Minnesota MSEA program is a cooperative study primarily between the U.S. Department of Agriculture Agricultural Research Service, the University of Minnesota Soil Science Department, and the U.S. Geological Survey. The Minnesota Pollution Control Agency and the Department of Geology and Geophysics at the University of Minnesota are also cooperating in the evaluation of groundwater quality at the MSEA.

  4. Ground-water quality in Wisconsin through 1972

    USGS Publications Warehouse

    Skinner, E.L.; Holt, C. L. R., Jr.

    1972-01-01

    Ground water, a plentiful and largely underdeveloped resource of Wisconsin, has good to excellent chemical quality in most places. This resource is readily available in most parts of the State for municipal, industrial, and rural uses. In 1970, about 0.5 billion gallons of ground water a day was pumped in Wisconsin for all uses (Murray and Reeves, 1972). In addition, underground reservoirs discharge an average of 16 billion gallons per day of water of relatively constant temperature and uniform quality, which maintains the base flow of streams and the level of lakes (Holt, 1964).

  5. A Comprehensive Analysis of Groundwater Quality in The Barnett Shale Region.

    PubMed

    Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Meik, Jesse M; Walton, Jayme L; Taylor, Josh T; Thacker, Jonathan B; Korlie, Stephanie; Shelor, C Phillip; Henderson, Drew; Kadjo, Akinde F; Roelke, Corey E; Hudak, Paul F; Burton, Taylour; Rifai, Hanadi S; Schug, Kevin A

    2015-07-01

    The exploration of unconventional shale energy reserves and the extensive use of hydraulic fracturing during well stimulation have raised concerns about the potential effects of unconventional oil and gas extraction (UOG) on the environment. Most accounts of groundwater contamination have focused primarily on the compositional analysis of dissolved gases to address whether UOG activities have had deleterious effects on overlying aquifers. Here, we present an analysis of 550 groundwater samples collected from private and public supply water wells drawing from aquifers overlying the Barnett shale formation of Texas. We detected multiple volatile organic carbon compounds throughout the region, including various alcohols, the BTEX family of compounds, and several chlorinated compounds. These data do not necessarily identify UOG activities as the source of contamination; however, they do provide a strong impetus for further monitoring and analysis of groundwater quality in this region as many of the compounds we detected are known to be associated with UOG techniques. PMID:26079990

  6. Impact of long-term land application of biosolids on groundwater quality and surface soils

    SciTech Connect

    Surampalli, R.Y.; Lin, K.L.; Banerji, S.K.

    1995-11-01

    A study was conducted to evaluate the long-term land application of Biosolids and its potential impact on groundwater quality and surface soils. For this study, an existing site, that has been in operation for 8--15 years were selected for sampling and analyses. From this site sludge applied soil samples, background soil samples, and groundwater monitoring samples were obtained. The samples were analyzed for the following: pH, conductivity, total solids, fecal coliform, fecal streptococci, nitrate nitrogen, ammonia nitrogen, TKN, arsenic, cadmium, chromium, copper, nickel, lead, and zinc. The results of this study indicate that groundwater at this biosolids application site was not contaminated with heavy metals or pathogens. The bacteriological soil data also indicated that the levels of fecal coliform and fecal streptococci were close to background level with no evidence of contamination. The results also indicate that there is no heavy metals buildup in biosolids-amended soils.

  7. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN.

  8. Seawater Intrusion and groundwater quality of the coastal area in Tripoli region, Libya

    NASA Astrophysics Data System (ADS)

    Abdalla, Rashid; Rinder, Thomas; Dietzel, Martin; Leis, Albrecht

    2010-05-01

    In Libya groundwater is the main source of freshwater, providing a vital supplement to surface water sources. Groundwater availability and quality are however, vulnerable both to climate change and over-abstraction. In Libyan cities where the water table has lowered there has been a consequent impact on agricultural activities. Groundwater aquifers are either renewable or non-renewable. The renewable aquifers are those located in the north coastal strip with high precipitation rates. The large non-renewable sedimentary groundwater basins cover extensive areas in the central and southern parts of Libya and contribute large quantities of freshwater for local use, industrial and agricultural development. Seawater intrusion is a problem in the coastal areas of Libya. Most productive agricultural fields are in the northern coastal areas of the country where irrigation predominantly relies on groundwater. Seawater has moved inland because of heavy exploitation of the Miocene-Quaternary aquifer in order to meet the increasing water demand. The physical and chemical parameters of groundwater such as electrical conductivity, pH, temperature and individual ion content were determined. Most of the wells showed high values of electrical conductivity. The increase of water salinity is directly related to the extreme pumping of shallow coastal aquifers and movement of seawater towards inland. In some samples the increase of salinity corresponds to the ions abundant in seawater. In those solutions molar ratios of Cl/Br indicate influence of seawater intrusion. According to mixing calculations between fresh groundwater of the study area and Mediterranean seawater, the estimated concentration of seawater ranges from 10 to 15 wt%.

  9. Hydrochemical and microbiological quality of groundwater in West Thrace Region of Turkey

    NASA Astrophysics Data System (ADS)

    Özler, H. Murat; Aydın, Ali

    2008-03-01

    The aim of this study was to do a preliminary assessment of the hydrochemical and microbial groundwater quality of the West Thrace region. Forty samples of groundwater collected from Edirne (Site 1) to Gelibolu (Site 2) were assessed for their suitability for human consumption. As3- was non-detectable in all the groundwater and Zn2+, Pb2+, F-, Cu2+, NH{4/+}, Cn- PO{4/3-} and Cl- were all below their respective European Union drinking water directive (EU-DWD) and Turkish food codex-drinking water directive (TFC-DWD). Maximum Acceptable Concentrations (MAC) Ni2+, Pb2+, Cd2+, Mg2+, Mn2+, and Ca2+ levels were detected in upper maximum acceptable concentrations 77.5, 42.5, 35.0, 50.0, 50.0, and 32.5% of the groundwater samples, respectively. However, in terms of Cr3+, Ni2+ and Pb2+, the differences between groundwaters of Sites 1 and 2 were significant ( p < 0.05). Eight water samples (20%) had HPC exceeding the EU and Turkish water directive limit 20 CFU (Colony Forming Unit)/ml in drinking water and the maximum bacteria count recorded was 44 CFU/ml. Total coliforms, thermotolerant coliforms, E. coli, Enterococcus spp., Salmonella sp., Staphylococcus spp. and P. aeruginosa were detected in 25, 17.5, 15, 47.5, 15, 27.5, and 15% of the groundwater samples, respectively. Furthermore, heavy metals and trace elements were found after chemical analyzes in most samples. The pollution of groundwater come from a variety of sources, Meric and Ergene rivers, including land application of agricultural chemicals and organics wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons and ponds used storage.

  10. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    PubMed

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater. PMID:27155859

  11. Impact of post-methanation distillery effluent irrigation on groundwater quality.

    PubMed

    Jain, N; Bhatia, A; Kaushik, R; Kumar, Sanjeev; Joshi, H C; Pathak, H

    2005-11-01

    Molasses-based distilleries generate large quantities of effluent, which is used for irrigation in many countries including India. The effluent is rich in organic and inorganic ions, which may leach down and pollute the groundwater. An on-farm experiment was conducted to assess the impact of long-term irrigation with post-methanation distillery effluent (PMDE) on nitrate, sulphate, chloride, sodium, potassium, and magnesium contents in the groundwater of two sites in northwest India. Electrical conductivity (EC), pH, total dissolved solids (TDS), sodium adsorption ratio (SAR) and colour were also determined to assess the chemical load in the groundwater. Nitrate content in the groundwater samples ranged from 16.95 mg L(-1) in the unamended fields to 59.81 mg L(-1) in the PMDE-amended fields during the 2-year study (2001-2002). Concentrations of TDS in water samples from tubewell of the amended field was higher by 40.4% over the tubewell water of the unamended field. Colour of the water samples of the amended fields was also darker than that of the unamended fields. The study indicated that the organic and inorganic ions added through the effluent could pose a serious threat to the groundwater quality if applied without proper monitoring. PMID:16308790

  12. Ground-water quality and trends at two industrial wastewater-injection sites in northwestern Florida, 1975-91

    USGS Publications Warehouse

    Andrews, W.J.

    1994-01-01

    Industrial wastewater from two synthetic-fiber manufacturing plants has been injected into the Lower Floridan aquifer near Pensacola, Florida, since 1963, and near Milton, Florida, since 1975. Trend analysis of selected water-quality characteristics in water from four monitoring wells at each of these plants indicates that injected wastewater has affected ground-water quality in the Lower Floridan aquifer, which contains nonpotable water, up to 1.5 miles from the injection wells at the plant near Pensacola and at least 0.3 mile from the injection wells at the plant near Milton. No evidence for upward seepage of injected wastewater through the overlying Bucatunna Clay to the Upper Floridan aquifer was found at either of the plants.

  13. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee: 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant. The regime extends west from a surface water and shallow groundwater divide located near the west end of the plant to Scarboro Road (directions in this report are in reference to the Y-12 Plant grid system unless otherwise noted). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy.

  14. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  15. Management of groundwater supply and water quality in the Los Angeles Basin, California

    USGS Publications Warehouse

    Reichard, E.G.; Crawford, S.M.; Land, M.T.; Paybins, K.S.

    1999-01-01

    Water use and water needs in the coastal Los Angeles Basin in California have been very closely tied to the development of the region during the last 150 years. The first water wells were drilled in the mid-1800s. Currently about 40% of the water supply (9.4 m3 s-1) in the region is provided by groundwater. Other sources of water supply include reclaimed water and surface water imported from Owens Valley, the Colorado River, and northern California. Increasing groundwater use in the basin led to over-abstraction and seawater instrusion. Because of this, an important component of water management in the area has been the artificial recharge of local, imported, and reclaimed water which is spread in ponds and injected in wells to recharge the aquifer system and control seawater intrusion. The US Geological Survey (USGS) is working co-operatively with the Water Replenishment District of Southern California to evaluate the hydraulic and water-quality effects of these recharge operations and to assess the potential impacts of alternative water-management strategies, including changes in pumping and increases in the use of reclaimed water. As part of this work, the USGS has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. Chemical and isotopic data were used to identify the age and source of recharge to groundwater throughout the study area. This information is key to understanding the fate of artificially recharged water and helps define the three-dimensional groundwater flow system. The geohydrological data, especially the geophysical and geological data collected from 11 newly installed multi-completion monitoring wells, were used to redefine the regional hydrostratigraphy. The groundwater flow model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water

  16. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    USGS Publications Warehouse

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  17. Denver's Urban Ground-Water Quality: Nutrients, Pesticides, and Volatile Organic Compounds

    USGS Publications Warehouse

    Bruce, Breton W.

    1995-01-01

    A recent study by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program characterized the ground-water quality in a part of the Denver, Colorado, metropolitan area. The study provides an assessment of water-quality conditions in an alluvial aquifer that drains into the South Platte River. Thirty wells randomly distributed in residential, commercial, and industrial land-use settings were sampled once in 1993 for a broad range of compounds. Nutrients, pesticides, and volatile organic compounds (VOC's), all of which are generally associated with human activities, frequently were detected in the urban wells sampled. Nutrients and VOC's occasionally exceeded drinking-water standards.

  18. Impact of agricultural activity and geologic controls on groundwater quality of the alluvial aquifer of the Guadalquivir River (province of Jaén, Spain): a case study

    NASA Astrophysics Data System (ADS)

    Lorite-Herrera, Miguel; Jiménez-Espinosa, Rosario

    2008-06-01

    The alluvial aquifer of the Alto Guadalquivir River is one of the most important shallow aquifers in Jaén, Spain. It is located in the central-eastern part of the province, and its groundwater resources are used mainly for crop irrigation in an agriculture-dominated area. Hydrochemical and water-quality data obtained through a 2-year sampling (2004-2006) and analysis program indicate that nitrate pollution is a serious problem affecting groundwater due to the use of nitrogen (N)-fertilizers in agriculture. During the study, 231 water samples were collected from wells and springs to determine water chemistry and the extent of nitrate pollution. The concentration of nitrate in groundwater ranged from 1.25 to 320.88 mg/l. Considerable seasonal fluctuations in groundwater quality were observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Guadalquivir River flow regime. The chemical composition of the water is not only influenced by agricultural practices, but also by interaction with the alluvial sediments. The dissolution of evaporites accounts for part of the Na+, K+, Cl-, SO4 2-, Mg2+, and Ca2+, but other processes, such as calcite precipitation and dedolomitization, also contribute to groundwater chemistry.

  19. Seawater Intrusion Impacts on the Water Quality of the Groundwater on theNorthwest Coast of Oman.

    PubMed

    Ahmed, Abdelkader T; Askri, Brahim

    2016-08-01

    The groundwater aquifer in the coastal region of the northwest of Oman has been used extensively since the early 1980s for agricultural, industrial and municipal purposes. The over pumping of this reservoir has led to the intrusion of seawater and therefore to the deterioration of the groundwater quality. In this study, an investigation was carried out in the southern part of this region to identify the quality of groundwater, to understand the main sources of groundwater mineralisation, and to check the suitability of groundwater for drinking and irrigation. The spatial distributions and temporal variations of groundwater level and electrical conductivity were studied for the period from 1982 to 2005 using data collected from 225 wells. In addition, groundwater samples were collected recently in 2012 from eight wells and analysed for pH, EC, and major ions to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The study area was divided into two strips parallel to the coastline, A and B, located in the discharge and recharge parts of the aquifer, respectively. Results showed a significant increase in the degree of water mineralisation in the direction of south to north following the regional flow direction. Results showed also that the groundwater in the last area could be used for irrigation with little danger of exchangeable sodium while this aquifer is unsuitable for irrigation in the discharge area because it presents a very high salinity hazard. PMID:27456143

  20. Evaluation of Groundwater Quality Characteristics in Lagos-City

    NASA Astrophysics Data System (ADS)

    Yusuf, K. A.

    Most of the water requirement for Lagos is met from surface and ground water supplies. Lagos an industrial and highly populated city located in the Southwest Nigeria has urban migration problems and resource limitations. However, as found in many cities, a certain proportion of the population is forced to rely on the well water as sources of drinking water, a poor drinking water quality that may have health consequences. A study was therefore carried out to gain an idea of the inorganic quality of the water in the wells penetrating the shallow (< 20 m thick) alluvial aquifer in the city. Results from this study revealed that some of the ground water quality constituents exceeded the World Health Organization (WHO) standards for drinking water irrespective of the sources of pollution: the total dissolved solids limit in 50%, the conductivity limit in 27.8%, the lead limit in 38.9%, the pH limit in 44.4% and the sodium and calcium limits in 11.1% of the samples. Thus, ground water from some of these wells requires further purification to ensure its fitness for human consumption.

  1. The impact of on-site wastewater from high density cluster developments on groundwater quality

    NASA Astrophysics Data System (ADS)

    Morrissey, P. J.; Johnston, P. M.; Gill, L. W.

    2015-11-01

    The net impact on groundwater quality from high density clusters of unsewered housing across a range of hydro(geo)logical settings has been assessed. Four separate cluster development sites were selected, each representative of different aquifer vulnerability categories. Groundwater samples were collected on a monthly basis over a two year period for chemical and microbiological analysis from nested multi-horizon sampling boreholes upstream and downstream of the study sites. The field results showed no statistically significant difference between upstream and downstream water quality at any of the study areas, although there were higher breakthroughs in contaminants in the High and Extreme vulnerability sites linked to high intensity rainfall events; these however, could not be directly attributed to on-site effluent. Linked numerical models were then built for each site using HYDRUS 2D to simulate the attenuation of contaminants through the unsaturated zone from which the resulting hydraulic and contaminant fluxes at the water table were used as inputs into MODFLOW MT3D models to simulate the groundwater flows. The results of the simulations confirmed the field observations at each site, indicating that the existing clustered on-site wastewater discharges would only cause limited and very localised impacts on groundwater quality, with contaminant loads being quickly dispersed and diluted downstream due to the relatively high groundwater flow rates. Further simulations were then carried out using the calibrated models to assess the impact of increasing cluster densities revealing little impact at any of the study locations up to a density of 6 units/ha with the exception of the Extreme vulnerability site.

  2. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    NASA Astrophysics Data System (ADS)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  3. The impact of on-site wastewater from high density cluster developments on groundwater quality.

    PubMed

    Morrissey, P J; Johnston, P M; Gill, L W

    2015-11-01

    The net impact on groundwater quality from high density clusters of unsewered housing across a range of hydro(geo)logical settings has been assessed. Four separate cluster development sites were selected, each representative of different aquifer vulnerability categories. Groundwater samples were collected on a monthly basis over a two year period for chemical and microbiological analysis from nested multi-horizon sampling boreholes upstream and downstream of the study sites. The field results showed no statistically significant difference between upstream and downstream water quality at any of the study areas, although there were higher breakthroughs in contaminants in the High and Extreme vulnerability sites linked to high intensity rainfall events; these however, could not be directly attributed to on-site effluent. Linked numerical models were then built for each site using HYDRUS 2D to simulate the attenuation of contaminants through the unsaturated zone from which the resulting hydraulic and contaminant fluxes at the water table were used as inputs into MODFLOW MT3D models to simulate the groundwater flows. The results of the simulations confirmed the field observations at each site, indicating that the existing clustered on-site wastewater discharges would only cause limited and very localised impacts on groundwater quality, with contaminant loads being quickly dispersed and diluted downstream due to the relatively high groundwater flow rates. Further simulations were then carried out using the calibrated models to assess the impact of increasing cluster densities revealing little impact at any of the study locations up to a density of 6 units/ha with the exception of the Extreme vulnerability site. PMID:26331764

  4. Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.

    2016-06-01

    The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.

  5. Assessment of groundwater quality in the coastal area of Sindh province, Pakistan.

    PubMed

    Alamgir, Aamir; Khan, Moazzam Ali; Schilling, Janpeter; Shaukat, S Shahid; Shahab, Shoaib

    2016-02-01

    Groundwater is a highly important resource, especially for human consumption and agricultural production. This study offers an assessment of groundwater quality in the coastal areas of Sindh province in Pakistan. Fifty-six samples of groundwater were taken at depths ranging from 30 to 50 m. Bacteriological and physico-chemical analyses were performed using the Standard Methods for the Examination of Water and Wastewater. These were supplemented with expert interviews and observations to identify the usage of water and potential sources of pollution. The quality of the groundwater was found to be unsuitable for human consumption, despite being used for this purpose. The concentrations of sulfate and phosphate were well within the tolerance limits. Most critical were the high levels of organic and fecal pollution followed by turbidity and salinity. Metal concentrations (As, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were also determined, and Ni and Pb strongly exceeded health standards. The study stresses the need for significant improvements of the irrigation, sanitation, and sewage infrastructure. PMID:26739008

  6. Quality modeling of drinking groundwater using GIS in rural communities, northwest of Iran

    PubMed Central

    2014-01-01

    Given the importance of groundwater resources in water supply, this work aimed to study quality of drinking groundwater in rural areas in Tabriz county, northwest of Iran. Thirty two groundwater samples from different areas were collected and analyzed in terms of general parameters along with 20 heavy metals (e.g. As, Hg and …). The data of the analyses were applied as an attribute database for preparing thematic maps and showing water quality parameters. Multivariate statistical techniques, including principal component analysis (PCA) and hierarchical cluster analysis (CA) were used to compare and evaluate water quality. The findings showed that hydrochemical faces of the groundwater were of calcium-bicarbonate type. EC values were from 110 to 1750 μs/cm, in which concentration of salts was high in the east and a zone in north of the studied area. Hardness was from 52 to 476 mg/l and CaCO3 with average value of 185.88 ± 106.56 mg/L indicated hard water. Dominant cations and anions were Ca2+ > Na+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > NO32, respectively. In the western areas, arsenic contamination was observed as high as 69 μg/L. Moreover, mercury was above the standard level in one of the villages. Eskandar and Olakandi villages had the lowest quality of drinking water. In terms of CA, sampling sites were classified into four clusters of similar water quality and PCA demonstrated that 3 components could cover 84.3% of the parameters. For investigating arsenic anomaly, conducting a comprehensive study in the western part of studied area is strongly recommended. PMID:25093080

  7. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    USGS Publications Warehouse

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  8. Calendar Year 1994 Groundwater Quality Report for the Bear Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex (directions in this report are in reference to the Y-12 administrative grid system) within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in the Bear Creek Regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Martin Marietta Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 (this report) consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 of the report, to be issued mid-year, will contain an evaluation of the data with respect to regime-wide groundwater quality, present the findings and status of ongoing hydrogeologic studies, describe changes in monitoring priorities, and present planned modifications to the groundwater sampling and analysis program for the following CY.

  9. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  10. Current situation and regional characteristics of groundwater quality in central part of the Kanto Plain, Japan

    NASA Astrophysics Data System (ADS)

    Hachinohe, S.; Hamamoto, H.; Ishiyama, T.; Hayashi, T.; Miyakoshi, A.; Yasuhara, M.

    2012-12-01

    The Kanto Plain is known as the largest plain in Japan, where a lot of huge cities are located and about 30% of population of Japan is concentrated. In the inland part of the Kanto Plain, dependence on groundwater for water requirements is relatively high; in particular around 40% of the municipal water supply is dependent on groundwater. On the other hand, various kinds of controlled substances such as arsenic, nitrate and nitrite-nitrogen, volatile organic compounds are detected in groundwater in excess of the Japanese environmental standards. Therefore, in order to evaluate current situation and regional characteristics of groundwater quality in the central part of the Kanto Plain, we investigated around 500 wells. These wells are distributed throughout the plain area of Saitama Prefecture, stretching about 80 kilometers from east to west and about 60 kilometers from north to south. Depths of these wells range from 5m to 200m. We analyzed heavy metals and metalloids such as Fe, Mn, Al, As, Pb, using the ICP/AES and ICP/MS and also analyzed major dissolved ions such as Na+, K+, Mg2+, Ca2+, Cl-, SO42-, using the ion chromatograph. As a result of investigation, rate of samples exceeded the Japanese environmental standards of arsenic (0.01 mg/l) in groundwater was about 1%, and the maximum concentration was about 10 times of the environmental standards. Groundwater with a high arsenic concentration was detected in the specific area, such as in the lowlands located upstream from the former shoreline at the Holocene glacial retreat. Taking the land use of surrounding area, well depth and groundwater condition of aquifers into account, detected arsenic is considered to be of natural origin and mainly originate from natural layers. According to the previous studies, the release mechanisms of natural arsenic are summarized in some ways and in case of this research area, it was explained that natural arsenic is released with dissolution of the iron oxide in the reduction

  11. Factors Affecting Quality Enhancement Procedures for E-Learning Courses

    ERIC Educational Resources Information Center

    Jara, Magdalena; Mellar, Harvey

    2009-01-01

    Purpose: This paper reports on an empirical study exploring the way in which campus-based higher education institutions (HEIs) in the UK apply their internal quality assurance and enhancement (QA/QE) procedures to their e-learning courses. The purpose of this paper is to identify those characteristics of e-learning courses which affected the…

  12. Preslaughter factors affecting poultry meat quality chapter 2.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry meat quality is affected by numerous antemortem factors, in particular those occurring during the last 24 hours that the bird is alive. These short term factors influence carcass yield (live shrink), carcass defects (bruising, broken/dislocated bones), carcass microbiological contamination, ...

  13. CULTURAL SYSTEM AFFECTS FRUIT QUALITY AND ANTIOXIDANT CAPACITY IN STRAWBERRIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultural system [hill plasticulture (HC) vs. matted row (MR)] and genotypes interactions affected strawberry fruit quality. In general, fruit soluble content, total sugar, fructose, glucose, ascorbic acid, titratable acid and citric acid content were increased in the HC system. Fruit from HC also ...

  14. Neighborhood Perceptions Affect Dietary Behaviors and Diet Quality

    ERIC Educational Resources Information Center

    Keita, Akilah Dulin; Casazza, Krista; Thomas, Olivia; Fernandez, Jose R.

    2011-01-01

    Objective: The primary purpose of this study was to determine if perceived neighborhood disorder affected dietary quality within a multiethnic sample of children. Design: Children were recruited through the use of fliers, wide-distribution mailers, parent magazines, and school presentations from June 2005 to December 2008. Setting:…

  15. Groundwater and surface water discharge from an abandoned tailings impoundment: Implications for watershed water quality

    NASA Astrophysics Data System (ADS)

    Moncur, M. C.; Ptacek, C. J.; Blowes, D. W.; Birks, S. J.

    2006-12-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Drainage from sulfide-rich waste can result in contaminated surface waters, directly through surface runoff and indirectly, from discharge of contaminated groundwater flow. Camp Lake, located in Northern Manitoba, receives both direct and indirect drainage from an abandoned tailings impoundment, which has severely affected the quality of the downstream watershed. Nearly a century of sulfide oxidation at this mine site has resulted in extremely high concentrations of oxidation products in the surface water and groundwater discharging from the two tailings impoundments, both of which flow into an adjacent semi-isolated shallow bay in Camp Lake. The incorporation of these aqueous effluents has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. The various sources of water and solutes to the lake (surface inflows, perched water table, primary water table) contribute varying concentrations of metals to the overall contaminant loadings to the lake, and can be characterized by distinct 3H, δ18O, and δ2H compositions. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg/L Fe, 20,000 mg/L SO4, 30 mg/L Zn, and 100 mg/L Al, including elevated concentrations of Cu, Cd, Pb, and Ni. This stratification is mirrored in the δ18O, δ2H and d-excess profiles within the lake water column, with an evaporatively enriched surface layer overlying the isotopically lighter, higher d-excess hypolimnion. Despite meromictic conditions and very high solute concentrations being limited to the semi-isolated bay, the annual loadings of acid, sulfate, and metals from Camp Lake to the adjacent lake are extremely large, and fluctuate seasonally

  16. Wastewater application by spray irrigation on a field southeast of Tallahassee, Florida; effects on ground-water quality and quantity, 1980-82

    USGS Publications Warehouse

    Elder, J.F.; Hunn, J.D.; Calhoun, C.W.

    1985-01-01

    A field southeast of Tallahassee, Florida, used for land application of wastewater by spray irrigation was the site of a ground-water monitoring study to determine effects of spray irrigation on water-table elevations and ground-water quality. The study was conducted during 1980-82 in cooperation with the City of Tallahassee. The wastewater has relatively high concentrations of chloride, nitrogen, phosphorus, organic carbon , coliform bacteria, sodium, and potassium. These substances are usually attenuated before they can impact the ground water. However, increases in chloride and nitrate-nitrogen were evident in ground water in some of the monitoring wells during the study. Chloride concentrations increased five-fold or more in some wells directly affected by spray irrigation, and nitrate-nitrogen concentrations increased eight-fold or more. Ground-water levels in the area of the spray field fluctuated over a range of several feet. These fluctuations were affected somewhat by spray irrigation, but the primary control on water levels was rainfall. As of December 1982, constituents introduced to the system by spray irrigation of effluent had not exceeded drinking water standard in the ground water. However, the system had not yet stabilized and more changes in ground-water quality could be expected. (USGS)

  17. Deterioration of coastal groundwater quality in Island and mainland regions of Ramanathapuram District, Southern India.

    PubMed

    Sivasankar, Venkataramann; Ramachandramoorthy, Thiagarajan; Chandramohan, A

    2013-01-01

    A study was carried out in the Island and mainland regions of Ramanathapuram District to characterize the physico-chemical characteristics of 87 groundwater samples in Island and 112 groundwater samples in mainland which include pH, EC, TDS, salinity, total alkalinity, calcium hardness, magnesium hardness, total hardness, chloride and fluoride. Heavy inorganic load in majority of the groundwater samples has been estimated due to the salinity, TDS, TH and chloride beyond the threshold level which substantiates the percolation of sea water into the freshwater confined zones. Although the groundwater sources are available in plenty, the scarcity of potable water is most prevalent in this coastal area. The Water Quality Index (WQI) and Langeleir Saturation Index (LSI) have also been calculated to know the potable and corrosive/incrusting nature of the water samples. The statistical tools such as principal component analysis, box plots and correlation matrix have also been used to explain the influence of different physico-chemical parameters with respect to one another among the groundwater samples. The percentage of groundwater samples in mainland was more than that in Island with respect to the acceptable limit of WHO drinking standard, especially in TDS, CH, TH and chloride but the converse is observed in the case of fluoride. About 8% of the mainland aquifers and 42% of Island aquifers were identified to have fluoride greater than 1.5 mg/l. The signature of salt-water intrusion is observed from the ratio of Cl/CO(3)(2-) + HCO(3) and TA/TH. A proper management plan to cater potable water to the immediate needs of the people is to be envisaged. PMID:22527453

  18. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  19. Status and understanding of groundwater quality in the South Coast Range-Coastal study unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the South Coast Range–Coastal (SCRC) study unit was investigated from May through November 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Range hydrologic province and includes parts of Santa Barbara and San Luis Obispo Counties. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifer system. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The assessments for the SCRC study unit were based on water-quality and ancillary data collected in 2008 by the USGS from 55 wells on a spatially distributed grid, and water-quality data from the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. Water-quality and ancillary data were collected from an additional 15 wells for the understanding assessment. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. The first component of this study, the status assessment of groundwater quality, used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. Although the status assessment applies to untreated

  20. Appraisal of ground-water quality in the Bunker Hill Basin of San Bernardino Valley, California

    USGS Publications Warehouse

    Duell, L.F., Jr.; Schroeder, R.A.

    1989-01-01

    Water samples were collected from 47 wells and analyzed for concentration of major inorganic ions, nitrogen species, and volatile (purgeable) organic priority pollutants to assess groundwater quality in the Bunker Hill basin, California. Data were supplemented with additional analysis of nitrate, tetrachloroethylene, and trichloroethylene made by other agencies. The organic quality of groundwater in the basin generally is suitable for most uses, although fluoride concentration exceeded the California public drinking water standard of 1.4 mg/L in water from 5 of 47 wells. Nitrate (as nitrogen) concentration equaled or exceeded the public drinking water standard of 10 mg/L in water from 13 of 47 wells sampled for this study and in an additional 19 of 120 samples analyzed by other agencies. Concentration generally decreased with increasing depth below land surface. Twenty-four of the 33 volatile organic priority pollutants were detected in water from wells sampled during this study. When supplemental data from other agencies are included, tetrachloroethylene concentration exceeded the standard of 5 micrograms/L in water from 49 of 128 wells. No basinwide relation between contamination by these two chemicals and well depth or land use was discerned. A network of 11 observation wells that could be sampled twice a year would enhance the monitoring of changes groundwater quality in the Bunker Hill basin. (USGS)

  1. Application of multivariate statistical techniques for characterization of groundwater quality in the coastal aquifer of Nador, Tipaza (Algeria)

    NASA Astrophysics Data System (ADS)

    Bouderbala, Abdelkader; Remini, Boualem; Saaed Hamoudi, Abdelamir; Pulido-Bosch, Antonio

    2016-06-01

    The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria). The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochemistry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by seawater intrusion.

  2. GROUND-WATER QUALITY CLASSIFICATION FOR THE VALLEY-FILL AQUIFER IN SPANISH VALLEY, GRAND AND SAN JUAN COUNTIES, UTAH --A BASIS FOR PRESERVING HIGH QUALITY GROUND-WATER RESOURCES, UTAH GEOLOGICAL SURVEY

    EPA Science Inventory

    The proposed study will consist of an evaluation of current ground-water quality using the Utah Water Quality Board's ground-water-quality classification system based mostly on total-dissolved-solids concentrations as follows: class 1A (Pristine), less than 500 mg/L; class 2 (dr...

  3. An evaluation of effects of groundwater exchange on nearshore habitats and water quality of western Lake Erie

    USGS Publications Warehouse

    Haack, Sheridan K.; Neff, Brian P.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.

    2005-01-01

    Historically, the high potentiometric surface of groundwater in the Silurian/Devonian carbonate aquifer in Monroe County, MI resulted in discharge of highly mineralized, SO4-rich groundwater to the Lake Erie shoreline near both Erie State Game Area (ESGA) and Pointe Mouillee State Game Area (PMSGA). Recently, regional groundwater levels near PMSGA have been drawn down as much as 45 m below lake level in apparent response to quarry dewatering. From August to November of 2003, we conducted preliminary studies of groundwater flow dynamics and chemistry, shallow lake water chemistry, and fish and invertebrate communities at both sites. Consistent with regional observations, groundwater flow direction in the nearshore at ESGA was upward, or toward Lake Erie, and shallow nearshore groundwater chemistry was influenced by regional groundwater chemistry. In contrast, at PMSGA, the groundwater flow potential was downward and lake water, influenced by quarry discharge seeping downward into nearshore sediments, produced a different lake and shallow groundwater chemistry than at ESGA. Although the invertebrate and young fish community was similar at the two sites, taxonomic groups tolerant of degraded water quality were more prevalent at PMSGA. Sensitive taxa were more prevalent at ESGA. We propose a conceptual model, based on well-described models of groundwater/seawater interaction along coastal margins, to describe the interconnection among geologic, hydrologic, chemical, and biological processes in the different nearshore habitats of Lake Erie, and we identify processes that warrant further detailed study in the Great Lakes.

  4. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  5. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment. PMID:25348886

  6. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  7. ENVIRONMENTAL RESEARCH BRIEF: SPATIAL HETEROGENEITY OF GEOCHEMICAL AND HYDROLOGIC PARAMETERS AFFECTING METAL TRANSPORT IN GROUNDWATER

    EPA Science Inventory

    Reliable assessment of the hazards or risks arising from groundwater contamination and the design of effective means of rehabilitation of contaminated sites requires the capability to predict the movement and fate of dissolved solutes in groundwater. he modeling of metal transpor...

  8. Temporal dynamics of groundwater-dissolved inorganic carbon beneath a drought-affected braided stream: Platte River case study

    NASA Astrophysics Data System (ADS)

    Boerner, Audrey R.; Gates, John B.

    2015-05-01

    Impacts of environmental changes on groundwater carbon cycling are poorly understood despite their potentially high relevance to terrestrial carbon budgets. This study focuses on streambed groundwater chemistry during a period of drought-induced river drying and consequent disconnection between surface water and groundwater. Shallow groundwater underlying vegetated and bare portions of a braided streambed in the Platte River (Nebraska, USA) was monitored during drought conditions in summer 2012. Water temperature and dissolved inorganic carbon (dominated by HCO3-) in streambed groundwater were correlated over a 3 month period coinciding with a decline in river discharge from 35 to 0 m3 s-1. Physical, chemical, and isotopic parameters were monitored to investigate mechanisms affecting the HCO3- trend. Equilibrium thermodynamic modeling suggests that an increase of pCO2 near the water table, coupled with carbonate mineral weathering, can explain the trend. Stronger temporal trends in Ca2+ and Mg2+ compared to Cl- are consistent with carbonate mineral reequilibria rather than evaporative concentration as the primary mechanism of the increased HCO3-. Stable isotope trends are not apparent, providing further evidence of thermodynamic controls rather than evaporation from the water table. A combination of increased temperature and O2 in the dewatered portion of the streambed is the most likely driver of increased pCO2 near the water table. Results of this study highlight potential linkages between surface environmental changes and groundwater chemistry and underscore the need for high-resolution chemical monitoring of alluvial groundwater in order to identify environmental change impacts.

  9. Anthropogenic Influence On Groundwater Quality In Jericho and And Adjoining Wadis (Lower Jordan Valley, Palestine)

    NASA Astrophysics Data System (ADS)

    Geyer, S.; Khayat, S.; Roediger, T.; Siebert, C.

    2008-12-01

    vegetable gardening hold the danger to pollute the groundwater via irrigation return flow. This return flow most probably endangers the quality of the water resource, because shallow wells nearby extract it directly from the underground. However, one result of the first screening campaign concerning pesticide remnants in the groundwater wells of Jericho, just traces have been detected. Thus, the higher amount of chemicals is retained by the soil during infiltration of irrigated water. The detected low concentrations in groundwater of the fan may be the result of outleaching from agricultural areas from the mountain range. The flood water of Wadi Qilt infiltrates partly in the fluviatil sediments. The ongoing investigations in the Wadi Qilt-Jericho area include an approach of combined hydrochemical and hydraulic studies to simulate the complex groundwater system at the edge of the graben and to prepare a sustainable groundwater management strategy for the area of Jericho.

  10. Effects of land use on groundwater quality in the East Everglades, Dade County, Florida

    SciTech Connect

    Waller, B.G.

    1983-01-01

    Groundwater quality characteristics of the Biscayne aquifer from September 1978 through June 1979 were determined for seven land use areas within the East Everglades in Dade County, Florida. Four agricultural areas, two low-density residential areas, and Chekika Hammock State Park were investigated. The effects of land use on the groundwater were minimal in all areas; only iron, which occurs naturally in high concentrations in the Everglades, exceeded potable groundwater standards. Potassium and nitrate concentrations in certain samples increase over background concentrations in the agricultural areas. Groundwater at Chekika Hammock State Park and at a citrus grove is contaminated by brackish water flowing from an artesian well. The soil at the agricultural areas had higher concentrations of chromium, copper, and manganese than at the two residential areas or at Chekika Hammock State Park. One residential area (Coopertown) had the highest concentrations of lead and zinc and detectable polychlorinated biphenyls. Chlorinated-hydrocarbon insecticide residues in soil at three agricultural areas were higher than background concentrations. 15 refs., 15 figs., 35 tabs.

  11. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Krieg, R.; Martienssen, M.; Bayer-Raich, M.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-06-01

    Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSO's) can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPT's) up- and downstream of a target section. Due to the large sampled water volume during IPT's the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany). Wastewater constituents K+ and NO3- showed Mex values of 1241 to 4315 and 749 to 924 mg m-1stream d-1, respectively, while Cl- (16.8 to 47.3 g m-1stream d-1) and SO42- (20.3 to 32.2 g m-1stream d-1) revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  12. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Krieg, R.; Martienssen, M.; Bayer-Raich, M.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-10-01

    Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs) can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs) up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany). Wastewater constituents K+ and NO3- showed Mex values of 1241 to 4315 and 749 to 924 mg mstream-1 d-1, respectively, while Cl- (16.8 to 47.3 g mstream-1 d-1) and SO42- (20.3 to 32.2 g mstream-1 d-1) revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  13. Compilation of well and ground-water quality data, Groveland-Collins and surrounding areas near Blackfoot, Bingham County, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1986-01-01

    Well-construction, geologic, and water level data from 1978 to 1985 were compiled for 163 sites near Blackfoot, Idaho. Groundwater quality data were compiled for 51 sites for the period 1961-83 and for 54 sites for the period 1984-85. Data were collected in support of the hydrologic and water quality components of the U.S. Geological Survey 's groundwater contamination investigation near Blackfoot. Result of the investigation are presented in an interpretive report, published separately.

  14. Groundwater-quality data in the northern Coast Ranges study unit, 2009: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Dawson, Barbara J.; Shelton, Jennifer L.; Belitz, Kenneth

    2011-01-01

    This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwa

  15. Ground-water quality and data on wells and springs in Pennsylvania: Volume II, Susquehanna and Potomac River basins

    USGS Publications Warehouse

    Koester, Harry E.; Miller, Denise R.

    1980-01-01

    Volume II of the Ground-Water Quality and Data on Wells and Springs in Pennsylvania presents ground-water quality and physical data on about 1,400 wells and springs in the Susquehanna and Potomac River basins in Pennsylvania. Locations are shown on site-location maps derived from the hydrologic unit map. Codes showing the geologic age and aquifer are provided. (USGS)

  16. Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India.

    PubMed

    Nagarajan, R; Rajmohan, N; Mahendran, U; Senthamilkumar, S

    2010-12-01

    As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for

  17. A quality-assurance plan for district ground-water activities of the U.S. Geological Survey

    USGS Publications Warehouse

    Brunett, J.O.; Barber, N.L.; Burns, A.W.; Fogelman, R.P.; Gillies, D.C.; Lidwin, R.A.; Mack, Thomas J.

    1997-01-01

    As the Nation's principal earth-science information agency, the U.S. Geological Survey (USGS) is depended upon to collect data of the highest quality. This document provides the framework for collecting, analyzing and reporting ground-water data that are quality assured and quality controlled.

  18. Evaluation of Geochemical Processes Affecting Uranium Sequestration and Longevity of Permeable Reactive Barriers for Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    Fuller, C. C.; Webb, S.; Bargar, J.; Naftz, D. L.

    2009-12-01

    Development of effective remediation techniques for protecting existing drinking water supplies and for mitigating existing contamination problems requires evaluating both the contaminant sequestration processes and the secondary reactions affecting the long term stability of contaminant attenuation. Permeable reactive barriers (PRB) provide a means for passive remediation of dissolved groundwater contaminants and may be an effective strategy for remediation of uranium (U) groundwater contamination provided that long term stability of the sequestered U can be achieved for the geochemical conditions of the aquifer expected subsequent to remediation. Understanding the chemical reaction mechanisms resulting in U uptake and PRB performance are critical to evaluating the potential for release of sequestered U and for improved design of remediation devices. We are using synchrotron X-ray techniques to investigate U sequestration reaction mechanisms and biogeochemical processes in PRB materials recovered from a 9-year field demonstration of zero-valent iron (ZVI) and bone char apatite PRBs in a U contaminated aquifer near Fry Canyon, Utah. X-ray microprobe mapping of iron phases shows that extensive secondary precipitation of mackinawite, siderite and aragonite in the ZVI PRB has resulted from ZVI corrosion coupled with microbial sulfate reduction. Bulk U-EXAFS measurements and micron-scale U-oxidation state mapping indicates that U removal occurs largely by reduction and precipitation of a UO2-like U(IV) phase on the ZVI surfaces, and that the sequestered U is often buried by the secondary Fe precipitates. These findings are significant to the efficacy of ZVI PRBs for remediation of U and other contaminants in that the ongoing secondary phase precipitation cements grains and fills internal porosity resulting in the observed decreased PRB permeability and limits subsequent U removal, but likely limits oxidative remobilization of U. In the bone char apatite PRB, elevated

  19. Hydrology and Ground-Water Quality in the Mine Workings within the Picher Mining District, Northeastern Oklahoma, 2002-03

    USGS Publications Warehouse

    DeHay, Kelli L.; Andrews, William J.; Sughru, Michael P.

    2004-01-01

    The Picher mining district of northeastern Ottawa County, Oklahoma, was a major site of mining for lead and zinc ores in the first half of the 20th century. The primary source of lead and zinc were sulfide minerals disseminated in the cherty limestones and dolomites of the Boone Formation of Mississippian age, which comprises the Boone aquifer. Ground water in the aquifer and seeping to surface water in the district has been contaminated by sulfate, iron, lead, zinc, and several other metals. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, investigated hydrology and ground-water quality in the mine workings in the mining district, as part of the process to aid water managers and planners in designing remediation measures that may restore the environmental quality of the district to pre-mining conditions. Most ground-water levels underlying the mining district had similar altitudes, indicating a large degree of hydraulic connection in the mine workings and overlying aquifer materials. Recharge-age dates derived from concentrations of chlorofluorocarbons and other dissolved gases indicated that water in the Boone aquifer may flow slowly from the northeast and southeast portions of the mining district. However, recharge-age dates may have been affected by the types of sites sampled, with more recent recharge-age dates being associated with mine-shafts, which are more prone to atmospheric interactions and surface runoff than the sampled airshafts. Water levels in streams upstream from the confluence of Tar and Lytle Creeks were several feet higher than those in adjacent portions of the Boone aquifer, perhaps due to low-permeability streambed sediments and indicating the streams may be losing water to the aquifer in this area. From just upstream to downstream from the confluence of Tar and Lytle Creeks, surface-water elevations in these streams were less than those in the surrounding Boone aquifer, indicating that

  20. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This report contains groundwater quality data obtained during the 1993 calendar year (CY) at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the East Fork Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with the Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  1. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    During the US-Russia Geohazards Workshop held July 17-19, 2012 in Moscow, Russia the international research effort was asked to identify cooperative actions for disaster risk reduction, focusing on extreme geophysical events. As a part of this recommendation the PIRE project was developed to understand, quantify, forecast and protect the coastal zone aquifers and inland water resources of Kamchatka (Russia) and its ecosystems affected by the November 4, 1952 Kamchatka tsunami (Khalatyrka Beach near Petropavlovsk-Kamchatskiy) and the January 2, 1996 Karymskiy volcano eruption and the lake tsunami. This project brings together teams from U.S. universities and research institutions located in Russia. The research consortium was briefed on recent technical developments and will utilize samples secured via major international volcanic and tsunami programs for the purpose of advancing the study of submarine groundwater discharge (SGD) in the volcanic eruption and tsunami affected coastal areas and inland lakes of Kamchatka. We plan to accomplish this project by developing and applying the next generation of field sampling, remote sensing, laboratory techniques and mathematical tools to study groundwater-surface water interaction processes and SGD. We will develop a field and modeling approach to define SGD environment, key controls, and influence of volcano eruption and tsunami, which will provide a framework for making recommendations to combat contamination. This is valuable for politicians, water resource managers and decision-makers and for the volcano eruption and tsunami affected region water supply and water quality of Kamchatka. Data mining and results of our field work will be compiled for spatial modeling by Geo-Information System (GIS) using 3-D Earth Systems Visualization Lab. The field and model results will be communicated to interested stakeholders via an interactive web site. This will allow computation of SGD spatial patterns. In addition, thanks to the

  2. Assessment of the Microbiological Quality of Groundwater in Three Regions of the Valencian Community (Spain)

    PubMed Central

    Llopis-González, Agustín; Sánchez, Adriana L.; Requena, Pedro Martí; Suárez-Varela, María Morales

    2014-01-01

    Urban groundwater development was traditionally constrained by concerns about its quality. This study was conducted in the regions of La Ribera Alta and Ribera Baja and La Plana de Requena-Utiel of the Valencian Community (Valencia, Spain) where population density, demand for drinking water and agricultural activities are high. Groundwater bodies (GWBs) are regarded as management areas within each territory, and were used to establish protection policies. This study analyzed eleven GWBs. We used two databases with microbiological measurements from 154 wells over a 7-year period (2004–2011), risk factors and groundwater information. Wells were grouped according to frequency of microbiological contamination using E. coli measurements, category <1, or wells with low-frequency microbiological contamination and high-frequency wells or category 1–100, according to World Health Organization (WHO) quality criteria of drinking water. Of all wells, 18.12% showed high-frequency microbiological contamination with a majority distribution in the Ribera Alta region (26.98%, p < 0.001). No significant differences were found between the two risk categories for flow, static level, well depth and distance from population centres. This paper reveals that the vulnerability classes established by the Geological and Mining Institute of Spain (IGME) do not match the microbiological results, and that only eight wells with high-frequency contamination coincide with the high vulnerability areas. PMID:24859678

  3. An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee

    USGS Publications Warehouse

    Carmichael, J.K.

    1989-01-01

    Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)

  4. Groundwater Quality Assessment by Using Hydrogeochemical Methods in the National Capital Territory -Delhi, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Ramanathan, A.

    2006-05-01

    Present study has been carried out to assess the real status of groundwater, second major water resource for the drinking water supply in the National Capital Territory (NCT) of India, Delhi. Salinity and nitrate contamination are the two major problems in the area which is alarming for drinking purpose. Various graphical plots and statistical analysis has been carried out to understand the geochemical processes and its relation to the groundwater quality based on the ionic constituents, water types, hydrochemical facies and to understand nutrient chemistry (nitrate, phosphate and potassium) with spatial and seasonal variations in the groundwater nature in the study area. The concentration of nutrients in groundwater acts as an indicator to identify the nature and influence of agricultural and urban runoff on the shallow subsurface environment. Results of the study suggests that leaching from the various unlined landfill sites is the prime cause of nitrate contamination along with other factors like agricultural activities, soil mineralization processes and irrigation return flow. The result also indicates a different source of origin for the nitrate and potassium and not a common source for their origin as it was thought earlier. Local recharge is associated with low salinity of Ca- Mg-HCO3 type which is through rainfall and surface water body especially by west Yamuna canal and Yamuna River. Large lateral variation of conservative elements shows that recharge through lateral flow is not dominant in the area. Highly saline and brackish groundwater in the discharge zones like northwestern and southwestern parts of the area seem to be associated with long history of evaporation and oxidation of sulfur gases in low lying areas. In view of increasing demand of drinking water in the area, present study is vital and suggests the need of immediate management action for landfill sites.

  5. Prediction of Groundwater Quality Changes in Response to CO2 Leakage from Deep Geological Storage

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Apps, J. A.; Zhang, Y.; Xu, T.; Birkholzer, J. T.

    2008-12-01

    If carbon dioxide stored in deep saline aquifers were to leak into overlying aquifer containing potable groundwater, the intruding CO2 would lower groundwater pH and could enhance the solubility of hazardous inorganic constituents present in the aquifer minerals. As an effort to evaluate risks associated with geologic sequestration of CO2, this work assesses these potential effects using reactive transport modeling. A systematic geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States provided the prerequisites for reactive transport modeling. For example, galena (under reducing conditions) and cerussite (under oxidizing conditions) control aqueous Pb (lead) whereas arsenopyrite component in pyrite controls aqueous As (arsenic) generally under reducing conditions. Reactive transport simulations are performed which focus on the chemical evolution of Pb and As in the groundwater after the intrusion of CO2. The simulations use representative mineralogies for shallow potable aquifers in the USA and two measured mineralogies for deep confined aquifers. The resulting concentrations of Pb and As in the groundwater are then compared to the EPA specified health- based limits for drinking water. A significant increase of aqueous Pb and As occurs, although in most situations they remain below health-based limits. Sensitivity studies are also conducted for variation in hydrological, geochemical and mineralogical conditions and several critical parameters. The results indicate that aquifers containing more carbonate (through pH buffer) and clay minerals (by adsorption) are less vulnerable to CO2 intrusion. Adsorption/desorption from minerals surface significantly impact the mobilization of Pb and As. Adsorption dampens the effect of galena and arsenopyrite dissolution by removing Pb and As from aqueous phase under reducing conditions. Under oxidizing condition desorption is primarily responsible for increasing the

  6. Groundwater Quality Assessment Plan for Single-Shell Tank Waste Management Area U

    SciTech Connect

    Smith, Ronald M.; Hodges, Floyd N.; Williams, Barbara A.

    2001-08-29

    Single-Shell Tank Waste Management Area U (WMA U) is in the 200 West Area on the Hanford Site. The area includes the U Tank Farm that contains 16 underground, single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as codified in 40 CFR Part 265, Subpart F and Washington's Hazardous Waste Management Act (HWMA, RCW 70.105) and its implementing requirements in the Washington State dangerous waste regulations (WAC 173-303-400). Releases of hazardous wastes from WMA U have contaminated groundwater beneath the area. Therefore, the WMA U is being assessed to determine the rate of movement and extent of the contamination released and to determine the concentrations in groundwater. The original finding of groundwater impact was determined from elevated specific conductance in downgradient well 299-W19-41. The elevated specific conductance was attributed to the nonhazardous constituents calcium, magnesium, sulfate, and chloride. Tank waste constituents nitrate and technetium-99 are also present as co-contaminants and have increased over the past several years; however, at concentrations well below the respective drinking water standards. Chromium concentrations in downgradient wells have generally exceeded background levels, but similar levels were also observed in upgradient well 299-W18-25 in early 2000 before it went dry. The objective of this report is to present the current conceptual model for how and where contaminant releases have reached the water table and how that contamination has dispersed in the groundwater system. These efforts will achieve the requirements of a groundwater quality assessment under RCRA [40 CFR 265.93 (d)(4)]. On that basis, a monitoring schedule with appropriate analytes and proposals for new wells and tests are presented in this document.

  7. Impact of stormwater infiltration basins on groundwater quality, Perth metropolitan region, Western Australia

    NASA Astrophysics Data System (ADS)

    Appleyard, S. J.

    1993-08-01

    Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.

  8. The quality of our Nation's waters: groundwater quality in the Columbia Plateau and Snake River Plain basin-fill and basaltic-rock aquifers and the Hawaiian volcanic-rock aquifers, Washington, Idaho, and Hawaii, 1993-2005

    USGS Publications Warehouse

    Rupert, Michael G.; Hunt, Charles D., Jr.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.

    2015-01-01

    The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.

  9. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    SciTech Connect

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  10. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    DOE PAGESBeta

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strongmore » correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.« less

  11. The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

    SciTech Connect

    Mansoor, Kayyum; Carroll, Susan A.; Sun, Yunwei

    2014-12-31

    Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strong correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.

  12. Sampling and analysis plan for the characterization of groundwater quality in two monitoring wells near Pavillion, Wyoming

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming to study groundwater quality. The U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, designed a plan to collect groundwater data from these monitoring wells. This sampling and analysis plan describes the sampling equipment that will be used, well purging strategy, purge water disposal, sample collection and processing, field and laboratory sample analysis, equipment decontamination, and quality-assurance and quality-control procedures.

  13. Geohydrology and ground-water quality on Shelter Island, Suffolk County, New York, 1983-84

    USGS Publications Warehouse

    Simmons, D.L.

    1986-01-01

    Shelter Island, with an area of about 11 sq mi, lies between the north and south forks of eastern Long Island in Suffolk County. The thin upper glacial (water table) aquifer contains the lens-shaped freshwater body that is the sole source of freshwater for the Town 's population of about 2,200 year-round and 10,000 summer residents. Chloride concentrations in groundwater above the freshwater/saltwater interface, defined as 40 mg/L Cl-, are relatively constant with depth. Below the interface, however, chloride concentrations increase rapidly--as much as an order of magnitude within 10 ft--until they reach 19 ,000 mg/L, the chloride concentration of seawater. Chloride concentrations in shallow groundwater from wells screened in or near the zone of diffusion may range over two orders of magnitude in response to variations in recharge and groundwater withdrawal. After the summer season of relatively low recharge and peak water demand, the thickness of the freshwater lens is < 20 ft in many nearshore areas. A map showing the configuration of the water table in December 1983 indicates freshwater mounds in the center of the island, in the Mashomack Preserve, on the Dering Harbor-Hay Beach peninsula, and in the area between Shelter Island Heights and West Neck Bay. Areas in which the supply of fresh groundwater is severely limited include all coastal areas, the southernmost part of the West Neck peninsula, and Little Ram Island. Water levels in most locations are < 6 ft above sea level. During 1974-83, seasonal water table fluctuations were greater than variations that occurred from year to year. Groundwater quality on Shelter Island is generally good and usually meets Federal and State drinking water standards. However, many wells contain water that has excessive concentrations of dissolved iron and manganese (up to 5.0 mg/L and 3.0 mg/L, respectively), and elevated chloride and dissolved solids concentrations (up to 310 mg/L and 585 mg/L, respectively) have been found in

  14. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    NASA Astrophysics Data System (ADS)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3‑ in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  15. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  16. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer.

    PubMed

    Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O

    2014-01-01

    Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results

  17. Trend in groundwater quality near FMD burials in agricultural region, South Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jeong-Won; Lee, Kang-Kun

    2015-04-01

    After the nation-wide outbreak of Foot and Mouth Disease (FMD) in winter of 2010-2011, thousands of mass burial site had been built all over the country in Korea. Though the burial pits were partially lined with impermeable material, potential threat of leachate leakage was still in concern. In worry of leachate release from those livestock burials during decomposition of carcasses, groundwater samples from wells near the burials were collected and analyzed in between 2011 and 2013. Among the sample locations, 250 wells with monitoring priorities were chosen and had been watched continuously through the years. For trend analysis of groundwater quality, relations between land use types, distances to burial and nitrate concentrations are studied. Types of land use within 300 m radius of each well were investigated. Nitrate concentrations show proportional relations to the area of agricultural activity and inversely proportional to the area of forest. The proportionality decreased with both agricultural and forest area since 2011. When seasonal variation is concerned, slightly stronger proportionality is shown in dry season for both agricultural and forested area. For a qualitative analysis of the trend, non-parametric Kendall test is applied. Especially, regional Kendall test is implemented to find out spatial feature of nitrate concentration. Nitrate concentrations show slow but statistically significant deceasing trend for every well. When the wells are group according to their distances from the nearest burial pit, decreasing trend of nitrate concentration is shown in all groups. However, there was no consistency in significant factor among the groups. Considering the above mentioned results, the groundwater wells near the burials seem to be influence more from agricultural activities near the wells than from the burial leachate. The slow but significant decreasing trend in nitrate concentration is supposed as the result of an increasing governmental interest in

  18. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    SciTech Connect

    Heffner, J.D.

    1991-11-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  19. Spatial Analysis of Groundwater Quality in Karstic Aquifers under Urbanization Stress: A Methodological Assessment

    NASA Astrophysics Data System (ADS)

    Abou Najm, Majdi; Momjian, Nanor; Alameddine, Ibrahim; El-Fadel, Mutasem

    2015-04-01

    Decision makers are increasingly relying on groundwater quality mapping using geospatial / statistical analysis tools coupled with Geographic Information Systems (GIS) that transform monitoring data into more readable maps for informed decisions. These tools are dependent on various interpolation methods that are invariably applied without proper knowledge of underlying assumptions thus often generating non-validated or unreliable maps. This study examines the accuracy of commonly used interpolation schemes with cross-validation using field measurements collected during groundwater sampling campaigns in three coastal cities along the eastern Mediterranean. The performance and accuracy of interpolation methods was scrutinized with multiple cross-checking approaches including (1) the leave-one-out, (2) matching with water quality standardized categories, and (3) cross-checking with the physical vulnerability of tapped aquifers. A total of 380 interpolation scenarios were generated using several combinations of interpolation methods (Inverse Distance Weight (IDW), Kriging and Co-Kriging), semi-variogram models (Spherical and Exponential), data transformation, and several water quality parameters including single and multiple contaminant indicators, in three cities and for different seasons. The results showed that Kriging and Co-Kriging produced relatively better statistical indicators, whereas the IDW matched better the field measurements when a lumped approach of six water quality categories was adopted. While it can be argued that there is no one "best" interpolation method or a semi-variogram model that fits all data, it was evident that the GIS-based interpolation methods exhibited better matching at the three surveyed cities in comparison with groundwater vulnerability assessment models such as DRASTIC and EPIK.

  20. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  1. Hydrogeological characterization and assessment of groundwater quality in shallow aquifers in vicinity of Najafgarh drain of NCT Delhi

    NASA Astrophysics Data System (ADS)

    Shekhar, Shashank; Sarkar, Aditya

    2013-02-01

    Najafgarh drain is the biggest drain in Delhi and contributes about 60% of the total wastewater that gets discharged from Delhi into river Yamuna. The drain traverses a length of 51 km before joining river Yamuna, and is unlined for about 31 km along its initial stretch. In recent times, efforts have been made for limited withdrawal of groundwater from shallow aquifers in close vicinity of Najafgarh drain coupled with artificial recharge of groundwater. In this perspective, assessment of groundwater quality in shallow aquifers in vicinity of the Najafgarh drain of Delhi and hydrogeological characterization of adjacent areas were done. The groundwater quality was examined in perspective of Indian as well as World Health Organization's drinking water standards. The spatial variation in groundwater quality was studied. The linkages between trace element occurrence and hydrochemical facies variation were also established. The shallow groundwater along Najafgarh drain is contaminated in stretches and the area is not suitable for large-scale groundwater development for drinking water purposes.

  2. Groundwater Impacts on Urban Surface Water Quality in the Lowland Polder Catchments of the Amsterdam City Area

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Yu, L.; Van Breukelen, B. M.; Broers, H. P.

    2015-12-01

    Surface water quality in the Amsterdam area is suffering from high nutrient levels. The sources and transport mechanisms of these nutrients are unclear due to the complex hydrology of the highly manipulated urban and sub-urban polder catchments. This study aimed at identifying the impact of groundwater on surface water quality in the polder catchments of the greater Amsterdam city area. Therefore, we exploited the dense groundwater and surface water monitoring networks to explain spatial patterns in surface water chemistry and their relations with landscape characteristics and groundwater impact. We selected and statistically analyzed 23 variables for 144 polders, covering a total area of 700 km2. Our dataset includes concentrations of total-N, total-P, ammonium, nitrate, bicarbonate, sulfate, calcium, and chloride in surface water and groundwater, seepage rate, elevation, paved area percentage, surface water area percentage, and soil type (calcite, humus and clay percentages). Our results show that nutrient levels in groundwater were generally much higher than in surface water and often exceeded the surface water Environmental Quality Standards (EQSs). This indicates that groundwater is a large potential source of nutrients in surface water. High correlations (R2 up to 0.88) between solutes in both water compartments and close similarities in their spatial patterns confirmed the large impact of groundwater on surface water quality. Groundwater appeared to be a major source of chloride, bicarbonate and calcium in surface water and for N and P, leading to exceeding of EQSs in surface waters. In dry periods, the artificial redistribution of excess seepage water from deep polders to supply water to infiltrating polders further distributes the N and P loads delivered by groundwater over the area.

  3. Status and understanding of groundwater quality in the San Francisco Bay groundwater basins, 2007—California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 620-square-mile (1,600-square-kilometer) San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Ranges of California, in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Francisco Bay study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater within the primary aquifer system, as well as a statistically consistent basis for comparing water quality throughout the State. The assessment is based on water-quality and ancillary data collected by the USGS from 79 wells in 2007 and is supplemented with water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system is defined by the depth interval of the wells listed in the CDPH database for the San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. Water- quality data from the CDPH database also were incorporated for this assessment. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the San Francisco Bay study unit, not the treated drinking water delivered to consumers by water

  4. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  5. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater Quality Data for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1999-09-01

    The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of the U.S. Department of Energy (DOE) Y-12 Plant (Figure 1). Groundwater monitoring is performed at several hazardous and nonhazardous waste management facilities located in the regime per the requirements of applicable operating/post closure permits and governing state/federal regulations and guidelines, including DOE Order 5400.1A - General Environmental Protection Program. Applicable provisions of DOE Order 5400.1A require evaluation of available monitoring data with regard to: (1) groundwater quality in areas that are, or could be, affected by Y-12 Plant operations, (2) the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) long-term trends in groundwater quality at the Y-12 Plant. This report presents the results of these DOE Order 5400.1A evaluations based on available data for the network of monitoring wells and springs in the Chestnut Ridge Regime sampled during calendar year (CY) 1998. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the illustrations (maps and trend graphs) and data summary tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  6. Calendar year 1994 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1995-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). These sites lie within the boundaries of the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part 1 GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1994 Part 1 GWQR for the Chestnut Ridge Regime to the TDEC in February 1995 (HSW Environmental Consultants, Inc. 1995a).

  7. Status of groundwater quality in the San Fernando--San Gabriel study unit, 2005--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.

  8. Groundwater-Quality Data in the South Coast Range-Coastal Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to

  9. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management.

    PubMed

    Ducci, Daniela; de Melo, M Teresa Condesso; Preziosi, Elisabetta; Sellerino, Mariangela; Parrone, Daniele; Ribeiro, Luis

    2016-11-01

    The natural background level (NBL) concept is revisited and combined with indicator kriging method to analyze the spatial distribution of groundwater quality within a groundwater body (GWB). The aim is to provide a methodology to easily identify areas with the same probability of exceeding a given threshold (which may be a groundwater quality criteria, standards, or recommended limits for selected properties and constituents). Three case studies with different hydrogeological settings and located in two countries (Portugal and Italy) are used to derive NBL using the preselection method and validate the proposed methodology illustrating its main advantages over conventional statistical water quality analysis. Indicator kriging analysis was used to create probability maps of the three potential groundwater contaminants. The results clearly indicate the areas within a groundwater body that are potentially contaminated because the concentrations exceed the drinking water standards or even the local NBL, and cannot be justified by geogenic origin. The combined methodology developed facilitates the management of groundwater quality because it allows for the spatial interpretation of NBL values. PMID:27371772

  10. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  11. Status of groundwater quality in the Coastal Los Angeles Basin, 2006-California GAMA Priority Basin Project

    USGS Publications Warehouse

    Goldrath, Dara; Fram, Miranda S.; Land, Michael; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 860-square-mile (2,227-square-kilometer) Coastal Los Angeles Basin study unit (CLAB) was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is located in southern California in Los Angeles and Orange Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA CLAB study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2006 by the USGS from 69 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth interval of the wells listed in the CDPH database for the CLAB study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the CLAB study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or non-regulatory benchmarks for drinking-water quality. A relative

  12. The Importance of Groundwater in Regulating Stream Water Quantity and Quality in a Claypan Watershed in Missouri

    NASA Astrophysics Data System (ADS)

    Liu, F.; Peters, G.; Lerch, R. N.; Yang, J.

    2015-12-01

    Claypans are a sub-soil horizon of smectitic mineralogy that impedes percolation and promotes surface runoff. These soils, which encompass 33,000 km2 in portions of Missouri and Illinois, have long been thought to restrict contaminant transport into/from groundwater. However, recent studies have shown that claypan watersheds are vulnerable to the loss of agricultural chemicals, particularly nitrate. The purpose of our study was to understand the role of groundwater in regulating stream water quantity and quality in Goodwater Creek Experimental Watershed (GCEW) in northern central Missouri. Samples have been collected since 2011 from precipitation, stream water at three locations along the main stream, groundwater from twenty five wells with depths ranging from 3 to 15 m, and soil water from seven piezometers above the claypan. Mean nitrate concentrations were 4.1 ppm in stream water at the watershed outlet, 1.0 ppm in precipitation, 3.2 ppm in soil water at piezometers, and 18.9 ppm in groundwater. Using diagnostic tools of mixing model and end-member mixing analysis, three natural tracers were determined to be conservative - electric conductivity (EC), Mg2+ and Na+ and three end-members were identified to control stream water - surface runoff (chemically characterized by precipitation), interflow above the claypan (characterized by soil water in piezometers), and groundwater. Interflow and groundwater contributed, on average, 26% and 12% of stream flow at the watershed outlet, respectively. During low flows, however, the contribution of groundwater increased to 30-40%. Also, the mean contribution of groundwater increased to 16% at middle course and 19% at the headwaters. Nitrate concentrations in stream water were dominated by the contributions from groundwater during low flows, ranging from 50 to 90% at all stream sampling locations. This study highlights the vulnerability of groundwater to nitrate contamination, even in runoff-prone watersheds, and demonstrated

  13. Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran).

    PubMed

    Noshadi, Masoud; Ghafourian, Amir

    2016-07-01

    This research investigated the quality of groundwater of 298 wells during 10 years, in Fars province, southern Iran, to survey spatial variation of groundwater quality and also major sources of hydro-chemical components for drinking and agricultural uses. To classify the sampling stations in each year, hierarchical cluster analysis, using the Euclidean distances and "Ward" method, was used. According to the results of cluster analysis, there were three quality groups in groundwater of the research area: first group of 170 wells with type of Ca-HCO3, second group of 98 wells with type of Ca-HCO3, and third group of 30 wells with type of Na-Cl. Hydro-chemical parameters were increased from the first to the third group, and on the basis of Schoeller and USSL diagrams, the water of wells of the third group was considered unsuitable for irrigation and drinking. Principal component (PC) analysis and factor analysis reduced the complex and voluminous data matrix into three main components, accounting for more than 80 % of the total variance. The first PC contained TDS, EC, TH, Na(+), Cl(-), Mg(2+), SO4 (2-), Ca(2+), and SAR parameters. Therefore, the first dominant factor was salinity. In PC2, HCO3 and pH were the dominant parameters, which may indicate weathering of silicate minerals. The PC3 contained high loadings for NO2 (2-) and NO3 (-). This factor indicates anthropogenic contaminants that may be caused by improper disposal of domestic wastes or the use of chemical fertilizers in agriculture and leaching of them. PMID:27317054

  14. Groundwater quality in the Upper Susquehanna River Basin, New York, 2009

    USGS Publications Warehouse

    Reddy, James E.; Risen, Amy J.

    2012-01-01

    Water samples were collected from 16 production wells and 14 private residential wells in the Upper Susquehanna River Basin from August through December 2009 and were analyzed to characterize the groundwater quality in the basin. Wells at 16 of the sites were completed in sand and gravel aquifers, and 14 were finished in bedrock aquifers. In 2004–2005, six of these wells were sampled in the first Upper Susquehanna River Basin study. Water samples from the 2009 study were analyzed for 10 physical properties and 137 constituents that included nutrients, organic carbon, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, and 4 types of bacterial analyses. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater genrally is of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water standard at 28 of the 30 wells. These constituents include: pH, sodium, aluminum, manganese, iron, arsenic, radon-222, residue on evaporation, total and fecal coliform including Escherichia coli and heterotrophic plate count.

  15. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    PubMed

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute <1% of total loads. Even if background water quality is achieved upstream in Strawberry Creek, fracture metal loads would be <5%. Fracture loads could increase substantially and cause stream water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained. PMID:18604589

  16. Design of monitor wells, hydrogeology, and ground-water quality beneath Country Pond, Kingston, New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.

    1995-01-01

    Ten monitoring well were installed in May 1993 to collect data on the hydrogeology and ground-water quality beneath Country Pond, in Kingston, New Hampshire. Monitoring wells were installed 4 to 48 feet beneath the pond surface in stratified drift that was up to 40 feet thick. The stratified drift is overlain by up to 35 feet of fine-grained, predominantly organic, lake-bottom sediment. The potentiometric head in the aquifer was at or above the pond surface and up to 0.8 foot above the pond surface at one location. Water-quality analyses detected numerous volatile organic compounds including chloroethane, benzene, dichlorobenzenes, and 1,1-dichloroethane at maximum concentrations of 110, 43, 54, and 92 mg/L, respectively. The maximum concentration of total volatile organic compounds detected in ground water from a monitoring well was 550 mg/L in November 1993. Ground-water samples with high concentrations of volatile organic compounds also had elevated specific conductances indicating the presence of other non-organic contaminants. Water-quality analyses indicate that a plume of contaminated ground water extends at least 300 feet in a northeast direction beneath the pond.

  17. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  18. Effects of the Paso Robles Geothermal Reservoir on water quality and availability in the Paso Robles Groundwater Basin, California

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Langenheim, V. E.; Goldstein, D.

    2012-12-01

    Geochemical and isotopic data from water wells and hot springs in the Paso Robles Groundwater Basin (PRGB) indicate that two water sources affect water quality and availability: meteoric water stored in Pliocene sediments, and geothermal waters present in deeper Miocene sediments. Understanding mixing of these two water sources is important in managing groundwater in the PRGB. The PRGB is the southernmost of several Salinas Valley groundwater basins. Demands from both population growth and agriculture have made water quality and availability a continuing concern. To address continuing depletion of groundwater, a 25 km pipe was recently constructed to bring water from Lake Nacimiento to supplement municipal water supplies. The PRGB is bounded on the west by the Rinconada Fault, and on the east by the San Juan and Red Hills faults. The main aquifer in the PRGB is in the Pliocene Paso Robles Formation (PRF). Aeromagnetic anomalies delineate the boundaries of the basin and thickness of basin fill. Aeromagnetic highs are coincident with surface and near surface presence of the highly magnetic La Panza granite, while aeromagnetic lows occur where basin fill is deepest and the La Panza granite is at a depth of over 1 km. The low temperature (<40oC) geothermal system in the Paso Robles area is located on the west side of the PRGB. The geothermal reservoir is present in the base of the PRF and the upper part of the Miocene Monterey Formation. The geothermal waters are Ca-Mg-SO4 waters, with gas chemistry dominated by CH4, N2, CO2, and H2S. Sulfur, barite and FeS precipitates occur in hot spring pools. The hot springs and geothermal wells are localized along the Rinconada and subsidiary faults. Several new hot springs developed along the Rinconada fault, including one in the Paso Robles city center after the 2003 M6.5 San Simeon earthquake. The city center hot spring was covered over and hot spring effluent was piped 1 km to a leach field in the Salinas River floodplain

  19. Evaluation of groundwater quality in a rural community in North Central of Nigeria.

    PubMed

    Sojobi, Adebayo Olatunbosun

    2016-03-01

    Evaluation of water quality of nine boreholes and three open hand-dug wells in a rural community in North Central Nigeria revealed relative abundance of cations Na > k > Ca > Mg > Zn > Pb and anions Cl(-) > PO4(2-) > SO4(2-) > NO3(-) in the boreholes and cations Ca > Na > K > Mg > Pb and anions NO3(-)  > PO4(2-)  > SO4(2-) > Cl(-) in the wells. The major contaminants exceeding SON and WHO permissible limits were NO3(-) , Mg, TH, pH and Mg, Pb, TH, pH and DO in the wells and boreholes, respectively. They are attributable to anthropogenic sources such as domestic waste water and poor waste disposal and natural sources such as mineral dissolution from clayey aquifer which made the acidic groundwater unsuitable for consumption unless they are appropriately treated. Correlation studies revealed existence of three major mineral groups in the aquifer Ca-Fe group, Na-Mg group, Zn-K group, as well as a minor group Pb-group, and they determine the chemical composition of the groundwater and the ionic exchange between the groundwater and mineral-bearing clayey aquifer. In order to curb microbial contamination by Enterobacter aerogenes and Escherichia coli, it is recommended that proper latrines and drainages be provided while domesticated animals should be restricted from boreholes and well. Further, treatment with water guard and pur purifier is recommended. PMID:26915740

  20. Development of water quality criteria for diesel fuel No. 2 for remediating contaminated groundwater

    SciTech Connect

    Kangas, M.J.; Proctor, D.M.; Trowbridge, K.R.

    1994-12-31

    Site-specific ambient water quality criteria (AWQC) were developed as benchmarks for back-calculating safe levels of diesel fuel No. 2 as a petroleum mixture in groundwater that could migrate to Fish Creek north of Butler, Indiana. Three types of AWQC were considered relevant according to State-modified US Environmental Protection Agency procedures: An Acute Aquatic Criterion (AAC); A Chronic Aquatic Criterion (CAC); and A Terrestrial Life Cycle Safe Concentration (TLSC). The AAC is the maximum concentration considered protective for aquatic life exposed in the zone of discharge-induced mixing and outside the zone of initial dilution. The remaining criteria applies to all areas of a stream outside the mixing zone. The CAC is intended to protect aquatic life from chronic toxic effects under a four-day average exposure. The TLSC is developed to protect terrestrial organisms that may experience a four-day average exposure to surface water as a result of consumption of aquatic organisms and water from the creek. Scientifically valid toxicological data on the water soluble fraction of diesel fuel and site-specific resident and surrogate species information were used for criterion development. An AAC of 11.4 mg/L was derived as the benchmark for back-calculating a safe level of diesel fuel in groundwater based on modeled groundwater and surface water flow from the spill area to the creek. Uncertainties and limitations of developing benchmark concentrations for mixtures are presented.

  1. Impact of landfill leachate on the groundwater quality: A case study in Egypt.

    PubMed

    Abd El-Salam, Magda M; I Abu-Zuid, Gaber

    2015-07-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes. PMID:26199748

  2. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    PubMed Central

    Abd El-Salam, Magda M.; I. Abu-Zuid, Gaber

    2014-01-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes. PMID:26199748

  3. Spatial and temporal trends in groundwater quantity and quality in urban area

    NASA Astrophysics Data System (ADS)

    Fejes, I.; Farsang, A.

    2012-04-01

    Nowadays one of the most important environmental problems in urban areas is groundwater contamination, since it takes effect on all parts of the urban environment. Therefore in this research the groundwater-system of Szeged (SE Hungary) was monitored and the temporal and spatial changes of heavy metals and other inorganic contaminants were examined. Water quantity and quality investigations twenty-eight sampling wells from the groundwater monitoring network of Szeged were carried out. In the course of well selection, we were about to cover complete area of the city. The water samples were collected every month from October of 2010 to September of 2011 and every second month from November 2011. Temperature, pH, total salt content, electrical conductivity, water levels and the concentrations of 12 components (copper, cadmium, cobalt, chrome, lead, nickel, zinc, arsenic, nitrate, nitrite, ammonium, orthophosphate) were measured. The water levels were strongly influenced by the extreme precipitation of the investigated period, so the maximum and minimum of groundwater levels have differed from the average. Changes of water levels followed the changes of precipitation in autumn and winter, but in spring and summer other factors, like evaporation and effects of the vegetation influenced the water regime. The relationship of different pollutants and their distribution were determined in the city. As the results show, the amount of toxic materials in the groundwater in Szeged has exceeded the limit values (according to the joint decree) in many cases. The groundwater is contaminated with lead, nickel, copper, zinc, arsenic, nitrate, ammonium and orthophosphate mainly in the downtown, close to the river Tisza, which can cause ecological and human-health risk as well. In outskirts lowest concentrations were detected. Significant statistical relationship, used Spearman's rank correlation, was determined among the siderophile (namely chrome and nickel), chalcophile elements

  4. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  5. Rotation of Boar Semen Doses During Storage Affects Sperm Quality.

    PubMed

    Schulze, M; Rüdiger, K; Waberski, D

    2015-08-01

    It is common practice to rotate boar semen doses during storage for prevention of sperm sedimentation. In this study, the effect of rotation of boar semen doses during storage on sperm quality was investigated. Manual turning twice daily and automatic rotation five times per hour resulted in the following effects: alkalinization of the BTS-extender, loss of membrane integrity at day 3, and loss of motility and changes in sperm kinematics during a thermoresistance test at day 5. Using a pH-stabilized variant of BTS extender, sperm motility and velocity decreased in continuously rotated samples, whereas membrane integrity and mitochondrial activity remain unaffected. It is concluded that rotation of semen samples adversely affects sperm quality and, therefore, should no longer be recommended for AI practice. PMID:25974759

  6. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-01

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting 3H samples in groundwater over 27 years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean 3H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 μg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important.

  7. Subjective quality of life in war-affected populations

    PubMed Central

    2013-01-01

    Background Exposure to traumatic war events may lead to a reduction in quality of life for many years. Research suggests that these impairments may be associated with posttraumatic stress symptoms; however, wars also have a profound impact on social conditions. Systematic studies utilising subjective quality of life (SQOL) measures are particularly rare and research in post-conflict settings is scarce. Whether social factors independently affect SQOL after war in addition to symptoms has not been explored in large scale studies. Method War-affected community samples were recruited through a random-walk technique in five Balkan countries and through registers and networking in three Western European countries. The interviews were carried out on average 8 years after the war in the Balkans. SQOL was assessed on Manchester Short Assessment of Quality of Life - MANSA. We explored the impact of war events, posttraumatic stress symptoms and post-war environment on SQOL. Results We interviewed 3313 Balkan residents and 854 refugees in Western Europe. The MANSA mean score was 4.8 (SD = 0.9) for the Balkan sample and 4.7 (SD = 0.9) for refugees. In both samples participants were explicitly dissatisfied with their employment and financial situation. Posttraumatic stress symptoms had a strong negative impact on SQOL. Traumatic war events were directly linked with lower SQOL in Balkan residents. The post-war environment influenced SQOL in both groups: unemployment was associated with lower SQOL and recent contacts with friends with higher SQOL. Experiencing more migration-related stressors was linked to poorer SQOL in refugees. Conclusion Both posttraumatic stress symptoms and aspects of the post-war environment independently influence SQOL in war-affected populations. Aid programmes to improve wellbeing following the traumatic war events should include both treatment of posttraumatic symptoms and social interventions. PMID:23819629

  8. Groundwater quality & sustainability in Ulaanbaatar, the fast growing Capital of Mongolia

    NASA Astrophysics Data System (ADS)

    Batsaikhan, N.; Woo, N. C.; Nemer, B.

    2011-12-01

    About 40% (1.1 million out of 2.7 million total) of Mongolian population lives in the capital city, Ulaanbaatar. The city's drinking water totally depends on groundwater pumped from the alluvial aquifer along the Tuul River and some private wells for domestic usage. As a measure to evaluate groundwater conditions, a total 55 samples from groundwater and surface waters were collected in the public central well-field and its adjacent area from August 2010 to Feb. 2011, for characteristics of water chemistry and environmental isotopic signatures. The water types were classified with Ca-Mg-HCO3, Ca-Na-HCO3 and Ca-HCO3 in summer, but predominantly Ca-HCO3 in winter. Statistical analysis of water compositions shows two groups of water: group-A waters from the Public central supply well-field with Tuul river waters, and group-B from other area including Ger dwelling areas. In terms of water quality, nitrate concentrations exceeded the WHO Guidelines for drinking-water quality (50 mg/l) in 55% (15 out of 27 samples) of the group-B; it implies that the potential sources of groundwater contamination be domestic waste-disposal practices and underdeveloped sewage systems. Environmental isotopes and water-level monitoring data indicated that shallow wells, showing the depth to water less than 3 m bgs, appear to be directly recharged from rainfalls and river water. In contrast, wells with the depth to water in between 5 and 7 m and located some distance from Tuul River take approximately 2 to 3 months to be recharged in rainy season. Since Ulaanbaatar has been growing fast as the Capital of Mongolia, various types of potential sources of groundwater contamination have also been located inside the city boundary including tanning industries, coal-based thermal power plants, gas stations, etc. Thus, for the sustainable development of the Capitol, it is warranted to develop better management measures with long-term and systematic monitoring to protect water-supply sources.

  9. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N. S.; Kaliraj, S.

    2014-12-01

    A total of 20 groundwater samples were collected from both dug and bore wells of southern Tiruchirappalli district and analyzed for various hydrogeochemical parameters. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking and irrigational uses. The results of the chemical analysis indicates that the groundwater in the study area is slightly alkaline and mainly contains Na+, Ca2+, and Mg2+ cations as well as HCO3 2-, Cl-, SO4 2-and NO3 - anions. The total dissolved solids mainly depend on the concentration of major ions such as Ca, Mg, Na, K, HCO3, Cl, and SO4. Based on TDS, 55 % of the samples are suitable for drinking and rest of the samples are unsuitable for drinking. The total hardness indicates that majority of the groundwater samples are found within the permissible limit of WHO. The dominant hydrochemical facies for groundwater are Ca-Mg-Cl, Ca-HCO3, and Ca-Cl type. The USSL graphical geochemical representation of groundwater quality suggests that majority of the water samples belongs to high medium salinity with low alkali hazards. The Gibb's plot indicates that the groundwater chemistry of the study area is mainly controlled by evaporation and rock-water interaction. Spearman's correlation and factor analysis were used to distinguish the statistical relation between different ions and contamination source in the study area.

  10. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    PubMed

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. PMID:23673956

  11. Baseline evaluation of groundwater quality in central New York prior to shale gas development

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; Creamer, A.; Walter, T.; Rahm, B.

    2012-12-01

    Though New York State has had some conventional natural gas drilling for over a century, new drilling technologies are being considered to access potentially vast natural gas resources in the Marcellus shale formation. In order to economically harvest the gas trapped within this formation, high-volume slickwater hydraulic fracturing ("fracking") technology is being combined with horizontal drilling techniques. Currently this practice is prevented by a moratorium in New York as potential environmental impacts of the process are being considered. One of the biggest concerns is the potential for groundwater contamination by either chemicals used in the hydraulic fracturing process or by methane gas. In the event that this technology is allowed in New York, it is critical that we have baseline water quality data to adequately assess the source of groundwater contamination. We collected such baseline data across Chenango County in central New York. Specifically, we collected groundwater samples from 120 homes across the county and analyzed them for dissolved solids and dissolved gases. We are using geostatistical methods on all sampled constituents to determine the natural baseline patterns observed across the county. We are also regressing analytes with a variety of ancillary characteristics including distance from existing conventional gas wells, topography, etc. Establishing a baseline for the metals and salts in these water samples will allow future assessment of contamination from fracking fluid. Results from dissolved gases provides information on how much methane is currently dissolved in the water as well as its source, which is determined by assessing the δ13C-CH4 composition of the methane. Gathering information such as this is essential to understanding the current state of our groundwater resources and thus being able to better assess any future impacts on these resources from issues such as gas drilling.

  12. Factors affecting quality of dried low-rank coals

    SciTech Connect

    Karthikeyan, M.; Kuma, J.V.M.; Hoe, C.S.; Ngo, D.L.Y.

    2007-07-01

    The chemical and physical properties of coal are strongly affected by the upgrading process employed. For high-moisture coals, upgrading involves thermal dehydration to improve the calorific value of the coal on mass basis. This study evaluates the feasibility of upgrading a low-rank/grade coal using the oven drying method. The objective of this research work is to study the drying characteristics of low-rank coals and to understand the factors affecting the quality of dried low-rank coals. This article describes laboratory experiments conducted on the characterization of the low-rank coals before and after the drying process. The results on drying kinetics, re-absorption of coal samples, and proximate analysis of coal samples before and after drying are discussed. It was found that the upgrading process produced coal with better heating value and combustion characteristics than those of the raw coal samples.

  13. Ground-water levels and water-quality data from monitoring wells in Windham, Maine, water years 1997-2001

    USGS Publications Warehouse

    Caldwell, J.M.

    2002-01-01

    Ongoing data collection in an established well network in Windham, Maine, serves as an indicator of the hydrologic and water-quality conditions in the aquifer. This report presents data collected from 1997 through 2001, including ground-water levels, measurements of water-quality field parameters, and concentrations of nutrients and arsenic.

  14. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    SciTech Connect

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  15. Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China.

    PubMed

    Li, Peiyue; Wu, Jianhua; Qian, Hui

    2012-08-01

    In order to enrich and improve the groundwater quality assessment system, a new coupled assessment model based on rough set attribute reduction and the technique for order preference by similarity to ideal solution (TOPSIS) was proposed. The proposed model was applied in the groundwater quality assessment of a semi-arid area, northwest China. The results show that most chemical indices except NH (4) (+) , F(-), and Mn meet the Standards for Drinking Water of China and the groundwater quality overall is good. All assessed water samples are found to be fit for human consumption according to the comprehensive assessment results. Rough set attribute reduction for groundwater quality assessment is practical. The assessment results after attribute reduction show a good consistency with those before attribute reduction. Rough set attribute reduction and TOPSIS evaluation coupled model is clear in ideas and simple in calculation, and evaluation results are reasonable as well. The coupled model can be applied to solve many multiple criteria decision making problems such as groundwater quality assessment. PMID:21894505

  16. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.

    2015-12-01

    In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.

  17. Geology, hydrology, water quality, and potential for interbasin invasive-species spread by way of the groundwater pathway near Lemont, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Jackson, P. Ryan

    2016-01-01

    walls, which indicate that the secondary-permeability features are completely filled with Pennsylvanian sediments within a few feet of the canal wall.Water-level data indicate the potential for flow from the DPR into the Silurian aquifer in the focus area, then from the aquifer to the CSSC. Water-level data also indicate that the fractures within the aquifer in the focus area are hydraulically well connected to the CSSC but not to the DPR, indicating that flow from the DPR to the groundwater system may not be substantial or rapid.Water-quality data in the CSSC and the DPR show similar values and trends and are affected by diel and longer term variations in climate and precipitation. However, the values and trends in water quality in the groundwater system tended to be substantially different from those in the DPR and the CSSC, indicating that the DPR and the CSSC do not appreciably recharge the groundwater system. Water-quality and flow data do indicate that groundwater discharges to the CSSC in part of the focus area. The absence of substantial hydraulic interaction between the groundwater and the DPR is supported by the absence of detectable concentrations of the dye tracer added to the DPR in groundwater in the focus area, which indicates that water from the DPR requires more than 2 weeks to move into the monitored parts of the groundwater system under approximately typical hydraulic conditions. The totality of the data indicates that there is minimal potential for the inter-basin spread of Asian carps by way of the groundwater pathway between Romeo Road and Stickney, Illinois.

  18. Groundwater-quality data for the Sierra Nevada study unit, 2008: Results from the California GAMA program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Munday, Cathy M.; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 25,500-square-mile Sierra Nevada study unit was investigated in June through October 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Sierra Nevada study was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in the study unit, and to facilitate statistically consistent comparisons of groundwater quality throughout California. The primary aquifer systems (hereinafter, primary aquifers) are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for public and community drinking-water supplies. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. In the Sierra Nevada study unit, groundwater samples were collected from 84 wells (and springs) in Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine, Calaveras, Tuolumne, Madera, Mariposa, Fresno, Inyo, Tulare, and Kern Counties. The wells were selected on two overlapping networks by using a spatially-distributed, randomized, grid-based approach. The primary grid-well network consisted of 30 wells, one well per grid cell in the study unit, and was designed to provide statistical representation of groundwater quality throughout the entire study unit. The lithologic grid-well network is a secondary grid that consisted of the wells in the primary grid-well network plus 53 additional wells and was designed to provide statistical representation of groundwater quality in each of the four major lithologic units in the Sierra

  19. Areal studies aid protection of ground-water quality in Illinois, Indiana, and Wisconsin

    USGS Publications Warehouse

    Mills, Patrick C.; Kay, Robert T.; Brown, Timothy A.; Yeskis, Douglas J.

    1999-01-01

    In 1991, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, initiated studies designed to characterize the ground-water quality and hydrogeology in northern Illinois, and southern and eastern Wisconsin (with a focus on the north-central Illinois cities of Belvidere and Rockford, and the Calumet region of northeastern Illinois and northwestern Indiana). These areas are considered especially susceptible to ground-water contamination because of the high density of industrial and waste-disposal sites and the shallow depth to the unconsolidated sand and gravel aquifers and the fractured, carbonate bedrock aquifers that underlie the areas. The data and conceptual models of ground-water flow and contaminant distribution and movement developed as part of the studies have allowed Federal, State, and local agencies to better manage, protect, and restore the water supplies of the areas. Water-quality, hydrologic, geologic, and geophysical data collected as part of these areal studies indicate that industrial contaminants are present locally in the aquifers underlying the areas. Most of the contaminants, particularly those at concentrations that exceeded regulatory water-quality levels, were detected in the sand and gravel aquifers near industrial or waste-disposal sites. In water from water-supply wells, the contaminants that were present generally were at concentrations below regulatory levels. The organic compounds detected most frequently at concentrations near or above regulatory levels varied by area. Trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane (volatile chlorinated compounds) were most prevalent in north-central Illinois; benzene (a petroleum-related compound) was most prevalent in the Calumet region. Differences in the type of organic compounds that were detected in each area likely reflect differences in the types of industrial sites that predominate in the areas. Nickel and aluminum were the trace metals

  20. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    NASA Astrophysics Data System (ADS)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  1. Spatial variability of groundwater quality of Sabour block, Bhagalpur district (Bihar, India)

    NASA Astrophysics Data System (ADS)

    Verma, D. K.; Bhunia, Gouri Sankar; Shit, Pravat Kumar; Kumar, S.; Mandal, Jajati; Padbhushan, Rajeev

    2016-01-01

    This paper examines the quality of groundwater of Sabour block, Bhagalpur district of Bihar state, which lies on the southern region of Indo-Gangetic plains in India. Fifty-nine samples from different sources of water in the block have been collected to determine its suitability for drinking and irrigational purposes. From the samples electrical conductivity (EC), pH and concentrations of Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), carbonate ion (CO{3/2-}), Bicarbonate ion (HCO{3/-}), Chloride ion (Cl-), and Fluoride (F-) were determined. Surface maps of all the groundwater quality parameters have been prepared using radial basis function (RBF) method. RBF model was used to interpolate data points in a group of multi-dimensional space. Root Mean Square Error (RMSE) is employed to scrutinize the best fit of the model to compare the obtained value. The mean value of pH, EC, Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, and F- are found to be 7.26, 0.69, 38.98, 34.20, 16.92, 1.19, 0.02, and 0.28, respectively. Distribution of calcium concentration is increasing to the eastern part and K+ concentrations raise to the downstream area in the southwestern part. Low pH concentrations (less than 6.71) occur in eastern part of the block. Spatial variations of hardness in Sabour block portraying maximum concentration in the western part and maximum SAR (more than 4.23) were recorded in the southern part. These results are not exceeding for drinking and irrigation uses recommended by World Health Organization. Therefore, the majority of groundwater samples are found to be safe for drinking and irrigation management practices.

  2. Hydro-chemical Survey and Quantifying Spatial Variations of Groundwater Quality in Dwarka, Sub-city of Delhi, India

    NASA Astrophysics Data System (ADS)

    Rawat, Kishan Singh; Tripathi, Vinod Kumar

    2015-06-01

    Hydrological and geological aspect of the region play vital role for water resources utilization and development. Protection and management of groundwater resources are possible with the study of spatio-temporal water quality parameters. The study was undertaken to assess the deterioration in groundwater quality, through systematic sampling during post monsoon seasons of the year 2008 by collecting water samples from thirty bore wells located in Dwarka, sub-city of Delhi, India. The average concentrations of groundwater quality parameters namely Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO3 -), Chloride (Cl-), sulphate (SO4 2-), total hardness (TH), total dissolved solids (TDS), and electrical conductivity were 300, 178, 26.5, 301, 103, 483, 1042 mg/l and 1909 μS/cm respectively. Estimated physico-chemical parameters revealed that 7 % of the groundwater samples shown nitrate concentrations higher than safe limit prescribed by World Health Organization (WHO). Groundwater quality the in study region was poor due to come out result that NO3 - concentration exceeding the threshold value of 50 mg/l, and main cause is disposal of sewage and animal wastes to Najafgarh drain. Dominant cations are Mg2+, Ca2+ and anions are SO4 2- and Cl-. The abundance of the major ions in groundwater is in the order: Ca2+ > Mg2+ and Cl- > SO4 2- > NO3. TH have strong correlation with Ca2+ (r = 0.81), Mg2+ (r = 0.82), Cl- (r = 0.86) but poor correlation with TDS (r = 0.52). Knowledge of correlation values between water quality parameters is helpful to take decision of appropriate management strategy for controlling groundwater pollution.

  3. Impacts of Human Activities on Groundwater Quality of an Alluvial Aquifer: A Case Study of the Eskişehir Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Kaçaroğlu, Fikret; Günay, Gültekin

    1997-04-01

    Hydrochemical and water-quality (except biological) data obtained through a two-year sampling and analysis program indicate that the highest concentrations of groundwater pollution occur in the central and eastern parts of Eskişehir city. Groundwater quality degradation outside the urban area results from agricultural activities. The most serious pollution of groundwater in the Eskişehir plain is from nitrogen compounds (ammonia, nitrite, and nitrate). The concentrations of ammonia, nitrite, and nitrate of the 51 surveyed water wells range from 0.01-1.65 mg/L, 0.01-1.80 mg/L, and 1.1-257.0 mg/L, respectively. Orthophosphate concentrations in groundwater range from 0.01-1.25 mg/L. Considerable seasonal fluctuation in the groundwater quality was observed. In general, the groundwater quality in wet seasons was better than the quality in dry seasons.

  4. Groundwater-Quality Data in the South Coast Interior Basins Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity

  5. Ground-water quality in the upper Santa Ana River basin, southern California

    USGS Publications Warehouse

    Eccles, Lawrence A.

    1979-01-01

    The principal ground-water quality problems in the Santa Ana River basin, as determined from two samplings (1968-69 and 1977-78), are high concentrations of dissolved solids in general and nitrate-nitrogen in particular. The distribution of dissolved solids exceeding 800 milligrams per liter was smaller in area in 1977-78 than in 1968-69. Distribution of nitrate-nitrogen exceeding 10 milligrams per liter was larger in area in 1977-78 than in 1968-69. Concentrations of dissolved solids and nitrate-nitrogen decreased with depth. The network of wells used in the 1977-78 sampling program provides only a general appraisal of overall quality for most of the upper Santa Ana River basin. It is not adequate for detailed appraisals of specific problem areas because it lacks sufficient areal coverage and construction information for the wells sampled. (Kosco-USGS)

  6. Surface and groundwater quality in the northeastern region of Buenos Aires Province, Argentina

    NASA Astrophysics Data System (ADS)

    Galindo, G.; Sainato, C.; Dapeña, C.; Fernández-Turiel, J. L.; Gimeno, D.; Pomposiello, M. C.; Panarello, H. O.

    2007-04-01

    This work studies the water quality of the Pergamino-Arrecifes River zone in the Rolling Pampa, northeast Buenos Aires Province, Argentina. Temperature, pH, specific conductivity, Na, K, Mg, Ca, SO42-, Cl -, HCO3-, NO3-, Si, Ag, Al, As, B, Ba, Be, Br, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, P, Pb, Se, Tl, U, V, Zn, and the environmental stable δ18O and δ2H isotope ratios were determined in 18 sampling stations. Natural and anthropogenic features influence surface and groundwater quality. Point pollution sources (septic wells and other domestic and farming effluents) increase the nitrate concentration. The values of pH, NO3-, Al, As, B, Fe, and Mn exceed the respective Argentine reference thresholds in different sampling stations for human drinking water; B, Mo, U, and V for irrigation; and V and Zn for cattle consumption.

  7. Groundwater quality surrounding Lake Texoma during short-term drought conditions

    USGS Publications Warehouse

    Kampbell, D.H.; An, Y.-J.; Jewell, K.P.; Masoner, J.R.

    2003-01-01

    Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought.

  8. Groundwater bills

    NASA Astrophysics Data System (ADS)

    U.S. lawmakers have become concerned about groundwater problems in the United States, and thus the contamination of groundwater is rapidly becoming one of the hottest issues of 1987 and probably for many years into the future. The 100th Congress has seen a proliferation of bills relating to various problems involving groundwater: need for more data, funding of research, and development of standards for groundwater quality. Because round 50% of the nation's drinking water is obtained from groundwater, the available support is dependent not only upon the available quantity but also on the quality of that supply.Because groundwater quality in general and groundwater contamination in particular provides such complex problems, final legislation probably will emphasize more research and more data collection. At present, a bill, the National Ground Water Contamination Research Act, has been introduced in the House of Representatives by Rep. Sam Gejdenson (D-Conn.), and a companion bill has been introduced in the Senate by Sen. David Durenberger (R-Minn.). These bills renew action on a groundwater research bill that passed the House but not the Senate near the end of the 99th Congress. The bills address not only research but also promote a national program for the assessment of groundwater quality and a national clearinghouse for groundwater information.

  9. Determination of groundwater quality index of a highland village of Kerala (India) using Geographical Information System.

    PubMed

    Rejith, P G; Jeeva, S P; Vijith, H; Sowmya, M; Hatha, A A Mohamed

    2009-06-01

    In this study, the authors' goal was to understand the groundwater quality of Nedumkandam panchayat by an integrated approach of traditional water quality analysis and Geographical Information Systems (GIS). Fourteen wells were identified from the study area and samples were collected and analyzed using standard protocols (American Public Health Association, 1998). Parameters analyzed include pH, hardness, nitrate, chloride, sulfate, phosphate, trace metals (cadmium, zinc, copper, and lead), and fecal coliforms. All parameters except pH, cadmium, and fecal coliforms were within the limit of drinking water quality standards prescribed by the Bureau of Indian Standards (BIS) (BIS, 1983). The spatial distribution of physico-chemical and biological parameters was analyzed using the Inverse Distance Weighted (IDW) approach and the maps thus obtained were integrated using the raster calculator option of spatial analyst in ArcGIS 8.3 software, and a water quality index (WQI) was calculated. Based on the WQI values, the study area was divided into poor, moderate, and good water quality zones. PMID:19537647

  10. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    USGS Publications Warehouse

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    The effects of highway-deicer application on ground-water quality were studied at a site in northwestern Indiana using a variety of geochemical indicators. Site characteristics such as high snowfall rates; large quantities of applied deicers; presence of a high-traffic highway; a homogeneous, permeable, and unconfined aquifer; a shallow water table; a known ground-water-flow direction; and minimal potential for other sources of chloride and sodium to complicate source interpretation were used to select a study area where ground water was likely to be affected by deicer application. Forty-three monitoring wells were installed in an unconfined sand aquifer (the Calumet aquifer) near Beverly Shores in northwestern Indiana. Wells were installed along two transects that approximately paralleled groundwater flow in the Calumet aquifer and crossed US?12. US?12 is a highway that receives Indiana?s highest level of maintenance to maintain safe driving conditions. Ground-water quality and water-level data were collected from the monitoring wells, and precipitation and salt-application data were compiled from 1994 through 1997. The water-quality data indicated that chloride was the most easily traced indicator of highway deicers in ground water. Concentration ratios of chloride to iodide and chloride to bromide and Stiff diagrams of major element concentrations indicated that the principal source of chloride and sodium in ground water from the uppermost one-third to one-half of the Calumet relative electromagnetic conductivity defined a distinct plume of deicer-affected water in the uppermost 8 feet of aquifer at about 9 feet horizontally from the paved roadway edge and a zone of higher conductivity than background in the lower one-third of the aquifer. Chloride and sodium in the deep parts of the aquifer originated from natural sources. Chloride and sodium from highway deicers were present in the aquifer throughout the year. The highest concentrations of chloride and sodium

  11. Shallow ground-water quality adjacent to burley tobacco fields in northeastern Tennessee and southwestern Virginia, spring 1997

    USGS Publications Warehouse

    Johnson, G.C.; Connell, J.F.

    2001-01-01

    In 1994, the U.S. Geological Survey began an assessment of the upper Tennessee River Basin as part of the National Water-Quality Assessment (NAWQA) Program. A ground-water land-use study conducted in 1996 focused on areas with burley tobacco production in northeastern Tennessee and southwestern Virginia. Land-use studies are designed to focus on specific land uses and to examine natural and human factors that affect the quality of shallow ground water underlying specific types of land use. Thirty wells were drilled in shallow regolith adjacent to and downgradient of tobacco fields in the Valley and Ridge Physiographic Province of the upper Tennessee River Basin. Ground-water samples were collected between June 4 and July 9, 1997, to coincide with the application of the majority of pesticides and fertilizers used in tobacco production. Ground-water samples were analyzed for nutrients, major ions, 79 pesticides, 7 pesticide degradation products, 86 volatile organic compounds, and dissolved organic carbon. Nutrient concentrations were lower than the levels found in similar NAWQA studies across the United States during 1993-95. Five of 30 upper Tennessee River Basin wells (16.7 percent) had nitrate levels exceeding 10 mg/L while 19 percent of agricultural land-use wells nationally and 7.9 percent in the Southeast had nitrate concentrations exceeding 10 mg/L. Median nutrient concentrations were equal to or less than national median concentrations. All pesticide concentrations in the basin were less than established drinking water standards, and pesticides were detected less frequently than average for other NAWQA study units. Atrazine was detected at 8 of 30 (27 percent) of the wells, and deethylatrazine (an atrazine degradation product) was found in 9 (30 percent) of the wells. Metalaxyl was found in 17 percent of the wells, and prometon, flumetralin, dimethomorph, 2,4,5-T, 2,4-D, dichlorprop, and silvex were detected once each (3 percent). Volatile organic compounds

  12. Accessing groundwater quality in lower part of Nagapattinam district, Southern India: using hydrogeochemistry and GIS interpolation techniques

    NASA Astrophysics Data System (ADS)

    Gnanachandrasamy, G.; Ramkumar, T.; Venkatramanan, S.; Vasudevan, S.; Chung, S. Y.; Bagyaraj, M.

    2015-03-01

    The aim of this present study was to evaluate groundwater quality in the lower part of Nagapattinam district, Tamil Nadu, Southern India. A detailed geochemical study of groundwater region is described, and the origin of the chemical composition of groundwater has been qualitatively evaluated, using observations over a period of two seasons premonsoon (June) and monsoon (November) in the year of 2010. To attempt this goal, samples were analysed for various physico-chemical parameters such as temperature, pH, salinity, Na+, Ca2+, K+, Mg2+, Cl-, HCO3 - and SO4 2-. The abundance of major cations concentration in groundwater is as Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3. The Piper trilinear diagram indicates Ca-Cl2 facies, and according to USSL diagram, most of the sample exhibits high salinity hazard (C3S1) type in both seasons. It indicates that high salinity (C3) and low sodium (S1) are moderately suitable for irrigation purposes. Gibbs boomerang exhibits most of the samples mainly controlled by evaporation and weathering process sector in both seasons. Irrigation status of the groundwater samples indicates that it was moderately suitable for agricultural purpose. ArcGIS 9.3 software was used for the generation of various thematic maps and the final groundwater quality map. An interpolation technique inverse distance weighting was used to obtain the spatial distribution of groundwater quality parameters. The final map classified the ground quality in the study area. The results of this research show that the development of the management strategies for the aquifer system is vitally necessary.

  13. Multilevel factors affecting quality: examples from the cancer care continuum.

    PubMed

    Zapka, Jane; Taplin, Stephen H; Ganz, Patricia; Grunfeld, Eva; Sterba, Katherine

    2012-05-01

    The complex environmental context must be considered as we move forward to improve cancer care and, ultimately, patient and population outcomes. The cancer care continuum represents several care types, each of which includes multiple technical and communication steps and interfaces among patients, providers, and organizations. We use two case scenarios to 1) illustrate the variability, diversity, and interaction of factors from multiple levels that affect care quality and 2) discuss research implications and provide hypothetical examples of multilevel interventions. Each scenario includes a targeted literature review to illustrate contextual influences upon care and sets the stage for theory-informed interventions. The screening case highlights access issues in older women, and the survivorship case illustrates the multiple transition challenges faced by patients, families, and organizations. Example interventions show the potential gains of implementing intervention strategies that work synergistically at multiple levels. While research examining multilevel intervention is a priority, it presents numerous study design, measurement, and analytic challenges. PMID:22623591

  14. How important are biogeochemical hotspots at aquifer-river interfaces for surface water and groundwater quality?

    NASA Astrophysics Data System (ADS)

    Krause, S.; Blume, T.; Weatherill, J.; Munz, M.; Tecklenburg, C.; Angermann, L.; Cassidy, N. J.

    2012-04-01

    The mixing of groundwater (GW) and surface water (SW) can have substantial impact on the transformation of solutes transported between aquifer and river. The assessment of biogeochemical cycling at reactivity hotspots as the aquifer-river interface and its implications for GW and SW quality require detailed understanding of the complex patterns of GW-SW exchange fluxes and residence time distributions in particular under changing climatic and landuse conditions. This study presents combined experimental and model-based investigations of the physical drivers and chemical controls of nutrient transport and transformation at the aquifer-river interfaces of two upland and lowland UK rivers. It combines the application of in-stream geophysical exploration techniques, multi-level mini-piezometer networks, active and passive heat tracing methods (including fibre-optic distributed temperature sensing - FO-DTS) for identifying hyporheic exchange fluxes and residence time distributions with multi-scale approaches of hyporheic pore-water sampling and reactive tracers for analysing the patterns of streambed redox conditions and chemical transformation rates. The analysis of hyporheic pore water from nested multi-level mini piezometers and passive gel probe samplers revealed significant spatial variability in streambed redox conditions and concentration changes of nitrogen species, dissolved oxygen and bio-available organic carbon. Hot spots of increased nitrate attenuation were identified beneath semi-confining peat lenses in the streambed of the investigated lowland river. The intensity of concentration changes underneath the confining peat pockets correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break-through of nitrate without significant concentration changes along

  15. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  16. Leaching and primary biodegradation of sulfonated naphthalenes and their formaldehyde condensates from concrete superplasticizers in groundwater affected by tunnel construction.

    PubMed

    Ruckstuhl, Sabine; Suter, Marc J F; Kohler, Hans-Peter E; Giger, Walter

    2002-08-01

    Sulfonated naphthalenes and their formaldehyde condensates (SNFC) are used as concrete superplasticizers fortunnel construction through aquifers.This paperdiscusses their primary biodegradation in groundwater affected by construction activities. The analyses of groundwater samples collected 5 m away from a construction site clearly indicated that components of the applied SNFC product leached into the groundwater. A maximum total concentration of these compounds of 233 microg/L was found, and it was shown that only the monomeric sulfonated naphthalenes andthe condensates uptothetetramerleached in substantial amounts. The decrease in concentration of several monomeric components could not be explained by mere dispersion but rather indicates a biological transformation in the aquifer. This was confirmed at a second field site and by laboratory degradation experiments with piezometer material as inoculum. Lag phases for the individually degradable sulfonated naphthalenes ranged from 0 to 96 d. Naphthalene-1,5-disulfonate and the oligomeric components were neither degraded in the aquifer nor in the laboratory experiments within an observation time of up to 195 d. This clearly indicates their persistence in subsurface waters. PMID:12188355

  17. Groundwater-Quality Data in the Colorado River Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the 188-square-mile Colorado River Study unit (COLOR) was investigated October through December 2007 as part of the Priority Basin Project of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and the U.S. Geological Survey (USGS) is the technical project lead. The Colorado River study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within COLOR, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 28 wells in three study areas in San Bernardino, Riverside, and Imperial Counties. Twenty wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the Study unit; these wells are termed 'grid wells'. Eight additional wells were selected to evaluate specific water-quality issues in the study area; these wells are termed `understanding wells.' The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], gasoline oxygenates and degradates, pesticides and pesticide degradates, pharmaceutical compounds), constituents of special interest (perchlorate, 1,4-dioxane, and 1,2,3-trichlorpropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents. Concentrations of naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 220 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and matrix spikes) were collected at

  18. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality

  19. Analysing Thermal Response Test Data Affected by Groundwater Flow and Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Imitazione, Gianmario; Chiozzi, Paolo; Orsi, Marco; Armadillo, Egidio

    2014-05-01

    Tests that record the underground temperature variation due to a constant heat injected into a borehole (or extracted from it) by means of a carrier fluid are routinely performed to infer subsurface thermal conductivity and borehole thermal resistance, which are needed to size geothermal heat pump systems. The most popular model to analyse temperature-time curves obtained from these tests is the infinite line source (ILS). This model gives appropriate estimations of thermal parameters only if particular hydro-geological conditions are fulfilled. Several flaws can however affect data interpretation with ILS, which is based on strong assumptions like those of a purely conductive heat transfer regime in a homogeneous medium, no vertical heat flow and infinite length of the borehole. Other drawbacks can arise from the difficulty in the proper thermal insulation of the test equipment, and consequently with oscillations of the carrier fluid temperature due to surface temperature changes. In this paper, we focused on the treatment of thermal response test data when both advection and periodic changes of surface temperature occur. We used a moving line source model to simulate temperature-time signals under different hypothesis of Darcy velocity and thermal properties. A random noise was added to the signal in order to mimic high frequency disturbances, possibly caused by equipment operating conditions and/or geological variability. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root mean square error between the synthetic dataset and the theoretical model. The optimisation was carried out with the Nelder-Mead algorithm, and thermal and hydraulic properties were determined by iterative reprocessing according to a trial-and-error procedure. The inferred thermal and hydraulic parameters are well consistent with the 'a priory' values, and the presence of noise in the synthetic data does not produce

  20. Geospatial modelling for groundwater quality mapping: a case study of Rupnagar district, Punjab, India

    NASA Astrophysics Data System (ADS)

    Sahoo, S.; Kaur, A.; Litoria, P.; Pateriya, B.

    2014-11-01

    Over period of time, the water usage and management is under stress for various reasons including pollution in both surface and subsurface. The groundwater quality decreases due to the solid waste from urban and industrial nodes, rapid use of insecticides and pesticides in agricultural practices. In this study, ground water quality maps for Rupnagar district of Punjab has been prepared using geospatial interpolation technique through Inverse Distance Weighted (IDW) approach. IDW technique has been used for major ground water quality parameters observed from the field samples like Arsenic, Hardness, pH, Iron, Fluoride, TDS, and Sulphate. To assess the ground water quality of the Rupnagar district, total 280 numbers of samples from various sources of tubewells for both pre and post monsoon have collected. Out of which, 80 to 113 samples found Iron with non potable limits ranging 0.3-1.1mg/l and 0.3-1.02mg/l according to BIS standard for both the seasons respectively. Chamkaur Sahib, Rupnagar, Morinda blocks have been found non potable limit of iron in both pre & post-monsoon. 11 to 52 samples in this region have sulphate with permissible limits in both the season ranging 200-400mg/l and 201-400mg/l. But arsenic had acceptable limit in both the season. Various parameters-wise ground water quality map is generated using the range values of drinking water quality to know the distribution of different parameters and diversification in the concentration of different elements. These maps are very much needful for human being to expand awareness among the people to maintain the Cleanness of water at their highest quality and purity levels to achieve a healthy life.

  1. A scientifically based nationwide assessment of groundwater quality in the United States

    USGS Publications Warehouse

    Alley, W.M.; Cohen, P.

    1991-01-01

    Beginning in 1986, the U.S. Geological Survey began an effort to develop a National Water-Quality Assessment Program. The basic premise underlying this initiative is that a better understanding of the quality of water resources across the country, both surface- and groundwater, is needed to develop effective programs and policies to meet the nation's water-quality concerns. The program will focus on water-quality conditions that are prevalent or large in scale, such as occur from nonpoint sources of pollution or from a high density of point sources. The design of the program is substantially different from the traditional approach of a diffuse national monitoring network. The major activities of the assessment program will be clustered within a set of hydrologic systems (river basins and aquifer systems), referred to as study units. In aggregate, the study units will account for a large part of the nation's water use and represent a wide range of settings across the country. Unique attributes of the program include: (1) the use of consistent study approaches, field and laboratory methods, water-quality measurements, and ancillary data measurements for all study units; (2) the development of a progressive understanding of water-quality conditions and trends in each study unit through long-term studies that rotate periods of intensive data collection and analysis with periods during which the assessment activities are less intensive; and (3) the focus of considerable effort on synthesizing results from among the study units to provide information on regional and national water-quality issues. ?? 1991 Springer-Verlag New York Inc.

  2. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi. PMID:24459990

  3. Parameters affecting greywater quality and its safety for reuse.

    PubMed

    Maimon, Adi; Friedler, Eran; Gross, Amit

    2014-07-15

    Reusing greywater (GW) for on-site irrigation is becoming a common practice worldwide. Alongside its benefits, GW reuse might pose health and environmental risks. The current study assesses the risks associated with on-site GW reuse and the main factors affecting them. GW from 34 households in Israel was analyzed for physicochemical parameters, Escherichia coli (as an indicator for rotavirus), Pseudomonas aeruginosa and Staphylococcus aureus. Each participating household filled out a questionnaire about their GW sources, treatment and usages. Quantitative microbial risk assessment (QMRA) was performed based on the measured microbial quality, and on exposure scenarios derived from the questionnaires and literature data. The type of treatment was found to have a significant effect on the quality of the treated GW. The average E. coli counts in GW (which exclude kitchen effluent) treated by professionally-designed system resulted in acceptable risk under all exposure scenarios while the risk from inadequately-treated GW was above the accepted level as set by the WHO. In conclusion, safe GW reuse requires a suitable and well-designed treatment system. A risk-assessment approach should be used to adjust the current regulations/guidelines and to assess the performance of GW treatment and reuse systems. PMID:24751591

  4. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States.

    PubMed

    Ayotte, Joseph D; Belaval, Marcel; Olson, Scott A; Burow, Karen R; Flanagan, Sarah M; Hinkle, Stephen R; Lindsey, Bruce D

    2015-02-01

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently received less attention than other aspects. For this study, we analyzed 1245 wells with two samples per well. We suggest that temporal variability, often reported as affecting very few wells, is perhaps a larger issue than it appears and has been overshadowed by datasets with large numbers of non-detect data. Although there was only a slight difference in arsenic concentration variability among samples from public and private wells (p=0.0452), the range of variability was larger for public than for private wells. Further, we relate the variability we see to geochemical factors-primarily variability in redox-but also variability in major-ion chemistry. We also show that in New England there is a weak but statistically significant indication that seasonality may have an effect on concentrations, whereby concentrations in the first two quarters of the year (January-June) are significantly lower than in the second two quarters (July-December) (p<0.0001). In the Central Valley of California, the relation of arsenic concentration to season was not statistically significant (p=0.4169). In New England, these changes appear to follow groundwater levels. It is possible that this difference in arsenic concentrations is related to groundwater level changes, pumping stresses, evapotranspiration effects, or perhaps mixing of more oxidizing, lower pH recharge water in wetter months. Focusing on the understanding the geochemical conditions in aquifers where arsenic concentrations are concerns and causes of geochemical changes in the groundwater environment may lead to a better understanding of where and by how much arsenic will vary over time. PMID:24650751

  5. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States

    USGS Publications Warehouse

    Ayotte, Joseph D.; Belaval, Marcel; Olson, Scott A.; Burow, Karen R.; Flanagan, Sarah M.; Hinkle, Stephen R.; Lindsey, Bruce D.

    2014-01-01

    The occurrence of arsenic in groundwater is a recognized environmental hazard with worldwide importance and much effort has been focused on surveying and predicting where arsenic occurs. Temporal variability is one aspect of this environmental hazard that has until recently received less attention than other aspects. For this study, we analyzed 1245 wells with two samples per well. We suggest that temporal variability, often reported as affecting very few wells, is perhaps a larger issue than it appears and has been masked by datasets with large numbers of non-detect data. Although there was only a slight difference in arsenic concentration variability among samples from public and private wells (p = 0.0452), the range of variability was larger for public than for private wells. Further, we relate the variability we see to geochemical factors—primarily variability in redox—but also variability in pH and major-ion chemistry. We also show that in New England there is a weak but statistically significant indication that seasonality may have an effect on concentrations, whereby concentrations in the first two quarters of the year (January–June) are significantly lower than in the second two quarters (July–December) (p < 0.0001). In the Central Valley of California, though not statistically significant (p = 0.4169), arsenic concentration is lower in the first quarter of the year but increases in subsequent quarters. In both regions, these changes appear to follow groundwater levels. It is possible that this difference in arsenic concentrations is related to groundwater level changes, pumping stresses, evapotranspiration effects, or perhaps mixing of more oxidizing, lower pH recharge water in wetter months. Focusing on the understanding the geochemical conditions in aquifers where arsenic concentrations are concerns and causes of geochemical changes in the groundwater environment may lead to a better understanding of where and by how much arsenic will vary over

  6. Contemporary Quality of Life Issues Affecting Gynecologic Cancer Survivors

    PubMed Central

    Carter, Jeanne; Penson, Richard; Barakat, Richard; Wenzel, Lari

    2015-01-01

    Gynecologic cancers account for approximately 11% of the newly diagnosed cancers in women in the United States and 18% in the world.1 The most common gynecologic malignancies occur in the uterus and endometrium (53%), ovary (25%), and cervix (14%).2 Cervical cancer is most prevalent in premenopausal women, during their childbearing years, whereas uterine and ovarian cancers tend to present in the perimenopausal or menopausal period. Vaginal and vulvar cancers and malignancies arising from gestation, or gestational trophoblastic neoplasms, occur to a lesser extent. Regardless of cancer origin or age of onset, the disease and its treatment can produce short- and long-term sequelae (ie, sexual dysfunction, infertility, or lymphedema) that adversely affect quality of life (QOL). This article outlines the primary contemporary issues or concerns that may affect QOL and offers strategies to offset or mitigate QOL disruption. These contemporary issues are identified within the domains of sexual functioning, reproductive issues, lymphedema, and the contribution of health-related QOL (HRQOL) in influential gynecologic cancer clinical trials. PMID:22244668

  7. Groundwater levels and water quality during a 96-hour aquifer test in Pickaway County, Ohio, 2012

    USGS Publications Warehouse

    Haefner, Ralph J.; Runkle, Donna L.; Mailot, Brian E.

    2014-01-01

    During October–November 2012, a 96-hour aquifer test was performed at a proposed well field in northern Pickaway County, Ohio, to investigate groundwater with elevated nitrate concentrations. Earlier sampling done by the City of Columbus revealed that some wells had concentrations of nitrate that approached 10 milligrams per liter (mg/L), whereas other wells and the nearby Scioto River had concentrations from 2 to 6 mg/L. The purpose of the current test was to examine potential changes in water quality that may be expected if the site was developed into a public water-supply source; therefore, water-transmitting properties determined during a previous test were not determined a second time. Before and during the test, water-level data and water-quality samples were obtained from observation wells while a test production well was pumped at 1,300 gallons per minute. Before the test, local groundwater levels indicated that groundwater was being discharged to the nearby Scioto River, but during the test, the stream was losing streamflow owing to infiltration. Water levels declined in the pumping well, in adjacent observation wells, and in a nearby streambed piezometer as pumping commenced. The maximum drawdown in the pumping well was 29.75 feet, measured about 95 hours after pumping began. Water-quality data, including analyses for field parameters, major and trace elements, nutrients, and stable isotopes of oxygen and nitrogen in nitrate, demonstrated only small variations before and during the test. Concentrations of nitrate in five samples from the pumping well ranged from about 5.10 to 5.42 mg/L before and during the test, whereas concentrations of nitrate in five samples on or about the same sampling dates and times at a monitoring site on the Scioto River adjacent to the pumping well ranged from 3.46 to 4.97 mg/L. Water from two nearby observation wells had nitrate concentrations approaching 10 mg/L, which is the U.S. Environmental Protection Agency’s Maximum

  8. Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi

    NASA Astrophysics Data System (ADS)

    Mkandawire, T.

    Access to adequate and safe drinking water still remains a challenge in developing countries. Some people especially in the rural areas use untreated surface and groundwater. An assessment of groundwater quality from shallow wells was carried out in nine villages in Blantyre district of Malawi. Water samples from nine randomly selected shallow wells (7 covered or protected and 2 open) were analysed for biological (total and faecal coliforms), chemical (hardness, nitrate, nitrite, sulphate, ammonia, pH, electrical conductivity and arsenic) and physical (total dissolved solids and turbidity) parameters of water using a portable water testing kit (Paqualab 50). Sampling was carried out four times during the year, i.e. twice in the dry season (August and October) and twice in the wet season (February and April) to find out if the quality of water changes with season. Results indicate that drinking water from shallow wells is heavily polluted by both total and faecal coliforms. The pollution level was higher in the wet season compared to the dry season. All the samples tested in the wet season did not meet the guideline value of 50 total coliforms (colony forming units) per 100 ml of the sample water (50 cfu/100 ml) set by the Malawi Ministry of Water Development (MoWD) for untreated water for drinking purposes (e.g. groundwater), while 22% of the samples met the guideline during the dry season. The difference in the contamination level between the dry and wet season was not significant for total coliforms ( p = 0.13 > 0.05). All chemical (hardness, nitrate, nitrite, sulphate, ammonia, pH, electrical conductivity and arsenic) and physical (total dissolved solids and turbidity) parameters tested except for turbidity were within the guideline values set by MoWD for untreated water. About 11% of the wells tested failed to meet the turbidity guideline value for the Ministry of Water Development of 25 NTU while about 22% failed to meet the World Health Organisation (WHO) and

  9. Clinical factors affecting quality of life of patients with asthma

    PubMed Central

    Uchmanowicz, Bartosz; Panaszek, Bernard; Uchmanowicz, Izabella; Rosińczuk, Joanna

    2016-01-01

    Background In recent years, there has been increased interest in the subjective quality of life (QoL) of patients with bronchial asthma. QoL is a significant indicator guiding the efforts of professionals caring for patients, especially chronically ill ones. The identification of factors affecting the QoL reported by patients, despite their existing condition, is important and useful to provide multidisciplinary care for these patients. Aim To investigate the clinical factors affecting asthma patients’ QoL. Methods The study comprised 100 patients (73 female, 27 male) aged 18–84 years (mean age was 45.7) treated in the Allergy Clinic of the Wroclaw Medical University Department and Clinic of Internal Diseases, Geriatrics and Allergology. All asthma patients meeting the inclusion criteria were invited to participate. Data on sociodemographic and clinical variables were collected. In this study, we used medical record analysis and two questionnaires: the Asthma Quality of Life Questionnaire (AQLQ) to assess the QoL of patients with asthma and the Asthma Control Test to measure asthma control. Results Active smokers were shown to have a significantly lower QoL in the “Symptoms” domain than nonsmokers (P=0.006). QoL was also demonstrated to decrease significantly as the frequency of asthma exacerbations increased (R=−0.231, P=0.022). QoL in the domain “Activity limitation” was shown to increase significantly along with the number of years of smoking (R=0.404; P=0.004). Time from onset and the dominant symptom of asthma significantly negatively affected QoL in the “Activity limitation” domain of the AQLQ (R=−0.316, P=0.001; P=0.029, respectively). QoL scores in the “Emotional function” and “Environmental stimuli” subscale of the AQLQ decreased significantly as time from onset increased (R=−0.200, P=0.046; R=−0.328, P=0.001, respectively). Conclusion Patients exhibiting better symptom control have higher QoL scores. Asthma patients’ Qo

  10. Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?

    NASA Astrophysics Data System (ADS)

    Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.

    2011-06-01

    Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.

  11. An experiment in representative ground-water sampling for water- quality analysis

    USGS Publications Warehouse

    Huntzinger, T.L.; Stullken, L.E.

    1988-01-01

    Obtaining a sample of groundwater that accurately represents the concentration of a chemical constituent in an aquifer is an important aspect of groundwater-quality studies. Varying aquifer and constituent properties may cause chemical constituents to move within selectively separate parts of the aquifer. An experiment was conducted in an agricultural region in south-central Kansas to address questions related to representative sample collection. Concentrations of selected constituents in samples taken from observation wells completed in the upper part of the aquifer were compared to concentrations in samples taken from irrigation wells to determine if there was a significant difference. Water in all wells sampled was a calcium bicarbonate type with more than 200 mg/L hardness and about 200 mg/L alkalinity. Sodium concentrations were also quite large (about 40 mg/L). There was a significant difference in the nitrite-plus-nitrate concentrations between samples from observation and irrigation wells. The median concentration of nitrite plus nitrate in water from observation wells was 5.7 mg/L compared to 3.4 mg/L in water from irrigation wells. The differences in concentrations of calcium, magnesium, and sodium (larger in water from irrigation wells) were significant at the 78% confidence level but not at the 97% confidence level. Concentrations of the herbicide, atrazine, were less than the detection limit of 0.1 micrograms/L in all but one well. (USGS)

  12. Hydrogeologic framework, ground-water quality, and simulation of ground-water flow at the Fair Lawn Well Field Superfund site, Bergen County, New Jersey

    USGS Publications Warehouse

    Lewis-Brown, Jean C.; Rice, Donald E.; Rosman, Robert; Smith, Nicholas P.

    2005-01-01

    confining units. Wells of similar depth aligned along the strike of the bedding intersect the same water-bearing units, but wells aligned along the dip of the bedding may intersect different water-bearing units. Consequently, wells aligned along strike are in greater hydraulic connection than wells aligned along dip. The Borough of Fair Lawn pumps approximately 770 million gallons per year from 13 production wells. Hydrographs from six observation wells ranging in depth from 162 to 505 feet in Fair Lawn show that water levels in much of the study area are affected by pumping. Straddle packers were used to isolate discrete intervals within six open-hole observation wells owned by the Fair Lawn Water Department. Transmissivity, water-quality, and static-water-level data were obtained from the isolated intervals. Measured transmissivity ranged from near 0 to 8,900 feet squared per day. The broad range in measured transmissivity is a result of the heterogeneity of the fractured-rock aquifer. Eight water-bearing units and eight confining units were identified in the study area on the basis of transmissivity. The water-bearing units range in thickness from 21 to 95 feet; the mean thickness is 50 feet. The confining units range in thickness from 22 to 248 feet; the mean thickness is 83 feet. Water-level and water-quality data indicate effective separation of water-bearing units by the confining units. Water-quality samples were collected from the six observation wells at 16 depth intervals isolated by the straddle packers in 2000 and 2001. Concentrations of volatile organic compounds generally were low in samples from four of the wells, but were higher in samples from a well in Fair Lawn Industrial Park and in a well in the Westmoreland well field. The digital ground-water flow model was used to simulate steady-state scenarios representing conditions in the study area in 1991 and 2000. These years were chosen because during the intervening period,

  13. Contributing recharge areas, groundwater travel time, and groundwater water quality of the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1997-2008

    USGS Publications Warehouse

    Kelly, Brian P.

    2011-01-01

    The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing

  14. Public Policy on Ground-Water Quality Protection. Proceedings of a National Conference (Virginia Polytechnic Inst. and State University, Blacksburg, Virginia, April 13-16, 1977).

    ERIC Educational Resources Information Center

    Kerns, Waldon R., Ed.

    This publication contains the papers presented at a National Conference on Ground Water Quality Protection Policy held in April of 1977. Paper titles include: (1) Magnitude of the Ground-Water Contamination Problem; (2) Limited Degredation as a Ground-Water Quality Policy; (3) Surface and Subsurface Mining: Policy Implications; (4) Oil Well…

  15. Groundwater Quality in the Shallow Aquifers of the Hadauti Plateau of the District of Baran, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Kumar, Lokesh; Rakshit, Amitava

    2014-07-01

    With the rapid pace of agricultural development, industrialization and urbanization, the commonly observed geogenic contaminants in groundwater are fluoride and nitrate, whereas nitrate is the dominant anthropogenic contaminant in the south-eastern plains of Rajasthan, India. Samples obtained using a tube well and hand pump in November, 2012, demonstrate that Na-Cl is the dominant salt in the groundwater, and the total salinity of the water is between 211-1056 mg L-1. Moreover, the observed sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) values ranged between 0.87 to 26.22 meq L-1 and -12.5 to 30.5 meq L-1 respectively. The study further shows that 6% of the total samples contain high amounts of nitrate, and 49% contain fluoride. A water quality index (WQI) rating was carried out using nine parameters to quantify the overall groundwater quality status of the area.

  16. Field demonstration of CO2 leakage detection and potential impacts on groundwater quality at Brackenridge Field Laboratory

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Yang, C.; Guzman, N.; Delgado, J.; Mickler, P. J.; Horvoka, S.; Trevino, R.

    2015-12-01

    carbonates and some silicates and mobilization of heavy metals from the aquifer sediments to groundwater, however, such mobilization posed no risks on groundwater quality at this site. The pulse-like tests have demonstrated it is plausible to use chemical sensors for CO2 leakage detection in groundwater.

  17. Lognormal kriging for the assessment of reliability in groundwater quality control observation networks

    USGS Publications Warehouse

    Candela, L.; Olea, R.A.; Custodio, E.

    1988-01-01

    Groundwater quality observation networks are examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, lognormal kriging provides estimates of the variable being sampled and a standard error of the estimate. The average and the maximum standard error within the network can be used to dynamically improve the network sampling efficiency or find a design able to assure a given reliability level. The approach does not require the formulation of any physical model for the aquifer or any actual sampling of hypothetical configurations. A case study is presented using the network monitoring salty water intrusion into the Llobregat delta confined aquifer, Barcelona, Spain. The variable chloride concentration used to trace the intrusion exhibits sudden changes within short distances which make the standard error fairly invariable to changes in sampling pattern and to substantial fluctuations in the number of wells. ?? 1988.

  18. Assessment of Groundwater Quality for Irrigation in Coimbatore South Taluk, Coimbatore District, Tamil Nadu.

    PubMed

    Murali, K; Kumar, R D Swasthik; Elangovan, R

    2014-07-01

    The study was conducted to evaluate the suitability of ground water for irrigation purpose at twenty seven locations in Coimbatore South Taluk, Coimbatore District. The analytical result shows that Na and Cl are the dominant cation and anions respectively in the groundwater. The values of TDS and EC exceed the permissible limits at some locations due to increase in ionic concentrations. Based on SAR, RSC, US Salinity diagram and Wilcox diagram it is observed that the water ranges from excellent to good quality in most of the places and can be used for irrigation without any hazard. Gibbs variation diagram indicates that lithology is main controlling factor for water chemistry. However, the high SAR and RSC values at few locations restrict suitability for irrigation purpose. PMID:26563079

  19. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York.

    PubMed

    Phillips, P J; Schubert, C; Argue, D; Fisher, I; Furlong, E T; Foreman, W; Gray, J; Chalmers, A

    2015-04-15

    Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems. The highest micropollutant concentrations from the NE network were present in samples collected from below the leach beds and in a well downgradient of the leach beds. Total concentrations for personal care/domestic use compounds, pharmaceutical compounds and plasticizer compounds generally ranged from 1 to over 20 μg/L in the NE network samples. High tris(2-butoxyethyl phosphate) plasticizer concentrations in wells beneath and downgradient of the leach beds (>20 μg/L) may reflect the presence of this compound in cleaning agents at the extended health-care facility. The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely

  20. Assessment of shallow ground-water quality in recently urbanized areas of Sacramento, California, 1998

    USGS Publications Warehouse

    Shelton, Jennifer L.

    2005-01-01

    Evidence for anthropogenic impact on shallow ground-water quality beneath recently developed urban areas of Sacramento, California, has been observed in the sampling results from 19 monitoring wells in 1998. Eight volatile organic compounds (VOCs), four pesticides, and one pesticide transformation product were detected in low concentrations, and nitrate, as nitrogen, was detected in elevated concentrations; all of these concentrations were below National and State primary and secondary maximum contaminant levels. VOC results from this study are more consistent with the results from urban areas nationwide than from agricultural areas in the Central Valley, indicating that shallow ground-water quality has been impacted by urbanization. VOCs detected may be attributed to either the chlorination of drinking water, such as trichloromethane (chloroform) detected in 16 samples, or to the use of gasoline additives, such as methyl tert-butyl ether (MTBE), detected in 2 samples. Pesticides detected may be attributed to use on household lawns and gardens and rights-of-way, such as atrazine detected in three samples, or to past agricultural practices, and potentially to ground-water/surface-water interactions, such as bentazon detected in one sample from a well adjacent to the Sacramento River and downstream from where bentazon historically was used on rice. Concentrations of nitrate may be attributed to natural sources, animal waste, old septic tanks, and fertilizers used on lawns and gardens or previously used on agricultural crops. Seven sample concentrations of nitrate, as nitrogen, exceeded 3.0 milligrams per liter, a level that may indicate impact from human activities. Ground-water recharge from rainfall or surface-water runoff also may contribute to the concentrations of VOCs and pesticides observed in ground water. Most VOCs and pesticides detected in ground-water samples also were detected in air and surface-water samples collected at sites within or adjacent to the

  1. Spatial variations of groundwater background concentrations in coastal aquifers, Korea

    NASA Astrophysics Data System (ADS)

    Hyun, Yunjung; Lee, Soojae

    2014-05-01

    In coastal aquifers the mixing between fresh terrestrial water and seawater occurs, which influences groundwater quality. Due to mixing elevated chloride concentrations are often observed in coastal aquifers. In coastal areas terrestrial water-seawater mixing can be caused by anthropogenic activities or natural factors such as tides and sea level changes. Therefore, it is difficult or even impossible to characterize groundwater background concentrations in coastal aquifers. Although it is usual to exclude coastal aquifer when characterizing background concentrations, it is essential to accurately characterize naturally-affected groundwater quality in coastal areas because groundwater is a major water resource for potable, irrigation, domestic uses. So in this work we define groundwater background concentrations as naturally occurring ambient concentrations with excluding groundwater abstraction. Based on this definition, we evaluate groundwater background concentrations in various geologic formations and analyze characteristics of groundwater quality in coastal aquifers by utilizing Groundwater Quality Monitoring System (GQMS) data. The results show that high concentrations of chloride are observed in some coastal areas but not always. Tidal effects and topographical characteristics are thought to be as factors affecting such spatial variations. In some coastal areas high concentrations of chloride are observed with high nitrate concentrations. This means that agricultural practices can attribute to anthropogenic background, leading to elevated concentrations of nitrate. These results provide some essential information for groundwater resources management in coastal areas. Further data collection and analysis is required for evaluating the effect of tide and sea level changes on groundwater quality.

  2. Hydrogeology and Ground-Water Quality, Chippewa Township, Isabella County, Michigan, 2002-05

    USGS Publications Warehouse

    Westjohn, David B.; Hoard, Chris J.

    2006-01-01

    The ground-water resource potential of Chippewa Township, Isabella County, Mich. was characterized on the basis of existing hydrogeologic data, water-level records, analyses of water samples, and interpretation of geophysical survey data. Eight ground-water samples were collected and analyzed for major ions, nutrients, and trace-metal composition. In addition, 10 direct current-resistivity soundings were collected throughout Chippewa and Coe Townships to identify potential freshwater in the aquifer system. The aquifer system includes complexly interbedded glaciofluvial, glaciolacustrine, and basal-lodgment tills, which overlie Jurassic or Pennsylvanian sedimentary rocks. In parts of the township, freshwater is present in all geologic units, but in most areas saline water is encountered near the base of Pleistocene glacial deposits and in the Jurassic or Pennsylvanian bedrock. A near-surface sheet of relatively dense basal-lodgment till likely prevents, or substantially retards, significant direct recharge of ground water to glacial and bedrock aquifers in Chippewa and adjacent townships. Glacial sands and gravels form the principal aquifer for domestic wells (97.5 percent of wells in the township). The single community water supply in the township has wells screened in glacial deposits near the base of the glacial drift. Increased withdrawals of ground water in response to increasing demand has led to a slight decline in water quality from this supply. This water-quality decline is related primarily to an increase of dissolved sulfate, which is probably a function of well depth and dissolution of gypsum, a common mineral constituent in the Jurassic 'red beds,' which form the uppermost bedrock unit throughout most of the township. One explanation for the increase in sulfate is upconing of saline water from bedrock sources, which may contain saline water.

  3. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan.

    PubMed

    Liu, Chen-Wuing; Lin, Kao-Hung; Kuo, Yi-Ming

    2003-09-01

    Factor analysis is applied to 28 groundwater samples collected from wells in the coastal blackfoot disease area of Yun-Lin, Taiwan. Correlations among 13 hydrochemical parameters are statistically examined. A two-factor model is suggested and explains over 77.8% of the total groundwater quality variation. Factor 1 (seawater salinization) includes concentrations of EC, TDS, Cl(-), SO(4)(2-), Na(+), K(+) and Mg(2+), and Factor 2 (arsenic pollutant) includes concentrations of Alk, TOC and arsenic. Maps are drawn to show the geographical distribution of the factors. These maps delineate high salinity and arsenic concentrations. The geographical distribution of the factor scores at individual wells does not reveal the sources of the constituents, which are instead, deduced from geological and hydrological evidence. The areas of high seawater salinization and arsenic pollution correspond well to the groundwater over-pumping area. Over-pumping of the local groundwater causes land subsidence and gradual salinization by seawater. The over-pumping also introduces excess dissolved oxygen that oxidizes the immobile minerals, releases arsenic by reductive dissolution of arsenic-rich iron oxyhydroxides and increases the arsenic concentration in water. The over-extraction of groundwater is the major cause of groundwater salinization and arsenic pollution in the coastal area of Yun-Lin, Taiwan. PMID:12922062

  4. Hydrochemical and microbiological quality of groundwater in the Merdja area, Tébessa, North-East of Algeria

    NASA Astrophysics Data System (ADS)

    Fehdi, Chemseddine; Rouabhia, Abdelkader; Mechai, Abdelbasset; Debabza, Manel; Abla, Khalida; Voudouris, Kostas

    2016-03-01

    The aim of this study was to perform a preliminary assessment of the hydrochemical and microbial groundwater quality of the Merdja plain (Tébessa area). Twenty samples of groundwater collected from Bekkaria (Site 1) to Ain Chabro (Site 2) were assessed for their suitability for human consumption. Groundwater from the aquifer in the Merdja area can be divided into two major groups according to geographical locations and chemical compositions. Water in the center part of the study area is characterized by the dominance of chloride, sulfate, sodium, and potassium; whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Microbiological parameters were determined in 13 groundwater samples collected from the study area. Total coliforms, thermotolerant coliforms, E. coli, Enterococcus spp., Salmonella sp., Staphylococcus spp., and P. aeruginosa were detected in 96.36, 88.18, 100, 47.5, 97.27, 96.7, and 75 % of the groundwater samples, respectively. The pollution of groundwater comes from a variety of sources, Ouadi El Kebir River, including land application of agricultural chemicals and organic wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons, and ponds used for storage.

  5. Groundwater quality and management in arid and semi-arid regions: Case study, Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Amer, Reda; Ripperdan, Robert; Wang, Tao; Encarnación, John

    2012-07-01

    This study presents a model budget for groundwater in the Central Eastern Desert of Egypt. The stable isotopic composition and hydrochemistry of groundwater samples collected from different aquifers were determined to identify recharge sources and water quality. Stable isotopic values suggest that shallow alluvial and fracture zone aquifers are recharged from seasonal precipitation, while groundwater in deeper sedimentary sub-basins is paleowater that was recharged during periods of less arid regional climate. Hydrochemical analysis indicates elevated salinity in each aquifer type, which is attributed to leaching and dissolution of terrestrial salts and to mixing with marine water. Groundwater from sedimentary sub-basin aquifers can be treated and used for drinking and domestic purposes. Groundwater from shallow alluvial and fracture zone wells is suitable for animal husbandry and mineral ore dressing. A model water budget shows that approximately 4.8 × 109 m3 of recoverable groundwater is stored in sedimentary sub-basin aquifers, or approximately 550 years of water at present utilization rates.

  6. Groundwater flow, quality (2007-10), and mixing in the Wind Cave National Park area, South Dakota

    USGS Publications Warehouse

    Long, Andrew J.; Ohms, Marc J.; McKaskey, Jonathan D.R.G.

    2012-01-01

    A study of groundwater flow, quality, and mixing in relation to Wind Cave National Park in western South Dakota was conducted during 2007-11 by the U.S. Geological Survey in cooperation with the National Park Service because of water-quality concerns and to determine possible sources of groundwater contamination in the Wind Cave National Park area. A large area surrounding Wind Cave National Park was included in this study because to understand groundwater in the park, a general understanding of groundwater in the surrounding southern Black Hills is necessary. Three aquifers are of particular importance for this purpose: the Minnelusa, Madison, and Precambrian aquifers. Multivariate methods applied to hydrochemical data, consisting of principal component analysis (PCA), cluster analysis, and an end-member mixing model, were applied to characterize groundwater flow and mixing. This provided a way to assess characteristics important for groundwater quality, including the differentiation of hydrogeologic domains within the study area, sources of groundwater to these domains, and groundwater mixing within these domains. Groundwater and surface-water samples collected for this study were analyzed for common ions (calcium, magnesium, sodium, bicarbonate, chloride, silica, and sulfate), arsenic, stable isotopes of oxygen and hydrogen, specific conductance, and pH. These 12 variables were used in all multivariate methods. A total of 100 samples were collected from 60 sites from 2007 to 2010 and included stream sinks, cave drip, cave water bodies, springs, and wells. In previous approaches that combined PCA with end-member mixing, extreme-value samples identified by PCA typically were assumed to represent end members. In this study, end members were not assumed to have been sampled but rather were estimated and constrained by prior hydrologic knowledge. Also, the end-member mixing model was quantified in relation to hydrogeologic domains, which focuses model results on

  7. Assessment of Groundwater Quality in a Typical Rural Settlement in Southwest Nigeria

    PubMed Central

    Adekunle, I. M.; Adetunji, M. T.; Gbadebo, A. M.; Banjoko, O. B.

    2007-01-01

    In most rural settlements in Nigeria, access to clean and potable water is a great challenge, resulting in water borne diseases. The aim of this study was to assess the levels of some physical, chemical, biochemical and microbial water quality parameters in twelve hand – dug wells in a typical rural area (Igbora) of southwest region of the country. Seasonal variations and proximity to pollution sources (municipal waste dumps and defecation sites) were also examined. Parameters were determined using standard procedures. All parameters were detected up to 200 m from pollution source and most of them increased in concentration during the rainy season over the dry periods, pointing to infiltrations from storm water. Coliform population, Pb, NO3− and Cd in most cases, exceeded the World Health Organization recommended thresholds for potable water. Effect of distance from pollution sources was more pronounced on fecal and total coliform counts, which decreased with increasing distance from waste dumps. The qualities of the well water samples were therefore not suitable for human consumption without adequate treatment. Regular monitoring of groundwater quality, abolishment of unhealthy waste disposal practices and introduction of modern techniques are recommended. PMID:18180542

  8. Data on ground-water quality for the southern Nevada part of the Kingman 1 degree by 2 degree quadrangle

    USGS Publications Warehouse

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater were compiled for the Kingman 1 degree x 2 degree quadrangle which covers a portion of southern Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area are also presented in a table. (USGS)

  9. Data on ground-water quality for the Lovelock 1 degree by 2 degree quadrangle, western Nevada

    USGS Publications Warehouse

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater has been compiled for the Lovelock 1 degree x 2 degree quadrangle which covers a portion of western Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area are also presented in a table. (USGS)

  10. Data on ground-water quality for the Reno 1 degree by 2 degree quadrangle, western Nevada

    USGS Publications Warehouse

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater has been compiled for the Reno 1 degree x 2 degree quadrangle which covers a portion of western Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area is also presented in a table. (USGS)

  11. Geology, hydrology, and ground-water quality at the Byron Superfund site near Byron, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Yeskis, Douglas J.; Bolen, William J.; Rauman, James R.; Prinos, Scott T.

    1997-01-01

    A study was conducted by the U.S. Geological Survey and the U.S. Environmental Protection Agency to define the geohydrology and contaminant distribution at a Superfund site near Byron, Illinois. Geologic units of interest beneath the site are the St. Peter Sandstone; the shale, dolomite and sandstone of the Glenwood Formation; the dolomite of the Platteville and Galena Groups; and sands, gravels, tills and loess of Quaternary age. The hydrologic units of interest are the unconsolidated aquifer, Galena-Platteville aquifer, Harmony Hill Shale semiconfining unit, and the St. Peter aquifer. Ground-water flow generally is from the upland areas northwest and southwest toward the Rock River. Water levels indicate the potential for downward ground-water flow in most of the area except near the Rock River. The Galena-Platteville aquifer can be subdivided into four zones characterized by differing water-table altitudes, hydraulic gradients, and vertical and horizontal permeabilities. Geophysical, hydraulic, and aquifer-test data indicate that lithology, stratigraphy, and tectonic structures affect the distribution of primary and secondary porosity of dolomite in the Galena and Platteville Groups, which affects the permeability distribution in the Galena-Platteville aquifer. The distribution of cyanide, chlorinated aliphatic hydrocarbons, and aromatic hydrocarbons in ground water indicates that these contaminants are derived from multiple sources in the study area. Contaminants in the northern part of this area migrate northwest to the Rock River. Contaminants in the central and southern parts of this area appear to migrate to the southwest in the general direction of the Rock River.

  12. Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin corporation, Tamilnadu, India

    NASA Astrophysics Data System (ADS)

    Selvam, S.; Manimaran, G.; Sivasubramanian, P.

    2013-03-01

    Tuticorin corporation stretches geographically from 8°43'-8°51'N latitude and 78°5'-78°10'E longitude, positioned in the East-West International sea routes on the South-East coast of India. The rapid urban developments in the past two decades of Tuticorin have caused depletion of groundwater quantity, and deterioration of quality through excessive consumption and influx of pollutants from natural and anthropogenic activities. The water samples collected in the field were analyzed for electrical conductivity, pH, total dissolved solids, major cations like calcium, magnesium, sodium, potassium, and anions SUCH AS bicarbonate, carbonate, chloride, nitrate and sulfate, in the laboratory using the standard methods given by the American Public Health Association. In order to assess the groundwater quality, 36 groundwater samples had been collected in year 2011. The geographic information system-based spatial distribution map of different major elements has been prepared using ArcGIS 9.2. The Piper plot shows that most of the groundwater samples fall in the field of Ca2+-Mg2+-Cl--SO4 2- and Na+-K+-Cl--HCO3 - by projecting the position on the plots in the triangular field. The cation concentration indicate that 83, 39 and 22 % of the K+, Na+, Ca2+ concentrations exceed the WHO limit. As per Wilcox's diagram and US Salinity laboratory classification, most of the groundwater samples are not suitable for irrigation due to the presence of high salinity and medium sodium hazard. Irrigation waters classified based on sodium absorption ratio, have revealed that 52 % groundwater are in general safe for irrigation, which needs treatment before use. permeability index also indicates that the groundwater samples are suitable for irrigation purpose.

  13. Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India.

    PubMed

    Jeevanandam, M; Kannan, R; Srinivasalu, S; Rammohan, V

    2007-09-01

    The Lower Ponnaiyar River Basin forms an important groundwater province in South India constituted by Tertiary formations dominated by sandstones and overlain by alluvium. The region enjoyed artesian conditions 50 years back but at present frequent failure of monsoon and over exploitation is threatening the aquifer. Further, extensive agricultural and industrial activities and urbanization has resulted in the increase in demand and contamination of the aquifer. To identify the sources and quality of groundwater, water samples from 47 bore wells were collected in an area of 154 km2 and were analysed for major ions and trace metals. The results reveal that the groundwater in many places is contaminated by higher concentrations of NO3, Cl, PO4 and Fe. Four major hydrochemical facies Ca-Mg-Cl, Na-Cl, Ca-HCO3 and Na-HCO3 were identified using Piper trilinear diagram. Salinity, sodium adsorption ratio, and sodium percentage indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standards. The most serious pollution threat to groundwater is from nitrate ions, which are associated with sewage and fertilizers application. The present state of the quality of the lower part of Ponnaiyar River Basin is of great concern and the higher concentration of toxic metals (Fe and Ni) may entail various health hazards. PMID:17180415

  14. Ground-water quality near an inactive landfill and sludge-spreading area, Tallahassee, Florida

    USGS Publications Warehouse

    Berndt, M.P.

    1993-01-01

    Groundwater quality at and near a landfill southwest of Tallahassee, Florida, where sludge from a municipal sewage-treatment plant was also applied, was assessed by sampling 21 monitoring wells and analyzing for various constituents. Water quality in the Upper Floridan aquifer at the site was compared to the water quality of 20 background wells in Leon County. Water quality in all samples from wells at the site was evaluated in relation to the landfill and sludge-spreading and nonsludge- spreading areas. Results from nonparametric statistical tests showed that potassium and nitrate concentrations were significantly different in samples from the Upper Floridan aquifer at the site and in samples from background wells. Median potassium concentrations were 0.7 mg/L in samples collected at the site and 0.4 mg/L in samples collected from background wells, whereas median nitrate concentration was 6.48 mg/L at the site and 0.51 mg/L in background wells. Graphical comparison of concentration distributions in six categories of wells; upgradient, landfill, adjacent to the landfill, downgradient onsite, downgradient offsite, and from background wells in Leon County, indicated that sodium, bicarbonate, sulfate, iron, manganese, dissolved solids, and specific conductance had highest concentrations in water from wells within the landfill. Nitrate concentrations were lowest in samples from wells in the landfill compared to the other categories. Concentrations of trace metals and organic constituents were mostly below detection limits although State maximum contaminant levels of 1.0 microg/L for benzene and vinyl chloride and 3.0 microg/L for tetrachloroethene were exceeded in water from some wells. Nitrate and chloride concentrations were significantly different in sludge-spreading and nonsludge-spreading areas. Median nitrate and chloride concentrations of 6.9 microg/L and 2.9 microg/L were detected in groundwater in sludge-spreading areas compared to 1.1 mg/L and 1.8 mg/L in

  15. Biosolids applications affect runoff water quality following forest fire.

    PubMed

    Meyer, V F; Redente, E F; Barbarick, K A; Brobst, R

    2001-01-01

    Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control. PMID:11577857

  16. Comparison of monsoon variations over groundwater hydrochemistry changes in small Tropical Island and its repercussion on quality

    NASA Astrophysics Data System (ADS)

    Isa, N. M.; Aris, A. Z.; Sulaiman, W. N. A. Wan; Lim, A. P.; Looi, L. J.

    2014-06-01

    Study on the spatial and temporal distribution of groundwater hydrochemistry in the small tropical islands is important as their insular character may expose the groundwater aquifer to too many sources of pollution, especially salinization. A total of 216 groundwater samples were collected from the monitoring boreholes during two different monsoon seasons; pre- and post-monsoon. As overall, data of groundwater concentration illustrated a trend of Ca > Na > Mg > K and HCO3 > Cl > SO4 dominations with the major finding of two different groundwater types. Pre-monsoon reported Na-HCO3 and Ca-HCO3 types while post-monsoon were only dominated by the Ca-HCO3 type. The statistical analysis shows the in situ parameters (Temp, pH, EC, Salinity, DO, TDS and Eh) and major ions (Ca, Mg, Na, K, HCO3, Cl and SO4) were strongly correlated with the monsoon changes (p < 0.01). From the analysis, its reveals that the seasonal changes have significantly affects the groundwater composition. While, the analytical calculations of the ionic ratio (Na vs. Cl; Cl/HCO3 vs. Cl; Ca + Mg vs. SO4 + HCO3) describes the groundwater is influenced by the cation exchanges processes, simple mixing and water-rock interaction. Saturation indices of carbonate minerals shows strong correlationship (p < 0.01) with Ca constituent indicating solubility on minerals, which led to dissolution or precipitation condition of water. Results of present study contribute to a better understanding of a complex groundwater system and the hydrochemical processes related.

  17. Quality of shallow groundwater and drainage water in irrigated agricultural lands in a Mediterranean coastal region of Turkey.

    PubMed

    Odemiş, Berkant; Bozkurt, Sefer; Ağca, Necat; Yalçin, Mehmet

    2006-04-01

    Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO(3), HCO(3), Cl and SO(4)). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C(3)S(1) in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C(2)S(1) to C(4)S(2) in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001). PMID:16614781

  18. How geomorphology and groundwater level affect the spatio-temporal variability of riverine cold water patches?

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Vincent; Piégay, Hervé; Allemand, Pascal; Vaudor, Lise; Goma, Régis; Grandjean, Philippe

    2016-04-01

    Temperature is a key factor for river ecosystems. In summer, patches of cold water are formed in the river by groundwater seepage. These patches have strong ecological significance and extend to the surface water in a well-mixed riverine system. These patches can serve as thermal refuges for some fish species during summer. In this study, the temporal variability and spatial distribution of cold water patches were explored along a 50 km river reach (the lower Ain River, France) using thermal infrared airborne remote sensing. This study examines a new range of processes acting on cold water patches at different scales that have not previously been touched upon in the literature. Three airborne campaigns were conducted during the summers of 2010, 2011 and 2014. Based on these images, a large number of cold water patches were identified using an automated method. Four types of patches were observed: tributary plumes, cold side channels (former channels or point-bar backwater channels), side seeps (located directly in the river channel) and gravel bar seeps (occurring at the downstream end of gravel bars). Logistic regression was used to analyse the longitudinal distribution of cold water patches according to geomorphologic indicators reflecting current or past fluvial process. Side seeps were found to be related to the local geology. Cold side channels were correlated to contemporary and past lateral river mobility. Gravel bar seeps were related to the current development of bars and are more prevalent in wandering reaches than in single-bed incised and paved reaches. The logistic model was subsequently used to evaluate gravel bar seep variability in the past. The model suggests larger numbers of seeps in the mid-20th century when bar surface area was higher. Interannual variability in the occurrence and spatial extent of side seeps and gravel bar seeps appear to be related to groundwater level fluctuations. Cold side channels exhibited greater interannual stability

  19. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.

    PubMed

    Hutchins, Benjamin T; Engel, Annette Summers; Nowlin, Weston H; Schwartz, Benjamin F

    2016-06-01

    The prevailing paradigm in subterranean ecology is that below-ground food webs are simple, limited to one or two trophic levels, and composed of generalist species because of spatio-temporally patchy food resources and pervasive energy limitation. This paradigm is based on relatively few studies of easily accessible, air-filled caves. However, in some subterranean ecosystems, chemolithoautotrophy can subsidize or replace surface-based allochthonous inputs of photosynthetically derived organic matter (OM) as a basal food resource and promote niche specialization and evolution of higher trophic levels. Consequently, the current subterranean trophic paradigm fails to account for variation in resources, trophic specialization, and food chain length in some subterranean ecosystems. We reevaluated the subterranean food web paradigm by examining spatial variation in the isotopic composition of basal food resources and consumers, food web structure, stygobiont species diversity, and chromophoric organic matter (CDOM), across a geochemical gradient in a large and complex groundwater system, the Edwards Aquifer in Central Texas (USA). Mean δ13C values of stygobiont communities become increasingly more negative along the gradient of photosynthetic OM sources near the aquifer recharge zone to chemolithoautotrophic OM sources closer to the freshwater-saline water interface (FWSWI) between oxygenated freshwater and anoxic, sulfide-rich saline water. Stygobiont community species richness declined with increasing distance from the FWSWI. Bayesian mixing models were used to estimate the relative importance of photosynthetic OM and chemolithoautorophic OM for stygobiont communities at three biogeochemically distinct sites. The contribution of chemolithoautotrophic OM to consumers at these sites ranged between 25% and 69% of total OM utilized and comprised as much as 88% of the diet for one species. In addition, the food web adjacent to the FWSWI had greater trophic diversity when

  20. Hydrogeology and ground-water quality of Brunswick County, North Carolina

    USGS Publications Warehouse

    Harden, Stephen L.; Fine, Jason M.; Spruill, Timothy B.

    2003-01-01

    Brunswick County is the southernmost coastal county in North Carolina and lies in the southeastern part of the Coastal Plain physiographic province. In this report, geologic, hydrologic, and chemical data were used to investigate and delineate the hydro-geologic framework and ground-water quality of Brunswick County. The major aquifers and their associated confining units delineated in the Brunswick County study area include, from youngest to oldest, the surficial, Castle Hayne, Peedee, Black Creek, upper Cape Fear, and lower Cape Fear aquifers. All of these aquifers, with the exception of the Castle Hayne aquifer, are located throughout Brunswick County. The Castle Hayne aquifer extends across only the southeastern part of the county. Based on available data, the Castle Hayne and Peedee confining units are missing in some areas of Brunswick County, which allows direct hydraulic contact between the surficial aquifer and underlying Castle Hayne or Peedee aquifers. The confining units for the Black Creek, upper Cape Fear, and lower Cape Fear aquifers appear to be continuous throughout Brunswick County. In examining the conceptual hydrologic system for Brunswick County, a generalized water budget was developed to better understand the natural processes, including precipitation, evapotranspiration, and stream runoff, that influence ground-water recharge to the shallow aquifer system in the county. In the generalized water budget, an estimated 11 inches per year of the average annual precipitation of 55 inches per year in Brunswick County is estimated to infiltrate and recharge the shallow aquifer system. Of the 11 inches per year that recharges the shallow system, about 1 inch per year is estimated to recharge the deeper aquifer system. The surficial aquifer in Brunswick County is an important source of water for domestic supply and irrigation. The Castle Hayne aquifer is the most productive aquifer and serves as the principal ground-water source of municipal supply

  1. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  2. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.

  3. Ground-water quality in east-central New Jersey, and a plan for sampling networks

    USGS Publications Warehouse

    Harriman, D.A.; Sargent, B.P.

    1985-01-01

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Generally, water in the confined aquifers is of satisfactory quality for human consumption and most other uses. Iron (Fe) and manganese (Mn) concentrations exceed U.S. EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system (the water table aquifer) was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. The results of chi-square tests of constituent distributions based on analyses from 158 wells in the water table aquifer indicate that calcium is higher in industrial and commercial areas; and Mg, chloride, and nitrate-plus-nitrite is higher in residential areas. (Author 's abstract)

  4. Changes in groundwater quality in a conduit-flow-dominated karst aquifer, following BMP implementation

    USGS Publications Warehouse

    Currens, J.C.

    2002-01-01

    Water quality in the Pleasant Grove Spring karst groundwater basin, Logan County, Kentucky, was monitored to determine the effectiveness of best management practices (BMPs) in protecting karst aquifers. Ninety-two percent of the 4,069-ha (10,054-acre) watershed is used for agriculture. Water-quality monitoring began in October 1992 and ended in November 1998. By the fall of 1995 approximately 72% of the watershed was enrolled in BMPs sponsored by the US Department of Agriculture Water Quality Incentive Program (WQIP). Pre-BMP nitrate-nitrogen concentration averaged 4.65 mg/1. The median total suspended solids concentration was 127 mg/1. The median triazine concentration measured by immunosorbent assay was 1.44 ??tg/l. Median bacteria counts were 418 colonies per 100 ml (col/100 ml) for fecal coliform and 540 col/100 ml for fecal streptococci. Post-BMP, the average nitrate-nitrogen concentration was 4.74 mg/1. The median total suspended solids concentration was 47.8 mg/1. The median triazine concentration for the post-BMP period was 1.48 ??g/1. The median fecal coliform count increased to 432 col/100 ml after BMP implementation, but the median fecal streptococci count decreased to 441 col/100 ml. The pre- and post-BMP water quality was statistically evaluated by comparing the annual mass flux, annual descriptive statistics, and population of analyses for the two periods. Nitrate-nitrogen concentration was unchanged. Increases in atrazine-equivalent flux and triazine geometric averages were not statistically significant. Total suspended solids concentration decreased slightly, whereas orthophosphate concentration increased slightly. Fecal streptococci counts were reduced. The BMPs were only partially successful because the types available and the rules for participation resulted in less effective BMPs being chosen. Future BMP programs in karst areas should emphasize buffer strips around sinkholes, excluding livestock from streams and karst windows, and withdrawing

  5. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  6. Hydrology, water quality, and ground-water-development alternatives in the Chipuxet ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Johnston, H.E.; Dickerman, D.C.

    1985-01-01

    A glacial sand and gravel aquifer in the Chipuxet River basin of Rhode Island forms a ground-water reservoir that could yield as much as 8.6 million gallons per day to wells; however, some streams would go dry for extended periods of time. The State Water Resources Board has tested five site that it proposes to develop for a public supply of 3 million gallons per day. A digital model was used to determine how withdrawal at this rate from alternative combinations of wells would affect water levels and streamflow. Results show that withdrawal of 3 million gallons per day would have a minimal effect on water levels, but that withdrawal at this rate from some well combinations could cause the Chipuxet River to have little or no flow for 90 consecutive days on the average of 1 year in 20. Quality of ground water is generally good, but leaching of fertilizers applied to croplands, which overlie much of the aquifer, has caused locally excessive concentrations of nitrate. Induced infiltration of surface water through organic sediments that line the bottoms of ponds and streams also seems to be the cause of elevated concentrations of manganese in water from some heavily pumped wells. (USGS)

  7. Ground-Water Quality in the Vicinity of Coal-Refuse Areas Reclaimed with Biosolids in Fulton County, Illinois

    USGS Publications Warehouse

    Morrow, William S.

    2007-01-01

    The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.

  8. Assessment of groundwater quality for drinking and irrigation use in shallow hard rock aquifer of Pudunagaram, Palakkad District Kerala

    NASA Astrophysics Data System (ADS)

    Satish Kumar, V.; Amarender, B.; Dhakate, Ratnakar; Sankaran, S.; Raj Kumar, K.

    2014-06-01

    Groundwater samples were collected for pre-monsoon and post-monsoon seasons based on the variation in the geomorphological, geological, and hydrogeological factors for assessment of groundwater quality for drinking and irrigation use in a shallow hard rock aquifer of Pudunagaram area, Palakkad district, Kerala. The samples were analyzed for various physico-chemical parameters and major ion chemistry. Based on analytical results, Gibbs diagram and Wilcox plots were plotted and groundwater quality has been distinguished for drinking and irrigation use. Gibbs diagram shows that the samples are rock dominance and controlling the mechanism for groundwater chemistry in the study area, while Wilcox plot suggest that most of the samples are within the permissible limit of drinking and irrigation use. Further, the suitability of water for irrigation was determined by analyzing sodium adsorption ratio, residual sodium carbonate, sodium percent (%Na), Kelly's ratio, residual sodium carbonate, soluble sodium percentage, permeability index, and water quality index. It has been concluded that, the water from the study area is good for drinking and irrigation use, apart few samples which are exceeding the limits due to anthropogenic activities and those samples were indisposed for irrigation.

  9. Assessment of groundwater quality for drinking and irrigation use in shallow hard rock aquifer of Pudunagaram, Palakkad District Kerala

    NASA Astrophysics Data System (ADS)

    Satish Kumar, V.; Amarender, B.; Dhakate, Ratnakar; Sankaran, S.; Raj Kumar, K.

    2016-06-01

    Groundwater samples were collected for pre-monsoon and post-monsoon seasons based on the variation in the geomorphological, geological, and hydrogeological factors for assessment of groundwater quality for drinking and irrigation use in a shallow hard rock aquifer of Pudunagaram area, Palakkad district, Kerala. The samples were analyzed for various physico-chemical parameters and major ion chemistry. Based on analytical results, Gibbs diagram and Wilcox plots were plotted and groundwater quality has been distinguished for drinking and irrigation use. Gibbs diagram shows that the samples are rock dominance and controlling the mechanism for groundwater chemistry in the study area, while Wilcox plot suggest that most of the samples are within the permissible limit of drinking and irrigation use. Further, the suitability of water for irrigation was determined by analyzing sodium adsorption ratio, residual sodium carbonate, sodium percent (%Na), Kelly's ratio, residual sodium carbonate, soluble sodium percentage, permeability index, and water quality index. It has been concluded that, the water from the study area is good for drinking and irrigation use, apart few samples which are exceeding the limits due to anthropogenic activities and those samples were indisposed for irrigation.

  10. Ground-water hydrology and water quality of Irwin Basin at Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.; Londquist, Clark J.

    1997-01-01

    Geohydrologic data were collected from Irwin Basin at Fort Irwin National Training Center in the Mojave Desert of southern California by the U.S. Geological Survey during 199296 to deter mine the quantity and quality of ground water available in this basin. In addition to data collected from existing wells and test holes, 17 monitoring sites were constructed in Irwin Basin to provide data on subsurface geology, ground-water levels, and ground-water quality. Eleven of these sites were multiple-well monitoring sites that were constructed to provide depth-dependent geohydrologic data in the aquifer system. The aquifer system of Irwin Basin, defined on the basis of hydrologic data collected from wells in Irwin Basin, consists of an upper and a lower aquifer. A 1994 water-table contour map shows that a cone of depression beneath Irwin Basin well field has developed as a result of ground-water development. Water-quality samples collected from Irwin Basin wells to determine potential sources of ground-water degradation indicate that water in three areas in the basin contains high nitrate and dissolved-solids concentrations. The stable isotopes of oxygen and hydrogen indicate that present-day precipitation is not a major source of recharge in this basin. Tritium and carbon-14 data indicate that most of the basin was recharged before 1953 and that this water may be more than 14,000 years old.

  11. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  12. Impact of water overstock on groundwater quality of the Bassee plain area (France)

    NASA Astrophysics Data System (ADS)

    Gourcy, L.; Pettenati, M.; Baran, N.; Durand, P. Y.

    2009-04-01

    The project, inspired by the structural flood plain management measures of the Rhine River, consists in the temporal removal of a maximum amount of water from the Seine River in order to leave priority to the water from the River Yonne. Yonne River and the Seine are presenting their maximum water flow usually at a same time. The space located between Bray-sur-Seine and Montereau-Fault-Yonne corresponding to the La Bassée plain (agricultural area of 23 km2) is well adapted to this project of temporary and artificial flood. The objective of the project financed by the Institution Interdépartementale des barrages Réservoirs du Bassin de la Seine (IIBRBS), the BRGM, the Seine-Normandie Water Agency, the European Communauty through the Interreg IIIB SAND project is the evaluation, at a local scale, of the impact on groundwater quality of the temporal Seine water storage. Indeed, the water over storage i) changes hydraulic conditions and therefore modify water and pollutants transfers through the unsaturated and saturated zones and ii) bring at soil surface a water (Seine River) potentially containing contaminants that may move to groundwater and consequently changed physico-chemicals conditions (redox) of groundwater. The estimation of the vulnerability of groundwater to changes and loads needs hydraulic and geochemical modelling of transfer through the unsaturated zone as well as the study of pollutants fate in static conditions. Retention properties of some metals (Pb, Ni, Cu, Cr, Zn) in soils and materials of the unsaturated zone by chemical processes were performed determining adsorption coefficient (Kd) by laboratory experiments. These experiments are showing that nickel mobility is lower in the argillous layers than in the sandy part of the unsaturated zone. Ni mobility is controlled by iron hydroxides and precipitation of other secondary minerals. Its complexation on organic ligands increases its mobility in soils. Copper concentration is influenced by CaCO3

  13. How Does Premarital Cohabitation Affect Trajectories of Marital Quality?

    ERIC Educational Resources Information Center

    Tach, Laura; Halpern-Meekin, Sarah

    2009-01-01

    We investigate the link between premarital cohabitation and trajectories of subsequent marital quality using random effects growth curve models and repeated measures of marital quality from married women in the NLSY-79 (N = 3,598). We find that premarital cohabitors experience lower quality marital relationships on average, but this is driven by…

  14. Financial Health of Child Care Facilities Affects Quality of Care.

    ERIC Educational Resources Information Center

    Brower, Mary R.; Sull, Theresa M.

    2003-01-01

    Contends that child care facility owners, boards of directors, staff, and parents need to focus on financial management, as poor financial health compromises the quality of care for children. Specifically addresses the issues of: (1) concern for providing high quality child care; (2) the connection between quality and money; and (3) strengthening…

  15. Impact of human activities on quality and geochemistry of groundwater in the Merdja area, Tebessa, Algeria

    NASA Astrophysics Data System (ADS)

    Rouabhia, A.; Fehdi, Ch.; Baali, F.; Djabri, L.; Rouabhi, R.

    2009-02-01

    Chemical data are used to clarify the hydrogeological regime in the Merdja area in Tébessa, as well as to determine the status of water quality in this area. Groundwater from the aquifer in the Merdja area can be divided into two major groups according to geographical locations and chemical compositions. Water in the center part of the area of study is characterized by the dominance of chloride, sulfate, sodium, and potassium; whereas waters in the limestone aquifers in the west are dominated by the same cations but have higher concentrations of bicarbonate. Stable isotopes show that the Tébessa aquifers contain a single water type, which originated in a distinct climatic regime. This water type deviates from the Global Meteoric Water Line (MWL), as well as from the Mediterranean meteoric water line. The water is poor in tritium, and thus can be considered generally older than 50 years. Piezometric map suggests that water is moving from the west towards the center of the studied area, and from east towards center. Degradation of water quality can be attributed to agricultural fertilizers in most cases, although the wadi El Kebir River is a contributor to pollution in the middle part of the studied area.

  16. Evaluation of water quality and hydrogeochemistry of surface and groundwater, Tiruvallur District, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Krishna Kumar, S.; Hari Babu, S.; Eswar Rao, P.; Selvakumar, S.; Thivya, C.; Muralidharan, S.; Jeyabal, G.

    2016-07-01

    Water quality of Tiruvallur Taluk of Tiruvallur district, Tamil Nadu, India has been analysed to assess its suitability in relation to domestic and agricultural uses. Thirty water samples, including 8 surface water (S), 22 groundwater samples [15 shallow ground waters (SW) and 7 deep ground waters (DW)], were collected to assess the various physico-chemical parameters such as Temperature, pH, Electrical conductivity (EC), Total dissolved solids (TDS), cations (Ca, Mg, Na, K), anions (CO3, HCO3, Cl, SO4, NO3, PO4) and trace elements (Fe, Mn, Zn). Various irrigation water quality diagrams and parameters such as United states salinity laboratory (USSL), Wilcox, sodium absorption ratio (SAR), sodium percentage (Na %), Residual sodium carbonate (RSC), Residual Sodium Bicarbonate (RSBC) and Kelley's ratio revealed that most of the water samples are suitable for irrigation. Langelier Saturation Index (LSI) values suggest that the water is slightly corrosive and non-scale forming in nature. Gibbs plot suggests that the study area is dominated by evaporation and rock-water dominance process. Piper plot indicates the chemical composition of water, chiefly controlled by dissolution and mixing of irrigation return flow.

  17. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  18. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in Mancha Oriental (Spain)

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Peña-Haro, S.; Garcia-Prats, A.; Mocholi-Almudever, A. F.; Henriquez-Dole, L.; Macian-Sorribes, H.; Lopez-Nicolas, A.

    2014-09-01

    Climate and land use change (global change) impacts on groundwater systems cannot be studied in isolation, as various and complex interactions in the hydrological cycle take part. Land-use and land-cover (LULC) changes have a great impact on the water cycle and contaminant production and transport. Groundwater flow and storage are changing in response not only to climatic changes but also to human impacts on land uses and demands (global change). Changes in future climate and land uses will alter the hydrologic cycles and subsequently impact the quantity and quality of regional water systems. Predicting the behavior of recharge and discharge conditions under future climatic and land use changes is essential for integrated water management and adaptation. In the Mancha Oriental system in Spain, in the last decades the transformation from dry to irrigated lands has led to a significant drop of the groundwater table in one of the largest groundwater bodies in Spain, with the consequent effect on stream-aquifer interaction in the connected Jucar River. Streamflow depletion is compromising the related ecosystems and the supply to the downstream demands, provoking a complex management issue. The intense use of fertilizer in agriculture is also leading to locally high groundwater nitrate concentrations. Understanding the spatial and temporal distribution of water availability and water quality is essential for a proper management of the system. In this paper we analyze the potential impact of climate and land use change in the system by using an integrated modelling framework consisting of the sequentially coupling of a watershed agriculturally-based hydrological model (SWAT) with the ground-water model MODFLOW and mass-transport model MT3D. SWAT model outputs (mainly groundwater recharge and pumping, considering new irrigation needs under changing ET and precipitation) are used as MODFLOW inputs to simulate changes in groundwater flow and storage and impacts on stream

  19. Ground-water quality assessment of the Carson River basin, Nevada and California; results of investigations, 1987-91

    USGS Publications Warehouse

    Welch, Alan H.; Lawrence, Stephen J.; Lico, Michael S.; Thomas, James M.; Schaefer, Donald H.

    1997-01-01

    Using existing Nevada State drinking-water standards as a measure of the overall water quality, ground-water quality in principal aquifers of the upper Carson River basin is generally excellent. Ground-water quality in the Carson Desert, the distal end of the Carson River basin, displays extremes in concentrations of major and minor inorganic constituents, with dissolved solids reaching concentrations exceeding sea water. More than 10 percent of sampled ground water in the principal aquifers contain concentrations of arsenic, dissolved solids, and manganese greater than the drinking-water standards. Nearly all sampled ground water in the basin had radon-222 activities greater than the proposed Federal maximum contaminant level of 300 picocuries per liter. Uranium concentrations greater than the proposed Federal maximum contaminant level of 20 micrograms per liter were found in ground water in the adjacent Sierra Nevada.

  20. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershe