Effect of solution and leaf surface polarity on droplet spread area and contact angle.
Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M
2016-03-01
How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei
2017-01-01
Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160
Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine
2012-09-01
Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Cardenas, R.; Berumen, A.
1974-01-01
Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.
Wang, Lei; Hasi, Eerdun; Liu, Lian-You; Gao, Shang-Yu
2007-03-01
The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.
Yang, Fu-lin; Zhou, Guang-sheng; Zhang, Feng; Wang, Feng-yu; Bao, Fang; Ping, Xiao-yan
2009-12-01
Based on the meteorological and biological observation data from the temperate desert steppe ecosystem research station in Sunitezuoqi of Inner Mongolia during growth season (from May 1st to October 15th, 2008), the diurnal and seasonal characteristics of surface albedo in the steppe were analyzed, with related model constructed. In the steppe, the diurnal variation of surface albedo was mainly affected by solar altitude, being higher just after sunrise and before sunset and lower in midday. During growth season, the surface albedo was from 0.20 to 0.34, with an average of 0.25, and was higher in May, decreased in June, kept relatively stable from July to September, and increased in October. This seasonal variation was related to the phenology of canopy leaf, and affected by precipitation process. Soil water content (SWC) and leaf area index (LAI) were the key factors affecting the surface albedo. A model for the surface albedo responding to SWC and LAI was developed, which showed a good performance in consistent between simulated and observed surface albedo.
Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M
2016-11-01
The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation
Fuzawa, Miyu; Ku, Kang-Mo; Palma-Salgado, Sindy Paola; Nagasaka, Kenya; Feng, Hao; Juvik, John A.; Sano, Daisuke; Shisler, Joanna L.
2016-01-01
ABSTRACT The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular wax content and then treated with each sanitizer. The efficacy of the oxidant-based sanitizer correlated with leaf wax content as evidenced by the 1-log10 PRV disinfection on endive surfaces (low wax content) and 3-log10 disinfection of the cultivars with higher wax contents. In contrast, the surfactant-based sanitizer showed similar PRV disinfection efficacies (up to 3 log10) that were independent of leaf wax content. A statistical difference was observed with the disinfection efficacies of the oxidant-based sanitizer for suspended and attached PRV, while the surfactant-based sanitizer showed similar PRV disinfection efficacies. Significant reductions in the entry and replication of PRV were observed after treatment with either disinfectant. Moreover, the oxidant-based-sanitizer-treated PRV showed sialic acid-specific binding to the host cells, whereas the surfactant-based sanitizer increased the nonspecific binding of PRV to the host cells. These findings suggest that the surface properties of fresh produce may affect the efficacy of virus disinfection, implying that food sanitizers should be carefully selected for the different surface characteristics of fresh produce. IMPORTANCE Food sanitizer efficacies are affected by the surface properties of vegetables. This study evaluated the disinfection efficacies of two food sanitizers, an oxidant-based sanitizer and a surfactant-based sanitizer, on porcine rotavirus strain OSU adhering to the leaf epicuticular surfaces of high- and low-wax-content cultivars. The disinfection efficacy of the oxidant-based sanitizer was affected by the surface properties of the vegetables, while the surfactant-based sanitizer was effective for both high- and low-wax leafy vegetable cultivars. This study suggests that the surface properties of vegetables may be an important factor that interacts with disinfection with food sanitizers of rotaviruses adhering to fresh produce. PMID:27520815
Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena
2017-09-01
This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.
NASA Astrophysics Data System (ADS)
Motai, Akira; Nakaba, Satoshi; Lenggoro, I. Wuled; Watanabe, Makoto; Wada, Yoshiharu; Izuta, Takeshi
2017-11-01
The aim of this study was to determine the effects of submicron ammonium sulfate (AS) particles on komatsuna (Brassica rapa L. cv. Hakkei) plants. First, we optimized a leaf-washing method to measure the amount of AS particles deposited on the leaf surface of the plants. Then, we used this method to determine the retention time of particles deposited on the leaf surface of the plants. We also investigated the effects of AS particles on the growth and yield of the plants. Almost all the AS particles deposited on the leaf surface were removed within 1 min washing time with ultrapure water, and ion leaching from the leaf was relatively slow but continuous during the leaf-washing procedure. On the basis of these results, we determined that 1 min was a suitable washing time to remove most of the AS particles while minimizing the influence of ion leaching from the leaf. The amount of particulate SO42- deposited on the leaf surface decreased over time, probably because AS particles deposited on the leaf surface deliquesced, allowing ions such as SO42- in the deliquescence solution to be absorbed into the leaf. The plants were grown and exposed to AS particles for 16 days in naturally lit phytotrons. The daily mean increase in the concentration of SO42- in PM2.5 by the exposure to AS particles was 22.5 μg m-3 in the phytotrons. The growth and yield of the plants were significantly reduced by the exposure to AS particles. The exposure to AS particles did not affect the leaf concentrations of nitrogen and chlorophyll, but significantly reduced stomatal conductance. Therefore, stomatal closure is one of the reasons for the AS particle-induced reductions in the growth and yield of komatsuna plants.
Loughrin, J H; Kasperbauer, M J
2001-03-01
Basil (Ocimum basilicum L.) is an herb the leaves of which are used to add a distinct aroma and flavor to food. It was hypothesized that the size and chemical composition of sun-grown basil leaves could be influenced by the color of light reflected from the soil surface and by the action of the reflected light through the natural growth regulatory system within the growing plants. Leaf morphology, aroma compounds, and soluble phenolics were compared in basil that had been grown over six colors of polyethylene row covers. Altering the ratios of blue, red, and far-red light reflected to growing plants influenced both leaf morphology and chemistry. Leaves developing over red surfaces had greater area, moisture percentage (succulence), and fresh weight than those developing over black surfaces. Basil grown over yellow and green surfaces produced significantly higher concentrations of aroma compounds than did basil grown over white and blue covers. Leaves grown over yellow and green mulches also contained significantly higher concentrations of phenolics than those grown over the other colors. Clearly, the wavelengths (color) of light reflected to growing basil plants affected leaf size, aroma, and concentrations of soluble phenolics, some of which are antioxidants.
Vandergriff, D.H.
1999-08-31
A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.
Vandergriff, David Houston
1999-01-01
A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.
NASA Astrophysics Data System (ADS)
González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.
2016-11-01
In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.
Lahtinen, Maria; Salminen, Juha-Pekka; Kapari, Lauri; Lempa, Kyösti; Ossipov, Vladimir; Sinkkonen, Jari; Valkama, Elena; Haukioja, Erkki; Pihlaja, Kalevi
2004-11-01
The surface of birch leaves contains glandular trichomes that secrete exudates containing flavonoid aglycones. We investigated the biological activities of white birch (Betula pubescens) leaf surface exudates against larvae of the autumnal moth, Epirrita autumnata, a common insect pest of birch. We found that tree-specific mortality (up to 100%) of first instar larvae correlated strongly with the tree-specific contents of surface flavonoid aglycones (r(s) = 0.905) in emerging leaves. We also found that first instars clearly preferred birch buds from which surface exudates had been removed. In addition, the duration of the first instar was shortened by 29%, and the weights and relative growth rates of first instars improved by 8% and 52%, respectively, as a result of removal of the exudates from their leaf diet. The correlation of tree-specific foliar contents of flavonoid aglycones, especially 5-hydroxy-4',7-dimethoxyflavanone, with changes in larval performance, suggests that flavonoid aglycones are responsible for the changes observed in first instar larval performance. The results show that chemical characteristics of birch leaves are effective against neonate E. autumnata larvae. However, the removal of leaf surface exudates from fully expanded leaves did not affect the leaf acceptance for the voracious fifth instars. This is probably a result of reduction in contents of flavonoid aglycones compared to those of emerging leaves.
Siegenthaler, Andy; Buttler, Alexandre; Grosvernier, Philippe; Gobat, Jean-Michel; Nilsson, Mats B; Mitchell, Edward A D
2013-02-01
Eriophorum vaginatum is a characteristic species of northern peatlands and a keystone plant for cutover bog restoration. Understanding the factors affecting E. vaginatum seedling establishment (i.e. growth dynamics and allocation) under global change has practical implications for the management of abandoned mined bogs and restoration of their C-sequestration function. We studied the responses of leaf dynamics, above- and belowground biomass production of establishing seedlings to elevated CO(2) and N. We hypothesised that nutrient factors such as limitation shifts or dilutions would modulate growth stimulation. Elevated CO(2) did not affect biomass, but increased the number of young leaves in spring (+400 %), and the plant vitality (i.e. number of green leaves/total number of leaves) (+3 %), both of which were negatively correlated to [K(+)] in surface porewater, suggesting a K-limited production of young leaves. Nutrient ratios in green leaves indicated either N and K co-limitation or K limitation. N addition enhanced the number of tillers (+38 %), green leaves (+18 %), aboveground and belowground biomass (+99, +61 %), leaf mass-to-length ratio (+28 %), and reduced the leaf turnover (-32 %). N addition enhanced N availability and decreased [K(+)] in spring surface porewater. Increased tiller and leaf production in July were associated with a doubling in [K(+)] in surface porewater suggesting that under enhanced N production is K driven. Both experiments illustrate the importance of tradeoffs in E. vaginatum growth between: (1) producing tillers and generating new leaves, (2) maintaining adult leaves and initiating new ones, and (3) investing in basal parts (corms) for storage or in root growth for greater K uptake. The K concentration in surface porewater is thus the single most important factor controlling the growth of E. vaginatum seedlings in the regeneration of selected cutover bogs.
Artificial Surfaces in Phyllosphere Microbiology.
Doan, Hung K; Leveau, Johan H J
2015-08-01
The study of microorganisms that reside on plant leaf surfaces, or phyllosphere microbiology, greatly benefits from the availability of artificial surfaces that mimic in one or more ways the complexity of foliage as a microbial habitat. These leaf surface proxies range from very simple, such as nutrient agars that can reveal the metabolic versatility or antagonistic properties of leaf-associated microorganisms, to the very complex, such as silicon-based casts that replicate leaf surface topography down to nanometer resolution. In this review, we summarize the various uses of artificial surfaces in experimental phyllosphere microbiology and discuss how these have advanced our understanding of the biology of leaf-associated microorganisms and the habitat they live in. We also provide an outlook into future uses of artificial leaf surfaces, foretelling a greater role for microfluidics to introduce biological and chemical gradients into artificial leaf environments, stressing the importance of artificial surfaces to generate quantitative data that support computational models of microbial life on real leaves, and rethinking the leaf surface ('phyllosphere') as a habitat that features two intimately connected but very different compartments, i.e., the leaf surface landscape ('phylloplane') and the leaf surface waterscape ('phyllotelma').
Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi
2017-12-01
High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.
Neufeld, Howard S; Chappelka, Arthur H; Somers, Greg L; Burkey, Kent O; Davison, Alan W; Finkelstein, Peter L
2006-03-01
The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...
Effects of ammonium sulfate aerosols on vegetation—II. Mode of entry and responses of vegetation
NASA Astrophysics Data System (ADS)
Gmur, Nicholas F.; Evans, Lance S.; Cunningham, Elizabeth A.
These experiments were designed to provide information on the rates of aerosol deposition, mode of entry, and effects of deposition of submicrometer ammonium sulfate aerosols on foliage of Phaseolus vulgaris L. A deposition velocity of 3.2 × 10 3cms-1 was constant during 3-week exposures of plants to aerosol concentrations of 26mg m -3 (i.e. about two orders of magnitude above ambient episode concentrations). Mean deposition rate on foliage was 4.1 × 10 -11 μg cm -2s -1. Visible injury symptoms included leaf chlorosis, necrosis and loss of turgor. Chlorosis was most frequent near leaf margins causing epinasty and near major veins. Internal injury occurred initially in spongy mesophyll cells. Eventually abaxial epidermal and palisade parenchyma cells were injured. These results suggest that submicrometer aerosols enter abaxial stomata and affect more internal cells before affecting leaf surface cells. Exposure to aerosols decreased both abaxial and adaxial leaf resistances markedly. Although visible injury to foliage occurred, no changes in dry mass of roots and shoots or leaf area occurred. These results suggest that for the plant developmental stage studied, while leaf resistances decreased and cellular injury occurred in foliage, these factors were not significantly related to plant growth and development.
Acid rain research program. Annual progress report, September 1975--June 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Raynor, G.S.
1976-09-01
The aims of the research program are: (a) to observe the minimum threshold dose of simulated acid rain to produce visual and histological effects on plant foliage, (b) approach threshold limits of simulated sulfate acid rain that affect plant growth and reproduction, and (c) to measure chemical and meteorological parameters of incident rain. Acute leaf injury to several plant species resulted from exposure of foliage to simulated sulfate acid rain of pH level 2.3 to 2.9. Only slight injury occurred at 3.1. Scanning electron micrographs showed that injury to upper leaf surfaces occurred mostly at the base of trichomes (leafmore » hairs) and near stomata. An association of lesion development near vascular tissue was also noted. Histologically, lesions are characterized by an initial collapse of the epidermis with eventual lysis and collapse of more internal leaf tissues on the upper leaf surface of pinto beans which complemented detailed descriptions of visual lesion development after daily exposures to simulated rain. Initial experiments with gametophytes of Pteridium aquilinum show that reproduction of this fern species is very sensitive to solutions of pH 5.2 while vegetative development is not affected at pH levels of 2.2. Initial rain samples from the sequential sampler have been obtained. Initial portions of rain events exhibit a pH near 3.0 in some cases. More complete chemical analyses are anticipated.« less
"Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.
Burkhardt, Juergen; Hunsche, Mauricio
2013-01-01
"Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.
Is There Ecological Information in Optical Polarization Data?
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2015-01-01
Optical linear polarization? In remote sensing it's due to specular reflection. The first surface that incident light encounters - a smooth water surface or the waxy first surface of a leaf's cuticle, if it's even somewhat smooth (i.e. shiny) - will specularly reflect and linearly polarize the incident light. We provide three examples of the types of ecological information contained in remotely sensed optical linear polarization measurements. Remove the surface reflection to better see the interior. The linearly polarized light reflected by leaf surfaces contains no information about cellular pigments, metabolites, or water contained in the leaf interiors of a plant canopy, because it never enters the leaf interior to interact with them. Thus, for purposes of remotely sensing the leaf interiors of a plant canopy, the linearly polarized light should be subtracted from the total reflected light, because including it would add noise to the measurement. In particular 'minus specular' vegetation indices should allow improved monitoring of a plant canopy's physiological processes. Estimate plant development stage and yield. Wheat and sorghum grain heads, following emergence, rapidly extend upward and very quickly tower over nearby leaves, partially blocking our view of the sunlight reflected by those leaf surfaces. The resulting decrease in the amount of surface reflected and polarized sunlight, if monitored over time, potentially allows per-field estimates of the dates of the heading and flowering development stages to be interleaved with weather data in models, which is key to better estimating per-field grain yield. Similar polarization changes may occur in other grasses, such as oats, barley, corn and rice, each a crop so widely grown that it potentially affects climate at the regional scale. Wetlands Mapping. The sunlight specularly reflected by surface waters is blindingly bright, spectrally flat and polarized - all of which telegraphs that the ground area is inundated. Inundated soils exchange methane with the atmosphere; non-inundated soils, carbon dioxide. Aquatic plants growing through the water surface pipe the soil-produced methane via the stomata to the atmosphere, enhancing exchanges rates by factors of 10-20 compared to ebullition (bubbling) or diffusion through the water column to the atmosphere. Thus, mapping wetland areas into three community types - inundated areas with emergent vegetation, open water and uplands - provides potentially key information to water, carbon and energy budgets at landscape to global scales.
Zhou, Zhaolu; Cao, Chong; Cao, Lidong; Zheng, Li; Xu, Jun; Li, Fengmin; Huang, Qiliang
2018-04-05
The evaporation kinetics of pesticide droplets deposited on a leaf surface can affect their application efficiency. Evaporation of droplets on the hydrophobic leaves has received considerable attention, but little is known about hydrophilic leaf surfaces. In this study, the effect of surfactant concentration on the evaporation of droplets deposited on cotton leaves was investigated. The evaporation time is roughly decreased for concentrations ranging from 0% to 0.01% and increased from 0.01% to 0.10%. Contrary to the widely held belief that pesticide retention on target crops can rapidly be formed only with surfactant concentrations exceeding the CMC (critical micelle concentration), this study demonstrates that, on hydrophilic cotton leaves, fast evaporation of the droplet at surfactant concentrations of 0.01% (CMC) can reduce the volume quickly, lower the loss point and enhance pesticide retention. In addition, the evolution of droplet volume, height and contact angle on the cotton leaf surface were measured to confirm this conclusion. The result presented herein can be used to guide the use of surfactants and pesticides in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.
Xiong, GuanNan; Zhang, YunHui; Duan, YongHong; Cai, ChuanYang; Wang, Xin; Li, JingYa; Tao, Shu; Liu, WenXin
2017-08-01
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.
Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?
Cahon, Thomas; Caillon, Robin
2018-01-01
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342
Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian
2017-04-01
Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13.1 ug/cm2, while mean correlation coefficient is 0.81). Underestimation of high chlorophyll content, which is due to underestimation of reflectance in the visible region of PROSPECT, is partially corrected or alleviated. Improvements are particularly noticeable for leaves with high surface reflectance or high chlorophyll content, which both lead to large proportions of surface reflectance to the total leaf reflectance.
Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.
Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M
2006-08-01
Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.
Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke
2018-06-01
Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.
Aparecido, Luiza M T; Miller, Gretchen R; Cahill, Anthony T; Moore, Georgianne W
2017-10-01
While it is reasonable to predict that photosynthetic rates are inhibited while leaves are wet, leaf gas exchange measurements during wet conditions are challenging to obtain due to equipment limitations and the complexity of canopy-atmosphere interactions in forested environments. Thus, the objective of this study was to evaluate responses of seven tropical and three semiarid savanna plant species to simulated leaf wetness and test the hypotheses that (i) leaf wetness reduces photosynthetic rates (Anet), (ii) leaf traits explain different responses among species and (iii) leaves from wet environments are better adapted for wet leaf conditions than those from drier environments. The two sites were a tropical rainforest in northern Costa Rica with ~4200 mm annual rainfall and a savanna in central Texas with ~1100 mm. Gas exchange measurements were collected under dry and wet conditions on five sun-exposed leaf replicates from each species. Additional measurements included leaf wetness duration and stomatal density. We found that Anet responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf Anet was a significant percentage of total leaf Anet for amphistomatous species. Among tropical species, Anet responses immediately after wetting ranged from -31% (Senna alata (L.) Roxb.) to +21% (Zamia skinneri Warsz. Ex. A. Dietr.), while all savanna species declined (up to -48%). After 10 min of drying, most species recovered Anet towards the observed status prior to wetting or surpassed it, with the exception of Quercus stellata Wangenh., a savanna species, which remained 13% below Anet dry. The combination of leaf wetness duration and leaf traits, such as stomatal density, trichomes or wax, most likely influenced Anet responses positively or negatively. There was also overlap between leaf traits and Anet responses of savanna and tropical plants. It is possible that these species converge on a relatively conservative response to wetness, each for divergent purposes (cooling, avoiding stomatal occlusion, or by several unique means of rapid drying). A better understanding of leaf wetness inhibiting photosynthesis is vital for accurate modeling of growth in forested environments; however, species adapted for wet environments may possess compensatory traits that mitigate these effects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An evolutionary attractor model for sapwood cross section in relation to leaf area.
Westoby, Mark; Cornwell, William K; Falster, Daniel S
2012-06-21
Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A
2012-01-01
The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas
2017-04-01
In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf litter layer was influenced by the presence (or absence) of soil meso- and macrofauna. Fauna presence increased soil erosion rates significantly by 58 %. It was assumed that this faunal effect arose from arthropods loosening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Thus, effects of this fauna group on sediment discharge have to be considered in soil erosion experiments.
Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.
Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim
2017-12-01
Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; ...
2017-02-06
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.« less
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu
2017-01-01
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups. PMID:28220128
Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu
2017-01-01
The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange measurements. Manufactures of leaf gas exchange measurement systems should incorporate leaf water potentials in measurement set-ups.
Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age1[OPEN
Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio
2014-01-01
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. PMID:24913938
7 CFR 29.3049 - Pink or pinkish.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Pink or pinkish. 29.3049 Section 29.3049 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... color affecting 20 percent or more of its leaf surface is considered as mixed color. (See Rule 16.) [24...
7 CFR 29.3049 - Pink or pinkish.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Pink or pinkish. 29.3049 Section 29.3049 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... color affecting 20 percent or more of its leaf surface is considered as mixed color. (See Rule 16.) [24...
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.
2015-12-01
Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.
Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris
Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi
2011-01-01
Background and Aims For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Methods Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Key Results Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. Conclusions R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation. PMID:21896573
Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi
2011-11-01
For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.
Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007
Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.
NASA Astrophysics Data System (ADS)
Katata, Genki; Held, Andreas; Mauder, Matthias
2014-05-01
The wetness of plant leaf surfaces (leaf wetness) is important in meteorological, agricultural, and environmental studies including plant disease management and the deposition process of atmospheric trace gases and particles. Although many models have been developed to predict leaf wetness, wetness data directly measured at the leaf surface for model validations are still limited. In the present study, the leaf wetness was monitored using seven electrical sensors directly clipped to living leaf surfaces of thin and broad-leaved grasses. The measurements were carried out at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany from September 20 to November 8, 2013. Numerical simulations of a multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors were carried out for analyzing the data. For numerical simulations, the additional routine meteorological data of wind speed, air temperature and humidity, radiation, rainfall, long-wave radiative surface temperature, surface fluxes, ceilometer backscatter, and canopy or snow depth were used. The model reproduced well the observed leaf wetness, net radiation, momentum and heat, water vapor, and CO2 fluxes, surface temperature, and soil temperature and moisture. In rain-free days, a typical diurnal cycle as a decrease and increase during the day- and night-time, respectively, was observed in leaf wetness data. The high wetness level was always monitored under rain, fog, and snowcover conditions. Leaf wetness was also often high in the early morning due to thawing of leaf surface water frozen during a cold night. In general, leaf wetness was well correlated with relative humidity (RH) in condensation process, while it rather depended on wind speed in evaporation process. The comparisons in RH-wetness relations between leaf characteristics showed that broad-leaved grasses tended to be wetter than thin grasses.
Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe
2015-01-01
Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the appropriate image processing tools is capable of retrieving the geometric leaf surface properties of plants and canopies. Our software package provides whole-leaf statistics but also a local estimation of leaf angles, which may have great potential to better understand and quantify structural canopy traits for guided breeding and optimized crop management.
Modeling light and temperature effects on leaf emergence in wheat and barley
NASA Technical Reports Server (NTRS)
Volk, T.; Bugbee, B.
1991-01-01
Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.
Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.
Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio
2014-09-01
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. © 2014 American Society of Plant Biologists. All Rights Reserved.
Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation
NASA Astrophysics Data System (ADS)
Lee, Minki; Lim, Hosub; Lee, Jinkee
2017-11-01
Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.
Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu
2017-04-28
Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.
Analysis of leaf surfaces using scanning ion conductance microscopy.
Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J
2015-05-01
Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Global Land Carbon Uptake from Trait Distributions
NASA Astrophysics Data System (ADS)
Butler, E. E.; Datta, A.; Flores-Moreno, H.; Fazayeli, F.; Chen, M.; Wythers, K. R.; Banerjee, A.; Atkin, O. K.; Kattge, J.; Reich, P. B.
2016-12-01
Historically, functional diversity in land surface models has been represented through a range of plant functional types (PFTs), each of which has a single value for all of its functional traits. Here we expand the diversity of the land surface by using a distribution of trait values for each PFT. The data for these trait distributions is from a sub-set of the global database of plant traits, TRY, and this analysis uses three leaf traits: mass based nitrogen and phosphorus content and specific leaf area, which influence both photosynthesis and respiration. The data are extrapolated into continuous surfaces through two methodologies. The first, a categorical method, classifies the species observed in TRY into satellite estimates of their plant functional type abundances - analogous to how traits are currently assigned to PFTs in land surface models. Second, a Bayesian spatial method which additionally estimates how the distribution of a trait changes in accord with both climate and soil covariates. These two methods produce distinct patterns of diversity which are incorporated into a land surface model to estimate how the range of trait values affects the global land carbon budget.
Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.
Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit
2017-11-01
The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.
Fiene, Justin; Kalns, Lauren; Nansen, Christian; Bernal, Julio; Harris, Marvin; Sword, Gregory A.
2013-01-01
Nearly all herbivorous arthropods make foraging-decisions on individual leaves, yet systematic investigations of the adaptive significance and ecological factors structuring these decisions are rare with most attention given to chewing herbivores. This study investigated why an intracellular feeding herbivore, Western flower thrips (WFT) Frankliniella occidentalis Pergande, generally avoids feeding on the adaxial leaf surface of cotton cotyledons. WFT showed a significant aversion to adaxial-feeding even when excised-cotyledons were turned up-side (abaxial-side ‘up’), suggesting that negative-phototaxis was not a primary cause of thrips foraging patterns. No-choice bioassays in which individual WFT females were confined to either the abaxial or adaxial leaf surface showed that 35% fewer offspring were produced when only adaxial feeding was allowed, which coincided with 32% less plant feeding on that surface. To test the hypothesis that leaf biomechanical properties inhibited thrips feeding on the adaxial surface, we used a penetrometer to measure two variables related to the ‘toughness’ of each leaf surface. Neither variable negatively co-varied with feeding. Thus, while avoiding the upper leaf surface was an adaptive foraging strategy, the proximate cause remains to be elucidated, but is likely due, in part, to certain leaf properties that inhibit feeding. PMID:24260510
NASA Astrophysics Data System (ADS)
Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas
2016-04-01
Soil erosion is crucial for degradation of carbon (C) from their pools in the soil. If C of the eroded sediment and runoff are not only related to soil pools but also resulting additively from decomposition of litter cover, the system gets more complex. The role of these amounts for C cycling in a forest environment is not yet known properly and thus, the aim of this study was to investigate the role of leaf litter diversity, litter cover and soil fauna on C redistribution during interrill erosion. We established 96 runoff plots that were deployed with seven domestic leaf litter species resulting in none species (bare ground), 1-species, 2-species and 4-species mixtures. Every second runoff plot was equipped with a fauna extinction feature to investigate the role of soil meso- and macrofauna. Erosion processes were initiated using a rainfall simulator at two time steps (summer 2012 and autumn 2012) to investigate the role of leaf litter decomposition on C redistribution. C fluxes during 20 min rainfall simulation were 99.13 ± 94.98 g/m². C fluxes and C contents both were affected by soil fauna. C fluxes were higher with presence of soil fauna due to loosening and slackening of the soil surface rather than due to faster decomposition of leaves. In contrast, C contents were higher in the absence of soil fauna possibly resulting from a missing dilution effect in the top soil layer. Leaf litter diversity did not affect C fluxes, but indirectly affected C contents as it increased the soil fauna effect with higher leaf litter diversity due to superior food supply. Initial C contents in the soil mainly determined those of the eroded sediment. For future research, it will be essential to introduce a long-term decomposition experiment to get further insights into the processes of C redistribution.
Impacts of drought and crayfish invasion on stream ecosystem structure and function
Magoulick, Daniel D.
2014-01-01
Drought and seasonal drying can be important disturbance events in many small streams, leading to intermittent or isolated habitats. Many small streams contain crayfish populations that are often keystone or dominant species in these systems. I conducted an experiment in stream mesocosms to examine the effects of drought and potential ecological redundancy of a native and invasive crayfish species. I examined the effects of drought (drought or control) and crayfish presence (none, native crayfish Orconectes eupunctus or invasive crayfish Orconectes neglectus) on stream mesocosm structure and function (leaf breakdown, community metabolism, periphyton, sediment and chironomid densities) in a fully factorial design. Each mesocosm contained a deep and shallow section, and drought treatments had surface water present (5-cm depth) in deep sections where tiles and leaf packs were placed. Drought and crayfish presence did not interact for any response variable. Drought significantly reduced leaf breakdown, and crayfish presence significantly increased leaf breakdown. However, the native and invasive crayfish species did not differ significantly in their effects on leaf breakdown. Drought significantly reduced primary production and community respiration overall, whereas crayfish presence did not significantly affect primary production and community respiration. Neither drought nor crayfish presence significantly affected periphyton overall. However, drought significantly reduced autotrophic index (AI), and crayfish presence increased AI. Inorganic sediment and chironomid density were not affected by drought, but both were significantly reduced by crayfish presence. O. eupunctus reduced AI and sediment more than O. neglectus did. Neither drought nor crayfish species significantly affected crayfish growth or survival. Drought can have strong effects on ecosystem function, but weaker effects on benthic structure. Crayfish can have strong effects on ecosystem structure and function regardless of drought. In stream mesocosms, native and invasive crayfish species appeared largely ecologically redundant, although subtle differences in crayfish effects could cascade throughout the food web, and further research is needed to address this question.
NASA Astrophysics Data System (ADS)
Aziz, M. S. H.; Manuhara, G. J.; Utami, R.; Khasanah, L. U.
2018-03-01
The purpose of this study was to determine the effect of active paper placement methods on super red dragon fruits quality during storage at ambient temperature. The active papers were incorporated with oleoresin of cinnamon leaf distillation residues. Various active paper placement methods were applied such as wrapping, placed on the cardboard wall, placed cardboard pad, and scrap of paper on the sidelines. Weight loss, peel color, surface and flesh hardness, total titratable acid, soluble solid total, pH flesh fruit, and total plate count (TPC) of super red dragon fruits samples were investigated during 9 days storage. The result shows that active paper placement methods significantly affected the weight loss, surface firmness and color peel change of super red dragon fruits samples. However, active paper placement methods insignificantly affected the titrable acid total, soluble solid total, pH, flesh firmness and microbial spoilage of super red dragon fruits samples. The best method to maintain the super red dragon fruits quality was wrapping method.
NASA Astrophysics Data System (ADS)
Abou Jaoudé, R.; Pricop, A.; Laffont-Schwob, I.; Prudent, P.; Rabier, J.; Masotti, V.; de Dato, G.; De Angelis, P.
2012-04-01
The rapid growth of population, the increased urbanisation and the expansion of industrial activities have provoked an augmented occurrence of soil contamination by heavy-metals. Important sources of contamination are industrial, mining and military infrastructures, which are often abandoned without performing the appropriate reclamation work. In the Mediterranean Basin, where coastal areas are largely affected by human overexploitation, the use of species able to tolerate heavy-metals and other abiotic stresses may represent a low-cost solution for phytoremediation in these harsh environments. Tamarix gallica L. is a widespread species in coastal Mediterranean areas, showing a high adaptability to different environments and a high tolerance of adversity. With the objective of testing local species as candidates for phytoremediation practices in heavy-metal contaminated coastal soils, cuttings of T. gallica from a wild population around Marseille (France) were planted in pots containing: 1) control soil (loamy soil and sand (2/1)), 2) half-polluted soil (loamy soil, sand and heavy-metal polluted soil (1/1/1)), and 3) polluted soil (sand and heavy-metal polluted soil (1/2)). The contaminated soils were collected in the surrounding of a former lead industry of Marseille littoral and characterised by the presence of Fe, Pb, Zn, As and Al. After three months from planting, leaf functionality was evaluated by measuring leaf gas exchanges, leaf chlorophyll fluorescence and, chlorophyll, phenols, flavonoids and anthocyanins contents. SEM observations coupled to EDXS analysis were used to determine elements (Pb, As and Al) presence and location on the leaf surface and in leaf and root tissues. T. gallica was moderately affected by the presence of heavy-metals in the soil treatments. In fact, a reduction in stomatal conductance was only observed in plants grown in the polluted soil. This reduction did not cause a significant decrease in CO2 assimilation rates. Moreover, the presence of Al on the root surface was observed in plants grown in polluted soils; this element was not detected in leaf tissues or in the leaf extruded material, suggesting a phytostabilization effect for this element. In conclusion, T. gallica could be a potential candidate for phytoremediation practices. Nevertheless, field experiments will be necessary to assess growth performances and phytoremediation potential of this species in heavy-metal polluted areas.
Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José
2016-10-01
In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
What's So Bad about Being Wet All Over: Investigating Leaf Surface Wetness.
ERIC Educational Resources Information Center
Brewer, Carol A.
1996-01-01
Presents investigations of leaf surface wetness that provide ideal opportunities for students to explore the relationships between leaf form and function, to study surface conditions of leaves and plant physiology, and to make predictions about plant adaptation in different environments. Describes simple procedures for exploring questions related…
Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.
Burton, Zachary; Bhushan, Bharat
2006-01-01
Super-hydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature. These leaves are hydrophobic due to the presence of microbumps and a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surface and to separate out the effects of the microbumps and the wax on the hydrophobicity. Furthermore, the adhesion and friction properties of the leaves, with and without wax, are studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements on the hydrophobic leaves, both with and without wax, were made to fully characterize the leaf surface. Using a model that predicts contact angle as a function of roughness, the roughness factor for the hydrophobic leaves has been calculated, which is used to calculate the contact angle for a flat leaf surface. It is shown that both the microbumps and the wax play an equally important role in the hydrophobic nature as well as adhesion and friction of the leaf. This study will be useful in developing super-hydrophobic surfaces.
Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank
2014-01-01
Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.
Sajeevan, R. S.; Nataraja, Karaba N.; Shivashankara, K. S.; Pallavi, N.; Gurumurthy, D. S.; Shivanna, M. B.
2017-01-01
Mulberry (Morus species) leaf is the sole food for monophagous silkworms, Bombyx mori L. Abiotic stresses such as drought, salinity, and high temperature, significantly decrease mulberry productivity and post-harvest water loss from leaves influence silkworm growth and cocoon yield. Leaf surface properties regulate direct water loss through the cuticular layer. Leaf surface waxes, contribute for cuticular resistance and protect mesophyll cells from desiccation. In this study we attempted to overexpress AtSHN1, a transcription factor associated with epicuticular wax biosynthesis to increase leaf surface wax load in mulberry. Agrobacterium mediated in vitro transformation was carried out using hypocotyl and cotyledonary explants of Indian mulberry (cv. M5). Mulberry transgenic plants expressing AtSHN1 displayed dark green shiny appearance with increased leaf surface wax content. Scanning electron microscopy (SEM) and gas chromatograph–mass spectrometry (GC-MS) analysis showed change in pattern of surface wax deposition and significant change in wax composition in AtSHN1 overexpressors. Increased wax content altered leaf surface properties as there was significant difference in water droplet contact angle and diameter between transgenic and wild type plants. The transgenic plants showed significant improvement in leaf moisture retention capacity even 5 h after harvest and there was slow degradation of total buffer soluble protein in detached leaves compared to wild type. Silkworm bioassay did not indicate any undesirable effects on larval growth and cocoon yield. This study demonstrated that expression of AtSHN1, can increase surface wax load and reduce the post-harvest water loss in mulberry. PMID:28421085
Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert
2010-09-30
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.
Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert
2010-01-01
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126
Earth System Modeling Tested for CLM4.5 in a Costa Rican Tropical Montane Rainforest
NASA Astrophysics Data System (ADS)
Song, J.; Miller, G. R.; Cahill, A. T.; Aparecido, L. M. T.; Moore, G. W.
2017-12-01
Terrestrial ecosystems in the tropics are important for global carbon and water cycling, which makes modeling of their land-surface processes essential for accurate understanding of land-atmosphere interactions. However, modeling of tropical regions, especially mountainous ones, is known to be subject to significant errors in the prediction of evapotranspiration. Our previous work has highlighted the effects of the prolonged wetness experienced by such sites, focusing on carbon and water exchange at the leaf/stand level. Here, we explore the implications these findings have for modeling at the stand/canopy scale. This study examined the performance of the Community Land Model (CLM4.5) against measurements from a tropical montane rainforest in Costa Rica. The study site receives over 4,000 mm of mean annual precipitation. Measurements include leaf temperatures, transpiration (sap flows), fluxes via eddy-covariance, and vertical profiles of H2O and CO2 concentrations, micrometeorological variables, and leaf wetness. In this work, results from point-scale CLM4.5 were compared to canopy data. The model fails to capture the effects of frequent rainfall events and mountainous topography on the variables of interest (temperatures, leaf wetness, and fluxes). We found that soil and leaf temperatures were overestimated (≈ +2°C) at noon and underestimated (≈ -1°C) during the night; daily transpiration was approximately double than that observed. Simulated leaf wetness deviated significantly from the measurements, both in timing and extent, which affected temperatures and evapotranspiration partitioning. Slope effects appeared in the average diurnal variations of surface albedo and carbon flux from actual data but were not captured in CLM. Our investigation indicated that interception and aerodynamic resistance models contribute to model errors, suggesting potential improvements for modeling in very wet and/or mountainous regions.
Effects of combination of leaf resources on competition in container mosquito larvae.
Reiskind, M H; Zarrabi, A A; Lounibos, L P
2012-08-01
Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...
Code of Federal Regulations, 2011 CFR
2011-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...
Code of Federal Regulations, 2013 CFR
2013-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...
Code of Federal Regulations, 2014 CFR
2014-01-01
... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...
Yang, Hualei; Yang, Xi; Heskel, Mary; ...
2017-04-28
Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less
Chlorophyll content retrieval from hyperspectral remote sensing imagery.
Yang, Xiguang; Yu, Ying; Fan, Wenyi
2015-07-01
Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hualei; Yang, Xi; Heskel, Mary
Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.
Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro
2013-01-01
It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194
Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang
2013-01-01
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments. PMID:23776594
Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang
2013-01-01
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments.
Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission
NASA Astrophysics Data System (ADS)
Lee, G.; Sen, B.; Ross, F.; Sokol, D.
2016-12-01
Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.
Puente, Diana W Moran; Baur, Peter
2011-07-01
Leaf wettability considerably defines the degree of retention of water and agrochemical sprays on crop and non-target plant surfaces. Plant surface structure varies with development therefore the goal was to characterise the wettability of soybean leaf surfaces as a function of growth stage (GS). Adaxial surfaces of leaves developed at GS 16 (BBCH) were 10 times more wettable with water than leaves at the lower canopy (GS 13). By measuring contact angles of a liquid having an intermediate surface tension on different leaf patches, an illustrative wetting profile was elucidated, showing to what degree wetting varies (from > 120° to < 20°) depending on leaf patch and GS. While the critical surface tension of leaf surfaces at different GSs did not correlate with the observed changes, the slope of the Zisman plot accurately represented the increase in wettability of leaves at the upper canopy and lateral shoots (GSs 17 to 19, 21 and 24). The discrimination given by the slopes was even better than that by water contact angles. SEM observations revealed that the low wettability observed at early GSs is mainly due to a dense layer of epicuticular wax crystals. The Zisman plot slope does not represent the changes in leaf roughness (i.e. epicuticular wax deposition), but provides an insight into chemical and compositional surface characteristics at the droplet-leaf interface. The results with different wettability measurement methods demonstrated that wetting is a feature that characterises each developmental stage of soybean leaves. Positional wettability differences among leaves at the same plant and within the same leaf are relevant for performance, selectivity and plant compatibility of agrochemicals. Implications are discussed. Copyright © 2011 Society of Chemical Industry.
Leaf area dynamics of conifer forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolis, H.; Oren, R.; Whitehead, D.
1995-07-01
Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less
The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1
Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George
2002-01-01
Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354
Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro
2013-01-01
Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
[Indoor simulation on dew formation on plant leaves].
Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong
2014-03-01
Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.
Ma, Chih-Ming; Cheng, Chih-Lun; Lee, Shang-Chieh; Hong, Gui-Bing
2018-04-30
The aim of this study was to examine the effect of process factors such as ethanol concentration, extraction time and temperature on the extraction yield and the bioactive contents of Tagetes lemmonii leaf extracts using response surface methodology (RSM). ANOVA results showed that the response variables were affected by the ethanol concentration to a very significant degree and by extraction temperature to a lesser degree. GC/MS characterization showed that the extract is rich in bioactive compounds and those present exhibited important biological activities such as antioxidant, insect repellence and insecticidal activities. The results from the toxicity assay demonstrate that the extract obtained from the leaves of Tagetes lemmonii was an effective insect toxin against Tribolium castaneum. The radical scavenging activity and p-anisidine test results of olive oil spiked with different concentrations of leaf extract showed that the phenolic compounds can retard lipid oxidation. Copyright © 2018 Elsevier Inc. All rights reserved.
An electromyographic study of aspects of 'deprogramming' of human jaw muscles.
Donegan, S J; Carr, A B; Christensen, L V; Ziebert, G J
1990-11-01
Surface electromyograms from the right and left masseter and anterior temporalis muscles were used to detect peripheral correlates of deprogramming, also known as programming and reprogramming, of jaw elevator muscles. Putative deprogramming was attempted through the clinically recommended use of a leaf gauge, placed for 15 min between the maxillary and mandibular anterior teeth and disoccluding the posterior teeth by about 2 mm. Studied contractile activities were those of postural activity (subconscious, semi-isometric, minimal activity) and intercuspal teeth clenching (conscious, isometric, maximal activity). Use of the leaf gauge did not affect normalized postural activity (about 4%), the duration (about 900 ms) and static work efforts of clenching (about 1200 microV.s), the time to peak mean voltage of clenching (about 400 ms), and the peak mean voltage of clenching (about 300 microV). Activity and asymmetry indices showed that the studied motor innervation patterns were not changed by the leaf gauge.
NASA Technical Reports Server (NTRS)
Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.
1996-01-01
Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.
Nina Shishkoff
2008-01-01
Leaves with lesions caused by Phytophthora ramorum Werres, de Cock & Man in?t Veld often drop off infected plants. Because fallen leaves might serve as sources of inoculum both for the above-ground tissues of host plants and for their roots, this study quantified the inoculum produced by such leaves on the surface of pots when exposed to...
NASA Astrophysics Data System (ADS)
Yuan, Chuan; Gao, Guangyao; Fu, Bojie
2017-03-01
Stemflow transports nutrient-enriched precipitation to the rhizosphere and functions as an efficient terrestrial flux in water-stressed ecosystems. However, its ecological significance has generally been underestimated because it is relatively limited in amount, and the biotic mechanisms that affect it have not been thoroughly studied at the leaf scale. This study was conducted during the 2014 and 2015 rainy seasons at the northern Loess Plateau of China. We measured the branch stemflow volume (SFb), shrub stemflow equivalent water depth (SFd), stemflow percentage of incident precipitation (SF %), stemflow productivity (SFP), funnelling ratio (FR), the meteorological characteristics and the plant traits of branches and leaves of C. korshinskii and S. psammophila. This study evaluated stemflow efficiency for the first time with the combined results of SFP and FR, and sought to determine the inter- and intra-specific differences of stemflow yield and efficiency between the two species, as well as the specific bio-/abiotic mechanisms that affected stemflow. The results indicated that C. korshinskii had a greater stemflow yield and efficiency at all precipitation levels than that of S. psammophila. The largest inter-specific difference generally occurred at the 5-10 mm branches during rains of ≤ 2 mm. Precipitation amount was the most influential meteorological characteristic that affected stemflow yield and efficiency in these two endemic shrub species. Branch angle was the most influential plant trait on FR. For SFb, stem biomass and leaf biomass were the most influential plant traits for C. korshinskii and S. psammophila, respectively. For SFP of these two shrub species, leaf traits (the individual leaf area) and branch traits (branch size and biomass allocation pattern) had a great influence during lighter rains ≤ 10 mm and heavier rains > 15 mm, respectively. The lower precipitation threshold to start stemflow allowed C. korshinskii (0.9 mm vs. 2.1 mm for S. psammophila) to employ more rains to harvest water via stemflow. The beneficial leaf traits (e.g., leaf shape, arrangement, area, amount) might partly explain the greater stemflow production of C. korshinskii. Comparison of SFb between the foliated and manually defoliated shrubs during the 2015 rainy season indicated that the newly exposed branch surface at the defoliated period and the resulting rainfall intercepting effects might be an important mechanism affecting stemflow in the dormant season.
USDA-ARS?s Scientific Manuscript database
Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...
Picoli, E A.T.; Otoni, W C.; Figueira, M L.; Carolino, S M.B.; Almeida, R S.; Silva, E A.M.; Carvalho, C R.; Fontes, E P.B.
2001-04-01
The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP. Although tissue culture conditions may induce BiP synthesis, the accumulation of BiP in hyperhydric shoots was consistently higher than in non-hyperhydric shoots. The leaf and stem anatomy in non-hyperhydric and hyperhydric eggplant was investigated aiming to identify structural changes associated with this phenomenon. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system when compared with its hyperhydric counterpart. Scanning electron microscopy of leaves showed that leaf surface and stomata differentiation were also affected in hyperhydric plants.
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.
2013-01-01
The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.
Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.
Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja
2018-03-01
Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.
Cross-scale modelling of transpiration from stomata via the leaf boundary layer.
Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart
2014-09-01
Leaf transpiration is a key parameter for understanding land surface-climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2-5%). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10⁻⁵-10⁻¹ m), which implies explicitly modelling individual stomata. BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100%). Nevertheless, these conventional BLCs (CR of 100%), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework.
Takahashi, Koichi; Tanaka, Saeka
2016-11-01
This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.
Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).
Nair, Shakunthala; Braman, S Kristine; Knauft, D A
2012-10-01
This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.
Belhadj, Safia; Derridj, Arezki; Aigouy, Thierry; Gers, Charles; Gauquelin, Thierry; Mevy, Jean-Philippe
2007-10-01
A comparative analysis was undertaken to conduct a micromorphological study of Pistacia atlantica leaves by comparing different populations grown under different climatic conditions. Leaf epidermis of eight wild populations was investigated under scanning electron microscope. Micromorphological characteristics (epidermis ornament, stomata type, waxes as well as trichomes) of the adaxial and abaxial leaf surfaces were examined. The epidermis ornament varied among populations and leaf surface, the abaxial leaf surface is reticulate with a striate surface. Messaad site shows a smooth uneven surface. The adaxial leaf surface is smooth but several ornamentations can be seen. The leaflet is amphistomatic; the stomata appeared to be slightly sunken. A variety of stomatal types were recorded; actinocytic and anomocytic types are the most frequent. The indumentum consisted of glandular and nonglandular trichomes. Unicellular glandular trichomes are recorded for P. atlantica leaves in this study. Their density is higher in Oued safene site, located at the highest altitude in comparison with the other populations. The wax occurred in all the sites and its pattern varied according to the populations studied, particularly between Berriane and Messaad. The morphological variability exhibited by the eight populations of P. atlantica may be interpreted as relevant to the ecological plasticity and the physiological mechanisms involved are discussed in this report.
Leaf gas films contribute to rice (Oryza sativa) submergence tolerance during saline floods.
Herzog, Max; Konnerup, Dennis; Pedersen, Ole; Winkel, Anders; Colmer, Timothy David
2018-05-01
Floods and salinization of agricultural land adversely impact global rice production. We investigated whether gas films on leaves of submerged rice delay salt entry during saline submergence. Two-week-old plants with leaf gas films (+GF) or with gas films experimentally removed (-GF) were submerged in artificial floodwater with 0 or 50 mm NaCl for up to 16 d. Gas films were present >9 d on GF plants after which gas films were diminished. Tissue ion analysis (Na + , Cl - and K + ) showed that gas films caused some delay of Na + entry, as leaf Na + concentration was 36-42% higher in -GF leaves than +GF leaves on days 1-5. However, significant net uptakes of Na + and Cl - , and K + net loss, occurred despite the presence of gas films, indicating the likely presence of some leaf-to-floodwater contact, so that the gas layer must not have completely separated the leaf surfaces from the water. Natural loss and removal of gas films resulted in severe declines in growth, underwater photosynthesis, chlorophyll a and tissue porosity. Submergence was more detrimental to leaf P N and growth than the additional effect of 50 mm NaCl, as salt did not significantly affect underwater P N at 200 μm CO 2 nor growth. © 2016 John Wiley & Sons Ltd.
Fabre, Guillaume; Garroum, Imène; Mazurek, Sylwester; Daraspe, Jean; Mucciolo, Antonio; Sankar, Martial; Humbel, Bruno M; Nawrath, Christiane
2016-01-01
The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning.
Watson, Gregory S; Gellender, Marty; Watson, Jolanta A
2014-01-01
This study shows that condensation on the hierarchically structured lotus leaf can facilitate self-propulsion of water droplets off the surface. Droplets on leaves inclined at high angles can be completely removed from the surface by self-propulsion with the assistance of gravity. Due to the small size of mobile droplets, light breezes may also fully remove the propelled droplets, which are typically projected beyond the boundary layer of the leaf cuticle. Moreover the self-propelled droplets/condensate were able to remove contaminants (eg silica particles) from the leaf surface. The biological significance of this process may be associated with maintaining a healthy cuticle surface when the action of rain to clean the surface via the lotus effect is not possible (due to no precipitation). Indeed, the native lotus plants in this study were located in a region with extended time periods (several months) without rain. Thus, dew formation on the leaf may provide an alternative self-cleaning mechanism during times of drought and optimise the functional efficiency of the leaf surface as well as protecting the surface from long term exposure to pathogens such as bacteria and fungi.
Wang, Ping; Wu, Tun-Hua; Zhang, Yong
2014-01-01
An established synchronous solid surface fluorimetry (S-SSF) was utilized for in situ study the photolysis processes of anthracene (An) and pyrene (Py) adsorbed on the leaf surfaces of Kandelia obovata seedlings (Ko) and Aegiceras corniculata (L.) Blanco seedlings (Ac). Experimental results demonstrated that the photolysis of An and Py adsorbed on the leaf surfaces of two mangrove species under the laboratory conditions, followed first-order kinetics with their photolysis rates in the order of Ac>Ko. In addition, with the same amount of substances, the photolysis rate of An adsorbed on the same mangrove leaf surfaces was much faster than the adsorbed Py. In order to investigate further, the photolysis processes of An and Py in water were also studied for comparison. And the photolysis of An and Py in water also followed first-order kinetics. Moreover, for the same initial amount, the photolysis rate of the PAH in water was faster than that adsorbed on the leaf surfaces of two mangrove species. Therefore, photochemical behaviors of PAHs were dependent not only on their molecular structures but also the physical-chemical properties of the substrates on which they are adsorbed. PMID:24404158
Replication of Leaf Surface Structures for Light Harvesting
Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei
2015-01-01
As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems. PMID:26381702
NASA Astrophysics Data System (ADS)
Bonan, G. B.
2016-12-01
Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.
Environmental control on eastern broadleaf forest species' leaf wax distributions and D/H ratios
NASA Astrophysics Data System (ADS)
Tipple, Brett J.; Pagani, Mark
2013-06-01
Local climate and environment broadly affect the deuterium/hydrogen (D/H) ratios of plant materials, however the degree to which an individual plant's leaf waxes D/H ratios are affected by these parameters remains in question. Understanding these issues is particularly important in order to reconstruct past floral transitions and changes in the paleohydrologic cycle. For this study, we sampled five co-occurring tree species, Acer rubrum, Platanus occidentalis, Juniperus virginiana, Pinus taeda, and Pinus strobus and soils at forty sites along the East Coast of the US, from Florida to Maine. Hydrogen isotopic compositions of leaf wax n-alkanes, stem and surface waters were analyzed and compared against high-resolution temperature, precipitation, relative humidity, and vapor pressure deficit data to determine environmental controls on isotopic composition. Our results demonstrate that each tree species produce a unique distribution of n-alkanes with distinct chain length pattern. Average n-alkane chain lengths recovered from soils, A. rubrum, and J. virginiana leaves show significant correlations with mean annual temperature. δD values of A. rubrum leaf n-alkanes were strongly correlated to modeled mean annual precipitation δD values and other climate parameters related to latitude (i.e. temperature, relative humidity, vapor pressure deficit), while the δD values of J. virginiana n-alkanes were not. Differences in correspondence may reflect the timing of leaf wax synthesis between the two species. Further, soil n-alkane D/H compositions were strongly correlated to modeled mean annual precipitation δD values, while the apparent hydrogen isotopic fractionation was not. These findings indicate that the isotope ratio of n-alkanes from soils in Eastern North American forests and similar ecosystems likely represents a time-averaged value that smooth out the environmental influence any one plant experiences.
Hunsche, Mauricio; Blanke, Michael M; Noga, Georg
2010-08-15
A higher frequency of hail storms, possibly due to climate change, has led to increased installation of hail nets worldwide. The objective of the present work was to investigate potential effects of the microclimate under these hail nets on micromorphological characteristics of the leaves and adaxial leaf cuticles. Leaves of apple cultivars 'Pinova' and 'Fuji' grown on trees under white (highly translucent) or red-black (low transmittance) hail nets or on uncovered (control) trees were evaluated in June, August, September and October. The microclimate under the colored hail nets had no impact on leaf micromorphology, amount of cuticular wax, or leaf thickness. Similarly, no differences in thickness and permeability for calcium could be established between cuticles of leaves grown on trees under the two types of hail nets or uncovered trees. For all evaluated parameters, significant differences were detected between the two cultivars examined. In both cultivars, leaf wax synthesis followed a characteristic curve, increasing from the first to the second evaluation, and then decreasing continuously without affecting cuticular penetration of calcium. Overall, our results show that a reduction of the hail nets by 6-10% in both light and humidity was insufficient to influence the surface properties of apple leaves and permeability of cuticles. This may suggest that pest management strategies, i.e. formulation of agrochemicals, their application and dose, do not need to be adapted when used under hail nets. Overall, the present results indicate that the microclimatic changes brought about by colored hail nets are sufficient to enhance the vegetative growth and induce the 'shade avoidance syndrome', but do not appear to affect the leaf cuticular properties. Copyright 2010 Elsevier GmbH. All rights reserved.
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
Bhatt, A; Naidoo, Y; Nicholas, A
2010-01-01
The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces.
NASA Astrophysics Data System (ADS)
Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.
2013-12-01
Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.
NASA Astrophysics Data System (ADS)
Sun, Shang; Moravek, Alexander; Trebs, Ivonne; Kesselmeier, Jürgen; Sörgel, Matthias
2016-12-01
This study investigates the influence of leaf surface water films on the deposition of ozone (O3) and peroxyacetyl nitrate (PAN) under controlled laboratory conditions. A twin-cuvette system was used to simulate environmental variables. We observed a clear correlation between the O3 deposition on plants (Quercus ilex) and the relative humidity (RH) under both light and dark conditions. During the light period the observed increase of the O3 deposition was mainly attributed to the opening of leaf stomata, while during the absence of light the liquid surface films were the reason for O3 deposition. This finding was supported by experimentally induced stomatal closure by the infiltration of abscisic acid. In the case of PAN, no relationship with RH was found during the dark period, which indicates that the nonstomatal deposition of PAN is not affected by the liquid surface films. Consequently, the ratio of the O3 and PAN deposition velocities is not constant when relative humidity changes, which is in contrast to assumptions made in many models. The flux partitioning ratio between nonstomatal and stomatal depositions as well as between nonstomatal and total depositions was found to be Rnsto/sto = 0.21-0.40, Rnsto/tot = 0.18-0.30 for O3 and Rnsto/sto = 0.26-0.29, Rnsto/tot = 0.21-0.23 for PAN. Furthermore, we demonstrate that the formation of the liquid surface film on leaves and the nonstomatal O3 deposition are depending on the chemical composition of the particles deposited on the leaf cuticles as proposed previously.
[Acumen function in leaves and its vertical distribution in a tropical rain forest of Costa Rica].
Farji-Brener, Alejandro G; Valverde, Oscar; Paolini, Leonardo; de los Angeles La Torre, María; Quintero, Estela; Bonaccorso, Elisa; Arnedo, Luisa; Villalobos, Richard
2002-06-01
Water retention on the leaf surface can be maladaptive to the plant because it increases the colonization of epiphylls and interferes with the physiologic processes of the leaf, diminishing the photosynthetic capacity. To test if leaf driptips facilitate leaf drying after rainfall in a tropical rain forest of Costa Rica, we (1) experimentally measured the capacity to retain water on leaf surfaces of 30 plant species before and after driptip removal, and (2) analyzed the development of driptips along forest strata. We expected leaf driptips to be less developed in the upper strata due to the environmental conditions of the canopy (i.e., high solar radiation, strong winds and low relative humidity), which favor the natural drying of leaves. The presence of driptips increased 100% the water run off capacity of leaves in all the analyzed species. Also, the development of leaf driptips was smaller in canopy species than in understory species. Additionally, they became less developed in canopy species as trees increased in height. These results support the hypothesis that the adaptive role of driptips is to facilitate the drying of leaf surfaces.
Cross-scale modelling of transpiration from stomata via the leaf boundary layer
Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart
2014-01-01
Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic stomata, but instead assume a uniform distribution of evaporation such as found for a fully-wet leaf. The model output can be used to correct or upgrade existing BLCs or to feed into higher-scale models, for example within a multiscale framework. PMID:24510217
Mayo Marques, Marcia Ortiz; Maria Rodrigues, Tatiane
2017-01-01
Abstract Herbivory can induce several structural and functional alterations in the plant secretory system. Glandular trichomes are the main sites of production of volatile organic compounds (VOCs) with several chemical properties in Lamiaceae species. Ocimum species usually have three morphotypes of glandular trichomes (morphotype I is peltate and has a wide four-celled head; morphotype II is capitate and has a unicellular head; and morphotype III is capitate with a bicellular head) which produce a great amount of terpenes, although other chemical categories of substances are also produced. Despite the abundance of trichomes producing important anti-herbivory components in their leaves, the association between Ocimum species and leaf-cutter ants has been commonly registered in Brazil. We investigated the effect of leaf-cutter ant attack on the density of the glandular trichomes and on the chemistry of the VOCs released from leaves of O. gratissimum. Plants were subjected to Acromyrmex rugosus attack until 90 % of leaves were removed. After 40 days from the leaf-cutter attack, both treatments were sampled. The glandular trichome density was analysed by scanning electron microscopy. The VOCs were extracted utilizing headspace solid-phase microextraction (HS-SPME) technique and analysed by gas chromatography. Generally, the density of glandular trichomes increased in the adaxial leaf surface of the attacked plants. However, we bring novelties on this topic since we analysed the density of each morphotype separately. The morphotype I decreased in the abaxial leaf surface, and increased in the adaxial leaf surface; the morphotype II increased in both leaf surfaces; and the morphotype III decreased in the abaxial leaf surface and remained constant in the adaxial leaf surface of attacked plants. In leaves of attacked plants, the (Z)-β-ocimene increased by 50 %, the α-selinene by 13 % and the germacrene D by 126 %, whereas the eugenol decreased by 70 %. Our data point to a differential response of each glandular morphotype in O. gratissimum and are consistent with the idea of a compartmentalization of functions among the different glandular morphotypes in the plant defence against environmental factors. PMID:29218139
Titan LEAF: A Sky Rover Granting Targeted Access to Titan's Lakes and Plains
NASA Astrophysics Data System (ADS)
Ross, Floyd; Lee, Greg; Sokol, Daniel; Goldman, Benjamin; Bolisay, Linden
2016-10-01
Northrop Grumman, in collaboration with L'Garde Inc. and Global Aerospace Corporation (GAC), has been developing the Titan Lifting Entry Atmospheric Flight (T-LEAF) sky rover to roam the atmosphere and observe at close quarters the lakes and plains of Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in situ instruments to the surface.T-LEAF is a maneuverable, buoyant air vehicle. Its aerodynamic shape provides its maneuverability, and its internal helium envelope reduces propulsion power requirements and also the risk of crashing. Because of these features, T-LEAF is not restricted to following prevailing wind patterns. This freedom of mobility allows it be commanded to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations.T-LEAF utilizes a variable power propulsion system, from high power at ~200W to low power at ~50W. High power mode uses the propellers and control surfaces for additional mobility and maneuverability. It also allows the vehicle to hover over specific locations for long duration surface observations. Low power mode utilizes GAC's Titan Winged Aerobot (TWA) concept, currently being developed with NASA funding, which achieves guided flight without the use of propellers or control surfaces. Although slower than high powered flight, this mode grants increased power to science instruments while still maintaining control over direction of travel.Additionally, T-LEAF is its own entry vehicle, with its leading edges protected by flexible thermal protection system (f-TPS) materials already being tested by NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) group. This f-TPS technology allows T-LEAF to inflate in space, like HIAD, and then enter the atmosphere fully deployed. This approach accommodates entry velocities from as low as ~1.8 km/s if entering from Titan orbit, up to ~6 km/s if entering directly from Saturn orbit, like the Huygens probe.This presentation will discuss each of these topic areas, showing that a sky rover like T-LEAF is an ideal option for exploration of both the surface and atmosphere of Titan.
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Krishnan, Venkata
2017-03-01
Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS) has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.
Gortari, Fermín; Guiamet, Juan José; Graciano, Corina
2018-06-01
Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms.
Kothari, Adit R; Burnett, Nicholas P
2017-09-01
In nature, plants regularly interact with herbivores and with wind. Herbivores can wound and alter the structure of plants, whereas wind can exert aerodynamic forces that cause the plants to flutter or sway. While herbivory has many negative consequences for plants, fluttering in wind can be beneficial for plants by facilitating gas exchange and loss of excess heat. Little is known about how herbivores affect plant motion in wind. We tested how the mass of an herbivore resting on a broad leaf of the tulip tree Liriodendron tulipifera , and the damage caused by herbivores, affected the motion of the leaf in wind. For this, we placed mimics of herbivores on the leaves, varying each herbivore's mass or position, and used high-speed video to measure how the herbivore mimics affected leaf movement and reconfiguration at two wind speeds inside a laboratory wind tunnel. In a similar setup, we tested how naturally occurring herbivore damage on the leaves affected leaf movement and reconfiguration. We found that the mass of an herbivore resting on a leaf can change that leaf's orientation relative to the wind and interfere with the ability of the leaf to reconfigure into a smaller, more streamlined shape. A large herbivore load slowed the leaf's fluttering frequency, while naturally occurring damage from herbivores increased the leaf's fluttering frequency. We conclude that herbivores can alter the physical interactions between wind and plants by two methods: (1) acting as a point mass on the plant while it is feeding and (2) removing tissue from the plant. Altering a plant's interaction with wind can have physical and physiological consequences for the plant. Thus, future studies of plants in nature should consider the effect of herbivory on plant-wind interactions, and vice versa.
Ormrod, Douglas P.; Tingey, David T.; Gumpertz, Marcia L.; Olszyk, David M.
1984-01-01
A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth. PMID:16663598
Ormrod, D P; Tingey, D T; Gumpertz, M L; Olszyk, D M
1984-05-01
A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO(2)) and ozone (O(3)) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of ;Grand Rapids' lettuce (Lactuca sativa L.), ;Cherry Belle' radish (Raphanus sativus L.), and ;Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO(2) and O(3). Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O(3), and pea was most sensitive and radish least sensitive to SO(2). Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Singer, E.; Gonzalez, J.; Juenger, T. E.; Woyke, T.
2016-12-01
Growing energy demands and concerns for climate change have urgently pushed forward the timeline for the implementation of biofuel energies. Switchgrass (Panicum virgatum) is a leading biofuel crop in the United States. Bacteria living on and inside leaves and roots affect plant health, hence a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. We present a large-scale field experiment to untangle the effects of genotype, environment, soil horizon and harvest treatment practices on prokaryotic and fungal communities associated with leaves and roots of switchgrass. Using V4 16S rRNA and ITS gene as well as metagenome sequencing, we show that host genotype is significant in both, leaves and roots, and varies among sites. Microbiome composition along the rhizosphere also shifts with soil depth. Furthermore, plant harvest significantly changes both, leaf surface and rhizosphere communities, which can be seen a year after the harvest event. Gene function analysis shows that rhizosphere communities are enriched in genes encoding nitrate reduction, carbohydrate transport and metabolism, motility, and sensory and signal transduction proteins relative to leaf surface communities. Our results demonstrate how genotype-environment interactions contribute to the complexity of microbiome assembly in natural environments.
Guzmán, Paula; Fernández, Victoria; García, María Luisa; Fernández, Agustín; Gil, Luis
2014-01-01
The leaf cuticular ultrastructure of some plant species has been examined by transmission electron microscopy (TEM) in only few studies. Attending to the different cuticle layers and inner structure, plant cuticles have been grouped into six general morphological types. With the aim of critically examining the effect of cuticle isolation and preparation for TEM analysis on cuticular ultrastructure, adaxial leaf cuticles of blue-gum eucalypt, grey poplar, and European pear were assessed, following a membrane science approach. The embedding and staining protocols affected the ultrastructure of the cuticles analysed. The solubility parameter, surface tension, and contact angles with water of pure Spurr's and LR-White resins were within a similar range. Differences were however estimated for resin : solvent mixtures, since Spurr's resin is combined with acetone and LR-White resin is mixed with ethanol. Given the composite hydrophilic and lipophilic nature of plant cuticles, the particular TEM tissue embedding and staining procedures employed may affect sample ultrastructure and the interpretation of the results in physicochemical and biological terms. It is concluded that tissue preparation procedures may be optimised to facilitate the observation of the micro- and nanostructure of cuticular layers and components with different degrees of polarity and hydrophobicity. PMID:24895682
Phytohormones signaling and crosstalk regulating leaf angle in rice.
Luo, Xiangyu; Zheng, Jingsheng; Huang, Rongyu; Huang, Yumin; Wang, Houcong; Jiang, Liangrong; Fang, Xuanjun
2016-12-01
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.
Intraspecific variation in the response of Taxodium distichum seedlings to salinity
Allen, J.A.; Chambers, J.L.; McKinney, D.
1994-01-01
Seedlings of 15 open-pollinated families of baldcypress (Taxodium distichum) were tested for their tolerance to combined salinty and flooding stress. Ten of the families were from coastal locations in Louisiana or Alabama, USA, that were slightly brackish. The other families were from locations not affected by saltwater intrusion. Five salinity levels were investigated--0,2,4,6, and 8 g -1 artificial seawater -- all with flooding to approximately 5 cm above the soil surface. Survival, height growth, leaf area and total biomass all declined with increasing salinity. Significant variation was found among salinity levels, families, and salinity x family interactions for leaf area and total biomass. Two tolerance indices were also developed to compare family response with salinity. In general, families from brackish sources had greater total biomass, leaf area, and tolerance index values than families from freshwater sources at the higher slainity levels. A selection and breeding program designed to develop moderately salt-tolerant baldcypress seedlings for use in wetland restoration projects and other applications appears to be well-justified.
NASA Astrophysics Data System (ADS)
Goll, D. S.; Vuichard, N.; Maignan, F.; Jornet-Puig, A.; Sardans, J.; Peng, S.; Sun, Y.; Kvakić, M.; Guimberteau, M.; Guenet, B.; Zaehle, S.; Penuelas, J.; Jannssens, I.; Ciais, P.
2017-12-01
Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the land surface model ORCHIDEE, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for influence of nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization and biological nitrogen fixation. Changes in nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300yr) and a late stage (4.1 Myr) of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower as observed primarily due to biases in the nutrient content and turnover of woody biomass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauser, H.D.; Walters, K.D.; Berg, V.S.
Plants in the field are frequently exposed to anthropogenic acid precipitation with pH values of 4 and below. For the acid to directly affect leaf tissues, it must pass through the leaf cuticle, but little is known about the permeability of cuticles to protons, of about the effect of different anions on this permeability. We investigated the movement of protons through isolated astomatous leaf cuticles of grapefruit (Citrus x paradisi Macfady.), rough lemon (Citrus limon [L.] Burm. fils cv Ponderosa), and pear (Pyrus communis L.) using hydrochloric, sulfuric, and nitric acids. Cuticles were enzymically isolated from leaves and placed inmore » a diffusion apparatus with pH 4 acid on the morphological outer surface of the cuticle and degassed distilled water on the inner surface. Changes in pH of the solution on the inner surface were used to determine rates of effective permeability of the cuticles to the protons of these acids. Most cuticles exhibited an initial low permeability, lasting hours to days, then after a short transition displayed a significant higher permeability, which persisted until equilibrium was approached. The change in effective permeability appears to be reversible. Effective permeabilities were higher for sulfuric acid than for the others. A model of the movement of protons through the cuticle is presented, proposing that dissociated acid groups in channels within the cutin are first protonated by the acid, accounting for the low initial effective permeability; then protons pass freely through the channels, resulting in a higher effective permeability. 26 refs., 6 figs., 2 tabs.« less
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
USDA-ARS?s Scientific Manuscript database
Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, J.M.
1987-01-01
Field and laboratory investigations were conducted to examine the response of soybeans (Glycine max (L.) Merr.), pitted morning glory (Ipomoea lacunosa L.number/sup 1/ IPOLA), and ivy leaf morning glory (Ipomoea hederacea (L.) Jacq. number IPOHE) to acifluorfen, fomesafen, and lactofen. In field studies, greatest soybean injury was observed with acifluorfen and lactofen. All treatments provided 80% or greater control of pitted morning glory 15 days after treatment. Only acifluorfen and fomesafen at 0.6 kg ai ha/sup -1/ provided 80% or greater ivy leaf morning glory. The differential response of pitted morning glory and ivy leaf morning glory to these diphenylmore » ether herbicides was reflected in soybean seed yields. In laboratory studies, 71 to 84% of applied /sup 14/C-acifluorfen was not absorbed into the leaf surface of ivy leaf morning glory. Thirty-two to 46% of applied acifluorfen was recovered from the leaf surface of pitted morning glory. Sixty-four percent of applied /sup 14/C-lactofen was recovered from leaf surfaces of both morning glory species 96 h after treatment. Treated leaves of pitted morning glory contained 35 to 37% more /sup 14/C-acifluorfen than ivy leaf morning glory. Less than 28% of applied /sup 14/C-lactofen was absorbed into treated leaves of both morning glory species at 24, 48, and 96 h harvests.« less
Zheng, Liang; Van Labeke, Marie-Christine
2017-01-01
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (K leaf ), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m -2 s -1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (F v /F m ) and quantum efficiency (Φ PSII ) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (K leaf ) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina , and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa , increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (Φ PSII ). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.
Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...
Leaf drop affects herbivory in oaks.
Pearse, Ian S; Karban, Richard
2013-11-01
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.
Richard H. Grant; Gordon M. Heisler; Wei Gao; Matthew Jenks
2003-01-01
The spectral reflectance and transmittance over the wavelength range of 250-700nm were evaluated for leaves of 20 deciduous tree species and leaf sheaths of five isogenic wax variants of Sorghum bicolor differing in visible reflectance due to cuticular waxes. Using the sorghum sheath reflectance and cuticle surface characteristics as a model, it was concluded that tree...
Response of Leaf Water Potential, Stomatal Resistance, and Leaf Rolling to Water Stress
O'Toole, John C.; Cruz, Rolando T.
1980-01-01
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. Stomatal resistance increased more on the abaxial than the adaxial leaf surface in both cultivars. This was associated with a change in leaf form or rolling inward of the upper leaf surface. Both responses, increased stomatal resistance and leaf rolling, were initiated in a similar leaf water potential range (−8 to −12 bars). Leaves of IR28 became fully rolled at leaf water potential of about −22 bars; however, total leaf diffusive resistance was only about 4 to 5 seconds per centimeter (conductance 0.25 to 0.2 centimeter per second) at that stage. Leaf diffusive resistance and degree of leaf rolling were linearly related to leaf water potential. Thus, leaf rolling in rice may be used as an estimate of the other two less obvious effects of water deficit. PMID:16661206
Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi
2017-12-14
The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.
Microwave model prediction and verifications for vegetated terrain
NASA Technical Reports Server (NTRS)
Fung, A. K.
1985-01-01
To understand the scattering properties of a deciduous and a coniferous type vegetation scattering models were developed assuming either a disc type leaf or a needle type leaf. The major effort is to calculate the corresponding scattering phase functions and then each of the functions is used in a radiative transfer formulation to compute the scattering intensity and consequently the scattering coefficient. The radiative transfer formulation takes into account the irregular ground surface by including the rough soil surface in the boundary condition. Thus, the scattering model accounts for volume scattering inside the vegetation layer, the surface scattering from the ground and the interaction between scattering from the soil surface and the vegetation volume. The contribution to backscattering by each of the three scattering mechanisms is illustrated along with the effects of each layer or surface parameter. The major difference between the two types of vegetation is that when the incident wavelength is comparable to the size of the leaf there is a peak appearing in the mid angular region of the backscattering curve for the disc type leaf whereas it is a dip in the same region for a needle type leaf.
Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek
2014-01-01
Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397
Zheng, Liang; Van Labeke, Marie-Christine
2017-01-01
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m−2 s−1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species. PMID:28611818
Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ
2011-05-11
The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.
James Lashomb; Alan Iskra; Ann Brooks Gould; George Hamilton
2003-01-01
Bacterial leaf scorch (BLS) of amenity trees is caused by the bacterium Xylella fastidiosa, a xylem-limited pathogen that causes water stress resulting in leaf scorch, decline, and eventual death of affected trees. Recent surveys indicate that BLS is widespread throughout the eastern half of the United States. In New Jersey, BLS primarily affects red and pin oaks...
NASA Astrophysics Data System (ADS)
Janeček, Štěpán; Lepš, Jan
2005-09-01
The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.
USDA-ARS?s Scientific Manuscript database
Leafing out phenology affects a wide variety of ecosystem processes and ecological interactions, and it affects how natural and artificial ecosystems respond to different weather conditions in the spring. There is, however, relatively little information available on the factors affecting species dif...
Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David
2013-01-01
Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, P.C.; Evans, J.J.; Bacon, C.W.
Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +}more » concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.« less
Aicam Laacouri; Edward A. Nater; Randall K. Kolka
2013-01-01
A sequential extraction technique for compartmentalizing mercury (Hg) in leaves was developed based on a water extraction of Hg from the leaf surface followed by a solvent extraction of the cuticle. The bulk of leaf Hg was found in the tissue compartment (90-96%) with lesser amounts in the surface and cuticle compartments. Total leaf concentrations of Hg varied among...
Nanoporous Au: An experimental study on the porosity of dealloyed AuAg leafs
NASA Astrophysics Data System (ADS)
Grillo, R.; Torrisi, V.; Ruffino, F.
2016-12-01
We present a study on the fraction of porosity for dealloyed nanoporous Au leafs. Nanoporous Au is attracting great scientific interest due to its peculiar plasmonic properties and the high exposed surface (∼10 m2/g). As examples, it was used in prototypes of chemical and biological devices. However, the maximization of the devices sensitivity is subjected to the maximization of the exposed surface by the nanoporous Au, i. e. maximization of the porosity fraction. So, we report on the analyses of the porosity fraction in nanoporous Au leafs as a function of the fabrication process parameters. We dealloyed 60 μm-thick Au23Ag77 at.% leafs and we show that: a) for dealloying time till to 6 h, only a 450 nm-thick surface layer of the leafs assumes a nanoporous structure with a porosity fraction of 32%. For a dealloying time of 20 h the leafs result fragmented in small black pieces with a porosity fraction increased to 60%. b) After 600 °C-30 minutes annealing of the previous samples, the nanopores disappear due to the Au/residual Ag inter-diffusion. c) After a second dealloying process on the previously annealed samples, the surface nanoporous structure is, again, obtained with the porosity fraction increased to 50%.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E
2013-07-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.
Tosens, Tiina
2012-01-01
In sclerophylls, photosynthesis is particularly strongly limited by mesophyll diffusion resistance from substomatal cavities to chloroplasts (r m), but the controls on diffusion limits by integral leaf variables such as leaf thickness, density, and dry mass per unit area and by the individual steps along the diffusion pathway are imperfectly understood. To gain insight into the determinants of r m in leaves with varying structure, the full CO2 physical diffusion pathway was analysed in 32 Australian species sampled from sites contrasting in soil nutrients and rainfall, and having leaf structures from mesophytic to strongly sclerophyllous. r m was estimated based on combined measurements of gas exchange and chlorophyll fluorescence. In addition, r m was modelled on the basis of detailed anatomical measurements to separate the importance of different serial resistances affecting CO2 diffusion into chloroplasts. The strongest sources of variation in r m were S c/S, the exposed surface area of chloroplasts per unit leaf area, and mesophyll cell wall thickness, t cw. The strong correlation of r m with t cw could not be explained by cell wall thickness alone, and most likely arose from a further effect of cell wall porosity. The CO2 drawdown from intercellular spaces to chloroplasts was positively correlated with t cw, suggesting enhanced diffusional limitations in leaves with thicker cell walls. Leaf thickness and density were poorly correlated with S c/S, indicating that widely varying combinations of leaf anatomical traits occur at given values of leaf integrated traits, and suggesting that detailed anatomical studies are needed to predict r m for any given species. PMID:22888123
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze
2008-01-01
The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...
NASA Astrophysics Data System (ADS)
Gao, Li; Zheng, Mei; Fraser, Matthew; Huang, Yongsong
2014-02-01
Leaf wax hydrogen isotope proxies have been widely used to reconstruct past hydrological changes. However, published reconstructions have given little consideration for the potentially variable hydrogen isotopic fractionation relative to precipitation (ɛwax-p) under different climate and environmental settings. Chief among various potential factors controlling fractionation is relative humidity, which is known to strongly affect oxygen isotopic ratios of plant cellulose, but its effect on hydrogen isotopic fractionation of leaf waxes is still ambiguous. Analyses of lake surface sediments and individual modern plants have provided valuable information on the variability of ɛwax-p, but both approaches have significant limitations. Here, we present an alternative method to obtain the integrated, time-resolved ecosystem-level ɛwax-p values, by analyzing modern aerosol samples collected weekly from arid (Arizona lowlands) and humid subtropical (Atlanta, Georgia) environments during the main growth season. Because aerosol samples mainly reflect regional leaf wax resources, the extreme contrast in the hydroclimate and associated vegetation assemblages between our study sites allows us to rigorously assess the impact of relative humidity and associated vegetation assemblages on leaf wax hydrogen isotopic fractionation. We show there is only minor difference (mostly <10‰) in the mean ɛwax-p values in the two end-member environments. One possible explanation is that the positive isotopic effects of low relative humidity are offset by progressive replacement of trees with grasses that have a more negative apparent fractionation. Our results represent an important step toward quantitative interpretation of leaf wax hydrogen isotopic records.
Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan
2014-09-01
Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in Qinghai-Tibetan Plateau area.
Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture[OPEN
Briggs, Sarah; Bradbury, Peter J.
2017-01-01
Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize. PMID:28698237
PIMA cotton leaf transpiration analysis using the wallmodel that accounts for liquid water movement
USDA-ARS?s Scientific Manuscript database
Leaf transpiration of eight genotypes of Pima cotton was measured in the field of the Maricopa Agricultural Center in August 1994 at the University of Arizona. Photomicrographs of leaf cross-sections and of the leaf surfaces were scanned and analyzed with the image analysis software. The data were ...
Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita
2017-11-01
Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.
Saini, Kumud; Markakis, Marios N.; Zdanio, Malgorzata; Balcerowicz, Daria M.; Beeckman, Tom; De Veylder, Lieven; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris
2017-01-01
In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes. PMID:28659952
Matsuda, Ikki; Clauss, Marcus; Tuuga, Augustine; Sugau, John; Hanya, Goro; Yumoto, Takakazu; Bernard, Henry; Hummel, Jürgen
2017-01-01
Free-living animals must make dietary choices in terms of chemical and physical properties, depending on their digestive physiology and availability of food resources. Here we comprehensively evaluated the dietary choices of proboscis monkeys (Nasalis larvatus) consuming young leaves. We analysed the data for leaf toughness and digestibility measured by an in vitro gas production method, in addition to previously reported data on nutrient composition. Leaf toughness, in general, negatively correlated with the crude protein content, one of the most important nutritional factors affecting food selection by leaf-eating primates. This result suggests that leaf toughness assessed by oral sensation might be a proximate cue for its protein content. We confirmed the importance of the leaf chemical properties in terms of preference shown by N. larvatus; leaves with high protein content and low neutral detergent fibre levels were preferred to those of the common plant species. We also found that these preferred leaves were less tough and more digestible than the alternatives. Our in vitro results also suggested that N. larvatus were little affected by secondary plant compounds. However, the spatial distribution pattern of plant species was the strongest factor explaining the selection of the preferred leaf species. PMID:28211530
Global variability in leaf respiration in relation to climate and leaf traits
NASA Astrophysics Data System (ADS)
Atkin, Owen K.
2015-04-01
Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.
Leaf movement in Calathea lutea (Marantaceae).
Herbert, Thomas J; Larsen, Parry B
1985-09-01
Calathea lutea is a broad-leaved, secondary successional plant which shows complex leaf movements involving both elevation and folding of the leaf surface about the pulvinus. In the plants studied, mean leaf elevation increased from approximately 34 degrees in the early morning to 70 degrees at noon while the angle of leaf folding increased from 13 degrees to 50 degrees over the same time period. During the period from early morning to noon, these movements resulted in a significant decrease in the cosine of the angle of incidence, a measure of the direct solar radiation intercepted. The observed changes in elevational angle significantly reduce the cosine of angle of incidence while folding does not significantly reduce the fraction of direct solar radiation intercepted during the period of direct exposure of the leaf surface to the solar beam. Since elevational changes seem to account for the reduction in exposure to direct solar radiation, the role of folding remains unclear.
Boraphech, Phattara; Thiravetyan, Paitip
2015-03-02
Thirteen plant leaf materials were selected to be applied as dried biomaterial adsorbents for polar gaseous trimethylamine (TMA) adsorption. Biomaterial adsorbents were efficient in adsorbing gaseous TMA up to 100% of total TMA (100 ppm) within 24 h. Sansevieria trifasciata is the most effective plant leaf material while Plerocarpus indicus was the least effective in TMA adsorption. Activated carbon (AC) was found to be lower potential adsorbent to adsorb TMA when compared to biomaterial adsorbents. As adsorption data, the Langmuir isotherm supported that the gaseous TMA adsorbed monolayer on the adsorbent surface and was followed pseudo-second order kinetic model. Wax extracted from plant leaf could also adsorb gaseous TMA up to 69% of total TMA within 24 h. Another 27-63% of TMA was adsorbed by cellulose and lignin that naturally occur in high amounts in plant leaf. Subsequently, the composition appearing in biomaterial wax showed a large quantity of short-chain fatty acids (≤C18) especially octadecanoic acid (C18), and short-chain alkanes (C12-C18) as well as total aromatic components dominated in the wax, which affected TMA adsorption. Hence, it has been demonstrated that plant biomaterial is a superior biosorbent for TMA removal.
Leaf traits and herbivory levels in a tropical gymnosperm, Zamia stevensonii (Zamiaceae).
Prado, Alberto; Sierra, Adriel; Windsor, Donald; Bede, Jacqueline C
2014-03-01
Slow-growing understory cycads invest heavily in defenses to protect the few leaves they produce annually. The Neotropical cycad Zamia stevensonii has chemical and mechanical barriers against insect herbivores. Mechanical barriers, such as leaf toughness, can be established only after the leaf has expanded. Therefore, chemical defenses may be important during leaf expansion. How changes in leaf traits affect the feeding activity of cycad specialist insects is unknown. We investigated leaf defenses and incidence of specialist herbivores on Z. stevensonii during the first year after leaf flush. Herbivore incidence, leaf production, and leaf traits that might affect herbivory-including leaf age, lamina thickness, resistance-to-fracture, work-to-fracture, trichome density, and chlorophyll, water, and toxic azoxyglycoside (AZG) content-were measured throughout leaf development. Principal component analysis and generalized linear models identified characteristics that may explain herbivore incidence. Synchronized leaf development in Z. stevensonii is characterized by quick leaf expansion and delayed greening. Specialist herbivores feed on leaves between 10 and 100 d after flush and damage ∼37% of all leaflets produced. Young leaves are protected by AZGs, but these defenses rapidly decrease as leaves expand. Leaves older than 100 d are protected by toughness. Because AZG concentrations drop before leaves become sufficiently tough, there is a vulnerable period during which leaves are susceptible to herbivory by specialist insects. This slow-growing gymnosperm invests heavily in constitutive defenses against highly specialized herbivores, underlining the convergence in defensive syndromes by major plant lineages.
Neuwirthová, Eva; Lhotáková, Zuzana; Albrechtová, Jana
2017-01-01
The aims of the study were: (i) to compare leaf reflectance in visible (VIS) (400–700 nm), near-infrared (NIR) (740–1140 nm) and short-wave infrared (SWIR) (2000–2400 nm) spectral ranges measured monthly by a contact probe on a single leaf and a stack of five leaves (measurement setup (MS)) of two broadleaved tree species during the vegetative season; and (ii) to test if and how selected vegetation indices differ under these two MS. In VIS, the pigment-related spectral region, the effect of MS on reflectance was negligible. The major influence of MS on reflectance was detected in NIR (up to 25%), the structure-related spectral range; and weaker effect in SWIR, the water-related spectral range. Vegetation indices involving VIS wavelengths were independent of MS while indices combining wavelengths from both VIS and NIR were MS-affected throughout the season. The effect of leaf stacking contributed to weakening the correlation between the leaf chlorophyll content and selected vegetation indices due to a higher leaf mass per area of the leaf sample. The majority of MS-affected indices were better correlated with chlorophyll content in both species in comparison with MS-unaffected indices. Therefore, in terms of monitoring leaf chlorophyll content using the contact probe reflectance measurement, these MS-affected indices should be used with caution, as discussed in the paper. If the vegetation indices are used for assessment of plant physiological status in various times of the vegetative season, then it is essential to take into consideration their possible changes induced by the particular contact probe measurement setup regarding the leaf stacking. PMID:28538685
Kim, Seung-Won; Koh, Je-Sung; Lee, Jong-Gu; Ryu, Junghyun; Cho, Maenghyo; Cho, Kyu-Jin
2014-09-01
The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus on the concept of exploiting structural characteristics for actuation. Using shape memory alloy (SMA), the robot actuates artificial leaves made from asymmetrically laminated carbon fiber reinforced prepregs. We exploit two distinct structural characteristics of the leaves. First, the bistability acts as an implicit actuator enabling rapid morphing motion. Second, the developable surface has a kinematic constraint that constrains the curvature of the artificial leaf. Due to this constraint, the curved artificial leaf can be unbent by bending the straight edge orthogonal to the curve. The bending propagates from one edge to the entire surface and eventually generates an overall shape change. The curvature change of the artificial leaf is 18 m(-1) within 100 ms when closing. Experiments show that these actuation mechanisms facilitate the generation of a rapid and large morphing motion of the flytrap robot by one-way actuation of the SMA actuators at a local position.
Hunter, Paul J; Shaw, Robert K; Berger, Cedric N; Frankel, Gad; Pink, David; Hand, Paul
2015-06-01
Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert
2009-01-01
Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...
Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen
2017-07-01
Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.
Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Wang, L.; Sadeke, M.
2017-12-01
Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.
Wang, Lei; Liu, Lian-you; Gao, Shang-yu; Hasi, Eerdun; Wang, Zhi
2006-01-01
Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, A ilanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM, (particulate matter less than 10 microm in aerodynamic diameter; 98.4%) and PM25 (particulate matter less than 2.5 microm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CaSO4 x H20, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4 x H20 was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.
Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi
2017-03-18
We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.
Mechanical Stress Regulation of Plant Growth and Development
NASA Technical Reports Server (NTRS)
Mitchell, C. A.
1985-01-01
Growth dynamics analysis was used to determine to what extent the seismic stress induced reduction in photosynthetic productivity in shaken soybeans was due to less photosynthetic surface, and to what extent to lower efficiency of assimulation. Seismic stress reduces shoot transpiration rate 17% and 15% during the first and second 45 minute periods following a given treatment. Shaken plants also had a 36% greater leaf water potential 30 minutes after treatment. Continuous measurement of whole plant photosynthetic rate shows that a decline in CO2 fixation began within seconds after the onset of shaking treatment and continued to decline to 16% less than that of controls 20 minutes after shaking, after which gradual recovery of photosynthesis begins. Photosynthetic assimilation recovered completely before the next treatment 5 hours later. The transitory decrease in photosynthetic rate was due entirely to a two fold increase in stomatal resistance to CO2 by the abaxial leaf surface. Mesophyll resistance was not significantly affected by periodic seismic treatment. Temporary stomatal aperture reduction and decreased CO2 fixation are responsible for the lower dry weight of seismic stressed plants growing in a controlled environment.
Hartmann, R; Fricke, A; Stützel, H; Mansourian, S; Dekker, T; Wohanka, W; Alsanius, B
2017-07-01
Internalization of human pathogens in edible parts of vegetables eaten raw is a major concern, since once internalized they are protected from sanitizing treatments. In this study, we examined the invasion of gfp-labelled Escherichia coli O157:H7 into intact and biotically (infection with Xanthomonas campestris/Pseudomonas syringae) and abiotically (grating with silicon carbide) damaged leaves of wild rocket (Diplotaxis tenuifolia) and Swiss chard (Beta vulgaris subsp. cicla) using laser scanning confocal microscopy. Bacterial cells were found in internal locations of the tissue, irrespective of tissue health status. Contaminated leaf sections of biotically and abiotically damaged wild rocket leaves showed higher susceptibility to microbial invasion, while the pathogen was internalized in greater numbers into intact Swiss chard leaf sections when abiotically, but not biotically, damaged. The greatest differences were observed between the plant species; after surface sanitization, E. coli O157:H7 was still detected in wild rocket leaves, but not in Swiss chard leaves. Contamination of leafy vegetables with Escherichia coli O157:H7 is a growing problem, as reported outbreaks are increasing. However, establishment of this human pathogen in the phyllosphere is not completely understood. Using laser scanning confocal microscopy, we demonstrated that E. coli O157:H7gfp+ can invade plant tissue of Swiss chard and wild rocket leaves and that the bacterium is more sensitive to surface sanitization of Swiss chard leaves. Damage to leaf tissue promoted leaf invasion, but the nature of the damage (abiotic or biotic) and plant species had an impact. © 2017 The Society for Applied Microbiology.
Energy fluxes in oil palm plantations as affected by water storage in the trunk
NASA Astrophysics Data System (ADS)
Meijide, Ana; Röll, Alexander; Fan, Yuanchao; Herbst, Mathias; Niu, Furong; Tiedemann, Frank; June, Tania; Rauf, Abdul; Hölscher, Dirk; Knohl, Alexander
2017-04-01
Oil palm is increasingly expanding, particularly in Indonesia, but information on water and energy fluxes in oil palm plantations is still very limited and on how those are affected by environmental conditions or oil palm age. Using the eddy covariance technique, we studied turbulent fluxes of sensible (H) and latent (LE) heat and gross primary production (GPP) for 8 months each in a young oil palm plantation (1-year old) and subsequently in a mature plantation (12-year old) in Jambi Province, Sumatra, Indonesia. We measured transpiration (T) simultaneously using a sap flux technique. The energy budget was dominated by LE in both plantations, particularly in the mature one, where it represented up to 70% of the available energy. In the young oil palm plantation, evapotranspiration (ET) was significantly reduced and H fluxes were higher. This affected the Bowen ratio, defined as the ratio of H and LE, which was higher in the 1-year old plantation (0.67±0.33), where it remained constant during the day, than in the mature plantation (0.14±0.09), where it varied considerably over the day, suggesting that water accumulated inside the canopy. Using the Community Land Model (CLM), a process based land surface model that has been adapted to oil palm functional traits (i.e. CLM-Palm), we investigated the contribution of different water sources to the measured fluxes. CLM-Palm differentiates leaf and stem surfaces in modelling water interception and is therefore able to diagnose the fraction of dry leaves that contribute to T and the wet fraction of all vegetation surfaces (leaf and stem) that contributes to evaporation. Results from our simulations strengthen our hypothesis of significant contribution of canopy evaporation to ET. As observed in the field, water accumulates inside the canopy in the mature plantation in oil palm trunk surfaces including epiphytes, creating water reservoirs in the trunk, which potentially contribute to ET when they evaporate. The decoupling between GPP and T in the morning and the early decreases of both fluxes at midday suggest the existence of internal water storage mechanisms in oil palms both in the leaves and in the stem, which delayed the detection of water movement at the leaf petioles. The combination of our measured data with the model simulations suggest the existence of both external and internal trunk water storage mechanisms in mature oil palms contributing to ecosystem water fluxes. Oil palm plantations can lead to surface warming at early stages of development, but further assessments should be performed at landscape level to understand the climatic feedbacks of oil palm expansion.
Leah S. Bauer; Joann Meerschaert; Thomas O. Forrester
1989-01-01
An artificial diet was developed for labortory rearing of the cottonwood leaf beetle, Chrysomela scripta F., and the imported willow leaf beetle, Plagiodera versicolira (Laicharting). To reduce microbial contamination of the media, procedures were developed for the separating egg masses and sterilizing egg surfaces. Cottonwood leaf...
UV radiation is the primary factor driving the variation in leaf phenolics across Chinese grasslands
Chen, Litong; Niu, Kechang; Wu, Yi; Geng, Yan; Mi, Zhaorong; Flynn, Dan FB; He, Jin-Sheng
2013-01-01
Due to the role leaf phenolics in defending against ultraviolet B (UVB) under previously controlled conditions, we hypothesize that ultraviolet radiation (UVR) could be a primary factor driving the variation in leaf phenolics in plants over a large geographic scale. We measured leaf total phenolics, ultraviolet-absorbing compounds (UVAC), and corresponding leaf N, P, and specific leaf area (SLA) in 151 common species. These species were from 84 sites across the Tibetan Plateau and Inner Mongolian grasslands of China with contrasting UVR (354 vs. 161 mW/cm2 on average). Overall, leaf phenolics and UVAC were all significantly higher on the Tibetan Plateau than in the Inner Mongolian grasslands, independent of phylogenetic relationships between species. Regression analyses showed that the variation in leaf phenolics was strongly affected by climatic factors, particularly UVR, and soil attributes across all sites. Structural equation modeling (SEM) identified the primary role of UVR in determining leaf phenolic concentrations, after accounting for colinearities with altitude, climatic, and edaphic factors. In addition, phenolics correlated positively with UVAC and SLA, and negatively with leaf N and N: P. These relationships were steeper in the lower-elevation Inner Mongolian than on the Tibetan Plateau grasslands. Our data support that the variation in leaf phenolics is controlled mainly by UV radiation, implying high leaf phenolics facilitates the adaptation of plants to strong irradiation via its UV-screening and/or antioxidation functions, particularly on the Tibetan Plateau. Importantly, our results also suggest that leaf phenolics may influence on vegetation attributes and indirectly affect ecosystem processes by covarying with leaf functional traits. PMID:24363898
Characterization of dynamic droplet impaction and deposit formation on leaf surfaces
USDA-ARS?s Scientific Manuscript database
Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...
Becker, Matthias; Becker, Yvonne; Green, Kimberly; Scott, Barry
2016-07-01
Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network. E. festucae also grows as an epiphyte, but the mechanism for leaf surface colonization is not known. Here we identify an appressorium-like structure, which we call an expressorium that allows endophytic hyphae to penetrate the cuticle from the inside of the leaf to establish an epiphytic hyphal net on the surface of the leaf. We used a combination of scanning electron, transmission electron and confocal laser scanning microscopy to characterize this novel fungal structure and determine the composition of the hyphal cell wall using aniline blue and wheat germ agglutinin labelled with Alexafluor-488. Expressoria differentiate immediately below the cuticle in the leaf blade and leaf sheath intercalary cell division zones where the hyphae grow by tip growth. Differentiation of this structure requires components of both the NoxA and NoxB NADPH oxidase complexes. Major remodelling of the hyphal cell wall occurs following exit from the leaf. These results establish that the symbiotic association of E. festucae with L. perenne involves an interconnected hyphal network of both endophytic and epiphytic hyphae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Stoepler, Teresa M; Lill, John T
2013-10-01
A variety of ecological factors influence host use by parasitoids, including both abiotic and biotic factors. Light environment is one important abiotic parameter that differs among habitats and influences a suite of plant nutritional and resistance traits that in turn affect herbivore performance. However, the extent to which these bottom-up effects "cascade up" to affect higher trophic levels and the relative importance of direct and indirect effects of sunlight on tritrophic interactions are unclear. The objective of this study was to test how light environment (light gap vs. shaded forest understory) and leaf type (sun vs. shade leaves) affect the performance and incidence of parasitism of two species of moth larvae, Euclea delphinii and Acharia stimulea (Limacodidae). We manipulated the leaf phenotype of potted white oak saplings by growing them in either full sun or full shade throughout leaf expansion to produce sun and shade leaves, respectively. These saplings were then placed in light gap and adjacent shaded understory habitats in the forest in a full-factorial design, and stocked with sentinel larvae that were exposed to parasitism ("exposed" experiments). We reared additional larvae in sleeve cages (protected from parasitism) to isolate light environment and leaf phenotype treatment effects on larval performance in the absence of enemies ("bagged" experiments). In the exposed experiments, light environment strongly affected the likelihood of parasitism, while leaf phenotype did not. Euclea delphinii larvae were up to 6.6 times more likely to be parasitized in light gaps than in shaded understory habitats. This pattern was consistent for both tachinid fly and wasp parasitoids across two separate experiments. However, the larval performance of both species in the bagged experiments was maximized in the shade-habitat/sun-leaf treatment, a habitat/leaf-type combination that occurs infrequently in nature. Taken together, our results suggest that the direct effects of light environment on the incidence of parasitism supersede any indirect effects resulting from altered leaf quality and reveal inherent ecological trade-offs for herbivores confronted with choosing between sunny (high leaf quality, harsh environment, high parasitism) and shaded (reduced leaf quality less harsh environment, reduced parasitism) habitats.
Barber, Jonathan L; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C
2004-01-01
Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons to be made between studies in order to improve our understanding of what causes any differences in measured data between sites.
Host Phenology and Leaf Effects on Susceptibility of California Bay Laurel to Phytophthora ramorum.
Johnston, Steven F; Cohen, Michael F; Torok, Tamas; Meentemeyer, Ross K; Rank, Nathan E
2016-01-01
Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to P. ramorum infection were investigated with multiple P. ramorum isolates and leaves collected from multiple trees in leaf-droplet assays. We examined whether susceptibility varies with season, leaf age, or inoculum position. Bay laurel susceptibility was highest during spring and summer and lowest in winter. Older leaves (>1 year) were more susceptible than younger ones (8 to 11 months). Susceptibility was greater at leaf tips and edges than the middle of the leaf. Leaf surfaces wiped with 70% ethanol were more susceptible to P. ramorum infection than untreated leaf surfaces. Our results indicate that seasonal changes in susceptibility of U. californica significantly influence P. ramorum infection levels. Thus, in addition to environmental variables such as temperature and moisture, variability in host plant susceptibility contributes to disease establishment of P. ramorum.
Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H
1995-09-01
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under relatively low nutrient conditions. Hence, the potential importance of CO 2 -induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO 2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO 2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.
Leaf litter breakdown of native and exotic tree species in two Hawaiian streams that differ in flow
Megan Roberts; Ayron M. Strauch; Tracy Wiegner; Richard A. Mackenzie
2016-01-01
Riparian leaf litter is a major source of allochthonous organic material to temperate and tropical streams, promoting primary and secondary productivity in lotic and nearshore habitats. In tropical island streams, where native leaf-shredding macroinvertebrates are absent, physical fragmentation from stream flow is an important factor affecting leaf litter breakdown and...
Poiré, Richard; Wiese-Klinkenberg, Anika; Parent, Boris; Mielewczik, Michael; Schurr, Ulrich; Tardieu, François; Walter, Achim
2010-06-01
Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.
Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M
2018-04-15
Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.
Using the conservative nature of fresh leaf surface density to measure foliar area
NASA Astrophysics Data System (ADS)
Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita
2014-10-01
For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.
NASA Technical Reports Server (NTRS)
Westman, Walter E.; Paris, Jack F.
1987-01-01
The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
Panchen, Zoe A.; Primack, Richard B.; Gallinat, Amanda S.; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert
2015-01-01
Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. PMID:25808654
Panchen, Zoe A; Primack, Richard B; Gallinat, Amanda S; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert
2015-11-01
Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rodríguez-López, Maria Jose; Garzo, Elisa; Bonani, Jean Patrick; Fernández-Muñoz, Rafael; Moriones, Enrique; Fereres, Alberto
2012-01-01
Background The whitefly Bemisia tabaci (Genn.) causes dramatic damage to plants by transmitting yield-limiting virus diseases. Previous studies proved that the tomato breeding line ABL 14-8 was resistant to B. tabaci, the vector of tomato yellow leaf curl disease (TYLCD). This resistance is based on the presence of type IV glandular trichomes and acylsucrose production. These trichomes deter settling and probing of B. tabaci in ABL 14-8, which reduces primary and secondary spread of TYLCD. Methodology/Principal Findings Whitefly settlement preference was evaluated on the adaxial and abaxial leaf surfaces of nearly-isogenic tomato lines with and without B. tabaci-resistance traits, ‘ABL 14-8 and Moneymaker’ respectively, under non-choice and free-choice conditions. In addition, the Electrical Penetration Graph technique was used to study probing and feeding activities of B. tabaci on the adaxial and abaxial leaf surfaces of the same genotypes. B. tabaci preferred to settle on the abaxial than on the adaxial surface of ‘Moneymaker’ leaves, whereas no such preference was observed on ABL 14-8 tomato plants at the ten-leaf growth stage. Furthermore, B. tabaci preferred to feed on the abaxial than on the adaxial leaf surface of ‘Moneymarker’ susceptible tomato plants as shown by a higher number of sustained phloem feeding ingestion events and a shorter time to reach the phloem. However, B. tabaci standard probing and feeding behavior patterns were altered in ABL 14-8 plants and whiteflies were unable to feed from the phloem and spent more time in non-probing activities when exposed to the abaxial leaf surface. Conclusions/Significance The distorted behavior of B. tabaci on ABL 14-8 protects tomato plants from the transmission of phloem-restricted viruses such as Tomato yellow leaf curl virus (TYLCV), and forces whiteflies to feed on the adaxial side of leaves where they feed less efficiently and become more vulnerable to natural enemies. PMID:22427950
Jones, Ian M; Koptur, Suzanne
2015-01-01
• Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory. © 2015 Botanical Society of America, Inc.
A representation of the phosphorus cycle for ORCHIDEE (revision 4520)
NASA Astrophysics Data System (ADS)
Goll, Daniel S.; Vuichard, Nicolas; Maignan, Fabienne; Jornet-Puig, Albert; Sardans, Jordi; Violette, Aurelie; Peng, Shushi; Sun, Yan; Kvakic, Marko; Guimberteau, Matthieu; Guenet, Bertrand; Zaehle, Soenke; Penuelas, Josep; Janssens, Ivan; Ciais, Philippe
2017-10-01
Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for the influence of the nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization, and biological nitrogen fixation. Changes in the nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from the soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300-year) and a late (4.1 Myr) stage of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus, or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower than observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition.
Leaf gas exchange of mature bottomland oak trees
Rico M. Gazal; Mark E. Kubiske; Kristina F. Connor
2009-01-01
We determined how changes in environmental moisture affected leaf gas exchange in Nuttall (Quercus texana Buckley), overcup (Q. lyrata Walt.), and dominant and codominant swamp chestnut (Q. michauxii Nutt.) oak trees in Mississippi and Louisiana. We used canopy access towers to measure leaf level gas...
Linkage between canopy water storage and drop size distributions of leaf drips
NASA Astrophysics Data System (ADS)
Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu
2013-04-01
Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).
Husbands, Aman Y.; Benkovics, Anna H.; Nogueira, Fabio T.S.; Lodha, Mukesh; Timmermans, Marja C.P.
2015-01-01
Flattened leaf architecture is not a default state but depends on positional information to precisely coordinate patterns of cell division in the growing primordium. This information is provided, in part, by the boundary between the adaxial (top) and abaxial (bottom) domains of the leaf, which are specified via an intricate gene regulatory network whose precise circuitry remains poorly defined. Here, we examined the contribution of the ASYMMETRIC LEAVES (AS) pathway to adaxial-abaxial patterning in Arabidopsis thaliana and demonstrate that AS1-AS2 affects this process via multiple, distinct regulatory mechanisms. AS1-AS2 uses Polycomb-dependent and -independent mechanisms to directly repress the abaxial determinants MIR166A, YABBY5, and AUXIN RESPONSE FACTOR3 (ARF3), as well as a nonrepressive mechanism in the regulation of the adaxial determinant TAS3A. These regulatory interactions, together with data from prior studies, lead to a model in which the sequential polarization of determinants, including AS1-AS2, explains the establishment and maintenance of adaxial-abaxial leaf polarity. Moreover, our analyses show that the shared repression of ARF3 by the AS and trans-acting small interfering RNA (ta-siRNA) pathways intersects with additional AS1-AS2 targets to affect multiple nodes in leaf development, impacting polarity as well as leaf complexity. These data illustrate the surprisingly multifaceted contribution of AS1-AS2 to leaf development showing that, in conjunction with the ta-siRNA pathway, AS1-AS2 keeps the Arabidopsis leaf both flat and simple. PMID:26589551
NASA Astrophysics Data System (ADS)
Douglas, P. M.; Pagani, M.; Brenner, M.; Curtis, J. H.; Hodell, D. A.
2009-12-01
Hydrogen isotopes (δD) of terrestrial and aquatic plant lipids have been used to reconstruct past continental hydrological change in low-latitude settings. Generally, lipid δD values correlate strongly with the isotopic composition of precipitation, although evapotranspiration and biosynthetic fractionation are important influences on the δD of leaf waxes. Few studies have focused on constraining the controls on δD values of lipids in the tropics, where high evaporation rates impact both leaf and lake water isotopic composition. We measured δD values in surface waters and lipids extracted from leaves, lake sediments and soils along a latitudinal transect across Mexico, Guatemala and Honduras, a region with distinct dry and wet seasons. The δD values of leaf waxes extracted from lake sediments are positively correlated with surface water δD values (r = 0.73). The apparent fractionation between stream waters (inferred to represent plant source water) and leaf waxes (ɛlw) is negatively correlated with mean annual precipitation (r = -0.89), likely due to greater evapotranspiration and D-enriched leaf water in drier climates. δD values of leaf waxes extracted directly from leaves collected during the rainy season (August 2008) are similarly correlated with surface water δD values (r = 0.85). Leaf ɛlw values, however, are not significantly correlated with mean annual precipitation. It is possible that the correlation between ɛlw and mean annual precipitation in lake sediment leaf waxes is related to seasonal variability in evapotranspiration. Specifically, lake sediment leaf waxes could predominantly represent production during the dry season when evapotranspiration effects are strongest and when many tropical tree species shed their leaves. Possible seasonal variability in fractionation between source water and leaf wax lipids should be taken into account when interpreting leaf wax δD records from tropical locations, both in terms of controlling for long-term variability in seasonality and when comparing records from different sites. Overall, the results of this research indicate that both the isotopic composition of precipitation and the intensity of evapotranspiration control the δD of terrestrial plant leaf waxes in the tropics.
Dudzinska, Dominika; Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Sosnowska, Dorota; Podsedek, Anna; Watala, Cezary
2014-09-01
Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1-15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.
Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.
Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz
2016-07-01
Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.
Agrawal, Anurag A; Fishbein, Mark; Jetter, Reinhard; Salminen, Juha-Pekka; Goldstein, Jessica B; Freitag, Amy E; Sparks, Jed P
2009-08-01
The leaf surface is the contact point between plants and the environment and plays a crucial role in mediating biotic and abiotic interactions. Here, we took a phylogenetic approach to investigate the function, trade-offs, and evolution of leaf surface traits in the milkweeds (Asclepias). Across 47 species, we found trichome densities of up to 3000 trichomes cm(-2) and epicuticular wax crystals (glaucousness) on 10 species. Glaucous species had a characteristic wax composition dominated by very-long-chain aldehydes. The ancestor of the milkweeds was probably a glaucous species, from which there have been several independent origins of glabrous and pubescent types. Trichomes and wax crystals showed negatively correlated evolution, with both surface types showing an affinity for arid habitats. Pubescent and glaucous milkweeds had a higher maximum photosynthetic rate and lower stomatal density than glabrous species. Pubescent and glaucous leaf surfaces impeded settling behavior of monarch caterpillars and aphids compared with glabrous species, although surface types did not show consistent differentiation in secondary chemistry. We hypothesize that pubescence and glaucousness have evolved as alternative mechanisms with similar functions. The glaucous type, however, appears to be ancestral, lost repeatedly, and never regained; we propose that trichomes are a more evolutionarily titratable strategy.
Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.
Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing
2016-01-27
A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.
Determining past leaf-out times of New England's deciduous forests from herbarium specimens.
Everill, Peter H; Primack, Richard B; Ellwood, Elizabeth R; Melaas, Eli K
2014-08-01
• There is great interest in studying leaf-out times of temperate forests because of the importance of leaf-out in controlling ecosystem processes, especially in the face of a changing climate. Remote sensing and modeling, combined with weather records and field observations, are increasing our knowledge of factors affecting variation in leaf-out times. Herbarium specimens represent a potential new source of information to determine whether the variation in leaf-out times observed in recent decades is comparable to longer time frames over past centuries.• Here we introduce the use of herbarium specimens as a method for studying long-term changes in leaf-out times of deciduous trees. We collected historical leaf-out data for the years 1834-2008 from common deciduous trees in New England using 1599 dated herbarium specimens with young leaves.• We found that leaf-out dates are strongly affected by spring temperature, with trees leafing out 2.70 d earlier for each degree C increase in mean April temperature. For each degree C increase in local temperature, trees leafed out 2.06 d earlier. Additionally, the mean response of leaf-out dates across all species and sites over time was 0.4 d earlier per decade. Our results are of comparable magnitude to results from studies using remote sensing and direct field observations.• Across New England, mean leaf-out dates varied geographically in close correspondence with those observed in studies using satellite data. This study demonstrates that herbarium specimens can be a valuable source of data on past leaf-out times of deciduous trees. © 2014 Botanical Society of America, Inc.
Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3
Johanna Riikonen; Kevin E. Percy; Minna Kivimaenpaa; Mark E. Kubiske; Neil D. Nelson; Elina Vapaavuori; David F. Karnosky
2010-01-01
Betula papyrifera trees were exposed to elevated concentrations of CO2 (1.4 x ambient), O3 (1.2 x ambient) or CO2 + O3 at the Aspen Free-air CO2 Enrichment Experiment. The treatment effects on leaf surface characteristics were studied...
Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System
Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...
Leaf Histology--Two Modern Methods.
ERIC Educational Resources Information Center
Freeman, H. E.
1984-01-01
Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)
Freitas, A F; Pereira, F F; Formagio, A S N; Lucchetta, J T; Vieira, M C; Mussury, R M
2014-10-01
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) causes significant losses in corn crops and necessitates the use of alternative control strategies, such as the application of bioinsecticides. We report the effect of methanolic leaf extracts of Annona dioica, Annona cacans, and Annona coriacea on the development and reproduction of S. frugiperda. A quantitative analysis was carried out to determine the total concentration of phenolics, flavonoids, and condensed tannin (CT) in leaf extracts. Corn leaves were immersed in a 1% methanolic leaf extract solution and fed to second instars of S. frugiperda. Leaf disks dipped in the synthetic insecticide Connect® (Bayer CropScience Ltda) composed of a neonicotinoid (imidacloprid) and a pyrethroid (β-cyfluthrin), which are harmful to S. frugiperda, was used as positive control. Distilled water was used as a negative control treatment. The leaf extract of A. coriacea decreased larval survivorship, arrested pupal development, and affected the weight gain of S. frugiperda. A. dioica also affected larval survivorship, but its effects were more pronounced for the adult stage, as fecundity, fertility, egg hatchability, and embryonic development were severely affected. Leaf extracts from A. cacans had no effect on S. frugiperda. The leaf extracts of A. dioica and A. coriacea showed a higher content of flavonoids and phenols, respectively. Our results indicated that both A. dioica and A. coriacea have the potential for development as botanical insecticides.
Galmés, Jeroni; Ochogavía, Joan Manuel; Gago, Jorge; Roldán, Emilio José; Cifre, Josep; Conesa, Miquel Àngel
2013-05-01
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water-use efficiency through modifications in both stomatal (g(s)) and mesophyll conductances (g(m)). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (S(c)). In addition, the lower g(m) /S(c) ratio for a given porosity in drought-acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought-associated changes in the morphological properties of stomata, in an accession and treatment-dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Cho, Hyunjeong; Baek, Insuck; Oh, Mirae; Kim, Sungyoun; Lee, Hoonsoo; Kim, Moon S.
2017-05-01
Bacterial biofilm formed by pathogens on fresh produce surfaces is a food safety concern because the complex extracellular matrix in the biofilm structure reduces the reduction and removal efficacies of washing and sanitizing processes such as chemical or irradiation treatments. Therefore, a rapid and nondestructive method to identify pathogenic biofilm on produce surfaces is needed to ensure safe consumption of fresh, raw produce. This research aimed to evaluate the feasibility of hyperspectral fluorescence imaging for detecting Escherichia.coli (ATCC 25922) biofilms on baby spinach leaf surfaces. Samples of baby spinach leaves were immersed and inoculated with five different levels (from 2.6x104 to 2.6x108 CFU/mL) of E.coli and stored at 4°C for 24 h and 48 h to induce biofilm formation. Following the two treatment days, individual leaves were gently washed to remove excess liquid inoculums from the leaf surfaces and imaged with a hyperspectral fluorescence imaging system equipped with UV-A (365 nm) and violet (405 nm) excitation sources to evaluate a spectral-image-based method for biofilm detection. The imaging results with the UV-A excitation showed that leaves even at early stages of biofilm formations could be differentiated from the control leaf surfaces. This preliminary investigation demonstrated the potential of fluorescence imaging techniques for detection of biofilms on leafy green surfaces.
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2015-01-01
Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research [1]. Estimates of canopy water content commonly involve measurements in the 900nm to 2000nm portion of the optical spectrum [1]. We have used optical polarization techniques to remove leaf surface reflection and to demonstrate that the visible light reflected by the interior of green healthy corn leaves measured in situ inversely depends upon the leaf relative water content (RWC) [2]. In the research reported here, we again used optical polarization techniques in order to remove the leaf surface reflection from our measurements. This allowed us to monitor the interiors of detached corn leaf samples during leaf dry down measuring for each sample the RWC, bidirectional spectral reflectance and bidirectional spectral transmittance over the wavelength range 450nm to 2,500nm. Our new results like our earlier results show light scattered by the leaf interior measured in the visible wavelength region generally increased as leaf RWC decreased. However, the spectral character and the much improved signal noise of our new results shows the RWC-linked visible light scattering changes are due to leaf structural changes. Our new results show that scattering changes that occur with changing leaf RWC are not attributable to molecular configuration changes in cellular pigments.
Jianwei Zhang; Marcus Schaub; Jonathan A. Ferdinand; John M. Skelly; Kim C. Steiner; James E. Savage
2010-01-01
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top...
Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).
Barney, Jacob N; Hay, Anthony G; Weston, Leslie A
2005-02-01
Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.
NASA Astrophysics Data System (ADS)
Corbin, A. E.; Timmermans, J.; Hauser, L.; Bodegom, P. V.; Soudzilovskaia, N. A.
2017-12-01
There is a growing demand for accurate land surface parameterization from remote sensing (RS) observations. This demand has not been satisfied, because most estimation schemes apply 1) a single-sensor single-scale approach, and 2) require specific key-variables to be `guessed'. This is because of the relevant observational information required to accurately retrieve parameters of interest. Consequently, many schemes assume specific variables to be constant or not present; subsequently leading to more uncertainty. In this aspect, the MULTIscale SENTINEL land surface information retrieval Platform (MULTIPLY) was created. MULTIPLY couples a variety of RS sources with Radiative Transfer Models (RTM) over varying spectral ranges using data-assimilation to estimate geophysical parameters. In addition, MULTIPLY also uses prior information about the land surface to constrain the retrieval problem. This research aims to improve the retrieval of plant biophysical parameters through the use of priors of biophysical parameters/plant traits. Of particular interest are traits (physical, morphological or chemical trait) affecting individual performance and fitness of species. Plant traits that are able to be retrieved via RS and with RTMs include traits such as leaf-pigments, leaf water, LAI, phenols, C/N, etc. In-situ data for plant traits that are retrievable via RS techniques were collected for a meta-analysis from databases such as TRY, Ecosis, and individual collaborators. Of particular interest are the following traits: chlorophyll, carotenoids, anthocyanins, phenols, leaf water, and LAI. ANOVA statistics were generated for each traits according to species, plant functional groups (such as evergreens, grasses, etc.), and the trait itself. Afterwards, traits were also compared using covariance matrices. Using these as priors, MULTIPLY was is used to retrieve several plant traits in two validation sites in the Netherlands (Speulderbos) and in Finland (Sodankylä). Initial comparisons show significant improved results over non-a priori based retrievals.
Association of microRNAs with Types of Leaf Curvature in Brassica rapa.
Ren, Wenqing; Wang, Han; Bai, Jinjuan; Wu, Feijie; He, Yuke
2018-01-01
Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp - MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa . These findings provide insight into the relationship between miRNAs and variation in leaf curvature.
Association of microRNAs with Types of Leaf Curvature in Brassica rapa
Ren, Wenqing; Wang, Han; Bai, Jinjuan; Wu, Feijie; He, Yuke
2018-01-01
Many vegetable crops of Brassica rapa are characterized by their typical types of leaf curvature. Leaf curvature in the right direction and to the proper degree is important for the yield and quality of green vegetable products, when cultivated under stress conditions. Recent research has unveiled some of the roles of miRNAs in Brassica crops such as how they regulate the timing of leafy head initiation and shape of the leafy head. However, the molecular mechanism underlying the variability in leaf curvature in B. rapa remains unclear. We tested the hypothesis that the leaf curvature of B. rapa is affected by miRNA levels. On the basis of leaf phenotyping, 56 B. rapa accessions were classified into five leaf curvature types, some of which were comparable to miRNA mutants of Arabidopsis thaliana in phenotype. Higher levels of miR166 and miR319a expression were associated with downward curvature and wavy margins, respectively. Overexpression of the Brp-MIR166g-1 gene caused rosette leaves to change from flat to downward curving and folding leaves to change from upward curving to flat, leading to the decrease in the number of incurved leaves and size of the leafy head. Our results reveal that miRNAs affect the types of leaf curvature in B. rapa. These findings provide insight into the relationship between miRNAs and variation in leaf curvature. PMID:29467771
Medeiros, Juliana S.; Ward, Joy K.
2013-01-01
Summary Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water trade-offs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood.We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris.Elevated [CO2] decreased vessel implosion strength, reduced conduit specific hydraulic conductance, and compromised leaf specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit specific and leaf specific hydraulic conductance in association with increased vessel implosion strength.Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that under glacial conditions changes in leaf and xylem properties could increase drought tolerance, while under future conditions greater productivity may only occur when higher water use can be accommodated. PMID:23668237
Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth
NASA Astrophysics Data System (ADS)
Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.; Pangle, Robert; Pockman, William T.; McDowell, Nate G.; Konings, Alexandra G.
2017-11-01
Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6-0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.
Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain.
Andrade, Guilherme C; Silva, Luzimar C
2017-07-01
We investigated the morphological and anatomical effects of simulated acid rain on leaves of two species native to the Brazilian Atlantic Rainforest: Paubrasilia echinata and Libidibia ferrea var. leiostachya. Saplings were subjected to acid rain in a simulation chamber during 10 days for 15 min daily, using H 2 SO 4 solution pH 3.0 and, in the control, deionized water. At the end of the experiment, fragments from young and expanding leaves were anatomically analyzed. Although L. ferrea var. leiostachya leaves are more hydrophobic, rain droplets remained in contact with them for a longer time, as in the hydrophilic P. echinata leaves, droplets coalesce and rapidly run off. Visual symptomatology consisted in interveinal and marginal necrotic dots. Microscopic damage found included epicuticular wax flaking, turgor loss and epidermal cell shape alteration, hypertrophy of parenchymatous cells, and epidermal and mesophyll cell collapse. Formation of a wound tissue was observed in P. echinata, and it isolated the necrosis to the adaxial leaf surface. Acid rain increased thickness of all leaf tissues except spongy parenchyma in young leaves of L. ferrea var. leiostachya, and such thickness was maintained throughout leaf expansion. To our knowledge, this is the first report of acidity causing increase in leaf tissue thickness. This could represent the beginning of cell hypertrophy, which was seen in visually affected leaf regions. Paubrasilia echinata was more sensitive, showing earlier symptoms, but the anatomical damage in L. ferrea var. leiostachya was more severe, probably due to the higher time of contact with acid solution in this species.
Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere
Peredo, Elena L.; Simmons, Sheri L.
2018-01-01
Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents. PMID:29375531
Long term leaf phenology and leaf exchange strategies of a cerrado savanna community
NASA Astrophysics Data System (ADS)
de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.
2017-04-01
Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global change scenarios.
Leaf primordium size specifies leaf width and vein number among row-type classes in barley.
Thirulogachandar, Venkatasubbu; Alqudah, Ahmad M; Koppolu, Ravi; Rutten, Twan; Graner, Andreas; Hensel, Goetz; Kumlehn, Jochen; Bräutigam, Andrea; Sreenivasulu, Nese; Schnurbusch, Thorsten; Kuhlmann, Markus
2017-08-01
Exploring genes with impact on yield-related phenotypes is the preceding step to accomplishing crop improvements while facing a growing world population. A genome-wide association scan on leaf blade area (LA) in a worldwide spring barley collection (Hordeum vulgare L.), including 125 two- and 93 six-rowed accessions, identified a gene encoding the homeobox transcription factor, Six-rowed spike 1 (VRS1). VRS1 was previously described as a key domestication gene affecting spike development. Its mutation converts two-rowed (wild-type VRS1, only central fertile spikelets) into six-rowed spikes (mutant vrs1, fully developed fertile central and lateral spikelets). Phenotypic analyses of mutant and wild-type leaves revealed that mutants had an increased leaf width with more longitudinal veins. The observed significant increase of LA and leaf nitrogen (%) during pre-anthesis development in vrs1 mutants also implies a link between wider leaf and grain number, which was validated from the association of vrs1 locus with wider leaf and grain number. Histological and gene expression analyses indicated that VRS1 might influence the size of leaf primordia by affecting cell proliferation of leaf primordial cells. This finding was supported by the transcriptome analysis of mutant and wild-type leaf primordia where in the mutant transcriptional activation of genes related to cell proliferation was detectable. Here we show that VRS1 has an independent role on barley leaf development which might influence the grain number. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André
2009-04-01
SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A.; Cousins, Asaph B.; Edwards, Gerald E.
2013-01-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance. PMID:23669746
Riederer, Markus; Daiss, Andreas; Gilbert, Norbert; Köhle, Harald
2002-08-01
The behaviour of (semi-)volatile organic compounds at the interface between the leaf surface and the atmosphere was investigated by finite-element numerical simulation. Three model systems with increasing complexity and closeness to the real situation were studied. The three-dimensional model systems were translated into appropriate grid structures and diffusive and convective transport in the leaf/atmosphere interface was simulated. Fenpropimorph (cis-4-[3-(4-tert-butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholine) and Kresoxim-methyl ((E)-methyl-2-methoxyimino-2-[2-(o-tolyloxy-methyl)phenyl] acetate) were used as model compounds. The simulation showed that under still and convective conditions the vapours emitted by a point source rapidly form stationary envelopes around the leaves. Vapour concentrations within these unstirred layers depend on the vapour pressure of the compound in question and on its affinity to the lipoid surface layers of the leaf (cuticular waxes, cutin). The rules deduced from the numerical simulation of organic vapour behaviour in the leaf/atmosphere interface are expected to help in assessing how (semi-)volatile plant products (e.g. hormones, pheromones, secondary metabolites) and xenobiotics (e.g. pesticides, pollutants) perform on plant surfaces.
Husbands, Aman Y; Benkovics, Anna H; Nogueira, Fabio T S; Lodha, Mukesh; Timmermans, Marja C P
2015-12-01
Flattened leaf architecture is not a default state but depends on positional information to precisely coordinate patterns of cell division in the growing primordium. This information is provided, in part, by the boundary between the adaxial (top) and abaxial (bottom) domains of the leaf, which are specified via an intricate gene regulatory network whose precise circuitry remains poorly defined. Here, we examined the contribution of the ASYMMETRIC LEAVES (AS) pathway to adaxial-abaxial patterning in Arabidopsis thaliana and demonstrate that AS1-AS2 affects this process via multiple, distinct regulatory mechanisms. AS1-AS2 uses Polycomb-dependent and -independent mechanisms to directly repress the abaxial determinants MIR166A, YABBY5, and AUXIN RESPONSE FACTOR3 (ARF3), as well as a nonrepressive mechanism in the regulation of the adaxial determinant TAS3A. These regulatory interactions, together with data from prior studies, lead to a model in which the sequential polarization of determinants, including AS1-AS2, explains the establishment and maintenance of adaxial-abaxial leaf polarity. Moreover, our analyses show that the shared repression of ARF3 by the AS and trans-acting small interfering RNA (ta-siRNA) pathways intersects with additional AS1-AS2 targets to affect multiple nodes in leaf development, impacting polarity as well as leaf complexity. These data illustrate the surprisingly multifaceted contribution of AS1-AS2 to leaf development showing that, in conjunction with the ta-siRNA pathway, AS1-AS2 keeps the Arabidopsis leaf both flat and simple. © 2015 American Society of Plant Biologists. All rights reserved.
Gautier, Hélène; Massot, Capucine; Stevens, Rebecca; Sérino, Sylvie; Génard, Michel
2009-02-01
The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening. Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (-74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (-19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance. Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage.
Gautier, Hélène; Massot, Capucine; Stevens, Rebecca; Sérino, Sylvie; Génard, Michel
2009-01-01
Background and Aims The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content. Methods Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening. Key Results Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (−74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (−19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance. Conclusions Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage. PMID:19033285
NASA Astrophysics Data System (ADS)
Mayes, M. T.; Estes, L. D.; Gago, X.; Debats, S. R.; Caylor, K. K.; Manfreda, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; Estrany, J.
2016-12-01
Leaf area is an important ecosystem variable that relates to vegetation biomass, productivity, water and nutrient use in natural and agricultural systems globally. Since the 1980s, optical satellite image-based estimates of leaf area based on indices such as Normalized Difference Vegetation Index (NDVI) have greatly improved understanding of vegetation structure, function, and responses to disturbance at landscape (10^3 km2) to continental (10^6 km2) spatial scales. However, at landscape scales, satellites have failed to capture many leaf area patterns indicative of vegetation succession, crop types, stress and other conditions important for ecological processes. Small drones (UAS - unmanned aerial systems) offer new means for assessing leaf area and vegetation structure at higher spatial resolutions (<1 m) and land cover features such as substrate exposure that may affect estimates of vegetation structure in satellite data. Yet it is unclear how differences in spatial and spectral resolution between UAS and satellite data affect their relationships to each other, and to common field measurements of leaf area (e.g. LiCOR photosensors) and land cover. Constraining these relationships is important for leveraging UAS data to improve scaling of field data on leaf area and biomass to satellite data from Landsat, Sentinel-2, and increasing numbers of commercial sensors. Here, we quantify relationships among field, UAS and satellite estimates of vegetation leaf area and biomass in three case study landscapes spanning semi-arid Mediterranean (Matera, Southern Italy and Mallorca, Spain) and North American temperate ecosystems (New Jersey, USA). We assess how land cover and sensor spectral characteristics affect UAS and satellite-derived NDVI, leaf-area and biomass estimates. Then, we assess the fidelity of UAS, WorldView-2, and Landsat leaf-area and biomass estimates to field-measured landscape changes and variability, including vegetation recovery from fire (Mallorca), and leaf-area and biomass variability due to orchard type and agro-ecosystem management (Matera, New Jersey). Finally, we highlight promising ways forward for improving field data collection and the use of UAS observations to monitor vegetation leaf-area and biomass change at landscape scales in natural and agricultural systems.
How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
Burkhardt, J; Pariyar, S
2016-01-01
Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing <1% ambient aerosol concentrations. In addition, some AA plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and increasing VPD and are thus related to air pollution and climate change. Wicks cause a deviation from the analogy between CO2 and water pathways through stomata, bringing some principal assumptions of gas exchange theory into question. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Coupled atmosphere-biophysics-hydrology models for environmental modeling
Walko, R.L.; Band, L.E.; Baron, Jill S.; Kittel, T.G.F.; Lammers, R.; Lee, T.J.; Ojima, D.; Pielke, R.A.; Taylor, C.; Tague, C.; Tremback, C.J.; Vidale, P.L.
2000-01-01
The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.
USDA-ARS?s Scientific Manuscript database
The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...
Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com; Azahana, A., E-mail: bell-azahana@yahoo.com
2015-09-25
Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present inmore » all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.« less
Kulkarni, Purva; Dost, Mina; Bulut, Özgül Demir; Welle, Alexander; Böcker, Sebastian; Boland, Wilhelm; Svatoš, Aleš
2018-01-01
Spatially resolved analysis of a multitude of compound classes has become feasible with the rapid advancement in mass spectrometry imaging strategies. In this study, we present a protocol that combines high lateral resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging with a multivariate data analysis (MVA) approach to probe the complex leaf surface chemistry of Populus trichocarpa. Here, epicuticular waxes (EWs) found on the adaxial leaf surface of P. trichocarpa were blotted on silicon wafers and imaged using TOF-SIMS at 10 μm and 1 μm lateral resolution. Intense M +● and M -● molecular ions were clearly visible, which made it possible to resolve the individual compound classes present in EWs. Series of long-chain aliphatic saturated alcohols (C 21 -C 30 ), hydrocarbons (C 25 -C 33 ) and wax esters (WEs; C 44 -C 48 ) were clearly observed. These data correlated with the 7 Li-chelation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, which yielded mostly molecular adduct ions of the analyzed compounds. Subsequently, MVA was used to interrogate the TOF-SIMS dataset for identifying hidden patterns on the leaf's surface based on its chemical profile. After the application of principal component analysis (PCA), a small number of principal components (PCs) were found to be sufficient to explain maximum variance in the data. To further confirm the contributions from pure components, a five-factor multivariate curve resolution (MCR) model was applied. Two distinct patterns of small islets, here termed 'crystals', were apparent from the resulting score plots. Based on PCA and MCR results, the crystals were found to be formed by C 23 or C 29 alcohols. Other less obvious patterns observed in the PCs revealed that the adaxial leaf surface is coated with a relatively homogenous layer of alcohols, hydrocarbons and WEs. The ultra-high-resolution TOF-SIMS imaging combined with the MVA approach helped to highlight the diverse patterns underlying the leaf's surface. Currently, the methods available to analyze the surface chemistry of waxes in conjunction with the spatial information related to the distribution of compounds are limited. This study uses tools that may provide important biological insights into the composition of the wax layer, how this layer is repaired after mechanical damage or insect feeding, and which transport mechanisms are involved in deploying wax constituents to specific regions on the leaf surface. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Cotton leaf curl disease (CLCuD) in the Indian subcontinent is associated with several distinct monopartite begomoviruses and DNA satellites. However, only a single begomovirus was associated with breakdown of resistance against CLCuD in previously resistant cotton varieties. The monopartite begomov...
Steven L. Voelker; J. Renee Brooks; Frederick C. Meinzer; Rebecca Anderson; Martin K.-F. Bader; Giovanna Battipaglia; Katie M. Becklin; David Beerling; Didier Bert; Julio L. Betancourt; Todd E. Dawson; Jean-Christophe Domec; Richard P. Guyette; Christian K??rner; Steven W. Leavitt; Sune Linder; John D. Marshall; Manuel Mildner; Jerome Ogee; Irina Panyushkina; Heather J. Plumpton; Kurt S. Pregitzer; Matthias Saurer; Andrew R. Smith; Rolf T. W. Siegwolf; Michael C. Stambaugh; Alan F. Talhelm; Jacques C. Tardif; Peter K. Van de Water; Joy K. Ward; Lisa Wingate
2016-01-01
Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO...
Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.
Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C
2002-08-01
Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film.
NASA Technical Reports Server (NTRS)
Latimer, J. G.; Mitchell, C. A.
1988-01-01
Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.
Comparison of Upward and Downward Translocation of 14C From a Single Leaf of Sunflower
Shiroya, Michi
1968-01-01
When single leaves attached at a given node were allowed to carry on photosynthesis in 14CO2 for 30 min, younger plants showed a higher proportion of upward translocation than did older plants. Downward translocation of 14C-photosynthate was stimulated by ATP pre-treatment of the translocating leaf, while upward translocation was not affected by ATP. A similar phenomenon was observed in the translocation of 14C-sucrose infiltrated into a leaf with or without ATP. Downward translocation of photosynthate was inhibited by DNP pre-treatment of a fed leaf. Upward translocation, however, was not affected by DNP. Thirty min after infiltration of 14C-glucose into a leaf, almost all the 14C translocated upwards was found to be in the form of glucose, while a great part of the 14C translocated downwards was in the form of sucrose. In the case of translocation of infiltrated 14C-sucrose, 14C found both above and below the fed leaf was mainly in the form of sucrose. PMID:16656944
Peach leaf responses to soil and cement dust pollution.
Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G
2015-10-01
Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.
Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor.
Kalčíková, Gabriela; Žgajnar Gotvajn, Andreja; Kladnik, Aleš; Jemec, Anita
2017-11-01
Microplastics (MP), small plastic particles below 5 mm, have become one of the central concerns of environmental risk assessment. Microplastics are continuously being released into the aquatic environment either directly through consumer products or indirectly through fragmentation of larger plastic materials. The aim of our study was to investigate the effect of polyethylene microbeads from cosmetic products on duckweed (Lemna minor), a freshwater floating plant. The effects of microbeads from two exfoliating products on the specific leaf growth rate, the chlorophyll a and b content in the leaves, root number, root length and root cell viability were assessed. At the same time, water leachates from microbeads were also prepared to exclude the contribution of cosmetic ingredients on the measured impacts. Specific leaf growth rate and content of photosynthetic pigments in duckweed leaves were not affected by polyethylene microbeads, but these microbeads significantly affected the root growth by mechanical blocking. Sharp particles also reduced the viability of root cells, while the impact of microbeads with a smooth surface was neglected. It was concluded that microbeads from cosmetic products can also have negative impacts on floating plants in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang
2017-04-01
The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.
Wuytack, Tatiana; Verheyen, Kris; Wuyts, Karen; Kardel, Fatemeh; Adriaenssens, Sandy; Samson, Roeland
2010-12-01
In this study, we assess the potential of white willow (Salix alba L.) as bioindicator for monitoring of air quality. Therefore, shoot biomass, specific leaf area, stomatal density, stomatal pore surface, and stomatal resistance were assessed from leaves of stem cuttings. The stem cuttings were introduced in two regions in Belgium with a relatively high and a relatively low level of air pollution, i.e., Antwerp city and Zoersel, respectively. In each of these regions, nine sampling points were selected. At each sampling point, three stem cuttings of white willow were planted in potting soil. Shoot biomass and specific leaf area were not significantly different between Antwerp city and Zoersel. Microclimatic differences between the sampling points may have been more important to plant growth than differences in air quality. However, stomatal pore surface and stomatal resistance of white willow were significantly different between Zoersel and Antwerp city. Stomatal pore surface was 20% lower in Antwerp city due to a significant reduction in both stomatal length (-11%) and stomatal width (-14%). Stomatal resistance at the adaxial leaf surface was 17% higher in Antwerp city because of the reduction in stomatal pore surface. Based on these results, we conclude that stomatal characteristics of white willow are potentially useful indicators for air quality.
[Modeling polarimetric BRDF of leaves surfaces].
Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min
2010-12-01
The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.
Near-surface Thermal Infrared Imaging of a Mixed Forest
NASA Astrophysics Data System (ADS)
Aubrecht, D. M.; Helliker, B. R.; Richardson, A. D.
2014-12-01
Measurement of an organism's temperature is of basic physiological importance and therefore necessary for ecosystem modeling, yet most models derive leaf temperature from energy balance arguments or assume it is equal to air temperature. This is because continuous, direct measurement of leaf temperature outside of a controlled environment is difficult and rarely done. Of even greater challenge is measuring leaf temperature with the resolution required to understand the underlying energy balance and regulation of plant processes. To measure leaf temperature through the year, we have mounted a high-resolution, thermal infrared camera overlooking the canopy of a temperate deciduous forest. The camera is co-located with an eddy covariance system and a suite of radiometric sensors. Our camera measures longwave thermal infrared (λ = 7.5-14 microns) using a microbolometer array. Suspended in the canopy within the camera FOV is a matte black copper plate instrumented with fine wire thermocouples that acts as a thermal reference for each image. In this presentation, I will discuss the challenges of continuous, long-term field operation of the camera, as well as measurement sensitivity to physical and environmental parameters. Based on this analysis, I will show that the uncertainties in converting radiometric signal to leaf temperature are well constrained. The key parameter for minimizing uncertainty is the emissivity of the objects being imaged: measuring the emissivity to within 0.01 enables leaf temperature to be calculated to within 0.5°C. Finally, I will present differences in leaf temperature observed amongst species. From our two-year record, we characterize high frequency, daily, and seasonal thermal signatures of leaves and crowns, in relation to environmental conditions. Our images are taken with sufficient spatial and temporal resolution to quantify the preferential heating of sunlit portions of the canopy and the cooling effect of wind gusts. Future work will be focused on correlations between hyperspectral vegetation indices, fluxes, and thermal signatures to characterize vegetation stress. As water stress increases, causing photosynthesis and transpiration to shutdown, heat fluxes, leaf temperature, and narrow band vegetation indices should report signatures of the affected processes.
Chanprame, S; Todd, J J; Widholm, J M
1996-12-01
Pink-pigmented facultative methylotrophic bacteria (PPFMs) have been found on the surfaces of leaves of most plants tested. We found PPFMs on the leaf surfaces of all 40 plants (38 species) tested and on soybean pods by pressing onto AMS medium with methanol as the sole carbon source. The abundance ranged from 0.5 colony forming unit (cfu) /cm(2) to 69.4 cfu/cm(2) on the leaf surfaces. PPFMs were found in homogenized leaf tissues of only 4 of the species after surface disinfestation with 1.05% sodium hypochlorite and were rarely found in cultures initiated from surface disinfested Datura innoxia leaves or inside surface disinfested soybean pods. Of 20 antibiotics tested for PPFM growth inhibition, rifampicin was the most effective and of seven others which also inhibited PPFM growth, cefotaxime should be the most useful due to the expected low plant cell toxicity. These antibiotics could be used in concert with common surface sterilization procedures to prevent the introduction or to eliminate PPFM bacteria in tissue cultures. Thus, while PPFMs are present on the surfaces of most plant tissues, surface disinfestation alone can effectively remove them so that uncontaminated tissue cultures can be initiated in most cases.
Effects of road dust on the growth characteristics of Sophora japonica L. seedlings.
Bao, Le; Qu, Laiye; Ma, Keming; Lin, Lin
2016-08-01
Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces. Copyright © 2016. Published by Elsevier B.V.
Subpixel urban impervious surface mapping: the impact of input Landsat images
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li
2017-11-01
Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.
Yang, Yongil; Karlson, Dale
2012-08-01
The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.
Sampling plans for pest mites on physic nut.
Rosado, Jander F; Sarmento, Renato A; Pedro-Neto, Marçal; Galdino, Tarcísio V S; Marques, Renata V; Erasmo, Eduardo A L; Picanço, Marcelo C
2014-08-01
The starting point for generating a pest control decision-making system is a conventional sampling plan. Because the mites Polyphagotarsonemus latus and Tetranychus bastosi are among the most important pests of the physic nut (Jatropha curcas), in the present study, we aimed to establish sampling plans for these mite species on physic nut. Mite densities were monitored in 12 physic nut crops. Based on the obtained results, sampling of P. latus and T. bastosi should be performed by assessing the number of mites per cm(2) in 160 samples using a handheld 20× magnifying glass. The optimal sampling region for T. bastosi is the abaxial surface of the 4th most apical leaf on the branch of the middle third of the canopy. On the abaxial surface, T. bastosi should then be observed on the side parts of the middle portion of the leaf, near its edge. As for P. latus, the optimal sampling region is the abaxial surface of the 4th most apical leaf on the branch of the apical third of the canopy on the abaxial surface. Polyphagotarsonemus latus should then be assessed on the side parts of the leaf's petiole insertion. Each sampling procedure requires 4 h and costs US$ 7.31.
NASA Astrophysics Data System (ADS)
Bixler, Gregory D.; Bhushan, Bharat
2013-08-01
Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.
Sahota, Shivali; Vijay, Virendra Kumar; Subbarao, P M V; Chandra, Ram; Ghosh, Pooja; Shah, Goldy; Kapoor, Rimika; Vijay, Vandit; Koutu, Vaibhav; Thakur, Indu Shekhar
2018-02-01
Installation of decentralized units for biogas production along with indigenous upgradation systems can be an effective approach to meet growing energy demands of the rural population. Therefore, readily available leaf waste was used to prepare biochar at different temperatures and employed for H 2 S removal from biogas produced via anaerobic digestion plant. It is found that biochar prepared via carbonization of leaf waste at 400 °C effectively removes 84.2% H 2 S (from 1254 ppm to 201 ppm) from raw biogas for 25 min in a continuous adsorption tower. Subsequently, leaf waste biochar compositional, textural and morphological properties before and after H 2 S adsorption have been analyzed using proximate analysis, CHNS, BET surface area, FTIR, XRD, and SEM-EDX. It is found that BET surface area, pore size, and textural properties of leaf waste biochar plays a crucial role in H 2 S removal from the biogas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adhesive Leaf Created by a Corona Discharge.
Lee, Wonseok; Son, Jongsang; Kim, Seonghyun; Yang, Dongmin; Choi, Seungyeop; Watanabe, Rodrigo Akira; Hwang, Kyo Seon; Lee, Sang Woo; Lee, Gyudo; Yoon, Dae Sung
2018-01-29
Here, we report a new concept of both the adhesive manner and material, named "adhesive leaf (AL)," based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.
Christa P.H. Mulder; Bitty A. Roy; Sabine Gusewell
2008-01-01
Parasite damage strongly affects dynamics of boreal forests. Damage levels may be affected by climate change, either directly or indirectly through changes in properties of host trees. We examined how herbivore and pathogen damage in Alnus viridis subsp. fruticosa (Rupr.) Nym. depend on leaf morphology and chemistry, tree size...
USDA-ARS?s Scientific Manuscript database
Cotton is an economically important crop affected by a number of abiotic and biotic stresses. Cotton leaf curl disease (CLCuD) is caused by virus in the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses (CLCuVs). It is one of the most devastating virual diseases ...
NASA Astrophysics Data System (ADS)
Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.
2016-01-01
Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.
MODIS Measures Total U.S. Leaf Area
NASA Technical Reports Server (NTRS)
2002-01-01
This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.
2014-12-01
Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.
Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan
2017-12-26
Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.
A Herbivorous Mite Down-Regulates Plant Defence and Produces Web to Exclude Competitors
Sarmento, Renato A.; Lemos, Felipe; Dias, Cleide R.; Kikuchi, Wagner T.; Rodrigues, Jean C. P.; Pallini, Angelo; Sabelis, Maurice W.; Janssen, Arne
2011-01-01
Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences. PMID:21887311
Flood flows, leaf breakdown, and plant-available nitrogen on a dryland river floodplain
Andersen, Douglas C.; Nelson, S. Mark; Binkley, Dan
2003-01-01
We tested the hypothesis that decomposition in flood-inundated patches of riparian tree leaf litter results in higher plant-available nitrogen in underlying, nutrient-poor alluvium. We used leafpacks (n = 56) containing cottonwood (Populus deltoides ssp. wislizenii) leaf litter to mimic natural accumulations of leaves in an experiment conducted on the Yampa River floodplain in semi-arid northwestern Colorado, USA. One-half of the leafpacks were set on the sandy alluvial surface, and one-half were buried 5 cm below the surface. The presence of NO3− and NH4+ presumed to result from a leafpack's submergence during the predictable spring flood pulse was assessed using an ion-exchange resin bag (IER) placed beneath each leafpack and at control locations. Leafpacks and IERs were collected one week after flood peak (71 days total exposure) at half the stations; the remainder were collected three weeks later (93 days exposure). A multi-peaked spring flood with above-average maximum discharge inundated leafpacks for total time periods ranging from 133 to 577 hours. Litter lost from 43 to 68 percent of its initial organic matter (OM) content. Organic matter loss increased with total time inundated and total time of exposure on the floodplain. Burial retarded OM loss if the total time inundated was relatively long, and substrate texture (sand vs. silt) affected OM loss in a complex manner through interactions with total time inundated and total time of exposure. No pulse of N attributable to leaf breakdown was detected in the IERs, and leafpack litter showed no net change in the mass of nitrogen present. Patterns of leafpack and IER nitrogen levels suggested that litter removed N from floodwater and thereby reduced N availability in underlying sediment. Immobilization of floodwater-N by litter and N mineralization outside the flood period may be important components of N flux in semi-arid and arid floodplain environments.
Martorell, Sebastian; Medrano, Hipolito; Tomàs, Magdalena; Escalona, José M; Flexas, Jaume; Diaz-Espejo, Antonio
2015-03-01
Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψ leaf ) by increasing turgor at low Ψ leaf . We measured leaf hydraulic conductance (K leaf ), K leaf vulnerability [50 and 80% loss of K leaf (P50 and P80 ); |Ψ leaf | at 50 and 80% loss of K leaf , respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P50 , P80 and maximum K leaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, K leaf at 2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment. © 2014 Scandinavian Plant Physiology Society.
Polarized and non-polarized leaf reflectances of Coleus blumei
NASA Technical Reports Server (NTRS)
Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.
1987-01-01
A polarization photometer has been used to measure the reflectance of three variegated portions of Coleus blumei, Benth. in five wavelength bands of the visible and near-infrared spectrum. The polarized component of the reflectance factor was found to be independent of wavelength, indicating that the polarized reflectance arises from the leaf surface. It is suggested that differences in the polarized component result from variations in surface features. The nonpolarized component of the reflectance factor is shown to be related to the internal leaf structure. The variation of the degree of polarization with wavelength was found to be greatest in the regions of the spectrum where absorption occurs.
Flores, L; Banjac, Z; Farré, M; Larrañaga, A; Mas-Martí, E; Muñoz, I; Barceló, D; Elosegi, A
2014-04-01
The intensification of agriculture has promoted the use of pesticides such as fungicides and insecticides. Many pesticides readily leach into natural water bodies and affect both organisms and ecosystem processes such as leaf breakdown, a crucial process in headwater streams. As leaf breakdown in streams involves sequential steps by different groups of organisms (first microbial conditioning, then invertebrate shredding), pesticides targeting different organisms are likely to affect one or the other step, and a mixture of contaminants might have interactive effects. Our objective was to evaluate the effect of a fungicide (imazalil) and an insecticide (diazinon) on stream fungal and invertebrate activities, and their effects on leaf consumption. After an initial assay to define 'effective concentration' of both pesticides in a laboratory experiment, we manipulated pesticide presence/absence during the conditioning and shredding phases. Both pesticides affected fungal community and reduced the performance of the shredding amphipod Echinogammarus berilloni, and leaf consumption. The impact of pesticides on fungal sporulation depended on the length of the exposure period. In addition, pesticides seemed to cause an energetic imbalance in the amphipod, affecting body condition and mortality. The combined effect of both pesticides was similar to those of the fungicide. Overall, our results show that the effects of pesticide mixtures on leaf breakdown are hard to predict from those observed in either fungi or macroinvertebrate performance. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of leaf litter cover on surface runoff and soil erosion in Northern China.
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.
The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momen, Mostafa; Wood, Jeffrey D.; Novick, Kimberly A.
Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We usedmore » measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.« less
Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Scott, Jessenia M; Jackson, Mariah M Z; Greeman, Esther A; Greenidge, Ariane S; Cohen, Devin O; Volkova, Maia I; Shtessel, Yuri B
2017-02-01
Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes. Intercellular Ag/AgCl electrodes inserted in a leaf and extracellular Ag/AgCl electrodes attached to the leaf surface were used to detect the electrotonic potential propagation along a leaf of Aloe vera. There is a difference in duration and amplitude of electrical potentials measured by electrodes inserted in a leaf and those attached to a leaf's surface. If the external reference electrode is located in the soil near the root, it changes the amplitude and duration of electrotonic potentials due to existence of additional resistance, capacitance, ion channels and ion pumps in the root. The information gained from this study can be used to elucidate extracellular and intercellular communication in the form of electrical signals within plants. Copyright © 2016 Elsevier B.V. All rights reserved.
George, Justin; Ammar, El-Desouky; Hall, David G.
2017-01-01
Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars. PMID:28278248
George, Justin; Ammar, El-Desouky; Hall, David G; Lapointe, Stephen L
2017-01-01
Asian citrus psyllid (Diaphorina citri) feeding behaviors play a significant role in the transmission of the phloem-limited Candidatus Liberibacter asiaticus (CLas) bacterium that causes the economically devastating citrus greening disease. Sustained phloem ingestion by D. citri on CLas infected plants is required for pathogen acquisition and transmission. Recent studies have shown a fibrous ring of thick-walled sclerenchyma around the phloem in mature, fully expanded citrus leaves that is more prominent on the abaxial compared with the adaxial side. The composition and thickness of this fibrous ring may have an important role in selection of feeding sites by D. citri based on leaf age and leaf surface, which in turn can affect pathogen acquisition and transmission. We measured feeding behavior using electrical penetration graph (EPG) recordings of individual D. citri adults placed on abaxial or adaxial surfaces of young or mature Valencia orange leaves to study the role of the sclerenchymatous ring in modifying D. citri feeding behavior. Feeding sites on the same leaf tissues were then sectioned and examined by epifluorescence microscopy. The duration of phloem ingestion (E2 waveform) by psyllids was significantly reduced on mature compared with young leaves, and on abaxial compared with adaxial leaf surfaces. The longest duration of phloem ingestion was observed from psyllids placed on the adaxial side of young leaves that had the least developed sclerenchyma. Bouts of phloem salivation (E1 waveform), however, were significantly longer on mature leaves compared with young leaves. D. citri adults made consecutive phloem feeding attempts (bouts) on the abaxial side of mature leaves and those bouts resulted in unsuccessful or shorter periods of phloem ingestion. Adults also made more frequent and longer bouts of xylem ingestion on mature leaves compared with adult psyllids placed on young leaves. Epifluorescence microscopy showed that the fibrous ring in young leaves was thinner and autofluoresced in red whereas the ring in mature leaves was thicker and autofluoresced in blue, indicating changes in structure and composition (e.g., lignification) of sclerenchyma correlated with leaf age. Our results support the hypothesis that the presence of a thick, well-developed fibrous ring around phloem tissues of mature leaves acts as a barrier to frequent or prolonged phloem ingestion by D. citri from citrus leaves. This may have an important role in limiting or preventing CLas acquisition and/or transmission by D. citri, and could be used for identification and development of resistant citrus cultivars.
Pulito, Claudio; Mori, Federica; Sacconi, Andrea; Casadei, Luca; Ferraiuolo, Maria; Valerio, Maria Cristina; Santoro, Raffaela; Goeman, Frauke; Maidecchi, Anna; Mattoli, Luisa; Manetti, Cesare; Di Agostino, Silvia; Muti, Paola; Blandino, Giovanni; Strano, Sabrina
2015-07-20
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma.
Pulito, Claudio; Mori, Federica; Sacconi, Andrea; Casadei, Luca; Ferraiuolo, Maria; Valerio, Maria Cristina; Santoro, Raffaela; Goeman, Frauke; Maidecchi, Anna; Mattoli, Luisa; Manetti, Cesare; Di Agostino, Silvia; Muti, Paola; Blandino, Giovanni; Strano, Sabrina
2015-01-01
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma. PMID:26136339
J. S. King; K. S. Pregitzer; D. R. Zak; M. E. Kubiske; W. E. Holmes
2001-01-01
Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely...
Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel
2013-05-01
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.
Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH
Steven W. Solada; Sue A. Perry; William B. Perry
1996-01-01
The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...
Huang, Yong-Ju; Evans, Neal; Li, Zi-Qin; Eckert, Maria; Chèvre, Anne-Marie; Renard, Michel; Fitt, Bruce D L
2006-01-01
Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.
NASA Astrophysics Data System (ADS)
Hertanto, B. S.; Kartikasari, L. R.; Swastike, Winny; Cahyadi, M.; Yuliani, A.; Nuhriawangsa, A. M. P.
2017-04-01
The objective of this study was to determine the effect of cincau leaf (Cyclea barbata L.Miers) on the physical properties of milk cincau curd. The materials of this research were milk cow of Local Friesian Holstein and leaves of cincau. This research used one way randomized design. The treatment of this research was concentration ratio between cincau leaf and cow milk (w/v): A1 = 10%:90%; A2 = 20%:80%; A3 = 30%:70%. The data was analyzed using ANOVA, and differences between treatment means were further analysed using Duncan’s New Multiple Range Test. Our study revealed that different concentrations of cincau leaf significantly affected cohesiveness, chewiness, hardness, gumminess, springiness, pH and syneresis (p<0.01). However, it did not affect adhesiveness. In addition, the level of 30% of cincau leaf increased cohesiveness, and the level of 20% increased chewiness, hardness, gumminess, springiness, pH. On the other hand, syneresis decreased at the level of 20%. It can be concluded that the addition cincau leaf up to a level of 20% improved the physical properties of milk cincau curd.
High Diversity Revealed in Leaf-Associated Protists (Rhizaria: Cercozoa) of Brassicaceae.
Ploch, Sebastian; Rose, Laura E; Bass, David; Bonkowski, Michael
2016-09-01
The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf-inhabiting microorganisms, recently termed "phyllosphere microbiome". Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning-based approach. The generated sequences revealed a broad diversity of leaf-associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants. © 2016 The Authors. The Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.
Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes
NASA Technical Reports Server (NTRS)
Andre, M.; Ducloux, H.; Richaud, C.
1986-01-01
When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.
McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A
2010-04-01
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN
Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica
2016-01-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.
M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica
2016-06-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.
Endurance of larch forest ecosystems in eastern Siberia under warming trends
NASA Astrophysics Data System (ADS)
Sato, H.; Iwahana, G.; Ohta, T.
2015-12-01
The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.
Self-cleaning efficiency of artificial superhydrophobic surfaces.
Bhushan, Bharat; Jung, Yong Chae; Koch, Kerstin
2009-03-03
The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.
Zubrod, Jochen P; Englert, Dominic; Wolfram, Jakob; Rosenfeldt, Ricki R; Feckler, Alexander; Bundschuh, Rebecca; Seitz, Frank; Konschak, Marco; Baudy, Patrick; Lüderwald, Simon; Fink, Patrick; Lorke, Andreas; Schulz, Ralf; Bundschuh, Mirco
2017-08-01
Leaf litter is a major source of carbon and energy for stream food webs, while both leaf-decomposing microorganisms and macroinvertebrate leaf shredders can be affected by fungicides. Despite the potential for season-long fungicide exposure for these organisms, however, such chronic exposures have not yet been considered. Using an artificial stream facility, effects of a chronic (lasting up to 8 wk) exposure to a mixture of 5 fungicides (sum concentration 20 μg/L) on leaf-associated microorganisms and the key leaf shredder Gammarus fossarum were therefore assessed. While bacterial density and microorganism-mediated leaf decomposition remained unaltered, fungicide exposure reduced fungal biomass (≤71%) on leaves from day 28 onward. Gammarids responded to the combined stress from consumption of fungicide-affected leaves and waterborne exposure with a reduced abundance (≤18%), which triggered reductions in final population biomass (18%) and in the number of precopula pairs (≤22%) but could not fully explain the decreased leaf consumption (19%), lipid content (≤43%; going along with an altered composition of fatty acids), and juvenile production (35%). In contrast, fine particulate organic matter production and stream respiration were unaffected. Our results imply that long-term exposure of leaf-associated fungi and shredders toward fungicides may result in detrimental implications in stream food webs and impairments of detrital material fluxes. These findings render it important to understand decomposer communities' long-term adaptational capabilities to ensure that functional integrity is safeguarded. Environ Toxicol Chem 2017;36:2178-2189. © 2017 SETAC. © 2017 SETAC.
Watson, Gregory S; Green, David W; Cribb, Bronwen W; Brown, Christopher L; Meritt, Christopher R; Tobin, Mark J; Vongsvivut, Jitraporn; Sun, Mingxia; Liang, Ai-Ping; Watson, Jolanta A
2017-07-19
Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.
Hydrogen isotope response to changing salinity and rainfall in Australian mangroves.
Ladd, S Nemiah; Sachs, Julian P
2015-12-01
Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes. © 2015 John Wiley & Sons Ltd.
High and Dry? Stomatal Regulation and the Water Use Efficiency of Vegetation
NASA Astrophysics Data System (ADS)
Seibt, U.; Maseyk, K. S.; Sun, W.; Lett, C.; Pivovaroff, A. L.
2016-12-01
The water use efficiency (WUE, ratio of carbon assimilated to water transpired) of vegetation plays an important role in determining the exchange of water between ecosystems and the atmosphere and thus affects the global water cycle. It also shapes the water-energy balance of ecosystems as a decrease in water fluxes may lead to an increase in surface temperature. A large number of studies have reported systematic changes in WUE from the stand to landscape scale, however, there is no general agreement on the sign and magnitude of the observed trends. The divergent responses reflect that the WUE of vegetation is shaped by a complex interplay of factors acting on a wide range of temporal scales: On diurnal to seasonal time scales, if evaporative demand is altered by atmospheric moisture or temperature, plants respond by adjusting stomatal conductance with associated changes in both transpiration and photosynthetic carbon uptake. On seasonal to interannual time scales, leaf size, structure and activity may adapt to water stress. This can alter boundary layer and mesophyll conductances, radiation profiles, and the surface energy balance. On longer time scales, the carbon-water balance of ecosystems is additionally affected by the ongoing global rise in CO2 and temperatures. Stomatal regulation is a central factor across all scales. We present new results on leaf and stand scale WUE from a range of ecosystems (arctic, boreal, semi-arid, tropical), and discuss the role of stomatal regulation on diurnal and seasonal changes in WUE in response to water stress and on potential long-term trends in WUE in response to climate change.
Chondrogiannis, Christos; Grammatikopoulos, George
2016-12-01
Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO 2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power, J.F.
1981-01-01
Progress is reported in a study designed to evaluate the effects of quantity of crop residues left on soil surface on soil properties, plant growth, and crop yield and to determine the effects of quantity of surface residues upon soil, fertilizer, and residue N transformations, availability, and efficiency of use. In a dryland corn-sorghum-soybean rotation produced on a clay loam, residues remaining after harvest of the previous crop were removed and respread on plots at rates of 0, 0.5, 1.0, and 1.5 times the quantity of residues originally present. The above crops were planted in four replications the following springmore » without tillage, after broadcasting 50 kg N/ha as ammonium nitrate. In 1980, /sup 15/N-depleted NH/sub 4/NO/sub 3/ was applied to half of each plot. After harvest, crop residues produced on the half-plot receiving the N-isotope were transferred to the half-plot receiving regular fertilizer, and visa versa. In 1981, /sup 15/N-depleted NH/sub 4/NO/sub 3/ was applied to half of each plot again, except at right angles to the fertilizer applied in 1980. After planting each year, thermocouples were installed in each plot and soil temperatures were recorded. Also access tubes were installed in all plots and soil water content was measured to the 150 cm soil depth periodically during the growing season. Dry matter production and N uptake by the plant tissue was measured periodically during the growing season and at maturity. Additional measurements taken included leaf area index, xylem water potentials, and soil microbial populations. Data are presented on corn and soybean production characteristics as affected by rate of crop residue on soil surface. Results are also given on leaf area index (LAI) and dry matter production of corn and soybeans as affected by surface residue rate. Total N content of corn and soybean plant materials and surface residues, and total and inorganic soil N (1980) are reported.« less
Kwiatkowska, Dorota; Routier-Kierzkowska, Anne-Lise
2009-01-01
Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess displacement velocity fields so that growth in the anticlinal direction can be assessed. In terms of self-perpetuation, the inflorescence SAM of Anagallis differs from the SAM in the vegetative phase in that the centrally located region of slow growth is less distinct in the inflorescence SAM. Moreover, the position of this slowly growing zone with respect to cells is not stable in the course of the meristem ontogeny.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrand, E.; Skelly, J.M.
1993-02-01
To assess the extent of foliar symptoms due to ozone on sensitive hardwoods in the Shenandoah National Park in Virginia, three species were sampled and evaluated at sites of differing elevations adjacent to 3 ozone monitors in 1991 and 1992: black cherry, yellow poplar, and white ash. All foliar samples were evaluated to precent of symptomatic leaves on each branch and average precent leaf area affected. The Horsfall-Barratt rating scale was used to estimate the precent leaf area symptomatic. Ozone symptoms were manifested as stipple on the adazial leaf surface. In the preliminary 1991 sampling, 40, 87, and 7% ofmore » black cherry trees sampled were found to be symptomatic at the 3 sites; 63 and 67% of yellow poplar trees sampled were found to be symptomatic at sites 1 and 3, as were 43 and 63% of the white ash at sites 1 and 2 (3 complete sets were not found in 1991). In 1992, the sampling and rating of injury were repeated. Symptoms of ozone injury appeared on 23, 88, and 10% of black cherry, on 17, 7, and 80% of yellow poplar, and 27, 40, and 40% of white ash. Elevation and ozone exposure will be discussed.« less
USDA-ARS?s Scientific Manuscript database
Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a leaf rust resistant gene present in the durum wheat cv. Creso and its derivative Colosseo is one of the best characterized leaf rust resistance sources presently deployed in durum wheat breed...
USDA-ARS?s Scientific Manuscript database
Parastagonospora nodorum is a necrotrophic pathogen of wheat, causing Septoria nodorum blotch (SNB) affecting both the leaf and glume. P. nodorum is the major leaf blotch pathogen on spring wheat in Norway. Resistance to the disease is quantitative, but several host-specific interactions between nec...
Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set...
USDA-ARS?s Scientific Manuscript database
Rust diseases caused by Puccinia spp. pose a major threat to global wheat production. Puccinia triticina (Pt), an obligate basidiomycete biotroph, causes leaf rust disease which incurs yield losses of up to 50% in wheat. Historically, resistant wheat cultivars have been used to control leaf rust, bu...
Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust.
Shah, Kamran; Amin, Noor Ul; Ahmad, Imran; Ara, Gulshan
2018-06-02
Continuous addition of undesired effluents to the environment affects foliar surface of leaf, changes their morphology, stomata, photosynthetic pigments, and biochemical constituents which result in massive damage due to persistent nature of the pollutant. In persistent hostile environment, plants fail to grow and develop, and the effects are often extensive. In current study, landscape plants were exposed to different levels of road dust to analyze the effect on various photosynthetic pigments. Dry roadside sediments were collected through a vacuum pump and passed through filters to get fine particles less than 100 μm and sprinkled on Euphorbia milii (EM), Gardenia jasminoides (GJ), and Hibiscus rosa-sinensis (HRs) by using a hand pump, twice daily at T 1 (control), T 2 , T 3 , and T 4 (0, 2, 4, and 6 g/plant, respectively) for a period of 3 months in green house. Road sediment significantly reduces leaf pigments in landscape plants population and the effects were more severe in high level of dust deposition. Individual response of EM, GJ, and HRs to different levels of road dust was variable; however, road sediment significantly reduces leaf pigments at high dose of roadside dust deposition. EM plants exposed to 2 g/plant roadside dust showed higher chlorophyll-a, chlorophyll-b, total chlorophyll, chlorophyllide-b, and polar carotenoid contents as compared to GJ and HRs. Leaf chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and polar carotenoid contents of EM were higher than GJ and HRs in T 3 and T 4 treatments. However HRs showed significantly higher protochlorophyllide, chlorophyllide-a, and pheophytin-b contents of leaf in T 4 group. EM was found as tolerant landscape plant followed by HRs. GJ was most vulnerable to road dust stress. Present study concludes that the entire biosynthesis of leaf pigments is in chain and interlinked together where effect of road dust on one pigment influences other pigments and their derivatives. Salient features of the present study provide useful evidence to estimate roadside dust as a major risk factor for plant pigments, and plants in green belt along roadside suffer retarded growth and fail to establish and develop.
[Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].
Wu, Jian; Chen, Tai-sheng; Pan, Li-xin
2015-07-01
Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Gmur, N.F.; Da Costa, F.
1977-08-01
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less
Balduzzi, Mathilde A.F.; Van der Zande, Dimitry; Stuckens, Jan; Verstraeten, Willem W.; Coppin, Pol
2011-01-01
Light Detection and Ranging (LiDAR) technology can be a valuable tool for describing and quantifying vegetation structure. However, because of their size, extraction of leaf geometries remains complicated. In this study, the intensity data produced by the Terrestrial Laser System (TLS) FARO LS880 is corrected for the distance effect and its relationship with the angle of incidence between the laser beam and the surface of the leaf of a Conference Pear tree (Pyrus Commmunis) is established. The results demonstrate that with only intensity, this relationship has a potential for determining the angle of incidence with the leaves surface with a precision of ±5° for an angle of incidence smaller than 60°, whereas it is more variable for an angle of incidence larger than 60°. It appears that TLS beam footprint, leaf curvatures and leaf wrinkles have an impact on the relationship between intensity and angle of incidence, though, this analysis shows that the intensity of scanned leaves has a potential to eliminate ghost points and to improve their meshing. PMID:22319374
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander
2017-04-01
Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.
Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming
2017-12-01
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Type 92) § 29.1056 Slick. A term used to denote tobacco having a close or tight leaf structure. Any leaf of lemon or orange color of which 20 percent or more of its surface is close or tight may be...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Type 92) § 29.1056 Slick. A term used to denote tobacco having a close or tight leaf structure. Any leaf of lemon or orange color of which 20 percent or more of its surface is close or tight may be...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Type 92) § 29.1056 Slick. A term used to denote tobacco having a close or tight leaf structure. Any leaf of lemon or orange color of which 20 percent or more of its surface is close or tight may be...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Type 92) § 29.1056 Slick. A term used to denote tobacco having a close or tight leaf structure. Any leaf of lemon or orange color of which 20 percent or more of its surface is close or tight may be...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Type 92) § 29.1056 Slick. A term used to denote tobacco having a close or tight leaf structure. Any leaf of lemon or orange color of which 20 percent or more of its surface is close or tight may be...
Fini, Alessio; Frangi, Piero; Amoroso, Gabriele; Piatti, Riccardo; Faoro, Marco; Bellasio, Chandra; Ferrini, Francesco
2011-11-01
The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V(cmax) and J(max) were increased by inoculation and decreased by water shortage in all species. F(v)/F(m) was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.
Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François
2016-03-01
Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Dongyu; Chen, Zhifan; Sun, Ke; Yan, Dong; Kang, Mingjie; Zhao, Ye
2013-11-01
The pollution of agricultural soils with cadmium (Cd) has become a serious problem worldwide. The potato (Solanum tuberosum L.) was used to investigate how different concentrations of Cd (1, 5, and 25mgkg(-1)) affected the physiological parameters and the subcellular distribution of Cd in the potato. The analyses were conducted using scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX). The results suggest that the leaf is the organ with the highest accumulation of Cd. The malondialdehyde (MDA) content increased and the chlorophyll content decreased in response to high level of Cd. The SEM-EDX microanalysis revealed that Cd was primarily deposited in the spongy and palisade tissues of the leaf. Furthermore, Cd was also detected in the cortex and the adjacent phloem and was observed inside the intercellular space, the interior surface of the plasma membrane, and on the surface of the elliptical starch granules in the tubers of the potato. Although low concentrations of Cd migrated from the root to the tuber, the accumulation of Cd in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be seriously evaluated because Cd-containing potatoes might present high health risk to humans. Copyright © 2013 Elsevier Inc. All rights reserved.
Maxwell, D J; Partridge, J C; Roberts, N W; Boonham, N; Foster, G D
2017-01-01
The way in which light is polarized when reflected from leaves can be affected by infection with plant viruses. This has the potential to influence viral transmission by insect vectors due to altered visual attractiveness of infected plants. The optical and topological properties of cuticular waxes and trichomes are important determinants of how light is polarized upon reflection. Changes in expression of genes involved in the formation of surface structures have also been reported following viral infection. This paper investigates the role of altered surface structures in virus-induced changes to polarization reflection from leaves. The percentage polarization of reflections from Arabidopsis thaliana cer5, cer6 and cer8 wax synthesis mutants, and the gl1 leaf hair mutant, was compared to those from wild-type (WT) leaves. The cer5 mutant leaves were less polarizing than WT on the adaxial and abaxial surfaces; gl1 leaves were more polarizing than WT on the adaxial surfaces. The cer6 and cer8 mutations did not significantly affect polarization reflection. The impacts of Turnip vein clearing virus (TVCV) infection on the polarization of reflected light were significantly affected by cer5 mutation, with the reflections from cer5 mutants being higher than those from WT leaves, suggesting that changes in CER5 expression following infection could influence the polarization of the reflections. There was, however, no significant effect of the gl1 mutation on polarization following TVCV infection. The cer5 and gl1 mutations did not affect the changes in polarization following Cucumber mosaic virus (CMV) infection. The accumulation of TVCV and CMV did not differ significantly between mutant and WT leaves, suggesting that altered expression of surface structure genes does not significantly affect viral titres, raising the possibility that if such regulatory changes have any adaptive value it may possibly be through impacts on viral transmission.
Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant.
Parisi, Alfio V; Schouten, Peter; Downs, Nathan J; Turner, Joanna
2010-05-03
The possible ramifications of climate change include the influence it has upon the amount of cloud cover in the atmosphere. Clouds cause significant variation in the solar UV radiation reaching the earth's surface and in turn the amount incident on ecosystems. The consequences of changes in solar UV radiation delivered to ecosystems due to climate change may be significant and should be investigated. Plants are an integral part of the world wide ecological balance, and research has shown they are affected by variations in solar UV radiation. Therefore research into the influence of solar UV radiation on plants is of particular significance. However, this requires a means of obtaining detailed information on the solar UV radiation received by plants. This research describes a newly developed dosimetric technique employed to gather information on solar UV radiation incident to the leaves of plants in combination with the measurement of spectral irradiances in order to provide an accurate method of collecting detailed information on the solar UV radiation affecting the canopy and lower leaf layers of individual plants. Variations in the measurements take into account the inclination and orientation of each leaf investigated, as well as the influence of shading by other leaves in the plant canopy. Copyright 2010 Elsevier B.V. All rights reserved.
Impact of Meloidogyne incognita on Physiological Efficiency of Vitis vinifera.
Melakeberhan, H; Ferris, H
1989-01-01
Four-week-old French Colombard plants rooted from green cuttings were inoculated with 0, 1,000, 2,000, 4,000, or 8,000 Meloidogyne incognita second-stage juveniles and maintained at 25 C night and 30 C day. Leaf area and dry weight and the rates of photosynthesis, stomatal conductance, and internal leaf CO concentration were measured at intervals up to 59 days after inoculation. Nematode stress dosage, measured as the product of cumulative number of juveniles and females and their total energy (calories) demand, was up to 3.4 kcal and accounted for up to 15% of the energy assimilated by the plants. There was a decline in the rate of leaf area expansion and leaf, stem, shoot, root (excluding nematode weight), and total plant dry weight with increasing nematode stress. Root weight including nematodes was not affected. Total respiration, plant photosynthesis, energy assimilated into plant tissue and respiration, and gross production efficiency decreased significantly with nematode stress. Photosynthetic rate, transpiration rate, stomatal conductance, and internal CO concentration were not affected. This study demonstrates that the energy demand for growth and reproduction of M. incognita accounts for a significant portion of the total energy entering the plant system. As a result, less energy is partitioned into leaf area expansion which, in turn, affects the energy entering the system and results in decreased productivity of nematode-infected grape vines.
Tsutsumi, Koichi; Konno, Masae; Miyazawa, Shin-Ichi; Miyao, Mitsue
2014-02-01
Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.
NASA Astrophysics Data System (ADS)
Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.
2011-12-01
Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.
Elevated CO{sub 2} and leaf shape: Are dandelions getting toothier?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.C.; Bazzaz, F.A.
1996-01-01
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO{sub 2} levels. Leaves of elevated CO{sub 2} plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO{sub 2} plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf development order. The effects of elevated CO{sub 2} on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grownmore » at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO{sub 2} on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated CO{sub 2} may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO{sub 2} levels predicted to occur within the next century. 33 refs., 5 figs.« less
Arai, Mayuko; Yago, Masaya
2015-01-01
We report that in a leaf insect, Phyllium westwoodii Wood-Mason (Phasmatodea: Phylliidae), two differing apertures can be used for oviposition, the color of eggs being affected by which aperture is used. Eggs which are forcibly propelled from the internal space within the valvulae of the abdomen are brown, whereas white eggs emerge slowly from the opening between the eighth sternite and the valvulae, and are deposited close to the ventral surface of the female. This unusual oviposition system does not appear to have been previously reported in phasmatids or in other insects. PMID:26411788
Synthetic Graphene Oxide Leaf for Solar Desalination with Zero Liquid Discharge.
Finnerty, Casey; Zhang, Lei; Sedlak, David L; Nelson, Kara L; Mi, Baoxia
2017-10-17
Water vapor generation through sunlight harvesting and heat localization by carbon-based porous thin film materials holds great promise for sustainable, energy-efficient desalination and water treatment. However, the applicability of such materials in a high-salinity environment emphasizing zero-liquid-discharge brine disposal has not been studied. This paper reports the characterization and evaporation performance of a nature-inspired synthetic leaf made of graphene oxide (GO) thin film material, which exhibited broadband light absorption and excellent stability in high-salinity water. Under 0.82-sun illumination (825 W/m 2 ), a GO leaf floating on water generated steam at a rate of 1.1 L per m 2 per hour (LMH) with a light-to-vapor energy conversion efficiency of 54%, while a GO leaf lifted above water in a tree-like configuration generated steam at a rate of 2.0 LMH with an energy efficiency of 78%. The evaporation rate increased with increasing light intensity and decreased with increasing salinity. During a long-term evaporation experiment with a 15 wt % NaCl solution, the GO leaf demonstrated stable performance despite gradual and eventually severe accumulation of salt crystals on the leaf surface. Furthermore, the GO leaf can be easily restored to its pristine condition by simply scraping off salt crystals from its surface and rinsing with water. Therefore, the robust high performance and relatively low fabrication cost of the synthetic GO leaf could potentially unlock a new generation of desalination technology that can be entirely solar-powered and achieve zero liquid discharge.
NASA Astrophysics Data System (ADS)
Leonard, N. E.
2005-05-01
As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.
Lichiheb, Nebila; Personne, Erwan; Bedos, Carole; Van den Berg, Frederik; Barriuso, Enrique
2016-04-15
Volatilization from plant foliage is known to have a great contribution to pesticide emission to the atmosphere. However, its estimation is still difficult because of our poor understanding of processes occurring at the leaf surface. A compartmental approach for dissipation processes of pesticides applied on the leaf surface was developed on the base of experimental study performed under controlled conditions using laboratory volatilization chamber. This approach was combined with physicochemical properties of pesticides and was implemented in SURFATM-Pesticides model in order to predict pesticide volatilization from plants in a more mechanistic way. The new version of SURFATM-Pesticide model takes into account the effect of formulation on volatilization and leaf penetration. The model was evaluated in terms of 3 pesticides applied on plants at the field scale (chlorothalonil, fenpropidin and parathion) which display a wide range of volatilization rates. The comparison of modeled volatilization fluxes with measured ones shows an overall good agreement for the three tested compounds. Furthermore the model confirms the considerable effect of the formulation on the rate of the decline in volatilization fluxes especially for systemic products. However, due to the lack of published information on the substances in the formulations, factors accounting for the effect of formulation are described empirically. A sensitivity analysis shows that in addition to vapor pressure, the octanol-water partition coefficient represents important physicochemical properties of pesticides affecting pesticide volatilization from plants. Finally the new version of SURFATM-Pesticides is a prospecting tool for key processes involved in the description of pesticide volatilization from plants. Copyright © 2016 Elsevier B.V. All rights reserved.
Berghuijs, Herman N. C.; Yin, Xinyou; Ho, Q. Tri; Verboven, Pieter; Nicolaï, Bart M.
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters. PMID:28880924
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Retta, Moges A; Verboven, Pieter; Nicolaï, Bart M; Struik, Paul C
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters.
Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David
2012-10-01
Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.
How far can sodium substitute for potassium in red beet?
NASA Technical Reports Server (NTRS)
Subbarao, G. V.; Wheeler, R. M.; Stutte, G. W.; Levine, L. H.; Sager, J. C. (Principal Investigator)
1999-01-01
Sodium (Na) movement between plants and humans is one of the more critical aspects of bioregenerative systems of life support, which NASA is studying for the establishment of long-term bases on the Lunar or Martian surface. This study was conducted to determine the extent to which Na can replace potassium (K) in red beet (Beta vulgaris L. ssp vulgaris) without adversely affecting metabolic functions such as water relations, photosynthetic rates, and thus growth. Two cultivars, Ruby Queen and Klein Bol, were grown for 42 days at 1200 micromoles mol-1 CO2 in a growth chamber using a re-circulating nutrient film technique with 0%, 75%, 95%, and 98% Na substitution for K in a modified half-strength Hoagland solution. Total biomass of Ruby Queen was greatest at 95% Na substitution and equal at 0% and 98% Na substitution. For Klein Bol, there was a 75% reduction in total biomass at 98% Na substitution. Nearly 95% of the total plant K was replaced with Na at 98% Na substitution in both cultivars. Potassium concentrations in leaves decreased from 120 g kg-1 dwt in 0% Na substitution to 3.5 g kg-1 dwt at 98% Na substitution. Leaf chlorophyll concentration, photosynthetic rate, and osmotic potential were not affected in either cultivar by Na substitution for K. Leaf glycinebetaine levels were doubled at 75% Na substitution in Klein Bol, but decreased at higher levels of Na substitution. For Ruby Queen, glycinebetaine levels in leaf increased with the first increase of Na levels and were maintained at the higher Na levels. These results indicate that in some cultivars of red beet, 95% of the normal tissue K can be replaced by Na without a reduction in growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutsinger, Greg; Habenicht, Melissa N; Classen, Aimee T
2008-01-01
Plant-insect interactions can alter ecosystem processes, especially if the insects modify plant architecture, quality, or the quantity of leaf litter inputs. In this study, we investigated the interactions between the gall midge Rhopalomyia solidaginis and tall goldenrod, Solidago altissima, to quantify the degree to which the midge alters plant architecture and how the galls affect rates of litter decomposition and nutrient release in an old-field ecosystem. R. solidaginis commonly leads to the formation of a distinct apical rosette gall on S. altissima and approximately 15% of the ramets in a S. altissima patch were galled (range: 3-34%). Aboveground biomass ofmore » galled ramets was 60% higher and the leaf area density was four times greater on galled leaf tissue relative to the portions of the plant that were not affected by the gall. Overall decomposition rate constants did not differ between galled and ungalled leaf litter. However, leaf-litter mass loss was lower in galled litter relative to ungalled litter, which was likely driven by modest differences in initial litter chemistry; this effect diminished after 12 weeks of decomposition in the field. The proportion of N remaining was always higher in galled litter than in ungalled litter at each collection date indicating differential release of nitrogen in galled leaf litter. Several studies have shown that plant-insect interactions on woody species can alter ecosystem processes by affecting the quality or quantity of litter inputs. Our results illustrate how plant-insect interactions in an herbaceous species can affect ecosystem processes by altering the quality and quantity of litter inputs. Given that S. altissima dominates fields and roadsides and that R. solidaginis galls are highly abundant throughout eastern North America, these interactions are likely to be important for both the structure and function of old-field ecosystems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheplick, G.P.
Biotic interactions between plants and microorganisms have the potential to be affected by acidic precipitation. I examined the effect of simulated sulfuric acid rain on the mutualism between a perennial forage grass (Festuca arundinacea) and a fungal endophyte (Acremonium coenophialum). Acid water was supplied as mists sprayed onto leaf surfaces or as water added to the soil for two groups in a greenhouse: one group had high levels of endophyte infection, while the other was predominantly noninfected. Control plants received distilled water (pH 6), while others received sulfuric acid water at pH 4.5 or pH 3. Plants were harvested aftermore » 4, 6, 8, and 23 wk. Leaf endophyte infection intensity as measured by hyphal counts was not affected by acid water treatment. Root mass and root: shoot ratios generally decreased with increasing acidity of both foliar sprays and soil water, but shoot mass was mostly not affected. There was a significant pH x infection interaction for plants exposed to acidic foliar sprays for 4 wk; root and shoot mass decreased with acidity, but only for infected plants. It was found that acid rain may be deleterious to tall fescue growth at specific stages of development, but biomass production in response to acid rain is not likely to be influenced by fungal endophytes within mature plants. 55 refs., 2 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke
2017-01-01
Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less than expected from previous studies. This study presents a first step towards the integration of atmospheric chemistry and ecosystem dynamics modelling, which would allow for assessing the wider feedbacks between vegetation ozone uptake and tropospheric ozone burden.
Ochagavía, Helga; Prieto, Paula; Savin, Roxana; Griffiths, Simon; Slafer, GustavoA
2018-04-27
Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.
Ochagavía, Helga; Prieto, Paula; Griffiths, Simon
2018-01-01
Abstract Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number. PMID:29562296
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
Hirasawa, Tadashi
2014-01-01
Increases in rates of individual leaf photosynthesis (P n) are critical for future increases of rice yields. A previous study, using introgression lines derived from a cross between indica cultivar Habataki, with one of the highest recorded values of P n, and the Japanese elite cultivar Koshihikari, identified four QTLs (qCAR4, qCAR5, qCAR8, and qCAR11) that affect P n. The present study examined the combined effect of qCAR4 and qCAR8 on P n in the genetic background of Koshihikari. The pyramided near-isogenic line NIL(qCAR4+qCAR8) showed higher P n than both NIL(qCAR4) and NIL(qCAR8), equivalent to that of Habataki despite being due to only two out of the four QTLs. The high P n of NIL(qCAR4+qCAR8) may be attributable to the high leaf nitrogen content, which may have been inherited from NIL(qCAR4), to the large hydraulic conductance due to the large root surface area from NIL(qCAR4), and to the high hydraulic conductivity from NIL(qCAR8). It might be also attributable to high mesophyll conductance, which may have been inherited from NIL(qCAR4). The induction of mesophyll conductance and the high leaf nitrogen content and high hydraulic conductivity could not be explained in isolation from the Koshihikari background. These results suggest that QTL pyramiding is a useful approach in rice breeding aimed at increasing P n. PMID:24591053
Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Lemos-Filho, José Pires de; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa
2017-10-01
Tropical woody species occurring in limestone outcrops are frequently exposed to particulate material from cement factories. The effects of 60-day cement dust exposure on physiological traits and enzymatic antioxidant system of young plant leaves of Guazuma ulmifolia Lam., Myracrodruon urundeuva Allemão and Trichilia hirta L. were investigated. Cement dust (2.5 or 5mgcm -2 ) was applied to the leaf surface or soil or both (leaf plus soil) and plants were maintained at greenhouse. Cement dust barely affected the mineral nutrient levels, except for iron whose content was decreased in leaves/leaflets of all species studied. The incident light was partly blocked in cement dust-treated leaves, regardless of the plant species, causing a decrease in the photosynthetic pigments in M. urundeuva. The chlorophyll b content, however, increased in G. ulmifolia and T. hirta leaves upon cement dust treatment. The potential quantum yield of photosystem II in challenged leaves of G. ulmifolia was 3.8% lower than that of control plants, while such trait remained unaffected in the leaves of the other species. No changes in leaf stomatal conductance and antioxidant enzymes activities were observed, except for M. urundeuva, which experienced a 31% increment in the superoxide dismutase activity upon 5mgcm -2 cement dust (leaf plus soil treatment), when compared with control plants. Overall, the mild changes caused by cement dust in the in physiological and biochemical traits of the species studied indicate that such species might be eligible for further studies of revegetation in fields impacted by cement factories. Copyright © 2017 Elsevier Inc. All rights reserved.
Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle.
Siegner, Ralf; Heuser, Stefan; Holtzmann, Ursula; Söhle, Jörn; Schepky, Andreas; Raschke, Thomas; Stäb, Franz; Wenck, Horst; Winnefeld, Marc
2010-08-05
The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases.
Compatibility and Infectivity of a Cercospora rodmanii Formulation with Enhancing Agents.
1983-06-01
575-588. 1975. "Germination of Botrytis cinerea conidia in vitro in Relation to Nutrient Conditions on Leaf Surfaces," Transactions of the British...and Botrytis cinerea conidia in vitro in Relation to Nutrient Conditions on Leaf Surfaces," Canadian Journal of Botany, Vol 29, pp 854-861. 19 19 Table...63- L’A AQUATIC PLANT CONTROL RESEARCH PROGRAM * jb~1 MISCELLANFOUS PAPER A-83-6 COMPATIBILITY AND INFECTIVITY OF A CERCOSPORA RODMAN/I FORMULATION
Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models
NASA Astrophysics Data System (ADS)
Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro
2017-04-01
Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates, ultimately affecting the amount of absorbed radiation. In addition patterns of simulated turbulent fluxes appear opposite to observations. Such systematic errors shed light on the current partial understanding of some of the mechanisms controlling the surface energy balance. In contrast forests appear reasonably well represented with respect to the interactions between LAI and turbulent fluxes across most climatological gradients, while for net radiation this is only true for warm climates. These proven strengths increase the confidence on how certain processes are simulated in LSMs. The model capacity to mimic the vegetation-biophysics interplay has been tested over the real scenario of greening that occurred in the last 30 years. We found that the modeled trends in surface heat fluxes associated with the long-term changes in leaf area could vary largely from those observed, with different discrepancies across models and climate zones. Our findings help to identify knowledge gaps and improve model representation of the sensitivity of biophysical processes to changes in leaf area density. In particular, comparing models and observations over a wide range of climate and vegetation conditions, as analyzed here, allowed capturing non-linearity of system responses that may emerge more frequently in future climate scenarios.
Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter
2015-01-01
Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122
Zhang, Chaowen; Chen, Feifan; Zhao, Ziyao; Hu, Liangliang; Liu, Hanqiang; Cheng, Zhihui; Weng, Yiqun; Chen, Peng; Li, Yuhong
2018-06-01
Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1. Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
VALKAMA, ELENA; SALMINEN, JUHA‐PEKKA; KORICHEVA, JULIA; PIHLAJA, KALEVI
2003-01-01
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non‐glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well‐developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin‐like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species. PMID:12714363
Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong
2018-03-01
Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Coca Leaf and Cocaine Addiction: Some Historical Notes
Blejer-Prieto, H.
1965-01-01
Coca-leaf habituation has affected millions of Andean natives for over 400 years. In the last half-century it has also involved millions more Malayans. Coca leaf, from which cocaine and extracts for some commercial carbonated soft drinks are obtained, remains relatively unknown by the medical and allied professions elsewhere. A review of the original medical, historical and other pertinent literature of the last 350 years illustrates the origins of the use of coca leaf, its spread, the isolation of cocaine and its first uses, as well as some of the euphoric and other effects of both substances. PMID:5318484
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
Shi, Zuomin; Haworth, Matthew; Feng, Qiuhong; Cheng, Ruimei; Centritto, Mauro
2015-01-01
Plant growth at high elevations necessitates physiological and morphological plasticity to enable photosynthesis (A) under conditions of reduced temperature, increased radiation and the lower partial pressure of atmospheric gases, in particular carbon dioxide (pCO2). Previous studies have observed a wide range of responses to elevation in plant species depending on their adaptation to temperature, elevational range and growth habit. Here, we investigated the effect of an increase in elevation from 2500 to 3500 m above sea level (a.s.l.) on three montane species with contrasting growth habits and leaf economic strategies. While all of the species showed identical increases in foliar δ13C, dark respiration and nitrogen concentration with elevation, contrasting leaf gas exchange and photosynthetic responses were observed between species with different leaf economic strategies. The deciduous shrub Salix atopantha and annual herb Rumex dentatus exhibited increased stomatal (Gs) and mesophyll (Gm) conductance and enhanced photosynthetic capacity at the higher elevation. However, evergreen Quercus spinosa displayed reduced conductance to CO2 that coincided with lower levels of photosynthetic carbon fixation at 3500 m a.s.l. The lower Gs and Gm values of evergreen species at higher elevations currently constrains their rates of A. Future rises in the atmospheric concentration of CO2 ([CO2]) will likely predominantly affect evergreen species with lower specific leaf areas (SLAs) and levels of Gm rather than deciduous species with higher SLA and Gm values. We argue that climate change may affect plant species that compose high-elevation ecosystems differently depending on phenotypic plasticity and adaptive traits affecting leaf economics, as rising [CO2] is likely to benefit evergreen species with thick sclerophyllous leaves. PMID:26433706
Campos, Diana; Alves, Artur; Lemos, Marco F L; Correia, António; Soares, Amadeu M V M; Pestana, João L T
2014-07-01
Detritus processing is vital for freshwater ecosystems that depend on the leaf litter from riparian vegetation and is mediated by microorganisms and aquatic invertebrates. Shredder invertebrates transform coarse particulate organic matter into fine particulate organic matter used as food by collector species. Direct and indirect effects of contaminants can impair detritus processing and thus affect the functioning of these ecosystems. Here, we assessed the combined effects of a toxic metal (cadmium) and resource quality (leaf species) on detritus processing and shredder-collector interactions. We considered two types of leaves, alder and eucalyptus that were microbially conditioned under different Cd concentrations in the laboratory. The microbial communities present on leaves were analyzed by Denaturing Gradient Gel Electrophoresis (DGGE), and we also measured microbial respiration rates. Sericostoma vittatum (a caddisfly shredder) and Chironomus riparius (a midge collector) were also exposed to Cd and allowed to consume the corresponding alder or eucalyptus leaves. We evaluated C. riparius growth and leaf mass loss in multispecies microcosms. Cadmium exposure affected leaf conditioning and fungal diversity on both leaf species, as assessed by DGGE. Cadmium exposure also affected the mass loss of alder leaves by reductions in detritivore feeding, and impaired C. riparius growth. Chironomus riparius consumed alder leaf discs in the absence of shredders, but S. vittatum appear to promote C. riparius growth in treatments containing eucalyptus. These results show that indirect effects of contaminants along detritus-processing chains can occur through effects on shredder-collector interactions such as facilitation but they also depend on the nutritional quality of detritus and on sensitivity and feeding plasticity of detritivore species.
Stomatal and pavement cell density linked to leaf internal CO2 concentration
Šantrůček, Jiří; Vráblová, Martina; Šimková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas
2014-01-01
Background and Aims Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Methods Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. 13C abundance (δ13C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. Key Results SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. Conclusions It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci–SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. PMID:24825295
Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo
2017-02-01
An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stomatal and pavement cell density linked to leaf internal CO2 concentration.
Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas
2014-08-01
Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland
2014-09-15
Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.
Bioinspired superhydrophobic, self-cleaning and low drag surfaces
NASA Astrophysics Data System (ADS)
Bhushan, Bharat
2013-09-01
Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.
Fan, Haosen; Wang, Hao; Guo, Jing; Zhao, Ning; Xu, Jian
2013-11-01
Star-shaped and leaf-shaped polyaniline (PANI) hierarchical structures with interlaced nanofibers on the surface were successfully prepared by chemical polymerization of aniline in the presence of lithium triflate (LT). Chemical structure and composition of the star-like PANI obtained were characterized by FTIR and UV-vis spectra. PANI 2D architectures can be tailored from star-shaped to leaf-shaped structures by change the concentration of LT. The synthesized star-like and leaf-like polyaniline show good superhydrophobicity with water contact angles of both above 150° due to the combination of the rough nanoweb structure and the low surface tension of fluorinated chain of dopant. This method is a facile and applicable strategy for a large-scale fabrication of 2D PANI micro/nanostructures. Many potential applications such as self-cleaning and antifouling coating can be expected based on the superhydrophobic PANI micro/nanostructures. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Ren, Xiaoli; Liang, Baohong; Liu, Min; Xu, Xiaoyuan; Cui, Meihua
2012-12-01
The objective of this research was to seek a cost effective solution to prepare adsorbents for nitrogen oxide from surplus sludge. Leaf litter and powder coal ash were used as cheap and easily available additives. An adsorbent for nitrogen oxide was prepared by pyrolysis of dried sludge mixed with zinc chloride. Under optimum pyrolysis conditions of 375°C for 90 min and a zinc chloride content of 30%, the surface area of the adsorbent with leaf litter was 514.41 m(2)/g, the surface area of the adsorbent with powder coal ash was 432.34 m(2)/g, respectively, corresponding to an increase of 90.70% and 60.27% when compared to the adsorbent without the additives. The saturated adsorption quantity of the adsorbent with leaf litter reached 271 mg/g at 20°C. The results indicated that the sludge-derived adsorbent was quite promising for nitrogen oxide removal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Park, Sung-Hee; Choi, In-Young; Seo, Kyoung-Won; Kim, Jin-Ho; Galea, Victor; Shin, Hyeon-Dong
2017-03-01
Leaf spot disease on black chokeberry ( Aronia melanocarpa ) was observed at several locations in Korea during 2014-2015. Leaf spots were distinct, scattered over the leaf surface and along the leaf border, subcircular to irregular and brown surrounded by a distinct dark color, and were expanded and coalesced into irregularly shaped lesions. Severely infected leaves became dry and fell off eventually. The causative agent was identified as Pseudocercospora pyricola . Morphological observations and phylogenetic analyses of multiple genes, including internal transcribed spacer, translation elongation factor 1-alpha, actin, and the large subunit ribosomal DNA were conducted. The pathogenicity test was conducted twice yielding similar results, fulfilling Koch's postulates. To our knowledge, this is the first report on P. pyricola infection of A. melanocarpa globally.
Fournier, Valerie; Rosenheim, Jay A; Brodeur, Jacques; Johnson, Marshall W
2004-10-01
An important element in developing a management strategy for a new pest is the study of its seasonal dynamics and within-plant distribution. Here, we studied the mite Calacarus flagelliseta Fletchmann, De Moraes & Barbosa on papaya, Papaya carica L. (Caricaceae), in Hawaii to quantify 1) patterns of seasonal abundance, 2) its distribution across different vertical strata of the papaya canopy, and 3) shifts in its use of the upper versus the lower surfaces of papaya leaves. Nondestructive sampling conducted in two papaya plantings revealed that 1) populations of C. flagelliseta peak during the summer; 2) mites are most abundant in the middle and lower strata of the plant canopy, and least abundant on the youngest leaves found in the upper canopy; and 3) mites are found more predominantly on the upper leaf surfaces when overall population density peaks, suggesting that individuals move from the lower to the upper leaf surfaces when food resources on the lower leaf surface have been exploited by conspecifics. These results have significant implications for the development of sampling plans for C. flagelliseta in papaya.
Zhang, Jianwei; Schaub, Marcus; Ferdinand, Jonathan A; Skelly, John M; Steiner, Kim C; Savage, James E
2010-08-01
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g(wv)), foliar injury, and leaf nitrogen concentration (N(L)) to tropospheric ozone (O(3)) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g(wv), foliar injury, and N(L) (P < 0.05) among O(3) treatments. Seedlings in AA showed the highest A and g(wv) due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g(wv), N(L), and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g(wv), and foliar injury to O(3). Both VPD and N(L) had a strong influence on leaf gas exchange. Foliar O(3)-induced injury appeared when cumulative O(3) uptake reached 8-12 mmol m(-2), depending on soil water availability. The mechanistic assessment of O(3)-induced injury is a valuable approach for a biologically relevant O(3) risk assessment for forest trees. Published by Elsevier Ltd.
Bacterial Leaf Spot of Lettuce: Request for Samples
USDA-ARS?s Scientific Manuscript database
Bacterial leaf spot of lettuce caused by by Xanthomonas campestris pv. vitians has been affecting coastal California crops for many years and has become a chronic problem. Differences in pathogen genotypes have been demonstrated and correlated to disease responses on resistant and susceptible cultiv...
Ken W. Krauss; Robert R. Twilley; Thomas w. Doyle; Emile S. Gardiner
2006-01-01
We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included...
Multi-modal sensor system for plant water stress assessment
USDA-ARS?s Scientific Manuscript database
Plant stress critically affects plant growth and causes significant loss of productivity and quality. When the plant is under water stress, it impedes photosynthesis and transpiration, resulting in changes in leaf color and temperature. Leaf discoloration in photosynthesis can be assessed by measu...
A molecular insight into papaya leaf curl-a severe viral disease.
Varun, Priyanka; Ranade, S A; Saxena, Sangeeta
2017-11-01
Papaya leaf curl disease (PaLCuD) caused by papaya leaf curl virus (PaLCuV) not only affects yield but also plant growth and fruit size and quality of papaya and is one of the most damaging and economically important disease. Management of PaLCuV is a challenging task due to diversity of viral strains, the alternate hosts, and the genomic complexities of the viruses. Several management strategies currently used by plant virologists to broadly control or eliminate the viruses have been discussed. In the absence of such strategies in the case of PaLCuV at present, the few available options to control the disease include methods like removal of affected plants from the field, insecticide treatments against the insect vector (Bemisia tabaci), and gene-specific control through transgenic constructs. This review presents the current understanding of papaya leaf curl disease, genomic components including satellite DNA associated with the virus, wide host and vector range, and management of the disease and suggests possible generic resistance strategies.
Moura, Bárbara B; Alves, Edenise S
2014-11-01
Phenotypic plasticity of the leaves can interfere with the plant sensitivity to ozone (O3) toxic effect. This study aimed to assess whether the leaf structure of Ipomoea nil changes due to climatic variations and whether these changes affect the species' sensitivity. Field exposures, in different seasons (winter and spring) were made. The leaves that developed during the winter were thinner, with a lower proportion of photosynthetic tissues, higher proportion of intercellular spaces and lower density and stomatal index compared to those developed during the spring. The temperature and relative humidity positively influenced the leaf thickness and stomatal index. The visible injuries during winter were positively correlated with the palisade parenchyma thickness and negatively correlated with the percentage of spongy parenchyma; during the spring, the symptoms were positively correlated with the stomatal density. In conclusion, the leaf structure of I. nil varied among the seasons, interfering in its sensitivity to O3. Copyright © 2014 Elsevier Ltd. All rights reserved.
Victório, Cristiane Pimentel; Moreira, Claudio B; Souza, Marcelo da Costa; Sato, Alice; Arruda, Rosani do Carmo de Oliveira
2011-07-01
In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.
Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-07-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.
Leaf structural traits of tropical woody species resistant to cement dust.
Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa
2016-08-01
Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.
Diversity of Riparian Plants among and within Species Shapes River Communities
Jackrel, Sara L.; Wootton, J. Timothy
2015-01-01
Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to alder, local intraspecific differences via decomposition, algal or invertebrate metrics were not observed consistently among maples. These results emphasize that biodiversity of riparian subsidies at the within and across species scale have the potential to affect aquatic ecosystems, although there are complex species-specific effects. PMID:26539714
Diversity of Riparian Plants among and within Species Shapes River Communities.
Jackrel, Sara L; Wootton, J Timothy
2015-01-01
Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to alder, local intraspecific differences via decomposition, algal or invertebrate metrics were not observed consistently among maples. These results emphasize that biodiversity of riparian subsidies at the within and across species scale have the potential to affect aquatic ecosystems, although there are complex species-specific effects.
On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.
2011-12-01
The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.
Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong
2015-01-01
Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704
Greenwood, J.L.; Rosemond, A.D.; Wallace, J.B.; Cross, W.F.; Weyers, H.S.
2007-01-01
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3?? faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3?? higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3?? with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6?? for red maple and up to 44?? for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. ?? 2006 Springer-Verlag.
Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.
2006-01-01
We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..
Influence of long-term low levels of ozone on the leaf surface mycoflora of pinto bean plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, W.J.; Papia, P.M.
Pinto bean plants (Phaseols vulgaris strain 111) were grown for 4, 7, 14, 21, or 28 days in greenhouses containing ambient air charcoal-filtered air or ozone at 6 pphm for 8 hr/day. Ozone was produced with a Welbach generator and monitored with Mast meters. The upper and lower surfaces of the first set of simple true leaves were used to make leaf prints on acidified potato-dextrose agar plates (PDA) at each sampling period. Discs cut from these leaves were washed 10 times in sterile water and plated on PDA. Results with leaf prints showed that species of 25 genera ofmore » fungi were present in recognizable successions on all leaves. The number of fungi per cm/sup 2/ leaf tissue increased with leaf age for all leaves, with the greatest number occurring on 28-day-old leaves with accumulated ozone flecks. Differences between leaves by sources was more quantitative than qualitative, with the exception of Aspergillus niger, which was common only on the leaves of plants grown in ambient air. Botrytis cincrea was commonly found on plates printed with leaves that had ozone fleck. Isolates of Candida, Cryptococcus, and Penicillium were the most abundant fungi on all leaves. Similar results were obtained with plated washed leaf discs except that the number of fungi genera present was reduced from 25 to 11.« less
Leaf-out phenology of temperate woody plants: from trees to ecosystems.
Polgar, Caroline A; Primack, Richard B
2011-09-01
Leafing-out of woody plants begins the growing season in temperate forests and is one of the most important drivers of ecosystem processes. There is substantial variation in the timing of leaf-out, both within and among species, but the leaf development of almost all temperate tree and shrub species is highly sensitive to temperature. As a result, leaf-out times of temperate forests are valuable for observing the effects of climate change. Analysis of phenology data from around the world indicates that leaf-out is generally earlier in warmer years than in cooler years and that the onset of leaf-out has advanced in many locations. Changes in the timing of leaf-out will affect carbon sequestration, plant-animal interactions, and other essential ecosystem processes. The development of remote sensing methods has expanded the scope of leaf-out monitoring from the level of an individual plant or forest to an entire region. Meanwhile, historical data have informed modeling and experimental studies addressing questions about leaf-out timing. For most species, onset of leaf-out will continue to advance, although advancement may be slowed for some species because of unmet chilling requirements. More information is needed to reduce the uncertainty in predicting the timing of future spring onset. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke
2017-01-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173
Phloem unloading in developing leaves of sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalstig, J.G.
1985-01-01
Physiological and transport data support a symplastic pathway for phloem unloading in developing leaves of sugar beet (Beta vulgaris L. Klein E, multigerm). The sulfhydryl inhibitor parachloromercuribenzene sulfonic acid (PCMBS) inhibited uptake of (/sup 14/C)-sucrose added to the free space of developing leaves, but did not affect import of (/sup 14/C)-sucrose during steady-state /sup 14/CO/sub 2/ labeling of a source leaf. The passively-transported xenobiotic sugar, (/sup 14/C)-L-glucose did not readily enter mesophyll cells when supplied through the cut end of the petiole of a sink leaf as determined by whole leaf autoradiography. In contrast, (/sup 14/C)-L-glucose translocated through the phloemmore » from a mature leaf, rapidly entered mesophyll cells, and was evenly distributed between mesophyll and veins. Autoradiographs of developing leaves following a pulse of /sup 14/CO/sub 2/ to a source leaf revealed rapid passage of phloem translocated into progressively higher order veins as the leaf developed. Entry into V order veins occurred during the last stage of import through the phloem. Import into developing leaves was inhibited by glyphosate (N-phosphomethylglycine), a herbicide which inhibits the aromatic amino acid pathway and hence protein synthesis. Glyphosate also stopped net starch accumulation in sprayed mature leaves, but did not affect export of carbon from treated leaves during the time period that import into developed leaves was inhibited.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.
2011-12-15
Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less
Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando
2007-01-01
Background Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. Methods The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. Key Results For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. Conclusions These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs. PMID:17586597
Environmental Factors that Influence Physiological Functioning of Eight Bottomland Hardwood Species
NASA Astrophysics Data System (ADS)
Kassahun, Z.; Renninger, H. J.
2017-12-01
With increases in extreme precipitation, flooding, and prolonged drought events in the southeastern United States, bottomland hardwood forests are expected to experience a drastic shift in their productivity and composition. As environmental conditions shift, certain tree species may experience an increase in productivity or could be more negatively affected over more resilient species, leading to a shift in species composition, water use, and carbon uptake. The goals of this research were to use sap flow measurements, leaf phenology, and photosynthetic rates to study species-specific responses to environmental drivers. Sap flow of eight co-occurring hardwood species as well as soil moisture and vapor pressure deficit were measured continuously over the course of a calendar year that included drought conditions and extended saturated soil conditions. We found that cherrybark oak used the most water during the growing season, about 20% more water than the next highest consumer, swamp chestnut oak. Given low, ample or saturated soil moisture conditions, we found that sap flow of winged elm, American elm, cherrybark oak, and shagbark hickory exhibited varying relationships with vapor pressure deficit under the different soil moisture conditions. While the relationship between sap flow and vapor pressure deficit did not differ depending on soil moisture in willow oak, swamp chestnut oak, and green ash. This suggests that winged elm, American elm, cherrybark oak, and shagbark hickory may be more negatively affected by drought conditions while willow oak, swamp chestnut oak, and green ash are more drought tolerant. Regarding leaf phenology, willow oak, cherrybark oak, and shagbark hickory were the first to experience leaf abscission at the end of the growing season when extended drought conditions occurred. In terms of leaf gas exchange, green ash exhibited the highest photosynthesis and transpiration rates, resulting in the lowest water-use efficiency compared with other study species. Taken together, these responses can be used to estimate forest water budgets given stand species composition or to predict individual species resilience or adaptation to a changing climate, which can improve land surface models and identify species in this forest type that will be most successful under future climate conditions.
Sesbania bispinosa, a new host of a begomovirus-betasatellite complex in Pakistan
USDA-ARS?s Scientific Manuscript database
Severe leaf curling, yellowing and vein thickening symptoms, typical of begomoviruses infection, were observed on Sesbania bispinosa grown in cotton leaf curl disease affected cotton field in Pakistan. A begomovirus and its associated betasatellite were amplified and sequenced from these plants. Com...
Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior
USDA-ARS?s Scientific Manuscript database
: It is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate specifically the plant’s metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no informati...
The Liguleless narrow mutation affects proximal distal signaling and leaf growth
USDA-ARS?s Scientific Manuscript database
How cells acquire competence to differentiate according to position is an essential question in developmental biology. Maize leaves provide a unique opportunity to study positional information. In the developing leaf primordium, a line is drawn across a field of seemingly identical cells. Above the ...
Comparison of the dye method with the thermocouple psychrometer for measuring leaf water potentials.
Knipling, E B; Kramer, P J
1967-10-01
The dye method for measuring water potential was examined and compared with the thermocouple psychrometer method in order to evaluate its usefulness for measuring leaf water potentials of forest trees and common laboratory plants. Psychrometer measurements are assumed to represent the true leaf water potentials. Because of the contamination of test solutions by cell sap and leaf surface residues, dye method values of most species varied about 1 to 5 bars from psychrometer values over the leaf water potential range of 0 to -30 bars. The dye method is useful for measuring changes and relative values in leaf potential. Because of species differences in the relationships of dye method values to true leaf water potentials, dye method values should be interpreted with caution when comparing different species or the same species growing in widely different environments. Despite its limitations the dye method has a usefulness to many workers because it is simple, requires no elaborate equipment, and can be used in both the laboratory and field.
The effect of leaf size on the microwave backscattering by corn
NASA Technical Reports Server (NTRS)
Paris, J. F.
1986-01-01
Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.
Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C
2017-10-01
Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja
2017-02-01
UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL -1 sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Otterman, J.; Brakke, T.
1986-01-01
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.
PHANTASTICA regulates leaf polarity and petiole identity in Medicago truncatula
Ge, Liangfa; Chen, Rujin
2014-01-01
Establishment of proper polarities along the adaxial-abaxial, proximodistal, and medial-lateral axes is a critical step for the expansion of leaves from leaf primordia. It has been shown that the MYB domain protein, ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (collectively named ARP) plays an important role in this process. Loss of function of ARP leads to severe leaf polarity defects, such as abaxialized or needle-like leaves. In addition to its role in leaf polarity establishment, we have recently shown that the Medicago truncatula ARP gene, MtPHAN, also plays a role in leaf petiole identity regulation. We show that a mutation of MtPHAN results in petioles acquiring characteristics of the motor organ, pulvinus, including small epidermal cells with extensive cell surface modifications and altered vascular tissue development. Taken together, our results reveal a previously unidentified function of ARP in leaf development. PMID:24603499
Sai, Liman; Liu, Siqi; Qian, Xuexue; Yu, Yahui; Xu, Xiaofeng
2018-05-21
In this study, water-soluble fluorescent carbon nanodots (CNDs) were directly injected into the leaf of nicotiana tabacum. With the help of UV-to-blue light conversion nanomaterial, the photosynthetic rate of the leaf was improved 18% upon additional 6 W UV irradiation. The photostability and toxicity of different kinds of CNDs were discussed. The results showed that CNDs functionalized with NH 2 -groups on their surfaces could maintain good fluorescence in plant leaf, and CNDs with complex surface groups tended to have high toxicity to the plant. The NH 2 -functionalized CNDs with non-toxicity and good photostability were used as in vivo light conversion material for direct utilization of UV light in the solar energy. Copyright © 2018 Elsevier B.V. All rights reserved.
Feng, Hui; Skinkis, Patricia A; Qian, Michael C
2017-01-01
The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of curvature on the backscattering from a leaf
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Measurement of surface physical properties and radiation balance for KUREX-91 study
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.
1992-01-01
Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.
Leaf Shape Responds to Temperature but Not CO2 in Acer rubrum
Royer, Dana L.
2012-01-01
The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO2 concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO2 has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO2 conditions. The CO2 treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate. PMID:23152921
Fichtner, E J; Lynch, S C; Rizzo, D M
2009-05-01
Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter-soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.
Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S
2016-01-01
Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (V cmax ), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in land surface models. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Smith, Nicholas G.; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S.
2016-01-01
Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (Vcmax), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in land surface models. PMID:27658816
Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth
NASA Astrophysics Data System (ADS)
Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.
2017-12-01
Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions (see figure 1). Therefore, variations in both phenology and leaf water potential must be accounted for to accurately interpret the dynamics of VOD observations for ecological applications.
Kumar, Pankaj; Srivastava, D K
2015-04-01
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.
Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri.
Ospina-Bautista, F; Estévez Varón, J V
2016-05-03
Leaves intercepted by bromeliads become an important energy and matter resource for invertebrate communities, bacteria, fungi, and the plant itself. The relationship between bromeliad structure, defined as its size and complexity, and accumulated leaf litter was studied in 55 bromeliads of Tillandsia turneri through multiple regression and the Akaike information criterion. Leaf litter accumulation in bromeliads was best explained by size and complexity variables such as plant cover, sheath length, and leaf number. In conclusion, plant structure determines the amount of litter that enters bromeliads, and changes in its structure could affect important processes within ecosystem functioning or species richness.
Buitrago, Sindy; Vanegast, Leidy; Ramos, Carolina
2015-09-01
Espeletia paipana is an endangered giant caulescent rosette endemic to (Asteraceae), Boyacdi-Colombia. Espelelia paipana is an endangered giant caulescent rosette endemic to Boyacá department. In order to establish whether a plant disease, characterized by the loss of leaf pubescence (PPF) and attributed to the pathogenic action of endophytic microorganisms, is the cause of the increasing mortality of population, the physiological performance of the species was evaluated with and without PPF. The incidence (% leaves affected in each of the 27 individuals in the current population) and severity (% leaf area affected on 135 leaves) of the PPF were monitored over a period of nine months, in three topographic zones of different heights. During four consecutive days in both dry and wet season, physiological parameters as chlorophyll content index (ICC), stomatal conductance (Gs) and leaf temperature (Tfol) were measured in healthy and affected leaves. The study was complemented with isolations and pathogenicity tests to identify the causal agent of the PPF. Overall, although the disease incidence in E. paipana was constant over time, the severity progressed surpassing 60 % of the leaf area. The increasing of severity in the upper side of leaves was attributed to the photo-oxidative effect of high radiation between 11:00 h and 14:00 h of the day. The reduction of functional leaf area because of the PPF, led to low Gs with serious implications for carbon fixation and thus limiting growth and biomass renewal. The effect of season in Tfol varied according to the topographic zone, while the ICC did not present a defined pattern with respect to the PPF; its low values could be associated with the production of other pigments. Finally, although it is not possible to ensure that Botrytis sp. is the causative of the loss of leaf pubescence, it is postulated as the most probably causal agent due to its high representativeness in the isolates and its infectious potential during the pathogenicity tests. In general, the reduction of healthy leaf biomass and decrease of physiological performance suggest that PPF affect negatively the survival of E. paipana, which means that the use of biological controllers could be a strategy to mitigate its effect on the population.
Effect of water availability on tolerance of leaf damage in tall morning glory, Ipomoea purpurea
NASA Astrophysics Data System (ADS)
Atala, Cristian; Gianoli, Ernesto
2009-03-01
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.
Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander
2013-10-01
In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.
Pérez, D; Galindo, L
2000-12-01
The year 1996 had a high pluviosity in Morrocoy National Park (western coastal zone, Venezuela) and low salinity in December 1996 affected the seagrass beds, dominated by Thalassia testudinum. Patches without T. testudinum were observed in localities of the park that used to have very dense populations of this plant. Sampling was done at Las Luisas to determine leaf productivity, turnover rate, short shoot density and relative biomass of plant sections, in order to compare with data obtained in September 1996, previous to the event. Green leaves, roots and rhizomes were the most affected parts. Mean green leaf biomass decreased in January and February 1997 to 5% of the plant's total biomass; mean root biomass decreased in March to 40% and mean rhi zome biomass decreased in February to 30%. The density of the active short shoots decreased to a minimum in February, but in April it reached a value similar to that of September 1996. The density of the inactive short shoots decreased to a minimum in March, and they dissappeared in April, matching the increasing density of the active short shoots between these two months. In February 1997, 56% of the inactive short shoots showed evidence of leaf initiation. In January 1997 the leaf productivity and turnover rate values (2.72 +/- 0.35 g/m2/d and 2.15% leaf DW/d) were similar to the annual mean previously determined from Las Luisas (2.35 +/- 0.72 g/m2/d and 1.96% leaf DW/d). Nevertheless, the values of productivity and turnover rate detected at Las Luisas in April 1997 (4.88 +/- 2.14 g/m2/d and 4.66% leaf DW/d) were higher than those values previously reported for this location. In response to the mortality episode, the leaf productivity and turnover rate of T. testudinum increased and the leaf initiation was activated in the inactive short shoots.
Interaction of Water Supply and N in Wheat 1
Morgan, Jack A.
1984-01-01
The purpose of this study was to investigate effects of N nutrition and water stress on stomatal behavior and CO2 exchange rate in wheat (Triticum aestivum L. cv Olaf). Wheat plants were grown hydroponically with high (100 milligrams per liter) and low (10 milligrams per liter) N. When plants were 38 days old, a 24-day water stress cycle was begun. A gradual increase in nutrient solution osmotic pressure from 0.03 to 1.95 mega Pascals was achieved by incremental additions of PEG-6,000. Plants in both N treatments adjusted osmotically, although leaf water potential was consistently lower and relative water content greater for low N plants in the first half of the stress cycle. Leaf conductance of high N plants appeared greater than that of low N plants at high water potentials, but showed greater sensitivity to reductions in water potential as indicated by earlier stomatal closure during the stress cycle. The apparent greater stomatal sensitivity of high N plants was associated with a curvilinear relationship between leaf conductance and leaf water potential; low N plants exhibited more of a threshold response. Trends in [CO2]INT throughout the stress cycle indicated nonstomatal effects of water stress on CO2 exchange rate were greater in high N plants. Although estimates of [CO2]INT were generally lower in high N plants, they were relatively insensitive to leaf water potential-induced changes in leaf conductance. In contrast, [CO2]INT of low N plants dropped concomitantly with leaf conductance at low leaf water potentials. Oxygen response of CO2 exchange rate for both treatments was affected less by reductions in water potential than was CO2 exchange rate at 2.5% O2, suggesting that CO2 assimilation capacity of the leaves was affected more by reductions in leaf water potential than were processes related to photorespiration. PMID:16663780
Park, Sung-Hee; Choi, In-Young; Seo, Kyoung-Won; Kim, Jin-Ho; Galea, Victor
2017-01-01
Leaf spot disease on black chokeberry (Aronia melanocarpa) was observed at several locations in Korea during 2014–2015. Leaf spots were distinct, scattered over the leaf surface and along the leaf border, subcircular to irregular and brown surrounded by a distinct dark color, and were expanded and coalesced into irregularly shaped lesions. Severely infected leaves became dry and fell off eventually. The causative agent was identified as Pseudocercospora pyricola. Morphological observations and phylogenetic analyses of multiple genes, including internal transcribed spacer, translation elongation factor 1-alpha, actin, and the large subunit ribosomal DNA were conducted. The pathogenicity test was conducted twice yielding similar results, fulfilling Koch's postulates. To our knowledge, this is the first report on P. pyricola infection of A. melanocarpa globally. PMID:28435353
A hotspot model for leaf canopies
NASA Technical Reports Server (NTRS)
Jupp, David L. B.; Strahler, Alan H.
1991-01-01
The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.
Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...
Satellites reveal contrasting responses of regional climate to the widespread greening of Earth.
Forzieri, Giovanni; Alkama, Ramdane; Miralles, Diego G; Cescatti, Alessandro
2017-06-16
Changes in vegetation cover associated with the observed greening may affect several biophysical processes, whose net effects on climate are unclear. We analyzed remotely sensed dynamics in leaf area index (LAI) and energy fluxes in order to explore the associated variation in local climate. We show that the increasing trend in LAI contributed to the warming of boreal zones through a reduction of surface albedo and to an evaporation-driven cooling in arid regions. The interplay between LAI and surface biophysics is amplified up to five times under extreme warm-dry and cold-wet years. Altogether, these signals reveal that the recent dynamics in global vegetation have had relevant biophysical impacts on the local climates and should be considered in the design of local mitigation and adaptation plans. Copyright © 2017, American Association for the Advancement of Science.
Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
Lee, Jongho; Fearing, Ronald S
2012-10-30
Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.
Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang
2016-01-01
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991
Impervious surfaces mapping using high resolution satellite imagery
NASA Astrophysics Data System (ADS)
Shirmeen, Tahmina
In recent years, impervious surfaces have emerged not only as an indicator of the degree of urbanization, but also as an indicator of environmental quality. As impervious surface area increases, storm water runoff increases in velocity, quantity, temperature and pollution load. Any of these attributes can contribute to the degradation of natural hydrology and water quality. Various image processing techniques have been used to identify the impervious surfaces, however, most of the existing impervious surface mapping tools used moderate resolution imagery. In this project, the potential of standard image processing techniques to generate impervious surface data for change detection analysis using high-resolution satellite imagery was evaluated. The city of Oxford, MS was selected as the study site for this project. Standard image processing techniques, including Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA), a combination of NDVI and PCA, and image classification algorithms, were used to generate impervious surfaces from multispectral IKONOS and QuickBird imagery acquired in both leaf-on and leaf-off conditions. Accuracy assessments were performed, using truth data generated by manual classification, with Kappa statistics and Zonal statistics to select the most appropriate image processing techniques for impervious surface mapping. The performance of selected image processing techniques was enhanced by incorporating Soil Brightness Index (SBI) and Greenness Index (GI) derived from Tasseled Cap Transformed (TCT) IKONOS and QuickBird imagery. A time series of impervious surfaces for the time frame between 2001 and 2007 was made using the refined image processing techniques to analyze the changes in IS in Oxford. It was found that NDVI and the combined NDVI--PCA methods are the most suitable image processing techniques for mapping impervious surfaces in leaf-off and leaf-on conditions respectively, using high resolution multispectral imagery. It was also found that IS data generated by these techniques can be refined by removing the conflicting dry soil patches using SBI and GI obtained from TCT of the same imagery used for IS data generation. The change detection analysis of the IS time series shows that Oxford experienced the major changes in IS from the year 2001 to 2004 and 2006 to 2007.
Chloroplast Response to Low Leaf Water Potentials
Boyer, J. S.; Potter, J. R.
1973-01-01
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves. PMID:16658486
Chloroplast response to low leaf water potentials: I. Role of turgor.
Boyer, J S; Potter, J R
1973-06-01
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of -10 bars. Since most of the loss in photochemical activity occurred at water potentials below -10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.
Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny.
Pantin, Florent; Simonneau, Thierry; Muller, Bertrand
2012-10-01
Leaf growth is the central process facilitating energy capture and plant performance. This is also one of the most sensitive processes to a wide range of abiotic stresses. Because hydraulics and metabolics are two major determinants of expansive growth (volumetric increase) and structural growth (dry matter increase), we review the interaction nodes between water and carbon. We detail the crosstalks between water and carbon transports, including the dual role of stomata and aquaporins in regulating water and carbon fluxes, the coupling between phloem and xylem, the interactions between leaf water relations and photosynthetic capacity, the links between Lockhart's hydromechanical model and carbon metabolism, and the central regulatory role of abscisic acid. Then, we argue that during leaf ontogeny, these interactions change dramatically because of uncoupled modifications between several anatomical and physiological features of the leaf. We conclude that the control of leaf growth switches from a metabolic to a hydromechanical limitation during the course of leaf ontogeny. Finally, we illustrate how taking leaf ontogeny into account provides insights into the mechanisms underlying leaf growth responses to abiotic stresses that affect water and carbon relations, such as elevated CO2, low light, high temperature and drought. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.
Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle
2010-01-01
Background The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. Methods For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. Results Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. Conclusions Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases. PMID:20687953
Xu, Linyun; Zhu, Heping; Ozkan, H Erdal; Bagley, William E; Krause, Charles R
2011-07-01
Adjuvants can improve pesticide application efficiency and effectiveness. However, quantifications of the adjuvant-amended pesticide droplet actions on foliage, which could affect application efficiencies, are largely unknown. Droplet evaporation rates and spread on waxy or hairy leaves varied greatly with the adjuvant types tested. On waxy leaves, the wetted areas of droplets containing crop oil concentrate (COC) were significantly smaller than those containing modified seed oil (MSO), non-ionic surfactant (NIS) or oil surfactant blend (OSB), whereas the evaporation rates of COC-amended droplets were significantly higher. On hairy leaves, COC-amended droplets remained on top of the hairs without wetting the epidermis. When the relative concentration was 1.50, the wetted area of droplets with NIS was 9.2 times lower than that with MSO and 6.1 times lower than that with OSB. The wetted area increased as the adjuvant concentration increased. MSO- or OSB-amended droplets spread extensively on the hairy leaf surface until they were completely dried. These results demonstrated that the proper concentration of MSO, NIS or OSB in spray mixtures improved the homogeneity of spray coverage on both waxy and hairy leaf surfaces and could reduce pesticide use. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.
The contribution of spray formulation component variables to foliar uptake of agrichemicals.
Forster, W Alison; Kimberley, Mark O
2015-09-01
The objective of the present study was to determine the contribution of the active ingredient (AI) and surfactant, and their concentrations, to the foliar uptake of agrichemicals, and to examine the physical properties that would need to be included in a model for foliar uptake. All spray formulation component variables significantly affected uptake, explaining 73% of the deviance. The deviance explained by each factor ranged from 43% (AI concentration nested within AI) to 5.6% (surfactant). The only significant interaction was between AI and surfactant, explaining 15.8% of the deviance. Overall, 90% of the deviance could be explained by the variables and their first-order interactions. Uptake increased with increasing lipophilicity of the AI at concentrations below those causing precipitation on the leaf surface. AI concentration had a far greater (negative) effect on the uptake of the lipophilic molecule epoxiconazole. The uptake of 2-deoxy-D-glucose (DOG) and 2,4-dichlorophenoxyacetic acid (2,4-D) increased with increasing hydrophile-lipophile balance (HLB) of the surfactant, the effect of HLB being far greater on the hydrophilic molecule DOG. However, the differences observed in epoxiconazole uptake owing to the surfactant were strongly positively related to the spread area of the formulation on the leaf surface. For all AIs, uptake increased in a similar manner with increasing molar surfactant concentration. © 2014 Society of Chemical Industry.
Martirosyan, Varsik; Unc, Adrian; Miller, Gad; Doniger, Tirza; Wachtel, Chaim; Steinberger, Yosef
2016-10-01
Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.
Liu, Zeyu; Su, Zhetong; Yang, Ming; Zou, Wenquan
2010-10-01
To screen the factors that affect indirubin-generated significantly in the process of preparing indigo naturalis, optimize level combination and determine the optimum technology for indirubin-generated. Using concentration of indirubin (mg x g(-1)) that generated by fresh leaf as an index, Plackett-Burman design, Box-Behnken design response surface analysis as the statistical method, we screened the significantly influencing factors and the optimal level combination. The soaking and making indirubin process in preparing indigo naturalis was identified as the wax is not removed before immersion with immersion pH 7, solvent volume-leaf weight (mL: g)15, soaked not avoided light, soaking 48 h, temperature 60 degrees C, ventilation time of 180 min, and added ammonia water to adjust pH to 10.5. The soaking and making indirubin process in preparing indigo naturalis is optimized systematically. It clarify the various factors on the impact of the active ingredient indirubin which controlled by industrialized production become reality in the process of preparing indigo naturalis, at the same time, it lay the foundation for processing principle of indigo naturalis.
Pedro, Alessandra C; Moreira, Fernanda; Granato, Daniel; Rosso, Neiva D
2016-05-13
In the current study, response surface methodology (RSM) was used to assess the effects of extraction time and temperature on the content of bioactive compounds and antioxidant activity of purple basil leaf (Ocimum basilicum L.) extracts. The stability of anthocyanins in relation to temperature, light and copigmentation was also studied. The highest anthocyanin content was 67.40 mg/100 g extracted at 30 °C and 60 min. The degradation of anthocyanins with varying temperatures and in the presence of light followed a first-order kinetics and the activation energy was 44.95 kJ/mol. All the extracts exposed to light showed similar half-lives. The extracts protected from light, in the presence of copigments, showed an increase in half-life from 152.67 h for the control to 856.49 and 923.17 h for extract in the presence of gallic acid and phytic acid, respectively. These results clearly indicate that purple basil is a potential source of stable bioactive compounds.
NASA Astrophysics Data System (ADS)
Ding, J.; Johnson, E. A.; Martin, Y. E.
2017-12-01
Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water potential with respect to net leaf carbon gain. With same leaf area, total xylem resistance of narrow leaf is higher than broad leaf. Given same stoma resistance and petiole water potential, narrow leaf will lose more xylem water potential than broad leaf. Consequently, narrow leaf has smaller size and higher stoma resistance at optimum.
Salt excretion in Suaeda fruticosa.
Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C
2010-09-01
Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.
Xiong, Fusheng S.; Day, Thomas A.
2001-01-01
We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O2 evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations. PMID:11161031
Xiong, F S; Day, T A
2001-02-01
We assessed the influence of springtime solar UV-B radiation that was naturally enhanced during several days due to ozone depletion on biomass production and photosynthesis of vascular plants along the Antarctic Peninsula. Naturally growing plants of Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. were potted and grown under filters that absorbed or transmitted most solar UV-B. Plants exposed to solar UV-B from mid-October to early January produced 11% to 22% less total, as well as above ground biomass, and 24% to 31% less total leaf area. These growth reductions did not appear to be associated with reductions in photosynthesis per se: Although rates of photosynthetic O(2) evolution were reduced on a chlorophyll and a dry-mass basis, on a leaf area basis they were not affected by UV-B exposure. Leaves on plants exposed to UV-B were denser, probably thicker, and had higher concentrations of photosynthetic and UV-B absorbing pigments. We suspect that the development of thicker leaves containing more photosynthetic and screening pigments allowed these plants to maintain their photosynthetic rates per unit leaf area. Exposure to UV-B led to reductions in quantum yield of photosystem II, based on fluorescence measurements of adaxial leaf surfaces, and we suspect that UV-B impaired photosynthesis in the upper mesophyll of leaves. Because the ratio of variable to maximal fluorescence, as well as the initial slope of the photosynthetic light response, were unaffected by UV-B exposure, we suggest that impairments in photosynthesis in the upper mesophyll were associated with light-independent enzymatic, rather than photosystem II, limitations.
Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.).
Tang, Xinxin; Gong, Rong; Sun, Wenqiang; Zhang, Chaopu; Yu, Sibin
2018-04-01
Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
Liu, Yang; Qian, Chenyun; Ding, Sihui; Shang, Xulan; Yang, Wanxia; Fang, Shengzuo
2016-12-01
As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.
Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie
2014-01-01
Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844
Teakle, Natasha Lea; Colmer, Timothy David; Pedersen, Ole
2014-10-01
A combination of flooding and salinity is detrimental to most plants. We studied tolerance of complete submergence in saline water for Melilotus siculus, an annual legume with superhydrophobic leaf surfaces that retain gas films when under water. M. siculus survived complete submergence of 1 week at low salinity (up to 50 mol m(-3) NaCl), but did not recover following de-submergence from 100 mol m(-3) NaCl. The leaf gas films protected against direct salt ingress into the leaves when submerged in saline water, enabling underwater photosynthesis even after 3 d of complete submergence. By contrast, leaves with the gas films experimentally removed suffered from substantial Na(+) and Cl(-) intrusion and lost the capacity for underwater photosynthesis. Similarly, plants in saline water and without gas films lost more K(+) than those with intact gas films. This study has demonstrated that leaf gas films reduce Na(+) and Cl(-) ingress into leaves when submerged by saline water - the thin gas layer physically separates the floodwater from the leaf surface. This feature aids survival of plants exposed to short-term saline submergence, as well as the previously recognized beneficial effects of gas exchange under water. © 2014 John Wiley & Sons Ltd.
Primack, Richard B; Laube, Julia; Gallinat, Amanda S; Menzel, Annette
2015-11-01
Climate change is advancing the leaf-out times of many plant species and mostly extending the growing season in temperate ecosystems. Laboratory experiments using twig cuttings from woody plant species present an affordable, easily replicated approach to investigate the relative importance of factors such as winter chilling, photoperiod, spring warming and frost tolerance on the leafing-out times of plant communities. This Viewpoint article demonstrates how the results of these experiments deepen our understanding beyond what is possible via analyses of remote sensing and field observation data, and can be used to improve climate change forecasts of shifts in phenology, ecosystem processes and ecological interactions. The twig method involves cutting dormant twigs from trees, shrubs and vines on a single date or at intervals over the course of the winter and early spring, placing them in containers of water in controlled environments, and regularly recording leaf-out, flowering or other phenomena. Prior to or following leaf-out or flowering, twigs may be assigned to treatment groups for experiments involving temperature, photoperiod, frost, humidity and more. Recent studies using these methods have shown that winter chilling requirements and spring warming strongly affect leaf-out and flowering times of temperate trees and shrubs, whereas photoperiod requirements are less important than previously thought for most species. Invasive plant species have weaker winter chilling requirements than native species in temperate ecosystems, and species that leaf-out early in the season have greater frost tolerance than later leafing species. This methodology could be extended to investigate additional drivers of leaf-out phenology, leaf senescence in the autumn, and other phenomena, and could be a useful tool for education and outreach. Additional ecosystems, such as boreal, southern hemisphere and sub-tropical forests, could also be investigated using dormant twigs to determine the drivers of leaf-out times and how these ecosystems will be affected by climate change. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko
2017-06-06
Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings. Copyright © 2017 Elsevier B.V. All rights reserved.
Snider, John L; Choinski, John S; Wise, Robert R
2009-05-01
We sought to test the hypothesis that stomatal development determines the timing of gas exchange competency, which then influences leaf temperature through transpirationally driven leaf cooling. To test this idea, daily patterns of gas exchange and leaflet temperature were obtained from leaves of two distinctively different developmental stages of smooth sumac (Rhus glabra) grown in its native habitat. Juvenile and mature leaves were also sampled for ultrastructural studies of stomatal development. When plants were sampled in May-June, the hypothesis was supported: juvenile leaflets were (for part of the day) from 1.4 to 6.0 degrees C warmer than mature leaflets and as much as 2.0 degrees C above ambient air temperature with lower stomatal conductance and photosynthetic rates than mature leaflets. When measurements were taken from July to October, no significant differences were observed, although mature leaflet gas exchange rates declined to the levels of the juvenile leaves. The gas exchange data were supported by the observations that juvenile leaves had approximately half the number of functional stomata on a leaf surface area basis as did mature leaves. It was concluded that leaf temperature and stage of leaf development in sumac are strongly linked with the higher surface temperatures observed in juvenile leaflets in the early spring possibly being involved in promoting photosynthesis and leaf expansion when air temperatures are cooler.
Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutsinger, Greg; Sanders, Dr. Nathan James; Classen, Aimee T
2009-09-01
Plant species can differ in the quantity and quality of leaf litter they produce, and many studies have examined whether plant species diversity affects leaf-litter decomposition and nutrient release. A growing number of studies have indicated that intra-specific variation within plant species can also affect key ecosystem processes. However, the relative importance of intra- versus inter-specific variation for the functioning of ecosystems remains poorly known. Here, we investigate the effects of intra-specific variation in a dominant old-field plant species, tall goldenrod (Solidago altissima), and inter-specific variation among goldenrod species on litter quality, decomposition, and nitrogen (N) release. We found thatmore » the nutrient concentration of leaf litter varied among genotypes, which translated into 50% difference in decomposition rates. Variation among other goldenrod species in decomposition rate was more than twice that of genetic variation within S. altissima. Furthermore, by manipulating litterbags to contain 1, 3, 6, or 9 genotypes, we found that S. altissima genotype identity had much stronger effects than did genotypic diversity on leaf-litter quality, decomposition, and N release. Taken together, these results suggest that the order of ecological importance for controlling leaf-litter decomposition and N release dynamics is plant species identitygenotype identity>genotypic diversity.« less
NASA Astrophysics Data System (ADS)
Burkhardt, J.; Grantz, D. A.; Hunsche, M.; Pariyar, S.; Sutton, M. A.; Zinsmeister, D.
2016-12-01
Leaf surfaces are a major sink for atmospheric aerosol deposition. Plants benefit from aerosol associated nutrients and are able to increase deposition by leaf surface micromorphology. Recent studies have shown that deposited hygroscopic aerosols can also influence plant water relations. This might be an important issue even for remote forest ecosystems, given the strong anthropogenic influence on aerosol production and efficient atmospheric transport. We study processes of aerosol deposition to plant surfaces and their impact on water relations and drought tolerance, both for experimental particle amendment and for aerosol exclusion in filtered air (FA). FA plants experience an environment with < 10% concentration of hygroscopic aerosols compared to ambient air (AA), but no difference in trace gases. Increasing particle concentration leads to decreasing water use efficiency and increasing minimum epidermal conductance (gmin; a measure of uncontrolled water loss inversely related to drought tolerance). After particle amendment, anisohydric beech seedlings increased transpiration and maintained photosynthesis, while isohydric pine seedlings maintained transpiration and tended to reduce photosynthesis. FA seedlings of pine, oak, and fir showed lower gmin than corresponding AA seedlings. The results support the concept of hydraulic activation of stomata (HAS) and an associated wick action caused by leaf surface particles. Concentrated salt solutions formed by hygroscopicity even in unsaturated air may create a thin liquid film that penetrates the stomatal pore, allowing evaporation of liquid water at the leaf surface. Increased gmin suggests the significance of this process under ambient conditions. The direct impact of air pollution on plant drought tolerance is poorly integrated in current scenarios of forest decline and tree mortality, but might represent an important component.
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H.; Busov, Victor B.
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting. PMID:28686626
BIG LEAF is a regulator of organ size and adventitious root formation in poplar
Yordanov, Yordan S.; Ma, Cathleen; Yordanova, Elena; ...
2017-07-07
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stagesmore » of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. Additionally, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. Here, we conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.« less
BIG LEAF is a regulator of organ size and adventitious root formation in poplar.
Yordanov, Yordan S; Ma, Cathleen; Yordanova, Elena; Meilan, Richard; Strauss, Steven H; Busov, Victor B
2017-01-01
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.
Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.
Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien
2010-11-01
The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...
USDA-ARS?s Scientific Manuscript database
It is desirable to be able to predict above ground biomass production indirectly, without extensive sampling or destructive harvesting. Leaf area index (LAI) is the amount of leaf surface area per ground area and is an important parameter in ecophysiology. As LAI increases, the photosynthetically ...
Ribeiro da Luz, B.
2006-01-01
??? Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. ??? This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. ??? Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. ??? Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified. ?? The Authors (2006).
Computer Aided Simulation Machining Programming In 5-Axis Nc Milling Of Impeller Leaf
NASA Astrophysics Data System (ADS)
Huran, Liu
At present, cad/cam (computer-aided design and manufacture) have fine wider and wider application in mechanical industry. For the complex surfaces, the traditional machine tool can no longer satisfy the requirement of such complex task. Only by the help of cad/cam can fulfill the requirement. The machining of the vane surface of the impeller leaf has been considered as the hardest challenge. Because of their complex shape, the 5-axis cnc machine tool is needed for the machining of such parts. The material is hard to cut, the requirement for the surface finish and clearance is very high, so that the manufacture quality of impeller leaf represent the level of 5-axis machining. This paper opened a new field in machining the complicated surface, based on a relatively more rigid mathematical basis. The theory presented here is relatively more systematical. Since the lack of theoretical guidance, in the former research, people have to try in machining many times. Such case will be changed. The movement of the cutter determined by this method is definite, and the residual is the smallest while the times of travel is the fewest. The criterion is simple and the calculation is easy.
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk
2017-05-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing
2016-12-01
Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.
Peach leaf curl disease shifts sugar metabolism in severely infected leaves from source to sink.
Moscatello, Stefano; Proietti, Simona; Buonaurio, Roberto; Famiani, Franco; Raggi, Vittorio; Walker, Robert P; Battistelli, Alberto
2017-03-01
Peach leaf curl is a disease that affects the leaves of peach trees, and in severe cases all of the leaf can be similarly affected. This study investigated some effects of this disease on the metabolism of peach leaves in which all parts of the leaf were infected. These diseased leaves contained very little chlorophyll and performed little or no photosynthesis. Compared to uninfected leaves, diseased leaves possessed higher contents of fructose and especially glucose, but lowered contents of sucrose, sorbitol and especially starch. The activities of soluble acid invertase, neutral invertase, sorbitol dehydrogenase and sucrose synthase were all higher in diseased leaves, whereas, those of aldose-6-phosphate reductase and sucrose phosphate synthase were lower. The activities of hexokinase and fructokinase were little changed. In addition, immunblots showed that the contents of Rubisco and ADP-glucose phosphorylase were reduced in diseased leaves, whereas, the content of phosphoenolpyruvate carboxylase was increased. The results show that certain aspects of the metabolism of diseased leaves are similar to immature sink leaves. That is photosynthetic function is reduced, the leaf imports rather than exports sugars, and the contents of non-structural carbohydrates and enzymes involved in their metabolism are similar to sink leaves. Further, the effects of peach leaf curl on the metabolism of peach leaves are comparable to the effects of some other diseases on the metabolism of photosynthetic organs of other plant species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.
1995-07-01
In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less
Transport theory for a leaf canopy of finite-dimensional scattering centers
NASA Technical Reports Server (NTRS)
Myneni, Ranga B.; Marshak, Alexander L.; Kniazikhin, Iurii V.
1991-01-01
A formalism for photon transport in leaf canopies with finite-dimensional scattering centers that cross shade mutually is developed. Starting from first principles, expressions for the interaction cross sections are derived. The problem of illumination by a monodirectional source is studied in detail using a successive collisions approach. A balance equation is formulated in R3 and the interaction between a leaf canopy and the adjacent atmosphere is discussed. Although the details are those relating to a leaf canopy, the formalism is equally applicable to other media where the constituents cross shade mutually such as planetary surfaces, rings and ridged-ice in polar regions, i.e., media that exhibit opposition brightening.
USDA-ARS?s Scientific Manuscript database
Almond leaf scorch (ALS) disease has been a chronic problem for California almond growers. This disease is caused by the bacterial pathogen Xylella fastidiosa and is transmitted by xylem-feeding insects. Previous research suggested that retaining, rather than roguing, ALS-affected trees may be more ...
QTLs for resistance to the leaf rust Puccinia brachypodii in the model grass Brachypodium distachyon
USDA-ARS?s Scientific Manuscript database
The wild grass Brachypodium distachyon is a useful new model for temperate cereals, but its potential to study the interactions with pathogens remains underexploited. Leaf rust is one of the major fungal diseases affecting cereals, and recently the host status of Brachypodium to Puccinia rusts was i...
Predicting the presence of whiteflies and tomato yellow leaf curl virus in Florida tomato fields
USDA-ARS?s Scientific Manuscript database
Florida is one of the leading states for production of fresh market tomatoes. Production is severely affected by Tomato yellow leaf curl virus (TYLCV). The objective of this study was to identify landscape and climatic factors that drive whitefly populations and TYLCV incidence in commercial tomato ...
Timothy D. Meehan; Michael S. Crossley; Richard L. Lindroth
2010-01-01
Human alteration of atmospheric composition affects foliar chemistry and has possible implications for the structure and functioning of detrital communities. In this study, we explored the impacts of elevated carbon dioxide and ozone on aspen (Populus tremuloides) leaf litter chemistry, earthworm (Lumbricus terrestris) individual...
Leaf fall, humus depth, and soil frost in a northern hardwood forest
George Hart; Raymond E. Leonard; Robert S. Pierce
1962-01-01
In the mound-and-depression microtopography of the northern hardwood forest, leaves are blown off the mounds and collect in the depressions. This influence of microtopography on leaf accumulation is responsible for much of the variation in humus depth; and this, in turn, affects the formation and depth of soil frost.
USDA-ARS?s Scientific Manuscript database
Organic rice production has significantly increased in the U. S. over the last decade. Growers lack effective tools to manage sheath blight, caused by Rhizoctonia solani, and narrow brown leaf spot (NBLS), caused by Cercospora janseana, two major diseases affecting organic rice production. An experi...
Southern corn leaf blight a story worth retelling
USDA-ARS?s Scientific Manuscript database
The Southern Corn Leaf Blight Epidemic of 1970-1971 was one of the most costly disease outbreaks to affect North American agriculture, destroying 15% of the crop at a cost of $1.0 billion (US). It resulted from an over reliance on cytoplasmic Texas male sterile (cms-T) lines in hybrid seed producti...
Dáder, Beatriz; Gwynn-Jones, Dylan; Moreno, Aránzazu; Winters, Ana; Fereres, Alberto
2014-09-05
Ultraviolet (UV) radiation directly regulates a multitude of herbivore life processes, in addition to indirectly affecting insect success via changes in plant chemistry and morphogenesis. Here we looked at plant and insect (aphid and whitefly) exposure to supplemental UV-A radiation in the glasshouse environment and investigated effects on insect population growth. Glasshouse grown peppers and eggplants were grown from seed inside cages covered by novel plastic filters, one transparent and the other opaque to UV-A radiation. At a 10-true leaf stage for peppers (53 days) and 4-true leaf stage for eggplants (34 days), plants were harvested for chemical analysis and infested by aphids and whiteflies, respectively. Clip-cages were used to introduce and monitor the insect fitness and populations of the pests studied. Insect pre-reproductive period, fecundity, fertility and intrinsic rate of natural increase were assessed. Crop growth was monitored weekly for 7 and 12 weeks throughout the crop cycle of peppers and eggplants, respectively. At the end of the insect fitness experiment, plants were harvested (68 days and 18-true leaf stage for peppers, and 104 days and 12-true leaf stage for eggplants) and leaves analysed for secondary metabolites, soluble carbohydrates, amino acids, total proteins and photosynthetic pigments. Our results demonstrate for the first time, that UV-A modulates plant chemistry with implications for insect pests. Both plant species responded directly to UV-A by producing shorter stems but this effect was only significant in pepper whilst UV-A did not affect the leaf area of either species. Importantly, in pepper, the UV-A treated plants contained higher contents of secondary metabolites, leaf soluble carbohydrates, free amino acids and total content of protein. Such changes in tissue chemistry may have indirectly promoted aphid performance. For eggplants, chlorophylls a and b, and carotenoid levels decreased with supplemental UV-A over the entire crop cycle but UV-A exposure did not affect leaf secondary metabolites. However, exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues as compounds implied in pest nutrition - proteins and sugars - were unaltered. Copyright © 2014 Elsevier B.V. All rights reserved.
SU-F-T-530: Characterization of a 60-Leaf Motorized MLC Designed for Cobalt-60 Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, L; Smith, L; Ciresianu, A
2016-06-15
Purpose: In a continuing effort to improve conformal radiation therapy with Cobalt-60 units, a 60-leaf MLC was designed, manufactured, and released to market. This work describes the physics measurements taken to characterize the clinical performance of this MLC. Methods: A 60 leaf MLC was custom designed with tungsten leaves of 4.5 cm height, single focused, achieving field size of 30×30 cm^2 when mounted on a 100cm SAD Cobalt-60 unit. Leakage and output factor measurements were performed using a single ion chamber in a solid water phantom. Penumbra and surface dose were measured using scanning chambers and diodes in a watermore » phantom. Radiation-light coincidence measurements were performed using radiographic films. Results: With MLC mounted, measured penumbras at all depths are smaller than with jaws only. Surface doses were not significantly affected by the presence of MLC, and remained below values recommended by regulatory bodies. Light-radiation coincidences were found to be better than 3 mm for all field sizes. Leakage through the MLC was found to be strongly dependent on field size, increasing from 1.0 % for a 10×10 cm field to 2.0% for a 30×30 cm field. Such results meet the requirements of IEC 60601-2-11. The MLC was found to have significant influence on the output factor, when field size defined by MLC is significantly smaller than field size defined by jaws. Such effect is also observed on linear accelerators, but it is more pronounced on Cobalt-60 units. A 10×10 “diamond” MLC shape inside a 14×14 cm jaw showed output factor that is 5.7% higher than 10×10 cm field defined by matching MLC and jaws. Conclusion: The MLC offers clinically acceptable performance in penumbra, surface dose, and light-radiation coincidence. Several units of this MLC have recently been installed and used clinically. Validation of Cobalt-60 based IMRT with this MLC is ongoing. The authors are employees of Best Theratrnics Ltd.« less
Influence of heavy metal leaf contaminants on the in vitro growth of urban-tree phylloplane-fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.H.
1977-01-01
The surfaces of urban woody vegetation are contaminated with varying amounts of numerous metallic compounds, including Cd, Cu, Mn, Al, Cr, Ni, Fe, Pb, Na, and Zn. To examine the possibility that these metals may affect phylloplane fungi, the above cations were tested in vitro for their ability to influence the growth of numerous saprophytic and parasitic fungi isolated from the leaves of London plane trees. Considerable variation in growth inhibition by the metals was observed. Generally Aureobasidium pullulans, Epicoccum sp., and Phialophora verrucosa were relatively tolerant; Gnomonia platani, Cladsporium sp., and Pleurophomella sp. were intermediate; and Pestalotiopsis and Chaetomiummore » sp. were relatively sensitive to the incorporation of certain metals into solid and liquid media. If similar growth inhibitions occur in nature, competitive abilities or population structures of plant surface microbes may be altered by surface metal contamination. Metals causing the greatest and broadest spectrum growth suppression included Ni, Zn, Pb, Al, Fe, and Mn. 25 references, 4 figures.« less
Gold leaf counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Shimada, Kazuhiro; Toyoda, Takeshi
2018-03-01
In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).
Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash
2017-03-01
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.
Taylaran, Renante D.; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-01-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20–30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf–air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production. PMID:21527630
Variation in crown light utilization characteristics among tropical canopy trees.
Kitajima, Kaoru; Mulkey, Stephen S; Wright, S Joseph
2005-02-01
Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.
Does citrus leaf miner impair hydraulics and fitness of citrus host plants?
Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo
2013-12-01
Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus × paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.
Riedel, Jendrian; Böhme, Wolfgang; Bleckmann, Horst; Spinner, Marlene
2015-02-01
Chameleons (Chamaeleonidae) feature many adaptations to their arboreal lifestyle, including zygodactylous feet, a prehensile tail, and epidermal microstructures. In arboreal tree chameleons, the substrate-contacting site of the feet and tail is covered by microscopic hair-like structures (setae) of 6-20 µm length. Their friction enhancing function has been shown in recent studies. Leaf chameleons and one representative of the tree chameleons (Chamaeleo namaquensis) secondarily have become ground-dwelling. Because leaf chameleons are paraphyletic, one could expect that in the three leaf chameleon genera Brookesia, Rhampholeon, and Rieppeleon and the tree chameleon Ch. namaquensis, epidermis has adapted independently to terrestrial locomotion. Using scanning electron microscopy, we investigated the substrate-contacting surfaces of the feet (subdigital) of 17 leaf chameleon species and five tree chameleon species that have not yet been examined. Additionally, surfaces not involved in locomotion, the flanks (dorsolateral), and scale interstices, were examined. Although the subdigital microstructures in leaf chameleons are more diverse than in tree chameleons, we found some features across the genera. The subdigital microornamentation of Rhampholeon spinosus consists of long thin setae and spines, comparable to those of tree chameleons. All other Rhampholeon species have spines or short but broad setae. Rh. spectrum had tooth-like structures instead of setae. Subdigital scales of Brookesia have either thorns or conical scale-tops in the center and feature honeycomb microstructures. In Rieppeleon, subdigital scales have a thorn. Scale surfaces are covered by honeycombs and short hair-like structures (spines). As subdigital scales with a thorn in the center and honeycomb microstructures were also found in the terrestrial tree chameleon Ch. namaquensis, one can assume that this geometry is a convergent adaptation to terrestrial locomotion. Despite the great number of genus-specific traits, the convergent evolution of honey-comb structures in Brookesia, Rieppeleon, and Ch. namaquensis and the high variability of spines and setae in Rhampholeon suggests a rapid adaptation of subdigital microornamentation in Chamaeleonidae. © 2014 Wiley Periodicals, Inc.
Li, Xumeng; Wang, Xiaohui; Wei, Hailin; Zhu, Xinguang; Peng, Yulin; Li, Ming; Li, Tao; Huang, Huang
2017-01-01
This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional–structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM) for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D) digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i) simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii) computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii) a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv) computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface), and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional–structural plant models of rice and for the optimization of rice canopy types. Moreover, the technique can be easily adapted for other cereal crops such as wheat, which has numerous stems and leaves sheltering each other. PMID:28558045
Rodrigues, Cleiton G; Krüger, Alexandra P; Barbosa, Wagner F; Guedes, Raul Narciso C
2016-04-11
The ongoing concern about bee decline has largely focused on honey bees and neonicotinoid insecticides, while native pollinators such as Neotropical stingless bees and agrochemicals such as other insecticide groups, pesticides in general, and fertilizers-especially leaf fertilizers-remain neglected as potential contributors to pollination decline. In an effort to explore this knowledge gap, we assessed the lethal and sublethal behavioral impact of heavy metal-containing leaf fertilizers in a native pollinator of ecological importance in the Neotropics: the stingless beeFriesella schrottkyi(Friese). Two leaf fertilizers-copper sulfate (24% Cu) and a micronutrient mix (Arrank L: 5% S, 5% Zn, 3% Mn, 0.6% Cu, 0.5% B, and 0.06% Mo)-were used in oral and contact exposure bioassays. The biopesticide spinosad and water were used as positive and negative controls, respectively. Copper sulfate compromised the survival of stingless bee workers, particularly with oral exposure, although less than spinosad under contact exposure. Sublethal exposure to both leaf fertilizers at their field rates also caused significant effects in exposed workers. Copper sulfate enhanced flight take-off on stingless bee workers, unlike workers exposed to the micronutrient mix. There was no significant effect of leaf fertilizers on the overall activity and walking behavior of worker bees. No significant effect was observed for the respiration rate of worker bees under contact exposure, but workers orally exposed to the micronutrient mix exhibited a reduced respiration rate. Therefore, leaf fertilizers do affectF. schrottkyi, what may also occur with other stingless bees, potentially compromising their pollination activity deserving attention. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plant leaves as natural green scaffolds for palladium catalyzed Suzuki-Miyaura coupling reactions.
Sharma, Vipul; Kumar, Suneel; Bahuguna, Ashish; Gambhir, Diksha; Sagara, Prateep Singh; Krishnan, Venkata
2016-12-21
This work presents a novel approach of using natural plant leaf surfaces having intricate hierarchical structures as scaffolds for Pd nanoparticles and demonstrated it as a Green dip catalyst for Suzuki-Miyaura coupling reactions in water. The influence of the topographical texture of the plant leaves on the deposition and catalytic properties of Pd nanoparticles are presented and discussed. The catalytic activity can be correlated to the surface texture of the leaves, wherein it has been found that the micro/nanostructures present on the surface strongly influence the assembly and entrapment of the nanoparticles, and thereby control aggregation and leaching of the catalysts. This approach can provide insights for the future design and fabrication of bioinspired supports for catalysis, based on replication of leaf surfaces.
Knipling, Edward B.; Kramer, Paul J.
1967-01-01
The dye method for measuring water potential was examined and compared with the thermocouple psychrometer method in order to evaluate its usefulness for measuring leaf water potentials of forest trees and common laboratory plants. Psychrometer measurements are assumed to represent the true leaf water potentials. Because of the contamination of test solutions by cell sap and leaf surface residues, dye method values of most species varied about 1 to 5 bars from psychrometer values over the leaf water potential range of 0 to −30 bars. The dye method is useful for measuring changes and relative values in leaf potential. Because of species differences in the relationships of dye method values to true leaf water potentials, dye method values should be interpreted with caution when comparing different species or the same species growing in widely different environments. Despite its limitations the dye method has a usefulness to many workers because it is simple, requires no elaborate equipment, and can be used in both the laboratory and field. PMID:16656657
Wind increases leaf water use efficiency.
Schymanski, Stanislaus J; Or, Dani
2016-07-01
A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Yang, Tianxi; Zhao, Bin; Kinchla, Amanda J; Clark, John M; He, Lili
2017-05-03
Understanding pesticide behavior in plants is important for effectively applying pesticides and in reducing pesticide exposures from ingestion. This study aimed to investigate the penetration and persistence of pesticides applied on harvested and live basil leaves. Surface-enhanced Raman scattering (SERS) mapping was applied for in situ and real-time tracking of pesticides over time using gold nanoparticles as probes. The results showed that, after surface exposure of 30 min to 48 h, pesticides (10 mg/L) penetrated more rapidly and deeply into the live leaves than the harvested leaves. The systemic pesticide thiabendazole and the nonsystemic pesticide ferbam can penetrate into the live leaves with depths of 225 and 130 μm, respectively, and the harvested leaves with depths of 180 and 18 μm, respectively, after 48 h of exposure. The effects of leaf integrity and age on thiabendazole penetration were also evaluated on live basil leaves after 24 h of exposure. Thiabendazole (10 mg/L) when applied onto intact leaves penetrated deeper (170 μm) than when applied onto damaged leaves (80 μm) prepared with 20 scrapes on the top surface of the leaves. Older leaves with a wet mass of 0.204 ± 0.019 g per leaf (45 days after leaf out) allowed more rapid and deeper penetration of pesticides (depth of 165 μm) than younger leaves with a wet mass of 0.053 ± 0.007 g per leaf (15 days after leaf out, depth of 95 μm). The degradation of thiabendazole on live leaves was detected after 1 week, whereas the apparent degradation of ferbam was detected after 2 weeks. In addition, the removal of pesticides from basil was more efficient when compared with other fresh produce possibly due to the specific gland structure of basil leaves. The information obtained here provides a better understanding of the behavior and biological fate of pesticides on plants.
Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro
NASA Astrophysics Data System (ADS)
Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.
2018-03-01
Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.
Salinity stress inhibits bean leaf expansion by reducing turgor, not wall extensibility
NASA Technical Reports Server (NTRS)
Neumann, P. M.; Van Volkenburgh, E.; Cleland, R. E.
1988-01-01
Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, long-term salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.
NASA Astrophysics Data System (ADS)
Djati, Muhammad Sasmito; Habibu, Hindun; Jatiatmaja, Nabilah A.; Rifa'i, Muhaimin
2017-11-01
Tapak Liman (Elephantopus scaber L) is a traditional medicinal plant containing several active compounds that potentially affecting hematopoietic stem cells, such as epifrieelinol, lupeol, stigmasterol, triacontane-1-ol, dotriacontane-1-ol, lupeol acetate, deoxyelephan-topin, isodeoxyelephantopin, polyphenol luteolin-7, as well as various flavonoids and glucosides. The aim of this study was to elucidate the effect of leaf extract of Tapak Liman on hematopoietic stem cells in mice BALB/c, by observation of the relative number of cells expressing CD4/CD8, CD4/CD62L, and TER119/B220 in the spleen, and TER119/B220, TER119/VLA-4 and TER119/CD34 in bone marrow, after being administered leaf extract for 2 weeks. This experiment used 12 female mice, which were divided into three treatment groups, P1= 0.5 g.g bw-1.day-1, P2= 1.0 g.g bw-1.day-1 and P3=2.0 g.g bw-1.day-1 Tapak Liman leaf extract as well as a control. The relative numbers of cells expressing surface molecules were analyzed by flowcytometry and quantitative data were tested using one-way ANOVA. The results showed that the leaf extract of Tapak Liman has no significant effect on erythrocyte proliferation; on the other hand, it had a significant effect on both proliferation and differentiation of B lymphocytes (B220+) in bone marrow (p=0.044) and increased the expression of CD4+, CD8+ molecule in B cells (p=0.026) and erythroid cells in spleen and bone marrow, based on the estimation of cells that expressed TER119+VLA-4+, identified as important in the development pathway of erythrocytes. An increased cell percentage of TER11+VLA-4+ occurred for treatment P2, 12% higher than the control. The increased expression of TER119+VLA-4+ was assumed to be due to the iron content in Tapak Liman, which functioned to stimulate the progenitor hematopoietic cells to proliferate and differentiate into a precursor of erythroid cells (TER119+VLA-4+). There was an increasing number of cells expressing the surface molecules TER119+ and VLA-4+. This indicated that the Tapak Liman leaf extract with a dose of 1.0 g.g bw-1.day-1 could stimulate the proliferation of hematopoietic stem cells into the lymphoid and erythroid pathway, in spleen and bone marrow.
Leaf-on canopy closure in broadleaf deciduous forests predicted during winter
Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.
2015-01-01
Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.
Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu
2018-01-24
Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.
NASA Astrophysics Data System (ADS)
Lestari, R. P.; Nissa, C.; Afifah, D. N.; Anjani, G.; Rustanti, N.
2018-02-01
Alternative treatment for metabolic syndrome can be done by providing a diet consist of functional foods or beverages. Synbiotic yoghurt containing binahong leaf extract which high in antioxidant, total LAB and fiber can be selected to reduce the risk of metabolic syndrome. The effect of binahong leaf extract in synbiotic yoghurt against total LAB, antioxidant activity, and acceptance were analyzed. The experiment was done with complete randomized design with addition of binahong leaf extract 0% (control); 0.12%; 0.25%; 0.5% in synbiotic yoghurt. Analysis of total LAB using Total Plate Count test, antioxidant activity using DPPH, and acceptance were analyzed by hedonic test. The addition of binahong leaf extract in various doses in synbiotic yoghurt decreased total LAB without significant effect (p=0,145). There was no effect of addition binahong leaf extract on antioxidant activity (p=0,297). The addition of binahong leaf extract had an effect on color, but not on aroma, texture and taste. The best result was yoghurt synbiotic with addition of 0,12% binahong leaf extract. Conclusion of the research was the addition of binahong leaf extract to synbiotic yogurt did not significantly affect total LAB, antioxidant activity, aroma, texture and taste; but had a significant effect on color.
Baker, Robert L; Leong, Wen Fung; Brock, Marcus T; Markelz, R J Cody; Covington, Michael F; Devisetty, Upendra K; Edwards, Christine E; Maloof, Julin; Welch, Stephen; Weinig, Cynthia
2015-10-01
Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Targeted manipulation of leaf form via local growth repression.
Malinowski, Robert; Kasprzewska, Ania; Fleming, Andrew J
2011-06-01
A classical view is that leaf shape is the result of local promotion of growth linked to cell proliferation. However, an alternative hypothesis is that leaf form is the result of local repression of growth in an otherwise growing system. Here we show that leaf form can indeed be manipulated in a directed fashion by local repression of growth. We show that targeting expression of an inhibitor of a cyclin-dependent kinase (KRP1) to the sinus area of developing leaves of Arabidopsis leads to local growth repression and the formation of organs with extreme lobing, including generation of leaflet-like organs. Directing KRP1 expression to other regions of the leaf using an miRNA target sequence tagging approach also leads to predictable novel leaf forms, and repression of growth in the leaf margin blocks the outgrowth of lobes, leading to a smoother perimeter. In addition, we show that decreased growth around the perimeter and across the leaf abaxial surface leads to a change in 3D form, as predicted by mechanical models of leaf growth. Our analysis provides experimental evidence that local repression of growth influences leaf shape, suggesting that it could be part of the mechanism of morphogenesis in plants in the context of an otherwise growing system. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang
2016-11-01
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Potential Sources of Polarized Light from a Plant Canopy
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert
2016-01-01
Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.
Baldacchini, Chiara; Castanheiro, Ana; Maghakyan, Nairuhi; Sgrigna, Gregorio; Verhelst, Jolien; Alonso, Rocío; Amorim, Jorge H; Bellan, Patrick; Bojović, Danijela Đunisijević; Breuste, Jürgen; Bühler, Oliver; Cântar, Ilie C; Cariñanos, Paloma; Carriero, Giulia; Churkina, Galina; Dinca, Lucian; Esposito, Raffaela; Gawroński, Stanisław W; Kern, Maren; Le Thiec, Didier; Moretti, Marco; Ningal, Tine; Rantzoudi, Eleni C; Sinjur, Iztok; Stojanova, Biljana; Aničić Urošević, Mira; Velikova, Violeta; Živojinović, Ivana; Sahakyan, Lilit; Calfapietra, Carlo; Samson, Roeland
2017-02-07
Particulate matter (PM) deposited on Platanus acerifolia tree leaves has been sampled in the urban areas of 28 European cities, over 20 countries, with the aim of testing leaf deposited particles as indicator of atmospheric PM concentration and composition. Leaves have been collected close to streets characterized by heavy traffic and within urban parks. Leaf surface density, dimensions, and elemental composition of leaf deposited particles have been compared with leaf magnetic content, and discussed in connection with air quality data. The PM quantity and size were mainly dependent on the regional background concentration of particles, while the percentage of iron-based particles emerged as a clear marker of traffic-related pollution in most of the sites. This indicates that Platanus acerifolia is highly suitable to be used in atmospheric PM monitoring studies and that morphological and elemental characteristics of leaf deposited particles, joined with the leaf magnetic content, may successfully allow urban PM source apportionment.
Fluorescent Staining of Tea Pathogenic Fungi in Tea Leaves Using Fluorescein-labeled Lectin
NASA Astrophysics Data System (ADS)
Yamada, Kengo; Yoshida, Katsuyuki; Sonoda, Ryoichi
Fluorochrome-labeled lectin, fluorescein conjugated wheat germ agglutinin (F-WGA) was applied to stain tea pathogenic fungi in tea leaf tissue. Infected leaves were fixed and decolorized with a mixture of ethanol and acetic acid, and cleared with 10% KOH for whole mount before staining with F-WGA. Hyphae of Pestalotiopsis longiseta, Pseudocercospora ocellata, Botrytis cinerea and Colletotrichum theae-sinensis fluoresced brightly in whole mount and sectioned samples of infected leaf tissue. In browned tissue, hyphae did not fluoresce frequently in whole mount sample. Autofluorescence of leaf tissue was strong in browned tissue of sections, it was removed by 10% KOH treatment before staining. Penetration hyphae of C. theae-sinensis in cell wall of trichome and hyphae in basal part of trichome did not fluoresced frequently. In whole mount samples of tea leaf infected with Exobasidium vexans and E. reticulatum, hymenia appeared on leaf surface fluoresced, but hyphae in leaf tissue did not fluoresce. In sectioned samples, hyphae fluoresced brightly when sections were treated with 10% KOH before staining.
Biophysical characterization and surface radiation balance
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.; Starks, Patrick J.
1993-01-01
The Kursk 1991 Experiment (KUREX-91) was conducted as one of a suite of international studies to develop capabilities to monitor global change. The studies were designed specifically to understand the earth's land-surface vegetation and atmospheric boundary layer interaction. An intensive field campaign was conducted at a site near Kursk, Russia during the month of July in 1991 by a team of international scientists to aid in the understanding of land-surface-atmosphere interactions in an agricultural/grassland setting. We were one of several teams of scientists participating at KUREX-91 at the Streletskaya Steppe Researve near Kursk, Russia. The main goals of our research were to: (1) characterize biophysical properties of the prairie vegetation; and (2) to characterize radiation regime through measurements and from estimates derived from canopy bidirectional reflectance data. Four objectives were defined to achieve these goals: (1) determine dependence of leaf optical properties on leaf water potential of some dominant species in discrete wavebands in the visible, near-infrared, and mid-infrared (spanning 0.4-2.3 microns range); (2) characterize the effective leaf area index (LAI) and leaf angle distribution of prairie vegetation; (3) characterize the radiation regime of the prairie vegetation through measures of the radiation balance components; and (4) examine, develop, and test methods for estimating albedo, APAR, and LAI from canopy bidirectional reflectance data. Papers which were the result of the research efforts are included.
NASA Astrophysics Data System (ADS)
McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.
2013-12-01
Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root decomposition rates; only Ledum roots decomposed slower than the other three species and the overall root litter respiration rates increased with the duration of the experiment (in contrast to leaf liter respiration). A fertilized environment had no effect on overall weight loss of the leaf or root litter within the time of our study, but leaf and root litter respiration rates were significantly larger at the end of the study in the fertilized tundra.The temperature sensitivity of leaf respiration was significantly lower for leaf litter respiration than root liter respiration after fist snow melt, but this difference disappeared throughout the first growing season and neither was influenced by species composition or fertilization with N+P. Overall, our results suggest that as arctic vegetation shifts towards shrub-dominated tundra, both species composition and seasonally dependent processes will determine effects of changing vegetation types on carbon turnover in arctic ecosystems.
Diverse Microhabitats Experienced by Halomonas variabilis on Salt-Secreting Leaves
Burch, Adrien Y.; Finkel, Omri M.; Cho, Juliana K.; Belkin, Shimshon
2013-01-01
The leaf surfaces of the salt-excreting tree Tamarix aphylla harbor a wide diversity of halophilic microorganisms, including Halomonas sp., but little is known of the factors that shape community composition in this extreme habitat. We isolated a strain of Halomonas variabilis from the leaf surface of T. aphylla and used it to determine the heterogeneity of salt concentrations experienced by bacteria in this environment. This halophilic strain was transformed with a proU::gfp reporter gene fusion, the fluorescence of which was responsive to NaCl concentrations up to 200 g liter−1. These bioreporting cells were applied to T. aphylla leaves and were subsequently recovered from dew droplets adhering to the leaf surface. Although cells from within a given dew droplet exhibited similar green fluorescent protein fluorescence, the fluorescence intensity varied between droplets and was correlated with the salt concentration measured in each drop. Growth of H. variabilis was observed in all droplets, regardless of the salt concentration. However, cells found in desiccated microniches between dew drops were low in abundance and generally dead. Other bacteria recovered from T. aphylla displayed higher desiccation tolerance than H. variabilis, both in culture and on inoculated plants, despite having lower osmotic tolerance. Thus, the Tamarix leaf surface can be described as a salty desert with occasional oases where water droplets form under humid conditions. While halotolerant bacteria such as Halomonas grow in high concentrations of salt in such wet microniches, other organisms are better suited to survive desiccation in sites that are not wetted. PMID:23160133
Wax Layers on Cosmos bipinnatus Petals Contribute Unequally to Total Petal Water Resistance1[OPEN
Buschhaus, Christopher; Hager, Dana; Jetter, Reinhard
2015-01-01
Cuticular waxes coat all primary aboveground plant organs as a crucial adaptation to life on land. Accordingly, the properties of waxes have been studied in much detail, albeit with a strong focus on leaf and fruit waxes. Flowers have life histories and functions largely different from those of other organs, and it remains to be seen whether flower waxes have compositions and physiological properties differing from those on other organs. This work provides a detailed characterization of the petal waxes, using Cosmos bipinnatus as a model, and compares them with leaf and stem waxes. The abaxial petal surface is relatively flat, whereas the adaxial side consists of conical epidermis cells, rendering it approximately 3.8 times larger than the projected petal area. The petal wax was found to contain unusually high concentrations of C22 and C24 fatty acids and primary alcohols, much shorter than those in leaf and stem waxes. Detailed analyses revealed distinct differences between waxes on the adaxial and abaxial petal sides and between epicuticular and intracuticular waxes. Transpiration resistances equaled 3 × 104 and 1.5 × 104 s m−1 for the adaxial and abaxial surfaces, respectively. Petal surfaces of C. bipinnatus thus impose relatively weak water transport barriers compared with typical leaf cuticles. Approximately two-thirds of the abaxial surface water barrier was found to reside in the epicuticular wax layer of the petal and only one-third in the intracuticular wax. Altogether, the flower waxes of this species had properties greatly differing from those on vegetative organs. PMID:25413359
Kumar, Jitendra; Gunapati, Samatha; Singh, Sudhir P; Kumar, Abhinav; Lalit, Adarsh; Sharma, Naresh C; Puranik, Rekha; Tuli, Rakesh
2013-06-01
A begomovirus and its associated alpha- and betasatellite were detected in tomato plants affected with leaf curl disease. Based on a nucleotide sequence identity of 99 %, this begomovirus was designated an isolate of cotton leaf curl Burewala virus (CLCuBuV). The alphasatellite exhibited 93 % sequence identity to cotton leaf curl Burewala alphasatellite (CLCuBuA) and is hence referred to here as a variant of CLCuBuA. The detected betasatellite was recombinant in nature and showed 70 % sequence identity to the known betasatellites. Inoculation of healthy tomato with CLCuBuV plus betasatellite, either in the presence or the absence of alphasatellite, led to typical leaf curling, while inoculation with CLCuBuV in the absence of betasatellite resulted in mild symptoms. This confirmed the role of the betasatellite in expression of disease symptoms. We propose to name the newly detected betasatellite tomato leaf curl Hajipur betasatellite (ToLCHJB).
Kaiser, Elias; Kromdijk, Johannes; Harbinson, Jeremy; Heuvelink, Ep; Marcelis, Leo F M
2017-01-01
Plants depend on photosynthesis for growth. In nature, factors such as temperature, humidity, CO 2 partial pressure, and spectrum and intensity of irradiance often fluctuate. Whereas irradiance intensity is most influential and has been studied in detail, understanding of interactions with other factors is lacking. We tested how photosynthetic induction after dark-light transitions was affected by CO 2 partial pressure (20, 40, 80 Pa), leaf temperatures (15·5, 22·8, 30·5 °C), leaf-to-air vapour pressure deficits (VPD leaf-air ; 0·5, 0·8, 1·6, 2·3 kPa) and blue irradiance (0-20 %) in tomato leaves (Solanum lycopersicum). Rates of photosynthetic induction strongly increased with CO 2 partial pressure, due to increased apparent Rubisco activation rates and reduced diffusional limitations. High leaf temperature produced slightly higher induction rates, and increased intrinsic water use efficiency and diffusional limitation. High VPD leaf-air slowed down induction rates and apparent Rubisco activation and (at 2·3 kPa) induced damped stomatal oscillations. Blue irradiance had no effect. Slower apparent Rubisco activation in elevated VPD leaf-air may be explained by low leaf internal CO 2 partial pressure at the beginning of induction. The environmental factors CO 2 partial pressure, temperature and VPD leaf-air had significant impacts on rates of photosynthetic induction, as well as on underlying diffusional, carboxylation and electron transport processes. Furthermore, maximizing Rubisco activation rates would increase photosynthesis by at most 6-8 % in ambient CO 2 partial pressure (across temperatures and humidities), while maximizing rates of stomatal opening would increase photosynthesis by at most 1-3 %. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Time-Dependent Liquid Transport on a Biomimetic Topological Surface.
Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei
2018-05-02
Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.
Owen K. Atkin; Keith J. Bloomfield; Peter B. Reich; Mark G. Tjoelker; Gregory P. Asner; Damien Bonal; Gerhard Bonisch; Matt G. Bradford; Lucas A. Cernusak; Eric G. Cosio; Danielle Creek; Kristine Y. Crous; Tomas F. Domingues; Jeffrey S. Dukes; John J. G. Egerton; John R. Evans; Graham D. Farquhar; Nikolaos M. Fyllas; Paul P. G. Gauthier; Emanuel Gloor; Teresa E. Gimeno; Kevin L. Griffin; Rossella Guerrieri; Mary A. Heskel; Chris Huntingford; Franc_oise Yoko Ishida; Jens Kattge; Hans Lambers; Michael J. Liddell; Jon Lloyd; Christopher H. Lusk; Roberta E. Martin; Ayal P. Maksimov; Trofim C. Maximov; Yadvinder Malhi; Belinda E. Medlyn; Patrick Meir; Lina M. Mercado; Nicholas Mirotchnick; Desmond Ng; Ulo Niinemets; Odhran S. O’Sullivan; Oliver L. Phillips; Lourens Poorter; Pieter Poot; I. Colin Prentice; Norma Salinas; Lucy M. Rowland; Michael G. Ryan; Stephen Sitch; Martijn Slot; Nicholas G. Smith; Matthew H. Turnbull; Mark C. VanderWel; Fernando Valladares; Erik J. Veneklaas; Lasantha K. Weerasinghe; Christian Wirth; Ian J. Wright; Kirk R. Wythers; Jen Xiang; Shuang Xiang; Joana Zaragoza-Castells
2015-01-01
A challenge for the development of terrestrial biosphere models (TBMs) and associated land surface components of Earth system models (ESMs) is improving representation of carbon (C) exchange between terrestrial plants and the atmosphere, and incorporating biological variation arising from diversity in plant functional types (PFTs) and climate (Sitch et al.,...
Epidemiology of Basil Downy Mildew.
Cohen, Yigal; Ben Naim, Yariv; Falach, Lidan; Rubin, Avia E
2017-10-01
Basil downy mildew (BDM) caused by the oomycete Peronospora belbahrii is a destructive disease of sweet basil (Ocimum basilicum) worldwide. It originated in Uganda in the 1930s and recently spread to Europe, the Middle East, Americas, and the Far East. Seed transmission may be responsible for its quick global spread. The pathogen attacks leaf blades, producing chlorotic lesions with ample dark asexual spores on the lower leaf surface. Oospores may form in the mesophyll of infected leaves. The asexual spores germinate on a wet leaf surface within 2 h and penetrate into the epidermis within 4 h. Spore germination and infection occur at a wide range of temperatures from 5 to 28.5°C. Infection intensity depends on the length of dew period, leaf temperature, and inoculum dose. The duration of latent period (from infection to sporulation) extends from 5 to 10 days, depending on temperature and light regime. The shortest is 5 days at 25°C under continuous light. Sporulation requires high humidity but not free leaf wetness. Sporulation occurs at 10 to 26°C. At the optimum temperature of 18°C, the process of sporulation requires 7.5 h at relative humidity ≥ 85%, with 3 h for sporophores emergence from stomata and 4.5 h for spore formation. Sporophores can emerge under light or darkness, but spore formation occurs in the dark only. Limited data are available on spore dispersal. Spores dispersed from sporulating plants contaminate healthy plants within 2 h of exposure. Settled spores may survive on leaf surface of healthy plants for prolonged periods, depending on temperature. Seed transmission of the disease occurs in Europe, but not in Israel or the United States. P. belbahrii in Israel also attacks species belonging to Rosemarinus, Nepeta, Agastache, Micromeria, and Salvia but not Plectranthus (coleus). A Peronospora species that infects coleus does not infect sweet basil. Control of BDM includes chemical, physical, and genetic means. The fungicide mefenoxam was highly effective in controlling the disease but resistant populations were quickly selected for in Israel and Europe rendering it ineffective. A new compound oxathiapiprolin (OSBP inhibitor) is highly effective. Nocturnal illumination of basil crops controls the disease by preventing sporulation. Daytime solar heating suppressed the disease effectively by reducing spore and mycelium viability. The most effective physical means is fanning. Nocturnal fanning prevents or limits dew deposition on leaf surfaces, and as a result, infection and sporulation diminish and epidemics are prevented. Genetic resistance occurs in wild basil and its transfer to sweet basil is under way.
Leaf traits in parental and hybrid species of Sorbus (Rosaceae).
Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam
2012-09-01
Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.
Noseleaf dynamics during pulse emission in horseshoe bats.
Feng, Lin; Gao, Li; Lu, Hongwang; Müller, Rolf
2012-01-01
Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf's surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats.
NASA Astrophysics Data System (ADS)
Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela
1998-12-01
A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
Martínez-Jarquín, Sandra; Herrera-Ubaldo, Humberto; de Folter, Stefan; Winkler, Robert
2018-08-01
Low-temperature plasma (LTP) is capable of ionizing a broad range of organic molecules at ambient conditions. The coupling of LTP to a mass analyzer delivers chemical profiles from delicate objects. To investigate the suitability of LTP ionization for mass spectrometry (MS) based in vivo studies, we monitored the auxin-regulated nicotine biosynthesis in tobacco (Nicotiana tabacum) and evaluated possible biological effects. The measured nicotine concentrations in different experiments were comparable to literature data obtained with conventional methods. The observed compounds suggest the rupture of trichomes, and cell damage was observed on the spots exposed to LTP. However, the lesions only affected a negligible proportion of the leaf surface area and no systemic reaction was noted. Thus, our study provides the proof-of-concept for measuring the biosynthetic activity of plant surfaces in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Dae-Heon; Park, Jang-Woo
2011-01-01
Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813
Park, Dae-Heon; Park, Jang-Woo
2011-01-01
Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.