Science.gov

Sample records for affects nitrogen metabolism

  1. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants

    PubMed Central

    2012-01-01

    Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves. PMID:23057967

  2. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants.

    PubMed

    Borlotti, Andrea; Vigani, Gianpiero; Zocchi, Graziano

    2012-10-11

    Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L.) plants modify their nitrogen metabolism when grown under iron deficiency. The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1) activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.1.14) an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids) to the leaves.

  3. Zea3: a pleiotropic mutation affecting cotyledon development, cytokinin resistance and carbon-nitrogen metabolism.

    PubMed

    Faure, J D; Jullien, M; Caboche, M

    1994-04-01

    When photomorphogenesis takes place during early plant development, the cotyledons undergo a metabolic transition from heterotrophic sink metabolism to autotrophic source metabolism. A mutant screen was devised for seedlings affected in the regulation of nitrate assimilation during this early sink-source transition in Nicotiana plumbaginifolia. A mutant (EMS 203.6) was isolated for its inability to grow on low nitrate concentration. In contrast to wild-type (WT) plants, the mutant cotyledons remained tightly attached to each other throughout seedling development. It was found that a low carbon/nitrogen ratio (C/N ratio) in the medium was required for mutant growth. The higher the ratio was, the more the growth was inhibited. Mutant EMS 203.6 accumulated all amino acids in permissive conditions (low C/N ratio), and all amino acids and sugars also in selective (high C/N ratio) conditions. In addition, sucrose in the medium repressed light-regulated genes involved in nitrate assimilation and in photosynthesis in the mutant but not in the WT plants. The mutation was mapped to the Zea3 complementation group which confers resistance to zeatin. This zeatin resistance was associated with a hypertrophy of mutant cotyledons in response to cytokinin. Both cytokinin resistance and sensitivity to a high C/N ratio were not observed in etiolated mutant seedlings and were restricted to the jointed-cotyledon developmental stage. Previous physiological studies showed evidence for a role of cytokinins in the expression of nitrate reductase. Here, the first genetic evidence for a link between carbohydrate/nitrogen metabolism and cytokinin action during early development is provided.

  4. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).

    PubMed

    Ould-Ahmed, Marouf; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Lafrenière, Carole; Drouin, Pascal

    2014-10-15

    Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in

  5. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.).

    PubMed

    Lu, YongEn; Luo, Feng; Yang, Meng; Li, XiangHua; Lian, XingMing

    2011-07-01

    Rice (Oryza sativa) glutamate synthase (GOGAT, EC 1.4.1.14) enzymes have been proposed to have great potential for improving nitrogen use efficiency, but their functions in vivo and their effects on carbon and nitrogen metabolism have not been systematically explored. In this research, we analyzed transcriptional profiles of rice GOGAT genes using a genome-wide microarray database, and investigated the effects of suppression of glutamate synthase genes on carbon and nitrogen metabolism using GOGAT co-suppressed rice plants. Transcriptional profiles showed that rice GOGAT genes were expressed differently in various tissues and organs, which suggested that they have different roles in vivo. Compared with the wild-type, tiller number, total shoot dry weight, and yield of GOGAT co-suppressed plants were significantly decreased. Physiological and biochemical studies showed that the contents of nitrate, several kinds of free amino acids, chlorophyll, sugars, sugar phosphates, and pyridine nucleotides were significantly decreased in leaves of GOGAT co-suppressed plants, but the contents of free ammonium, 2-oxoglutarate, and isocitrate in leaves were increased. We conclude that GOGATs play essential roles in carbon and nitrogen metabolism, and that they are indispensable for efficient nitrogen assimilation in rice.

  6. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  8. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  9. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism[W

    PubMed Central

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R.; Blaby, Ian K.; Casero, David; Mettler, Tabea; Moseley, Jeffrey L.; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R.; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S.

    2014-01-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency. PMID:24748044

  10. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism.

    PubMed

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R; Blaby, Ian K; Casero, David; Mettler, Tabea; Moseley, Jeffrey L; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S

    2014-04-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency.

  11. Nitrogen metabolism meets phytopathology.

    PubMed

    Fagard, Mathilde; Launay, Alban; Clément, Gilles; Courtial, Julia; Dellagi, Alia; Farjad, Mahsa; Krapp, Anne; Soulié, Marie-Christine; Masclaux-Daubresse, Céline

    2014-10-01

    Nitrogen (N) is essential for life and is a major limiting factor of plant growth. Because soils frequently lack sufficient N, large quantities of inorganic N fertilizers are added to soils for crop production. However, nitrate, urea, and ammonium are a major source of global pollution, because much of the N that is not taken up by plants enters streams, groundwater, and lakes, where it affects algal production and causes an imbalance in aquatic food webs. Many agronomical data indicate that the higher use of N fertilizers during the green revolution had an impact on the incidence of crop diseases. In contrast, examples in which a decrease in N fertilization increases disease severity are also reported, indicating that there is a complex relationship linking N uptake and metabolism and the disease infection processes. Thus, although it is clear that N availability affects disease, the underlying mechanisms remain unclear. The aim of this review is to describe current knowledge of the mechanisms that link plant N status to the plant's response to pathogen infection and to the virulence and nutritional status of phytopathogens. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration

    SciTech Connect

    Firkins, J.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.; Mulvaney, R.L.

    1987-11-01

    Four multiple-cannulated steers (340 kg) were used in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Steers were fed a diet of 50% ground hay and 50% concentrate at two intakes (1.4 and 2.1% of BW), with urea and /sup 15/N-enriched ammonium sulfate infused continuously into the rumen at .4 or 1.2% of diet DM. Ratios of purines and diaminopimelic acid-N to N in fluid-associated and particulate-associated bacteria and in protozoa were similar among treatments but were lower for protozoa than for bacteria. Diaminopimelic acid-N:N was higher for fluid-associated vs. particulate-associated bacteria. Enrichment of /sup 15/N was similar between bacteria among treatments and was 30% lower for protozoa. Turnover rates of /sup 15/N in bacteria, NH/sub 3/N, and non-HN/sub 3/N pools were faster for steers infused with 1.2 than those infused with .4% urea, indicating less efficient usage of ammonia with higher urea. A method is described to estimate the proportion of duodenal nitrogen comprising bacterial and protozoal nitrogen.

  13. Nitrogen metabolism in haloarchaea

    PubMed Central

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-01-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils. PMID:18593475

  14. Nitrogen metabolism in haloarchaea.

    PubMed

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-07-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments.The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3(-), NO2(-) or NH4(+) as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils.

  15. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis1[W][OA

    PubMed Central

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-01-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mm) or limiting (0.15 mm) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions. PMID:22972706

  16. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis

    PubMed Central

    Sarasketa, Asier; González-Moro, M. Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source (NO3- and NH4+), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to NH4+ accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, NH4+ accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment. PMID:26870054

  17. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis.

    PubMed

    Sarasketa, Asier; González-Moro, M Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source ([Formula: see text] and [Formula: see text]), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to [Formula: see text] accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, [Formula: see text] accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment.

  18. Increased Phloem Transport of S-Methylmethionine Positively Affects Sulfur and Nitrogen Metabolism and Seed Development in Pea Plants1[W][OA

    PubMed Central

    Tan, Qiumin; Zhang, Lizhi; Grant, Jan; Cooper, Pauline; Tegeder, Mechthild

    2010-01-01

    Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set. PMID:20923886

  19. Induced lung inflammation and dietary protein supply affect nitrogen retention and amino acid metabolism in growing pigs.

    PubMed

    Kampman-van de Hoek, Esther; Sakkas, Panagiotis; Gerrits, Walter J J; van den Borne, Joost J G C; van der Peet-Schwering, Carola M C; Jansman, Alfons J M

    2015-02-14

    It is hypothesised that during immune system activation, there is a competition for amino acids (AA) between body protein deposition and immune system functioning. The aim of the present study was to quantify the effect of immune system activation on N retention and AA metabolism in growing pigs, depending on dietary protein supply. A total of sixteen barrows received an adequate (Ad) or restricted (Res) amount of dietary protein, and were challenged at day 0 with intravenous complete Freund's adjuvant (CFA). At days - 5, 3 and 8, an irreversible loss rate (ILR) of eight AA was determined. CFA successfully activated the immune system, as indicated by a 2- to 4-fold increase in serum concentrations of acute-phase proteins (APP). Pre-challenge C-reactive protein concentrations were lower (P< 0·05) and pre- and post-challenge albumin tended to be lower in Res-pigs. These findings indicate that a restricted protein supply can limit the acute-phase response. CFA increased urinary N losses (P= 0·04) and tended to reduce N retention in Ad-pigs, but not in Res-pigs (P= 0·07). The ILR for Val was lower (P= 0·05) at day 8 than at day 3 in the post-challenge period. The ILR of most AA, except for Trp, were strongly affected by dietary protein supply and positively correlated with N retention. The correlations between the ILR and APP indices were absent or negative, indicating that changes in AA utilisation for APP synthesis were either not substantial or more likely outweighed by a decrease in muscle protein synthesis during immune system activation in growing pigs.

  20. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep.

    PubMed

    Min, B R; Attwood, G T; Reilly, K; Sun, W; Peters, J S; Barry, T N; McNabb, W C

    2002-10-01

    Condensed tannins in forage legumes improve the nutrition of sheep by reducing ruminal degradation of plant protein and increasing crude protein flow to the intestine. However, the effects of condensed tannins in forage legumes on rumen bacterial populations in vivo are poorly understood. The aim of this study was to investigate the specific effects of condensed tannins from Lotus corniculatus on four proteolytic rumen bacteria in sheep during and after transition from a ryegrass (Lolium perenne)-white clover (Trifolium repens) diet (i.e., low condensed tannins) to a Lotus corniculatus diet (i.e., higher condensed tannins). The bacterial populations were quantified using a competitive polymerase chain reaction. Lotus corniculatus was fed with or without ruminal infusions of polyethylene glycol (PEG), which binds to and inactivates condensed tannins, enabling the effect of condensed tannins on bacterial populations to be examined. When sheep fed on ryegrass-white clover, populations of Clostridium proteoclasticum B316T, Butyrivibrio fibrisolvens C211a, Eubacterium sp. C12b, and Streptococcus bovis B315 were 1.5 x 10(8), 1.1 x 10(6), 4.6 x 10(8), and 7.1 x 10(6) mL(-1), respectively. When the diet was changed to Lotus corniculatus, the average populations (after 8-120 h) of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis decreased (P < 0.001) to 2.4 x 10(7), 1.1 x 10(5), 1.1 x 10(8), and 2.5 x 10(5) mL(-1), respectively. When PEG was infused into the rumen of sheep fed Lotus corniculatus, the populations of C. proteoclasticum, B. fibrisolvens, Eubacterium sp., and S. bovis were higher (P < 0.01-0.001) than in sheep fed Lotus corniculatus without the PEG infusion, with average populations (after 8-120 h) of 4.9 x 10(7), 3.8 x 10(5), 1.9 x 10(8), and 1.0 x 10(6), respectively. Sheep fed the Lotus corniculatus diet had lower rumen proteinase activity, ammonia, and soluble nitrogen (P < 0.05-0.001) than sheep that were fed Lotus corniculatus plus PEG

  1. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling.

    PubMed

    Fouillet, Hélène; Mariotti, François; Gaudichon, Claire; Bos, Cécile; Tomé, Daniel

    2002-01-01

    We used a previously developed compartmental model to assess the postprandial distribution and metabolism of dietary nitrogen (N) in the splanchnic and peripheral areas after the ingestion of a single mixed meal containing either (15)N-labeled milk or soy purified protein. Although the lower whole-body retention of dietary N from soy protein was measured experimentally, the splanchnic retention of dietary N was predicted by the model not to be affected by the protein source, and its incorporation into splanchnic proteins was predicted to reach approximately 35% of ingested N at 8 h after both meals. However, dietary N intestinal absorption and its appearance in splanchnic free amino acids were predicted to be more rapid from soy protein and were associated with a higher deamination, concomitant with a higher efficiency of incorporation of dietary N into proteins in the splanchnic bed. In contrast, soy protein was predicted to cause a reduction in peripheral dietary N uptake, as a consequence of both similar splanchnic retention and increased oxidation compared with milk protein. In addition, protein synthesis efficiency was reduced in the peripheral area after soy protein intake, leading to dietary N incorporation in peripheral proteins that fell from 26 to 19% of ingested N 8 h after milk and soy protein ingestion, respectively. Such a model thus enables a description of the processes involved in the differential metabolic utilization of dietary proteins and constitutes a valuable tool for further definition of the notion of protein quality during the period of protein gain.

  2. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.

  3. Nitrogen regulation of fungal secondary metabolism in fungi

    PubMed Central

    Tudzynski, Bettina

    2014-01-01

    Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability. PMID:25506342

  4. The Nitrogen Excretory Metabolism of Lumbricus Terrestris

    ERIC Educational Resources Information Center

    Teal, A. R.

    1977-01-01

    The use of the earthworm as a laboratory animal for studying the effect of starvation on nitrogen metabolism is discussed. Simple techniques and methods are presented allowing in vivo physiological responses to be compared with changes in the enzyme potential of gut tissue. (Author/MA)

  5. The Nitrogen Excretory Metabolism of Lumbricus Terrestris

    ERIC Educational Resources Information Center

    Teal, A. R.

    1977-01-01

    The use of the earthworm as a laboratory animal for studying the effect of starvation on nitrogen metabolism is discussed. Simple techniques and methods are presented allowing in vivo physiological responses to be compared with changes in the enzyme potential of gut tissue. (Author/MA)

  6. Nitrogen metabolism and excretion during aestivation.

    PubMed

    Ip, Y K; Chew, S F

    2010-01-01

    In this chapter, up-to-date information on nitrogen metabolism and excretion in various aestivators is presented. Although aestivation involves long-term fasting and corporal torpor, adaptive responses with regard to excretory nitrogen metabolism exhibited by aestivators during aestivation differ from those exhibited by nonaestivators undergoing fasting or immobilization. Special efforts were made to address current issues pertaining to excretory nitrogen metabolism and related phenomena in aestivators. Adaptations exhibited by aestivators were discussed in relation to the induction, maintenance, and arousal phases of aestivation. For the induction phase, we included topics like urea as an internal induction signal for aestivation, alteration in the permeability of the skin to ammonia, and changes in rate of ammonia production and urea synthesis. For the maintenance phase, the emphasis was on protein synthesis and degradation, ammonia production, and urea synthesis and accumulation. For the arousal phase, the focus was on rehydration, urea excretion, and phenomena related to feeding. Adaptations exhibited by aestivators specifically to each of these three phases of aestivation are essential to the understanding of the overall aestivation process, but, at present, only limited information is available on excretory nitrogen metabolism in animals during the induction or arousal phases of aestivation. Therefore, future efforts should be made to identify adaptive responses particular to each of the three phases of aestivation in various aestivators.

  7. Metabolism of nitrogenous compounds by ruminant liver.

    PubMed

    Reynolds, C K

    1992-03-01

    Ruminants absorb substantial amounts of ammonia nitrogen and very little glucose. Ammonia absorbed is removed by the liver and converted to urea, which can be recycled to the digestive tract and add to the pool of ammonia absorbed. When ammonia absorption and liver urea production are increased by changes in nitrogen intake, an associated increase in liver alpha-amino nitrogen removal has been observed. Reasons for the increase in liver removal of amino acids with greater ureagenesis are uncertain, but the aspartate/glutamate requirement of ureagenesis and the complex relationships between ureagenesis and the tricarboxylic acid cycle, glucogenesis, liver energy metabolism and redox state all may be involved. Amino acids represent potential sources of carbon for liver glucogenesis and precise reckonings of the contributions of amino acid carbon to glucogenesis are needed for ruminants fed differing diets. There is evidence for the involvement of peptides in liver nitrogen exchanges and amino acids in peptides represent a potential source of carbon for glucogenesis and nitrogen for ureagenesis. A number of endocrine factors have an impact on liver nitrogen metabolism in ruminants. Growth hormone decreases liver urea release and increases liver glutamate release.

  8. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    PubMed Central

    Beatty, Perrin H.; Klein, Matthias S.; Fischer, Jeffrey J.; Lewis, Ian A.; Muench, Douglas G.; Good, Allen G.

    2016-01-01

    A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields. PMID:27735856

  9. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  10. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.

    PubMed

    Yang, Yanjuan; Lu, Xiaomin; Yan, Bei; Li, Bin; Sun, Jin; Guo, Shirong; Tezuka, Takafumi

    2013-05-01

    The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway

  11. Age and sex affect protein metabolism at protein intakes that span the range of adequacy: comparison of leucine kinetics and nitrogen balance data☆

    PubMed Central

    Conley, Travis B.; McCabe, George P.; Lim, Eunjung; Yarasheski, Kevin E.; Johnson, Craig A.; Campbell, Wayne W.

    2012-01-01

    Research suggests that changes in leucine oxidation (leuox) with feeding may reflect adult protein requirements. We evaluated this possibility by assessing the effects of age, sex, and different protein intakes on whole-body leucine kinetics and nitrogen balance. Thirty-four young (n = 18, 22–46 years) and old (n= 16, 63–81 years) men and women completed three 18-day trials with protein intakes of 0.50, 0.75 and 1.00 g protein·kg body weight−1·d−1. Fasting and fed-state leucine kinetics were quantified on day 12 of each trial using a primed, constant infusion of L-[1-13C]leucine. Protein requirement was estimated using classical nitrogen balance measurements and calculations. Leucine kinetics parameters were influenced by age and sex across all protein intakes. With feeding, leuox increased more in old vs. young adults. Independent of age, fasting and fed-state leuox were lower, and net leucine balance (fasting+fed-state) was higher in women vs. men. Among all subjects and protein intakes, nitrogen balance was correlated with fed-state leuox (r=0.39), fed-state leucine balance (r=0.60), net leucine balance (r=0.49) and the change in leuox from the fasting to fed state (r=0.49) (P<.05 for all results). At the highest protein intake, the change in leuox with feeding was inversely correlated with protein requirement (r=−0.39). These findings indicate that leucine kinetics, especially leuox, reflect nitrogen balance-based estimates of the need for dietary protein and generally support the view that protein requirement is comparable between young and old adults. PMID:22841544

  12. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani.

    PubMed

    Mittelstrass, K; Treutter, D; Plessl, M; Heller, W; Elstner, E F; Heiser, I

    2006-09-01

    Potato plants ( SOLANUM TUBEROSUM L. cv. Indira) were grown at two levels of N supply in the greenhouse. Plants supplied with 0.8 g N per plant (high N variant) showed significantly increased biomass as compared to plants without additional N fertilisation (low N variant). C/N ratio was lower and protein content was higher in leaves of the high N variant. The concentration of chlorogenic acids and flavonols was significantly lower in leaves from the high N variant. Whereas resistance to ALTERNARIA SOLANI increased when plants were supplied with additional nitrogen, these plants were more susceptible to PHYTOPHTHORA INFESTANS. After infection with both pathogens, we found a strong induction of p-coumaroylnoradrenaline and p-coumaroyloctopamine, which are identified for the first time in potato leaves and are discussed as resistance factors of other solanaceous plants.

  13. Nitrogen Metabolism Genes from Temperate Marine Sediments.

    PubMed

    Reyes, Carolina; Schneider, Dominik; Lipka, Marko; Thürmer, Andrea; Böttcher, Michael E; Friedrich, Michael W

    2017-03-10

    In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3(-) was present in the top 5 cm below the sediment-water interface at both sites. NH4(+) increased with depth below 5 cm where it overlapped with the NO3(-) zone. Steady-state modelling of NO3(-) and NH4(+) porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3(-) reduction to NH4(+) (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3(-) reduction to NO2(-) or NH4(+) as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.

  14. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.

    PubMed

    Weiner, I David; Mitch, William E; Sands, Jeff M

    2015-08-07

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.

  15. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    PubMed Central

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  16. Effects of manganese deficiency and added cerium on nitrogen metabolism of maize.

    PubMed

    Gong, Xiaolan; Qu, Chunxiang; Liu, Chao; Hong, Mengmeng; Wang, Ling; Hong, Fashui

    2011-12-01

    Manganese is one of the essential microelements for plant growth, and cerium is a beneficial element for plant growth. However, whether manganese deficiency affects nitrogen metabolism of plants and cerium improves the nitrogen metabolism of plants by exposure to manganese-deficient media are still unclear. The main aim of the study was to determine the effects of manganese deficiency in nitrogen metabolism and the roles of cerium in the improvement of manganese-deficient effects in maize seedlings. Maize seedlings were cultivated in manganese present Meider's nutrient solution. They were subjected to manganese deficiency and to cerium chloride administered in the manganese-present and manganese-deficient media. Maize seedlings grown in the various media were measured for key enzyme activities involved in nitrogen metabolism, such as nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamic-oxaloace transaminase. We found that manganese deficiency restricted uptake and transport of NO(3)(-), inhibited activities of nitrogen-metabolism-related enzymes, such as nitrate reductase, glutamine synthetase, and glutamic-oxaloace transaminase, thus decreasing the synthesis of chlorophyll and soluble protein, and inhibited the growth of maize seedlings. Manganese deficiency promoted the activity of glutamate dehydrogenase and reduced the toxicity of excess ammonia to the plant, while added cerium relieved the damage to nitrogen metabolism caused by manganese deficiency in maize seedlings. However, cerium addition exerted positively to relieve the damage of nitrogen metabolism process in maize seedlings caused by exposure to manganese-deficient media.

  17. [Problem of nitrogen metabolism in monogastric animals].

    PubMed

    Krawielitzki, K; Bock, H D

    1976-02-01

    A new method has been developed for determining the proportion of endogenic and exogenic faecal N by measuring the degree of specific labelling in the feeding-stuff (administered orally) and in the excreta (faeces and urine). The method has also been developed to find out whether the endogenic excretion of intestinal N is actually independent of the N intake. The present technique had been worked out on the basis of the model that had been originally established by Czarnetzki et al. in 1969 with the aim of characterizing processes of nitrogen metabolism in monogastric animals. As a result, a multi-compartment model was developed and a number of conclusions were derived from it. These conclusions were tested in 3 series of experiments on rats fed 15N labelled spring barley and 15N labelled feed yeast. Additionally, 15N labelled experimental rats were used receiving unlabelled extracted soya bean meal. The proportion of endogenic intestinal nitrogen (DVN) varied between 15-22% relative to the proportion of N ingested. The relative proportion of endogenic faecal N in the tota faecal N was found to be 100% in the case of the nitrogen-free diet. With increasing levels of dietary N this proportion lended to decrease down to a final value that was quite characteristic for each partitular feeding-stuff. The absolute amount of endogenic faecal N, however, was found to increase with increasing N levels. This shows that contrary to current views, DVN is not constant and is not independent of protein intake. Rather, a close relationship was found to exist between the level of N intake and DVN excretion (r = 0.951...0.972). So, the proportion of exogenic N contained in the faeces is much smaller than was previously assumed on the basis of the classical and regressive methods. These were based on the assumption that DVN is constant. Consequently, higher digestibility values will be obtained in comparison with those calculated on the basis of the previous methods. Digestibility

  18. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria

    PubMed Central

    Bothe, Hermann; Schmitz, Oliver; Yates, M. Geoffrey; Newton, William E.

    2010-01-01

    Summary: This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N2 fixation and/or H2 formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H2 as a source of combustible energy. To enhance the rates of H2 production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H2 formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy. PMID:21119016

  19. Nitrogen fixation and carbon metabolism in legume nodules.

    PubMed

    Garg, Neera; Singla, Ranju; Geetanjali

    2004-02-01

    A large amount of energy is utilized by legume nodules for the fixation of nitrogen and assimilation of fixed nitrogen (ammonia) into organic compounds. The source of energy is provided in the form of photosynthates by the host plant. Phosphoenol pyruvate carboxylase (PEPC) enzyme, which is responsible for carbon dioxide fixation in C4 and crassulacean acid metabolism plants, has also been found to play an important role in carbon metabolism in legume root nodule. PEPC-mediated CO2 fixation in nodules results in the synthesis of C4 dicarboxylic acids, viz. aspartate, malate, fumarate etc. which can be transported into bacteroids with the intervention of dicarboxylate transporter (DCT) protein. PEPC has been purified from the root nodules of few legume species. Information on the relationship between nitrogen fixation and carbon metabolism through PEPC in leguminous plants is scanty and incoherent. This review summarizes the various aspects of carbon and nitrogen metabolism in legume root nodules.

  20. Ibogaine affects brain energy metabolism.

    PubMed

    Paskulin, Roman; Jamnik, Polona; Zivin, Marko; Raspor, Peter; Strukelj, Borut

    2006-12-15

    Ibogaine is an indole alkaloid present in the root of the plant Tabernanthe iboga. It is known to attenuate abstinence syndrome in animal models of drug addiction. Since the anti-addiction effect lasts longer than the presence of ibogaine in the body, some profound metabolic changes are expected. The aim of this study was to investigate the effect of ibogaine on protein expression in rat brains. Rats were treated with ibogaine at 20 mg/kg body weight i.p. and subsequently examined at 24 and 72 h. Proteins were extracted from whole brain and separated by two-dimensional (2-D) electrophoresis. Individual proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Enzymes of glycolysis and tricarboxylic acid (TCA) cycle namely glyceraldehyde-3-phosphate dehydrogenase, aldolase A, pyruvate kinase and malate dehydrogenase were induced. The results suggest that the remedial effect of ibogaine could be mediated by the change in energy availability. Since energy dissipating detoxification and reversion of tolerance to different drugs of abuse requires underlying functional and structural changes in the cell, higher metabolic turnover would be favourable. Understanding the pharmacodynamics of anti-addiction drugs highlights the subcellular aspects of addiction diseases, in addition to neurological and psychological perspectives.

  1. Glycolate Metabolism Is Under Nitrogen Control in Chlorella1

    PubMed Central

    Beudeker, Rob F.; Tabita, F. Robert

    1984-01-01

    The utilization of nitrate and ammonia as nitrogen sources had different effects on the metabolism of glycolate in Cholorella sorokiniana. During photolithotrophic growth with nitrate as nitrogen source, glycolate was metabolized via the glycine-serine pathway. Ammonia, produced as a result of glycolate metabolism, was reassimilated by glutamine synthetase. Two isoforms of this enzyme were present at different relative abundance in C. sorokiniana wild type and in a mutant with an increased capacity for the metabolism of glycolate (strain OR). During photolithotrophic growth in the presence of ammonia as sole nitrogen source, several lines of evidence indicated that glycolate was metabolized to malate, pyruvate, tricarboxylic acid cycle intermediates and related amino acids in C. sorokiniana wild-type cells. Malate synthase was induced and glycine decarboxylase and serine-glyoxylate aminotransferase were repressed in cells grown with ammonia. An inverse correlation was observed between aminating NADPH-glutamate dehydrogenase and the in vivo glycine decarboxylation rate. PMID:16663657

  2. Regulation of nitrogen metabolism by GATA zinc finger transcription factors in Yarrowia lipolytica

    DOE PAGES

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.; ...

    2017-02-15

    Here, fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greatermore » accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.« less

  3. Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean.

    PubMed

    Bellaloui, Nacer; Zablotowicz, Robert M; Reddy, Krishna N; Abel, Craig A

    2008-04-23

    Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylene reduction assay, soybean yield, or seed nitrogen content. However, there were significant effects of glyphosate application on nitrogen assimilation, as measured by in vivo nitrate reductase activity (NRA) in leaves, roots, and nodules, especially at high rate. Transiently lower leaf nitrogen or (15)N natural abundance in high glyphosate application soybean supports the inhibition of NRA. With the higher glyphosate application level protein was significantly higher (10.3%) in treated soybean compared to untreated soybean. Inversely, total oil and linolenic acid were lowest at the high glyphosate application rate, but oleic acid was greatest (22%) in treated soybean. These results suggest that nitrate assimilation in GR soybean was more affected than nitrogen fixation by glyphosate application and that glyphosate application may alter nitrogen and carbon metabolism.

  4. Metabolic networks for nitrogen utilization in Prevotella ruminicola 23.

    PubMed

    Kim, Jong Nam; Méndez-García, Celia; Geier, Renae R; Iakiviak, Michael; Chang, Jongsoo; Cann, Isaac; Mackie, Roderick I

    2017-08-10

    Nitrogen metabolism in gut systems remains poorly studied in spite of its importance for microbial growth and its implications for the metabolism of the host. Prevotella spp. are the most predominant bacteria detected in the rumen, but their presence has also been related to health and disease states in the human gut and oral cavity. To explore the metabolic networks for nitrogen assimilation in this bacterium, changes in gene expression profiles in response to variations in the available nitrogen source and to different concentrations of ammonium were analyzed by microarray and reverse transcription quantitative PCR, and linked with function by further proteomic analysis. The observed patterns of transcript abundances for genes involved in ammonium assimilation differed from the classical "enteric paradigm" for nitrogen utilization. Expression of genes encoding high substrate affinity nitrogen assimilation enzymes (GS-GOGAT system) was similar in growth-limiting and non-limiting nitrogen concentrations in P. ruminicola 23, whereas E. coli and Salmonella spp. responses to excess nitrogen involve only low substrate affinity enzymes. This versatile behavior might be a key feature for ecological success in habitats such as the rumen and human colon where nitrogen is rarely limiting for growth, and might be linked to previously reported Prevotella spp. population imbalances relative to other bacterial species in gut systems.

  5. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    PubMed Central

    2017-01-01

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCE Nitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast Y

  6. [Affective disorders: endocrine and metabolic comorbidities].

    PubMed

    Cermolacce, M; Belzeaux, R; Adida, M; Azorin, J-M

    2014-12-01

    Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances.

  7. Environmental factors affecting rates of nitrogen cycling

    SciTech Connect

    Lipschultz, F.

    1984-01-01

    The nitrogen cycle in the eutrophic Delaware river was studied in late summer, 1983 using /sup 15/N tracer additions of NHG/sub 4//sup +/, NO/sub 2//sup -/, and NO/sub 3//sup -/. Rates for nine different transformations were calculated simultaneously with a least-squares minimization analysis. Light was found to stimulate ammonium uptake and to inhibit ammonium oxidation. Rates for nitrification, ammonium uptake by phytoplankton, and photosynthesis were integrated over 24 hours and river depth. High turbidity lifted the effect of light inhibition on nitrification and restricted phytoplankton uptake. Uptake of ammonium contributed over 95% of the inorganic nitrogen ration for phytoplankton, with dark uptake accounting for more than 50%. A mass-conservation, box model of river was used to calculate rate constants required to reproduce observed nutrient concentration changes. The calculated constants correlated well with the measured /sup 15/N and oxygen integrated rates. Water-column nitrification was the major loss term for NH/sub 4//sup +/, while water column regeneration was the primary source. Loss of oxidized nitrogen was insignificant. Oxygen consumption and air-water exchange far exceeded net photosynthetic oxygen production. Nitrification contributed less than 1% to the oxygen demand near Philadelphia but up to 25% further downstream. Production of NO and N/sub 2/O was measured under varying oxygen concentrations in batch cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceanus. Production of both gases increased relative to nitrite production as oxygen levels decreased.

  8. [Research advance in nitrogen metabolism of plant and its environmental regulation].

    PubMed

    Xu, Zhenzhu; Zhou, Guangsheng

    2004-03-01

    Nitrogen metabolism is not only one of the basic processes of plant physiology, but also one of the important parts of global chemical cycle. Plant nitrogen assimilation directly takes part in the synthesis and conversion of amino acid through the reduction of nitrate. During this stage, some key enzymes, e.g., nitrate reductase (NR), glutamine synthetase (GS), glutamate dehydrogenase (GDH), glutamine synthase (GOGAT), aspargine synthetase (AS), and asparate aminotransferase (AspAT) participate these processes. The protein is assimilated in plant cell through amino acid, and becomes a part of plant organism through modifying, classifying, transporting and storing processes, etc. The nitrogen metabolism is associated with carbonic metabolism through key enzyme regulations and the conversion of products, which consists of basic life process. Among these amino acids in plant cell, glutamic acid (Glu), glutamine (Gln), aspartic acid (Asp) and asparagines (Asn), etc., play a key role, which regulates their conversion each other and their contents in the plant cell through regulating formation and activity of those key enzymes. Environmental factors also affect the conversion and recycle of the key amino acids through regulating gene expression of the key enzymes and their activities. Nitrate and light intensity positively regulate the gene transcription of NR, but ammonium ions and Glu, Gln do the negative way. Water deficit is a very serious constraint on N2 fixation rate and soybean (Glycine max Merr.) grain yield, in which, ureide accumulation and degradation under water deficit appear to be the key issues of feedback mechanism on nitrogen fixation. Water stress decreases NR activity, but increases proteinase activity, and thus, they regulate plant nitrogen metabolism, although there are some different effects among species and cultivars. Water stress also decreases plant tissue protein content, ratio of protein and amino acid, and reduces the absorption of amino

  9. Nitrogen Utilization and Metabolism in Ruminococcus albus 8

    PubMed Central

    Kim, Jong Nam; Henriksen, Emily DeCrescenzo; Cann, Isaac K. O.

    2014-01-01

    The model rumen Firmicutes organism Ruminococcus albus 8 was grown using ammonia, urea, or peptides as the sole nitrogen source; growth was not observed with amino acids as the sole nitrogen source. Growth of R. albus 8 on ammonia and urea showed the same growth rate (0.08 h−1) and similar maximum cell densities (for ammonia, the optical density at 600 nm [OD600] was 1.01; and for urea, the OD600 was 0.99); however, growth on peptides resulted in a nearly identical growth rate (0.09 h−1) and a lower maximum cell density (OD600 = 0.58). To identify differences in gene expression and enzyme activities, the transcript abundances of 10 different genes involved in nitrogen metabolism and specific enzyme activities were analyzed by harvesting mRNA and crude protein from cells at the mid- and late exponential phases of growth on the different N sources. Transcript abundances and enzyme activities varied according to nitrogen source, ammonia concentration, and growth phase. Growth of R. albus 8 on ammonia and urea was similar, with the only observed difference being an increase in urease transcript abundance and enzyme activity in urea-grown cultures. Growth of R. albus 8 on peptides showed a different nitrogen metabolism pattern, with higher gene transcript abundance levels of gdhA, glnA, gltB, amtB, glnK, and ureC, as well as higher activities of glutamate dehydrogenase and urease. These results demonstrate that ammonia, urea, and peptides can all serve as nitrogen sources for R. albus and that nitrogen metabolism genes and enzyme activities of R. albus 8 are regulated by nitrogen source and the level of ammonia in the growth medium. PMID:24610852

  10. Nitrogen utilization and metabolism in Ruminococcus albus 8.

    PubMed

    Kim, Jong Nam; Henriksen, Emily Decrescenzo; Cann, Isaac K O; Mackie, Roderick I

    2014-05-01

    The model rumen Firmicutes organism Ruminococcus albus 8 was grown using ammonia, urea, or peptides as the sole nitrogen source; growth was not observed with amino acids as the sole nitrogen source. Growth of R. albus 8 on ammonia and urea showed the same growth rate (0.08 h(-1)) and similar maximum cell densities (for ammonia, the optical density at 600 nm [OD600] was 1.01; and for urea, the OD600 was 0.99); however, growth on peptides resulted in a nearly identical growth rate (0.09 h(-1)) and a lower maximum cell density (OD600 = 0.58). To identify differences in gene expression and enzyme activities, the transcript abundances of 10 different genes involved in nitrogen metabolism and specific enzyme activities were analyzed by harvesting mRNA and crude protein from cells at the mid- and late exponential phases of growth on the different N sources. Transcript abundances and enzyme activities varied according to nitrogen source, ammonia concentration, and growth phase. Growth of R. albus 8 on ammonia and urea was similar, with the only observed difference being an increase in urease transcript abundance and enzyme activity in urea-grown cultures. Growth of R. albus 8 on peptides showed a different nitrogen metabolism pattern, with higher gene transcript abundance levels of gdhA, glnA, gltB, amtB, glnK, and ureC, as well as higher activities of glutamate dehydrogenase and urease. These results demonstrate that ammonia, urea, and peptides can all serve as nitrogen sources for R. albus and that nitrogen metabolism genes and enzyme activities of R. albus 8 are regulated by nitrogen source and the level of ammonia in the growth medium.

  11. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides.

    PubMed

    Bi, Fangcheng; Ment, Dana; Luria, Neta; Meng, Xiangchun; Prusky, Dov

    2017-02-01

    The GATA transcription factor AreA is a global nitrogen regulator that restricts the utilization of complex and poor nitrogen sources in the presence of good nitrogen sources in microorganisms. In this study, we report the biological function of an AreA homolog (the CgareA gene) in the fruit postharvest pathogen Colletotrichum gloeosporioides. Targeted gene deletion mutants of areA exhibited significant reductions in vegetative growth, increases in conidia production, and slight decreases in conidial germination rates. Quantitative RT-PCR (qRT-PCR) analysis revealed that the expression of AreA was highly induced under nitrogen-limiting conditions. Moreover, compared to wild-type and complemented strains, nitrogen metabolism-related genes were misregulated in ΔareA mutant strains. Pathogenicity assays indicated that the virulence of ΔareA mutant strains were affected by the nitrogen content, but not the carbon content, of fruit hosts. Taken together, our results indicate that CgareA plays a critical role in fungal development, conidia production, regulation of nitrogen metabolism and virulence in Colletotrichum gloeosporioides.

  12. [Nitrogen metabolism and its control mechanisms].

    PubMed

    Bergner, H

    1989-01-01

    N intake in the form of protein has neither got an upper nor a lower limit for agricultural working animals within a diet and there is no control mechanism for it. A high surplus of certain amino acids results in a reduction of feed intake. N excretion in faeces depends on 1) the excretion of N containing indigestible feedstuffs, 2) bacterial nitrogen synthesis in the large intestine and 3) the excretion of true endogenous N containing substances (digestion enzymes, intestinal epithelium, N containing endogenous secretion). There are no other control mechanisms for N excretion in faeces. N excretion in urine mainly comprises the nitrogen from the degeneration of amino acids and nucleic acids. The interrelations between urea, NH3, allantoin, creatine and creatinine, uric acid and hippuric acid depend on the species (monogastric or ruminants), on the nitrogen and N amount consumed and on the recycling ratio of the amino acids. The absolute amount of N excretion is not subject to any control mechanism, it depends on the intake of protein and NPN substances, the interim stages, however, which lead to the formation of excretory products, are intermediately controlled. The most important interim stage is protein biosynthesis, which is a fixed, intermediately controlled value in maintenance level. Under growth conditions only, the protein synthesis quota can exceed the protein degradation quota of the total organism (positive N balance). The control mechanisms of protein biosynthesis have, according to current knowledge, the following structure: Stimulation: 1) growth hormone (STH) stimulates protein synthesis by means of somatomedins; 2) hormones of the thyroid gland (T4 and T3) are controlled by the hormone stimulating the thyroid gland (TSH); 3) insulin. Inhibition: 1) somatostatin inhibits STH, TSH and insulin; 2) cortisol directly inhibits protein synthesis and stimulates protein degradation. The control mechanisms of protein turnover in addition to genetic coding

  13. Affective Disorders, Bone Metabolism, and Osteoporosis

    PubMed Central

    2013-01-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. PMID:23874147

  14. Engineering glucose metabolism of Escherichia coli under nitrogen starvation.

    PubMed

    Chubukov, Victor; Desmarais, John James; Wang, George; Chan, Leanne Jade G; Baidoo, Edward Ek; Petzold, Christopher J; Keasling, Jay D; Mukhopadhyay, Aindrila

    2017-01-01

    A major aspect of microbial metabolic engineering is the development of chassis hosts that have favorable global metabolic phenotypes, and can be further engineered to produce a variety of compounds. In this work, we focus on the problem of decoupling growth and production in the model bacterium Escherichia coli, and in particular on the maintenance of active metabolism during nitrogen-limited stationary phase. We find that by overexpressing the enzyme PtsI, a component of the glucose uptake system that is inhibited by α-ketoglutarate during nitrogen limitation, we are able to achieve a fourfold increase in metabolic rates. Alternative systems were also tested: chimeric PtsI proteins hypothesized to be insensitive to α-ketoglutarate did not improve metabolic rates under the conditions tested, whereas systems based on the galactose permease GalP suffered from energy stress and extreme sensitivity to expression level. Overexpression of PtsI is likely to be a useful arrow in the metabolic engineer's quiver as productivity of engineered pathways becomes limited by central metabolic rates during stationary phase production processes.

  15. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels.

    PubMed

    Zhong, Chu; Cao, Xiaochuang; Hu, Jijie; Zhu, Lianfeng; Zhang, Junhua; Huang, Jianliang; Jin, Qianyu

    2017-01-01

    To investigate the role of nitrogen (N) metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM), moderate N (2.86 mM), and high N (7.15 mM) followed by 150 g⋅L(-1) PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC) was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2) contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  16. Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms

    PubMed Central

    Sulieman, Saad; Tran, Lam-Son Phan

    2014-01-01

    The special issue “Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms” aims to investigate the physiological and biochemical advances in the symbiotic process with an emphasis on nodule establishment, development and functioning. The original research articles included in this issue provide important information regarding novel aspects of nodule metabolism and various regulatory pathways, which could have important future implications. This issue also included one review article that highlights the importance of using legume trees in the production of renewable biofuels. PMID:25347276

  17. [Effect of carcinogenic nitrogen-containing compounds on cell metabolism].

    PubMed

    Antropov, V I; Samoĭlov, V O; Slepian, É I

    2012-01-01

    The brown frog (Rana temporaria) skin cells respiration, calcium metabolism and glycolysis, the tree frog (Hyla arborea) skin cells respiration and calcium metabolism were studied under short-term (first hours) and long-term (first days) exposure to nitrogenous compounds [N-nitroso-N-methyl urea (NMU) and thiourea (TU)]. The first direct effect of nitrogenous compounds exposure was cell breathing inhibition occurring in Rana temporaria skin cells after 28 days of exposure, and in Hyla arborea skin cells after 8 days of exposure. These changes were precided by decrease of lactate dehydrogenase (LDH) activity in Rana temporaria skin cells starting 16 days after NMU and TU introduction. The increase of intracellular calcium level was noted in tree frog skin cells 4-8 days after NMU and TU introduction, in brown frogs skin cells this parameter was unchanged.

  18. The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae.

    PubMed

    ter Schure, E G; Silljé, H H; Verkleij, A J; Boonstra, J; Verrips, C T

    1995-11-01

    Saccharomyces cerevisiae was grown in a continuous culture at a single dilution rate with input ammonia concentrations whose effects ranged from nitrogen limitation to nitrogen excess and glucose limitation. The rate of ammonia assimilation (in millimoles per gram of cells per hour) was approximately constant. Increased extracellular ammonia concentrations are correlated with increased intracellular glutamate and glutamine concentrations, increases in levels of NAD-dependent glutamate dehydrogenase activity and its mRNA (gene GDH2), and decreases in levels of NADPH-dependent glutamate dehydrogenase activity and its mRNA (gene GDH1), as well as decreases in the levels of mRNA for the amino acid permease-encoding genes GAP1 and PUT4. The governing factor of nitrogen metabolism might be the concentration of ammonia rather than its flux.

  19. THE EFFECT OF NITROGEN MUSTARDS ON ENZYMES AND TISSUE METABOLISM

    PubMed Central

    Barron, E. S. Guzman; Bartlett, Grant R.; Miller, Zelma Baker; Meyer, Joe; Seegmiller, J. E.

    1948-01-01

    Nitrogen mustards at a concentration forty times the minimum lethal dose inhibited the respiration of all tissues studied but affected anaerobic glycolysis very little. The inhibiting effect increased with time. The respiration of lymphoid tissue was extremely sensitive to nitrogen mustard, as concentrations below the LD50 definitely inhibited the respiration of rabbit lymph nodes. In tissue slices nitrogen mustards inhibited the oxidation of pyruvate and of l-amino acids and the utilization of NH3. A number of synthesis reactions were also inhibited, such as the synthesis of carbohydrate, of creatine, and of urea. When added to growing seeds, nitrogen mustards inhibited their growth. In rats given lethal doses of nitrogen mustards there were found complete inhibition of choline oxidation and strong inhibition of pyruvate oxidation by the kidney and partial inhibition of urea synthesis by the liver. Inhibition of bone marrow respiration by nitrogen mustards was prevented by the addition of choline, and of dimethylaminoethanol plus methionine The possible mechanism of nitrogen mustard intoxication is discussed. PMID:18858641

  20. Implications of nitrogen phloem loading for carbon metabolism and transport during Arabidopsis development.

    PubMed

    Santiago, James P; Tegeder, Mechthild

    2017-03-14

    Metabolite transport processes and primary metabolism are highly interconnected. This study examined the importance of source-to-sink nitrogen partitioning, and associated nitrogen metabolism, for carbon capture, transport and usage. Specifically, Arabidopsis aap8 (AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism, sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle leading to an overall decrease in plant biomass. During vegetative stage, photosynthesis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength. However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall, this work demonstrates that phloem loading of nitrogen has varying implication for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner.

  1. Functions of autophagy in plant carbon and nitrogen metabolism.

    PubMed

    Ren, Chenxia; Liu, Jingfang; Gong, Qingqiu

    2014-01-01

    Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to nitrogen use efficiency (NUE) both under normal and low-nitrogen conditions.

  2. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability.

    PubMed

    Li, Shuangshuang; Peng, Chengrong; Wang, Chun; Zheng, Jiaoli; Hu, Yao; Li, Dunhai

    2017-01-01

    Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.

  3. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana.

    PubMed

    Bender, Sara J; Parker, Micaela S; Armbrust, E Virginia

    2012-03-01

    Diatoms are photoautotrophic organisms capable of growing on a variety of inorganic and organic nitrogen sources. Discovery of a complete urea cycle in diatoms was surprising, as this pathway commonly functions in heterotrophic organisms to rid cells of waste nitrogen. To determine how the urea cycle is integrated into cellular nitrogen metabolism and energy management, the centric diatom Thalassiosira pseudonana was maintained in semi-continuous batch cultures on nitrate, ammonium, or urea as the sole nitrogen source, under a 16: 8 light: dark cycle and at light intensities that were low, saturating, or high for growth. Steady-state transcript levels were determined for genes encoding enzymes linked to the urea cycle, urea hydrolysis, glutamine synthesis, pyrimidine synthesis, photorespiration, and energy storage. Transcript abundances were significantly affected by nitrogen source, light intensity and a diel cycle. The impact of N source on differential transcript accumulation was most apparent under the highest light intensity. Models of cellular metabolism under high light were developed based on changes in transcript abundance and predicted enzyme localizations. We hypothesize that the urea cycle is integrated into nitrogen metabolism through its connection to glutamine and in the eventual production of urea. These findings have important implications for nitrogen flow in the cell over diel cycles at surface ocean irradiances.

  4. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE PAGES

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction bymore » clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less

  5. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    PubMed Central

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production. PMID:25937978

  6. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    SciTech Connect

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production.

  7. Universal scaling of respiratory metabolism, size and nitrogen in plants.

    PubMed

    Reich, Peter B; Tjoelker, Mark G; Machado, Jose-Luis; Oleksyn, Jacek

    2006-01-26

    The scaling of respiratory metabolism to body size in animals is considered to be a fundamental law of nature, and there is substantial evidence for an approximate (3/4)-power relation. Studies suggest that plant respiratory metabolism also scales as the (3/4)-power of mass, and that higher plant and animal scaling follow similar rules owing to the predominance of fractal-like transport networks and associated allometric scaling. Here, however, using data obtained from about 500 laboratory and field-grown plants from 43 species and four experiments, we show that whole-plant respiration rate scales approximately isometrically (scaling exponent approximately 1) with total plant mass in individual experiments and has no common relation across all data. Moreover, consistent with theories about biochemically based physiological scaling, isometric scaling of whole-plant respiration rate to total nitrogen content is observed within and across all data sets, with a single relation common to all data. This isometric scaling is unaffected by growth conditions including variation in light, nitrogen availability, temperature and atmospheric CO2 concentration, and is similar within or among species or functional groups. These findings suggest that plants and animals follow different metabolic scaling relations, driven by distinct mechanisms.

  8. Diet and nitrogen metabolism during spaceflight on the shuttle.

    PubMed

    Stein, T P; Leskiw, M J; Schluter, M D

    1996-07-01

    Human spaceflight is associated with a loss of body protein. To investigate this problem, dietary intake, nitrogen balance, the whole body protein, and fibrinogen protein synthesis rates were measured on the crews of two Spacelab Life Sciences (SLS) shuttle missions before, during, and after spaceflight. The first mission, SLS-1, lasted 9.5 days, and the second, SLS-2, lasted 15 days. The 15N-glycine method was used for the protein synthesis measurements. The following results were obtained. 1) There was a rapid decline in weight for the first 5 days and then the body weight appeared to stabilize. 2) The mean energy intake preflight was 39.0 +/- 2.5 kcal x kg-1 x day-1 (n = 10). There was a sharp drop in dietary intake on flight day 1, with recovery by the second day, and then energy intake was constant at 30.4 +/- 1.5 kcal x kg-1 x day-1 (n = 12) for the remainder of the flight period (P < 0.05). 3) Nitrogen retention was decreased during flight, with the magnitude of the decrease lessening toward the end of the mission. The daily mean nitrogen balance changed from 58 +/- 9 mg x kg-1 x day-1 (n = 9) preflight to 16 +/- 3 mg N x kg-1 x day-1; P < 0.05; n = 11) in flight, corresponding to a loss of approximately 1 kg of lean body mass over 14 days. 4) Whole body protein synthesis was increased early in flight and on recovery, as was fibrinogen synthesis. We conclude that 1) the rapid readjustment and stabilization of energy intake and the improved nitrogen retention with increasing flight duration are consistent with a rapid metabolic accommodation to the novel environment; and that 2) the increased protein turnover indicates that a metabolic stress response is an important factor in this adjustment process.

  9. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    NASA Technical Reports Server (NTRS)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  10. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    NASA Technical Reports Server (NTRS)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  11. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.

    PubMed

    Jara, Matías; Cubillos, Francisco A; García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio

    2014-01-01

    Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism.

  12. Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts

    PubMed Central

    García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio

    2014-01-01

    Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism. PMID:24466135

  13. Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas.

    PubMed

    Martin, F; Ramstedt, M; Söderhäll, K

    1987-01-01

    The literature concerning the metabolism of carbon and nitrogen compounds in ectomycorrhizal associations of trees is reviewed. The absorption and translocation of mineral ions by the mycelia require an energy source and a reductant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid and carbohydrate syntheses during the growth of the mycelia. Competition for photosynthates occurs between the fungal cells and the various vegetative sinks in the host tree. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolites between the various sites of utilization are only poorly understood. Both ascomycetous and basidiomycetous ectomycorrhizal fungi synthesize and some, if not all, accumulate mannitol, trehalose and triglycerides. The fungal strains employ the Embden--Meyerhof pathway of glucose catabolism and the key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, transaldolase and transketolase). Anaplerotic CO2 fixation, via pyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, provides high pools of amino acids. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The ectomycorrhizas are thought to contain the Embden--Meyerhof pathway, the pentose phosphate pathway and the tricarboxylic acid cycle, which provide the carbon skeletons for the assimilation of ammonia into amino acids. The main route of assimilation of ammonia appears to be through the glutamine synthetase-glutamate synthase cycle in the ectomycorrhizas. Glutamate dehydrogenase plays a minor role in this process. Glutamate dehydrogenase and glutamine synthetase are present in free-living ectomycorrhizal fungi and they participate in the assimilation of ammonia and the synthesis

  14. Nitrogen metabolism in tabtoxinine-. beta. -lactam-tolerant oats

    SciTech Connect

    Knight, T.J.; Langston-Unkefer, P.J. New Mexico State Univ. Plant Genetic Engineering Lab., Las Cruces ); Sengupta-Gopalan, C. )

    1989-04-01

    Infestation of the rhizosphere of oat plants with Pseudomonas syringae pv. tabaci results in rapid death of normal oats. This is a consequence of the action of the bacterially delivered inhibitor of glutamine synthetase, tabtoxinine-{beta}-lactam (T{beta}L). Such infested plants contain no active glutamine synthetase. We have screened for a small population of oats that contain leaf glutamine synthetases that are insensitive to T{beta}L and which have increased leaf GS activity. The root GS is inactive. We have examined these plants' altered nitrogen metabolism and further characterized their novel glutamine synthetase using both biochemical and molecular biological approaches. This investigation has revealed a GS with unusual electrophoretic mobility by native PAGE.

  15. Adaptive strategies for nitrogen metabolism in phosphate deficient legume nodules.

    PubMed

    Valentine, Alex J; Kleinert, Aleysia; Benedito, Vagner A

    2017-03-01

    Legumes play a significant role in natural and agricultural ecosystems. They can fix atmospheric N2 and contribute the fixed N to soils and plant N budgets. In legumes, the availability of P does not only affect nodule development, but also N acquisition and metabolism. For legumes as an important source of plant proteins, their capacity to metabolise N during P deficiency is critical for their benefits to agriculture and the natural environment. In particular for farming, rock P is a non-renewable source of which the world has about 60-80 years of sustainable extraction of this P left. The global production of legume crops would be devastated during a scarcity of P fertiliser. Legume nodules have a high requirement for mineral P, which makes them vulnerable to soil P deficiencies. In order to maintain N metabolism, the nodules have evolved several strategies to resist the immediate effects of P limitation and to respond to prolonged P deficiency. In legumes nodules, N metabolism is determined by several processes involving the acquisition, assimilation, export, and recycling of N in various forms. Although these processes are integrated, the current literature lacks a clear synthesis of how legumes respond to P stress regarding its impact on N metabolism. In this review, we synthesise the current state of knowledge on how legumes maintain N metabolism during P deficiency. Moreover, we discuss the potential importance of two additional alterations to N metabolism during P deficiency. Our goals are to place these newly proposed mechanisms in perspective with other known adaptations of N metabolism to P deficiency and to discuss their practical benefits during P deficiency in legumes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  17. Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers

    NASA Technical Reports Server (NTRS)

    Singh, S.; Lewis, N. G.; Towers, G. H.

    1998-01-01

    In the first step of the phenylpropanoid metabolic pathway, L-phenylalanine (L-Phe) is deaminated to form E-cinnamate, in a conversion catalyzed by phenylalanine ammonia-lyase (PAL; EC 4.3.1.5). The metabolic fate of the ammonium ion (NH4+) produced in this reaction was investigated in sweet potato (Ipomoea batatas) tuber discs. [15N]-Labeled substrates including L-Phe, in the presence or absence of specific enzyme inhibitors, were administered to sweet potato discs in light under aseptic conditions. 15N-Nuclear magnetic resonance spectroscopic analyses revealed that the 15NH4+ liberated during the PAL reaction is first incorporated into the amide nitrogen of L-glutamine (L-Gln) and then into L-glutamate (L-Glu). These results extend our previous observations in pine and potato that PAL-generated NH4+ is assimilated by the glutamine synthetase (GS; EC 6.3.1.2)/glutamate synthase (GOGAT; EC 1.4.1.13) pathway, with the NH4+ so formed ultimately being recycled back to L-Phe via L-Glu as aminoreceptor and donor.

  18. Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers

    NASA Technical Reports Server (NTRS)

    Singh, S.; Lewis, N. G.; Towers, G. H.

    1998-01-01

    In the first step of the phenylpropanoid metabolic pathway, L-phenylalanine (L-Phe) is deaminated to form E-cinnamate, in a conversion catalyzed by phenylalanine ammonia-lyase (PAL; EC 4.3.1.5). The metabolic fate of the ammonium ion (NH4+) produced in this reaction was investigated in sweet potato (Ipomoea batatas) tuber discs. [15N]-Labeled substrates including L-Phe, in the presence or absence of specific enzyme inhibitors, were administered to sweet potato discs in light under aseptic conditions. 15N-Nuclear magnetic resonance spectroscopic analyses revealed that the 15NH4+ liberated during the PAL reaction is first incorporated into the amide nitrogen of L-glutamine (L-Gln) and then into L-glutamate (L-Glu). These results extend our previous observations in pine and potato that PAL-generated NH4+ is assimilated by the glutamine synthetase (GS; EC 6.3.1.2)/glutamate synthase (GOGAT; EC 1.4.1.13) pathway, with the NH4+ so formed ultimately being recycled back to L-Phe via L-Glu as aminoreceptor and donor.

  19. Dietary nitrogen and calcium modulate bone metabolism in young goats.

    PubMed

    Elfers, Kristin; Liesegang, Annette; Wilkens, Mirja R; Breves, Gerhard; Muscher-Banse, Alexandra S

    2016-11-01

    Ruminants, possessing the rumino-hepatic circulation, are thought to cope easily with reduced dietary nitrogen (N) supply which is of economic and environmental interest to diminish N output. Nevertheless, feeding an N reduced diet to young goats resulted in a decrease in calcitriol and calcium (Ca) plasma concentrations. Although a dietary Ca reduction alone stimulated calcitriol synthesis and plasma Ca concentrations were restored, in combination with a reduced N supply this stimulating effect was abolished. Based on the important role bone tissue plays in maintaining Ca homeostasis, aim of the present study was to determine effects of an N reduced diet with or without a concomitant Ca reduction on bone metabolism in young goats. A dietary N reduction alone resulted in a significant rise in plasma concentrations of bone resorption marker C-terminal telopeptide of type I collagen (CTX) and bone formation marker osteocalcin (OC), while reduced intake of Ca as well as the combination of both dietary interventions increased bone markers only slightly. Bone mineral content and bone mineral density of metatarsi were decreased by reduced N intake, while Ca and phosphorus (P) content of dried bones remained unaffected. In contrast, a dietary Ca reduction alone led to decreased Ca and P content of dried bones. From these data it can be concluded that a dietary N reduction alone or in combination with a reduced dietary Ca supply modulated bone metabolism in young goats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Factors affecting metabolic syndrome by lifestyle

    PubMed Central

    Ki, Nam-Kyun; Lee, Hae-Kag; Cho, Jae-Hwan; Kim, Seon-Chil; Kim, Nak-Sang

    2016-01-01

    [Purpose] The aim of this study was to explore lifestyle factors in relation to metabolic syndrome so as to be able to utilize the results as baseline data for the furtherance of health-care and medical treatment. [Subjects and Methods] This study was conducted with patients who visited a health care center located in Seoul and had abdominal ultrasonography between 2 March 2013 and 28 February, 2014. Heights, weights, and blood pressures were measured by automatic devices. Three radiologists examined the patients using abdominal ultrasonography for gallstone diagnosis. The statuses of patients with regard to smoking, alcohol, coffee, and physical activities were explored for the lifestyle investigation. For investigating baseline demographics, we first used descriptive statistics. We then used the χ2 test to analyze lifestyles and gallstone prevalence with regard to the presence of metabolic syndrome. Lastly, logistic regression analysis was conducted to discover the risk factors of metabolic syndrome. [Results] For men, body mass index, maximum gallstone size, and waist circumference were revealed as risk factors for metabolic syndrome, in descending order of the degree of risk. For females, gallstone presence was the most significant risk factor, followed by waist circumference. [Conclusion] Metabolic disease mainly presents itself along with obesity, and we should become more focused on preventing and treating this disease. A large-scale prospective study is needed in the future, as the cause of nonalcoholic steatohepatitis remained unclear in this study. PMID:26957725

  1. How inhibiting nitrification affects nitrogen cycle and reduces ...

    EPA Pesticide Factsheets

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI along with nitrogen (N) fertilizer increased crop nitrogen use efficiency, crop yield, and altered the pathways and the amount of N loss to environment. NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9% of the total N loss. The cost and benefit analysis showed that the economic benefit of reducing N’s environmental impacts offset the cost of NI. NI application could bring additional revenue of $163.72 ha-1 for a maize farm. Taken together, our findings show that NI application may create a win-win scenario that increases agricultural output, while reducing the negative impact on the environment. Policies that encourage NI application would reduce N’s environmental impacts. A group from Chinese Academy of Sciences, US EPA-ORD and North Carolina examined the net environmental and economic effects of nitrification inhibitors to reduce nitrate leaching associated with farm fertilizers. They conducted a meta-analysis of studies examining nitrification inhibitors, and found that NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9

  2. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  3. Nitrogen Metabolism of Lemna minor. I. Growth, Nitrogen Sources and Amino Acid Inhibition 1

    PubMed Central

    Joy, K. W.

    1969-01-01

    Lemna minor grown in sterile culture on a minerals-sucrose medium can utilize as nitrogen source, in order of increasing growth rate: ammonia, nitrate, a mixture of glutamic and aspartic acids plus arginine, or a balanced mixture of amino acids (hydrolyzed casein). Maximum growth is found with nitrate plus hydrolyzed casein. Many synthetic mixtures of amino acids are unable to support growth. Many single amino acids are inhibitory, and when added (at 2 mm or less) to cultures, growing in the presence of nitrate, cause a decrease in growth rate or even death of the plants (e.g. with alanine, valine, methionine or leucine). Some of these inhibitory effects are also found when the amino acid is added to cultures growing on ammonia or hydrolyzed casein. Arginine was the only amino acid of those tested which gave a marked stimulation of growth when added to cultures growing with inorganic nitrogen. The rapid rate of growth, sterile nature of tissue, decreased biological variation of samples containing many plants and ability to utilize different culture media make this an attractive organism for studies on higher plant metabolism. PMID:5799046

  4. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  5. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  6. Two novel herbicide candidates affect Arabidopsis thaliana growth by inhibiting nitrogen and phosphate absorption.

    PubMed

    Sun, Chongchong; Jin, Yujian; He, Haifeng; Wang, Wei; He, Hongwu; Fu, Zhengwei; Qian, Haifeng

    2015-09-01

    Both 2-[(2,4-dichlorophenoxy)acetoxy](methy)lmethyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIa) and 2-[(4-chloro-2-methyl-phenoxy)-acetoxy](methyl)methyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one (termed as IIr) are novel herbicide candidates that positively affect herbicidal activity via the introduction of a phosphorus-containing heterocyclic ring. This report investigated the mechanism of IIa and IIr on weed control in the model plant Arabidopsis thaliana at physiological, ultrastructural and molecular levels. IIa and IIr significantly inhibited the growth of A. thaliana and altered its root structure by inhibiting energy metabolism and lipid or protein biosynthesis. These compounds also significantly affected the absorption of nitrogen and phosphorus by down-regulating the transcripts of nitrate transporter-related genes, ammonium transporter-related genes and phosphorus transporter-related genes.

  7. Influences of lead (II) chloride on the nitrogen metabolism of spinach.

    PubMed

    Wu, Xiao; Xiao, Wu; Liu, Chao; Chao, Liu; Qu, Chunxiang; Chunxiang, Qu; Huang, Hao; Hao, Huang; Liu, Xiaoqing; Xiaoqing, Liu; Chen, Liang; Liang, Chen; Su, Mingyu; Mingyu, Su; Hong, Fashui; Fashui, Hong

    2008-03-01

    Lead (Pb(2+)) is a well-known highly toxic element. The mechanisms of the Pb(2+) toxicity are not well understood for nitrogen metabolism of higher plants. In this paper, we studied the effects of various concentrations of PbCl(2) on the nitrogen metabolism of growing spinach. The experimental results showed that Pb(2+) treatments significantly decreased the nitrate nitrogen (NO(-)(3)-N) absorption and inhibited the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic-pyruvic transaminase of spinach, and inhibited the synthesis of organic nitrogen compounds such as protein and chlorophyll. However, Pb(2+) treatments increased the accumulation of ammonium nitrogen NH(+)(4)-N)in spinach cell. It implied that Pb(2+) could inhibit inorganic nitrogen to be translated into organic nitrogen in spinach, thus led to the reduction in spinach growth.

  8. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency.

    PubMed

    Ogunwande, G A; Osunade, J A; Adekalu, K O; Ogunjimi, L A O

    2008-11-01

    The study was undertaken to investigate the effects of carbon to nitrogen (C:N) ratio and turning frequency (TF) on the loss of total nitrogen (TN) during composting of chicken litter (a mixture of chicken manure, waste feed, feathers and sawdust) with a view to producing good quality compost. Carbon to nitrogen ratios of 20:1, 25:1 and 30:1 and TF of 2, 4 and 6 days were experimented. The initial physico-chemical properties of the litter were determined. During the composting process, moisture level in the piles was periodically replenished to 55% and the temperature, pH and TN of the chicken litter were periodically monitored. Also, the dry matter (DM), total carbon (TC), total phosphorus (P) and total potassium (K) were examined at the end of composting. The results showed that both C:N ratio and TF had significant (p < or = 0.05) effect on pile temperature, pH changes, TN, TC, P and K losses while DM was only affected (p < or = 0.05) by C:N ratio. All treatments reached maturation at about 87 days as indicated by the decline of pile temperatures to near ambient temperature. Losses of TN, which were largely attributed to volatilization of ammonia (NH3), were highest within the first 28 days when the pile temperatures and pH values were above 33 degrees C and 7.7, respectively. Moisture loss increased as C:N ratio and TF increased. In conclusion, the treatment with a combination of 4 days TF and C:N ratio 25:1 (T4R25) had the minimum TN loss (70.73% of the initial TN) and this indicated the most efficient combination.

  9. Nitrogen metabolism in plants under low oxygen stress.

    PubMed

    Limami, Anis M; Diab, Houssein; Lothier, Jérémy

    2014-03-01

    More frequent flooding and waterlogging events due to more heavy precipitation are expected worldwide in the context of climate change. Accordingly, adaptation of plants to oxygen limitation at both cellular and whole plant levels should be investigated thoroughly, that derived knowledge could be taken into account in breeding programs and agronomical practices for saving plant fitness, growth and development even when oxygen availability is low. In the present review, we highlight current knowledge on essential aspects of low oxygen stress-induced changes in nitrogen metabolism. The involvement of two possible pathways for NO production either via the reaction catalyzed by nitrate reductase or at Complex III or IV of the mitochondrial electron transport chain, thus contributing to ATP synthesis via the so-called nitrite-NO respiration, is discussed. NO is proposed to be scavenged by non-symbiotic hemoglobin (Hb) in a Hb/NO cycle, in which NAD(P)H is oxidized for the conversion of NO into NO3(-). The investigation of an additional adaptation to the decrease in oxygen availability via transcriptional and posttranslational regulation of amino acid synthesis pathways, using publicly available transcriptome and translatome data for Arabidopsis thaliana and rice is also discussed.

  10. Nitrogen metabolism in pepper plants applied with different bioregulators.

    PubMed

    Ruiz, J M; Castilla, N; Romero, L

    2000-07-01

    Certain bioregulators were studied in relation to nitrogen metabolism of pepper plants (Capsicum annuum L. cv. Lamuyo). Plants were grown under controlled conditions and submitted to regular fertilization with macro- and micronutrients. Treatments were as follows: nontreated control (T0); fosfonutren [essential amino acids and micronutrients (46.9 mg L(-)(1))] (T1); biozyme [GA(3) (32.2 mg L(-)(1)) plus IAA (32.2 mg L(-)(1)) plus zeatin (83.2 mg L(-)(1)) plus chelated micronutrients] (T2); and GA(3) [16 mg L(-)(1)] (T3). The concentrations of NO(3)(-), organic N, amino acids, and proteins, the activities of nitrate reductase (NR) and nitrite reductase (NiR), and finally the foliar dry weight and yield were analyzed. The results indicated that the application of certain bioregulators, such as fosfonutren (T1), which contain amino acids can cause a negative effect on the efficiency and utilization of NO(3)(-), resulting in a drastic loss in growth and yield, even under the control treatment, in which no bioregulator was applied. On the contrary, the application of certain bioregulators based principally on the combination of different hormones, as in the case of biozyme (T2), increased NO(3)(-) assimilation under our experimental conditions, due possibly to a greater availability of these bioregulators in the leaves and increased NR and NiR activities. This appears to explain why the T2 treatment gave the greatest foliar dry weight and fruit yield per plant in the experiment.

  11. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  12. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  13. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  14. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  15. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  16. Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism.

    PubMed

    de la Torre, Fernando; El-Azaz, Jorge; Avila, Concepción; Cánovas, Francisco M

    2014-01-01

    Chloroplasts and plastids of nonphotosynthetic plant cells contain two aspartate (Asp) aminotransferases: a eukaryotic type (Asp5) and a prokaryotic-type bifunctional enzyme displaying Asp and prephenate aminotransferase activities (PAT). We have identified the entire Asp aminotransferase gene family in Nicotiana benthamiana and isolated and cloned the genes encoding the isoenzymes with plastidic localization: NbAsp5 and NbPAT. Using a virus-induced gene silencing approach, we obtained N. benthamiana plants silenced for NbAsp5 and/or NbPAT. Phenotypic and metabolic analyses were conducted in silenced plants to investigate the specific roles of these enzymes in the biosynthesis of essential amino acids within the plastid. The NbAsp5 silenced plants had no changes in phenotype, exhibiting similar levels of free Asp and glutamate as control plants, but contained diminished levels of asparagine and much higher levels of lysine. In contrast, the suppression of NbPAT led to a severe reduction in growth and strong chlorosis symptoms. NbPAT silenced plants exhibited extremely reduced levels of asparagine and were greatly affected in their phenylalanine metabolism and lignin deposition. Furthermore, NbPAT suppression triggered a transcriptional reprogramming in plastid nitrogen metabolism. Taken together, our results indicate that NbPAT has an overlapping role with NbAsp5 in the biosynthesis of Asp and a key role in the production of phenylalanine for the biosynthesis of phenylpropanoids. The analysis of NbAsp5/NbPAT cosilenced plants highlights the central role of both plastidic aminotransferases in nitrogen metabolism; however, only NbPAT is essential for plant growth and development.

  17. Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets.

    PubMed

    Chen, Gang; Zhang, Jun; Zhang, Yuzhe; Liao, Peng; Li, Tiejun; Chen, Lixiang; Yin, Yulong; Wang, Jinquan; Wu, Guoyao

    2014-01-01

    This experiment was conducted to investigate the effects of oral administration of monosodium glutamate (MSG) on expression of genes for hepatic lipid and nitrogen metabolism in piglets. A total of 24 newborn pigs were assigned randomly into one of four treatments (n = 6/group). The doses of oral MSG administration, given at 8:00 and 18:00 to sow-reared piglets between 0 and 21 days of age, were 0 (control), 0.06 (low dose), 0.5 (intermediate dose), and 1 (high dose) g/kg body weight/day. At the end of the 3-week treatment, serum concentrations of total protein and high-density lipoprotein cholesterol in the intermediate dose group were elevated than those in the control group (P < 0.05). Hepatic mRNA levels for fatty acid synthase, acetyl-coA carboxylase, insulin-like growth factor-1, glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase were higher in the middle-dose group (P < 0.05), compared with the control group. MSG administration did not affect hepatic mRNA levels for hormone-sensitive lipase or carnitine palmitoyl transferase-1. We conclude that oral MSG administration alters hepatic expression of certain genes for lipid and nitrogen metabolism in suckling piglets.

  18. Effect of ammonia stress on nitrogen metabolism of Ceratophyllum demersum.

    PubMed

    Gao, Jingqing; Li, Linshuai; Hu, Zhiyuan; Yue, Hui; Zhang, Ruiqin; Xiong, Zhiting

    2016-01-01

    The objective of the present study was to determine the effect of total ammonia N concentration and pH on N metabolism of Ceratophyllum demersum and to evaluate stress as a result of inorganic N enrichment in the water column on submerged macrophytes. Carefully controlled pH values distinguished between the effects of un-ionized NH3 and ionized NH4(+). The results showed that the most obvious consequence of ammonia addition was an overall increase in ammonia content and decrease in nitrate content in all tissues of fertilized plants. The activities of nitrate reductase and glutamine synthetase were inhibited by long-term ammonia addition. At the same time, ammonia addition significantly decreased soluble protein content and increased free amino acid content in all treatments. Another clear effect of ammonia addition was a decrease in carbon reserves. Therefore, the authors concluded that increased ammonia availability could affect plant survival and lead to a decline in C. demersum proliferation through a decrease in their carbon reserves. This interaction between N and C metabolism helps to explain changes in benthic vegetation as a result of steadily increasing coastal water eutrophication.

  19. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition

    PubMed Central

    Chen, Gang; Peng, Yong; Xiao, Yin-long; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Background Forest litter decomposition is a major component of the global carbon (C) budget, and is greatly affected by the atmospheric nitrogen (N) deposition observed globally. However, the effects of N addition on forest litter decomposition, in ecosystems receiving increasingly higher levels of ambient N deposition, are poorly understood. Methodology/Principal Findings We conducted a two-year field experiment in five forests along the western edge of the Sichuan Basin in China, where atmospheric N deposition was up to 82–114 kg N ha–1 in the study sites. Four levels of N treatments were applied: (1) control (no N added), (2) low-N (50 kg N ha–1 year–1), (3) medium-N (150 kg N ha–1 year–1), and (4) high-N (300 kg N ha–1 year–1), N additions ranging from 40% to 370% of ambient N deposition. The decomposition processes of ten types of forest litters were then studied. Nitrogen additions significantly decreased the decomposition rates of six types of forest litters. N additions decreased forest litter decomposition, and the mass of residual litter was closely correlated to residual lignin during the decomposition process over the study period. The inhibitory effect of N addition on litter decomposition can be primarily explained by the inhibition of lignin decomposition by exogenous inorganic N. The overall decomposition rate of ten investigated substrates exhibited a significant negative linear relationship with initial tissue C/N and lignin/N, and significant positive relationships with initial tissue K and N concentrations; these relationships exhibited linear and logarithmic curves, respectively. Conclusions/Significance This study suggests that the expected progressive increases in N deposition may have a potential important impact on forest litter decomposition in the study area in the presence of high levels of ambient N deposition. PMID:24551152

  20. A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.

    PubMed

    Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian

    2016-08-16

    Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.

  1. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum.

    PubMed

    Subramaniam, Rajagopal; Narayanan, Swara; Walkowiak, Sean; Wang, Li; Joshi, Manisha; Rocheleau, Hélène; Ouellet, Thérèse; Harris, Linda J

    2015-11-01

    TRI6 is a positive regulator of the trichothecene gene cluster and the production of trichothecene mycotoxins [deoxynivalenol (DON)] and acetylated forms such as 15-Acetyl-DON) in the cereal pathogen Fusarium graminearum. As a global transcriptional regulator, TRI6 expression is modulated by nitrogen-limiting conditions, sources of nitrogen and carbon, pH and light. However, the mechanism by which these diverse environmental factors affect TRI6 expression remains underexplored. In our effort to understand how nutrients affect TRI6 regulation, comparative digital expression profiling was performed with a wild-type F. graminearum and a Δtri6 mutant strain, grown in nutrient-rich conditions. Analysis showed that TRI6 negatively regulates genes of the branched-chain amino acid (BCAA) metabolic pathway. Feeding studies with deletion mutants of MCC, encoding methylcrotonyl-CoA-carboxylase, one of the key enzymes of leucine metabolism, showed that addition of leucine specifically down-regulated TRI6 expression and reduced 15-ADON accumulation. Constitutive expression of TRI6 in the Δmcc mutant strain restored 15-ADON production. A combination of cellophane breach assays and pathogenicity experiments on wheat demonstrated that disrupting the leucine metabolic pathway significantly reduced disease. These findings suggest a complex interaction between one of the primary metabolic pathways with a global regulator of mycotoxin biosynthesis and virulence in F. graminearum.

  2. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit

    PubMed Central

    2014-01-01

    Background The currently accepted thesis on nitrogenous fertilizer additions on methane oxidation activity assumes niche partitioning among methanotrophic species, with activity responses to changes in nitrogen content being dependent on the in situ methanotrophic community structure Unfortunately, widely applied tools for microbial community assessment only have a limited phylogenetic resolution mostly restricted to genus level diversity, and not to species level as often mistakenly assumed. As a consequence, intragenus or intraspecies metabolic versatility in nitrogen metabolism was never evaluated nor considered among methanotrophic bacteria as a source of differential responses of methane oxidation to nitrogen amendments. Results We demonstrated that fourteen genotypically different Methylomonas strains, thus distinct below the level at which most techniques assign operational taxonomic units (OTU), show a versatile physiology in their nitrogen metabolism. Differential responses, even among strains with identical 16S rRNA or pmoA gene sequences, were observed for production of nitrite and nitrous oxide from nitrate or ammonium, nitrogen fixation and tolerance to high levels of ammonium, nitrate, and hydroxylamine. Overall, reduction of nitrate to nitrite, nitrogen fixation, higher tolerance to ammonium than nitrate and tolerance and assimilation of nitrite were general features. Conclusions Differential responses among closely related methanotrophic strains to overcome inhibition and toxicity from high nitrogen loads and assimilation of various nitrogen sources yield competitive fitness advantages to individual methane-oxidizing bacteria. Our observations proved that community structure at the deepest phylogenetic resolution potentially influences in situ functioning. PMID:24708438

  3. Arabidopsis plastidial folylpolyglutamate synthetase is required for nitrogen metabolism under nitrate-limited condition in darkness.

    PubMed

    Meng, Hongyan; Xu, Bosi; Zhang, Chunyi; Jiang, Ling

    2017-01-08

    Folates play an important role in plant metabolism. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in folate metabolism and nitrogen metabolism under nitrate-limited conditions in darkness. Exogenous applied 5-formyl-tetrahydrofolate (5-F-THF) completely restored nitrogen content, soluble protein, total amino acids, individual amino acids including Glu, Gln, Asp, Asn, Pro, Arg and Met, nitrate, and endogenous 5-F-THF in atdfb-3 to the wild-type level. At the same time the application of 5-F-THF partially restored the content of Ser and nitrite in the mutant. Taken together, these results indicated that intact folate metabolism was necessary for nitrogen metabolism in Arabidopsis thaliana under nitrate-limited condition in darkness, providing novel insights into function of folate. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Deciphering the metabolic response of M ycobacterium tuberculosis to nitrogen stress

    PubMed Central

    Williams, Kerstin J.; Jenkins, Victoria A.; Barton, Geraint R.; Bryant, William A.; Krishnan, Nitya

    2015-01-01

    Summary A key component to the success of M ycobacterium tuberculosis as a pathogen is the ability to sense and adapt metabolically to the diverse range of conditions encountered in vivo, such as oxygen tension, environmental pH and nutrient availability. Although nitrogen is an essential nutrient for every organism, little is known about the genes and pathways responsible for nitrogen assimilation in M . tuberculosis. In this study we have used transcriptomics and chromatin immunoprecipitation and high‐throughput sequencing to address this. In response to nitrogen starvation, a total of 185 genes were significantly differentially expressed (96 up‐regulated and 89 down regulated; 5% genome) highlighting several significant areas of metabolic change during nitrogen limitation such as nitrate/nitrite metabolism, aspartate metabolism and changes in cell wall biosynthesis. We identify GlnR as a regulator involved in the nitrogen response, controlling the expression of at least 33 genes in response to nitrogen limitation. We identify a consensus GlnR binding site and relate its location to known transcriptional start sites. We also show that the GlnR response regulator plays a very different role in M . tuberculosis to that in non‐pathogenic mycobacteria, controlling genes involved in nitric oxide detoxification and intracellular survival instead of genes involved in nitrogen scavenging. PMID:26077160

  5. Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses of Planktonic Metabolic Rates to Warming.

    PubMed

    Vaquer-Sunyer, Raquel; Conley, Daniel J; Muthusamy, Saraladevi; Lindh, Markus V; Pinhassi, Jarone; Kritzberg, Emma S

    2015-10-06

    Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.

  6. Effects of sublethal ammonia on nitrogen metabolism of rainbow trout in relation to temperature

    SciTech Connect

    Linton, T.K.; Reid, S.D.; Wood, C.M.

    1994-12-31

    This 90 day study was designed to assess the effects of sublethal ammonia at ambient water temperature and at ambient + 2C on juvenile rainbow trout. A challenge experiment was then conducted to test whether prior sublethal exposure induced increased ammonia tolerance. Routine ``in-tank`` oxygen consumption and nitrogenous waste excretion rates were measured monthly as well as plasma ammonia, muscle and liver ammonia and urea, and liver protein turnover rates to quantify the physiological effects of this treatment on nitrogen metabolism. The results indicate that +20C had little effect on nitrogen metabolism until the summer maximum of 21 C was reached, and that chronic exposure to 70 {mu}mol/L total ammonia led to alterations in nitrogen metabolism which contributed to the reduction of the increased internal ammonia load. However, the alterations associated with exposure to sublethal ammonia did not lead to a greater tolerance of fish exposed to 5,700 {mu}mol/L total ammonia.

  7. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  8. Glycemic index of starch affects nitrogen retention in grower pigs.

    PubMed

    Drew, M D; Schafer, T C; Zijlstra, R T

    2012-04-01

    Three studies were performed to examine the effect of starch and protein digestion rates on N retention in grower pigs. In Exp. 1, the glycemic index (GI) of corn, a malting barley, and a slow-rumen-degradable barley (SRD-barley) were measured using 6 barrows (BW = 18.0 ± 0.5 kg). The GI of malting barley was greater (P < 0.05) than that of SRD-barley (71.1 vs. 49.4), and the GI of both barley cultivars was less (P < 0.05) than that of corn (104.8). In Exp. 2, the standardized ileal digestibility of AA and DE content of the 3 ingredients were determined using 5 ileal-cannulated barrows (BW = 20.7 ± 2.3). The apparent total-tract energy digestibility values of corn (86.1%) and malting barley (85.7%) were greater (P < 0.05) than that of SRD-barley (82.3%). The standardized ileal digestibility of Lys was 94.0, 92.6, and 92.4% for corn, malting barley, and SRD-barley, respectively, and did not differ among grains. In Exp. 3, 6 diets were formulated to equal DE (3.40 Mcal/kg), standardized ileal digestibility of Lys (8.6 g/kg), starch (424.9 g/kg), and digestible CP (180.0 g/kg) using the values obtained in Exp. 2. Three GI [high (corn), medium (malting barley), and low (SRD-barley)] and 2 rates of protein digestion [rapid (soy protein hydrolysate) and slow (soy protein isolate)] were tested in a 3 × 2 factorial arrangement with 36 barrows (BW = 32.2 ± 2.5 kg). Pigs were fed 3.0 times the maintenance energy requirement daily in 2 meals for 2 wk and were housed in metabolic crates to collect feces and urine separately. At the end of the study, intestinal contents were collected from 4 equal-length segments of the small intestine. The percentage of unabsorbed CP in segment 1 relative to dietary CP was greater (P < 0.05) for the soy protein isolate diet than for the soy protein hydrolysate diet (170.3 vs. 116.5%). The percentages of unabsorbed starch in segments 1 and 2 were greater (P < 0.05) for the SRD-barley diet than for the malting barley or corn diet. Nitrogen

  9. The central role of the host cell in symbiotic nitrogen metabolism

    PubMed Central

    Macdonald, Sandy J.; Lin, George G.; Russell, Calum W.; Thomas, Gavin H.; Douglas, Angela E.

    2012-01-01

    Symbiotic nitrogen recycling enables animals to thrive on nitrogen-poor diets and environments. It traditionally refers to the utilization of animal waste nitrogen by symbiotic micro-organisms to synthesize essential amino acids (EAAs), which are translocated back to the animal host. We applied metabolic modelling and complementary metabolite profiling to investigate nitrogen recycling in the symbiosis between the pea aphid and the intracellular bacterium Buchnera, which synthesizes EAAs. The results differ from traditional notions of nitrogen recycling in two important respects. First, aphid waste ammonia is recycled predominantly by the host cell (bacteriocyte) and not Buchnera. Host cell recycling is mediated by shared biosynthetic pathways for four EAAs, in which aphid transaminases incorporate ammonia-derived nitrogen into carbon skeletons synthesized by Buchnera to generate EAAs. Second, the ammonia substrate for nitrogen recycling is derived from bacteriocyte metabolism, such that the symbiosis is not a sink for nitrogenous waste from other aphid organs. Host cell-mediated nitrogen recycling may be general among insect symbioses with shared EAA biosynthetic pathways generated by the loss of symbiont genes mediating terminal reactions in EAA synthesis. PMID:22513857

  10. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders.

    PubMed

    MacLeod, Erin L; Hall, Kevin D; McGuire, Peter J

    2016-01-01

    Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.

  11. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders

    PubMed Central

    MacLeod, Erin L.; Hall, Kevin D.; McGuire, Peter J.

    2015-01-01

    SUMMARY Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection. PMID:26260782

  12. Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism

    SciTech Connect

    Langston-Unkefer, P.J.

    1991-06-11

    Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

  13. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  14. The fate of nitrogen affected by biochar and fertilizer source

    USDA-ARS?s Scientific Manuscript database

    Continuous improvement of nitrogen (N) use efficiency (NUE) and minimizing environmental loss is necessary to address the issues related to N fertilizer use in agronomic systems. The objective of this research was to determine the effectiveness of biochar amendment and fertilizer source on NUE impro...

  15. Does nitrogen and sulfur deposition affect forest productivity?

    Treesearch

    Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks

    2010-01-01

    We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...

  16. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  17. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.

    PubMed

    Rydzak, Thomas; Garcia, David; Stevenson, David M; Sladek, Margaret; Klingeman, Dawn M; Holwerda, Evert K; Amador-Noguez, Daniel; Brown, Steven D; Guss, Adam M

    2017-04-08

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.

  18. Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch

    PubMed Central

    Lihavainen, Jenna; Ahonen, Viivi; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Oksanen, Elina; Keinänen, Markku

    2016-01-01

    Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants. PMID:27259554

  19. Nitrogen metabolism of the eutrophic Delaware River ecosystem

    SciTech Connect

    Not Available

    1986-07-01

    A comprehensive investigation of the nitrogen cycle in the Delaware River was carried out using /sup 13/N tracers to measure rates for important transformations of nitrogen. Daily, depth-averaged /sup 15/N rates for the principal inorganic nitrogen species were consistent with rates derived from longitudinal profiles of concentration in the river. The data indicated that nitrification was a rapid, irreversible sink for NH/sub 4//sup +/, with export of the product NO/sub 3//sup -/ from the study area. Utilization of NO/sub 3//sup -/ by primary producers was negligible, owing to low irradiance levels and to high NH/sub 4//sup +/ concentrations. The oxygen sag near Philadelphia was found to result from oxygen demand in the water column, with only minor benthic influence. Reaeration provided the major oxygen input. Nitrification accounted for about 1% of the net oxygen demand near Philadelphia but as much as 25% farther downstream.

  20. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Treesearch

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  1. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach.

    PubMed

    Yang, Fan; Hong, Fashui; You, Wenjuan; Liu, Chao; Gao, Fengqing; Wu, Cheng; Yang, Ping

    2006-05-01

    Previous research showed that nano-TiO2 could significantly promote photosynthesis and greatly improve growth of spinach, but we also speculated that an increase of spinach growth by nano-TiO2 treatment might be closely related to the change of nitrogen metabolism. The effects of nanoanatase TiO2 on the nitrogen metabolism of growing spinach were studied by treating them with nano-anatase TiO2. The results showed that nano-anatase TiO2 treatment could obviously increase the activities of nitrate reductase, glutamate dehydrogenase, glutamine synthase, and glutamic-pyruvic transaminase during the growing stage. Nano-anatase TiO2 treatment could also promote spinach to absorb nitrate, accelerate inorganic nitrogen (such as NO3--N and NH4+-N) to be translated into organic nitrogen (such as protein and chlorophyll), and enhance the fresh weight and dry weights.

  2. Abnormal folate metabolism in foetuses affected by neural tube defects.

    PubMed

    Dunlevy, Louisa P E; Chitty, Lyn S; Burren, Katie A; Doudney, Kit; Stojilkovic-Mikic, Taita; Stanier, Philip; Scott, Rosemary; Copp, Andrew J; Greene, Nicholas D E

    2007-04-01

    Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs.

  3. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  4. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  5. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    PubMed Central

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  6. Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency.

    PubMed

    Yin, Sitao; Ze, Yuguan; Liu, Chao; Li, Na; Zhou, Min; Duan, Yanmei; Hong, Fashui

    2009-12-01

    Magnesium is one of the essential elements for plant growth and cerium is a beneficial element for plant growth. However, the effects of the fact that cerium improves the nitrogen metabolism of plants under magnesium deficiency is poorly understood. The main aim of the study was to determine the role of cerium in the amelioration of magnesium-deficiency effects in spinach plants. Spinach plants were cultivated in Hoagland's solution. They were subjected to magnesium deficiency and to cerium chloride administered in the magnesium-present media and magnesium-deficient media. Spinach plants grown in the magnesium-present media and magnesium-deficient media were measured for key enzyme activities involved in nitrogen metabolism such as nitrate reductase, nitrite reductase, glutamate dehydrogenase, glutamate synthase, urease, glutamic–pyruvic transaminase, and glutamic–oxaloace protease transaminase. As the nitrogen metabolism in spinach was significantly inhibited by magnesium deficiency, it caused a significant reduction of spinach plant weight, leaf turning chlorosis. However, cerium treatment grown in magnesium-deficiency media significantly promoted the activities of the key enzymes as well as the contents of the free amino acids, chlorophyll, soluble protein, and spinach growth. It implied that Ce3+ could partly substitute for magnesium to facilitate the transformation from inorganic nitrogen to organic nitrogen, leading to the improvement of spinach growth, although the metabolism needs to be investigated further.

  7. The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds.

    PubMed

    Jiménez-Martí, Elena; Aranda, Agustín; Mendes-Ferreira, Alexandra; Mendes-Faia, Arlete; del Olmo, Marcel Lí

    2007-07-01

    Nitrogen starvation may lead to stuck and sluggish fermentations. These undesirable situations result in wines with high residual sugar, longer vinification times, and risks of microbial contamination. The typical oenological method to prevent these problems is the early addition of ammonium salts to the grape juice, although excessive levels of these compounds may lead to negative consequences for the final product. This addition reduces the overall fermentation time, regardless of the time of addition, but the effect is more significant when nitrogen is added during the yeast exponential phase. In this work we analysed the effect of adding different nitrogen sources (ammonia, amino acids or a combination of both) under nitrogen depletion in order to understand yeast metabolic changes that lead to the adaptation to the new conditions. These studies were carried out in a synthetic must that mimics the composition of the natural must. Furthermore, we studied how this addition affects fermentative behaviour, the levels of several yeast volatile compounds in the final product, arginase activity, and the expression of several genes involved in stress response and nitrogen metabolism during vinification. We found that the nature of the nitrogen source added during yeast late exponential growth phase introduces changes to the volatile compounds profile and to the gene expression. On the other hand, arginase activity and the expression of the stress response gene ACA1 are useful to monitor nitrogen depletion/addition during growth of the wine yeast considered under our vinification conditions.

  8. Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content.

    PubMed

    Salvato, Fernanda; Wilson, Rashaun; Portilla Llerena, Juan Pablo; Kiyota, Eduardo; Lima Reis, Karina; Boaretto, Luis Felipe; Balbuena, Tiago S; Azevedo, Ricardo A; Thelen, Jay J; Mazzafera, Paulo

    2017-10-06

    Sugar cane is an important crop for sugar and biofuel production. Its lignocellulosic biomass represents a promising option as feedstock for second-generation ethanol production. Nitrogen fertilization can affect differently tissues and its biopolymers, including the cell-wall polysaccharides and lignin. Lignin content and composition are the most important factors associated with biomass recalcitrance to convert cell-wall polysaccharides into fermentable sugars. Thus it is important to understand the metabolic relationship between nitrogen fertilization and lignin in this feedstock. In this study, a large-scale proteomics approach based on GeLC-MS/MS was employed to identify and relatively quantify proteins differently accumulated in two contrasting genotypes for lignin composition after excessive nitrogen fertilization. From the ∼1000 nonredundant proteins identified, 28 and 177 were differentially accumulated in response to nitrogen from IACSP04-065 and IACSP04-627 lines, respectively. These proteins were associated with several functional categories, including carbon metabolism, amino acid metabolism, protein turnover, and oxidative stress. Although nitrogen fertilization has not changed lignin content, phenolic acids and lignin composition were changed in both species but not in the same way. Sucrose and reducing sugars increased in plants of the genotype IACSP04-065 receiving nitrogen.

  9. Cultivar and nitrogen fertilizer rate affect yield and nitrogen use efficiency in irrigated durum wheat

    USDA-ARS?s Scientific Manuscript database

    Optimizing nitrogen (N) management and using cultivars with high N use efficiency (NUE) are of great importance for durum wheat (Triticum durum L.) producers in irrigated desert production systems. Field experiments with six durum wheat cultivars (Ocotillo, Orita, Kronos, Havasu, Duraking, and Toppe...

  10. Nitrogen, stover and tillage management affect nitrogen use efficiency in continuous corn

    USDA-ARS?s Scientific Manuscript database

    Improving nitrogen use efficiency (NUE) in corn (Zea mays L.) is critical for optimizing yield and reducing environmental impact. Stover removal in continuous corn (CC) for biofuel production, coupled with reduced-tillage systems, could alter NUE and residual soil nitrate-N. Experiments were conduct...

  11. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize

    USDA-ARS?s Scientific Manuscript database

    The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...

  12. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    PubMed

    López-Sánchez, Maria J; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-11-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.

  13. Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress.

    PubMed

    Xu, Jianwen; Huang, Xi; Lan, Hongxia; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    Salt stress is an important environmental condition limiting the agricultural production. The reprogram of protein expression is one of the strategies of plants to cope with salt stress. We have previously analyzed the photosynthesis, antioxidant and oxidative phosphorylation involved in the carbon metabolism and the redox metabolism in rice seedlings under salt stress. Here, we focused on the proteins involved in nitrogen metabolic response. As it was reported that the nitrite uptake was enhanced in Arabidopsis PII knock-out mutants, the down-regulation of P-II nitrogen sensing protein in rice probably contributes to the accumulation of amino acids under stress. In addition, the protein synthesis is limited by the decrease of related proteins, and more amino acids could be used as the compatible solute. Hence, our study indicates that the rearrangement of nitrogen metabolism under salt stress could accumulate more amino acids as the compatible solute rather than the components of proteins. This study provides information for an improved understanding of nitrogen metabolic response to salt stress in rice.

  14. Metabolomics Reveals Cryptic Interactive Effects of Species Interactions and Environmental Stress on Nitrogen and Sulfur Metabolism in Seagrass.

    PubMed

    Hasler-Sheetal, Harald; Castorani, Max C N; Glud, Ronnie N; Canfield, Donald E; Holmer, Marianne

    2016-11-01

    Eutrophication of estuaries and coastal seas is accelerating, increasing light stress on subtidal marine plants and changing their interactions with other species. To date, we have limited understanding of how such variations in environmental and biological stress modify the impact of interactions among foundational species and eventually affect ecosystem health. Here, we used metabolomics to assess the impact of light reductions on interactions between the seagrass Zostera marina, an important habitat-forming marine plant, and the abundant and commercially important blue mussel Mytilus edulis. Plant performance varied with light availability but was unaffected by the presence of mussels. Metabolomic analysis, on the other hand, revealed an interaction between light availability and presence of M. edulis on seagrass metabolism. Under high light, mussels stimulated seagrass nitrogen and energy metabolism. Conversely, in low light mussels impeded nitrogen and energy metabolism, and enhanced responses against sulfide toxicity, causing inhibited oxidative energy metabolism and tissue degradation. Metabolomic analysis thereby revealed cryptic changes to seagrass condition that could not be detected by traditional approaches. Our findings suggest that coastal eutrophication and associated reductions in light may shift seagrass-bivalve interactions from mutualistic to antagonistic, which is important for conservation management of seagrass meadows.

  15. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton

    PubMed Central

    Bertrand, Erin M.; Allen, Andrew E.

    2012-01-01

    While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12) and thiamine (B1) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2) B12 and B1 starvation impacts on polyamine biosynthesis, and (3) influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful

  16. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress.

    PubMed

    Zhang, Ruimin; Sun, Yunkuo; Liu, Zeyu; Jin, Wen; Sun, Yan

    2017-05-01

    In China, excessive use of nitrogen fertilizers in glasshouses leads to nitrate accumulations in soil and plants, which then limits productivity. Melatonin, an evolutionarily highly conserved molecule, has a wide range of functions in plants. We analyzed the effects of melatonin pretreatment on the growth, mineral nutrition, and nitrogen metabolism in cucumber (Cucumis sativus L. "Jin You No. 1") when seedlings were exposed to nitrate stress. An application of 0.1 mmol/L melatonin significantly improved the growth of plants and reduced their susceptibility to damage due to high nitrate levels (0.6 mol/L) during the ensuing period of stress treatment. Although excess nitrate led to an increase in the concentrations of nitrogen, potassium, and calcium, as well as a decrease in levels of phosphorus and magnesium, exogenous melatonin generally had the opposite effect except for a further rise in calcium concentrations. Pretreatment also significantly reduced the accumulations of nitrate nitrogen and ammonium nitrogen and enhanced the activities of enzymes involved in nitrogen metabolism. Expression of Cs-NR and Cs-GOGAT, two genes that function in that metabolism, was greatly down-regulated when plants were exposed to 0.6 mol/L nitrate, but was up-regulated in plants that had received the 0.1 mmol/L melatonin pretreatment. Our results are the first evidence that melatonin has an important role in modulating the composition of mineral elements and nitrogen metabolism, thereby alleviating the inhibitory effect on growth normally associated with nitrate stress. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effect of Chromium(VI) Toxicity on Enzymes of Nitrogen Metabolism in Clusterbean (Cyamopsis tetragonoloba L.)

    PubMed Central

    Sangwan, Punesh; Joshi, U. N.

    2014-01-01

    Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment) was conducted to determine the affects of varying chromium(VI) levels (0.0, 0.5, 1.0, 2.0, and 4.0 mg chromium(VI) kg−1 soil in the form of potassium dichromate) on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI) levels from 0 to 2.0 mg chromium(VI) kg−1 soil and 4.0 mg chromium(VI) kg−1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage. PMID:24744916

  18. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    PubMed

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  19. Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions.

    PubMed

    Ito, Takuro; Tanaka, Miho; Shinkawa, Haruka; Nakada, Takashi; Ano, Yoshitaka; Kurano, Norihide; Soga, Tomoyoshi; Tomita, Masaru

    2013-03-01

    Oil-rich algae have promising potential for a next-generation biofuel feedstock. Pseudochoricystis ellipsoidea MBIC 11204, a novel unicellular green algal strain, accumulates a large amount of oil (lipids) in nitrogen-deficient (-N) conditions. Although the oil bodies are easily visualized by lipophilic staining in the cells, little is known about how oil bodies are metabolically synthesized. Clarifying the metabolic profiles in -N conditions is important to understand the physiological mechanisms of lipid accumulations and will be useful to optimize culture conditions efficiently produce industrial oil. Metabolome and lipidome profiles were obtained, respectively, using capillary electrophoresis- and liquid chromatography-mass spectrometry from P. ellipsoidea in both nitrogen-rich (+N; rapid growth) and -N conditions. Relative quantities of more than 300 metabolites were systematically compared between these two conditions. Amino acids in nitrogen assimilation and N-transporting metabolisms were decreased to 1/20 the amount, or less, in -N conditions. In lipid metabolism, the quantities of neutral lipids increased greatly in -N conditions; however, quantities of nearly all the other lipids either decreased or only changed slightly. The morphological changes in +N and -N conditions were also provided by microscopy, and we discuss their relationship to the metabolic changes. This is the first approach to understand the novel algal strain's metabolism using a combination of wide-scale metabolome analysis and morphological analysis.

  20. Nitrogen affects cluster root formation and expression of putative peptide transporters

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Schenk, Peer M.; Lonhienne, Thierry G. A.; Brackin, Richard; Meier, Stefan; Rentsch, Doris; Schmidt, Susanne

    2009-01-01

    Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply. PMID:19380419

  1. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli

    DTIC Science & Technology

    2012-10-22

    environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be...multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation , α-ketoglutarate, directly inhibits glucose uptake and...at which each nutrient is  assimilated  must be sensitive not only to  its own availability, but also to that of other nutrients. Remarkably, across

  2. Characterizing the Network of Drugs and Their Affected Metabolic Subpathways

    PubMed Central

    Li, Jing; Han, Junwei; Wang, Shuyuan; Yao, Qianlan; Wang, Yingying; Zhang, Yunpeng; Zhang, Chunlong; Xu, Yanjun; Jiang, Wei; Li, Xia

    2012-01-01

    A fundamental issue in biology and medicine is illustration of the overall drug impact which is always the consequence of changes in local regions of metabolic pathways (subpathways). To gain insights into the global relationship between drugs and their affected metabolic subpathways, we constructed a drug–metabolic subpathway network (DRSN). This network included 3925 significant drug–metabolic subpathway associations representing drug dual effects. Through analyses based on network biology, we found that if drugs were linked to the same subpathways in the DRSN, they tended to share the same indications and side effects. Furthermore, if drugs shared more subpathways, they tended to share more side effects. We then calculated the association score by integrating drug-affected subpathways and disease-related subpathways to quantify the extent of the associations between each drug class and disease class. The results showed some close drug–disease associations such as sex hormone drugs and cancer suggesting drug dual effects. Surprisingly, most drugs displayed close associations with their side effects rather than their indications. To further investigate the mechanism of drug dual effects, we classified all the subpathways in the DRSN into therapeutic and non-therapeutic subpathways representing drug therapeutic effects and side effects. Compared to drug side effects, the therapeutic effects tended to work through tissue-specific genes and these genes tend to be expressed in the adrenal gland, liver and kidney; while drug side effects always occurred in the liver, bone marrow and trachea. Taken together, the DRSN could provide great insights into understanding the global relationship between drugs and metabolic subpathways. PMID:23112813

  3. Effects of monosulfuron-ester on metabolic processes of nitrogen-fixing cyanobacteria Anabaena flos-aquae and Anabaena azotica.

    PubMed

    Shen, Jian Ying; Liao, Jin Zhi; Guo, Li Li; Su, Rui Fang

    Presence of the relatively new sulfonylurea herbicide monosulfuron-ester at 0.03-300nmol/L affected the growth of two non-target nitrogen-fixing cyanobacteria (Anabaena flos-aquae and Anabaena azotica) and substantially inhibited in vitro Acetolactate synthase activity, with IC50 of 3.3 and 101.3nmol/L for A. flos-aquae and A. azotica, respectively. Presenting in 30-300nmol/L, it inhibited protein synthesis of the cyanobacteria with less amino acids produced as its concentration increased. Our findings support the view that monosulfuron-ester toxicity in both nitrogen-fixing cyanobacteria is due to its interference with protein metabolism via inhibition of branch-chain amino acid biosynthesis, and particularly Acetolactate synthase activity. Copyright © 2017. Published by Elsevier Editora Ltda.

  4. Arginine supplementation does not alter nitrogen metabolism of beef steers during a lipopolysaccharide challenge

    USDA-ARS?s Scientific Manuscript database

    Demand for arginine (Arg) is reported to increase during immune challenges. This study evaluated effects of lipopolysaccharide (LPS) and abomasal Arg infusion on nitrogen (N) metabolism and immune response of 20 ruminally cannulated steers (369 ± 46 kg BW) in a randomized block design. Each block co...

  5. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress

    PubMed Central

    Levitan, Orly; Dinamarca, Jorge; Zelzion, Ehud; Lun, Desmond S.; Guerra, L. Tiago; Kim, Min Kyung; Kim, Joomi; Van Mooy, Benjamin A. S.; Bhattacharya, Debashish; Falkowski, Paul G.

    2015-01-01

    Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40–50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. PMID:25548193

  6. SO(2) protects the amino nitrogen metabolism of Saccharomyces cerevisiae under thermal stress.

    PubMed

    Ancín-Azpilicueta, Carmen; Barriuso-Esteban, Blanca; Nieto-Rojo, Rodrigo; Aristizábal-López, Nerea

    2012-09-01

    Thermal stress conditions during alcoholic fermentation modify yeasts' plasma membrane since they become more hyperfluid, which results in a loss of bilayer integrity. In this study, the influence of elevated temperatures on nitrogen metabolism of a Saccharomyces cerevisiae strain was studied, as well as the effect of different concentrations of SO(2) on nitrogen metabolism under thermal stress conditions. The results obtained revealed that amino nitrogen consumption was lower in the fermentation sample subjected to thermal stress than in the control, and differences in amino acid consumption preferences were also detected, especially at the beginning of the fermentation. Under thermal stress conditions, among the three doses of SO(2) studied (0, 35, 70 mg l(-1) SO(2) ), the highest dose was observed to favour amino acid utilization during the fermentative process, whereas sugar consumption presented higher rates at medium doses.

  7. Carbon and nitrogen metabolism regulated by the ubiquitin-proteasome system.

    PubMed

    Sato, Takeo; Maekawa, Shugo; Yasuda, Shigetaka; Yamaguchi, Junji

    2011-10-01

    The ubiquitin-proteasome system (UPS) is a unique protein degradation mechanism conserved in the eukaryotic cell. In addition to the control of protein quality, UPS regulates diverse cellular signal transduction via the fine-tuning of target protein degradation. Protein ubiquitylation and subsequent degradation by the 26S proteasome are involved in almost all aspects of plant growth and development and response to biotic and abiotic stresses. Recent studies reveal that the UPS plays an essential role in adaptation to carbon and nitrogen availability in plants. Here we highlight ubiquitin ligase ATL31 and the homologue ATL6 target 14-3-3 proteins for ubiquitylation to be degraded, which control signaling for carbon and nitrogen metabolisms and C/N balance response. We also give an overview of the UPS function involved in carbon and nitrogen metabolisms.

  8. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation.

    PubMed

    Singh, Madhulika; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2016-12-01

    In the present study, effect of different levels of nitrogen (N0, deprived; N25, sub-optimum; N75, optimum and N150, supra-optimum) in Solanum lycopersicum L. seedlings under NaCl (NaCl1, 0.3 g kg(-1) sand and NaCl2, 0.5 g kg(-1)sand) stress was investigated. Biomass accumulation, pigments, K(+) concentration, nitrate and nitrite contents were declined by NaCl in dose dependent manner. As compared to control (N75 without NaCl), fresh weight declined by 4% and 11%, and dry weight by 7 and 13% when seedlings were grown under N75+NaCl1 and N75+NaCl2 combinations, respectively. Furthermore, fluorescence parameters (JIP-test): the size and number of active reaction centres of photosynthetic apparatus (Fv/F0), efficiency of water splitting complex (F0/Fv), quantum yield of primary photochemistry (φP0 or Phi_P0), yield of electron transport per trapped excitation (Ψ0 or Psi_0), the quantum yield of electron transport (φE0), and performance index of PS II (PIABS) and parameters related to energy fluxes per reaction centre (ABS/RC, TR0/RC, ET0/RC and DI0/RC) were also affected by NaCl. However, toxic effect of NaCl on photosystem II photochemistry was ameliorated by N. The lower dose (NaCl1) of NaCl exerts damaging effect on oxidation side of PS II, while higher dose (NaCl2) damages PS II reaction centre and its reduction side. Moreover, control seedlings (N75 without NaCl) when exposed to NaCl1 and NaCl2 exhibited a significant enhancement in respiration rate by 6 and 16%, Na(+) accumulation by 111 and 169% in shoot, and 141 and 223% in root and ammonium contents by 19 and 34% respectively. Nitrate and ammonium assimilating enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS) and glutamate synthase (GOGAT) were adversely affected by NaCl stress while glutamate dehydrogenase (GDH) showed reverse trend. N addition caused further enhancement in free proline, and activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS), while

  9. Exogenously applied nitrate improves the photosynthetic performance and nitrogen metabolism in tomato (Solanumlycopersicum L. cv Pusa Rohini) under arsenic (V) toxicity.

    PubMed

    Agnihotri, Ashish; Seth, Chandra Shekhar

    2016-07-01

    Tomato (Solanum lycopersicum L.) being a widespread and most commonly consumed vegetable all over the world has an important economic value for its producers and related food industries. It is a serious matter of concern as its production is affected by arsenic present in soil. So, the present study, investigated the toxicity of As(V) on photosynthetic performance along with nitrogen metabolism and its alleviation by exogenous application of nitrate. Plants were grown under natural conditions using soil spiked with 25 mg and 20 mM, As(V) and nitrate, respectively. Our results revealed that plant growth indices, photosynthetic pigments, and other major photosynthetic parameters like net photosynthetic rate and maximum quantum efficiency (Fv/Fm ) of photosystem II (PSII) were significantly (P ≤ 0.05) reduced under As(V) stress. However, nitrate application significantly (P ≤ 0.05) alleviated As(V) toxicity by improving the aforesaid plant responses and also restored the abnormal shape of guard cells. Nitrogen metabolism was assessed by studying the key nitrogen-metabolic enzymes. Exogenous nitrate revamped nitrogen metabolism through a major impact on activities of NR, NiR, GS and GOGAT enzymes and also enhanced the total nitrogen and NO content while malondialdehyde content, and membrane electrolytic leakage were remarkably reduced. Our study suggested that exogenous nitrate application could be considered as a cost effective approach in ameliorating As(V) toxicity.

  10. Nitrogen metabolism of four raw meat diets in domestic cats.

    PubMed

    Kerr, Katherine R; Beloshapka, Alison N; Morris, Cheryl L; Swanson, Kelly S

    2011-10-01

    Little nutritional information has been collected from domestic cats fed raw meat diets. The objective of the present study was to evaluate differences in N metabolism of domestic cats fed raw beef-based diet (66 % crude protein (CP) and 20 % fat), bison-based diet (49 % CP and 39 % fat), elk-based diet (79 % CP and 6 % fat) and horse-based diet (60 % CP and 26 % fat). A total of eight intact adult female cats were fed to maintain body weight in a cross-over design. Daily food intake, faecal and urinary outputs, and N metabolism were measured. Dietary N was highly digestible (96.8 (SEM 0.7)) for all treatments. Urinary N accounted for a majority of total N excretion, and differences in total N excretion reflect differences in urinary N. Differences in N intake and N absorption were due to differences in CP levels among diets. N retention was similar to values reported in the literature for domestic cats fed purified and traditional extruded diets. Despite differences in protein concentrations and N intake, all raw meats tested maintained N metabolism.

  11. Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos1[W][OA

    PubMed Central

    Allen, Doug K.; Young, Jamey D.

    2013-01-01

    Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-13C5]glutamine, [U-13C4]asparagine, and [1,2-13C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-14C12]sucrose, [U-14C6]glucose, [U-14C5]glutamine, and [U-14C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism. PMID:23314943

  12. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation.

    PubMed

    Furlan, Ana Laura; Bianucci, Eliana; Castro, Stella; Dietz, Karl-Josef

    2017-10-01

    Legumes belong to the most important crops worldwide. They increase soil fertility due their ability to establish symbiotic associations with soil microorganisms, known as rhizobia, capable of fixing nitrogen from the atmosphere. However, they are frequently exposed to abiotic stress conditions in particular drought. Such adverse conditions impair the biological nitrogen fixation (BNF) and depend largely on the legume. Therefore, two peanut cultivars with contrasting tolerance to drought, namely the more tolerant EC-98 and the sensitive Granoleico, were investigated to elucidate the relative contribution of BNF to the tolerance to drought. The tolerant cultivar EC-98 sustained growth and BNF similar to the control condition despite the reduced water potential and photosynthesis, suggesting the functioning of distinct metabolic pathways that contributed to enhance the tolerance. The biochemical and metabolomics approaches revealed that nodules from the tolerant cultivar accumulated trehalose, proline and gamma-aminobutyric acid (GABA), metabolites with known function in protecting against drought stress. The amide metabolism was severely affected in nodules from the sensitive cultivar Granoleico as revealed by the low content of asparagine and glutamine in the drought stressed plants. The sensitive cultivar upon rehydration was unable to re-establish a metabolism similar to well-watered plants. This was evidenced by the low level of metabolites and, transcripts and specific activities of enzymes from the carbon (sucrose synthase) and nitrogen (glutamine synthetase) metabolism which decreased below the values of control plants. Therefore, the increased content of metabolites with protective functions under drought stress likely is crucial for the full restoration upon rehydration. Smaller changes of drought stress-related metabolites in nodule are another trait that contributes to the effective control of BNF in the tolerant peanut cultivar (EC-98). Copyright © 2017

  13. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco

    PubMed Central

    Gupta, Kapuganti J.; Mur, Luis A. J.

    2013-01-01

    Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)—a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either or . The speed of cell death was faster in -fed compared with -fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in -fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in -fed compared with fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following nutrition, polyamine biosynthesis was predominant, whilst after nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with , which also increases the availability of nutrients to pathogens, are discussed. PMID:23230025

  14. Nitrogen Form Impacting Phytoplankton Across Scales in China's West Lake: from Nitrogen-metabolism to Community Composition

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Yang, J.; Li, Y.; Tong, M.; Glibert, P. M.

    2016-02-01

    China's marine and freshwaters are among the most nitrogen (N) polluted in the world. N pollution has been linked with nuisance and toxic algal blooms, oxygen depletion, loss of fisheries, and changes in biodiversity. Although the effect of total nutrient loading has been well explored in terms of promoting algal blooms, the effects of changing nitrogen forms (e.g. NO3- and NH4+) and proportions on algal community composition and nitrogen productivity are poorly understood in systems experiencing prolonged nutrient loading. Therefore, we conducted a series of experiments on natural waters collected from West Lake, Hangzhou, China to assess shifts in phytoplankton community composition and nitrogen based metabolism following the addition of changing nitrogen forms. Natural samples were collected during the months of May through August from three sampling sites and were variably enriched with NH4+ and NO3-, with and without supplemental additions of phosphate (P) to produce a range of nutrient supply ratios. The samples were incubated under natural light and temperature conditions for several days during which phytoplankton community composition, biomass accumulation, and productivity were tracked. There was no significant change in biomass with the addition of different N forms to the three sampling locations during the spring; however, the addition of P resulted in approximately a three-fold increase in biomass consistently. Overall, the benthic filamentous alga Tribonema spp. dominated the phytoplankton community, until July 24th when the diatom Nitzschia spp. dominated following the super typhoon Chan-hom. The addition of NO3- and P to the mid West Lake station resulted in three times as many Nitzschia spp. cells than the addition of NH4+ and P during late summer. These results will be presented in terms of the spatial conditions that promoted the bloom and how they fit into our observations of dichotomous phytoplankton communities.

  15. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    DOE PAGES

    Rydzak, Thomas; Garcia, David; Stevenson, David M.; ...

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secreted valinemore » and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.« less

  16. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    USDA-ARS?s Scientific Manuscript database

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  17. Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR.

    PubMed

    Graham, James E; Wantland, Nicholas B; Campbell, Mark; Klotz, Martin G

    2011-01-01

    Recent advances in DNA sequencing have greatly accelerated our ability to obtain the raw information needed to recognize both known and potential novel modular microbial genomic capacity for nitrogen metabolism. With PCR-based approaches to quantifying microbial mRNA expression now mainstream in most laboratories, researchers can now more efficiently propose and test hypotheses on the contributions of individual microbes to the biological accessibility of nitrogen upon which all other life depends. We review known microbial roles in these key nitrogen transformations, and describe the necessary steps in carrying out relevant gene expression studies. An example experimental design is then provided characterizing Nitrosococcus oceani mRNA expression in cultures responding to ammonia. The approach described, that of assessing microbial genome inventory and testing putative modular gene expression by mRNA quantification, is likely to remain an important tool in understanding individual microbial contributions within microbial community activities that maintain the Earth's nitrogen balance.

  18. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    NASA Astrophysics Data System (ADS)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    The evolution of metabolic pathways is closely linked to the evolution of the redox state of the terrestrial atmosphere. Nitrogen has been an essential biological element since the emergence of life when reduced nitrogen compounds (e.g. ammonia) were utilized in the prebiotic synthesis of proteins and nucleic acids. The nitrogen isotopic composition of sediments has been used to trace the origin of sedimentary organic matter in the rock record. Nitrogen is therefore suitable as a biosignature to trace the emergence of life on Earth or other planetary bodies as well as to follow the subsequent evolution of the biosphere in response to global redox changes. Evidence is strong that biological nitrogen fixation evolved very early in the history of life. The Last Common Ancestor (LCA) on Earth was most likely capable of nitrogen fixation as seen from the phylogenetic distribution of nitrogen-fixing organisms in both the domains of Bacteria and Archaea. Phylogenetic trees plotted with nitrogen-fixing gene (Nif) sequences from lineages of Bacteria and Archaea suggest that the Nif genes originated in a common ancestor of the two domains. Other phylogenetic analyses have also demonstrated that the paralogous duplication of the nifDK and nifEN operons, central to nitrogen fixation, predated the divergence of Archaea from Bacteria and therefore occurred prior to the emergence of the LCA. Although the same may be true for denitrification, this metabolic pathway probably did not become dominant until atmospheric pO2 increased between ~2.4 to 1.9 Ga during the Great Oxygenation Event (GOE). Recent work has shown a general depletion in 15N content of Archean (pre-2.5 Ga) relative to Phanerozoic (<540 Ma) kerogens. Studies have shown that the distribution of the δ15N values in kerogens shift from negative values in the Early Archean (from -6 to +6‰ with an average near 0‰ ) to approximately contemporary positive values (from +2 to +10‰ with an average at +6‰ ) by the

  19. The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci.

    PubMed

    Hernández, Martín A; Lara, Julia; Gago, Gabriela; Gramajo, Hugo; Alvarez, Héctor M

    2017-01-01

    The regulatory mechanisms involved in lipogenesis and triacylglycerol (TAG) accumulation are largely unknown in oleaginous rhodococci. In this study a regulatory protein (here called NlpR: Nitrogen lipid Regulator), which contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci was identified. Under nitrogen deprivation conditions, in which TAG accumulation is stimulated, the nlpR gene was significantly upregulated, whereas a significant decrease of its expression and TAG accumulation occurred when cerulenin was added. The nlpR disruption negatively affected the nitrate/nitrite reduction as well as lipid biosynthesis under nitrogen-limiting conditions. In contrast, its overexpression increased TAG production during cultivation of cells in nitrogen-rich media. A putative 'NlpR-binding motif' upstream of several genes related to nitrogen and lipid metabolisms was found. The nlpR disruption in RHA1 strain led to a reduced transcription of genes involved in nitrate/nitrite assimilation, as well as in fatty acid and TAG biosynthesis. Purified NlpR was able to bind to narK, nirD, fasI, plsC and atf3 promoter regions. It was suggested that NlpR acts as a pleiotropic transcriptional regulator by activating of nitrate/nitrite assimilation genes and others genes involved in fatty acid and TAG biosynthesis, in response to nitrogen deprivation.

  20. Using comparative biology to understand how aging affects mitochondrial metabolism.

    PubMed

    Dhillon, Rashpal S; Denu, John M

    2017-11-05

    Lifespan varies considerably among even closely related species, as exemplified by rodents and primates. Despite these disparities in lifespan, most studies have focused on intra-specific aging pathologies, primarily within a select few systems. While mice have provided much insight into aging biology, it is unclear if such a short-lived species lack defences against senescence that may have evolved in related longevous species. Many age-related diseases have been linked to mitochondrial dysfunction that are measured by decreased energy generation, structural damage to cellular components, and even cell death. Post translational modifications (PTMs) orchestrate many of the pathways associated with cellular metabolism, and are thought to be a key regulator in biological senescence. We propose hyperacylation as one such modification that may be implicated in numerous mitochondrial impairments affecting energy metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. [Effects of NO3- stress on photosynthetic characteristics and nitrogen metabolism of strawber- ry seedlings].

    PubMed

    Han, Yu-rui; Wang, Xiu-feng; Yang, Feng-juan; Wei, Min; Shi, Qing-hua; Li, Qing-ming; Cui, Xiu-min

    2015-08-01

    In order to explore the effects of NO3- stress on photosynthetic characteristics and nitrogen metabolism, strawberry seedlings were grown in sand culture condition under different concentrations of NO3- (64, 112 and 160 mmol · L(-1)) with the control of 16 mmol NO3- · L(-1). The results indicated that at the 8th day after treatment, with the increased NO3- concentration, the strawberry leaf net photosynthetic rate (Pn), stomatal conductance (g(s)), PS II actual photochemical efficiency (ΦPS II), PS II maximum photochemical efficiency (Fv/Fm), and photochemical quenching coefficient (q(P)) significantly decreased, and decreased by 67.7%, 68.4%, 35.7%, 23.2% and 26.9%, respectively, when NO3- concentration reached 160 mmol · L(-1) compared with the control. The non-photochemical quenching coefficient (q(N)) increased by 4.4%, 10.9% and 75.8% respectively in the treatments of 64, 112 and 160 mmol NO3- · L(-1) compared with the control. The intercellular CO2 concentration (Ci) decreased under low NO3- concentration stress and then increased under high NO3- concentration stress, while the stomatal limitation (Ls) was vice versa. With the increased NO3- concentration, the nitrate nitrogen, ammonia nitrogen, total nitrogen and Kjeldahl nitrogen contents in the strawberry leaves and roots increased, but the protein nitrogen content decreased. The activities of nitrate reductase (NR) , glutamine sybthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) increased at low NO3- concentration and then decreased at high NO3 concentration. Consequently, the net photosynthetic rate of strawberry seedling leaves decreased, the PS II electron transfer was blocked, the nitrogen accumulated with the increasing NO3- concentration, and the nitrogen metabolism enzyme activity decreased at high NO3- concentrations. When the NO3- concentration reached 64 mmol · L(-1) or higher in the nutrient solution, the growth of strawberry seedlings were inhibited significantly.

  2. Nitrous Oxide Emissions Affected by Biochar and Nitrogen Stabilizers

    NASA Astrophysics Data System (ADS)

    Gao, S.; Cai, Z.; Xu, M.

    2016-12-01

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emissions and N transformations in soil amended with biochar and N transformation inhibitors. The soil was a sandy loam soil and adjusted to 10% soil water content and incubated at 25oC. Biochar amendment at 1% (w/w), Agrotain® Ultra (urease inhibitor), Agrotain® Plus (urease and nitrification inhibitor), and N-Serve® 24 (nitrification inhibitor) as well as another potential nitrification inhibitor, potassium thiosulfate (KTS), at 0.25-1:1 K2O/N ratios (w/w) were tested. Emissions of N2O, soil mineral N species change, and soil pH were determined for 35 days after fertilizers were applied. Biochar, Agrotain® Ultra or Plus, or N-Serve® 24 all effectively reduced N2O emissions by more than 60% as compared to no amendment control. The KTS, however, was only effective in reducing N2O emissions at a high ratio (1:1 K2O/N, w/w). There was a strong correlation between N2O emission and the concentration of nitrite (NO2-) in soil but not other mineral species. All the amendments showed that their effects on N transformation and N2O emissions were completed within a few weeks after application. Laboratory analysis indicated that biochar affected the N dynamics most likely via adsorption of ammonium (NH4+) and the inhibitors by affecting N transformation rate. This research has gained further understanding on how biochar and N stabilizers affect N2O emissions and the knowledge can assist in developing mitigation strategies.

  3. Risk factors that affect metabolic health status in obese children.

    PubMed

    Elmaogullari, Selin; Demirel, Fatma; Hatipoglu, Nihal

    2017-01-01

    While some obese children are metabolically healthy (MHO), some have additional health problems, such as hypertension, dyslipidemia, insulin resistance, and hepatosteatosis, which increase mortality and morbidity related to cardiovascular diseases (CVD) during adulthood. These children are metabolically unhealthy obese (MUO) children. In this study we assessed the factors that affect metabolic health in obesity and the clinical and laboratory findings that distinguish between MHO and MUO children. In total, 1085 patients aged 6-18 years, with age- and sex-matched BMI exceeding the 95th percentile were included in the study (mean 11.1±2.9 years, 57.6% female, 59.7% pubertal). Patients without dyslipidemia, insulin resistance, hepatosteatosis, or hypertension were considered as MHO. Dyslipidemia was defined as total cholesterol level over 200 mg/dL, triglyceride over 150 mg/dL, LDL over 130 mg/dL, or HDL under 40 mg/dL. Insulin resistance was calculated using the homeostasis model of assesment for insulin resistance (HOMA-IR) index. Hepatosteatosis was evaluated with abdominal ultrasound. Duration of obesity, physical activity and nutritional habits, screen time, and parental obesity were questioned. Thyroid and liver function tests were performed. Six hundred and forty-two cases (59.2%) were MUO. Older age, male sex, increased BMI-SDS, and sedentary lifestyle were associated with MUO. Excessive junk food consumption was associated with MUO particularly among the prepubertal obese patients. Our results revealed that the most important factors that affect metabolic health in obesity are age and BMI. Positive effects of an active lifestyle and healthy eating habits are prominent in the prepubertal period and these habits should be formed earlier in life.

  4. Pleiotropic Modulation of Carbon and Nitrogen Metabolism in Arabidopsis Plants Overexpressing the NAD kinase2 Gene1[W

    PubMed Central

    Takahashi, Hideyuki; Takahara, Kentaro; Hashida, Shin-nosuke; Hirabayashi, Takayuki; Fujimori, Tamaki; Kawai-Yamada, Maki; Yamaya, Tomoyuki; Yanagisawa, Shuichi; Uchimiya, Hirofumi

    2009-01-01

    Nicotinamide nucleotides (NAD and NADP) are important cofactors in many metabolic processes in living organisms. In this study, we analyzed transgenic Arabidopsis (Arabidopsis thaliana) plants that overexpress NAD kinase2 (NADK2), an enzyme that catalyzes the synthesis of NADP from NAD in chloroplasts, to investigate the impacts of altering NADP level on plant metabolism. Metabolite profiling revealed that NADP(H) concentrations were proportional to NADK activity in NADK2 overexpressors and in the nadk2 mutant. Several metabolites associated with the Calvin cycle were also higher in the overexpressors, accompanied by an increase in overall Rubisco activity. Furthermore, enhanced NADP(H) production due to NADK2 overexpression increased nitrogen assimilation. Glutamine and glutamate concentrations, as well as some other amino acids, were higher in the overexpressors. These results indicate that overexpression of NADK2 either directly or indirectly stimulates carbon and nitrogen assimilation in Arabidopsis under restricted conditions. Importantly, since neither up-regulation nor down-regulation of NADK2 activity affected the sum amount of NAD and NADP or the redox state, the absolute level of NADP and/or the NADP/NAD ratio likely plays a key role in regulating plant metabolism. PMID:19587098

  5. Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism.

    PubMed

    Shi, Jianghua; Yi, Keke; Liu, Yu; Xie, Li; Zhou, Zhongjing; Chen, Yue; Hu, Zhanghua; Zheng, Tao; Liu, Renhu; Chen, Yunlong; Chen, Jinqing

    2015-03-01

    Phosphoenolpyruvate carboxylase (PEPC) is a crucial enzyme that catalyzes an irreversible primary metabolic reaction in plants.Previous studies have used transgenic plants expressing ectopic PEPC forms with diminished feedback inhibition to examine the role of PEPC in carbon and nitrogen metabolism. To date, the in vivo role of PEPC in carbon and nitrogen metabolism has not been analyzed in plants. In this study, we examined the role of PEPC in plants, demonstrating that PPC1 and PPC2 were highly expressed genes encoding PEPC in Arabidopsis (Arabidopsis thaliana) leaves and that PPC1 and PPC2 accounted for approximately 93% of total PEPC activity in the leaves. A double mutant, ppc1/ppc2, was constructed that exhibited a severe growth-arrest phenotype. The ppc1/ppc2 mutant accumulated more starch and sucrose than wild-type plants when seedlings were grown under normal conditions. Physiological and metabolic analysis revealed that decreased PEPC activity in the ppc1/ppc2 mutant greatly reduced the synthesis of malate and citrate and severely suppressed ammonium assimilation. Furthermore, nitrate levels in the ppc1/ppc2 mutant were significantly lower than those in wild-type plants due to the suppression of ammonium assimilation. Interestingly, starch and sucrose accumulation could be prevented and nitrate levels could be maintained by supplying the ppc1/ppc2 mutant with exogenous malate and glutamate, suggesting that low nitrogen status resulted in the alteration of carbon metabolism and prompted the accumulation of starch and sucrose in the ppc1/ppc2 mutant. Our results demonstrate that PEPC in leaves plays a crucial role in modulating the balance of carbon and nitrogen metabolism in Arabidopsis.

  6. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece.

    PubMed

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A; Pakrasi, Himadri B

    2011-01-01

    The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of

  7. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows.

    PubMed

    Fanchone, A; Nozière, P; Portelli, J; Duriot, B; Largeau, V; Doreau, M

    2013-02-01

    This work aimed to investigate the effects of 2 levels of N (low or high) and 2 energy sources (starch or fiber) on N partitioning, N ruminal metabolism, and digestion in dairy cows. Four Holstein cows were used in a 4 × 4 Latin square design. The 4 cows (on average, 662 ± 62 kg and at 71 ± 10 d in milk at the beginning of the experiment) were fitted with rumen, proximal duodenum, and terminal ileum cannula. The cows received 4 diets having the same forage proportion on a DM basis. The high level of N supply met 110% of the protein requirements of cows with an adequate supply in rumen-degradable N. The low level covered 80% of these requirements with a shortage in rumen-degradable N. Energy sources differed by their nature (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). Duodenal digesta flow was determined using YbCl3 as a marker. Microbial duodenal N flow was determined using purine and pyrimidine bases as markers from liquid-associated bacteria and mixed bacteria samples. Microbial N flow and efficiency of microbial protein synthesis, calculated using mixed bacteria as a reference microbial sample, were not significantly modified by the N level (P = 0.19 and 0.29, respectively) and the energy source of the diet (P = 0.11 and 0.08, respectively). Total tract apparent digestibility of OM and total tact digestibility of NDF were lower at the low N level (P = 0.006 and 0.007, respectively). Total tract apparent digestibility of OM tended to be greater (P = 0.08) with high-starch diets than with high-fiber diets. Total tact digestibility of NDF was greater (P < 0.001) with high-fiber diets than with high-starch diets. Duodenal N flow was less (P = 0.001) at the low N level than high N level and tended to be greater (P = 0.06) with high-starch diets than with high-fiber diets. Daily output of N in urine was less (P < 0.001) at the low N level than at the high N level. Daily output of N in feces did not differ between

  8. Increasing Nitrogen Fixation and Seed Development in Soybean Requires Complex Adjustments of Nodule Nitrogen Metabolism and Partitioning Processes.

    PubMed

    Carter, Amanda M; Tegeder, Mechthild

    2016-08-08

    Legumes are able to access atmospheric di-nitrogen (N2) through a symbiotic relationship with rhizobia that reside within root nodules. In soybean, following N2 fixation by the bacteroids, ammonia is finally reduced in uninfected cells to allantoin and allantoic acid [1]. These ureides present the primary long-distance transport forms of nitrogen (N), and are exported from nodules via the xylem for shoot N supply. Transport of allantoin and allantoic acid out of nodules requires the function of ureide permeases (UPS1) located in cells adjacent to the vasculature [2, 3]. We expressed a common bean UPS1 transporter in cortex and endodermis cells of soybean nodules and found that delivery of N from nodules to shoot, as well as seed set, was significantly increased. In addition, the number of transgenic nodules was increased and symbiotic N2 fixation per nodule was elevated, indicating that transporter function in nodule N export is a limiting step in bacterial N acquisition. Further, the transgenic nodules showed considerable increases in nodule N assimilation, ureide synthesis, and metabolite levels. This suggests complex adjustments of nodule N metabolism and partitioning processes in support of symbiotic N2 fixation. We propose that the transgenic UPS1 plants display metabolic and allocation plasticity to overcome N2 fixation and seed yield limitations. Overall, it is demonstrated that transporter function in N export from nodules is a key step for enhancing atmospheric N2 fixation and nodule function and for improving shoot N nutrition and seed development in legumes.

  9. Elevated ozone and nitrogen deposition affect nitrogen pools of subalpine grassland.

    PubMed

    Bassin, Seraina; Käch, David; Valsangiacomo, Alain; Mayer, Jochen; Oberholzer, Hans-Rudolf; Volk, Matthias; Fuhrer, Jürg

    2015-06-01

    In a free-air fumigation experiment with subalpine grassland, we studied long-term effects of elevated ozone (O3) and nitrogen (N) deposition on ecosystem N pools and on the fate of anthropogenic N. At three times during the seventh year of exposure, N pools and recovery of a stable isotope tracer ((15)N) were determined in above- and belowground plant parts, and in the soil. Plants were much better competitors for (15)N than soil microorganisms. Plant N pools increased by 30-40% after N addition, while soil pools remained unaffected, suggesting that most of the extra N was taken up and stored in plant biomass, thus preventing the ecosystem from acquiring characteristics of eutrophication. Elevated O3 caused an increase of N in microbial biomass and in stabilized soil N, probably resulting from increased litter input and lower litter quality. Different from individual effects, the interaction between the pollutants remained partly unexplained.

  10. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency.

    PubMed

    Oliveira, Halley C; Freschi, Luciano; Sodek, Ladaslav

    2013-05-01

    Although nitrate (NO3(-)) but not ammonium (NH4(+)) improves plant tolerance to oxygen deficiency, the mechanisms involved in this phenomenon are just beginning to be understood. By using gas chromatography-mass spectrometry, we investigated the metabolic fate of (15)NO3(-) and (15)NH4(+) in soybean plants (Glycine max L. Merril cv. IAC-23) subjected to root hypoxia. This stress reduced the uptake of (15)NO3(-) and (15)NH4(+) from the medium and decreased the overall assimilation of these nitrogen sources into amino acids in roots and leaves. Root (15)NO3(-) assimilation was more affected by hypoxia than that of (15)NH4(+), resulting in enhanced nitrite and nitric oxide release in the solution. However, (15)NO3(-) was translocated in substantial amounts by xylem sap and considerable (15)NO3(-) assimilation into amino acids also occurred in the leaves, both under hypoxia and normoxia. By contrast, (15)NH4(+) assimilation occurred predominantly in roots, resulting in accumulation of mainly (15)N-alanine in this tissue during hypoxia. Analysis of lactate levels suggested higher fermentation in roots from NH4(+)-treated plants compared to the NO3(-) treatment. Thus, foliar NO3(-) assimilation may be relevant to plant tolerance to oxygen deficiency, since it would economize energy expenditure by hypoxic roots. Additionally, the involvement of nitric oxide synthesis from nitrite in the beneficial effect of NO3(-) is discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient.

    PubMed

    Vallano, Dena M; Sparks, Jed P

    2013-05-01

    Foliar nitrogen isotope (δ(15)N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ(15)N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ(15)N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ(15)N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ(15)N, and mycorrhizae on foliar δ(15)N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ(15)N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ(15)N. There was no correlation between foliar δ(13)C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ(15)N in several dominant species occurring in temperate forest ecosystems.

  12. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    PubMed

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Impact of chronic renal failure on nitrogen metabolism.

    PubMed

    Maroni, B J

    1998-01-01

    Evidence indicates that both nephrotic and nonnephrotic chronic renal failure (CRF) patients can activate normal compensatory responses when dietary protein intake is restricted and that their protein and energy requirements are similar to normal subjects. When properly implemented, low-protein diets are safe and the benefits include the amelioration of uremic symptoms and some of their metabolic complications and possibly a reduction in the rate of progression of renal failure. To ensure dietary adequacy and compliance, patients should be monitored when treated with low-protein diets. Recent evidence that the protein intake of patients with progressive CRF declines when they consume unrestricted diets should not be considered as an argument against the use of low-protein diets. Rather, it is a persuasive argument in favor of restricting dietary protein intake to minimize the complications of renal failure.

  14. Effects of nitrogen metabolism on growth and aflatoxin biosynthesis in Aspergillus flavus.

    PubMed

    Wang, Bin; Han, Xiaoyun; Bai, Youhuang; Lin, Zhenguo; Qiu, Mengguang; Nie, Xinyi; Wang, Sen; Zhang, Feng; Zhuang, Zhenhong; Yuan, Jun; Wang, Shihua

    2017-02-15

    Aflatoxins (AFs), produced mainly by Aspergillus flavus and Aspergillus parasiticus, are strongly toxic and carcinogenic. Here, we showed that glutamine is the optimal nitrogen source for AF-production in A. flavus grown in Czapek Dox medium. Additionally, 4mM glutamine was the threshold for high production of aflatoxin B1. However, no significant impact of glutamine synthetase inhibitor was detected for on AF biosynthesis. In contrast, rapamycin could significantly suppress the glutamine inducing effect on AFs production, simultaneously inhibiting the fungal growth and conidiation. To identify the genes and regulatory networks involved in AFs biosynthesis, especially concerning the nitrogen source metabolism pathway and the target of rapamycin (TOR) signaling pathway, we obtained transcriptomes for A. flavus under treatment of three nitrogen sources by RNA-sequencing. We identified 1429 differentially expressed genes. Through GO and KEGG pathway analyses, the relationship between nitrogen metabolism and AFs biosynthesis was revealed, and the effects of TOR inhibitor were confirmed. Additionally, the quantitative real-time PCR results verified the credibility and reliability of the RNA-seq data, and were consistent with the other experimental results. Our research laid the foundation for a primary study on the involvement of the nitrogen regulatory network and TOR signaling pathway in AF biosynthesis.

  15. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  16. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  17. Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens.

    PubMed

    Salar-García, María J; Bernal, Vicente; Pastor, José M; Salvador, Manuel; Argandoña, Montserrat; Nieto, Joaquín J; Vargas, Carmen; Cánovas, Manuel

    2017-02-08

    The halophilic bacterium Chromohalobacter salexigens has been proposed as promising cell factory for the production of the compatible solutes ectoine and hydroxyectoine. This bacterium has evolved metabolic adaptations to efficiently grow under high salt concentrations by accumulating ectoines as compatible solutes. However, metabolic overflow, which is a major drawback for the efficient conversion of biological feedstocks, occurs as a result of metabolic unbalances during growth and ectoines production. Optimal production of ectoines is conditioned by the interplay of carbon and nitrogen metabolisms. In this work, we set out to determine how nitrogen supply affects the production of ectoines. Chromohalobacter salexigens was challenged to grow in media with unbalanced carbon/nitrogen ratio. In C. salexigens, overflow metabolism and ectoines production are a function of medium composition. At low ammonium conditions, the growth rate decreased importantly, up to 80%. Shifts in overflow metabolism were observed when changing the C/N ratio in the culture medium. (13)C-NMR analysis of ectoines labelling revealed a high metabolic rigidity, with almost constant flux ratios in all conditions assayed. Unbalanced C/N ratio led to pyruvate accumulation, especially upon N-limitation. Analysis of an ect (-) mutant demonstrated the link between metabolic overflow and ectoine biosynthesis. Under non ectoine synthesizing conditions, glucose uptake and metabolic overflow decreased importantly. Finally, in fed-batch cultures, biomass yield was affected by the feeding scheme chosen. High growth (up to 42.4 g L(-1)) and volumetric ectoine yields (up to 4.21 g L(-1)) were obtained by minimizing metabolite overflow and nutrient accumulation in high density cultures in a low nitrogen fed-batch culture. Moreover, the yield coefficient calculated for the transformation of glucose into biomass was 30% higher in fed-batch than in the batch culture, demonstrating that the metabolic

  18. Neurochemistry of Pressure-Induced Nitrogen and Metabolically Inert Gas Narcosis in the Central Nervous System.

    PubMed

    Rostain, Jean-Claude; Lavoute, Cécile

    2016-06-13

    Gases that are not metabolized by the organism are thus chemically inactive under normal conditions. Such gases include the "noble gases" of the Periodic Table as well as hydrogen and nitrogen. At increasing pressure, nitrogen induces narcosis at 4 absolute atmospheres (ATAs) and more in humans and at 11 ATA and more in rats. Electrophysiological and neuropharmacological studies suggest that the striatum is a target of nitrogen narcosis. Glutamate and dopamine release from the striatum in rats are decreased by exposure to nitrogen at a pressure of 31 ATA (75% of the anesthetic threshold). Striatal dopamine levels decrease during exposure to compressed argon, an inert gas more narcotic than nitrogen, or to nitrous oxide, an anesthetic gas. Inversely, striatal dopamine levels increase during exposure to compressed helium, an inert gas with a very low narcotic potency. Exposure to nitrogen at high pressure does not change N-methyl-d-aspartate (NMDA) glutamate receptor activities in Substantia Nigra compacta and striatum but enhances gama amino butyric acidA (GABAA) receptor activities in Substantia Nigra compacta. The decrease in striatal dopamine levels in response to hyperbaric nitrogen exposure is suppressed by recurrent exposure to nitrogen narcosis, and dopamine levels increase after four or five exposures. This change, the lack of improvement of motor disturbances, the desensitization of GABAA receptors on dopamine cells during recurrent exposures and the long-lasting decrease of glutamate coupled with the higher sensitivity of NMDA receptors, suggest a nitrogen toxicity induced by repetitive exposures to narcosis. These differential changes in different neurotransmitter receptors would support the binding protein theory. © 2016 American Physiological Society. Compr Physiol 6:1579-1590, 2016.

  19. Brain metabolism and spatial memory are affected by portal hypertension.

    PubMed

    Arias, Natalia; Méndez, Marta; Arias, Jaime; Arias, Jorge L

    2012-06-01

    Portal hypertension is a major complication of cirrhosis that frequently leads to a neuropsychiatric disorder that affects cognition. The present study was undertaken in order to compare the performance of sham-operated rats (SHAM) and portal hypertension rats (PH) in reference memory tasks in the Morris water maze (MWM). Two groups of animals were used: SHAM group (n=12) was used as a control group and PH group (n=12) by the triple portal vein ligation method was used as an animal model of early evolutive phase of PH. The portal pressure was measured in the splenic parenchyma. Our work shows that spatial learning in the MWM is not impaired in PH group although this group showed a one-day delay in the task acquisition compared to the SHAM group. We assessed the brain metabolic activity of the animals by means of cytochrome c-oxidase (COx) histochemistry. Significant changes were found in the CA3, dentate gyrus, basolateral, medial, lateral and central amygdala, showing lower COx activity in the PH group as compared to the SHAM group in all cases. We found no changes in metabolic activity in prefrontal cortex and CA1 area between groups. In fact, different neural networks were shown according to the execution level of the subjects. The early PH evolution induced changes in brain metabolic activity without biggest alterations in spatial memory.

  20. Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance

    PubMed Central

    Comadira, Gloria; Rasool, Brwa; Karpinska, Barbara; Morris, Jenny; Verrall, Susan R.; Hedley, Peter E.; Foyer, Christine H.; Hancock, Robert D.

    2015-01-01

    Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture. PMID:26038307

  1. Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance.

    PubMed

    Comadira, Gloria; Rasool, Brwa; Karpinska, Barbara; Morris, Jenny; Verrall, Susan R; Hedley, Peter E; Foyer, Christine H; Hancock, Robert D

    2015-06-01

    Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.

  2. Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    PubMed Central

    López-Sánchez, Maria J.; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-01-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state. PMID:19911043

  3. Respiration, metabolic balance, and attention in affective picture processing.

    PubMed

    Gomez, Patrick; Shafy, Samiha; Danuser, Brigitta

    2008-05-01

    The respiratory behavior during affective states is not completely understood. We studied breathing pattern responses to picture series in 37 participants. We also measured end-tidal pCO2 (EtCO2) to determine if ventilation is in balance with metabolic demands and spontaneous eye-blinking to investigate the link between respiration and attention. Minute ventilation (MV) and inspiratory drive increased with self-rated arousal. These relationships reflected increases in inspiratory volume rather than shortening of the time parameters. EtCO2 covaried with pleasantness but not arousal. Eye-blink rate decreased with increasing unpleasantness in line with a negativity bias in attention. This study confirms that respiratory responses to affective stimuli are organized to a certain degree along the dimensions of valence and arousal. It shows, for the first time, that during picture viewing, ventilatory increases with increasing arousal are in balance with metabolic activity and that inspiratory volume is modulated by arousal. MV emerges as the most reliable respiratory index of self-perceived arousal.

  4. Osteoid osteoma is an osteocalcinoma affecting glucose metabolism.

    PubMed

    Confavreux, C B; Borel, O; Lee, F; Vaz, G; Guyard, M; Fadat, C; Carlier, M-C; Chapurlat, R; Karsenty, G

    2012-05-01

    Osteocalcin is a hormone secreted by osteoblasts, which regulates energy metabolism by increasing β-cell proliferation, insulin secretion, insulin sensitivity, and energy expenditure. This has been demonstrated in mice, but to date, the evidence implicating osteocalcin in the regulation of energy metabolism in humans are indirect. To address this question more directly, we asked whether a benign osteoblastic tumor, such as osteoma osteoid in young adults, may secrete osteocalcin. The study was designed to assess the effect of surgical resection of osteoid osteoma on osteocalcin and blood glucose levels in comparison with patients undergoing knee surgery and healthy volunteers. Blood collections were performed the day of surgery and the following morning after overnight fasting. Patients and controls were recruited in the orthopedic surgery department of New York Presbiterian Hospital, NY-USA and Hospices Civils de Lyon, France. Seven young males were included in the study: two had osteoid osteoma, two underwent knee surgery, and three were healthy volunteers. After resection of the osteoid osteomas, we observed a decrease of osteocalcin by 62% and 30% from the initial levels. Simultaneously, blood glucose increased respectively by 32% and 15%. Bone turnover markers were not affected. This case study shows for the first time that osteocalcin in humans affects blood glucose level. This study also suggests that ostoid osteoma may be considered, at least in part, as an osteocalcinoma.

  5. Interactions between dietary boron and thiamine affect lipid metabolism

    SciTech Connect

    Herbel, J.L.; Hunt, C.D. )

    1991-03-15

    An experiment was designed to test the hypothesis that dietary boron impacts upon the function of various coenzymes involved in energy metabolism. In a 2 {times} 7 factorially-arranged experiment, weanling, vitamin D{sub 3}-deprived rats were fed a ground corn-casein-corn oil based diet supplemented with 0 or 2 mg boron/kg and 50% of the requirement for thiamine (TM), riboflavin (RF), pantothenic acid (PA) or pyridoxine (PX); 0% for folic acid (FA) or nicotinic acid (NA). All vitamins were supplemented in adequate amounts in the control diet. At 8 weeks of age, the TM dietary treatment was the one most affected by supplemental dietary boron (SDB). In rats that were fed 50% TM, SDB increased plasma concentrations of triglyceride (TG) and activity of alanine transaminase (ALT), and the liver to body weight (L/B) ratio. However, in the SDB animals, adequate amounts of TM decreased the means of those variables to near that observed in non-SDB rats fed 50% TM. The findings suggest that an interaction between dietary boron and TM affects lipid metabolism.

  6. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  7. Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii

    Treesearch

    Paul G. Scowcroft; Janis E. Haraguchi; Nguyen V. Hue

    2004-01-01

    Land use changes, such as deforestation and reforestation, modify not only the organisms inhabiting affected areas, but also above-and belowground environments. Topography further influences local vegetation and environment. Effects of topography and re-establishment of N-fixing koa (Acacia koa A. Gray) trees in +100-yr-old montane grassland on...

  8. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability

    PubMed Central

    Luo, Zhi-Bin

    2013-01-01

    To investigate N metabolism of two contrasting Populus species in acclimation to low N availability, saplings of slow-growing species (Populus popularis, Pp) and a fast-growing species (Populus alba × Populus glandulosa, Pg) were exposed to 10, 100, or 1000 μM NH4NO3. Despite greater root biomass and fine root surface area in Pp, lower net influxes of NH4 + and NO3 – at the root surface were detected in Pp compared to those in Pg, corresponding well to lower NH4 + and NO3 – content and total N concentration in Pp roots. Meanwhile, higher stable N isotope composition (δ15N) in roots and stronger responsiveness of transcriptional regulation of 18 genes involved in N metabolism were found in roots and leaves of Pp compared to those of Pg. These results indicate that the N metabolism of Pp is more sensitive to decreasing N availability than that of Pg. In both species, low N treatments decreased net influxes of NH4 + and NO3 –, root NH4 + and foliar NO3 – content, root NR activities, total N concentration in roots and leaves, and transcript levels of most ammonium (AMTs) and nitrate (NRTs) transporter genes in leaves and genes involved in N assimilation in roots and leaves. Low N availability increased fine root surface area, foliar starch concentration, δ15N in roots and leaves, and transcript abundance of several AMTs (e.g. AMT1;2) and NRTs (e.g. NRT1;2 and NRT2;4B) in roots of both species. These data indicate that poplar species slow down processes of N acquisition and assimilation in acclimation to limiting N supply. PMID:23963674

  9. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability.

    PubMed

    Luo, Jie; Li, Hong; Liu, Tongxian; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2013-11-01

    To investigate N metabolism of two contrasting Populus species in acclimation to low N availability, saplings of slow-growing species (Populus popularis, Pp) and a fast-growing species (Populus alba × Populus glandulosa, Pg) were exposed to 10, 100, or 1000 μM NH4NO3. Despite greater root biomass and fine root surface area in Pp, lower net influxes of NH4(+) and NO3(-) at the root surface were detected in Pp compared to those in Pg, corresponding well to lower NH4(+) and NO3(-) content and total N concentration in Pp roots. Meanwhile, higher stable N isotope composition (δ(15)N) in roots and stronger responsiveness of transcriptional regulation of 18 genes involved in N metabolism were found in roots and leaves of Pp compared to those of Pg. These results indicate that the N metabolism of Pp is more sensitive to decreasing N availability than that of Pg. In both species, low N treatments decreased net influxes of NH4(+) and NO3(-), root NH4(+) and foliar NO3(-) content, root NR activities, total N concentration in roots and leaves, and transcript levels of most ammonium (AMTs) and nitrate (NRTs) transporter genes in leaves and genes involved in N assimilation in roots and leaves. Low N availability increased fine root surface area, foliar starch concentration, δ(15)N in roots and leaves, and transcript abundance of several AMTs (e.g. AMT1;2) and NRTs (e.g. NRT1;2 and NRT2;4B) in roots of both species. These data indicate that poplar species slow down processes of N acquisition and assimilation in acclimation to limiting N supply.

  10. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert.

    PubMed

    Arndt, Stefan K; Kahmen, Ansgar; Arampatsis, Christina; Popp, Marianne; Adams, Mark

    2004-11-01

    The Central Asian Taklamakan desert is characterized by a hyperarid climate with less than 50 mm annual precipitation but a permanent shallow groundwater table. The perched groundwater (2-16 m) could present a reliable and constant source of nitrogen throughout the growing season and help overcome temporal nitrogen limitations that are common in arid environments. We investigated the importance of groundwater and nitrogen fixation in the nitrogen metabolism of desert plants by assessing the possible forms and availability of soil N and atmospheric N and the seasonal variation in concentration as well as isotopic composition of plant N. Water availability was experimentally modified in the desert foreland through simulated flooding to estimate the contribution of surface water and temporally increased soil moisture for nutrient uptake and plant-water relations. The natural vegetation of the Taklamakan desert is dominated by plants with high foliar nitrogen concentrations (2-3% DM) and leaf nitrate reductase activity (NRA) (0.2-1 micromol NO2- g(-1) FW h(-1)). There is little evidence that nitrogen is a limiting resource as all perennial plants exhibited fast rates of growth. The extremely dry soil conditions preclude all but minor contributions of soil N to total plant N so that groundwater is suggested as the dominant source of N with concentrations of 100 microM NO3-. Flood irrigation had little beneficial effect on nitrogen metabolism and growth, further confirming the dependence on groundwater. Nitrogen fixation was determined by the 15N natural abundance method and was a significant component of the N-requirement of the legume Alhagi, the average contribution of biologically fixed nitrogen in Alhagi was 54.8%. But nitrogen fixing plants had little ecological advantage owing to the more or less constant supply of N available from groundwater. From our data we conclude that the perennial species investigated have adapted to the environmental conditions through

  11. Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.

    PubMed

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-08-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic ¹⁵N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with ¹⁵NO₃⁻/¹⁴NO₃⁻ from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r² > 0.99). This consisted of a "substrate pool," which received N from current uptake and supplied the growth zone, and a recycling/mobilizing "store," which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.

  12. Plant water use affects competition for nitrogen: why drought favors invasive species in California.

    PubMed

    Everard, Katherine; Seabloom, Eric W; Harpole, W Stanley; de Mazancourt, Claire

    2010-01-01

    Abstract: Classic resource competition theory typically treats resource supply rates as independent; however, nutrient supplies can be affected by plants indirectly, with important consequences for model predictions. We demonstrate this general phenomenon by using a model in which competition for nitrogen is mediated by soil moisture, with competitive outcomes including coexistence and multiple stable states as well as competitive exclusion. In the model, soil moisture regulates nitrogen availability through soil moisture dependence of microbial processes, leaching, and plant uptake. By affecting water availability, plants also indirectly affect nitrogen availability and may therefore alter the competitive outcome. Exotic annual species from the Mediterranean have displaced much of the native perennial grasses in California. Nitrogen and water have been shown to be potentially limiting in this system. We parameterize the model for a Californian grassland and show that soil moisture-mediated competition for nitrogen can explain the annual species' dominance in drier areas, with coexistence expected in wetter regions. These results are concordant with larger biogeographic patterns of grassland invasion in the Pacific states of the United States, in which annual grasses have invaded most of the hot, dry grasslands in California but perennial grasses dominate the moister prairies of northern California, Oregon, and Washington.

  13. Nitrogen Metabolite Repression of Metabolism and Virulence in the Human Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.

    2011-01-01

    Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208

  14. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium.

    PubMed

    Tripp, H James; Bench, Shellie R; Turk, Kendra A; Foster, Rachel A; Desany, Brian A; Niazi, Faheem; Affourtit, Jason P; Zehr, Jonathan P

    2010-03-04

    Nitrogen (N(2))-fixing marine cyanobacteria are an important source of fixed inorganic nitrogen that supports oceanic primary productivity and carbon dioxide removal from the atmosphere. A globally distributed, periodically abundant N(2)-fixing marine cyanobacterium, UCYN-A, was recently found to lack the oxygen-producing photosystem II complex of the photosynthetic apparatus, indicating a novel metabolism, but remains uncultivated. Here we show, from metabolic reconstructions inferred from the assembly of the complete UCYN-A genome using massively parallel pyrosequencing of paired-end reads, that UCYN-A has a photofermentative metabolism and is dependent on other organisms for essential compounds. We found that UCYN-A lacks a number of major metabolic pathways including the tricarboxylic acid cycle, but retains sufficient electron transport capacity to generate energy and reducing power from light. Unexpectedly, UCYN-A has a reduced genome (1.44 megabases) that is structurally similar to many chloroplasts and some bacteria, in that it contains inverted repeats of ribosomal RNA operons. The lack of biosynthetic pathways for several amino acids and purines suggests that this organism depends on other organisms, either in close association or in symbiosis, for critical nutrients. However, size fractionation experiments using natural populations have so far not provided evidence of a symbiotic association with another microorganism. The UCYN-A cyanobacterium is a paradox in evolution and adaptation to the marine environment, and is an example of the tight metabolic coupling between microorganisms in oligotrophic oceanic microbial communities.

  15. Plastidial metabolite transporters integrate photorespiration with carbon, nitrogen, and sulfur metabolism.

    PubMed

    Eisenhut, Marion; Hocken, Nadine; Weber, Andreas P M

    2015-07-01

    Plant photorespiration is an essential prerequisite for oxygenic photosynthesis. This metabolic repair pathway bestrides four compartments, which poses the requirement for several metabolites transporters for pathway function. However, in contrast to the well-studied enzymatic steps of the core photorespiratory cycle, only few photorespiratory translocators have been identified to date. In this review, we give an overview of established and unknown plastidic transport proteins involved in photorespiration and intertwined nitrogen and sulfur metabolism, respectively. Furthermore, we discuss the evolutionary origin of the dicarboxylate translocators and the recently identified glycolate glycerate translocator.

  16. An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms.

    PubMed

    Allen, Andrew E; Vardi, Assaf; Bowler, Chris

    2006-06-01

    Whole-genome sequence analysis has revealed that diatoms contain genes and pathways that are novel in photosynthetic eukaryotes. More generally, the unique evolutionary footprint of the chromalveolates, which includes a genome fusion between a heterotrophic protist and a red alga in addition to a major prokaryotic influence, has fostered their inheritance of a unique complement of metabolic capabilities. Many aspects of nitrogen metabolism and cell signaling appear to be linked in diatoms. This new perspective provides a basis for understanding the ecological dominance of diatoms in contemporary oceans.

  17. Nitrogen metabolism components as a tool to discriminate between organic and conventional citrus fruits.

    PubMed

    Rapisarda, Paolo; Calabretta, Maria Luisa; Romano, Gabriella; Intrigliolo, Francesco

    2005-04-06

    The aim of this work was to develop a method for authenticity control of organically grown orange fruits. Due to the different kinds of nitrogen fertilization of the soil in organically and conventionally managed farms, the study tried to verify the possibility to differentiate Navelina and Tarocco orange fruits obtained by these production systems through the detection of markers linked to nitrogen metabolism. In addition to the classic quality parameters, total nitrogen (N) and synephrine contents in juice and (15)N/(14)N isotope ratio (expressed as delta(15)N per thousand) in proteins of pulp and amino acids of juice were determined. The results obtained indicated that total N and synephrine contents were significantly higher in conventional fruits, whereas the delta(15)N per thousand values were higher in the organic ones. The new markers identified in this research by linear discriminant analysis of the data may constitute a useful tool to differentiate organic citrus fruits or juices from conventional ones.

  18. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  19. Emersion Induces Nitrogen Release and Alteration of Nitrogen Metabolism in the Intertidal Genus Porphyra

    PubMed Central

    Kim, Jang K.; Kraemer, George P.; Yarish, Charles

    2013-01-01

    We investigated emersion-induced nitrogen (N) release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ15N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate) of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion. PMID:23922872

  20. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    PubMed

    Kim, Jang K; Kraemer, George P; Yarish, Charles

    2013-01-01

    We investigated emersion-induced nitrogen (N) release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15)N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate) of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  1. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.

    PubMed

    Parrou, J L; Enjalbert, B; Plourde, L; Bauche, A; Gonzalez, B; François, J

    1999-02-01

    The dynamic responses of reserve carbohydrates with respect to shortage of either carbon or nitrogen source was studied to obtain a sound basis for further investigations devoted to the characterization of mechanisms by which the yeast Saccharomyces cerevisiae can cope with nutrient limitation during growth. This study was carried out in well-controlled bioreactors which allow accurate monitoring of growth and frequent sampling without disturbing the culture. Under glucose limitation, genes involved in glycogen and trehalose biosynthesis (GLG1, GSY1, GSY2, GAC1, GLC3, TPS1), in their degradation (GPH1, NTHI), and the typical stress-responsive CTT1 gene were coordinately induced in parallel with glycogen, when the growth has left the pure exponential phase and while glucose was still plentiful in the medium. Trehalose accumulation was delayed until the diauxic shift, although TPS1 was induced much earlier, due to hydrolysis of trehalose by high trehalase activity. In contrast, under nitrogen limitation, both glycogen and trehalose began to accumulate at the precise time when the nitrogen source was exhausted from the medium, coincidentally with the transcriptional activation of genes involved in their metabolism. While this response to nitrogen starvation was likely mediated by the stress-responsive elements (STREs) in the promoter of these genes, we found that these elements were not responsible for the co-induction of genes involved in reserve carbohydrate metabolism during glucose limitation, since GLG1, which does not contain any STRE, was coordinately induced with GSY2 and TPS1.

  2. Effects of Lys and His supplementations on the regulation of nitrogen metabolism in lager yeast.

    PubMed

    Lei, Hongjie; Li, Huipin; Mo, Fen; Zheng, Liye; Zhao, Haifeng; Zhao, Mouming

    2013-10-01

    Significant positive correlations between wort fermentability and the assimilation of Lys and His under normal-gravity and high-gravity conditions indicated that Lys and His were the key amino acids for lager yeast during beer brewing. In order to obtain insight into the roles of Lys and His in nitrogen regulation, the influences of Lys, His and their mixture supplementations on the fermentation performance and nitrogen metabolism in lager yeast during high-gravity fermentation were further investigated in the present study. Results showed that Lys and His supplementations improved yeast growth, wort fermentability, ethanol yield and the formation of flavor volatiles. Lys supplementation up-regulated Ssy1p-Ptr3p-Ssy5p (SPS)-regulated genes (LYP1, HIP1, BAP2 and AGP1) dramatically compared to nitrogen catabolite repression (NCR)-sensitive genes (GAP1 and MEP2), whereas His supplementation activated SPS-regulated genes slightly in exponential phase, and repressed NCR-sensitive genes significantly throughout the fermentation. Lys and His supplementations increased the consumption of Glu and Phe, and decreased the consumption of Ser, Trp and Arg. Moreover, Lys and His supplementations exhibited similar effects on the fermentation performance, and were more effective than their mixture supplementation when the same dose was kept. These results demonstrate that both Lys and His are important amino acids for yeast nitrogen metabolism and fermentation performance.

  3. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants.

    PubMed

    Hernández, Georgina; Valdés-López, Oswaldo; Ramírez, Mario; Goffard, Nicolas; Weiller, Georg; Aparicio-Fabre, Rosaura; Fuentes, Sara Isabel; Erban, Alexander; Kopka, Joachim; Udvardi, Michael K; Vance, Carroll P

    2009-11-01

    Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.

  4. Deciphering the Role of Aspartate and Prephenate Aminotransferase Activities in Plastid Nitrogen Metabolism1[C][W][OPEN

    PubMed Central

    de la Torre, Fernando; El-Azaz, Jorge; Ávila, Concepción; Cánovas, Francisco M.

    2014-01-01

    Chloroplasts and plastids of nonphotosynthetic plant cells contain two aspartate (Asp) aminotransferases: a eukaryotic type (Asp5) and a prokaryotic-type bifunctional enzyme displaying Asp and prephenate aminotransferase activities (PAT). We have identified the entire Asp aminotransferase gene family in Nicotiana benthamiana and isolated and cloned the genes encoding the isoenzymes with plastidic localization: NbAsp5 and NbPAT. Using a virus-induced gene silencing approach, we obtained N. benthamiana plants silenced for NbAsp5 and/or NbPAT. Phenotypic and metabolic analyses were conducted in silenced plants to investigate the specific roles of these enzymes in the biosynthesis of essential amino acids within the plastid. The NbAsp5 silenced plants had no changes in phenotype, exhibiting similar levels of free Asp and glutamate as control plants, but contained diminished levels of asparagine and much higher levels of lysine. In contrast, the suppression of NbPAT led to a severe reduction in growth and strong chlorosis symptoms. NbPAT silenced plants exhibited extremely reduced levels of asparagine and were greatly affected in their phenylalanine metabolism and lignin deposition. Furthermore, NbPAT suppression triggered a transcriptional reprogramming in plastid nitrogen metabolism. Taken together, our results indicate that NbPAT has an overlapping role with NbAsp5 in the biosynthesis of Asp and a key role in the production of phenylalanine for the biosynthesis of phenylpropanoids. The analysis of NbAsp5/NbPAT cosilenced plants highlights the central role of both plastidic aminotransferases in nitrogen metabolism; however, only NbPAT is essential for plant growth and development. PMID:24296073

  5. Protein and Nitrogen Metabolism Changes Following Closed Head Injury or Cardiothoracic Surgery in Pediatric Patients

    PubMed Central

    Hak, Emily B.; Rogers, David A.; Storm, Michael C.; Helms, Richard A.

    2005-01-01

    OBJECTIVE We compared markers of protein metabolism between children who had a controlled injury and an acute traumatic event. Significant protein catabolism occurs after acute severe injury. During surgery the injury is controlled and the degree of subsequent catabolism may be blunted. METHODS This was a prospective, unblinded observational study in 10 children 2 to 12 years old with a closed head injury (CHI) and an admission Physiologic Stability Index of ≥ 10 and in 10 children who underwent elective cardiothoracic surgery (CTS). Nutrient intake, nitrogen balance, serum albumin and prealbumin, urinary 3-methylhistidine excretion, and 3-methylhistidine to creatinine ratios were evaluated on days 1, 2, 3, 4, and 10 after injury. RESULTS Nutrient intake was similar in both groups on study days 1–4 and did not meet estimated needs. By day 10, 7 patients in the CTS group and 2 patients in the CHI group had been discharged home. The 3 CTS patients were still in the ICU while the 8 hospitalized CHI patients had been transferred to the floor. Compared to the CTS group, nitrogen balance in the CHI group was lower on day 1. On day 10, nitrogen balance and prealbumin were greater in the CHI group than in the CTS group, consistent with recovery and increased nutrient intake. CONCLUSIONS Markers of protein metabolism follow similar patterns after CTS or CHI in children. However, markers of protein metabolism indicate more severe catabolism soon after injury in CHI. PMID:23118637

  6. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism

    PubMed Central

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-01-01

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  7. Swithchgrass biomass quality as affected by nitrogen rate, harvest time and storage

    USDA-ARS?s Scientific Manuscript database

    The main purpose of this study was to assess the sustainability of switchgrass biomass quality as affected by storage after harvesting, delaying the harvest time, and applying different rates of nitrogen (N). The present study was conducted at Bristol, South Dakota under switchgrass land previously ...

  8. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers.

    PubMed

    Paula, Pierozan; Fredrik, Jernerén; Yusuf, Ransome; Oskar, Karlsson

    2017-02-28

    The impact of euthanasia methods on endocrine and metabolic parameters in rodent tissues and biological fluids is highly relevant for the accuracy and reliability of the data collected. However, few studies concerning this issue are found in the literature. We compared the effects of three euthanasia methods currently used in animal experimentation (i.e. decapitation, CO2 inhalation, and pentobarbital injection) on the serum levels of corticosterone, insulin, glucose, triglycerides, cholesterol and a range of free fatty acids in rats. The corticosterone and insulin levels were not significantly affected by the euthanasia protocol used. However, euthanasia by an overdose of pentobarbital (120 mg/kg intraperitoneal injection) increased the serum levels of glucose, and decreased cholesterol, stearic and arachidonic acids levels compared with euthanasia by CO2 inhalation and decapitation. CO2 inhalation appears to increase the serum levels of triglycerides, while euthanasia by decapitation induced no individual discrepant biomarker level. We conclude that choice of the euthanasia methods are critical for the reliability of serum biomarkers and indicate the importance of selecting adequate euthanasia methods for metabolic analysis in rodents. Decapitation without anaesthesia may be the most adequate method of euthanasia when taking both animal welfare and data quality in consideration. This article is protected by copyright. All rights reserved.

  9. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress.

    PubMed

    Quan, Xiaoyan; Qian, Qiufeng; Ye, Zhilan; Zeng, Jianbin; Han, Zhigang; Zhang, Guoping

    2016-11-01

    Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance.

  10. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    PubMed

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents.

  11. In Vivo Analysis of NH4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth

    PubMed Central

    Maleki Seifar, R.; ten Pierick, A.; van Helmond, W.; Pieterse, M. M.; Heijnen, J. J.

    2016-01-01

    ABSTRACT Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h−1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms. IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally

  12. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

    PubMed Central

    2013-01-01

    Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation. PMID:23822863

  13. Regulation of nitrate and methylamine metabolism by multiple nitrogen sources in the methylotrophic yeast Candida boidinii.

    PubMed

    Shiraishi, Kosuke; Oku, Masahide; Uchida, Daichi; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2015-11-01

    The methylotrophic yeast Candida boidinii, which is capable of growth on methanol as a sole carbon source, can proliferate on the leaf surface of Arabidopsis thaliana. Previously, we demonstrated that adaptation to a change in the major available nitrogen source from nitrate to methylamine during the host plant aging was crucial for yeast survival on the leaf environment. In this report, we investigated the regulatory profile of nitrate and methylamine metabolism in the presence of multiple nitrogen sources in C. boidinii. The transcript level of nitrate reductase (Ynr1) gene was induced by nitrate and nitrite, and was not repressed by the coexistence with other nitrogen sources. In contrast, the transcript level of amine oxidase (Amo1) gene, which was induced by methylamine, was significantly repressed by the coexistence with ammonium or glutamine. In addition, we investigated the intracellular dynamics of Ynr1 during the nitrogen source shift from nitrate to other compounds. Under these tested conditions, Ynr1 was effectively transported to the vacuole via selective autophagy only during the shift from nitrate to methylamine. Moreover, Ynr1 was subject to degradation after the shift from nitrate to nitrate plus methylamine medium even though nitrate was still available. These regulatory profiles may reflect life style of nitrogen utilization in this yeast living in the phyllosphere.

  14. Maternal metabolic stress may affect oviduct gatekeeper function.

    PubMed

    Jordaens, Lies; Van Hoeck, Veerle; Maillo, Veronica; Gutierrez-Adan, Alfonso; Marei, Waleed Fawzy A; Vlaeminck, Bruno; Thys, Sofie; Sturmey, Roger G S; Bols, Peter; Leroy, Jo

    2017-03-03

    We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct epithelial cell (BOEC) metabolism and barrier function. Hereto, BOECs were studied in a polarized system with 24h-treatments at day 9: 1) CONTROL (0µM NEFA + 0%EtOH), 2) SOLVENT CONTROL (0µM NEFA + 0.45%EtOH), 3) BASAL NEFA (720µM NEFA + 0.45%EtOH in the basal compartment), 4) APICAL NEFA (720µM NEFA + 0.45%EtOH in the apical compartment). FITC-albumin was used for monolayer permeability assessment, and related to Transepithelial Electric Resistance (TER). Fatty acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. Intracellular lipid droplets (LD) and FA-uptake were studied using Bodipy 493/503 and immunolabelling of FA-transporters (FAT/CD36, FABP3 and caveolin1). BOEC-mRNA was retrieved for qRT-PCR. Results revealed that APICAL NEFA reduced relative TER-increase (46.85%) during treatment, and increased FITC-albumin flux (27.59%) compared to other treatments. In BASAL NEFA, FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased, respectively 56.0 % and 33.5% of initial FA-concentrations. APICAL NEFA allowed no FA-transfer, but induced LD-accumulation and upregulated FA-transporter expression (↑CD36, ↑FABP3, ↑CAV1-protein-expression). Gene expression in APICAL NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA), and FA-uptake (↑CAV1). All treatments had similar carbohydrate metabolism and oviduct function specific gene expression (=OVGP1, ESR1, FOXJ1). Overall, elevated NEFAs affected BOEC-metabolism and barrier function differently depending on NEFA-exposure side. Data substantiate the concept of the oviduct as a gatekeeper that may actively alter early embryonic developmental conditions.

  15. Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism

    PubMed Central

    de Macedo, Fernando G.; Bresolin, Joana D.; Santos, Elcio F.; Furlan, Felipe; Lopes da Silva, Wilson T.; Polacco, Joe C.; Lavres, José

    2016-01-01

    Nickel (Ni) availability in soil varies as a function of pH. Plants require Ni in small quantities for normal development, especially in legumes due its role in nitrogen (N) metabolism. This study investigated the effect of soil base saturation, and Ni amendments on Ni uptake, N accumulation in the leaves and grains, as well as to evaluate organic acids changes in soybean. In addition, two N assimilation enzymes were assayed: nitrate reductase (NR) and Ni-dependent urease. Soybean plants inoculated with Bradyrhizobium japonicum were cultivated in soil-filled pots under two base-cation saturation (BCS) ratios (50 and 70%) and five Ni rates – 0.0; 0.1; 0.5; 1.0; and 10.0 mg dm-3 Ni. At flowering (R1 developmental stage), plants for each condition were evaluated for organic acids (oxalic, malonic, succinic, malic, tartaric, fumaric, oxaloacetic, citric and lactic) levels as well as the activities of urease and NR. At the end of the growth period (R7 developmental stage – grain maturity), grain N and Ni accumulations were determined. The available soil-Ni in rhizosphere extracted by DTPA increased with Ni rates, notably in BCS50. The highest concentrations of organic acid and N occurred in BCS70 and 0.5 mg dm-3 of Ni. There were no significant differences for urease activity taken on plants grown at BSC50 for Ni rates, except for the control treatment, while plants cultivated at soil BCS70 increased the urease activity up to 0.5 mg dm-3 of Ni. In addition, the highest values for urease activities were reached from the 0.5 mg dm-3 of Ni rate for both BCS treatments. The NR activity was not affected by any treatment indicating good biological nitrogen fixation (BNF) for all plants. The reddish color of the nodules increased with Ni rates in both BCS50 and 70, also confirms the good BNF due to Ni availability. The optimal development of soybean occurs in BCS70, but requires an extra Ni supply for the production of organic acids and for increased N-shoot and grain

  16. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    PubMed

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  18. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    SciTech Connect

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A; Xu, Yifan

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.

  19. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status

    PubMed Central

    Grover, Renaud; Maguer, Jean-François; Fine, Maoz; Ferrier-Pagès, Christine

    2017-01-01

    ABSTRACT Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater. PMID:28074021

  20. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status.

    PubMed

    Bednarz, Vanessa N; Grover, Renaud; Maguer, Jean-François; Fine, Maoz; Ferrier-Pagès, Christine

    2017-01-10

    Tropical corals are associated with a diverse community of dinitrogen (N2)-fixing prokaryotes (diazotrophs) providing the coral an additional source of bioavailable nitrogen (N) in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN) by corals is still unknown. Here, in a series of (15)N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals' metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m) corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM). Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals) assimilated significantly more DDN, which contributed up to 15% of the corals' N demand (compared to 1% in shallow corals). Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater.

  1. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots

    PubMed Central

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5′ donor sites, alternative 3′ acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  2. Nitrogen Metabolism in Lactating Goats Fed with Diets Containing Different Protein Sources

    PubMed Central

    Santos, A. B.; Pereira, M. L. A.; Silva, H. G. O.; Pedreira, M. S.; Carvalho, G. G. P.; Ribeiro, L. S. O.; Almeida, P. J. P.; Pereira, T. C. J.; Moreira, J. V.

    2014-01-01

    This study aimed to evaluate urea excretion, nitrogen balance and microbial protein synthesis in lactating goats fed with diets containing different protein sources in the concentrate (soybean meal, cottonseed meal, aerial part of cassava hay and leucaena hay). Four Alpine goats whose mean body weight was 42.6±6.1 kg at the beginning of the experiment, a mean lactation period of 94.0±9.0 days and a production of 1.7±0.4 kg of milk were distributed in a 4×4 Latin square with four periods of 15 days. Diets were formulated to be isonitrogenous, containing 103.0 g/kg of CP, 400 g/kg of Tifton 85 hay and 600 g/kg of concentrate. Diet containing cottonseed meal provided (p<0.05) increased excretion of urea and urea nitrogen in the urine (g/d and mg/kg of BW) when compared with leucaena hay. The diets affected the concentrations of urea nitrogen in plasma (p<0.05) and excretion of urea nitrogen in milk, being that soybean meal and cottonseed meal showed (p<0.05) higher than the average aerial part of the cassava hay. The use of diets with cottonseed meal as protein source in the concentrate in feeding of lactating goats provides greater nitrogen excretion in urine and negative nitrogen balance, while the concentrate with leucaena hay as a source of protein, provides greater ruminal microbial protein synthesis. PMID:25050000

  3. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism.

    PubMed

    López, Miguel; Herrera-Cervera, Jose A; Iribarne, Carmen; Tejera, Noel A; Lluch, Carmen

    2008-04-18

    Lotus japonicus and Medicago truncatula model legumes, which form determined and indeterminate nodules, respectively, provide a convenient system to study plant-Rhizobium interaction and to establish differences between the two types of nodules under salt stress conditions. We examined the effects of 25 and 50mM NaCl doses on growth and nitrogen fixation parameters, as well as carbohydrate content and carbon metabolism of M. truncatula and L. japonicus nodules. The leghemoglobin (Lb) content and nitrogen fixation rate (NFR) were approximately 10.0 and 2.0 times higher, respectively, in nodules of L. japonicus when compared with M. truncatula. Plant growth parameters and nitrogenase activity decreased with NaCl treatments in both legumes. Sucrose was the predominant sugar quantified in nodules of both legumes, showing a decrease in concentration in response to salt stress. The content of trehalose was low (less than 2.5% of total soluble sugars (TSS)) to act as an osmolyte in nodules, despite its concentration being increased under saline conditions. Nodule enzyme activities of trehalose-6-phosphate synthase (TPS) and trehalase (TRE) decreased with salinity. L. japonicus nodule carbon metabolism proved to be less sensitive to salinity than in M. truncatula, as enzymatic activities responsible for the carbon supply to the bacteroids to fuel nitrogen fixation, such as sucrose synthase (SS), alkaline invertase (AI), malate dehydrogenase (MDH) and phosphoenolpyruvate carboxylase (PEPC), were less affected by salt than the corresponding activities in barrel medics. However, nitrogenase activity was only inhibited by salinity in L. japonicus nodules.

  4. New insight into the strategy for nitrogen metabolism in plant cells.

    PubMed

    Wang, Min; Shen, Qirong; Xu, Guohua; Guo, Shiwei

    2014-01-01

    Nitrogen (N) is one of the most important mineral nutrients required by higher plants. Primary N absorbed by higher plants includes nitrate (NO3(-)), ammonium (NH4(+)), and organic N. Plants have developed several mechanisms for regulating their N metabolism in response to N availability and environmental conditions. Numerous transporters have been characterized and the mode of N movement within plants has been demonstrated. For further assimilation of N, various enzymes are involved in the key processes of NO3(-) or NH4(+) assimilation. N and carbon (C) metabolism are tightly coordinated in the fundamental biochemical pathway that permits plant growth. As N and C metabolism are the fundamental constituents of plant life, understanding N regulation is essential for growing plants and improving crop production. Regulation of N metabolism at the transcriptional and posttranscriptional levels provides important perceptions in the complex regulatory network of plants to adapt to changing N availability. In this chapter, recent advances in elucidating molecular mechanisms of N metabolism processes and regulation strategy, as well as interactions between C and N, are discussed. This review provides new insights into the strategy for studying N metabolism at the cellular level for optimum plant growth in different environments.

  5. [Vertical transporting risk of nitrogen in purple soil affected by surfactant].

    PubMed

    Chen, Yu-cheng; Yang, Zhi-min; Jiang, Ling; Chen, Qing-hu; Gao, Meng

    2010-07-01

    The simulated leaching experiment was conducted to determine the effects of surfactant of sodium dodecyl benzene sulphonate (SDBS) on vertical transporting of nitrogen in purple soil. SDBS could reduce NH4+ -N loss from soil, and the higher concentration of SDBS, the less loss. SDBS could increase NO3- -N loss from soil, and the order of accumulation loss is SDBS100 > SDBS40 > SDBS0 > SDBS5. Lower concentration SDBS decrease TKN loss, but higher concentration SDBS had a reverse effect, and compared with SDBS0, the accumulation loss TKN of SDBS40, SDBS100 increased by 16.8%, 22.36%, respectively. SDBS could affect vertical transporting of nitrogen in purple soil, that is, the significant down-transporting of nitrogen was observed after leaching with SDBS, and the higher concentration of SDBS, the more obviously transporting trend.

  6. Multiple dietary supplements do not affect metabolic and cardiovascular health

    PubMed Central

    Holloszy, John O.; Fontana, Luigi

    2014-01-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals. PMID:24659610

  7. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves

    PubMed Central

    Brychkova, Galina; Yarmolinsky, Dmitry; Batushansky, Albert; Grishkevich, Vladislav; Khozin-Goldberg, Inna; Fait, Aaron; Amir, Rachel; Fluhr, Robert; Sagi, Moshe

    2015-01-01

    Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. PMID:27135342

  8. Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the intermated maize IBM mapping population

    USDA-ARS?s Scientific Manuscript database

    Understanding the genetic basis of nitrogen and carbon metabolism will accelerate development of plant varieties with high yield and improved nitrogen use efficiency. In this study, we measured the activities of ten enzymes from carbon and nitrogen metabolism and seedling/juvenile biomass in the mai...

  9. Relationship between photosynthetic capacity, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa) grown with sewage sludge.

    PubMed

    Antolín, M Carmen; Fiasconaro, M Laura; Sánchez-Díaz, Manuel

    2010-10-15

    Sewage sludge has been used as N fertilizer because it contains some of inorganic N, principally as nitrate and ammonium ions. However, sewage sludge addition to legumes could result in impaired nodule metabolism due to the presence of inorganic N from sludge. A greenhouse experiment was conducted to examine the effects of sewage sludge on growth, photosynthesis, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa L. cv. Aragón). Plants were grown in pots with a mixture of perlite and vermiculite (2:1, v/v). The experiment included three treatments: (1) plants inoculated with rhizobia and amended with sewage sludge at rate of 10% (w/w) (RS); (2) plants inoculated with rhizobia without any amendment (R); and (3) non-inoculated plants fed with ammonium nitrate (N). N(2)-fixing plants had lower growth and sucrose phosphate synthase activity but higher photosynthesis than nitrate-fed plants because they compensated the carbon cost of the rhizobia. However, sewage sludge-treated plants evidenced a loss of carbon sink strength due to N(2) fixation by means of decreased photosynthetic capacity, leaf chlorophylls and N concentration in comparison to untreated plants. Sewage sludge did no affect nodulation but decreased nodule enzyme activities involved in carbon and N metabolisms that may lead to accumulation of toxic N-compounds.

  10. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress.

    PubMed

    Airaki, Morad; Leterrier, Marina; Mateos, Rosa M; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B; Del Río, Luis A; Palma, José M; Corpas, Francisco J

    2012-02-01

    Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell.

  11. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    PubMed

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Curatti, Leonardo

    2014-05-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories.

  12. Disruption of MRG19 results in altered nitrogen metabolic status and defective pseudohyphal development in Saccharomyces cerevisiae.

    PubMed

    Das, Maitreyi; Bhat, Paike Jayadeva

    2005-01-01

    It was previously shown that MRG19 downregulates carbon metabolism in Saccharomyces cerevisiae upon glucose exhaustion, and that the gene is glucose repressed. Here, it is shown that glucose repression of MRG19 is overcome upon nitrogen withdrawal, suggesting that MRG19 is a regulator of carbon and nitrogen metabolism. beta-Galactosidase activity fostered by the promoter of GDH1/3, which encode anabolic enzymes of nitrogen metabolism, was altered in an MRG19 disruptant. As compared to the wild-type strain, the MRG19 disruptant showed a decrease in the ratio of 2-oxoglutarate to glutamate under nitrogen-limited conditions. MRG19 disruptants showed reduced pseudohyphal formation and enhanced sporulation, a phenomenon that occurs under conditions of both nitrogen and carbon withdrawal. These studies revealed that MRG19 regulates carbon and nitrogen metabolism, as well as morphogenetic changes, suggesting that MRG19 is a component of the link between the metabolic status of the cell and the corresponding developmental pathway.

  13. [Effect of ATP and glutaminic acid on carbohydrate-energy and nitrogen metabolism in the rat brain and liver under the effect of pulsed electromagnetic field].

    PubMed

    Mishchenko, L I; Kolodub, F A

    1975-01-01

    Oxidative phosphorylation, content of lactate, creatine phosphate, ammonia and glutamine were studied as affected by ATP and glutaminic acid in the brain and liver of rat subjected to the action of the pulsed electromagnetic field of 7 kHz frequency (72 kA/m, 15 seances). ATP (1 mg per 100 g of weight) was found to have a normalizing effect on the processes of nitrogen metabolism in the rat brain, ATP increasing the intenstiy of the oxidative phosphorylation in the tissues of intact rats, has no analogous influence on the irradiated animals. With administration of glutaminic acid (5 mg per 100 g of weight) the processes of oxidative phosphorylation and nitrogen metabolism, disturbed under the effect of the pulsed electromagnetic field are normalized.

  14. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms.

    PubMed

    Dang, V D; Bohn, C; Bolotin-Fukuhara, M; Daignan-Fornier, B

    1996-04-01

    In Saccharomyces cerevisiae, carbon and nitrogen metabolisms are connected via the incorporation of ammonia into glutamate; this reaction is catalyzed by the NADP-dependent glutamate dehydrogenase (NADP-GDH) encoded by the GDH1 gene. In this report, we show that the GDH1 gene requires the CCAAT box-binding activator (HAP complex) for optimal expression. This conclusion is based on several lines of evidence: (1) overexpression of GDH1 can correct the growth defect of hap2 and hap3 mutants on ammonium sulfate as a nitrogen source, (ii) Northern (RNA) blot analysis shows that the steady-state level of GDH1 mRNA is strongly lowered in a hap2 mutant, (iii) expression of a GDH1-lacZ fusion is drastically reduced in hap mutants, (iv) NADP-GDH activity is several times lower in the hap mutants compared with that in the isogenic wild-type strain, and finally, (v) site-directed mutagenesis of two consensual HAP binding sites in the GDH1 promoter strongly reduces expression of GDH1 and makes it HAP independent. Expression of GDH1 is also regulated by the carbon source, i.e., expression is higher on lactate than on ethanol, glycerol, or galactose, with the lowest expression being found on glucose. Finally, we show that a hap2 mutation does not affect expression of other genes involved in nitrogen metabolism (GDH2, GLN1, and GLN3 encoding, respectively, the NAD-GDH, glutamine synthetase, and a general activator of several nitrogen catabolic genes). The HAP complex is known to regulate expression of several genes involved in carbon metabolism; its role in the control of GDH1 gene expression, therefore, provides evidence for a cross-pathway regulation between carbon and nitrogen metabolisms.

  15. Diurnal Variations in Photosynthetic Products and Nitrogen Metabolism in Expanding Leaves

    PubMed Central

    Steer, Barrie T.

    1973-01-01

    Expanding leaves of Capsicum frutescens L. cv. California Wonder, Cucumis melo L. cv. Hales Best, and Citrus sinensis L. Osbeck cv. Washington Navel showed a marked diurnal periodicity in the incorporation of 14C from photosynthetically fixed 14CO2 into amino acids. Incorporation was virtually nil at the beginning of the photoperiod, reached a maximum in the 6th to 7th hour and decreased during the latter part of the photoperiod. In Capsicum frutescens this was apparently a reflection of the availability of reduced nitrogen controlled by the activity of nitrate reductase in the leaves. This also controlled the periodicity of the incorporation of 14C into fraction I protein. Possible control mechanisms and the relation of nitrogen metabolism to the periodicity of leaf expansion growth are discussed. PMID:16658402

  16. Application of nitrogen metabolism in autotrophic bacteria to chemosynthetic bioregeneration in space missions, supplement

    NASA Technical Reports Server (NTRS)

    Wixom, R. L.

    1974-01-01

    The chemolithotroph, Hydrogenomonas eutropha, was considered as a life support, bioregenerative system. This project focuses on several metabolic functions that are related to the proposed nitrogen cycle between man and this microbe. Specifically this organism has the capability to utilize as the sole nitrogen source such urine components as urea and fifteen individual amino acids, but not nine other amino acids. The effectiveness of utilization was high for many amino acids. Several specific growth inhibitions were also observed. The enzyme that catalyzes the incorporation of ammonia in the medium into amino acids was identified as a NADP-specific, L-glutamate dehydrogenase. This enzyme has a constitutive nature. This organism can synthesize all of its amino acids from carbon dioxide and ammonia. Therefore with the background literature of multiple pathways of individual amino acid biosyntheses, our evidence to date is consistent with the Hydrogeneomonas group having the same pathway of valine-isoleucine formation as the classical E. coli.

  17. Dietary starch types affect liver nutrient metabolism of finishing pigs.

    PubMed

    Xie, Chen; Li, Yanjiao; Li, Jiaolong; Zhang, Lin; Zhou, Guanghong; Gao, Feng

    2017-09-01

    This study aimed to evaluate the effect of different starch types on liver nutrient metabolism of finishing pigs. In all ninety barrows were randomly allocated to three diets with five replicates of six pigs, containing purified waxy maize starch (WMS), non-waxy maize starch (NMS) and pea starch (PS) (the amylose to amylopectin ratios were 0·07, 0·19 and 0·28, respectively). After 28 d of treatments, two per pen (close to the average body weight of the pen) were weighed individually, slaughtered and liver samples were collected. Compared with the WMS diet, the PS diet decreased the activities of glycogen phosphorylase, phosphoenolpyruvate carboxykinase and the expression of phosphoenolpyruvate carboxykinase 1 in liver (P0·05). Compared with the WMS diet, the PS diet reduced the expressions of glutamate dehydrogenase and carbamoyl phosphate synthetase 1 in liver (P<0·05). PS diet decreased the expression of the insulin receptor, and increased the expressions of mammalian target of rapamycin complex 1 and ribosomal protein S6 kinase β-1 in liver compared with the WMS diet (P<0·05). These findings indicated that the diet with higher amylose content could down-regulate gluconeogenesis, and cause less fat deposition and more protein deposition by affecting the insulin/PI3K/protein kinase B signalling pathway in liver of finishing pigs.

  18. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings.

    PubMed

    Martínez-Alcántara, Belén; Jover, Sara; Quiñones, Ana; Forner-Giner, María Ángeles; Rodríguez-Gamir, Juan; Legaz, Francisco; Primo-Millo, Eduardo; Iglesias, Domingo J

    2012-08-15

    Soil flooding has been widely reported to affect large areas of the world. In this work, we investigated the effect of waterlogging on citrus carbon and nitrogen pools and partitioning. Influence on their uptake and translocation was also studied through ¹⁵N and ¹³C labeling to provide insight into the physiological mechanisms underlying the responses. The data indicated that flooding severely reduced photosynthetic activity and affected growth and biomass partitioning. Total nitrogen content and concentration in the plant also progressively decreased throughout the course of the experiment. After 36 days of treatment, nitrogen content of flooded plants had decreased more than 2.3-fold compared to control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots and leaves, respectively). Specific absorption rate and transport were also affected, leading to important changes in the distribution of this element inside the plant. Additionally, experiments involving labeled nitrogen revealed that ¹⁵N uptake rate and accumulation were drastically decreased at the end of the experiment (93% and 54%, respectively). ¹³CO₂ assimilation into the plant was strongly reduced by flooding, with δ¹³C reductions ranging from 22 to 37% in leaves and roots, respectively. After 36 days, the relative distribution of absorbed ¹³C was also altered. Thus, ¹³C recovery in flooded leaves increased compared to controls, whereas roots exhibited the opposite pattern. Interestingly, when carbohydrate partitioning was examined, the data revealed that sucrose concentration was augmented significantly in roots (37-56%), whereas starch was reduced. In leaves, a marked increase in sucrose was detected from the first sampling onwards (36-66%), and the same patter was observed for starch. Taken together, these results indicate that flooding altered carbon and nitrogen pools and partitioning in citrus. On one hand, reduced nitrogen concentration appears to

  19. Direct Involvement of the Master Nitrogen Metabolism Regulator GlnR in Antibiotic Biosynthesis in Streptomyces.

    PubMed

    He, Juan-Mei; Zhu, Hong; Zheng, Guo-Song; Liu, Pan-Pan; Wang, Jin; Zhao, Guo-Ping; Zhu, Guo-Qiang; Jiang, Wei-Hong; Lu, Yin-Hua

    2016-12-16

    GlnR, an OmpR-like orphan two-component system response regulator, is a master regulator of nitrogen metabolism in the genus Streptomyces In this work, evidence that GlnR is also directly involved in the regulation of antibiotic biosynthesis is provided. In the model strain Streptomyces coelicolor M145, an in-frame deletion of glnR resulted in markedly increased actinorhodin (ACT) production but reduced undecylprodigiosin (RED) biosynthesis when exposed to R2YE culture medium. Transcriptional analysis coupled with DNA binding studies revealed that GlnR represses ACT but activates RED production directly via the pathway-specific activator genes actII-ORF4 and redZ, respectively. The precise GlnR-binding sites upstream of these two target genes were defined. In addition, the direct involvement of GlnR in antibiotic biosynthesis was further identified in Streptomyces avermitilis, which produces the important anthelmintic agent avermectin. We found that S. avermitilis GlnR (GlnRsav) could stimulate avermectin but repress oligomycin production directly through the respective pathway-specific activator genes, aveR and olmRI/RII To the best of our knowledge, this report describes the first experimental evidence demonstrating that GlnR regulates antibiotic biosynthesis directly through pathway-specific regulators in Streptomyces Our results suggest that GlnR-mediated regulation of antibiotic biosynthesis is likely to be universal in streptomycetes. These findings also indicate that GlnR is not only a master nitrogen regulator but also an important controller of secondary metabolism, which may help to balance nitrogen metabolism and antibiotic biosynthesis in streptomycetes.

  20. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA

    Treesearch

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; William H. McDowell; Subhash C. Minocha; Peter Millard

    2015-01-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements...

  1. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    PubMed

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration.

  2. Carbon and nitrogen mobilization along thermokarst-affected permafrost coasts and its degradation mechanisms before entering the near shore zone

    NASA Astrophysics Data System (ADS)

    Tanski, G.; Ruttor, S.; Lantuit, H.; Knoblauch, C.; Strauss, J.; Radosavljevic, B.; Ramage, J. L.; Fritz, M.

    2016-12-01

    The Arctic is more than any other region on Earth affected by changing climate conditions. Ice-rich and unlithified permafrost coasts are particularly susceptible for these changes. These coasts erode at a great pace, which is facilitated by thermokarst processes and wave action due to longer open water periods. Organic matter that has been frozen for millennia is mobilized and can be either emitted as greenhouse gases to the atmosphere, redeposited on the land surface, or transported into the nearshore zone of the ocean. However, only little is known about the degradation processes after mobilization from permafrost until entering the aquatic system. It is the aim of this study to capture the degradation dynamics of organic carbon and nitrogen at the land-ocean-interface before entering nearshore zone, where it can potentially affect marine chemistry and ecosystems. In this study we investigated a retrogressive thaw slump, a thermokarst feature that is abundant along the ice-rich permafrost coast of the Canadian Arctic. Samples have been taken systematically along transects in undisturbed, i.e. not affected by thermokarst yet (tundra, permafrost headwall), and disturbed areas (mudpool, slump deposits, thaw stream). Total and dissolved organic carbon (TOC and DOC) as well as total and dissolved nitrogen (TN and DN) were analyzed to estimate the loss from undisturbed to disturbed areas. Stable carbon isotopes, C/N-ratios, inorganic nutrients, and lipid biomarkers have been analyzed to determine potential degradation processes. The results show no substantial changes of stable carbon isotopes and C/N-ratios (for TOC). However, high concentrations of ammonium in the mudpool (fresh thawed material) and low C/N-rations (for DOC) within the thaw stream indicate rapid metabolization of organic material. In conclusion we show that organic carbon and nutrients undergo substantial changes upon thaw and are subject to degradation before entering the nearshore zone.

  3. [Soil enzyme activities under two forest types as affected by different levels of nitrogen deposition].

    PubMed

    Zhao, Yu-tao; Li, Xue-feng; Han, Shi-jie; Hu, Yan-ling

    2008-12-01

    A simulation test was conducted to study the change trends of soil cellulase, polyphenol oxidase, and sucrase activities under natural broadleaf-Korean pine (Pinus koraiensis) and secondary poplar (Populus davidiana) -birch (Betula platyphylla) mixed forests as affected by 0, 25, and 50 kg x hm(-2) x a(-1) of N deposition. The results showed that the effects of elevated N deposition on test enzyme activities varied with forest type, and short-term nitrogen addition could significantly affect the test enzyme activities. High N deposition decreased soil polyphyneol oxidase activity, and correspondingly, soil cellulase and sucrase activities also had a trend of decrease.

  4. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  5. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests.

    PubMed

    VAN Diepen, Linda T A; Lilleskov, Erik A; Pregitzer, Kurt S

    2011-02-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community structure. We studied the diversity and community structure of AMF in northern hardwood forests after more than 12 years of simulated nitrogen deposition. We performed molecular analyses on maple (Acer spp.) roots targeting the 18S rDNA region using the fungal-specific primers AM1 and NS31. PCR products were cloned and identified using restriction fragment length polymorphism (RFLP) and sequencing. N addition significantly altered the AMF community structure, and Glomus group A dominated the AMF community. Some Glomus operational taxonomic units (OTUs) responded negatively to N inputs, whereas other Glomus OTUs and an Acaulospora OTU responded positively to N inputs. The observed effect on community structure implies that AMF species associated with maples differ in their response to elevated nitrogen. Given that functional diversity exists among AMF species and that N deposition has been shown to select less beneficial fungi in some ecosystems, this change in community structure could have implications for the functioning of this type of ecosystem. Published 2011. This article is a US Government work and is in the public domain in the USA.

  6. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    PubMed

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.

  7. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial

  8. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial

  9. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    PubMed Central

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogeneis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. PMID:26529668

  10. Does iodine biofortification affect oxidative metabolism in lettuce plants?

    PubMed

    Blasco, Begoña; Ríos, Juan Jose; Leyva, Rocío; Cervilla, Luis Miguel; Sánchez-Rodríguez, Eva; Rubio-Wilhelmi, María Mar; Rosales, Miguel Angel; Ruiz, Juan Manuel; Romero, Luis

    2011-09-01

    Plants produce low levels of reactive oxygen species (ROS), which form part of basic cell chemical communication; however, different types of stress can lead to an overexpression of ROS that can damage macromolecules essential for plant growth and development. Iodine is vital to human health, and iodine biofortification programs help improve the human intake through plant consumption. This biofortification process has been shown to influence the antioxidant capacity of lettuce plants, suggesting that the oxidative metabolism of the plant may be affected. The results of this study demonstrate that the response to oxidative stress is variable and depends on the form of iodine applied. Application of iodide (I(-)) to lettuce plants produces a reduction in superoxide dismutase (SOD) activity and an increase in catalase (CAT) and L-galactono dehydrogenase enzyme activities and in the activity of antioxidant compounds such as ascorbate (AA) and glutathione. This did not prove a very effective approach since a dose of 80 μM produced a reduction in the biomass of the plants. For its part, application of iodate (IO (3) (-) ) produced an increase in the activities of SOD, ascorbate peroxidase, and CAT, the main enzymes involved in ROS detoxification; it also increased the concentration of AA and the regenerative activities of the Halliwell-Asada cycle. These data confirm the non-phytotoxicity of IO (3) (-) since there is no lipid peroxidation or biomass reduction. According to our results, the ability of IO (3) (-) to induce the antioxidant system indicates that application of this form of iodine may be an effective strategy to improve the response of plants to different types of stress.

  11. Effects of glucose on the uptake and metabolism of glycine in pakchoi (Brassica chinensis L.) exposed to various nitrogen sources.

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Xie, Yinan; Xiao, Han; Tan, Xiaoli; Wu, Lianghuan

    2017-03-02

    Plants can absorb amino acids as a nitrogen (N) source, and glucose is an important part of root rhizodeposition and the soil sugar pool, which participates in the regulation of plant growth and uptake. In pakchoi, the effect of glucose concentration on the glycine N uptake from a nutrient mixture composed of glycine, ammonium, and nitrate, or from a single N solution of glycine alone was studied using specific substrate (15)N-labeling and (15)N-gas chromatography mass spectrometry. The optimal glucose concentration for plant growth was 4.5 μM or 25 μM when supplied with glycine alone or the N mixture, respectively, and resulted in a >25% increase in seedling biomass. The addition of glucose affected the relative contribution from organic or inorganic sources to overall N uptake. When glucose was added at optimal concentrations, glycine was preferentially used as an N source, while the relative contribution from nitrate was reduced. The limiting step for glycine N contribution was active uptake in the roots in high glucose and single-N-source conditions; however, root metabolism of glycine to serine was limiting in high-glucose and mixed-N-source conditions. The addition of low concentrations of glucose increased the relative uptake of organic nitrogen and reduced the uptake of nitrate, suggesting a feasible way to decrease nitrate content and increase the edible quality of vegetables.

  12. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation

    PubMed Central

    Hauf, Waldemar; Schlebusch, Maximilian; Hüge, Jan; Kopka, Joachim; Hagemann, Martin; Forchhammer, Karl

    2013-01-01

    Polyhydroxybutyrate (PHB) is a common carbon storage polymer among heterotrophic bacteria. It is also accumulated in some photoautotrophic cyanobacteria; however, the knowledge of how PHB accumulation is regulated in this group is limited. PHB synthesis in Synechocystis sp. PCC 6803 is initiated once macronutrients like phosphorus or nitrogen are limiting. We have previously reported a mutation in the gene sll0783 that impairs PHB accumulation in this cyanobacterium upon nitrogen starvation. In this study we present data which explain the observed phenotype. We investigated differences in intracellular localization of PHB synthase, metabolism, and the NADPH pool between wild type and mutant. Localization of PHB synthase was not impaired in the sll0783 mutant; however, metabolome analysis revealed a difference in sorbitol levels, indicating a more oxidizing intracellular environment than in the wild type. We confirmed this by directly measuring the NADPH/NADP ratio and by altering the intracellular redox state of wild type and sll0783 mutant. We were able to physiologically complement the mutant phenotype of diminished PHB synthase activity by making the intracellular environment more reducing. Our data illustrate that the NADPH pool is an important factor for regulation of PHB biosynthesis and metabolism, which is also of interest for potential biotechnological applications. PMID:24957892

  13. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation.

    PubMed

    Hauf, Waldemar; Schlebusch, Maximilian; Hüge, Jan; Kopka, Joachim; Hagemann, Martin; Forchhammer, Karl

    2013-02-06

    Polyhydroxybutyrate (PHB) is a common carbon storage polymer among heterotrophic bacteria. It is also accumulated in some photoautotrophic cyanobacteria; however, the knowledge of how PHB accumulation is regulated in this group is limited. PHB synthesis in Synechocystis sp. PCC 6803 is initiated once macronutrients like phosphorus or nitrogen are limiting. We have previously reported a mutation in the gene sll0783 that impairs PHB accumulation in this cyanobacterium upon nitrogen starvation. In this study we present data which explain the observed phenotype. We investigated differences in intracellular localization of PHB synthase, metabolism, and the NADPH pool between wild type and mutant. Localization of PHB synthase was not impaired in the sll0783 mutant; however, metabolome analysis revealed a difference in sorbitol levels, indicating a more oxidizing intracellular environment than in the wild type. We confirmed this by directly measuring the NADPH/NADP ratio and by altering the intracellular redox state of wild type and sll0783 mutant. We were able to physiologically complement the mutant phenotype of diminished PHB synthase activity by making the intracellular environment more reducing. Our data illustrate that the NADPH pool is an important factor for regulation of PHB biosynthesis and metabolism, which is also of interest for potential biotechnological applications.

  14. Mineral and nitrogen balance study - Results of metabolic observations on Skylab II 28-day orbital mission

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Lutwak, L.; Reid, J.; Rambaut, P.; Whittle, M.; Smith, M.; Leach, C.

    1975-01-01

    The prediction that various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various balance-study observations of long-term immobilized or inactive bed rest. The three astronauts of Skylab II consumed a planned dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, 28 days inflight, and 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative nitrogen and phosphorus balances inflight indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations of calcium, phosphorus, and nitrogen loss, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur in the planed Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration.

  15. Mineral and nitrogen balance study - Results of metabolic observations on Skylab II 28-day orbital mission

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Lutwak, L.; Reid, J.; Rambaut, P.; Whittle, M.; Smith, M.; Leach, C.

    1975-01-01

    The prediction that various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various balance-study observations of long-term immobilized or inactive bed rest. The three astronauts of Skylab II consumed a planned dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, 28 days inflight, and 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative nitrogen and phosphorus balances inflight indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations of calcium, phosphorus, and nitrogen loss, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur in the planed Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration.

  16. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense.

    PubMed

    Pereira-Defilippi, L; Pereira, E M; Silva, F M; Moro, G V

    2017-05-31

    The relative quantitative real-time expression of two expressed sequence tags (ESTs) codifying for key enzymes in nitrogen metabolism in maize, nitrate reductase (ZmNR), and glutamine synthetase (ZmGln1-3) was performed for genotypes inoculated with Azospirillum brasilense. Two commercial single-cross hybrids (AG7098 and 2B707) and two experimental synthetic varieties (V2 and V4) were raised under controlled greenhouse conditions, in six treatment groups corresponding to different forms of inoculation and different levels of nitrogen application by top-dressing. The genotypes presented distinct responses to inoculation with A. brasilense. Increases in the expression of ZmNR were observed for the hybrids, while V4 only displayed a greater level of expression when the plants received nitrogenous fertilization by top-dressing and there was no inoculation. The expression of the ZmGln1-3EST was induced by A. brasilense in the hybrids and the variety V4. In contrast, the variety V2 did not respond to inoculation.

  17. Nitrogen metabolism and kidney function in the Nubian ibex (Capra ibex nubiana).

    PubMed

    Choshniak, I; Arnon, H

    1985-01-01

    The nitrogen economy of the Nubian ibex (Capra ibex nubiana), a ruminant that inhabits harsh deserts, was studied in the laboratory when fed three diets of different quality. Even on the low quality roughage (wheat straw) the ibex was found capable of balancing its nitrogen economy. On feeds low in protein, recycling of urea played a major role in helping the ibex maintaining a balanced nitrogen metabolism. When on wheat straw, the ibex recycled 71.6% of the urea synthesized in its liver. When on feeds lower in protein, blood urea concentration dropped (from 11.4 mM when on alfalfa hay to 3.2 mM when on wheat straw). GFR that amounted to 44.28 ml/min when on alfalfa hay decreased to 28.97 ml/min when on wheat straw. Reabsorption of urea amounted to 48% of the urea filtered when on alfalfa hay and increased to 78.8% on wheat straw.

  18. Nitrogen limitation and amino-acid metabolism of Chlorella symbiotic with green hydra.

    PubMed

    McAuley, P J

    1987-08-01

    Chlorella algae symbiotic in the digestive cells of Hydra viridissima Pallas (green hydra) were found to contain less amino-N and smaller pools of free amino acids than their cultured counterparts, indicating that growth in symbiosis was nitrogen-limiting. This difference was reflected in uptake of amino acids and subsequent incorporation into protein; symbiotic algae incorporated a greater proportion of sequestered radioactivity, supplied as (14)C-labelled alanine, glycine or arginine, than algae from nitrogen-sufficient culture, presumably because smaller internal pools diluted sequestered amino acids to a lesser extent. Further experiments with symbiotic algae showed that metabolism of the neutral amino acid alanine differed from that of the basic amino acid arginine. Alanine but not arginine continued to be incorporated into protein after uptake ceased, and while internal pools of alanine were exchangeable with alanine in the medium, those of arginine were not exchangeable with external arginine. Thin-layer chromatography of ethanol-soluble extracts of algae incubated with [(14)C]alanine or [(14)C]arginine showed that both were precursors of other amino acids. The significance of nitrogen-limiting growth of symbiotic algae is discussed in terms of host-cell regulation of algal cell growth and division.

  19. Factors affecting energy and nitrogen efficiency of dairy cows: a meta-analysis.

    PubMed

    Phuong, H N; Friggens, N C; de Boer, I J M; Schmidely, P

    2013-01-01

    A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate.

  20. Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.).

    PubMed

    Mollavali, Mohanna; Perner, Henrike; Rohn, Sascha; Riehle, Peer; Hanschen, Franziska S; Schwarz, Dietmar

    2017-09-26

    Mycorrhizal symbiosis is known to be the most prevalent form of fungal symbiosis with plants. Although some studies focus on the importance of mycorrhizal symbiosis for enhanced flavonoids in the host plants, a comprehensive understanding of the relationship still is lacking. Therefore, we studied the effects of mycorrhizal inoculation of onions (Allium cepa L.) regarding flavonol concentration and the genes involved in flavonol biosynthesis when different forms of nitrogen were supplied. We hypothesized that mycorrhizal inoculation can act as a biotic stress and might lead to an increase in flavonols and expression of related genes. The three main quercetin compounds [quercetin-3,4'-di-O-β-D-glucoside (QDG), quercetin-4'-O-β-D-glucoside (QMG), and isorhamnetin-4'-O-β-D-glucoside (IMG)] of onion bulbs were identified and analyzed after inoculating with increasing amounts of mycorrhizal inocula at two time points and supplying either predominantly NO3(-) or NH4(+) nitrogen. We also quantified plant dry mass, nutrient element uptake, chalcone synthase (CHS), flavonol synthase (FLS), and phenyl alanine lyase (PAL) gene expression as key enzymes for flavonol biosynthesis. Inoculation with arbuscular mycorrhizal fungi (highest amount) and colonization at late development stages (bulb growth) increased QDG and QMG concentrations if plants were additionally supplied with predominantly NH4(+). No differences were observed in the IMG content. RNA accumulation of CHS, FLS, and PAL was affected by the stage of the mycorrhizal symbiosis and the nitrogen form. Accumulation of flavonols was not correlated, however, with either the percentage of myorrhization or the abundance of transcripts of flavonoid biosynthesis genes. We found that in plants at late developmental stages, RNA accumulation as a reflection of a current physiological situation does not necessarily correspond with the content of metabolites that accumulate over a long period. Our findings suggest that nitrogen

  1. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  2. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria

    PubMed Central

    Kozlowski, Jessica A.; Kits, K. Dimitri; Stein, Lisa Y.

    2016-01-01

    Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity. PMID:27462312

  3. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  4. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  5. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers.

    PubMed

    Wernick, David G; Liao, James C

    2013-02-01

    Threats to stable oil supplies and concerns over environmental emissions have pushed for renewable biofuel developments to minimize dependence on fossil resources. Recent biofuel progress has moved towards fossil resource-independent carbon cycles, but environmental issues regarding use of nitrogen fertilizers have not been addressed on a global scale. The recently demonstrated conversion of waste protein biomass into advanced biofuels and renewable chemicals, while recycling nitrogen fertilizers, offers a glimpse of the efforts needed to balance the nitrogen cycle at scale. In general, the catabolism of protein into biofuels is challenging because of physiological regulation and thermodynamic limitations. This conversion became possible with metabolic engineering around ammonia assimilation, intracellular nitrogen flux, and quorum sensing. This review highlights the metabolic engineering solutions in transforming those cellular processes into driving forces for the high yield of chemical products from protein.

  6. Interactive effects of water and controlled release urea on nitrogen metabolism, accumulation, translocation, and yield in summer maize

    NASA Astrophysics Data System (ADS)

    Li, Guanghao; Zhao, Bin; Dong, Shuting; Zhang, Jiwang; Liu, Peng; Vyn, Tony J.

    2017-10-01

    To investigate the interactive effects of water and N from controlled release urea (CRU) on N metabolism, accumulation, translocation, and yield in Zhengdan958 (a summer maize cultivar planted widely in China), three water levels (adequate water W3, mild water stress W2, severe water stress W1) and four amounts of CRU (N) (N0, N1, N2, and N3 were 0, 105, 210, and 315 kg N ha-1, respectively) were carried out under the waterproof shed and soil column conditions. The results showed that yield, N metabolism, accumulation, and translocation were significantly affected by water, CRU, and their interactions after tasseling. Yields showed an increasing trend in response to N rates from 100.2 to 128.8 g plant-1 under severe water stress (W1), from 124.7 to 174.6 g plant-1 under mild water stress (W2), and from 143.7 to 177.0 g plant-1 under adequate water conditions (W3). There was an associated optimum amount of N for each water level. Under W1 and W2, N3 treatments showed significant advantages in three N metabolism enzymes' activities and the N accumulations, and yield and its components were highest. But the nitrogen harvest index (NHI) of N3 had no significant difference with other nitrogen treatments. Under W3, the N translocation efficiency (NTE) and N translocation conversion rate (NTCR) of N2 in stem and leaf were higher than those of N3, but the N metabolism enzymes' activities and yields of N2 and N3 had no significant difference, which indicated that N2 was superior to N3. The N3 treatment under W2 and N2 under W3 increased the N accumulation capacity in maize grain as well as the N translocation to grain that contributed to the increase of 1000-gain weight and grains per ear after tasseling. Under this experimental condition, a CRU rate of 225 kg ha-1 was the best treatment when the soil moisture content was 75 ± 5% of field capacity, but an N rate of 300 kg ha-1 was superior when soil moisture content was maintained at 55 ± 5% of field capacity during the

  7. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  8. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH.

    PubMed

    Godinot, Claire; Houlbrèque, Fanny; Grover, Renaud; Ferrier-Pagès, Christine

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO(2) on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pH(T) conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pH(T) (8.1), and iii) at three pH(T) conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pH(T) 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pH(T) (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pH(T) = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.

  9. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. © 2015 FEBS.

  10. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. © 2016 Society for Endocrinology.

  11. Corn silage management III: effects of hybrid, maturity, and processing on nitrogen metabolism and ruminal fermentation.

    PubMed

    Johnson, L M; Harrison, J H; Davidson, D; Swift, M; Mahanna, W C; Shinners, K

    2002-11-01

    Two experiments were conducted to evaluate the effects of maturity and mechanical processing of two hybrids of whole plant corn silage on DM and OM digestibility, nitrogen metabolism, ruminal fermentation, and milk production and composition in lactating Holstein cows. In the first experiment, Pioneer hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. At each stage of maturity, corn was harvested with (1-mm roll clearance) and without (15.9-mm roll clearance) mechanical processing using a John Deere 5830 harvester with an on-board kernel processor. In the second experiment, Pioneer hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with and without mechanical processing. The theoretical length-of-cut was 12.7 mm. Total tract DM and OM digestibilities were lower for cows fed diets containing processed corn silage in experiment 1, and tended to be lower for cows fed diets containing unprocessed corn silage in experiment 2. Ruminal acetate concentrations were greater and ruminal propionate concentrations were lower 2 and 6 h after feeding for cows fed diets containing corn silage harvested at physiological maturity in experiment 2. This was due to decreased digestion of starch at advanced maturities in experiment 2. Ruminal pH tended to decline rapidly after feeding for cows fed hybrid Quanta (2 h) compared to hybrid 3845 (5 h) corn silage based diets. Ruminal acetate concentrations decreased and ruminal propionate concentrations increased 2 and 6 h after feeding for cows fed diets containing hybrid Quanta corn silage compared to hybrid 3845 corn silage. This was related to a greater starch concentration in the corn silage, greater starch intake, and increased rate of starch digestion for cows fed hybrid Quanta corn silage-based diets. Microbial nitrogen flow was lower and feed nitrogen flow was greater for

  12. Differences in nitrogen metabolism between Cryptococcus neoformans and C. gattii, the two etiologic agents of cryptococcosis.

    PubMed

    Ngamskulrungroj, Popchai; Chang, Yun; Roh, Jamin; Kwon-Chung, Kyung J

    2012-01-01

    Two members of the Cryptococcus neoformans-gattii species complex, the etiologic agents of cryptococcosis, can be differentiated by biological, biochemical, serological and molecular typing techniques. Based on their differences in carbon and nitrogen utilization patterns, cost effective and very specific diagnostic tests using D-proline and canvanine-glycine-bromthymol blue (CGB) media have been formulated and are widely used for identification of the two species. However, these methods have yet to be tested for strains with confirmed molecular types to assess the degree of specificity for each molecular type in the two species. We collected global isolates of every major molecular type available and tested their patterns of nitrogen utilization. We confirmed specificity of the CGB test to be 100% regardless of molecular type while the D-proline test yielded 8-38% false negative results in three of the four C. gattii molecular types, VGI-VGIII. The utilization pattern of a new set of amino acids: D-alanine, L-tryptophan and L-phenylalanine, showed species specificity comparable to that of D-proline. We discovered that the transcription factor Gat1 (Are1) regulates the utilization of nitrogen differently between C. neoformans and C. gattii strains. Unlike in C. neoformans, expression of the genes encoding glycine decarboxylase complex in C. gatti was only partially suppressed by nitrogen catabolite repression in the presence of ammonium. GAT1 in C. neoformans controlled the induction of three of the four genes encoding the glycine decarboxylase complex when glycine was used as the sole nitrogen source while in C. gattii its regulation of these genes was less stringent. Moreover, while virulence of C. neoformans strains in mice was not affected by Gat1, the transcription factor positively influenced the virulence of C. gattii strain.

  13. How coffee affects metabolic syndrome and its components.

    PubMed

    Baspinar, B; Eskici, G; Ozcelik, A O

    2017-06-21

    Metabolic syndrome, with its increasing prevalence, is becoming a major public health problem throughout the world. Many risk factors including nutrition play a role in the emergence of metabolic syndrome. Of the most-consumed beverages in the world, coffee contains more than 1000 components such as caffeine, chlorogenic acid, diterpenes and trigonelline. It has been proven in many studies that coffee consumption has a positive effect on chronic diseases. In this review, starting from the beneficial effects of coffee on health, the relationship between coffee consumption and metabolic syndrome and its components has been investigated. There are few studies investigating the relationship between coffee and metabolic syndrome, and the existing ones put forward different findings. The factors leading to the differences are thought to stem from coffee variety, the physiological effects of coffee elements, and the nutritional ingredients (such as milk and sugar) added to coffee. It is reported that consumption of coffee in adults up to three cups a day reduces the risk of Type-2 diabetes and metabolic syndrome.

  14. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming.

    PubMed

    Li, Heng-Hong; Wang, Yi-Wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D; Fornace, Albert J

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.

  15. Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism

    PubMed Central

    Jastrzębska, Agata; Kulka, Marek; Leśniak, Karolina; Podgórska, Anna; Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Gardeström, Per; Rychter, Anna M.

    2010-01-01

    The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu. PMID:20830597

  16. Cadmium in white lupin nodules: impact on nitrogen and carbon metabolism.

    PubMed

    Sánchez-Pardo, Beatriz; Carpena, Ramón O; Zornoza, Pilar

    2013-02-15

    The aims of this work were to investigate the microlocalisation of cadmium (Cd) in Lupinus albus L. cv. Multolupa nodules, and to determine its effects on carbon and nitrogen metabolism. Nodulated white lupin plants were grown in a growth chamber with or without Cd (150 μM). Energy-dispersive X-ray microanalysis showed the walls of the outer nodule cortex cells to be the main area of Cd retention, helping to reduce the harmful effect Cd might have on the amount of N(2) fixed by the bacteroids. Sucrose synthase activity declined by 33% in the nodules of the Cd-treated plants, and smaller reductions were recorded in glutamine synthetase, aspartate aminotransferase, alkaline invertase and NADP-dependent isocitrate dehydrogenase activities. The Cd treatment also sharply reduced nodule concentrations of malate, succinate and citrate, while that of starch doubled, but that of sucrose experienced no significant change. In summary, the present results show that white lupins accumulate significant amounts of Cd in their root nodules. However, the activity of some enzymes involved in ammonium assimilation did decline, promoting a reduction in the plant N content. The downregulation of sucrose synthase limits the availability of carbon to the bacteroids, which might interfere with their respiration. Carbon metabolism therefore plays a primary role in the impaired function of the white lupin root nodule caused by Cd, while N metabolism appears to have a more secondary involvement. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae).

    PubMed

    Bibiano Melo, José Fernando; Lundstedt, Lícia Maria; Metón, Isidoro; Baanante, Isabel Vázquez; Moraes, Gilberto

    2006-10-01

    This manuscript reports changes in key enzymes and metabolites related to protein metabolism and nitrogen excretion in the liver of juveniles jundiá (Rhamdia quelen) fed on isocaloric diets containing 20%, 27%, 34% and 41% of crude protein. The hepatic activity of alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), glutamate dehydrogenase (GDH), and arginase (ARG) increased with the content of protein in the diet, and the ratios among the aminotransferases and GDH allowed evaluating metabolic preference. The concentration of free amino acids, ammonia and urea also rose with the dietary protein content. Increase of plasma urea and ammonia was the resultant effect of over amino acids catabolism as consequence of dietary protein surplus. Since the increase of protein in the diets resulted in weight gain, the rise in the hepatic activity of protein-metabolising enzymes in the fish fed high protein diets denoted effective use of dietary amino acids for growth and as a substrate for gluconeogenesis. Analysis of changes on metabolite levels and key enzyme activities in amino acid metabolism is proposed as a tool for assessing the proper balance of diet macronutrients.

  18. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    PubMed Central

    Sanders, J G; Beinart, R A; Stewart, F J; Delong, E F; Girguis, P R

    2013-01-01

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry. PMID:23619306

  19. Elucidating Sources and Factors Affecting Delivery of Nitrogen to Surface Waters of New York State

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Boyer, E. W.; Burns, D. A.; Elliott, E.; Kendall, C.; Butler, T.

    2005-12-01

    Rapid changes in power generation, transportation, and agriculture have appreciably altered nitrogen (N) cycling at regional scales, increasing N inputs to landscapes and surface waters. Numerous studies have linked this surplus N to a host of concerns, including eutrophication and violations in drinking water standards. Inputs of N nation-wide have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. The role of atmospheric N sources is of particular concern in New York, as rates of atmospheric N deposition in the northeast are among the highest in the nation. Our work aims to quantify nitrogen sources and fate in watersheds throughout the state. Further, we intend to elucidate factors controlling the retention and release of N to surface waters. We quantify nitrogen inputs through both measurement data (e.g., from wet and dry atmospheric deposition, precipitation, streamflow, water quality, and isotopic tracers) and from synoptic spatial databases (e.g., of terrain, land use, and fertilizer inputs). We present preliminary results from large catchments in contrasting spatial settings across the state (different land use configurations and atmospheric deposition gradients), illustrating the contribution of nitrogen sources to each region and factors affecting delivery to surface waters. Further, we present 30 years of temporal data from a large watershed (Fall Creek) in the Finger Lakes region of the state to demonstrate how hydrological and biogeochemical factors, over seasons and under varying hydrological regimes, combine to control N dynamics in surface waters. Our collective work provides information that is necessary to develop sound strategies for understanding and managing nutrients at regional scales.

  20. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  1. Natural toxins that affect plant amino acid metabolism

    USDA-ARS?s Scientific Manuscript database

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  2. On-line modeling intracellular carbon and energy metabolism of Nannochloropsis sp. in nitrogen-repletion and nitrogen-limitation cultures.

    PubMed

    Zhang, Dongmei; Yan, Fei; Sun, Zhongliang; Zhang, Qinghua; Xue, Shengzhang; Cong, Wei

    2014-07-01

    In this study, a photobioreactor cultivation system and a calculation method for on-line monitoring of carbon and energy metabolism of microalgae were developed using Nannochloropsis sp. in nitrogen-repletion and nitrogen-limitation cultures. Only 30-60% of carbon fixed in Calvin cycle was used for biomass and the rest was lost in light respiration. The net fixed carbon was assumed to be incorporated into protein, lipids, carbohydrates, and nucleic acids, whose contents calculated on-line fitted well with the experimental measurements. Intracellular ATPs were quantitatively divided for biomass production and cell maintenance, and the result is in accordance with known reports. Due to light limitation induced by high cell concentration in batch cultures, the proportion of CO2 loss in light respiration and the proportion of energy for maintenance rapidly increased in culturing process. Nitrogen starvation reduced the light respiration, thus decreasing CO2 loss and maintenance energy, but no effect on ATP requirement for cell growth.

  3. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    PubMed

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. NITROGEN DEPOSITION AND ORGANIC MATTER MANIPULATIONS AFFECT GROSS AND NET NITROGEN TRANSFORMATIONS IN TWO TEMPERATE FORESTS SOILS

    EPA Science Inventory

    Soil nitrogen transformations are intricately linked to carbon transformations. We utilized two existing organic matter manipulation sites in western Oregon, USA and Hungary to investigate these linkages. Our questions were: 1) Does the quantity and quality of organic matter af...

  5. NITROGEN DEPOSITION AND ORGANIC MATTER MANIPULATIONS AFFECT GROSS AND NET NITROGEN TRANSFORMATIONS IN TWO TEMPERATE FORESTS SOILS

    EPA Science Inventory

    Soil nitrogen transformations are intricately linked to carbon transformations. We utilized two existing organic matter manipulation sites in western Oregon, USA and Hungary to investigate these linkages. Our questions were: 1) Does the quantity and quality of organic matter af...

  6. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories.

    PubMed

    Siddique, Ilyas; Vieira, Ima Célia Guimarães; Schmidt, Susanne; Lamb, David; Carvalho, Cláudio José Reis; Figueiredo, Ricardo de Oliveira; Blomberg, Simon; Davidson, Eric A

    2010-07-01

    Nutrient enrichment is increasingly affecting many tropical ecosystems, but there is no information on how this affects tree biodiversity. To examine dynamics in vegetation structure and tree species biomass and diversity, we annually remeasured tree species before and for six years after repeated additions of nitrogen (N) and phosphorus (P) in permanent plots of abandoned pasture in Amazonia. Nitrogen and, to a lesser extent, phosphorus addition shifted growth among woody species. Nitrogen stimulated growth of two common pioneer tree species and one common tree species adaptable to both high- and low-light environments, while P stimulated growth only of the dominant pioneer tree Rollinia exsucca (Annonaceae). Overall, N or P addition reduced tree assemblage evenness and delayed tree species accrual over time, likely due to competitive monopolization of other resources by the few tree species responding to nutrient enrichment with enhanced establishment and/or growth rates. Absolute tree growth rates were elevated for two years after nutrient addition. However, nutrient-induced shifts in relative tree species growth and reduced assemblage evenness persisted for more than three years after nutrient addition, favoring two nutrient-responsive pioneers and one early-secondary tree species. Surprisingly, N + P effects on tree biomass and species diversity were consistently weaker than N-only and P-only effects, because grass biomass increased dramatically in response to N + P addition. The resulting intensified competition probably prevented an expected positive N + P synergy in the tree assemblage. Thus, N or P enrichment may favor unknown tree functional response types, reduce the diversity of coexisting species, and delay species accrual during structurally and functionally complex tropical rainforest secondary succession.

  7. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  8. Modeling the role of covalent enzyme modification in Escherichia coli nitrogen metabolism

    NASA Astrophysics Data System (ADS)

    Kidd, Philip B.; Wingreen, Ned S.

    2010-03-01

    In the bacterium Escherichia coli, the enzyme glutamine synthetase (GS) converts ammonium into the amino acid glutamine. GS is principally active when the cell is experiencing nitrogen limitation, and its activity is regulated by a bicyclic covalent modification cascade. The advantages of this bicyclic-cascade architecture are poorly understood. We analyze a simple model of the GS cascade in comparison to other regulatory schemes and conclude that the bicyclic cascade is suboptimal for maintaining metabolic homeostasis of the free glutamine pool. Instead, we argue that the lag inherent in the covalent modification of GS slows the response to an ammonium shock and thereby allows GS to transiently detoxify the cell, while maintaining homeostasis over longer times.

  9. Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont

    PubMed Central

    Hilton, Jason A.; Foster, Rachel A.; James Tripp, H.; Carter, Brandon J.; Zehr, Jonathan P.; Villareal, Tracy A.

    2013-01-01

    Diatoms with symbiotic N2-fixing cyanobacteria are often abundant in the oligotrophic open ocean gyres. The most abundant cyanobacterial symbionts form heterocysts (specialized cells for N2 fixation) and provide nitrogen (N) to their hosts, but their morphology, cellular locations and abundances differ depending on the host. Here we show that the location of the symbiont and its dependency on the host are linked to the evolution of the symbiont genome. The genome of Richelia (found inside the siliceous frustule of Hemiaulus) is reduced and lacks ammonium transporters, nitrate/nitrite reductases and glutamine:2-oxoglutarate aminotransferase. In contrast, the genome of the closely related Calothrix (found outside the frustule of Chaetoceros) is more similar to those of free-living heterocyst-forming cyanobacteria. The genome of Richelia is an example of metabolic streamlining that has implications for the evolution of N2-fixing symbiosis and potentially for manipulating plant–cyanobacterial interactions. PMID:23612308

  10. Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont.

    PubMed

    Hilton, Jason A; Foster, Rachel A; Tripp, H James; Carter, Brandon J; Zehr, Jonathan P; Villareal, Tracy A

    2013-01-01

    Diatoms with symbiotic N₂-fixing cyanobacteria are often abundant in the oligotrophic open ocean gyres. The most abundant cyanobacterial symbionts form heterocysts (specialized cells for N₂ fixation) and provide nitrogen (N) to their hosts, but their morphology, cellular locations and abundances differ depending on the host. Here we show that the location of the symbiont and its dependency on the host are linked to the evolution of the symbiont genome. The genome of Richelia (found inside the siliceous frustule of Hemiaulus) is reduced and lacks ammonium transporters, nitrate/nitrite reductases and glutamine:2-oxoglutarate aminotransferase. In contrast, the genome of the closely related Calothrix (found outside the frustule of Chaetoceros) is more similar to those of free-living heterocyst-forming cyanobacteria. The genome of Richelia is an example of metabolic streamlining that has implications for the evolution of N₂-fixing symbiosis and potentially for manipulating plant-cyanobacterial interactions.

  11. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    PubMed

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  13. Metagenomic analysis of nitrogen metabolism genes in the surface of marine sediments

    NASA Astrophysics Data System (ADS)

    Reyes, Carolina; Schneider, Dominik; Thürmer, Andrea; Dellwig, Olaf; Lipka, Marko; Daniel, Rolf; Böttcher, Michael E.; Friedrich, Michael W.

    2016-04-01

    In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (North Sea) and Bothnian Bay (Baltic Sea) sediments, to trace the prevailing nitrogen pathways. NO3- was present in the top 5 cm below the sediment-water interface at both sites. NH4+ increased with depth below 5 cm where it overlapped with the NO3- zone. Steady state modelling of NO3- and NH4+ porewater profiles indicates zones of net nitrogen species transformations. Protease, peptidase, urease and deaminase ammonification genes were detected in metagenomes. Genes involved in ammonia oxidation (amo, hao), nitrite oxidation (nxr), denitrification (nar, nir, nor) and dissimilatory NO3- reduction to NH4+ (nap, nfr and otr) were also present. 16S rRNA gene analysis showed that the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus, and Nitrosonomas) appeared less abundant in Skagerrak sediments compared to Bothnian Bay sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present suggesting chemolithoautotrophic NO3- reduction to NO2- or NH4+ as a possible pathway. Although anammox planctomycetes 16S rRNA genes were present in metagenomes, anammox protein-coding genes were not detected. Our results show the metabolic potential for ammonification, nitrification, NO3- reduction, and denitrification activities in Skagerrak and Bothnian Bay sediments.

  14. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  15. Infectious, inflammatory, and metabolic diseases affecting the athlete's spine.

    PubMed

    Metz, Lionel N; Wustrack, Rosanna; Lovell, Alberto F; Sawyer, Aenor J

    2012-07-01

    Sports and weight-bearing activities can have a positive effect on bone health in the growing, mature, or aging athlete. However, certain athletic activities and training regimens may place the athlete at increased risk for stress fractures in the spine. In addition, some athletes have an underlying susceptibility to fracture due to either systemic or focal abnormalities. It is important to identify and treat these athletes in order to prevent stress fractures and reduce the risk of osteoporosis in late adulthood. Therefore, the pre-participation physical examination offers a unique opportunity to screen athletes for metabolic bone disease through the history and physical examination. Positive findings warrant a thorough workup including a metabolic bone laboratory panel, and possibly a DEXA scan, which includes a lateral spine view.

  16. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    USDA-ARS?s Scientific Manuscript database

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  17. Genome-wide association study of carbon and nitrogen metabolism in the maize nested association mapping population

    USDA-ARS?s Scientific Manuscript database

    Carbon (C) and nitrogen (N) metabolism are critical to plant growth and development and at the basis of yield and adaptation. We have applied high throughput metabolite analyses to over 12,000 diverse field grown samples from the maize nested association mapping population. This allowed us to identi...

  18. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants.

    PubMed

    Hockin, Nicola Louise; Mock, Thomas; Mulholland, Francis; Kopriva, Stanislav; Malin, Gill

    2012-01-01

    The availability of nitrogen varies greatly in the ocean and limits primary productivity over large areas. Diatoms, a group of phytoplankton that are responsible for about 20% of global carbon fixation, respond rapidly to influxes of nitrate and are highly successful in upwelling regions. Although recent diatom genome projects have highlighted clues to the success of this group, very little is known about their adaptive response to changing environmental conditions. Here, we compare the proteome of the marine diatom Thalassiosira pseudonana (CCMP 1335) at the onset of nitrogen starvation with that of nitrogen-replete cells using two-dimensional gel electrophoresis. In total, 3,310 protein spots were distinguishable, and we identified 42 proteins increasing and 23 decreasing in abundance (greater than 1.5-fold change; P < 0.005). Proteins involved in the metabolism of nitrogen, amino acids, proteins, and carbohydrates, photosynthesis, and chlorophyll biosynthesis were represented. Comparison of our proteomics data with the transcriptome response of this species under similar growth conditions showed good correlation and provided insight into different levels of response. The T. pseudonana response to nitrogen starvation was also compared with that of the higher plant Arabidopsis (Arabidopsis thaliana), the green alga Chlamydomonas reinhardtii, and the cyanobacterium Prochlorococcus marinus. We have found that the response of diatom carbon metabolism to nitrogen starvation is different from that of other photosynthetic eukaryotes and bears closer resemblance to the response of cyanobacteria.

  19. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes

    EPA Science Inventory

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...

  20. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes

    EPA Science Inventory

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...

  1. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia.

    PubMed

    Bednarz, Vanessa N; Naumann, Malik S; Niggl, Wolfgang; Wild, Christian

    2012-10-15

    The release of organic matter (OM) by scleractinian corals represents a key physiological process that importantly contributes to coral reef ecosystem functioning, and is affected by inorganic nutrient availability. Although OM fluxes have been studied for several dominant reef taxa, no information is available for soft corals, one of the major benthic groups in tropical reef environments. Thus, this study investigates OM fluxes along with other key physiological parameters (i.e. photosynthesis, respiration and chlorophyll a tissue content) in the common soft coral genus Xenia after a 4-week exposure period to elevated ammonium (N; 20.0 μmol l(-1)), phosphate (P; 2.0 μmol l(-1)) and combined inorganic nutrient enrichment treatment (N+P). Corals maintained without nutrient enrichment served as non-treated controls and revealed constant uptake rates for particulate organic carbon (POC) (-0.315±0.161 mg POC m(-2) coral surface area h(-1)), particulate nitrogen (PN) (-0.053±0.018 mg PN m(-2) h(-1)) and dissolved organic carbon (DOC) (-4.8±2.1 mg DOC m(-2) h(-1)). Although DOC uptake significantly increased in the N treatment, POC flux was not affected. The P treatment significantly enhanced PN release as well as photosynthesis and respiration rates, suggesting that autotrophic carbon acquisition of zooxanthellae endosymbionts influences OM fluxes by the coral host. Our physiological findings confirm the significant effect of inorganic nutrient availability on OM fluxes and key metabolic processes for the soft coral Xenia, and provide the first clues on OM cycles initiated by soft corals in reef environments exposed to ambient and elevated inorganic nutrient concentrations.

  2. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  3. A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum.

    PubMed

    Guan, Feifei; Pan, Yuanyuan; Li, Jinyang; Liu, Gang

    2017-09-01

    In filamentous fungi, nitrogen metabolism is repressed by GATA-type zinc finger transcription factors. Nitrogen metabolite repression has been found to affect antibiotic production, but the mechanism is still poorly understood. AcareB, encoding a homologue of fungal GATA-type regulatory protein, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation demonstrated that AcareB plays a key role in utilization of ammonium, glutamine and urea. In addition, significant reduction of cephalosporin production in the AcareB disruption mutant indicated that AcareB is important for cephalosporin production. In consistence with it, the transcriptional level of cephalosporin biosynthetic genes was significantly decreased in the AcareB disruption mutant. Electrophoretic mobility shift assay showed that AcAREB directly bound to the intergenic regions of pcbAB-pcbC, cefD1-cefD2 and cefEF-cefG. Sequence analysis showed that all the AcAREB binding sites contained the consensus GATA elements. AcareB is negatively autoregulated during cephalosporin production. Moreover, another GATA zinc-finger protein encoded by AcareA positively regulates the transcription of AcareB. However, AcareB does not regulate the transcription of AcareA. These results indicated that AcAREB plays an important role in both regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum.

  4. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms

    SciTech Connect

    Justice, Nicholas B.; Norman, Anders; Brown, Christopher T.; Singh, Andrea; Thomas, Brian C.; Banfield, Jillian F.

    2014-12-15

    Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood. Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA). Three of these species (AMDSBA2, AMDSBA3, and AMDSBA4) have no cultured representatives while AMDSBA1 is a strain of S. benefaciens, and AMDSBA5 a strain of S. thermosulfidooxidans. We analyzed the diversity of energy conservation and central carbon metabolisms for these genomes and previously published Sulfobacillus genomes. Pathways of sulfur oxidation vary considerably across the genus, including the number and type of subunits of putative heterodisulfide reductase complexes likely involved in sulfur oxidation. The number and type of nickel-iron hydrogenase proteins varied across the genus, as does the presence of different central carbon pathways. Only the AMDSBA3 genome encodes a dissimilatory nitrate reducatase and only the AMDSBA5 and S. thermosulfidooxidans genomes encode assimilatory nitrate reductases. Lastly, within the genus, AMDSBA4 is unusual in that its electron transport chain includes a cytochrome bc type complex, a unique cytochrome c oxidase, and two distinct succinate dehydrogenase complexes. Overall, the results significantly expand our understanding of carbon, sulfur, nitrogen, and hydrogen metabolism within the Sulfobacillus genus.

  5. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean

    PubMed Central

    Gil-Quintana, Erena; Larrainzar, Estíbaliz; Seminario, Amaia; Díaz-Leal, Juan Luis; Alamillo, Josefa M.; Pineda, Manuel; Arrese-Igor, Cesar; Wienkoop, Stefanie; González, Esther M.

    2013-01-01

    Drought stress is a major factor limiting symbiotic nitrogen fixation (NF) in soybean crop production. However, the regulatory mechanisms involved in this inhibition are still controversial. Soybean plants were symbiotically grown in a split-root system (SRS), which allowed for half of the root system to be irrigated at field capacity while the other half remained water deprived. NF declined in the water-deprived root system while nitrogenase activity was maintained at control values in the well-watered half. Concomitantly, amino acids and ureides accumulated in the water-deprived belowground organs regardless of transpiration rates. Ureide accumulation was found to be related to the decline in their degradation activities rather than increased biosynthesis. Finally, proteomic analysis suggests that plant carbon metabolism, protein synthesis, amino acid metabolism, and cell growth are among the processes most altered in soybean nodules under drought stress. Results presented here support the hypothesis of a local regulation of NF taking place in soybean and downplay the role of ureides in the inhibition of NF. PMID:23580751

  6. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation

    PubMed Central

    Castelle, Cindy J.; Brown, Christopher T.; Thomas, Brian C.; Williams, Kenneth H.; Banfield, Jillian F.

    2017-01-01

    The Candidate Phyla Radiation (CPR) is a large group of bacteria, the scale of which approaches that of all other bacteria. CPR organisms are inferred to depend on other community members for many basic cellular building blocks and all appear to be obligate anaerobes. To date, there has been no evidence for any significant respiratory capacity in an organism from this radiation. Here we report a curated draft genome for ‘Candidatus Parcunitrobacter nitroensis’ a member of the Parcubacteria (OD1) superphylum of the CPR. The genome encodes versatile energy pathways, including fermentative and respiratory capacities, nitrogen and fatty acid metabolism, as well as the first complete electron transport chain described for a member of the CPR. The sequences of all of these enzymes are highly divergent from sequences found in other organisms, suggesting that these capacities were not recently acquired from non-CPR organisms. Although the wide respiration-based repertoire points to a different lifestyle compared to other CPR bacteria, we predict similar obligate dependence on other organisms or the microbial community. The results substantially expand the known metabolic potential of CPR bacteria, although sequence comparisons indicate that these capacities are very rare in members of this radiation. PMID:28067254

  7. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.

    PubMed

    Miller, Rachel; Wu, Guangxi; Deshpande, Rahul R; Vieler, Astrid; Gärtner, Katrin; Li, Xiaobo; Moellering, Eric R; Zäuner, Simone; Cornish, Adam J; Liu, Bensheng; Bullard, Blair; Sears, Barbara B; Kuo, Min-Hao; Hegg, Eric L; Shachar-Hill, Yair; Shiu, Shin-Han; Benning, Christoph

    2010-12-01

    Like many microalgae, Chlamydomonas reinhardtii forms lipid droplets rich in triacylglycerols when nutrient deprived. To begin studying the mechanisms underlying this process, nitrogen (N) deprivation was used to induce triacylglycerol accumulation and changes in developmental programs such as gametogenesis. Comparative global analysis of transcripts under induced and noninduced conditions was applied as a first approach to studying molecular changes that promote or accompany triacylglycerol accumulation in cells encountering a new nutrient environment. Towards this goal, high-throughput sequencing technology was employed to generate large numbers of expressed sequence tags of eight biologically independent libraries, four for each condition, N replete and N deprived, allowing a statistically sound comparison of expression levels under the two tested conditions. As expected, N deprivation activated a subset of control genes involved in gametogenesis while down-regulating protein biosynthesis. Genes for components of photosynthesis were also down-regulated, with the exception of the PSBS gene. N deprivation led to a marked redirection of metabolism: the primary carbon source, acetate, was no longer converted to cell building blocks by the glyoxylate cycle and gluconeogenesis but funneled directly into fatty acid biosynthesis. Additional fatty acids may be produced by membrane remodeling, a process that is suggested by the changes observed in transcript abundance of putative lipase genes. Inferences on metabolism based on transcriptional analysis are indirect, but biochemical experiments supported some of these deductions. The data provided here represent a rich source for the exploration of the mechanism of oil accumulation in microalgae.

  8. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms.

    PubMed

    Justice, Nicholas B; Norman, Anders; Brown, Christopher T; Singh, Andrea; Thomas, Brian C; Banfield, Jillian F

    2014-12-15

    Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood. Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA). Three of these species (AMDSBA2, AMDSBA3, and AMDSBA4) have no cultured representatives while AMDSBA1 is a strain of S. benefaciens, and AMDSBA5 a strain of S. thermosulfidooxidans. We analyzed the diversity of energy conservation and central carbon metabolisms for these genomes and previously published Sulfobacillus genomes. Pathways of sulfur oxidation vary considerably across the genus, including the number and type of subunits of putative heterodisulfide reductase complexes likely involved in sulfur oxidation. The number and type of nickel-iron hydrogenase proteins varied across the genus, as does the presence of different central carbon pathways. Only the AMDSBA3 genome encodes a dissimilatory nitrate reducatase and only the AMDSBA5 and S. thermosulfidooxidans genomes encode assimilatory nitrate reductases. Within the genus, AMDSBA4 is unusual in that its electron transport chain includes a cytochrome bc type complex, a unique cytochrome c oxidase, and two distinct succinate dehydrogenase complexes. Overall, the results significantly expand our understanding of carbon, sulfur, nitrogen, and hydrogen metabolism within the Sulfobacillus genus.

  9. Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation

    DOE PAGES

    Castelle, Cindy J.; Brown, Christopher T.; Thomas, Brian C.; ...

    2017-01-09

    The Candidate Phyla Radiation (CPR) is a large group of bacteria, the scale of which approaches that of all other bacteria. CPR organisms are inferred to depend on other community members for many basic cellular building blocks and all appear to be obligate anaerobes. To date, there has been no evidence for any significant respiratory capacity in an organism from this radiation. Here we report a curated draft genome for Candidatus Parcunitrobacter nitroensis' a member of the Parcubacteria (OD1) superphylum of the CPR. The genome encodes versatile energy pathways, including fermentative and respiratory capacities, nitrogen and fatty acid metabolism, asmore » well as the first complete electron transport chain described for a member of the CPR. The sequences of all of these enzymes are highly divergent from sequences found in other organisms, suggesting that these capacities were not recently acquired from non-CPR organisms. Although the wide respiration-based repertoire points to a different lifestyle compared to other CPR bacteria, we predict similar obligate dependence on other organisms or the microbial community. The results substantially expand the known metabolic potential of CPR bacteria, although sequence comparisons indicate that these capacities are very rare in members of this radiation.« less

  10. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  11. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane III

    2003-12-01

    . The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.

  12. Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?

    PubMed

    Zhang, Tao; Yang, Xiaojun

    2013-01-01

    Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to

  13. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    PubMed

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO3(-) ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO3(-) accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L(-1) produced an increase in Zn concentration provoking a decrease of NO3(-) concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L(-1) of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L(-1) of Zn, because it could result in an increase in the Zn concentration, a reduction of NO3(-) levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. How aneuploidy affects metabolic control and causes cancer.

    PubMed Central

    Rasnick, D; Duesberg, P H

    1999-01-01

    The complexity and diversity of cancer-specific phenotypes, including de-differentiation, invasiveness, metastasis, abnormal morphology and metabolism, genetic instability and progression to malignancy, have so far eluded explanation by a simple, coherent hypothesis. However, an adaptation of Metabolic Control Analysis supports the 100-year-old hypothesis that aneuploidy, an abnormal number of chromosomes, is the cause of cancer. The results demonstrate the currently counter-intuitive principle that it is the fraction of the genome undergoing differential expression, not the magnitude of the differential expression, that controls phenotypic transformation. Transforming the robust normal phenotype into cancer requires a twofold increase in the expression of thousands of normal gene products. The massive change in gene dose produces highly non-linear (i.e. qualitative) changes in the physiology and metabolism of cells and tissues. Since aneuploidy disrupts the natural balance of mitosis proteins, it also explains the notorious genetic instability of cancer cells as a consequence of the perpetual regrouping of chromosomes. In view of this and the existence of non-cancerous aneuploidy, we propose that cancer is the phenotype of cells above a certain threshold of aneuploidy. This threshold is reached either by the gradual, stepwise increase in the level of aneuploidy as a consequence of the autocatalysed genetic instability of aneuploid cells or by tetraploidization followed by a gradual loss of chromosomes. Thus the initiation step of carcinogenesis produces aneuploidy below the threshold for cancer, and the promotion step increases the level of aneuploidy above this threshold. We conclude that aneuploidy offers a simple and coherent explanation for all the cancer-specific phenotypes. Accordingly, the gross biochemical abnormalities, abnormal cellular size and morphology, the appearance of tumour-associated antigens, the high levels of secreted proteins responsible for

  15. Nitrate and Ammonium Contribute to the Distinct Nitrogen Metabolism of Populus simonii during Moderate Salt Stress

    PubMed Central

    Meng, Sen; Su, Li; Li, Yiming; Wang, Yinjuan; Zhang, Chunxia; Zhao, Zhong

    2016-01-01

    Soil salinity is a major abiotic stressor affecting plant growth. Salinity affects nitrification and ammonification in the soil, however, limited information is available on the influence of different N sources on N metabolism during salt stress. To understand the N metabolism changes in response to different N sources during moderate salt stress, we investigated N uptake, assimilation and the transcript abundance of associated genes in Populus simonii seedlings treated with moderate salt stress (75mM NaCl) under hydroponic culture conditions with nitrate (NO3-) or ammonium (NH4+). Salt stress negatively affected plant growth in both NH4+-fed and NO3--fed plants. Both NH4+ uptake and the total N concentration were significantly increased in the roots of the NH4+-fed plants during salt stress. However, the NO3- uptake and nitrate reductase (NR) and nitrite reductase (NiR) activity primarily depended on the NO3- supply and was not influenced by salt stress. Salt stress decreased glutamine synthetase (GS) and glutamate synthase (GOGAT) activity in the roots and leaves. Most genes associated with NO3-uptake, reduction and N metabolism were down-regulated or remained unchanged; while two NH4+ transporter genes closely associated with NH4+ uptake (AMT1;2 and AMT1;6) were up-regulated in response to salt stress in the NH4+-fed plants. The accumulation of different amino acid compounds was observed in the NH4+- and NO3-- fed plants during salt treatment. The results suggested that N metabolism in P. simonii plants exposed to salt enhanced salt resistance in the plants that were fed with NO3- instead of NH4+ as the sole N source. PMID:26950941

  16. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada, 2015.

  17. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya.

    PubMed

    Jacobs, Suzanne R; Breuer, Lutz; Butterbach-Bahl, Klaus; Pelster, David E; Rufino, Mariana C

    2017-12-15

    African tropical montane forests are facing fast and dynamic changes in land use. However, the impacts of these changes on stream water quality are understudied. This paper aims at assessing the effect of land use and physical catchment characteristics on stream water concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) in the Mau Forest, the largest tropical montane forest in Kenya. We conducted five synoptic stream water sampling campaigns at the outlets of 13-16 catchments dominated by either natural forest, smallholder agriculture or commercial tea and tree plantations. Our data show a strong effect of land use on TDN and NO3-N, with highest concentrations in stream water of catchments dominated by tea plantations (1.80±0.50 and 1.62±0.60mgNl(-1), respectively), and lowest values in forested catchments (0.55±0.15 and 0.30±0.08mgNl(-1), respectively). NO3-N concentration increased with stream temperature and specific discharge, but decreased with increasing catchment area. DOC concentrations increased with catchment area and precipitation and decreased with specific discharge, drainage density and topographic wetness index. Precipitation and specific discharge were also strong predictors for DON concentrations, with an additional small positive effect of tree cover. In summary, land use affects TDN and NO3-N concentrations in stream water in the Mau Forest region in Kenya, while DOC and DON were more related to hydrologic regimes and catchment properties. The importance of land use for NO3-N and TDN concentrations emphasizes the risk of increased nitrogen export along hydrological pathways caused by intensified land use and conversion of land to agricultural uses, which might result in deterioration of drinking water quality and eutrophication in surface water in tropical Africa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  19. Water shortage affects the water and nitrogen balance in Central European beech forests.

    PubMed

    Gessler, A; Keitel, C; Nahm, M; Rennenberg, H

    2004-05-01

    Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.

  20. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland.

    PubMed

    Lin, Xueju; Tfaily, Malak M; Green, Stefan J; Steinweg, J Megan; Chanton, Patrick; Imvittaya, Aopeau; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher; Kostka, Joel E

    2014-06-01

    This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and

  1. Microbial Metabolic Potential for Carbon Degradation and Nutrient (Nitrogen and Phosphorus) Acquisition in an Ombrotrophic Peatland

    PubMed Central

    Tfaily, Malak M.; Green, Stefan J.; Steinweg, J. Megan; Chanton, Patrick; Imvittaya, Aopeau; Chanton, Jeffrey P.; Cooper, William; Schadt, Christopher

    2014-01-01

    This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and

  2. Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis.

    PubMed

    Sato, Shigeru; Yanagisawa, Shuichi

    2014-02-01

    Plant growth and metabolism are regulated in response to various environmental factors. To investigate modulations in plant metabolism by the combined action of elevated atmospheric CO2 concentration and other nutritional factors, we performed targeted metabolomic analysis using Arabidopsis thaliana plants grown under 24 different conditions where the CO2 concentration, amounts and species of nitrogen source, and light intensity were modified. Our results indicate that both the biosynthesis of diverse metabolites and growth are promoted in proportion to the CO2 concentration at a wide range of CO2 levels, from ambient concentrations to an extremely high concentration (3,600 p.p.m.) of CO2. This suggests that A. thaliana has the potential to utilize effectively very high concentrations of CO2. On the other hand, ammonium (but not nitrate) supplied as an additional nitrogen source induced drastic alterations in metabolite composition, including increases in the contents of glucose, starch and several amino acids, and reductions in the tricarboxylic acid (TCA) cycle-related organic acid content under any CO2 conditions. Hierarchical clustering analysis using the metabolite profiles revealed that ammonium is a prominent factor determining metabolic status, while the CO2 concentration is not. However, ammonium-induced metabolic alterations were differently modified by high concentrations of CO2. Hence, our results imply that increases in CO2 concentration may differently influence plant metabolism depending on the nitrogen nutrient conditions.

  3. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  4. Seasonal Temperature Changes Do Not Affect Cardiac Glucose Metabolism

    PubMed Central

    Schildt, Jukka; Loimaala, Antti; Hippeläinen, Eero; Nikkinen, Päivi; Ahonen, Aapo

    2015-01-01

    FDG-PET/CT is widely used to diagnose cardiac inflammation such as cardiac sarcoidosis. Physiological myocardial FDG uptake often creates a problem when assessing the possible pathological glucose metabolism of the heart. Several factors, such as fasting, blood glucose, and hormone levels, influence normal myocardial glucose metabolism. The effect of outdoor temperature on myocardial FDG uptake has not been reported before. We retrospectively reviewed 29 cancer patients who underwent PET scans in warm summer months and again in cold winter months. We obtained myocardial, liver, and mediastinal standardized uptake values (SUVs) as well as quantitative cardiac heterogeneity and the myocardial FDG uptake pattern. We also compared age and body mass index to other variables. The mean myocardial FDG uptake showed no significant difference between summer and winter months. Average outdoor temperature did not correlate significantly with myocardial SUVmax in either summer or winter. The heterogeneity of myocardial FDG uptake did not differ significantly between seasons. Outdoor temperature seems to have no significant effect on myocardial FDG uptake or heterogeneity. Therefore, warming the patients prior to attending cardiac PET studies in order to reduce physiological myocardial FDG uptake seems to be unnecessary. PMID:26858844

  5. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    USGS Publications Warehouse

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  6. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants.

    PubMed

    D'Apuzzo, Enrica; Valkov, Vladimir Totev; Parlati, Aurora; Omrane, Selim; Barbulova, Ani; Sainz, Maria Martha; Lentini, Marco; Esposito, Sergio; Rogato, Alessandra; Chiurazzi, Maurizio

    2015-04-01

    We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.

  7. Loading-induced changes in synovial fluid affect cartilage metabolism.

    PubMed

    van de Lest, C H; van den Hoogen, B M; van Weeren, P R

    2000-01-01

    The object of this study was to determine whether changes in the synovial fluid (SF) induced by in vivo loading can alter the metabolic activity of chondrocytes in vitro, and, if so, whether insulin-like growth factor-I (IGF-I) is responsible for this effect. Therefore, SF was collected from ponies after a period of box rest and after they had been exercised for a week. Normal, unloaded articular cartilage explants were cultured in 20% solutions of these SFs for 4 days and chondrocyte bioactivity was determined by glycosaminoglycan (GAG) turnover (i.e., the incorporation of 35SO4 into GAG and the release of GAG into the medium). Furthermore, the extent to which the bioactivity is IGF-I-dependent was determined in a cartilage explant culture in 20% SF, in the presence and absence of anti-IGF-I antibodies. In explants cultured in post-exercise SF, GAG synthesis was enhanced and GAG release was diminished when compared to cultures in pre-exercise SF. SF analysis showed that IGF-I and IGFBP-3 levels were increased in post-exercise SF. There was a positive correlation between IGF-I levels and proteoglycan synthesis, but no correlation between IGF-I levels and proteoglycan release. Addition of anti-IGF-I antibodies significantly inhibited stimulation of proteoglycan synthesis in explants cultured in SF with 40%. However, there was no difference in inhibition of proteoglycan synthesis between pre- and post-exercise SF which indicated that the relative contribution of IGF-I in the stimulating effect of SF did not change. Proteoglycan release was not influenced by the presence of anti-IGF-I antibodies. It is concluded that chondrocyte metabolic activity is at least partially regulated by changes in the SF induced by in vivo loading. Exercise altered the SF in a way that it had a favourable effect on cartilage PG content by enhancing the PG synthesis and reducing the PG breakdown. IGF-I is an important contributor to the overall stimulating effect of SF on cartilage

  8. How does fish metamorphosis affect aromatic amino acid metabolism?

    PubMed

    Pinto, Wilson; Figueira, Luís; Dinis, Maria Teresa; Aragão, Cláudia

    2009-02-01

    Aromatic amino acids (AAs, phenylalanine and tyrosine) may be specifically required during fish metamorphosis, since they are the precursors of thyroid hormones which regulate this process. This project attempted to evaluate aromatic AA metabolism during the ontogenesis of fish species with a marked (Senegalese sole; Solea senegalensis) and a less accentuated metamorphosis (gilthead seabream; Sparus aurata). Fish were tube-fed with three L-[U-14C] AA solutions at pre-metamorphic, metamorphic and post-metamorphic stages of development: controlled AA mixture (Mix), phenylalanine (Phe) and tyrosine (Tyr). Results showed a preferential aromatic AA retention during the metamorphosis of Senegalese sole, rather than in gilthead seabream. Senegalese sole's highly accentuated metamorphosis seems to increase aromatic AA physiological requirements, possibly for thyroid hormone production. Thus, Senegalese sole seems to be especially susceptible to dietary aromatic AA deficiencies during the metamorphosis period, and these findings may be important for physiologists, fish nutritionists and the flatfish aquaculture industry.

  9. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  10. Metabolic differences in temperamental Brahman cattle can affect productivity

    USDA-ARS?s Scientific Manuscript database

    Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...

  11. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation.

    PubMed

    Kleinert, Aleysia; Venter, Mauritz; Kossmann, Jens; Valentine, Alexander

    2014-11-01

    It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth.

  12. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.

    PubMed

    Ormeño, Elena; Olivier, Romain; Mévy, Jean Philippe; Baldy, Virginie; Fernandez, Catherine

    2009-09-01

    The use of composted biosolids as an amendment for forest regeneration in degraded ecosystems is growing since sewage-sludge dumping has been banned in the European Community. Its consequences on plant terpenes are however unknown. Terpene emissions of both Rosmarinus officinalis (a terpene-storing species) and Quercus coccifera (a non-storing species) and terpene content of the former, were studied after a middle-term exposure to compost at intermediate (50tha(-1): D50) and high (100tha(-1): D100) compost rates, in a seven-year-old post-fire shrubland ecosystem. Some chlorophyll fluorescence parameters (Fv/Fm, ETR, Phi(PSII)), soil and plant enrichment in phosphorus (P) and nitrogen (N) were monitored simultaneously in amended and non-amended plots in order to establish what factors were responsible for possible compost effect on terpenes. Compost affected all studied parameters with the exception of Fv/Fm and terpene content. For both species, mono- and sesquiterpene basal emissions were intensified solely under D50 plots. On the contrary leaf P, leaf N levels reached in D50 were partly responsible of terpene changes, suggesting that optimal N conditions occurred therein. N also affected ETR and Phi(PSII) which were, in turn, robustly correlated to terpene emissions. These results imply that emissions of terpene-storing and non-storing species were under nitrogen and chlorophyll fluorescence control, and that a correct management of compost rates applied on soil may modify terpene emission rate of plants, which in turn has consequences in air quality and plant defense mechanisms.

  13. Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins.

    PubMed

    Fan, Pengxiang; Feng, Juanjuan; Jiang, Ping; Chen, Xianyang; Bao, Hexigeduleng; Nie, Lingling; Jiang, Dan; Lv, Sulian; Kuang, Tingyun; Li, Yinxin

    2011-11-01

    Halophyte, like Salicornia europaea, could make full use of marginal saline land for carbon fixation. How the photosynthesis of S. europaea is regulated under high salinity implicates a significant aspect to exploit this pioneer plant in future. Measurement of photosynthesis parameters demonstrated the reduction of photosynthesis for the 0 and 800 mM NaCl treated plants are more likely due to non-stomatal limitation, which might be caused by changes in the enzymes associated with photosynthesis. Different salinity induced ultrastructure changes other than photosynthetic apparatus damage, suggesting the photosynthesis of S. europaea might be affected via biochemical regulation. Comparative proteomics analysis of chloroplast proteins by 2-D gel electrophoresis reproducibly detected 90 differentially expressed proteins, among which 66 proteins were identified by nanoLC MS/MS. Further study of thylakoid membrane proteins by Blue-Native PAGE proved the increase in abundance of light reaction proteins under salinity. Analysis of gene expression patterns of 12 selected proteins provides evidence for the correlations between transcription and proteomics data. Based on our results, a putative model of photosynthesis regulatory network figured out proper coordination of carbon fixation and nitrogen metabolism in chloroplast of S. europaea under salinity, which provided subcellular level insight into salt tolerance mechanism in S. europaea. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime

    USGS Publications Warehouse

    Howarth, Robert W.; Hayn, Melanie; Marino, Roxanne M.; Ganju, Neil; Foreman, Kenneth H.; McGlathery, Karen; Giblin, Anne E.; Berg, Peter; Walker, Jeffrey D.

    2014-01-01

    We measured metabolism rates in a shallow, nitrogen-enriched coastal marine ecosystem on Cape Cod (MA, USA) during seven summers using an open-water diel oxygen method. We compared two basins, one directly receiving most of the nitrogen (N) load (“Snug Harbor”) and another further removed from the N load and better flushed (“Outer Harbor”). Both dissolved oxygen and pH varied greatly over the day, increasing in daylight and decreasing at night. The more N-enriched basin frequently went hypoxic during the night, and the pH in both basins was low (compared to standard seawater) when the oxygen levels were low, due to elevated carbon dioxide. Day-to-day variation in gross primary production (GPP) was high and linked in part to variation in light. Whole-ecosystem respiration tended to track this short-term variation in GPP, suggesting that respiration by the primary producers often dominated whole-system respiration. GPP was higher in the more N-loaded Snug Harbor. Seagrasses covered over 60 % of the area of the better-flushed, Outer Harbor throughout our study and were the major contributors to GPP there. Seagrasses covered 20 % of the area in Snug Harbor for the first 5 years of our study, and their contribution to GPP was relatively small. The seagrasses in Snug Harbor died off completely in the 6th year, but GPP remained high then and in the subsequent year. Overall, rates of phytoplankton GPP were relatively low, suggesting that benthic micro- and macro-algae may be the dominant primary producers in Snug Harbor in most years. Net ecosystem production in both Snug Harbor and the Outer Harbor was variable from year to year, showing net heterotrophy in some years and net autotrophy in others, with a trend towards increasing autotrophy over the 7 years reported here.

  15. Growth-promoting nitrogen nutrition affects flavonoid biosynthesis in young apple (Malus domestica Borkh.) leaves.

    PubMed

    Strissel, T; Halbwirth, H; Hoyer, U; Zistler, C; Stich, K; Treutter, D

    2005-11-01

    Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".

  16. [Metabolic studies in brothers affected by alcaptonuria (ochronosis)].

    PubMed

    Pugge, H R; Orozco, M; Toledo, A; Ripoll, J; Katz, J; Toledo, I; Pellanda, R

    1978-01-01

    The case of two brothers affected by alcaptonurie is reported. The activity of the homogenthisycasa enzyme has been determined by the material obtained through percutaneous biopsy. Concentrations of the aminoacids producing fenilalanina and thiroxina in their parents' blood have been investigated, the tests showing lack of liver enzyme and normal concentration of the amount of aminoacids in blood. Some aspects of skin lesion have been briefly reported and methods for treatment presented.

  17. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis1

    PubMed Central

    Anoman, Armand D.; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R.; Segura, Juan; Ros, Roc

    2015-01-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development. PMID:26134167

  18. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

    PubMed

    Anoman, Armand D; Muñoz-Bertomeu, Jesús; Rosa-Téllez, Sara; Flores-Tornero, María; Serrano, Ramón; Bueso, Eduardo; Fernie, Alisdair R; Segura, Juan; Ros, Roc

    2015-11-01

    This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of lateral roots and having a major effect on AP growth and metabolite profile. Our results indicate that GAPCp1 is not functionally important in photosynthetic cells but plays a fundamental role in roots and in heterotrophic cells of the AP. Specifically, GAPCp activity may be required in root meristems and the root cap for normal primary root growth. Transcriptomic and metabolomic analyses indicate that the lack of GAPCp activity affects nitrogen and carbon metabolism as well as mineral nutrition and that glycerate and glutamine are the main metabolites responding to GAPCp activity. Thus, GAPCp could be an important metabolic connector of glycolysis with other pathways, such as the phosphorylated pathway of serine biosynthesis, the ammonium assimilation pathway, or the metabolism of γ-aminobutyrate, which in turn affect plant development.

  19. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    PubMed

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the

  20. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    SciTech Connect

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  1. Loading-induced changes in synovial fluid affect cartilage metabolism.

    PubMed

    Van den Hoogen, B M; van de Lest, C H; van Weeren, P R; Lafeber, F P; Lopes-Cardozo, M; van Golde, L M; Barneveld, A

    1998-06-01

    The purpose of this study was to determine whether changes in the synovial fluid (SF) induced by in vivo loading can induce an alteration in the metabolic activity of chondrocytes in vitro. Therefore, SF was collected from ponies after a period of box rest and after they had exercise for a week. Normal, unloaded articular cartilage explants were cultured in 20% solutions of these SFs for 4 days and chondrocyte activity was determined by glycosaminoglycan (GAG) turnover. In explants cultured in post-exercise SF, GAG synthesis was enhanced and GAG release was diminished when compared to cultures in pre-exercise SF. SF analysis showed that levels of insulin-like growth factors (IGF-I and IGF-II) tended to be higher in post-exercise SF, while no differences were found in metalloproteinase activity, hyaluronic acid and protein concentrations. This study showed that anabolic effects of joint loading on cartilage are, at least partially, mediated by alterations in the SF.

  2. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex

    PubMed Central

    Chow, Keng-See; Mat-Isa, Mohd.-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd.-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian

    2012-01-01

    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees. PMID:22162870

  3. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    USDA-ARS?s Scientific Manuscript database

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  4. [Effects of exogenous NO3- on cherry root function and enzyme activities related to nitrogen metabolism under hypoxia stress].

    PubMed

    Feng, Li-guo; Sheng, Li-xi; Shu, Huai-rui

    2010-12-01

    A water culture experiment with controlled dissolved oxygen concentration was conducted to explore the effects of exogenous NO3- on the root function and enzyme activities related to nitrogen metabolism of cherry (Prunun cerasus x P. canescens) seedlings under hypoxia stress. Comparing with the control (7.5 mmol NO3- x L(-1)), treatments 15 and 22.5 mmol NO3- x L(-1) made the materials for plant metabolism abundant, ensured the synthesis of enzyme proteins, increased root activity, maintained root respiration, improved the activities of enzymes related to nitrogen metabolism, such as nitrate reductase (NR), glutamine synthethase (GS), and glutamate dehydrogenase (NADH-GDH) in roots, and thereby, supplied enough energy for root respiration and NAD+ to glycolytic pathway, ensured electron transfer, and avoid ammonium toxicity under hypoxia stress. As a result, the injury of hypoxia stress to cherry plant was alleviated. Applying NO3- at the concentration of 22.5 mmol x L(-1) was more advisable. However, NO3- deficiency (0 mmol x L(-1)) showed opposite results. The above results suggested that applying exogenous NO3- to growth medium could regulate cherry root function and nitrogen metabolism, and antagonize the damage of hypoxia stress on cherry roots.

  5. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms

    DOE PAGES

    Justice, Nicholas B.; Norman, Anders; Brown, Christopher T.; ...

    2014-12-15

    Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood. Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA). Three of these species (AMDSBA2, AMDSBA3, and AMDSBA4) have no cultured representatives while AMDSBA1 is a strain of S. benefaciens, and AMDSBA5 amore » strain of S. thermosulfidooxidans. We analyzed the diversity of energy conservation and central carbon metabolisms for these genomes and previously published Sulfobacillus genomes. Pathways of sulfur oxidation vary considerably across the genus, including the number and type of subunits of putative heterodisulfide reductase complexes likely involved in sulfur oxidation. The number and type of nickel-iron hydrogenase proteins varied across the genus, as does the presence of different central carbon pathways. Only the AMDSBA3 genome encodes a dissimilatory nitrate reducatase and only the AMDSBA5 and S. thermosulfidooxidans genomes encode assimilatory nitrate reductases. Lastly, within the genus, AMDSBA4 is unusual in that its electron transport chain includes a cytochrome bc type complex, a unique cytochrome c oxidase, and two distinct succinate dehydrogenase complexes. Overall, the results significantly expand our understanding of carbon, sulfur, nitrogen, and hydrogen metabolism within the Sulfobacillus genus.« less

  6. Long-term monitoring reveals carbon–nitrogen metabolism key to microcystin production in eutrophic lakes

    PubMed Central

    Beversdorf, Lucas J.; Miller, Todd R.; McMahon, Katherine D.

    2015-01-01

    The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic vs. non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined 3 years of temporal data, including microcystin (MC) concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N) speciation and inorganic carbon (C) availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the “toxic phase.” Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P) to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment. PMID:26029192

  7. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    PubMed

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  8. Childhood obesity affects adult metabolic syndrome and diabetes.

    PubMed

    Liang, Yajun; Hou, Dongqing; Zhao, Xiaoyuan; Wang, Liang; Hu, Yuehua; Liu, Junting; Cheng, Hong; Yang, Ping; Shan, Xinying; Yan, Yinkun; Cruickshank, J Kennedy; Mi, Jie

    2015-09-01

    We seek to observe the association between childhood obesity by different measures and adult obesity, metabolic syndrome (MetS), and diabetes. Thousand two hundred and nine subjects from "Beijing Blood Pressure Cohort Study" were followed 22.9 ± 0.5 years in average from childhood to adulthood. We defined childhood obesity using body mass index (BMI) or left subscapular skinfold (LSSF), and adult obesity as BMI ≥ 28 kg/m(2). MetS was defined according to the joint statement of International Diabetes Federation and American Heart Association with modified waist circumference (≥ 90/85 cm for men/women). Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/L or blood glucose 2 h after oral glucose tolerance test ≥ 11.1 mmol/L or currently using blood glucose-lowering agents. Multiple linear and logistic regression models were used to assess the association. The incidence of adult obesity was 13.4, 60.0, 48.3, and 65.1 % for children without obesity, having obesity by BMI only, by LSSF only, and by both, respectively. Compared to children without obesity, children obese by LSSF only or by both had higher risk of diabetes. After controlling for adult obesity, childhood obesity predicted independently long-term risks of diabetes (odds ratio 2.8, 95 % confidence interval 1.2-6.3) or abdominal obesity (2.7, 1.6-4.7) other than MetS as a whole (1.2, 0.6-2.4). Childhood obesity predicts long-term risk of adult diabetes, and the effect is independent of adult obesity. LSSF is better than BMI in predicting adult diabetes.

  9. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    PubMed

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus.

  10. Molecular insight into the dynamic central metabolic pathways of Achromobacter xylosoxidans CF-S36 during heterotrophic nitrogen removal processes.

    PubMed

    Padhi, Soumesh Kumar; Maiti, Nikhil Kumar

    2017-01-01

    Organic carbon sources play a significant role in heterotrophic nitrogen consumption. This quintessential exploration is focused on carbon and nitrogen biogeochemical cycles in heterotrophic bacteria, capable of simultaneous nitrification and denitrification (SND). A heterotrophic bacterial strain Achromobacter xylosoxidans CF-S36 isolated from domestic wastewater efficiently eliminated ammonia, nitrate and nitrite by utilizing different carbon sources. The type of carbon utilized by strain CF-S36 determined the rate of heterotrophic nitrogen removal. Quantitative real-time PCR (qRT-PCR) analysis of genes of central carbon and nitrogen metabolism, signal transduction, electron transport chain (ETC) pathways and assays of enzymes of denitrification processes revealed the existence of well-coordinated link between carbon utilization and nitrogen elimination in bacterial cell. The most preferred carbon source for nitrification was succinate followed by glucose and acetate. Inhibitory effect of nitrite on glycolytic pathway and nitrogen assimilation genes attributes glucose as unfavorable carbon source for denitrification process in strain CF-S36. Acetate served as efficient carbon source for utilizing nitrite through denitrification process. The study demonstrated here might be useful to biogeochemical engineer to understand the involvement of heterotrophic bacteria in global biogeochemical cycle and to gain further insight into the diversified application of these microorganisms.

  11. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    PubMed

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  12. Warming and altered precipitation affect litter decomposition and nitrogen dynamics in a mixed-grass prairie

    NASA Astrophysics Data System (ADS)

    Chen, X.; Luo, Y.; Xu, X.; Li, D.; Niu, S.

    2013-12-01

    Litter decomposition and nitrogen dynamics are important processes in ecosystems and how they respond to climate changes is a global concern. In order to explore the effects of warming and altered precipitation on litter decomposition and nitrogen dynamics, we conducted a field decomposition experiment with warming (+3°C) and altered precipitation (half and double) in a mixed-grass prairie in Oklahoma, USA, using litter bags with dominant C3 and C4 grasses since June, 2012. Litter bags were collected every month in the first six months and subsequently every three month thereafter. Remaining litter biomass as well as element concentration were measured in the lab. Warming significantly decreased the litter decomposition rate (k) by 25.4% for C3 grasses and 25.0% for C4 grasses. Doubled precipitation significantly increased the litter decomposition rate by 23.3% for C3 grasses and 30.1% for C4 grasses while half precipitation showed no significant effects. Soil temperature and soil moisture, controlled by warming and altered precipitation, are found to be the most important factors in regulating litter decomposition rate. Warming also decreased N concentration in C3 grasses while doubled precipitation increased N concentration in C4 grasses after one year of field decomposition. During that time, N concentration showed an average increase of 99.6% in C3 grass while only 68.1% in C4 grass. Other elements such as P and K were not much affected by these treatments although there were significant differences between C3 and C4 grasses. Our results suggest that climate change has significant impact on litter decomposition rate, which could influence the carbon balance of the ecosystem. Nutrient dynamics, especially nitrogen, were shown to be specific to plant types under altered climatic conditions. Our results show that conclusion derived from single-factor climate change experiments should be treated with caution due to interactive effects of warming with altered

  13. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    SciTech Connect

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  14. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis.

    PubMed

    Tschoep, Hendrik; Gibon, Yves; Carillo, Petronia; Armengaud, Patrick; Szecowka, Marek; Nunes-Nesi, Adriano; Fernie, Alisdair R; Koehl, Karin; Stitt, Mark

    2009-03-01

    We have established a simple soil-based experimental system that allows a small and sustained restriction of growth of Arabidopsis by low nitrogen (N). Plants were grown in a large volume of a peat-vermiculite mix that contained very low levels of inorganic N. As a control, inorganic N was added in solid form to the peat-vermiculite mix, or plants were grown in conventional nutrient-rich solids. The low N growth regime led to a sustained 20% decrease of the relative growth rate over a period of 2 weeks, resulting in a two- to threefold decrease in biomass in 35- to 40-day-old plants. Plants in the low N regime contained lower levels of nitrate, lower nitrate reductase activity, lower levels of malate, fumarate and other organic acids and slightly higher levels of starch, as expected from published studies of N-limited plants. However, their rosette protein content was unaltered, and total and many individual amino acid levels increased compared with N-replete plants. This metabolic phenotype reveals that Arabidopsis responds adaptively to low N by decreasing the rate of growth, while maintaining the overall protein content, and maintaining or even increasing the levels of many amino acids.

  15. Effects of UV-B and heavy metals on nitrogen and phosphorus metabolism in three cyanobacteria.

    PubMed

    Yadav, Shivam; Prajapati, Rajesh; Atri, Neelam

    2016-01-01

    Cyanobacteria sp. (diazotrophic and planktonic) hold a major position in ecosystem, former one due to their intrinsic capability of N2-fixation and later because of mineralization of organic matter. Unfortunately, their exposure to variety of abiotic stresses is unavoidable. Comparative analysis of interactive effect of UV-B and heavy metals (Cd/Zn) on nitrogen and phosphorus metabolism of three cyanobacteria (Anabaena, Microcystis, Nostoc) revealed additive inhibition (χ(2) significant p < 0.05) of NH4(+) and PO4(3-) uptake whereas increase in nitrate uptake upon UV-B + heavy metal exposure. Glutamine synthetase and Alkaline phosphatase activity was reduced after all treatments whereas Nitrate reductase activity showed slight stimulation in UV-B and UV-B + heavy metals treatment. Combination of UV-B and metals seems more detrimental to the NH4(+), PO4(3-) uptake, GS and APA activity. A significant stimulation in NO3(-) uptake and NR activity following exposure to UV-B in all the three cyanobacteria suggests UV-B-induced structural change(s) in the enzyme/carriers. Metals seem to compete for the binding sites of the enzymes and carriers; as noticed for Anabaena and Microcystis showing change in Km while no change in the Km value of Nostoc suggests non-competitive nutrient uptake. Higher accumulation and more adverse effect on Na(+) and K(+) efflux proposes Cd as more toxic compared to Zn. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner.

  17. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta

    PubMed Central

    Tan, Kenneth Wei Min; Lin, Huixin; Shen, Hui; Lee, Yuan Kun

    2016-01-01

    Certain species of microalgae are natural accumulators of lipids, while others are more inclined to store starch. However, what governs the preference to store lipids or starch is not well understood. In this study, the microalga Dunaliella tertiolecta was used as a model to study the global gene expression profile regulating starch accumulation in microalgae. D. tertiolecta, when depleted of nitrogen, produced only 1% of dry cell weight (DCW) in neutral lipids, while starch was rapidly accumulated up to 46% DCW. The increased in starch content was accompanied by a coordinated overexpression of genes shunting carbon towards starch synthesis, a response not seen in the oleaginous microalgae Nannochloropsis oceanica, Chlamydomonas reinhardtii or Chlorella vulgaris. Genes in the central carbon metabolism pathways, particularly those of the tricarboxylic acid cycle, were also simultaneously upregulated, indicating a robust interchange of carbon skeletons for anabolic and catabolic processes. In contrast, fatty acid and triacylglycerol synthesis genes were downregulated or unchanged, suggesting that lipids are not a preferred form of storage in these cells. This study reveals the transcriptomic influence behind storage reserve allocation in D. tertiolecta and provides valuable insights into the possible manipulation of genes for engineering microorganisms to synthesize products of interest. PMID:27849022

  18. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta.

    PubMed

    Tan, Kenneth Wei Min; Lin, Huixin; Shen, Hui; Lee, Yuan Kun

    2016-11-16

    Certain species of microalgae are natural accumulators of lipids, while others are more inclined to store starch. However, what governs the preference to store lipids or starch is not well understood. In this study, the microalga Dunaliella tertiolecta was used as a model to study the global gene expression profile regulating starch accumulation in microalgae. D. tertiolecta, when depleted of nitrogen, produced only 1% of dry cell weight (DCW) in neutral lipids, while starch was rapidly accumulated up to 46% DCW. The increased in starch content was accompanied by a coordinated overexpression of genes shunting carbon towards starch synthesis, a response not seen in the oleaginous microalgae Nannochloropsis oceanica, Chlamydomonas reinhardtii or Chlorella vulgaris. Genes in the central carbon metabolism pathways, particularly those of the tricarboxylic acid cycle, were also simultaneously upregulated, indicating a robust interchange of carbon skeletons for anabolic and catabolic processes. In contrast, fatty acid and triacylglycerol synthesis genes were downregulated or unchanged, suggesting that lipids are not a preferred form of storage in these cells. This study reveals the transcriptomic influence behind storage reserve allocation in D. tertiolecta and provides valuable insights into the possible manipulation of genes for engineering microorganisms to synthesize products of interest.

  19. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus?1

    PubMed Central

    Harrison, Judith; Pou de Crescenzo, Marie-Anne; Sené, Olivier; Hirel, Bertrand

    2003-01-01

    A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T1 progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated. PMID:12970491

  20. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM.

  1. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed Central

    Nivelle, Elodie; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  2. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?

    PubMed

    Nivelle, Elodie; Verzeaux, Julien; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry

    2017-01-01

    The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates

  3. Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea

    PubMed Central

    Marino, Daniel; Ariz, Idoia; Lasa, Berta; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; González-Murua, Carmen; Aparicio Tejo, Pedro M.

    2016-01-01

    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value. PMID:27085186

  4. Subsurface Cycling of Nitrogen and Anaerobic Aromatic Hydrocarbon Biodegradation Revealed by Nucleic Acid and Metabolic Biomarkers▿ †

    PubMed Central

    Yagi, Jane M.; Suflita, Joseph M.; Gieg, Lisa M.; DeRito, Christopher M.; Jeon, Che-Ok; Madsen, Eugene L.

    2010-01-01

    Microbial processes are crucial for ecosystem maintenance, yet documentation of these processes in complex open field sites is challenging. Here we used a multidisciplinary strategy (site geochemistry, laboratory biodegradation assays, and field extraction of molecular biomarkers) to deduce an ongoing linkage between aromatic hydrocarbon biodegradation and nitrogen cycling in a contaminated subsurface site. Three site wells were monitored over a 10-month period, which revealed fluctuating concentrations of nitrate, ammonia, sulfate, sulfide, methane, and other constituents. Biodegradation assays performed under multiple redox conditions indicated that naphthalene metabolism was favored under aerobic conditions. To explore in situ field processes, we measured metabolites of anaerobic naphthalene metabolism and expressed mRNA transcripts selected to document aerobic and anaerobic microbial transformations of ammonia, nitrate, and methylated aromatic contaminants. Gas chromatography-mass spectrometry detection of two carboxylated naphthalene metabolites and transcribed benzylsuccinate synthase, cytochrome c nitrite reductase, and ammonia monooxygenase genes indicated that anaerobic metabolism of aromatic compounds and both dissimilatory nitrate reduction to ammonia (DNRA) and nitrification occurred in situ. These data link formation (via DNRA) and destruction (via nitrification) of ammonia to in situ cycling of nitrogen in this subsurface habitat, where metabolism of aromatic pollutants has led to accumulation of reduced metabolic end products (e.g., ammonia and methane). PMID:20348302

  5. Overuse of paracetamol caffeine aspirin powders affects cerebral glucose metabolism in chronic migraine patients.

    PubMed

    Di, W; Shi, X; Zhu, Y; Tao, Y; Qi, W; Luo, N; Xiao, Z; Yi, C; Miao, J; Zhang, A; Zhang, X; Fang, Y

    2013-04-01

    Overuse of analgesic plays a prominent role in migraine chronification. Paracetamol caffeine aspirin (PCA) powders are commonly used in Chinese migraineurs. This study investigated the effects of the specific combination analgesic on cerebral glucose metabolism in chronic migraine (CM). 18F-FDG-PET was used to measure regional metabolism in all subjects. Brain metabolisms of CM patients with analgesic overuse (AO-CM; n=10), no analgesic overuse (NAO-CM; n=10), and no regimen (NR-CM; n=10) and 17 age- and gender-matched normal controls (NC) were compared using statistical parametric mapping. Then, all patients underwent brain MRI analysis within 7 days after PET scans, as well as MMSE and MoCA scale for cognitive function tests. Glucose metabolic changes in CM patients taking different dosage of analgesic during headache-free periods and clear distinctions in several brain regions were observed. Patients with AO-CM exhibited significant metabolic reductions in thalamus, as well as increased metabolism in middle temporal gyrus and insula relative to NR-CM and NAO-CM. However, in these regions, no difference was observed in AO-CM except for increased metabolism in the right insula relative to NC group. Overusing PCA powders affects regional brain glucose metabolism in CM. Increased metabolism in the right insula may be associated with recurrently overusing of PCA powders. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  6. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status.

    PubMed

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-04-23

    AMT1-3 encodes the high affinity NH₄⁺ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants.

  7. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    PubMed Central

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-01-01

    AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants. PMID:25915023

  8. Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: rationalizing nitrogen modulation of wine aroma.

    PubMed

    Ugliano, Maurizio; Travis, Brooke; Francis, I Leigh; Henschke, Paul A

    2010-12-08

    The effects of yeast assimilable nitrogen (YAN) supplementation on Shiraz volatile composition and sensory properties have been investigated. A low YAN Shiraz must (YAN 100 mg/L) was supplemented with nitrogen in the form of diammonium phosphate (DAP) to a final YAN of either 250 or 400 mg/L. Fermentation was carried out with either Saccharomyces cerevisiae or Saccharomyces bayanus , with maceration on skins. For both yeast strains, high DAP additions increased the ratings of positive sensory attributes such as "red fruit" and "dark fruit" and decreased the "yeast/cheese", "vegetal", and "earth/dirty" attributes. For the S. cerevisiae yeast moderate DAP addition resulted in higher "reduced" attribute scores. DAP supplementation had a strong influence on formation of acetates, fatty acid ethyl esters, higher alcohols, hydrogen sulfide, ethyl mercaptan, methyl mercaptan, DMS, and DES. Partial least-squares regression analysis of chemical and sensory data indicated that esters, sulfides, and mercaptans were associated with fruit-related descriptors, whereas hydrogen sulfide was associated with the "reduced" attribute. Nitrogen-related variations in the concentration of other yeast metabolites such as ethanol and 2- and 3-methylbutanoic acids also affected perceived fruitiness. Depending on yeast species DAP supplementation to a low nitrogen must can result in increased reduction off-odor.

  9. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots.

    PubMed

    Armengaud, Patrick; Sulpice, Ronan; Miller, Anthony J; Stitt, Mark; Amtmann, Anna; Gibon, Yves

    2009-06-01

    Potassium (K) is required in large quantities by growing crops, but faced with high fertilizer prices, farmers often neglect K application in favor of nitrogen and phosphorus. As a result, large areas of farmland are now depleted of K. K deficiency affects the metabolite content of crops with negative consequences for nutritional quality, mechanical stability, and pathogen/pest resistance. Known functions of K in solute transport, protein synthesis, and enzyme activation point to a close relationship between K and metabolism, but it is unclear which of these are the most critical ones and should be targeted in biotechnological efforts to improve K usage efficiency. To identify metabolic targets and signaling components of K stress, we adopted a multilevel approach combining transcript profiles with enzyme activities and metabolite profiles of Arabidopsis (Arabidopsis thaliana) plants subjected to low K and K resupply. Roots and shoots were analyzed separately. Our results show that regulation of enzymes at the level of transcripts and proteins is likely to play an important role in plant adaptation to K deficiency by (1) maintaining carbon flux into amino acids and proteins, (2) decreasing negative metabolic charge, and (3) increasing the nitrogen-carbon ratio in amino acids. However, changes in transcripts and enzyme activities do not explain the strong and reversible depletion of pyruvate and accumulation of sugars observed in the roots of low-K plants. We propose that the primary cause of metabolic disorders in low-K plants resides in the direct inhibition of pyruvate kinase activity by low cytoplasmic K in root cells.

  10. Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots1[W][OA

    PubMed Central

    Armengaud, Patrick; Sulpice, Ronan; Miller, Anthony J.; Stitt, Mark; Amtmann, Anna; Gibon, Yves

    2009-01-01

    Potassium (K) is required in large quantities by growing crops, but faced with high fertilizer prices, farmers often neglect K application in favor of nitrogen and phosphorus. As a result, large areas of farmland are now depleted of K. K deficiency affects the metabolite content of crops with negative consequences for nutritional quality, mechanical stability, and pathogen/pest resistance. Known functions of K in solute transport, protein synthesis, and enzyme activation point to a close relationship between K and metabolism, but it is unclear which of these are the most critical ones and should be targeted in biotechnological efforts to improve K usage efficiency. To identify metabolic targets and signaling components of K stress, we adopted a multilevel approach combining transcript profiles with enzyme activities and metabolite profiles of Arabidopsis (Arabidopsis thaliana) plants subjected to low K and K resupply. Roots and shoots were analyzed separately. Our results show that regulation of enzymes at the level of transcripts and proteins is likely to play an important role in plant adaptation to K deficiency by (1) maintaining carbon flux into amino acids and proteins, (2) decreasing negative metabolic charge, and (3) increasing the nitrogen-carbon ratio in amino acids. However, changes in transcripts and enzyme activities do not explain the strong and reversible depletion of pyruvate and accumulation of sugars observed in the roots of low-K plants. We propose that the primary cause of metabolic disorders in low-K plants resides in the direct inhibition of pyruvate kinase activity by low cytoplasmic K in root cells. PMID:19346439

  11. Nitrogen addition affects leaf nutrition and photosynthesis in sugar maple in a nutrient-poor northern Vermont forest

    Treesearch

    David S. Ellsworth

    1999-01-01

    Sugar maple-dominated forest ecosystems in the northeastern U.S. have been receiving precipitation nitrogen (N) inputs of 15 -20 kg N ha1 year1 since at least the mid 1980s sustained chronic N inputs of this magnitude into nutrient-poor forest ecosystems may cause eutrophication and affect ecosystem functioning as well as...

  12. Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro.

    PubMed

    Pradhan, Saheli; Patra, Prasun; Mitra, Shouvik; Dey, Kushal Kumar; Jain, Sneha; Sarkar, Samapd; Roy, Shuvrodeb; Palit, Pratip; Goswami, Arunava

    2014-09-03

    Mung bean plants were grown under controlled conditions and supplemented with macro- and micronutrients. The objective of this study was to determine the response of manganese nanoparticles (MnNP) in nitrate uptake, assimilation, and metabolism compared with the commercially used manganese salt, manganese sulfate (MS). MnNP was modulated to affect the assimilatory process by enhancing the net flux of nitrogen assimilation through NR-NiR and GS-GOGAT pathways. This study was associated with toxicological investigation on in vitro and in vivo systems to promote MnNP as nanofertilizer and can be used as an alternative to MS. MnNP did not impart any toxicity to the mice brain mitochondria except in the partial inhibition of complex II-III activity in ETC. Therefore, mitochondrial dysfunction and neurotoxicity, which were noted by excess usage of elemental manganese, were prevented. This is the first attempt to highlight the nitrogen uptake, assimilation, and metabolism in a plant system using a nanoparticle to promote a biosafe nanomicronutrient-based crop management.

  13. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    PubMed Central

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  14. Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland.

    PubMed

    Lü, Xiao-Tao; Kong, De-Liang; Pan, Qing-Min; Simmons, Matthew E; Han, Xing-Guo

    2012-02-01

    The effects of global change factors on the stoichiometric composition of green and senesced plant tissues are critical determinants of ecosystem feedbacks to anthropogenic-driven global change. So far, little is known about species stoichiometric responses to these changes. We conducted a manipulative field experiment with nitrogen (N; 17.5 g m(-2) year(-1)) and water addition (180 mm per growing season) in a temperate steppe of northern China that is potentially highly vulnerable to global change. A unique and important outcome of our study is that water availability modulated plant nutritional and stoichiometric responses to increased N availability. N addition significantly reduced C:N ratios and increased N:P ratios but only under ambient water conditions. Under increased water supply, N addition had no effect on C:N ratios in green and senesced leaves and N:P ratios in senesced leaves, and significantly decreased C:P ratios in both green and senesced leaves and N:P ratios in green leaves. Stoichiometric ratios varied greatly among species. Our results suggest that N and water addition and species identity can affect stoichiometric ratios of both green and senesced tissues through direct and interactive means. Our findings highlight the importance of water availability in modulating stoichiometric responses of plants to potentially increased N availability in semi-arid grasslands.

  15. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  16. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    PubMed

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.

  17. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.

    PubMed

    Yurgel, Svetlana N; Rice, Jennifer; Kahn, Michael L

    2012-03-01

    To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.

  18. Effects of Different Inorganic Nitrogen Sources on Photosynthetic Carbon Metabolism in Primary Leaves of Non-nodulated Phaseolus vulgaris L.

    PubMed

    Marques, I A; Oberholzer, M J; Erismann, K H

    1983-03-01

    Young bean plants (Phaseolus vulgaris L. var Saxa) were fed with three different types of inorganic nitrogen, after being grown on nitrogen-free nutrient solution for 8 days. The pattern of (14)CO(2) fixation was investigated in photosynthesizing primary leaf discs of 11-day-old plants (3 days with nitrogen source) and in a pulse-chase experiment in 13-day-old plants (5 days with nitrogen source).Ammonium caused, in contrast to nitrate nutrition, a higher level of (14)C incorporation into sugar phosphates but a lower incorporation of label into malate, glycolate, glycerate, aspartate, and alanine. The labeling kinetics of glycine and serine were little changed by the nitrogen source. Ammonium feeding also produced an increase in the ratio of extractable activities of ribulose-1,5-bisphosphate carboxylase to phosphoenolpyruvate carboxylase and an increase in dark respiration and the CO(2) compensation concentration. Net photosynthesis was higher in plants assimilating nitrate.The results point to stimulated turnover of the photosynthetic carbon reduction cycle metabolites, reduced phosphoenolpyruvate carboxylation, and altered turnover rates within the photosynthetic carbon oxidation cycle in ammonium-fed plants. Mechanisms of the regulation of primary carbon metabolism are proposed and discussed.

  19. The cockroach Blattella germanica obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont.

    PubMed

    Patiño-Navarrete, Rafael; Piulachs, Maria-Dolors; Belles, Xavier; Moya, Andrés; Latorre, Amparo; Peretó, Juli

    2014-07-01

    Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in Blattabacterium cuenoti, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in addition to the uricolytic pathway to urea, there must be glutamine synthetase assimilating the released ammonia by the urease reaction to enable the stored nitrogen to be metabolically usable. None of the Blattabacterium genomes sequenced to date possess genes encoding for those enzymes. To test the host's contribution to the process, we have sequenced and analysed Blattella germanica transcriptomes from the fat body. We identified transcripts corresponding to all genes necessary for the synthesis of uric acid and its catabolism to urea, as well as for the synthesis of glutamine, asparagine, proline and glycine, i.e. the amino acids required by the endosymbiont. We also explored the changes in gene expression with different dietary protein levels. It appears that the ability to use uric acid as a nitrogen reservoir emerged in cockroaches after its age-old symbiotic association with bacteria.

  20. Down-regulation of nitrogen/carbon metabolism coupled with coordinative hormone modulation contributes to developmental inhibition of the maize ear under nitrogen limitation.

    PubMed

    Yu, Jiaojiao; Han, Jienan; Wang, Ruifeng; Li, Xuexian

    2016-07-01

    Developmental inhibition of the maize ear by nitrogen limitation is due to overall down-regulation of nitrogen/carbon metabolism, coordinative hormonal modulation, and probable early senescence. The kernel number is primarily determined from 2 weeks pre-silking to 3 weeks post-silking, largely depending on dynamic nitrogen (N) and carbohydrate metabolism and accumulation in the maize ear. Underlying physiological and molecular mechanisms of kernel abortion caused by N limitation needs to be further investigated. Using a widely grown maize hybrid ZD958, we found that the N deficient ear was shorter, with less biomass accumulation, lower N concentrations, and overall lower concentrations of N assimilates and soluble sugars at 1- or 2-week after silking. Such negative alterations were probably due to significant decreases in activities of nitrate reductase, glutamine synthetase, sucrose phosphate synthetase, and sucrose synthetase in the N deficient maize ear especially after silking. Compensatory up-regulation of corresponding gene expression, together with co-downregulation of gene expression and enzyme activities in certain circumstances, suggested regulatory complexity and mechanistic differentiation from gene expression to functioning at physiological and molecular levels in quickly developing maize ear in counteracting N deficiency. Importantly, auxin, gibberellin, cytokinin, and abscisic acid may act in a coordinative manner to negatively modulate ear development under N limitation, as indicated by their concentration variations and substantial up-regulation of IAA14, GA2-ox1, and CKX12. Lastly, early senescence may occur in the low-N ear driven by interplay of hormone functioning and senescence-related gene regulation.

  1. Spatial gradient in nitrogen deposition affects plant species frequency in acidic grasslands.

    PubMed

    Pannek, A; Duprè, C; Gowing, D J G; Stevens, C J; Diekmann, M

    2015-01-01

    Anthropogenic eutrophication impacts ecosystems worldwide. Here, we use a vegetation dataset from semi-natural grasslands on acidic soils sampled along a gradient in north-western Europe to examine the response of species frequency to nitrogen (N) deposition, controlling for the effects of other environmental variables. A second dataset of acidic grasslands from Germany and the Netherlands containing plots from different time periods was analysed to examine whether the results of the spatial gradient approach coincided with temporal changes in the abundance of species. Out of 44 studied species, 16 were affected by N deposition, 12 of them negatively. Soil pH and phosphorus (P) influenced 24 and 14 species, respectively, predominantly positively. Fewer species were related to the soil contents of NO3(-) or NH4(+), with no significant differences between the number of positive and negative effects. Whereas the temporal change of species was unrelated to their responses to pH, species responding negatively to N deposition, soil P and NO3(-) showed a significant decline over time in both countries. Species that were negatively affected by high N deposition and/or high soil P also showed a negative temporal trend and could be characterised by short stature and slow growth. The results confirm the negative role of N deposition for many plant species in semi-natural acidic grasslands. The negative temporal trends of species sensitive to high N deposition and soil P values clearly show a need for maintaining low soil nutrient status and for restoring the formerly infertile conditions in nutrient-enriched grasslands.

  2. Precipitation pattern affects nitrogen acquisition by Stipa grandis and microorganisms in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Wen, Shuhai; Tian, Yuqiang

    2017-04-01

    Growing evidence shows that the precipitation have already become more extreme and will be common in future climate regimes. Extreme precipitation pattern has been suggested to be an important factor to affect grassland ecosystems and could intensely influence productivity and species composition. The extreme precipitation may affect the ecosystem by changing N acquisition of plant and microbes. However, it still remains unclear how they respond to such altered extreme precipitation in nitrogen (N) acquisition over chemical and spatial scales. The simulation of extreme precipitation pattern (the same amount of precipitation but with different frequencies) was performed during a growing season (July, August), and a short-term 15N tracer experiment was conducted after precipitation simulation in a temperate steppe in Inner Mongolia to unravel plant-microbial acquisition of N for different N forms over soil depths. Stipa grandis (dominant species in our study land) acquired more N with increasing frequency of extreme precipitation, while the amount of microbial N uptake showed little changes. Soil microbes outcompeted for N than Stipa grandis. The preference for N forms in Stipa grandis and microbes were different in low frequency of extreme precipitation, while they showed similar preference in high frequency of extreme precipitation. It indicates that the chemical niche between plant and microbes was overlapped and could compete intensively for chemical N niche in high frequency of extreme precipitation in the system. These findings help us to understand the changes in N acquisition by plant and microbes, which provides a physical explanation for altered ecosystem function and composition resulted from extreme precipitation in a temperate steppe in Inner Mongolia.

  3. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; He, Yanghui; Shao, Junjiong; Hu, Zhenhong; Liu, Ruiqiang; Zhou, Huimin; Hosseinibai, Shahla

    2017-03-01

    Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta-analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta-analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate-biosphere feedbacks.

  4. Alteration of soil carbon and nitrogen pools and enzyme activities as affected by increased soil coarseness

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhen; Lü, Linyou; Creamer, Courtney A.; Dijkstra, Feike A.; Liu, Heyong; Feng, Xue; Yu, Guoqing; Han, Xingguo; Jiang, Yong

    2017-04-01

    Soil coarseness decreases ecosystem productivity, ecosystem carbon (C) and nitrogen (N) stocks, and soil nutrient contents in sandy grasslands subjected to desertification. To gain insight into changes in soil C and N pools, microbial biomass, and enzyme activities in response to soil coarseness, a field experiment was conducted by mixing native soil with river sand in different mass proportions: 0, 10, 30, 50, and 70 % sand addition. Four years after establishing plots and 2 years after transplanting, soil organic C and total N concentrations decreased with increased soil coarseness down to 32.2 and 53.7 % of concentrations in control plots, respectively. Soil microbial biomass C (MBC) and N (MBN) declined with soil coarseness down to 44.1 and 51.9 %, respectively, while microbial biomass phosphorus (MBP) increased by as much as 73.9 %. Soil coarseness significantly decreased the enzyme activities of β-glucosidase, N-acetyl-glucosaminidase, and acid phosphomonoesterase by 20.2-57.5 %, 24.5-53.0 %, and 22.2-88.7 %, used for C, N and P cycling, respectively. However, observed values of soil organic C, dissolved organic C, total dissolved N, available P, MBC, MBN, and MBP were often significantly higher than would be predicted from dilution effects caused by the sand addition. Soil coarseness enhanced microbial C and N limitation relative to P, as indicated by the ratios of β-glucosidase and N-acetyl-glucosaminidase to acid phosphomonoesterase (and MBC : MBP and MBN : MBP ratios). Enhanced microbial recycling of P might alleviate plant P limitation in nutrient-poor grassland ecosystems that are affected by soil coarseness. Soil coarseness is a critical parameter affecting soil C and N storage and increases in soil coarseness can enhance microbial C and N limitation relative to P, potentially posing a threat to plant productivity in sandy grasslands suffering from desertification.

  5. Effect of nitrogen dioxide, ozone, and peroxyacetyl nitrate on metabolic and pulmonary function

    SciTech Connect

    Drechsler-Parks, D.M. )

    1987-04-01

    The metabolic and pulmonary function responses were investigated in 32 non-smoking men and women (8 men and 8 women 18-26 years of age, and 8 men and 8 women 51-76 years of age) who were exposed for 2 hours to each of 8 conditions: (1) filtered air (FA), (2) 0.13 ppm peroxyacetyl nitrate (PAN), (3) 0.45 ppm ozone (O3), (4) 0.60 ppm nitrogen dioxide (NO2), (5) 0.13 ppm PAN + 0.45 ppm O3 (PAN/O3), (6) 0.13 ppm PAN + 0.60 ppm NO2 (PAN/NO2), (7) 0.60 ppm NO2 + 0.45 ppm O3 (NO2/O3), and (8) 0.13 ppm PAN + 0.60 ppm NO2 + 0.45 ppm O3 (PAN/NO2/O3). The subjects alternated 20-min periods of rest (n = 3) and cycle ergometer exercise (n = 3) at a work load predetermined to elicit a ventilatory minute volume (VE) of approximately 25 L/min (BTPS). Functional residual capacity (FRC) was determined pre- and post-exposure. Forced vital capacity (FVC) was determined before and after exposure, and 5 min after each exercise period. Heart rate was monitored throughout each exposure, and VE was measured during the last 2 min of each exercise period. Exposure to FA, PAN, NO2, and PAN/NO2 had no effect on any measure of pulmonary or metabolic function. Ozone was primarily responsible for the pulmonary function effects observed. There was no significant difference between the responses to O3 exposure and the responses to the three O3 mixtures, indicating no interactions between the pollutants. The results suggest that women may be somewhat more responsive to O3 exposure than men, and that older people (51-76 years of age) may be less responsive to O3 than younger people (18-26 years of age).

  6. Obesity and Metabolic Syndrome Affect the Cholinergic Transmission a nd Cognitive Functions.

    PubMed

    Martinelli, Ilenia; Tomassoni, Daniele; Moruzzi, Michele; Traini, Enea; Amenta, Francesco; Tayebati, Seyed Khosrow

    2017-01-01

    Worldwide, at least 2.8 million people die each year as a result of being overweight or obese. Obesity leads to metabolic syndrome, a pathological condition characterized by adverse metabolic effects on blood pressure, cholesterol, triglycerides and insulin resistance. Population- based investigations have suggested that obesity and metabolic syndrome may be associated with poorer cognitive performance. A structured search of bibliographic source (PubMed) was undertaken. The following terms "inflammation and obesity and brain", "cholinergic system and obesity", "cholinergic system and metabolic syndrome", "Cognitive impairment and obesity" and "metabolic syndrome and brain" were used as search strings. Over 200 papers, mainly published in the past 10 years were analysed. The major results regarded keyword "metabolic syndrome and brain" followed by, "Cognitive impairment and obesity", "inflammation and obesity and brain", "cholinergic system and obesity" and "cholinergic system and metabolic syndrome". Most papers were pre-clinical but, in general, they were inhomogeneous. Therefore, the results were cited according their contribution to clarify the molecular involvement of obesity and/or metabolic syndrome in cholinergic impairment. This review focuses on the correlation between brain cholinergic system alterations and high-fat diet, describing the involvement of cholinergic system in inflammatory processes related to metabolic syndrome and obesity, which may lead to cognitive decline. Metabolic syndrome has been suggested as a risk factor for cerebrovascular diseases and has been associated with cognitive impairment in different functional brain domains. Preclinical and clinical studies have identified the cholinergic system as a specific target of metabolic syndrome and obesity. The modifications of cholinergic neurotransmission and its involvement in neuro-inflammation may be related to cognitive impairment that affects obese patients. Copyright© Bentham

  7. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds.

    PubMed

    Varisi, Vanderlei A; Camargos, Liliane S; Aguiar, Leandro F; Christofoleti, Renata M; Medici, Leonardo O; Azevedo, Ricardo A

    2008-01-01

    Aspartate kinase (AK, EC 2.7.2.4), homoserine dehydrogenase (HSDH, EC 1.1.1.3) and dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) were isolated and partially purified from immature Chenopodium quinoa Willd seeds. Enzyme activities were studied in the presence of the aspartate-derived amino acids lysine, threonine and methionine and also the lysine analogue S-2-aminoethyl-l-cysteine (AEC), at 1 mM and 5 mM. The results confirmed the existence of, at least, two AK isoenzymes, one inhibited by lysine and the other inhibited by threonine, the latter being predominant in quinoa seeds. HSDH activity was also shown to be partially inhibited by threonine, whereas some of the activity was resistant to the inhibitory effect, indicating the presence of two isoenzymes, one resistant and another sensitive to threonine inhibition. Only one DHDPS isoenzyme highly sensitive to lysine inhibition was detected. The results suggest that the high concentration of lysine observed in quinoa seeds is possibly due to a combined effect of increased lysine synthesis and accumulation in the soluble form and/or as protein lysine. Nitrogen assimilation was also investigated and based on nitrate content, nitrate reductase activity, amino acid distribution and ureide content, the leaves were identified as the predominant site of nitrate reduction in this plant species. The amino acid profile analysis in leaves and roots also indicated an important role of soluble glutamine as a nitrogen transporting compound.

  8. Nitrogen fertilization and sex expression affect size variability of fibre hemp (Cannabis sativa L.).

    PubMed

    van der Werf, H M G; van den Berg, W

    1995-09-01

    Mechanical harvesting and industrial processing of fibre hemp (Cannabis sativa L.) require uniformity of stem length and weight. In 1991 and 1992 we carried out field experiments to investigate the effects of soil nitrogen level (80 and 200 kg ha(-1)N) and row width (12.5, 25 and 50 cm) on the variability of weight and height in hemp plants. The crops were sampled 5 times between early June and early September. Row width did not affect size variability. At final harvest coefficients of variation (CV) of both weight and height were about 1.5 times higher at 200 than at 80 kg ha(-1)N. Distributions of dry weight were positively skewed at all sampling dates except the first, with skewness larger at 200 than at 80 kg ha(-1)N. Distributions of height were negatively skewed at all sampling dates except the first at 80 kg ha(-1)N. At 200 kg ha(-1)N they changed from negative skewness during the first part of the growing season to negative kurtosis in the second part of the growing season. More suppressed plants were present at 200 than at 80 kg ha(-1)N. Contrary to most published results, we did not find a reduction of CV of weight nor of CV of height at the onset of self-thinning. Suppressed hemp plants can survive relatively well in the low-light environment under the canopy. Sexual dimorphism contributed to variability of height and weight, but the effects were smaller than those of nitrogen fertilization. The ratio of female to male plants was higher at 200 than at 80 kg ha(-1)N, as a result of a shift in sex-ratio within the population of suppressed plants. As suppressed plants were much more slender than dominating plants, self-thinning eliminated the most slender individuals in a hemp crop. However, the presence of many more heavy individuals of low slenderness at 200 than at 80 kg ha(-1) N was probably the major cause of the difference in slenderness between 200 and 80 kg ha(-1) N.

  9. Nitrogen and Phosphorus Addition Affects Biological N2 Fixation and Sphagnum Moss in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Zivkovic, T.; Ardichvili, A.; Moore, T. R.

    2016-12-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2 fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat. Where atmospheric N deposition is low (< 0.2 g m-2 y-1), ombrotrophic bogs rely on N2 fixation as the primary source of N that sustains primary production. The industrial revolution and anthropogenic impacts in the last 200 years have resulted in larger atmospheric N deposition as ammonium (NH4) and nitrate (NO3). One effect of increased N deposition in Sphagnum is a switch from N to phosphorus (P) limitation suggested by the increase in tissue N:P>16. It is unclear how Sphagnum hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. We investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1 as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1 as KH2PO4) on Sphagnum nutrient status (N, P and N:P), net primary productivity (NPP) and Sphagnum-associated N2 fixation at Mer Bleue, a temperate ombrotrophic bog. Our study shows that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. N2 fixation significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2 fixation was best modeled by the N:P ratio, across all experimental treatments. Although elevated N deposition substantially decreases N2 fixation, the N:P ratio in Sphagnum may be a good predictor, likely

  10. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  11. Effect of a compost and its water-soluble fractions on key enzymes of nitrogen metabolism in maize seedlings.

    PubMed

    Vaccaro, Silvia; Muscolo, Adele; Pizzeghello, Diego; Spaccini, Riccado; Piccolo, Alessandro; Nardi, Serenella

    2009-12-09

    The growing concern on long-term productivity of agroecosystems has emphasized the need to develop management strategies to maintain and protect soil resources, particularly soil organic matter (SOM). Among these, the composting process allows both recycling of the increasing amount of organic waste materials and restoration of the content of organic matter in soil. A sequential chemical fractionation into structurally unbound (SU), weakly bound (WB) and strongly bound (SB) compounds was applied to a bulk compost, and its soluble fractions were extracted in water, either after oxidation of compost suspension with an oxygen flux (TEA), or without oxidation but separated into hydrophilic (HiDOM) and hydrophobic (HoDOM) components. The ratio of hydrophilic over hydrophobic compounds decreased in the order HiDOM > TEA > compost > HoDOM, while TEA and compost showed the largest content of SU and WB components, respectively. Such chemically characterized bulk compost and fractions were tested on maize seedlings grown in sand and in hydroponic conditions, and the effects on plant growth and nitrogen metabolism were measured. The structurally complex bulk compost and the hydrophobic HoDOM fraction negatively affected plant growth, whereas the hydrophilic and less-structured fractions (HiDOM and TEA) showed large positive effects on both growth and enzymatic activities of plants. These results suggest that composted organic matter can become useful to stimulate plant growth if the content of potentially bioavailable hydrophilic and poorly structured components is large. These components may be progressively separated from the compost matrix and contribute to the dynamics of natural organic matter in soil.

  12. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?

    PubMed

    Cantalapiedra-Hijar, G; Fouillet, H; Huneau, J F; Fanchone, A; Doreau, M; Nozière, P; Ortigues-Marty, I

    2016-02-01

    Animal tissues are naturally 15N enriched relative to their diet and the extent of this difference (Δ15Nanimal-diet) has been correlated to the efficiency of N assimilation in different species. The rationale is that transamination and deamination enzymes, involved in amino acid metabolism are likely to preferentially convert amino groups containing 14N over 15N. However, in ruminants the contribution of rumen bacterial metabolism relative to animal tissues metabolism to naturally enrich animal proteins in terms of 15N has been not assessed yet. The objective of this study was to assess the impact of rumen and digestion processes on the relationship between Δ15Nanimal-diet and efficiency of N utilization for milk protein yield (milk N efficiency (MNE); milk N yield/N intake) as well as the relationship between the 15N natural abundance of rumen bacteria and the efficiency of N use at the rumen level. Solid- and liquid-associated rumen bacteria, duodenal digesta, feces and plasma proteins were obtained (n=16) from four lactating Holstein cows fed four different diets formulated at two metabolizable protein supplies (80% v. 110% of protein requirements) crossed by two different dietary energy source (diets rich in starch v. fiber). We measured the isotopic N fractionation between animal and diet (Δ15Nanimal-diet) in these different body pools. The Δ15Nanimal-diet was negatively correlated with MNE when measured in solid-associated rumen bacteria, duodenal digesta, feces and plasma proteins, with the strongest correlation found for the latter. However, our results showed a very weak 15N enrichment of duodenal digesta (Δ15Nduodenal digesta-diet mean value=0.42) compared with that observed in plasma proteins (Δ15Nplasma protein-diet mean value=2.41). These data support the idea that most of the isotopic N fractionation observed in ruminant proteins (Δ15Nplasma protein-diet) has a metabolic origin with very little direct impact of the overall digestion process on

  13. Xylella fastidiosa disturbs nitrogen metabolism and causes a stress response in sweet orange Citrus sinensis cv. Pera.

    PubMed

    Purcino, Rúbia P; Medina, Camilo Lázaro; Martins de Souza, Daniel; Winck, Flávia Vischi; Machado, Eduardo Caruso; Novello, José Camilo; Machado, Marcos Antonio; Mazzafera, Paulo

    2007-01-01

    Xylella fastidiosa (Xf) is a fastidious bacterium that grows exclusively in the xylem of several important crop species, including grape and sweet orange (Citrus sinensis L. Osb.) causing Pierce disease and citrus variegated chlorosis (CVC), respectively. The aim of this work was to study the nitrogen metabolism of a highly susceptible variety of sweet orange cv. 'Pêra' (C. sinensis L. Osbeck) infected with Xf. Plants were artificially infected and maintained in the greenhouse until they have developed clear disease symptoms. The content of nitrogen compounds and enzymes of the nitrogen metabolism and proteases in the xylem sap and leaves of diseased (DP) and uninfected healthy (HP) plants was studied. The activity of nitrate reductase in leaves did not change in DP, however, the activity of glutamine synthetase was significantly higher in these leaves. Although amino acid concentration was slightly higher in the xylem sap of DP, the level dropped drastically in the leaves. The protein contents were lower in the sap and in leaves of DP. DP and HP showed the same amino acid profiles, but different proportions were observed among them, mainly for asparagine, glutamine, and arginine. The polyamine putrescine was found in high concentrations only in DP. Protease activity was higher in leaves of DP while, in the xylem sap, activity was detected only in DP. Bidimensional electrophoresis showed a marked change in the protein pattern in DP. Five differentially expressed proteins were identified (2 from HP and 3 from DP), but none showed similarity with the genomic (translated) and proteomic database of Xf, but do show similarity with the proteins thaumatin, mucin, peroxidase, ABC-transporter, and strictosidine synthase. These results showed that significant changes take place in the nitrogen metabolism of DP, probably as a response to the alterations in the absorption, assimilation and distribution of N in the plant.

  14. Carbon Allocation in Mojave Desert Plant-Soil Systems as Affected by Nitrogen and Water Availability

    NASA Astrophysics Data System (ADS)

    Verburg, P. S.; Kapitzke, S. E.

    2008-12-01

    Changes in atmospheric nitrogen (N) deposition due to increased urbanization and precipitation due to climate change are likely to affect carbon (C) allocation in plants and soils in arid ecosystems in the Southwestern United States where net primary production is often limited by N and water availability. We conducted a greenhouse study to determine the effects of N and water availability on one year old creosote (Larrea tridentata) plants, the dominant shrub in the Mojave Desert. In our greenhouse study we employed two N levels (0 and 40 kg ha-1) and two soil moisture levels (7% and 15%). We grew creosote seedlings in PVC columns filled with topsoil from the Mojave Global Change Facility at the Nevada Test Site. The columns were covered and sealed at the base of the plant to separate the above- from belowground plant compartment. Plants were distributed over two growth chambers receiving ambient light while day/night temperatures were set at 25° C/15° C. In one chamber plants were labeled once a week with 13C-enriched CO2 while a second chamber acted as an unlabeled control. Throughout the six month study we measured soil CO2 concentrations, respired CO2 as well as their isotopic signatures. At the end of the study plants were harvested and we measured plant above- and belowground biomass and isotopic composition of the vegetation. In addition, we measured isotopic composition of soil organic and inorganic C. Increased N availability stimulated stem weight and decreased total C losses through soil respiration. Other plant and soil parameters including isotopic composition were not affected by changes in N availability. Increased soil moisture stimulated plant biomass mainly due to an increase in leaf weight while root biomass tended to decrease. Soil CO2 concentrations increased with increasing water availability despite a reduction in root biomass. The isotopic data showed that net new C uptake increased mostly in leaves, soil organic matter and soil

  15. Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing

    NASA Astrophysics Data System (ADS)

    Kim, Jang K.; Kraemer, George P.; Yarish, Charles

    2012-12-01

    The physical stresses associated with emersion have long been considered major factors determining the vertical zonation of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kützing thalli from the vertical extremes in elevation of an intertidal population ( i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results suggested that intra-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution of P. umbilicalis. The high GS activity during periodic emersion stress may be a protective mechanism enabling P. umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence of photorespiration during emersion.

  16. Metabolic syndrome - the consequence of lifelong treatment of bipolar affective disorder.

    PubMed

    Dadić-Hero, Elizabeta; Ruzić, Klementina; Grahovac, Tanja; Petranović, Duska; Graovac, Mirjana; Palijan, Tija Zarković

    2010-06-01

    Mood disturbances are characteristic and dominant feature of Mood disorders. Bipolar Affective Disorder (BAD) is a mood disorder which occurs equally in both sexes. BAD may occur in co morbidity with other mental diseases and disorders such as: Anorexia Nervosa, Bulimia Nervosa, Attention Deficit, Panic Disorder and Social Phobia. However, medical disorders (one or more) can also coexist with BAD. Metabolic syndrome is a combination of metabolic disorders that increase the risk of developing cardiovascular disease. A 61-year old female patient has been receiving continuous and systematic psychiatric treatment for Bipolar Affective Disorder for the last 39 years. The first episode was a depressive one and it occurred after a child delivery. Seventeen years ago the patient developed diabetes (diabetes type II), and twelve years ago arterial hypertension was diagnosed. High cholesterol and triglyceride levels as well as weight gain were objective findings. During the last nine years she has been treated for lower leg ulcer. Since metabolic syndrome includes abdominal obesity, hypertension, diabetes mellitus, increased cholesterol and serum triglyceride levels, the aforesaid patient can be diagnosed with Metabolic Syndrome. When treating Bipolar Affective Disorder, the antipsychotic drug choice should be careful and aware of its side-effects in order to avoid the development or aggravation of metabolic syndrome.

  17. Effects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta

    PubMed

    Walsh; Milligan

    1995-01-01

    In order to elucidate further the cues for, and the biochemical mechanisms of, the transition to ureogenesis in the gulf toadfish Opsanus beta, experiments on the effects of feeding (i.e. nitrogen loading) were carried out. Baseline nitrogen excretion rates were first measured on solitary toadfish in large water volumes (i.e. unconfined conditions). These nitrogen excretion rates were higher, and had a higher proportion as ammonia (61 %), than previously published 'control' measurements. Feeding of unconfined toadfish elevated total nitrogen excretion approximately threefold, with little change in the proportion of urea versus ammonia. During the first 24 h of confinement of unfed toadfish, absolute levels of urea excretion remained constant while ammonia excretion rates fell to near zero, so that toadfish became 90 % ureotelic. When fed prior to confinement, urea excretion rates remained constant for the first 24 h, and the bulk of the nitrogen was excreted as ammonia (80 %); excretion of the excess dietary nitrogen took up to 48 h to complete. If pre-adapted to confinement and then fed, toadfish excreted only about 55 % of their nitrogenous waste as ammonia, and excretion of excess dietary nitrogen was completed by 24 h. Elevations of hepatic glutamine synthetase (GNS) activities accompanied confinement and were shown to be almost exclusively in the cytosolic compartment and to be correlated with a decrease in the ratio of hepatic levels of glutamate:glutamine. These GNS activity increases also appear to account in part for the decrease in the percentage of ammoniotely in toadfish under conditions of nitrogen loading after confinement. However, additional means of regulating total nitrogen excretion (e.g. changes in protein turnover rates) and the degree of ureogenesis versus ammoniogenesis (e.g. N-acetylglutamate stimulation of carbamoylphosphate synthetase) must be postulated to account fully for changes in nitrogen excretion rates and activation of ureogenesis

  18. Effect of sertraline on regional metabolic rate in patients with affective disorder.

    PubMed

    Buchsbaum, M S; Wu, J; Siegel, B V; Hackett, E; Trenary, M; Abel, L; Reynolds, C

    1997-01-01

    Seventeen patients with major affective disorder completed a 10-week, placebo-controlled, randomized trial of the serotonin reuptake inhibitor sertraline. Patients underwent positron emission tomography with 18F-deoxyglucose and were assessed with the Hamilton Depression Rating Scale at baseline and 10 weeks after treatment with sertraline or placebo. The middle frontal gyrus, an area previously characterized by decreased metabolic activity in depressive patients, showed relatively increased activity on both sides after sertraline when contrasted with temporal and some occipital areas. Sertraline was associated with a significantly increased relative metabolic rate in right parietal lobe and in left occipital area 19, and a decreased metabolic rate in right occipital area 18. Other areas that differed between controls and a larger cohort of 39 depressive patients--including medial frontal lobe, cingulate gyrus, and thalamus--also showed a normalization of metabolic rate after sertraline.

  19. Nitrogen fertilization and plant growth promoting rhizobacteria treatments affected amino acid content of cabbage

    NASA Astrophysics Data System (ADS)

    Dursun, Atilla; Yildirim, Ertan; Ekinci, Melek; Turan, Metin; Kul, Raziye; Karagöz, Fazilet P.

    2017-04-01

    This study was designed to determine the influence of a nitrogen fixing plant growth promoting rhizobacteria (PGPR) inoculation (seed coating and seedling dipping) and 6 doses of nitrogen (0, 40, 80, 120, 160, 200 kg ha-1) application on amino acid contents of cabbage. Coating and seedling dipping applications caused a significant increase in values histidine, glycine, thionin, arginine and alanine of cabbage. Highest glutamate, serine, asparagines and glutamine contents were obtained from 160-200 kg ha-1 nitrogen dose applied plants. As a result, the use of bacteria treatments provides means of improving amino acid contents in cabbage.

  20. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs.

    PubMed

    Ma, T; Tu, Y; Zhang, N F; Deng, K D; Diao, Q Y

    2015-10-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using (15)N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs.

  1. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs

    PubMed Central

    Ma, T.; Tu, Y.; Zhang, N. F.; Deng, K. D.; Diao, Q. Y.

    2015-01-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using 15N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs. PMID:26323398

  2. [Factors affecting formation of THMs during dissolved organic nitrogen acetamide chlorination in drinking water].

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Zhao, Shi-Jia; Li, Qing-Song

    2009-05-15

    Chlorination disinfection greatly reduced bacteria and virus in drinking water. However, there is an unintended consequence of disinfection, the generation of chemical disinfection by-products (DBPs). Dissolved organic nitrogen (DON) as the important precursor of DBPs is of current concern. As acetamide (AcAm) occur in important bimolecular, we studied formation pathways for THMs during chlorination of model AcAm. The experiments are designed by Plackett-Burman and Box-Behnken methods. Factors affecting formation of THMs such as AcAm initial concentration, chlorine dosage, pH, temperature, Br(-) concentration and contact time were investigated. The results indicate that AcAm initial concentration, pH and temperature have little effects on formation of THMs. On the contrary, three other factors have important effects on formation of THMs, especially Br(-) concentration. The capacity of THMs generation varies very little when Br(-) has a constant concentration. Generation amount of THMs attach maximum under the condition that dosage of active chlorine, Br(-) concentration and contact time is 8.77 mg/L, 0.77 mg/L and 6.20 h respectively. Bromine ion plays a catalysis role on THMs formation. Controlling the concentration of bromine ion can reduce total generation amount of THMs via AcAm. Bromine partition coefficient tends to increasing along with contact time lapse. Controlling chlorination reaction time can lower the cancer risk. At last, the pathway is proposed for THMs formation via AcAm, and the catalysis mechanism of Br(-) was addressed.

  3. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Wu, Binbin; Zhang, Lei; Jiang, Hong; Xu, Zongxue

    2014-06-01

    The loss of available nutrients and the effects of soil erodibility on available nutrients losses were rarely researched. Here, laboratory simulation experiments were conducted to determine the soil erodibility effects on the available nitrogen (AN) and phosphorus (AP) losses. The impacts of rainfall intensity and slope on AN and AP losses were also studied. Two contrasting agricultural soils (Burozems and Cinnamon) that occur throughout the northern erosion region of China were selected. Two rainfall intensities (60 and 120 mm h-1) and two slopes (10% and 20%) were studied. Overall, greater runoff, sediment and available nutrient losses occurred from the Cinnamon soil due to its greater soil erodibility, which was approximately 2.8 times greater than that of the Burozems soil. The influence of runoff on sediment was positively linear. The absolute slope of the regression line between runoff rate and sediment yield rate was suitable as a soil erodibility indicator. Runoff-associated AN and AP losses were mainly controlled by runoff rate, and were weakly affected by soil erodibility (p > 0.05). However, soil erodibility significantly influenced the sediment-associated AN and AP losses (p < 0.01), and a positive logarithmic correlation best described their relationships. Since the runoff-associated AN and AP losses dominated the total AN and AP losses for both soils, soil erodibility also exhibited negligible influence on the total AN and AP losses (p > 0.05). Increasing rainfall intensity and slope generally increased the runoff, sediment, and available nutrient losses for both soils, but had no significant influences on their relationships. Our results provide a better understanding of soil and nutrient loss mechanisms.

  5. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium.

    PubMed

    He, Yuejun; Cornelissen, J Hans C; Zhong, Zhangcheng; Dong, Ming; Jiang, Changhong

    2017-04-01

    In the karst landscape, widespread in the world including southern China, soil nutrient supply is strongly constrained. In such environments, arbuscular mycorrhizal (AM) fungi may facilitate plant nutrient uptake. However, the possible role of different AM fungal species, and their interactions, especially in transferring nitrogen (N) from litter to plant, is poorly understood. We conducted two microcosm experiments to investigate the role that two karst soil AM fungi, Glomus etunicatum and Glomus mosseae, play in the transfer of N from decomposing litter to the host plant and to determine how N availability influences these processes. In experiment 1, Cinnamomum camphora tree seedlings were grown in compartments inoculated with G. etunicatum. Lolium perenne leaf litter labeled with δ(15)N was added to the soil in unplanted compartments. Compartments containing the δ(15)N labeled litter were either accessible to hyphae but not to seedling roots or were not accessible to hyphae or roots. The addition of mineral N to one of the host compartments at the start of the experiment significantly increased the biomass of the C. camphora seedlings, N content and N:P ratio, AM mycelium length, and soil microbial biomass carbon and N. However, significantly, more δ(15)N was acquired, from the leaf litter by the AM hyphae and transferred to the host when mineral N was not added to the soil. In experiment 2, in which C. camphora seedlings were inoculated with both G. etunicatum and G. mosseae rather than with G. mosseae alone, there was a significant increase in mycelial growth (50.21%), in soil microbial biomass carbon (417.73%) in the rhizosphere, and in the amount of δ(15)N that was transferred to the host. These findings suggest that maintaining AM fungal diversity in karst soils could be important for mediating N transfer from organic material to host plants in N-poor soils.

  6. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos

    USDA-ARS?s Scientific Manuscript database

    Soybeans store approximately 40% of their biomass in the form of protein. Protein concentrations reflect the carbon and nitrogen levels received by the developing embryo. The relationship between carbon and nitrogen supply and seed composition during filling was examined through a series of embryo c...

  7. Nitrogen Fertilizer Dependency and Its Contradictions: A Theoretical Exploration of Social-Ecological Metabolism

    ERIC Educational Resources Information Center

    Mancus, Philip

    2007-01-01

    The global agro-food system relies heavily on inorganic nitrogenous fertilizers. In addition to consuming enormous amounts of energy, this manufactured input contributes to the accumulation of reactive nitrogen in the biosphere and undermines the biological basis of agricultural production itself. While technological inefficiency and population…

  8. Nitrogen Fertilizer Dependency and Its Contradictions: A Theoretical Exploration of Social-Ecological Metabolism

    ERIC Educational Resources Information Center

    Mancus, Philip

    2007-01-01

    The global agro-food system relies heavily on inorganic nitrogenous fertilizers. In addition to consuming enormous amounts of energy, this manufactured input contributes to the accumulation of reactive nitrogen in the biosphere and undermines the biological basis of agricultural production itself. While technological inefficiency and population…

  9. Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Xu, Xianju; Liang, Jinfeng; Chi, Bo; Xu, Hong

    2014-07-01

    Plant growth can reportedly be promoted by poly(γ-glutamic acid) (γ-PGA). However, the underlying mechanism is unknown. To reveal the mechanism of γ-PGA, we designed an experiment that investigated the effect of γ-PGA on the nitrogen metabolism of Chinese cabbage hydroponic cultured at different calcium (Ca) levels and varied exogenous Ca(2+) inhibitors. The results showed that nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase, and glutamate dehydrogenase activities in leaves and roots were obviously enhanced by γ-PGA at the normal Ca(2+) level (4.0 mM). Meanwhile, γ-PGA increased the content of total nitrogen, soluble protein, and soluble amino acids in leaves. However, the promotional effect of γ-PGA on fresh weight weakened when Ca(2+) was inadequate. Moreover, γ-PGA not only induced the influx of extracellular Ca(2+) and Ca(2+) in organelles into cytoplasm, but also increased the Ca(2+)-ATPase level to modify Ca(2+) homeostasis in plant cells. In addition, exogenous Ca(2+) inhibitors significantly suppressed the γ-PGA-mediated promotion of cytoplasmic free Ca(2+) level, calmodulin (CaM) content, GS and glutamate dehydrogenase activities. In summary, γ-PGA accelerated the nitrogen metabolism of plants through the Ca(2+)/CaM signaling pathway, thereby improving the growth of the plant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green Algae Haematococcus pluvialis*

    PubMed Central

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-01-01

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments. PMID:25183014

  11. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis.

    PubMed

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-10-31

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments.

  12. Relative hypocortisolism is associated with obesity and the metabolic syndrome in recurrent affective disorders.

    PubMed

    Maripuu, Martin; Wikgren, Mikael; Karling, Pontus; Adolfsson, Rolf; Norrback, Karl-Fredrik

    2016-11-01

    Cardiovascular disease (CVD) is one of the main causes of excess deaths in affective disorders. Affective disorders are associated with increased frequencies of CVD risk-factors such as obesity, dyslipidemia, and metabolic syndrome. Stress-induced chronic cortisol excess has been suggested to promote obesity and metabolic syndrome. Chronic stress with frequent or persisting hypothalamic-pituitary-adrenal-axis (HPA-axis) hyperactivity may, over time, lead to a state of low HPA-axis activity, also denoted hypocortisolism. A low-dose weight-adjusted dexamethasone-suppression-test (DST) is considered to be a sensitive measure of hypocortisolism. 245 patients with recurrent depression or bipolar disorder and 258 controls participated in a low-dose DST and were also examined with regard to metabolic status. Patients with hypocortisolism (low post-DST cortisol) compared with patients without hypocortisolism (normal or high post-DST cortisol) exhibited increased odds ratios (OR) for obesity (OR=4.0), overweight (OR=4.0), large waist (OR=2.7), high LDL (OR=4.2), low HDL (OR=2.4), high LDL/HDL ratio (OR=3.3), high TC/HDL ratio (OR=3.4) and metabolic syndrome (OR=2.0). A similar pattern but less pronounced was also found in the control sample. The cross sectional study design and absence of analyses addressing lifestyle factors. Our findings suggest that a substantial portion of the metabolic disorders and cardiovascular risk factors seen in recurrent affective disorders are found among individuals exhibiting hypocortisolism. This might indicate that long-term stress is a central contributor to metabolic abnormalities and CVD mortality in recurrent affective disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of lipid-coated lysine on digestion and nitrogen metabolism by wethers.

    PubMed

    Glenn, B P; Ely, D G

    1984-01-01

    Four mature wethers (70 kg) fitted with permanent abomasal cannulas were assigned to a 4 X 4 Latin square design to study the effect of coating supplemental lysine with coconut oil on nutrient digestion, nitrogen retention and recovery of amino acids in the abomasum and plasma. Dietary treatments were: Control (C) = basal diet; Lysine (LYS) = Control + 1% supplemental lysine; Coconut oil-coated lysine (CN-LYS) = Control + 1% supplemental lysine coated with coconut oil; and Coconut oil + diet (CN-DIET) = Control + 1% supplemental lysine + an equal amount of coconut oil added to the entire diet. Lysine supplementation significantly increased total apparent dry matter, ether extract and energy digestibilities. Total nitrogen and protein nitrogen flows to the abomasum were decreased (p less than .1) in lambs consuming CN-LYS and CN-DIET compared with LYS. Urinary nitrogen excretion (p less than .05), ruminal ammonia nitrogen and plasma urea nitrogen (p less than .05) concentrations were higher for LYS, CN-LYS and CN-DIET compared with C and highest for CN-LYS. There were no differences in nitrogen retention among treatments. Recovery of lysine in the diets after coating (CN-LYS) or lipid addition (CN-DIET) was reduced indicating degradation of supplemental lysine to other nitrogenous compounds during the coating process or storage since total dietary nitrogen content was equivalent to LYS. Flow of abomasal lysine (% of lysine intake) was higher (p = .15) for CN-LYS and CN-DIET than LYS. Flow of total essential amino acids (% of total amino acid flow) was greater (p less than .02) when lysine was added to diets. Essential amino with LYS. Plasma amino acid concentrations did not differ among treatments. Coating lysine with coconut oil did not protect the amino acid from ruminal degradation and was ineffective in improving total nitrogen status of mature wethers.

  14. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    PubMed

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging.

  15. Metagenomic insight of nitrogen metabolism in a tannery wastewater treatment plant bioaugmented with the microbial consortium BM-S-1.

    PubMed

    Sul, Woo-Jun; Kim, In-Soo; Ekpeghere, Kalu I; Song, Bongkeun; Kim, Bong-Soo; Kim, Hong-Gi; Kim, Jong-Tae; Koh, Sung-Cheol

    2016-11-09

    Nitrogen (N) removal in a tannery wastewater treatment plant was significantly enhanced by the bioaugmentation of the novel consortium BM-S-1. In order to identify dominant taxa responsible for N metabolisms in the different stages of the treatment process, Illumina MiSeq Sequencer was used to conduct metagenome sequencing of the microbial communities in the different stages of treatment system, including influent (I), buffering (B), primary aeration (PA), secondary aeration (SA) and sludge digestion (SD). Based on MG-RAST analysis, the dominant phyla were Proteobacteria, Bacteroidetes and Firmicutes in B, PA, SA and SD, whereas Firmicutes was the most dominant in I before augmentation. The augmentation increased the abundance of the denitrification genes found in the genera such as Ralstonia (nirS, norB and nosZ), Pseudomonas (narG, nirS and norB) and Escherichia (narG) in B and PA. In addition, Bacteroides, Geobacter, Porphyromonasand Wolinella carrying nrfA gene encoding dissimilatory nitrate reduction to ammonium were abundantly present in B and PA. This was corroborated with the higher total N removal in these two stages. Thus, metagenomic analysis was able to identify the dominant taxa responsible for dissimilatory N metabolisms in the tannery wastewater treatment system undergoing bioaugmentation. This metagenomic insight into the nitrogen metabolism will contribute to a successful monitoring and operation of the eco-friendly tannery wastewater treatment system.

  16. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    Filamentous nitrogen fixing (diazotrophic) cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. These bacteria are faced with the challenge of isolating regions of N-fixation (O2 inhibited) and photosynthetic (O2 producing) activity. We used isotope labeling in conjunction with a high-resolution isotope and elemental mapping technique (NanoSIMS) to quantitatively describe 13C and 15N uptake and transport in two aquatic cyanobacteria grown on NaH13CO3 and 15N2. The technical challenges of tracing isotopes within individual bacteria can be overcome with high resolution Secondary Ion Mass Spectrometry (NanoSIMS). In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio 'map' can then be generated for the analyzed area. Using sequentially harvested cyanobacteria in conjunction with enriched H13CO3 and 15N2 incubations, we measured temporal enrichment patterns that evolve over the course of a day's growth and suggest tightly regulated changes in fixation kinetics. With a combination of TEM, SEM and NanoSIMS analyses, we also mapped the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. Our results suggest that NanoSIMS mapping of metal enzyme co-factors may be a powerful method of identifying physiological and morphological characteristics within individual bacterial cells, and could be used to provide a 3-dimensional context for more traditional analyses such as immunogold labeling. Finally, we resolved patterns of isotope enrichment at multiple spatial scales: sub-cellular variation, cell-cell differences along filaments

  17. ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses.

    PubMed

    Weigelt, Kathleen; Küster, Helge; Rutten, Twan; Fait, Aaron; Fernie, Alisdair R; Miersch, Otto; Wasternack, Claus; Emery, R J Neil; Desel, Christine; Hosein, Felicia; Müller, Martin; Saalbach, Isolde; Weber, Hans

    2009-01-01

    We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrate oxidation via glycolysis, tricarboxylic acid cycle, and mitochondrial respiration. Enhanced provision of precursors such as acetyl-coenzyme A and organic acids apparently support other pathways and activate amino acid and storage protein biosynthesis as well as pathways fed by cytosolic acetyl-coenzyme A, such as cysteine biosynthesis and fatty acid elongation/metabolism. As a consequence, the resulting higher nitrogen (N) demand depletes transient N storage pools, specifically asparagine and arginine, and leads to N limitation. Moreover, increased sugar accumulation appears to stimulate cytokinin-mediated cell proliferation pathways. In addition, the deregulation of starch biosynthesis resulted in indirect changes, such as increased mitochondrial metabolism and osmotic stress. The combined effect of these changes is an enhanced generation of reactive oxygen species coupled with an up-regulation of energy-dissipating, reactive oxygen species protection, and defense genes. Transcriptional activation of mitogen-activated protein kinase pathways and oxylipin synthesis indicates an additional activation of stress signaling pathways. AGP-repressed embryos contain higher levels of jasmonate derivatives; however, this increase is preferentially in nonactive forms. The results suggest that, although metabolic/osmotic alterations in iAGP pea seeds result in multiple stress responses, pea seeds have effective mechanisms to circumvent stress signaling under conditions in which excessive stress responses and/or cellular damage could prematurely initiate senescence or apoptosis.

  18. How Subduction Settings can Affect Planetary Nitrogen Cycle: An Experimental Insight

    NASA Astrophysics Data System (ADS)

    Cedeno, D. G.; Conceicao, R. V.; Wilbert de Souza, M. R.; Carniel, L. C.; Schmitz Quinteiro, R. V.

    2015-12-01

    Nitrogen is one of the main building blocks of life on Earth and its elemental cycle is deeply connected with organic matter and the biological system. It is known that nitrogen can be stored in mantellic phases (such as clinopyroxenes) or in metallic alloys under high pressures, meaning that Earth's mantle, and even the core, could be efficient nitrogen reservoirs. Probably, nitrogen is present in these deep Earth systems since the formation of our planet. Nevertheless, it is possible that superficial nitrogen can be reintroduced in the mantle through tectonic processes along Earth history. This is reinforced by d15N values in inclusions in diamonds and other deep mantle phases. We believe that subduction zones are efficient enough to transport nitrogen from surface to mantle. Clay minerals with high charge exchange capacity (CEC) are good candidates to convey nitrogen in subduction zones, especially when we take into account the similarities between K+ and NH4+. To simulate the high-pressure high-temperature conditions found in subduction zones, we performed a series of experiments with montmorillonite clay mineral undergone to high pressure and high temperature produced by a hydraulic press coupled with toroidal chambers, in pressures ranging from 2.5 to 7.7 GPa and temperatures up to 700oC. We used ex situ XRD analysis to accompany the main montmorillonite structural changes and FTIR analysis to determine quantitatively the presence of nitrogen. So far, our results show that the main structural transition in montmorillonite happens at ~350oC at room pressure and ~450oC at 2.5 and 4.0 GPa and consists in the transformation of an open clay structure to a closed mica structure (tobelite). FTIR data show the presence of nitrogen in all the analysed experiments. With the data obtained, we can presume that clay minerals carried in subduction zones can successfully transport nitrogen and other volatiles to the mantle. However, only cold subduction systems have the

  19. The Nitrogen Moieties of Dietary Nonessential Amino Acids Are Distinctively Metabolized in the Gut and Distributed to the Circulation in Rats.

    PubMed

    Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei

    2017-08-01

    Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their (15)N isotopologues.Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either (15)N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their (15)N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively.Results: The intestinal (15)N distribution and portal-arterial balance of (15)N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of (15)N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial (15)N enrichment for each amino acid. The steady-state (15)N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are

  20. Respiratory nitrogen metabolism and nitrosative stress defence in ϵ-proteobacteria: the role of NssR-type transcription regulators.

    PubMed

    Kern, Melanie; Winkler, Christine; Simon, Jörg

    2011-01-01

    ϵ-Proteobacteria form a globally ubiquitous group of ecologically significant organisms and comprise a diverse range of host-associated and free-living species. To grow by anaerobic respiration, many ϵ-proteobacteria reduce nitrate to nitrite followed by either nitrite ammonification or denitrification. Using the ammonifying model organisms Wolinella succinogenes and Campylobacter jejuni, the electron transport chains of nitrate respiration, respiratory nitrite ammonification and even N2O (nitrous oxide) respiration have been characterized in recent years, but knowledge on nitrosative stress defence, nitrogen compound-sensing and corresponding signal transduction pathways is limited. The potentially dominant role of NssR (nitrosative stress-sensing regulator)-type transcription regulators in ϵ-proteobacterial nitrogen metabolism is discussed.

  1. A comparison of nitrogen utilization and urea metabolism between Tibetan and fine-wool sheep.

    PubMed

    Zhou, J W; Mi, J D; Titgemeyer, E C; Guo, X S; Ding, L M; Wang, H C; Qiu, Q; Li, Z P; Long, R J

    2015-06-01

    To study metabolic adaptation to harsh foraging conditions, an experiment was conducted to characterize and quantify N utilization efficiency and urea metabolism in Tibetan and fine-wool sheep fed 4 levels of dietary N (11.0, 16.7, 23.1, and 29.2 g N/kg DM) in 2 concurrent 4 × 4 Latin square designs. Urea kinetics were determined using continuous intrajugular infusions of 15N15N-urea. Urinary excretions of total N and urea N increased linearly (P < 0.001) with dietary N and were not different between breeds (P ≥ 0.37). Fecal N excretion increased with dietary N for Tibetan sheep but not for fine-wool sheep (linear dietary N × breed; P < 0.05). Nitrogen retention (both amount per day and percentage of N intake) increased with increasing dietary N concentration (P < 0.001), and the rates of increase were greater in fine-wool than in Tibetan sheep (linear dietary N × breed and cubic dietary N × breed; P < 0.05). In Tibetan sheep, N retention as a percentage of intake was greatest for diets containing 16.7 g N/kg DM, whereas it was maximal for fine-wool sheep when the diet contained 23.1 g N/kg DM. Urea N entry rate, urea N recycled to the gastrointestinal tract (GIT), and urea N returned to the ornithine cycle all increased with dietary N (P < 0.05), and all were greater in Tibetan than fine-wool sheep for the 11.0 g N/kg DM diet but were greater in fine-wool than Tibetan sheep for the diet with 29.2 g N/kg DM (linear dietary N × breed; P < 0.05). Urea N excreted in feces, both amount and fraction of GIT entry rate, was less in Tibetan than fine-wool sheep for the 11.0 and 16.7 g N/kg DM diets but similar for diets with 23.1 or 29.2 g N/kg DM (linear dietary N × breed; P < 0.01). For the lowest-protein diet, the fraction of urea N production recycled to the GIT was greater in the Tibetan than fine-wool sheep (88% vs. 82%), but for the diet with 29.2 g N/kg DM it was greater for fine-wool than Tibetan sheep (46% vs. 39%; linear dietary N × breed; P < 0

  2. PRIMARY CARBON AND NITROGEN METABOLIC GENE EXPRESSION IN THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE): DIEL PERIODICITY AND EFFECTS OF INORGANIC CARBON AND NITROGEN(1).

    PubMed

    Granum, Espen; Roberts, Karen; Raven, John A; Leegood, Richard C

    2009-10-01

    Diel periodicity and effects of inorganic carbon (Ci ) and NO3 (-) on the expression of 11 key genes for primary carbon and nitrogen metabolism, including potential C4 photosynthesis, in the marine diatom Thalassiosira pseudonana Hasle et Heimdal were investigated. Target gene transcripts were measured by quantitative reverse transcriptase-PCR, and some of the gene-encoded proteins were analyzed by Western blotting. The diatom was grown with a 12 h photoperiod at two different Ci concentrations maintained by air-equilibration with either 380 μL · L(-1) (near-ambient) or 100 μL · L(-1) (low) CO2 . Transcripts of the principal Ci and NO3 (-) assimilatory genes RUBISCO LSU (rbcL) and nitrate reductase displayed very strong diel oscillations with peaks at the end of the scotophase. Considerable diel periodicities were also exhibited by the β-carboxylase genes phosphoenolpyruvate carboxylase (PEPC1 and PEPC2) and phosphoenolpyruvate carboxykinase (PEPCK), and the Benson-Calvin cycle gene sedoheptulose-bisphosphatase (SBPase), with peaks during mid- to late scotophase. In accordance with the transcripts, there were substantial diel periodicities in PEPC1, PEPC2, PEPCK, and especially rbcL proteins, although they peaked during early to mid-photophase. Inorganic carbon had some transient effects on the β-carboxylase transcripts, and glycine decarboxylase P subunit was highly up-regulated by low Ci concentration, indicating increased capacity for photorespiration. Nitrogen-starved cells had reduced amounts of carbon metabolic gene transcripts, but the PEPC1, PEPC2, PEPCK, and rbcL transcripts increased rapidly when NO3 (-) was replenished. The results suggest that the β-carboxylases in T. pseudonana play key anaplerotic roles but show no clear support for C4 photosynthesis. © 2009 Phycological Society of America.

  3. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.

    PubMed

    Auclair, Sylvain; Uzbekov, Rustem; Elis, Sébastien; Sanchez, Laura; Kireev, Igor; Lardic, Lionel; Dalbies-Tran, Rozenn; Uzbekova, Svetlana

    2013-03-15

    Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser⁵⁶³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation.

  4. A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae.

    PubMed

    Bender, Robert A

    2010-10-01

    The nitrogen assimilation control protein (NAC) is a LysR-type transcriptional regulator (LTTR) that is made under conditions of nitrogen-limited growth. NAC's synthesis is entirely dependent on phosphorylated NtrC from the two-component Ntr system and requires the unusual sigma factor σ54 for transcription of the nac gene. NAC activates the transcription of σ70-dependent genes whose products provide the cell with ammonia or glutamate. NAC represses genes whose products use ammonia and also represses its own transcription. In addition, NAC also subtly adjusts other cellular functions to keep pace with the supply of biosynthetically available nitrogen.

  5. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    NASA Astrophysics Data System (ADS)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations

  6. Concentrations in human fluids: 101 drugs affecting the digestive system and metabolism.

    PubMed

    Repetto, M R; Repetto, M

    1999-01-01

    The toxicological interpretation of blood and urine concentrations of drugs affecting the digestive system and metabolism, as with other groups of pharmaceutical specialties, is complicated. As a continuation of our published studies on the concentrations of drugs of abuse, drugs affecting cardiovascular and hematopoietic systems, and respiratory system, we have reviewed the published data relating to the concentrations of drugs affecting the digestive system and metabolism in clinical and forensic cases. We have selected them on the basis of conservative criteria and our own experience. A table with concentrations of 101 drugs in whole blood, serum/plasma, and urine, corresponding to therapeutic, toxic, or lethal concentrations, is presented. The data can help interpret analytical results of patient or postmortem samples when there is a suspicion of poisoning with this group of drugs.

  7. Visible injury and nitrogen metabolism of rice leaves under ozone stress, and effect on sugar and protein contents in grain

    NASA Astrophysics Data System (ADS)

    Huang, Y. Z.; Sui, L. H.; Wang, W.; Geng, C. M.; Yin, B. H.

    2012-12-01

    Effect of ozone on the visible injury, nitrogen metabolism of rice leaves, and sugar and protein contents in rice grain was carried out by the open-top chamber. The results indicated that ozone stress caused obvious injury in rice leaves. The increase in ozone concentration had significant influence on the nitrate reductase activity in rice leaves. At the ozone concentration of 40, 80 and 120 nL L-1, the nitrate reductase activities in rice leaves in the tillering stage, the jointing stage, the heading stage and milk stage were separately reduced by 25.3-86.3%, 57.4-97.8%, 91.0-99.3% and 89.5-96.7% compared with those in the control treatment. As ozone concentration increased, the contents of ammonium nitrogen and nitrate nitrogen in rice leaves were obviously reduced. Ozone stress also had an influence on the contents of sugar and protein in rice grain. The stress of high ozone concentration (120 nL L-1) caused the starch content in grain to reduce by 15.8% than that in the control treatment, but total soluble sugars in grain was actually enhanced by 47.5% compared to that in the control treatment. The contents of albumin and glutenin in rice grain increased with increasing the ozone concentration, and prolamin and crude protein contents in rice grain increased only at the higher ozone concentration. Under ozone concentration of 120 nL L-1, the contents of albumin, glutenin and crude protein in rice grain were increased respectively by 23.1%, 21.0% and 21.1% compared with those in the control treatment. The result suggested that ozone tress has an influence on nitrogen metabolism of rice leaves and grain quality.

  8. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  9. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running.

    PubMed

    Uchida, Thomas K; Hicks, Jennifer L; Dembia, Christopher L; Delp, Scott L

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2-5 m/s with tendon force-strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2-3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail.

  10. Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.).

    PubMed

    Mihaljević, Snježana; Radić, Sandra; Bauer, Nataša; Garić, Rade; Mihaljević, Branka; Horvat, Gordana; Leljak-Levanić, Dunja; Jelaska, Sibila

    2011-11-01

    Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1mM ammonium (NH(4)(+)) as the sole source of nitrogen. Growth of NH(4)(+)-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH(4)(+) medium with 25mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH(4)(+) induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH(4)(+) as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20mM) or Gln (10mM) in combination with NH(4)(+) (1mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  12. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    PubMed Central

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs. PMID:24830827

  13. Climate change affects key nitrogen-fixing bacterial populations on coral reefs.

    PubMed

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-11-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.

  14. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    NASA Astrophysics Data System (ADS)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  15. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  16. Transcription Interference and ORF Nature Strongly Affect Promoter Strength in a Reconstituted Metabolic Pathway

    PubMed Central

    Carquet, Marie; Pompon, Denis; Truan, Gilles

    2015-01-01

    Fine tuning of individual enzyme expression level is necessary to alleviate metabolic imbalances in synthetic heterologous pathways. A known approach consists of choosing a suitable combination of promoters, based on their characterized strengths in model conditions. We questioned whether each step of a multiple-gene synthetic pathway could be independently tunable at the transcription level. Three open reading frames, coding for enzymes involved in a synthetic pathway, were combinatorially associated to different promoters on an episomal plasmid in Saccharomyces cerevisiae. We quantified the mRNA levels of the three genes in each strain of our generated combinatorial metabolic library. Our results evidenced that the ORF nature, position, and orientation induce strong discrepancies between the previously reported promoters’ strengths and the observed ones. We conclude that, in the context of metabolic reconstruction, the strength of usual promoters can be dramatically affected by many factors. Among them, transcriptional interference and ORF nature seem to be predominant. PMID:25767795

  17. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg(-1) soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg(-1) soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients.

  19. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis.

    PubMed

    Martín, Juan F; Rodríguez-García, Antonio; Liras, Paloma

    2017-03-15

    Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component s