Science.gov

Sample records for affects protein function

  1. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  2. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.

    PubMed

    Tajnik, Mojca; Rogalska, Malgorzata Ewa; Bussani, Erica; Barbon, Elena; Balestra, Dario; Pinotti, Mirko; Pagani, Franco

    2016-05-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  3. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function

    PubMed Central

    Bussani, Erica; Barbon, Elena; Pinotti, Mirko; Pagani, Franco

    2016-01-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  4. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  5. Artefacts and biases affecting the evaluation of scoring functions on decoy sets for protein structure prediction

    PubMed Central

    Handl, Julia; Knowles, Joshua; Lovell, Simon C.

    2009-01-01

    Motivation: Decoy datasets, consisting of a solved protein structure and numerous alternative native-like structures, are in common use for the evaluation of scoring functions in protein structure prediction. Several pitfalls with the use of these datasets have been identified in the literature, as well as useful guidelines for generating more effective decoy datasets. We contribute to this ongoing discussion an empirical assessment of several decoy datasets commonly used in experimental studies. Results: We find that artefacts and sampling issues in the large majority of these data make it trivial to discriminate the native structure. This underlines that evaluation based on the rank/z-score of the native is a weak test of scoring function performance. Moreover, sampling biases present in the way decoy sets are generated or used can strongly affect other types of evaluation measures such as the correlation between score and root mean squared deviation (RMSD) to the native. We demonstrate how, depending on type of bias and evaluation context, sampling biases may lead to both over- or under-estimation of the quality of scoring terms, functions or methods. Availability: Links to the software and data used in this study are available at http://dbkgroup.org/handl/decoy_sets. Contact: simon.lovell@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19297350

  6. Reduction of Cellular Expression Levels Is a Common Feature of Functionally Affected Pendrin (SLC26A4) Protein Variants

    PubMed Central

    de Moraes, Vanessa C S; Bernardinelli, Emanuele; Zocal, Nathalia; Fernandez, Jhonathan A; Nofziger, Charity; Castilho, Arthur M; Sartorato, Edi L; Paulmichl, Markus; Dossena, Silvia

    2016-01-01

    Sequence alterations in the pendrin gene (SLC26A4) leading to functionally affected protein variants are frequently involved in the pathogenesis of syndromic and nonsyndromic deafness. Considering the high number of SLC26A4 sequence alterations reported to date, discriminating between functionally affected and unaffected pendrin protein variants is essential in contributing to determine the genetic cause of deafness in a given patient. In addition, identifying molecular features common to the functionally affected protein variants can be extremely useful to design future molecule-directed therapeutic approaches. Here we show the functional and molecular characterization of six previously uncharacterized pendrin protein variants found in a cohort of 58 Brazilian deaf patients. Two variants (p.T193I and p.L445W) were undetectable in the plasma membrane, completely retained in the endoplasmic reticulum and showed no transport function; four (p.P142L, p.G149R, p.C282Y and p.Q413R) showed reduced function and significant, although heterogeneous, expression levels in the plasma membrane. Importantly, total expression levels of all of the functionally affected protein variants were significantly reduced with respect to the wild-type and a fully functional variant (p.R776C), regardless of their subcellular localization. Interestingly, reduction of expression may also reduce the transport activity of variants with an intrinsic gain of function (p.Q413R). As reduction of overall cellular abundance was identified as a common molecular feature of pendrin variants with affected function, the identification of strategies to prevent reduction in expression levels may represent a crucial step of potential future therapeutic interventions aimed at restoring the transport activity of dysfunctional pendrin variants. PMID:26752218

  7. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. PMID:27542830

  8. Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells

    SciTech Connect

    Xiao, Nannan; Chen, Siqi; Ma, Yan; Qiu, Jun; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The protein POT1 plays an important role in telomere protection. Black-Right-Pointing-Pointer Functional POT1 was overexpressed in Escherichia coli for the first time, and purified. Black-Right-Pointing-Pointer Compound Sysu-00692 was found to be the first POT1-binding ligand. Black-Right-Pointing-Pointer Sysu-00692 could interfere with the binding activity of POT1 in vivo. Black-Right-Pointing-Pointer Sysu-00692 had inhibition on telomerase and cell proliferation. -- Abstract: The protein POT1 plays an important role in telomere protection, which is related with telomere elongation and cell immortality. The protein has been recognized as a promising drug target for cancer treatment. In the present study, we cloned, overexpressed in Escherichia coli for the first time, and purified recombinant human POT1. The protein was proved to be active through filter binding assay, FRET and CD experiments. In the initial screening for protein binding ligands using SPR, compound Sysu-00692 was found to bind well with the POT1, which was confirmed with EMSA. Its in vivo activity study showed that compound Sysu-00692 could interfere with the binding between human POT1 and the telomeric DNA through chromatin immunoprecipitation. Besides, the compound showed mild inhibition on telomerase and cell proliferation. As we know, compound Sysu-00692 is the first reported POT1-binding ligand, which could serve as a lead compound for further improvement. This work offered a potentially new approach for drug design for the treatment of cancers.

  9. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  10. Single Amino Acid Polymorphisms of Pertussis Toxin Subunit S2 (PtxB) Affect Protein Function

    PubMed Central

    Millen, Scott H.; Watanabe, Mineo; Komatsu, Eiji; Yamaguchi, Fuminori; Nagasawa, Yuki; Suzuki, Eri; Monaco, Haleigh; Weiss, Alison A.

    2015-01-01

    Whooping cough due to Bordetella pertussis is increasing in incidence, in part due to accumulation of mutations which increase bacterial fitness in highly vaccinated populations. Polymorphisms in the pertussis toxin, ptxA and ptxB genes, and the pertactin, prn genes of clinical isolates of Bordetella pertussis collected in Cincinnati from 1989 through 2005 were examined. While the ptxA and prn genotypes were variable, all 48 strains had the ptxB2 genotype; ptxB1 encodes glycine at amino acid 18 of the S2 subunit of pertussis toxin, while ptxB2 encodes serine. We investigated antigenic and functional differences of PtxB1 and PtxB2. The S2 protein was not very immunogenic. Only a few vaccinated or individuals infected with B. pertussis developed antibody responses to the S2 subunit, and these sera recognized both polymorphic forms equally well. Amino acid 18 of S2 is in a glycan binding domain, and the PtxB forms displayed differences in receptor recognition and toxicity. PtxB1 bound better to the glycoprotein, fetuin, and Jurkat T cells in vitro, but the two forms were equally effective at promoting CHO cell clustering. To investigate in vivo activity of Ptx, one μg of Ptx was administered to DDY mice and blood was collected on 4 days after injection. PtxB2 was more effective at promoting lymphocytosis in mice. PMID:26375454

  11. CREBBP re-arrangements affect protein function and lead to aberrant neuronal differentiation.

    PubMed

    Sharma, Neeti; Jadhav, Shweta P; Bapat, Sharmila A

    2010-01-01

    Biallelic inactivation of the CREB-binding protein (CREBBP) a transcriptional co-activator produces an embryonic lethal phenotype in mice. In humans, re-arrangements in CREBBP are associated with the Rubinstein-Taybi Syndrome (RSTS) that is characterised by craniofacial, skeletal and neuronal symptoms. Neuronal defects in RSTS can be attributed to genetic re-arrangements in CREBBP, which has been implicated in synaptic plasticity and long-term memory. The present study was designed to investigate the role of CREBBP re-arrangements during neuronal differentiation. Towards this, deletion constructs of pCREBBP, viz. pDeltaCB-HAT and pDeltaHAT-CT were generated and transfected into NT2 cells. Expression profiling of the components of Notch, Wnt, SHH and Retinoid signaling along with screening of the neuronal markers was carried out in the NT2 cells and their mutant derivatives. ChIP-PCRs along with co-immunoprecipitations were also performed in these cells to investigate defects due to inappropriate interaction of mutated CREEBP with the corresponding transcription factor and other transcription regulatory proteins both at steady state as well as during differentiation. Mutant NT2 cells lacking the CREB, BROMO and HAT domains (CB-HAT) were highly proliferative and showed limited differentiation; while mutant NT2 cells expressing CREBBP lacking the HAT and CTAD domains (HAT-CT) are proliferation deficient and differentiate rapidly albeit generating an insufficient number of neurons. Altered CREBBP structure resulted in changes in HAT activity, cell cycle profiles and expression of basal levels of components of Notch, SHH, Wnt and retinoid pathways known to be critical in the proliferation and differentiation of neuronal progenitors. At the chromatin level, aberrant signaling correlated with altered binding affinities of the (CREBBP-transcription factor) complexes to promoter regions of components of these pathways. Thus, differentiation defects are manifested early at

  12. Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP.

    PubMed

    Koppers-Lalic, Danijela; Verweij, Marieke C; Lipińska, Andrea D; Wang, Ying; Quinten, Edwin; Reits, Eric A; Koch, Joachim; Loch, Sandra; Marcondes Rezende, Marisa; Daus, Franz; Bieńkowska-Szewczyk, Krystyna; Osterrieder, Nikolaus; Mettenleiter, Thomas C; Heemskerk, Mirjam H M; Tampé, Robert; Neefjes, Jacques J; Chowdhury, Shafiqul I; Ressing, Maaike E; Rijsewijk, Frans A M; Wiertz, Emmanuel J H J

    2008-05-01

    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms. PMID:18516302

  13. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin

    SciTech Connect

    Mogi, T.; Marti, T.; Khorana, H.G. )

    1989-08-25

    Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. (1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. (2) As also reported previously, substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. (3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.

  14. Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values

    PubMed Central

    2015-01-01

    This study was investigated to determine the effect of microbial transglutaminase (MTG) with or without red bean protein isolate (RBPI) on the porcine myofibrillar protein (MP) gel functionality at different pH values (pH 5.75-6.5). Cooking yield (CY, %), gel strength (GS, gf), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were determined to measure gel characteristics. Since no differences were observed the interaction between 1% RBPI and pH, data were pooled. CY increased with the addition of 1% RBPI, while it was not affected by pH values. GS increased with increased pH and increased when 1% RBPI was added, regardless of pH. There were distinctive endothermic protein peaks, at 56.55 and 75.02℃ at pH 5.75, and 56.47 and 72.43℃ at pH 6.5 in DSC results, which revealed decreased temperature of the first peak with the addition of 1% RBPI and increased pH. In SEM, a more compact structure with fewer voids was shown with the addition of 1% RBPI and increased pH from 5.75 to 6.5. In addition, the three-dimensional structure was highly dense and hard at pH 6.5 when RBPI was added. These results indicated that the addition of 1% RBPI at pH 6.5 in MTG-mediated MP represent the optimum condition to attain maximum gel-formation and protein gel functionality. PMID:26877645

  15. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span.

    PubMed

    Wang, Ji-Wu; Brent, Jonathan R; Tomlinson, Andrew; Shneider, Neil A; McCabe, Brian D

    2011-10-01

    The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD. PMID:21881207

  16. Rigidifying Acyl Carrier Protein Domain in Iterative Type I PKS CalE8 Does Not Affect Its Function

    PubMed Central

    Lim, Jackwee; Sun, Huihua; Fan, Jing-Song; Hameed, Iman Fahim; Lescar, Julien; Liang, Zhao-Xun; Yang, Daiwen

    2012-01-01

    Acyl carrier protein (ACP) domains shuttle acyl intermediates among the catalytic domains of multidomain type I fatty acid synthase and polyketide synthase (PKS) systems. It is believed that the unique function of ACPs is associated with their dynamic property, but it remains to be fully elucidated what type of protein dynamics is critical for the shuttling domain. Using NMR techniques, we found that the ACP domain of iterative type I PKS CalE8 from Micromonospora echinospora is highly dynamic on the millisecond-second timescale. Introduction of an interhelical disulfide linkage in the ACP domain suppresses the dynamics on the millisecond-second timescale and reduces the mobility on the picosecond-nanosecond timescale. We demonstrate that the full-length PKS is fully functional upon rigidification of the ACP domain, suggesting that although the flexibility of the disordered terminal linkers may be important for the function of the ACP domain, the internal dynamics of the helical regions is not critical for that function. PMID:23009853

  17. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function.

    PubMed Central

    Hulkko, S M; Wakui, H; Zilliacus, J

    2000-01-01

    The yeast two-hybrid system was used to isolate cDNAs encoding proteins that interact with the glucocorticoid receptor (GR) ligand-binding domain in a ligand-dependent manner. One isolated cDNA encoded a fragment of death-associated protein 3 (DAP3), which has been implicated as a positive mediator of apoptosis. In vitro experiments showed that the full-length DAP3 also interacted with GR. The main interaction domain was mapped to the N-terminal region of DAP3 that had previously been shown to function in a dominant-negative fashion, protecting cells from apoptosis. Co-transfection experiments in COS-7 cells showed that DAP3 had a stimulatory effect on the ligand-induced transcriptional activation by GR and also increased the steroid-sensitivity. Furthermore, DAP3 formed a complex with several other nuclear receptors and some basic helix-loop-helix/Per-Arnt-Sim proteins, as well as with heat-shock protein 90 (hsp90) (Arnt is the aryl-hydrocarbon-receptor nuclear translocator, and Per and Sim are the Drosophila proteins Period and Single-minded). The results suggest that DAP3 could have an important role in GR action, possibly by modulating the cytoplasmic GR-hsp90 complex. Since glucocorticoids can induce apoptosis, the pro-apoptotic DAP3 protein may be involved in this function of GR. PMID:10903152

  18. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function.

    PubMed

    Hulkko, S M; Wakui, H; Zilliacus, J

    2000-08-01

    The yeast two-hybrid system was used to isolate cDNAs encoding proteins that interact with the glucocorticoid receptor (GR) ligand-binding domain in a ligand-dependent manner. One isolated cDNA encoded a fragment of death-associated protein 3 (DAP3), which has been implicated as a positive mediator of apoptosis. In vitro experiments showed that the full-length DAP3 also interacted with GR. The main interaction domain was mapped to the N-terminal region of DAP3 that had previously been shown to function in a dominant-negative fashion, protecting cells from apoptosis. Co-transfection experiments in COS-7 cells showed that DAP3 had a stimulatory effect on the ligand-induced transcriptional activation by GR and also increased the steroid-sensitivity. Furthermore, DAP3 formed a complex with several other nuclear receptors and some basic helix-loop-helix/Per-Arnt-Sim proteins, as well as with heat-shock protein 90 (hsp90) (Arnt is the aryl-hydrocarbon-receptor nuclear translocator, and Per and Sim are the Drosophila proteins Period and Single-minded). The results suggest that DAP3 could have an important role in GR action, possibly by modulating the cytoplasmic GR-hsp90 complex. Since glucocorticoids can induce apoptosis, the pro-apoptotic DAP3 protein may be involved in this function of GR. PMID:10903152

  19. Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function.

    PubMed

    Wang, Yan; Lyu, Wenhui; Berkowitz, Oliver; Radomiljac, Jordan D; Law, Simon R; Murcha, Monika W; Carrie, Chris; Teixeira, Pedro F; Kmiec, Beata; Duncan, Owen; Van Aken, Olivier; Narsai, Reena; Glaser, Elzbieta; Huang, Shaobai; Roessner, Ute; Millar, A Harvey; Whelan, James

    2016-05-01

    At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) are two closely related isogenes that encode small, twin cysteine proteins, typically located in mitochondria. At12Cys-2 transcript is induced in a variety of mutants with disrupted mitochondrial proteins, but an increase in At12Cys protein is only detected in mutants with reduced mitochondrial complex I abundance. Induction of At12Cys protein in mutants that lack mitochondrial complex I is accompanied by At12Cys protein located in mitochondria, chloroplasts, and the cytosol. Biochemical analyses revealed that even single gene deletions, i.e., At12cys-1 or At12cys-2, have an effect on mitochondrial and chloroplast functions. However, only double mutants, i.e., At12cys-1:At12cys-2, affect the abundance of protein and mRNA transcripts encoding translation elongation factors as well as rRNA abundance. Blue native PAGE showed that At12Cys co-migrated with mitochondrial supercomplex I + III. Likewise, deletion of both At12cys-1 and At12cys-2 genes, but not single gene deletions, results in enhanced tolerance to drought and light stress and increased anti-oxidant capacity. The induction and multiple localization of At12Cys upon a reduction in complex I abundance provides a mechanism to specifically signal mitochondrial dysfunction to the cytosol and then beyond to other organelles in the cell. PMID:26829715

  20. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  1. Threonine Affects Intestinal Function, Protein Synthesis and Gene Expression of TOR in Jian Carp (Cyprinus carpio var. Jian)

    PubMed Central

    Feng, Lin; Peng, Yan; Wu, Pei; Hu, Kai; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Li, Shu-Hong; Zhou, Xiao-Qiu

    2013-01-01

    This study aimed to investigate the effects of threonine (Thr) on the digestive and absorptive ability, proliferation and differentiation of enterocytes, and gene expression of juvenile Jian carp (Cyprinus carpio var. Jian). First, seven isonitrogenous diets containing graded levels of Thr (7.4–25.2 g/kg diet) were fed to the fishes for 60 days. Second, enterocyte proliferation and differentiation were assayed by culturing enterocytes with graded levels of Thr (0–275 mg/l) in vitro. Finally, enterocytes were cultured with 0 and 205 mg/l Thr to determine protein synthesis. The percent weight gain (PWG), specific growth rate, feed intake, feed efficiency, protein retention value, activities of trypsin, lipase and amylase, weights and protein contents of hepatopancreas and intestine, folds heights, activities of alkaline phosphatase (AKP), γ- glutamyl transpeptidase and Na+/K+-ATPase in all intestinal segments, glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) activities in hepatopancreas, and 4E-BP2 gene expression in muscle, hepatopancreas and intestinal segments were significantly enhanced by Thr (p<0.05). However, the plasma ammonia concentration and TOR gene expression decreased (p<0.05). In vitro, Thr supplement significantly increased cell numbers, protein content, the activities of GOT, GPT, AKP and Na+/K+-ATPase, and protein synthesis rate of enterocytes, and decreased LDH activity and ammonia content in cell medium (p<0.05). In conclusion, Thr improved growth, digestive and absorptive capacity, enterocyte proliferation and differentiation, and protein synthesis and regulated TOR and 4E-BP2 gene expression in juvenile Jian carp. The dietary Thr requirement of juvenile Jian carp was 16.25 g/kg diet (51.3 g/kg protein) based on quadratic regression analysis of PWG. PMID:23922879

  2. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression

    PubMed Central

    de Bruin, Ruben G.; van der Veer, Eric P.; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J. C.; Zhang, Huayu; Roeten, Marko K.; Bijkerk, Roel; de Boer, Hetty C.; Rabelink, Ton J.; van Zonneveld, Anton Jan; van Gils, Janine M.

    2016-01-01

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3′UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity. PMID:26905650

  3. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression.

    PubMed

    de Bruin, Ruben G; van der Veer, Eric P; Prins, Jurriën; Lee, Dae Hyun; Dane, Martijn J C; Zhang, Huayu; Roeten, Marko K; Bijkerk, Roel; de Boer, Hetty C; Rabelink, Ton J; van Zonneveld, Anton Jan; van Gils, Janine M

    2016-01-01

    Proper regulation of endothelial cell-cell contacts is essential for physiological functioning of the endothelium. Interendothelial junctions are actively involved in the control of vascular leakage, leukocyte diapedesis, and the initiation and progression of angiogenesis. We found that the RNA-binding protein quaking is highly expressed by endothelial cells, and that its expression was augmented by prolonged culture under laminar flow and the transcription factor KLF2 binding to the promoter. Moreover, we demonstrated that quaking directly binds to the mRNA of VE-cadherin and β-catenin and can induce mRNA translation mediated by the 3'UTR of these genes. Reduced quaking levels attenuated VE-cadherin and β-catenin expression and endothelial barrier function in vitro and resulted in increased bradykinin-induced vascular leakage in vivo. Taken together, we report that quaking is essential in maintaining endothelial barrier function. Our results provide novel insight into the importance of post-transcriptional regulation in controlling vascular integrity. PMID:26905650

  4. Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation.

    PubMed

    Chen, Hongyan; Yuan, Yi; Zhang, Chunpeng; Luo, Aiping; Ding, Fang; Ma, Jianlin; Yang, Shouhui; Tian, Yanyan; Tong, Tong; Zhan, Qimin; Liu, Zhihua

    2012-05-18

    S100 proteins have been implicated in tumorigenesis and metastasis. As a member of S100 proteins, the role of S100A14 in carcinogenesis has not been fully understood. Here, we showed that ectopic overexpression of S100A14 promotes motility and invasiveness of esophageal squamous cell carcinoma cells. We investigated the underlying mechanisms and found that the expression of matrix metalloproteinase (MMP)-2 is obviously increased after S100A14 gene overexpression. Inhibition of MMP2 by a specific MMP2 inhibitor at least partly reversed the invasive phenotype of cells overexpressing S100A14. By serendipity, we found that S100A14 could affect p53 transactivity and stability. Thus, we further investigated whether the effect of MMP2 by S100A14 is dependent on p53. A series of biochemical assays showed that S100A14 requires functional p53 to affect MMP2 transcription, and p53 potently transrepresses the expression of MMP2. Finally, RT-quantitative PCR analysis of human breast cancer specimens showed a significant correlation between S100A14 mRNA expression and MMP2 mRNA expression in cases with wild-type p53 but not in cases with mutant p53. Collectively, our data strongly suggest that S100A14 promotes cell motility and invasiveness by regulating the expression and function of MMP2 in a p53-dependent manner. PMID:22451655

  5. Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing.

    PubMed

    Nidhina, N; Muthukumar, S P

    2015-04-15

    Proximate composition analysis and antinutritional factor composition of different fractions of industrial guar meal: raw churi (IRC), heated churi (IHC), final churi (IFC) and guar korma (IGK) were studied and compared. Protein content was found to be very high in IGK (52.7%) when compared to the churi fractions (32-33%) and the trypsin inhibitor activities were found to be negligible in all the fractions (0.58-1.8 mg/g). Single fraction (IGK) was selected for further studies, based on the protein content. The antinutritional factors of selected fractions were significantly reduced by different heat treatments. Heat treatments significantly increased the water absorbing capacity of IGK, but reduced the nitrogen solubility, emulsifying and foaming capacity. Highest L(∗) value was observed for boiled IGK, highest a(∗) and b(∗) values for roasted IGK, during colour measurement. FTIR spectral analysis revealed the presence several aromatic groups in IGK and slight modifications in the molecular structure during heat treatments. PMID:25466107

  6. Loss of Anticodon Wobble Uridine Modifications Affects tRNALys Function and Protein Levels in Saccharomyces cerevisiae

    PubMed Central

    Klassen, Roland; Grunewald, Pia; Thüring, Kathrin L.; Eichler, Christian; Helm, Mark; Schaffrath, Raffael

    2015-01-01

    In eukaryotes, wobble uridines in the anticodons of tRNALysUUU, tRNAGluUUC and tRNAGlnUUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNALysUUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNALysUUU hypomodification and malfunction. PMID:25747122

  7. Mutations in the araC regulatory gene of Escherichia coli B/r that affect repressor and activator functions of AraC protein.

    PubMed Central

    Cass, L G; Wilcox, G

    1986-01-01

    Mutations in the araC gene of Escherichia coli B/r were isolated which alter both activation of the araBAD operon expression and autoregulation. The mutations were isolated on an araC-containing plasmid by hydroxylamine mutagenesis of plasmid DNA. The mutant phenotype selected was the inability to autoregulate. The DNA sequence of 16 mutants was determined and found to consist of seven different missense mutations located within the distal third of the araC gene. Enzyme activities revealed that each araC mutation had altered both autoregulatory and activator functions of AraC protein. The mutational analysis presented in this paper suggests that both autoregulatory and activator functions are localized to the same determinants of the AraC protein and that the amino acid sequence within the carboxy-terminal region of AraC protein is important for site-specific DNA binding. Images PMID:3011750

  8. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  9. Homocysteine thiolactone affects protein ubiquitination in yeast.

    PubMed

    Bretes, Ewa; Zimny, Jarosław

    2013-01-01

    The formation of homocysteine thiolactone (HcyTl) from homocysteine occurs in all examined so far organisms including bacteria, yeast, and humans. Protein N-homocysteinylation at the ε-amino group of lysine is an adverse result of HcyTl accumulation. Since tagging of proteins by ubiquitination before their proteasomal degradation takes place at the same residue, we wondered how N-homocysteinylation may affect the ubiquitination of proteins. We used different yeast strains carrying mutations in genes involved in the homocysteine metabolism. We found positive correlation between the concentration of endogenous HcyTl and the concentration of ubiquitinated proteins. This suggests that N-homocysteinylation of proteins apparently does not preclude but rather promotes their decomposition. PMID:24051443

  10. Placebo Sleep Affects Cognitive Functioning

    ERIC Educational Resources Information Center

    Draganich, Christina; Erdal, Kristi

    2014-01-01

    The placebo effect is any outcome that is not attributed to a specific treatment but rather to an individual's mindset (Benson & Friedman, 1996). This phenomenon can extend beyond its typical use in pharmaceutical drugs to involve aspects of everyday life, such as the effect of sleep on cognitive functioning. In 2 studies examining whether…

  11. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  12. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence. PMID:23913861

  13. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  14. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

    NASA Astrophysics Data System (ADS)

    Tenzer, Stefan; Docter, Dominic; Kuharev, Jörg; Musyanovych, Anna; Fetz, Verena; Hecht, Rouven; Schlenk, Florian; Fischer, Dagmar; Kiouptsi, Klytaimnistra; Reinhardt, Christoph; Landfester, Katharina; Schild, Hansjörg; Maskos, Michael; Knauer, Shirley K.; Stauber, Roland H.

    2013-10-01

    In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

  15. Protein crowding affects hydration structure and dynamics

    PubMed Central

    Harada, Ryuhei; Sugita, Yuji; Feig, Michael

    2012-01-01

    The effect of protein crowding on the structure and dynamics of water was examined from explicit solvent molecular dynamics simulations of a series of protein G and protein G/villin systems at different protein concentrations. Hydration structure was analyzed in terms of radial distribution functions, three-dimensional hydration sites, and preservation of tetrahedral coordination. Analysis of hydration dynamics focused on self-diffusion rates and dielectric constants as a function of crowding. The results show significant changes in both structure and dynamics of water under highly crowded conditions. The structure of water is altered mostly beyond the first solvation shell. Diffusion rates and dielectric constants are significantly reduced following linear trends as a function of crowding reflecting highly constrained water in crowded environments. The reduced dynamics of diffusion is expected to be strongly related to hydrodynamic properties of crowded cellular environments while the reduced dielectric constant under crowded conditions has implications for the stability of biomolecules in crowded environments. The results from this study suggest a prescription for modeling solvation in simulations of cellular environments. PMID:22352398

  16. Calreticulin: one protein, one gene, many functions.

    PubMed Central

    Michalak, M; Corbett, E F; Mesaeli, N; Nakamura, K; Opas, M

    1999-01-01

    The endoplasmic reticulum (ER) plays a critical role in the synthesis and chaperoning of membrane-associated and secreted proteins. The membrane is also an important site of Ca(2+) storage and release. Calreticulin is a unique ER luminal resident protein. The protein affects many cellular functions, both in the ER lumen and outside of the ER environment. In the ER lumen, calreticulin performs two major functions: chaperoning and regulation of Ca(2+) homoeostasis. Calreticulin is a highly versatile lectin-like chaperone, and it participates during the synthesis of a variety of molecules, including ion channels, surface receptors, integrins and transporters. The protein also affects intracellular Ca(2+) homoeostasis by modulation of ER Ca(2+) storage and transport. Studies on the cell biology of calreticulin revealed that the ER membrane is a very dynamic intracellular compartment affecting many aspects of cell physiology. PMID:10567207

  17. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.

    PubMed

    Ohmae, Eiji; Miyashita, Yurina; Tate, Shin-Ichi; Gekko, Kunihiko; Kitazawa, Soichiro; Kitahara, Ryo; Kuwajima, Kunihiro

    2013-12-01

    To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the (1)H-(15)N HSQC spectra of the wild-type DHFR-folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250MPa together with negative activation volumes of -4.0 or -4.8mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme. PMID:24140567

  18. Site-directed mutagenesis of amino acid residues of D1 protein interacting with phosphatidylglycerol affects the function of plastoquinone QB in photosystem II.

    PubMed

    Endo, Kaichiro; Mizusawa, Naoki; Shen, Jian-Ren; Yamada, Masato; Tomo, Tatsuya; Komatsu, Hirohisa; Kobayashi, Masami; Kobayashi, Koichi; Wada, Hajime

    2015-12-01

    Recent X-ray crystallographic analysis of photosystem (PS) II at 1.9-Å resolution identified 20 lipid molecules in the complex, five of which are phosphatidylglycerol (PG). In this study, we mutagenized amino acid residues S232 and N234 of D1, which interact with two of the PG molecules (PG664 and PG694), by site-directed mutagenesis in Synechocystis sp. PCC 6803 to investigate the role of the interaction in PSII. The serine and asparagine residues at positions 232 and 234 from the N-terminus were mutagenized to alanine and aspartic acid, respectively, and a mutant carrying both amino acid substitutions was also produced. Although the obtained mutants, S232A, N234D, and S232AN234D, exhibited normal growth, they showed decreased photosynthetic activities and slower electron transport from QA to QB than the control strain. Thermoluminescence analysis suggested that this slower electron transfer in the mutants was caused by more negative redox potential of QB, but not in those of QA and S2. In addition, the levels of extrinsic proteins, PsbV and PsbU, were decreased in PSII monomer purified from the S232AN234D mutant, while that of Psb28 was increased. In the S232AN234D mutant, the content of PG in PSII was slightly decreased, whereas that of monogalactosyldiacylglycerol was increased compared with the control strain. These results suggest that the interactions of S232 and N234 with PG664 and PG694 are important to maintain the function of QB and to stabilize the binding of extrinsic proteins to PSII. PMID:25921208

  19. IL36RN Mutations Affect Protein Expression and Function: A Basis for Genotype-Phenotype Correlation in Pustular Diseases.

    PubMed

    Tauber, Marie; Bal, Elodie; Pei, Xue-Yuan; Madrange, Marine; Khelil, Amel; Sahel, Houria; Zenati, Akila; Makrelouf, Mohamed; Boubridaa, Khaled; Chiali, Amel; Smahi, Naima; Otsmane, Farida; Bouajar, Bakar; Marrakchi, Slaheddine; Turki, Hamida; Bourrat, Emmanuelle; Viguier, Manuelle; Hamel, Yamina; Bachelez, Hervé; Smahi, Asma

    2016-09-01

    Homozygous or compound heterozygous IL36RN gene mutations underlie the pathogenesis of psoriasis-related pustular eruptions including generalized pustular psoriasis, palmoplantar pustular psoriasis, acrodermatitis continua of Hallopeau, and acute generalized exanthematous pustular eruption. We identified two unreported IL36RN homozygous mutations (c.41C>A/p.Ser14X and c.420_426del/p.Gly141MetfsX29) in patients with familial generalized pustular psoriasis. We analyzed the impact of a spectrum of IL36RN mutations on IL-36 receptor antagonist protein by using site-directed mutagenesis and expression in HEK293T cells. This enabled us to differentiate null mutations with complete absence of IL-36 receptor antagonist (the two previously unreported mutations, c.80T>C/p.Leu27Pro, c.28C>T/p.Arg10X, c.280G>T/p.Glu94X, c.368C>G/p.Thr123Arg, c.368C>T/p.Thr123Met, and c.227C>T/p.Pro76Leu) from mutations with decreased (c.95A>G/p.His32Arg, c.142C>T/p.Arg48Trp, and c.308C>T/p.Ser113Leu) or unchanged (c.304C>T/p.Arg102Trp and c.104A>G/p.Lys35Arg) protein expression. Functional assays measuring the impact of mutations on the capacity to repress IL-36-dependent activation of the NF-κB pathway showed complete functional impairment for null mutations, whereas partial or no impairment was observed for other mutations considered as hypomorphic. Finally, null mutations were associated with severe clinical phenotypes (generalized pustular psoriasis, acute generalized exanthematous pustular eruption), whereas hypomorphic mutations were identified in both localized (palmoplantar pustular psoriasis, acrodermatitis continua of Hallopeau) and generalized variants. These results provide a preliminary basis for genotype-phenotype correlation in patients with deficiency of the IL-36Ra (DITRA), and suggest the involvement of other factors in the modulation of clinical expression. PMID:27220475

  20. A functional variant that affects exon-skipping and protein expression of SP140 as genetic mechanism predisposing to multiple sclerosis.

    PubMed

    Matesanz, Fuencisla; Potenciano, Victor; Fedetz, Maria; Ramos-Mozo, Priscila; Abad-Grau, María del Mar; Karaky, Mohamad; Barrionuevo, Cristina; Izquierdo, Guillermo; Ruiz-Peña, Juan Luis; García-Sánchez, María Isabel; Lucas, Miguel; Fernández, Óscar; Leyva, Laura; Otaegui, David; Muñoz-Culla, Maider; Olascoaga, Javier; Vandenbroeck, Koen; Alloza, Iraide; Astobiza, Ianire; Antigüedad, Alfredo; Villar, Luisa María; Álvarez-Cermeño, José Carlos; Malhotra, Sunny; Comabella, Manuel; Montalban, Xavier; Saiz, Albert; Blanco, Yolanda; Arroyo, Rafael; Varadé, Jezabel; Urcelay, Elena; Alcina, Antonio

    2015-10-01

    Several variants in strong linkage disequilibrium (LD) at the SP140 locus have been associated with multiple sclerosis (MS), Crohn's disease (CD) and chronic lymphocytic leukemia (CLL). To determine the causal polymorphism, we have integrated high-density data sets of expression quantitative trait loci (eQTL), using GEUVADIS RNA sequences and 1000 Genomes genotypes, with MS-risk variants of the high-density Immunochip array performed by the International Multiple Sclerosis Genetic Consortium (IMSGC). The variants most associated with MS were also correlated with a decreased expression of the full-length RNA isoform of SP140 and an increase of an isoform lacking exon 7. By exon splicing assay, we have demonstrated that the rs28445040 variant was the causal factor for skipping of exon 7. Western blots of peripheral blood mononuclear cells from MS patients showed a significant allele-dependent reduction of the SP140 protein expression. To confirm the association of this functional variant with MS and to compare it with the best-associated variant previously reported by GWAS (rs10201872), a case-control study including 4384 MS patients and 3197 controls was performed. Both variants, in strong LD (r(2) = 0.93), were found similarly associated with MS [P-values, odds ratios: 1.9E-9, OR = 1.35 (1.22-1.49) and 4.9E-10, OR = 1.37 (1.24-1.51), respectively]. In conclusion, our data uncover the causal variant for the SP140 locus and the molecular mechanism associated with MS risk. In addition, this study and others previously reported strongly suggest that this functional variant may be shared with other immune-mediated diseases as CD and CLL. PMID:26152201

  1. Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time – joint functions among B'η subfamily members

    PubMed Central

    Kataya, Amr RA; Heidari, Behzad; Lillo, Cathrine

    2015-01-01

    Protein phosphatase 2A (PP2A) is a heterotrimeric complex comprising a catalytic, scaffolding, and regulatory subunit. The regulatory subunits are essential for substrate specificity and localization of the complex and are classified into B/B55, B', and B” non-related families in higher plants. In Arabidopsis thaliana, the close paralogs B'η, B'θ, B'γ, and B'ζ were further classified into a subfamily of B' called B'η. Here we present results that consolidate the evidence for a role of the B'η subfamily in regulation of innate immunity, energy metabolism and flowering time. Proliferation of the virulent Pseudomonas syringae in B'θ knockout mutant decreased in comparison with wild type plants. Additionally, B'θ knockout plants were delayed in flowering, and this phenotype was supported by high expression of FLC (FLOWERING LOCUS C). B'ζ knockout seedlings showed growth retardation on sucrose-free medium, indicating a role for B'ζ in energy metabolism. This work provides insight into functions of the B'η subfamily members, highlighting their regulation of shared physiological traits while localizing to distinct cellular compartments. PMID:26039486

  2. Human genome protein function database.

    PubMed Central

    Sorenson, D. K.

    1991-01-01

    A database which focuses on the normal functions of the currently-known protein products of the Human Genome was constructed. Information is stored as text, figures, tables, and diagrams. The program contains built-in functions to modify, update, categorize, hypertext, search, create reports, and establish links to other databases. The semi-automated categorization feature of the database program was used to classify these proteins in terms of biomedical functions. PMID:1807638

  3. The nucleotide-binding oligomerization domain-containing protein 1 (NOD1) polymorphism S7N does not affect receptor function

    PubMed Central

    2014-01-01

    Background Activation and signal transduction in the Nucleotide binding, leucine-rich repeat containing receptor (NLR) family needs to be tightly regulated in order to control the inflammatory response to exogenous and endogenous danger signals. Phosphorylation is a common cellular mechanism of regulation that has recently been shown to be important in signalling in another family of cytoplasmic pattern recognition receptors, the RIG-I like receptors. In addition, single nucleotide polymorphisms can alter receptor activity, potentially leading to dysfunction and/or a predisposition to inflammatory barrier diseases. Findings We have computationally analysed the N-terminus of NOD1 and found seven theoretical phosphorylation sites in, or immediately before, the NOD1 Caspase Activation Domain (CARD). Two of these, serine 7 and tyrosine 49 are also found as rare polymorphisms in the African-American population and European-American populations respectively. Mutating serine 7 to either an aspartic acid or an asparagine to mimic the potential impact of phosphorylation or the polymorphism respectively did not affect the response of NOD1 to ligand-mediated NFκB signalling. Conclusions The NOD1 polymorphism S7N does not interfere with receptor function in response to ligand stimulation. PMID:24598002

  4. Modulation of opioid receptor function by protein-protein interactions.

    PubMed

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization. PMID:19273296

  5. Claudin Proteins And Neuronal Function.

    PubMed

    Devaux, Jérôme; Fykkolodziej, Bozena; Gow, Alexander

    2010-01-01

    The identification and characterization of the claudin family of tight junction (TJ) proteins in the late 1990s ushered in a new era for research into the molecular and cellular biology of intercellular junctions. Since that time, TJs have been studied in the contexts of many diseases including deafness, male infertility, cancer, bacterial invasion and liver and kidney disorders. In this review, we consider the role of claudins in the nervous system focusing on the mechanisms by which TJs in glial cells are involved in neuronal function. Electrophysiological evidence suggests that claudins may operate in the central nervous system (CNS) in a manner similar to polarized epithelia. We also evaluate hypotheses that TJs are the gatekeepers of an immune-privileged myelin compartment and that TJs emerged during evolution to form major adhesive forces within the myelin sheath. Finally, we consider the implications of CNS myelin TJs in the contexts of behavioral disorders (schizophrenia) and demyelinating/hypomyelinating diseases (multiple sclerosis and the leukodystrophies), and explore evidence of a possible mechanism governing affective disorder symptoms in patients with white matter abnormalities. PMID:25013353

  6. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  7. How mental stress affects endothelial function.

    PubMed

    Toda, Noboru; Nakanishi-Toda, Megumi

    2011-12-01

    Mental stress is an important factor contributing to recognized mechanisms underlying cardiovascular events. Among these, stress-related endothelial dysfunction is an early risk factor that predicts future development of severe cardiovascular disorders. Acute mental stress by a variety of tests impairs endothelial function in humans, although the opposite results have been reported by some investigators. Chronic stress always deteriorates endothelial function in humans and experimental animals. Stress hormones, such as glucocorticoids and pro-inflammatory cytokines, and endothelin-1 liberated in response to mental stress participate in endothelial dysfunction possibly via downregulation of endothelial nitric oxide synthase (eNOS) expression, eNOS inactivation, decreased nitric oxide (NO) actions, and increased NO degradation, together with vasoconstriction counteracting against NO-induced vasodilatation. Catecholamines do not directly affect endothelial function but impair its function when blood pressure elevation by the amines is sustained. Endogenous opioids favorably affect endothelial function, which counteract deteriorating effects of other stress hormones and mediators. Inhibition of cortisol and endothelin-1 production, prevention of pro-inflammatory mediator accumulation, hypnotics, mirthful laughter, humor orientation, and lifestyle modification would contribute to the prevention and treatment for stress-related endothelial dysfunction and future serious cardiovascular disease. PMID:21947555

  8. Functional Interactions between BM88/Cend1, Ran-Binding Protein M and Dyrk1B Kinase Affect Cyclin D1 Levels and Cell Cycle Progression/Exit in Mouse Neuroblastoma Cells

    PubMed Central

    Tsioras, Konstantinos; Papastefanaki, Florentia; Politis, Panagiotis K.; Matsas, Rebecca; Gaitanou, Maria

    2013-01-01

    BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors. PMID:24312406

  9. Estrogen treatment affects brain functioning after menopause.

    PubMed

    Bayer, Ulrike; Hausmann, Markus

    2011-12-01

    Sex hormones have powerful neuromodulatory effects on functional brain organization and cognitive functioning. This paper reviews findings from studies investigating the influence of sex hormones in postmenopausal women with and without hormone therapy (HT). Functional brain organization was investigated using different behavioural tasks in postmenopausal women using either estrogen therapy or combined estrogen plus gestagen therapy and age- and IQ-matched postmenopausal women not taking HT. The results revealed HT-related modulations in specific aspects of functional brain organization including functional cerebral asymmetries and interhemispheric interaction. In contrast to younger women during the menstrual cycle, however, it seems that HT, and especially estrogen therapy, after menopause affects intrahemispheric processing rather than interhemispheric interaction. This might be explained by a faster and more pronounced age-related decline in intrahemispheric relative to interhemispheric functioning, which might be associated with higher sensitivity to HT. Taken together, the findings suggest that the female brain retains its plasticity even after reproductive age and remains susceptible to the effects of sex hormones throughout the lifetime, which might help to discover new clinical approaches in the hormonal treatment of neurological and psychiatric disorders. PMID:22120942

  10. Functions of S100 Proteins

    PubMed Central

    Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L.

    2013-01-01

    The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion. PMID:22834835

  11. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage.

    PubMed

    Sreejit, Gopalkrishna; Ahmed, Asma; Parveen, Nazia; Jha, Vishwanath; Valluri, Vijaya Lakshmi; Ghosh, Sudip; Mukhopadhyay, Sangita

    2014-10-01

    ESAT-6, an abundantly secreted protein of Mycobacterium tuberculosis (M. tuberculosis) is an important virulence factor, inactivation of which leads to reduced virulence of M. tuberculosis. ESAT-6 alone, or in complex with its chaperone CFP-10 (ESAT-6:CFP-10), is known to modulate host immune responses; however, the detailed mechanisms are not well understood. The structure of ESAT-6 or ESAT-6:CFP-10 complex does not suggest presence of enzymatic or DNA-binding activities. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Using a yeast two-hybrid screening, we identified that ESAT-6 interacts with the host protein beta-2-microglobulin (β2M), which was further confirmed by other assays, like GST pull down, co-immunoprecipitation and surface plasmon resonance. The C-terminal six amino acid residues (90-95) of ESAT-6 were found to be essential for this interaction. ESAT-6, in complex with CFP-10, also interacts with β2M. We found that ESAT-6/ESAT-6:CFP-10 can enter into the endoplasmic reticulum where it sequesters β2M to inhibit cell surface expression of MHC-I-β2M complexes, resulting in downregulation of class I-mediated antigen presentation. Interestingly, the ESAT-6:β2M complex could be detected in pleural biopsies of individuals suffering from pleural tuberculosis. Our data highlight a novel mechanism by which M. tuberculosis may undermine the host adaptive immune responses to establish a successful infection. Identification of such novel interactions may help us in designing small molecule inhibitors as well as effective vaccine design against tuberculosis. PMID:25356553

  12. The ESAT-6 Protein of Mycobacterium tuberculosis Interacts with Beta-2-Microglobulin (β2M) Affecting Antigen Presentation Function of Macrophage

    PubMed Central

    Parveen, Nazia; Jha, Vishwanath; Valluri, Vijaya Lakshmi; Ghosh, Sudip; Mukhopadhyay, Sangita

    2014-01-01

    ESAT-6, an abundantly secreted protein of Mycobacterium tuberculosis (M. tuberculosis) is an important virulence factor, inactivation of which leads to reduced virulence of M. tuberculosis. ESAT-6 alone, or in complex with its chaperone CFP-10 (ESAT-6:CFP-10), is known to modulate host immune responses; however, the detailed mechanisms are not well understood. The structure of ESAT-6 or ESAT-6:CFP-10 complex does not suggest presence of enzymatic or DNA-binding activities. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Using a yeast two-hybrid screening, we identified that ESAT-6 interacts with the host protein beta-2-microglobulin (β2M), which was further confirmed by other assays, like GST pull down, co-immunoprecipitation and surface plasmon resonance. The C-terminal six amino acid residues (90–95) of ESAT-6 were found to be essential for this interaction. ESAT-6, in complex with CFP-10, also interacts with β2M. We found that ESAT-6/ESAT-6:CFP-10 can enter into the endoplasmic reticulum where it sequesters β2M to inhibit cell surface expression of MHC-I-β2M complexes, resulting in downregulation of class I-mediated antigen presentation. Interestingly, the ESAT-6:β2M complex could be detected in pleural biopsies of individuals suffering from pleural tuberculosis. Our data highlight a novel mechanism by which M. tuberculosis may undermine the host adaptive immune responses to establish a successful infection. Identification of such novel interactions may help us in designing small molecule inhibitors as well as effective vaccine design against tuberculosis. PMID:25356553

  13. Insect Seminal Fluid Proteins: Identification and Function

    PubMed Central

    Avila, Frank W.; Sirot, Laura K.; LaFlamme, Brooke A.; Rubinstein, C. Dustin; Wolfner, Mariana F.

    2014-01-01

    Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral post-mating changes in females. These changes include decreasing receptivity to re-mating, affecting sperm storage parameters, increasing egg production, modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have anti-microbial functions and induce expression of anti-microbial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the post-mating processes of female insects. PMID:20868282

  14. Learning Protein Folding Energy Functions

    PubMed Central

    Guan, Wei; Ozakin, Arkadas; Gray, Alexander; Borreguero, Jose; Pandit, Shashi; Jagielska, Anna; Wroblewska, Liliana; Skolnick, Jeffrey

    2014-01-01

    A critical open problem in ab initio protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function. PMID:25311546

  15. Can lifestyle modification affect men's erectile function?

    PubMed

    Hehemann, Marah C; Kashanian, James A

    2016-04-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  16. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  17. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  18. Human cytomegalovirus RL13 protein interacts with host NUDT14 protein affecting viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanping; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-03-01

    The interaction between the host and human cytomegalovirus (HCMV) is important in determining the outcome of a viral infection. The HCMV RL13 gene product exerts independent, inhibitory effects on viral growth in fibroblasts and epithelial cells. At present, there are few reports on the interactions between the HCMV RL13 protein and human host proteins. The present study provided direct evidence for the specific interaction between HCMV RL13 and host nucleoside diphosphate linked moiety X (nudix)‑type motif 14 (NUDT14), a UDP‑glucose pyrophosphatase, using two‑hybrid screening, an in vitro glutathione S‑transferase pull‑down assay, and co‑immunoprecipitation in human embryonic kidney HEK293 cells. Additionally, the RL13 protein was shown to co‑localize with the NUDT14 protein in the HEK293 cell membrane and cytoplasm, demonstrated using fluorescence confocal microscopy. Decreasing the expression level of NUDT14 via NUDT14‑specific small interfering RNAs increased the number of viral DNA copies in the HCMV‑infected cells. However, the overexpression of NUDT14 in a stably expressing cell line did not affect viral DNA levels significantly in the HCMV infected cells. Based on the known functions of NUDT14, the results of the present study suggested that the interaction between the RL13 protein and NUDT14 protein may be involved in HCMV DNA replication, and that NUDT14 may offer potential in the modulation of viral infection. PMID:26781650

  19. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource. PMID:26434392

  20. The unfolded protein response affects readthrough of premature termination codons

    PubMed Central

    Oren, Yifat S; McClure, Michelle L; Rowe, Steven M; Sorscher, Eric J; Bester, Assaf C; Manor, Miriam; Kerem, Eitan; Rivlin, Joseph; Zahdeh, Fouad; Mann, Matthias; Geiger, Tamar; Kerem, Batsheva

    2014-01-01

    One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions. PMID:24705877

  1. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    PubMed Central

    Tatarinova, Tatiana; Dien Bard, Jennifer; Cohen, Irit

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content. PMID:26114113

  2. Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice.

    PubMed

    Ruiz, Lina M; Salazar, Celia; Jensen, Erik; Ruiz, Paula A; Tiznado, William; Quintanilla, Rodrigo A; Barreto, Marlen; Elorza, Alvaro A

    2015-01-01

    Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellular models. However, recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with mitochondria causing an increase in O2 (∙-) production, a decrease in ATP levels, and impairment of respiratory chain in liver tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function and erythropoiesis. Mice were injected with 50 mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight, serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma, quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be reexamined. PMID:26106459

  3. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values. PMID:26963317

  4. Functional Characterization of the Alphavirus TF Protein

    PubMed Central

    Snyder, Jonathan E.; Kulcsar, Kirsten A.; Schultz, Kimberly L. W.; Riley, Catherine P.; Neary, Jacob T.; Marr, Scott; Jose, Joyce; Griffin, Diane E.

    2013-01-01

    Alphavirus dogma has long dictated the production of a discrete set of structural proteins during infection of a cell: capsid, pE2, 6K, and E1. However, bioinformatic analyses of alphavirus genomes (A. E. Firth, B. Y. Chung, M. N. Fleeton, and J. F. Atkins, Virol. J. 5:108, 2008) suggested that a ribosomal frameshifting event occurs during translation of the alphavirus structural polyprotein. Specifically, a frameshift event is suggested to occur during translation of the 6K gene, yielding production of a novel protein, termed transframe (TF), comprised of a C-terminal extension of the 6K protein in the −1 open reading frame (ORF). Here, we validate the findings of Firth and colleagues with respect to the production of the TF protein and begin to characterize the function of TF. Using a mass spectrometry-based approach, we identified TF in purified preparations of both Sindbis and Chikungunya virus particles. We next constructed a panel of Sindbis virus mutants with mutations which alter the production, size, or sequence of TF. We demonstrate that TF is not absolutely required in culture, although disrupting TF production leads to a decrease in virus particle release in both mammalian and insect cells. In a mouse neuropathogenesis model, mortality was <15% in animals infected with the TF mutants, whereas mortality was 95% in animals infected with the wild-type virus. Using a variety of additional assays, we demonstrate that TF retains ion-channel activity analogous to that of 6K and that lack of production of TF does not affect genome replication, particle infectivity, or envelope protein transit to the cell surface. The TF protein therefore represents a previously uncharacterized factor important for alphavirus assembly. PMID:23720714

  5. How does temperature affect the function of tissue macrophages?

    NASA Astrophysics Data System (ADS)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  6. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average. PMID:25343279

  7. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  8. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  9. Year 2 Report: Protein Function Prediction Platform

    SciTech Connect

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  10. Characterization and Functionality of Corn Germ Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the functional properties of protein extracted from wet-milled corn germ and identify potential applications of the recovered protein. Corn germ comprises 12% of the total weight of normal dent corn and about 29% of the corn protein (moisture-free and oil- free ...

  11. The Alba protein family: Structure and function.

    PubMed

    Goyal, Manish; Banerjee, Chinmoy; Nag, Shiladitya; Bandyopadhyay, Uday

    2016-05-01

    Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far. PMID:26900088

  12. Protein function prediction based on data fusion and functional interrelationship.

    PubMed

    Meng, Jun; Wekesa, Jael-Sanyanda; Shi, Guan-Li; Luan, Yu-Shi

    2016-04-01

    One of the challenging tasks of bioinformatics is to predict more accurate and confident protein functions from genomics and proteomics datasets. Computational approaches use a variety of high throughput experimental data, such as protein-protein interaction (PPI), protein sequences and phylogenetic profiles, to predict protein functions. This paper presents a method that uses transductive multi-label learning algorithm by integrating multiple data sources for classification. Multiple proteomics datasets are integrated to make inferences about functions of unknown proteins and use a directed bi-relational graph to assign labels to unannotated proteins. Our method, bi-relational graph based transductive multi-label function annotation (Bi-TMF) uses functional correlation and topological PPI network properties on both the training and testing datasets to predict protein functions through data fusion of the individual kernel result. The main purpose of our proposed method is to enhance the performance of classifier integration for protein function prediction algorithms. Experimental results demonstrate the effectiveness and efficiency of Bi-TMF on multi-sources datasets in yeast, human and mouse benchmarks. Bi-TMF outperforms other recently proposed methods. PMID:26869536

  13. Phosphoinositide Control of Membrane Protein Function

    PubMed Central

    Logothetis, Diomedes E.; Petrou, Vasileios I.; Zhang, Miao; Mahajan, Rahul; Meng, Xuan-Yu; Adney, Scott K.; Cui, Meng; Baki, Lia

    2015-01-01

    Anionic phospholipids are critical constituents of the inner leaflet of the plasma membrane, ensuring appropriate membrane topology of transmembrane proteins. Additionally, in eukaryotes, the negatively charged phosphoinositides serve as key signals not only through their hydrolysis products but also through direct control of transmembrane protein function. Direct phosphoinositide control of the activity of ion channels and transporters has been the most convincing case of the critical importance of phospholipid-protein interactions in the functional control of membrane proteins. Furthermore, second messengers, such as [Ca2+]i, or posttranslational modifications, such as phosphorylation, can directly or allosterically fine-tune phospholipid-protein interactions and modulate activity. Recent advances in structure determination of membrane proteins have allowed investigators to obtain complexes of ion channels with phosphoinositides and to use computational and experimental approaches to probe the dynamic mechanisms by which lipid-protein interactions control active and inactive protein states. PMID:25293526

  14. Protein microarrays as tools for functional proteomics.

    PubMed

    LaBaer, Joshua; Ramachandran, Niroshan

    2005-02-01

    Protein microarrays present an innovative and versatile approach to study protein abundance and function at an unprecedented scale. Given the chemical and structural complexity of the proteome, the development of protein microarrays has been challenging. Despite these challenges there has been a marked increase in the use of protein microarrays to map interactions of proteins with various other molecules, and to identify potential disease biomarkers, especially in the area of cancer biology. In this review, we discuss some of the promising advances made in the development and use of protein microarrays. PMID:15701447

  15. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  16. Collective Dynamics Differentiates Functional Divergence in Protein Evolution

    PubMed Central

    Glembo, Tyler J.; Farrell, Daniel W.; Gerek, Z. Nevin; Thorpe, M. F.; Ozkan, S. Banu

    2012-01-01

    Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF). Our predictions are within ∼2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors. Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ∼60% of permissive mutations necessary to recover ancestral function. PMID:22479170

  17. Molecular dynamics and protein function

    PubMed Central

    Karplus, M.; Kuriyan, J.

    2005-01-01

    A fundamental appreciation for how biological macromolecules work requires knowledge of structure and dynamics. Molecular dynamics simulations provide powerful tools for the exploration of the conformational energy landscape accessible to these molecules, and the rapid increase in computational power coupled with improvements in methodology makes this an exciting time for the application of simulation to structural biology. In this Perspective we survey two areas, protein folding and enzymatic catalysis, in which simulations have contributed to a general understanding of mechanism. We also describe results for the F1 ATPase molecular motor and the Src family of signaling proteins as examples of applications of simulations to specific biological systems. PMID:15870208

  18. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  19. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  20. Protein function from its emergence to diversity in contemporary proteins

    NASA Astrophysics Data System (ADS)

    Goncearenco, Alexander; Berezovsky, Igor N.

    2015-07-01

    The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions—elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.

  1. Protein S-glutathiolation: Redox-sensitive regulation of protein function

    PubMed Central

    Hill, Bradford G.; Bhatnagar, Aruni

    2011-01-01

    Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These “activated” thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione “cap” to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein “encryption” to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. PMID:21784079

  2. Social functioning and age across affective and non-affective psychoses

    PubMed Central

    Martin, Elizabeth A.; Öngür, Dost; Cohen, Bruce M.; Lewandowski, Kathryn E.

    2014-01-01

    Both non-affective and affective psychoses are associated with deficits in social functioning across the course of the illness. However, it is not clear how social functioning varies among diagnostic groups as a function of age. The current study examined the relationship between social functioning and age in schizophrenia (SZ), schizoaffective disorder (SZA), and psychotic bipolar disorder (PBD). We found that individuals with PBD had the highest functioning while individuals with SZ had the poorest. The functioning of individuals with SZA fell in between the other groups. We also found that older ages were associated with poorer functioning. Although there was not a significant diagnostic group by age interaction, visual inspection of our data suggests a subtly steeper trajectory of decline in PBD. These results indicate that a decline in social functioning with may be an important area of unmet need in treatment across psychotic disorders. PMID:25503785

  3. Ribosomal proteins: functions beyond the ribosome

    PubMed Central

    Zhou, Xiang; Liao, Wen-Juan; Liao, Jun-Ming; Liao, Peng; Lu, Hua

    2015-01-01

    Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics. PMID:25735597

  4. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  5. Turning yeast sequence into protein function

    SciTech Connect

    Heijne, G. von

    1996-04-01

    The complete genome sequencing of the yeast Saccharomyces Cerevisiae leads us into a new era of potential use for such data base information. Protein engineering studies suggest that genetic selection of overproducing strains may aid the assignment of protein function. Data base management and sequencing software have been developed to scan entire genomes.

  6. Flavin Redox Switching of Protein Functions

    PubMed Central

    Zhu, Weidong; Moxley, Michael A.

    2011-01-01

    Abstract Flavin cofactors impart remarkable catalytic diversity to enzymes, enabling them to participate in a broad array of biological processes. The properties of flavins also provide proteins with a versatile redox sensor that can be utilized for converting physiological signals such as cellular metabolism, light, and redox status into a unique functional output. The control of protein functions by the flavin redox state is important for transcriptional regulation, cell signaling pathways, and environmental adaptation. A significant number of proteins that have flavin redox switches are found in the Per-Arnt-Sim (PAS) domain family and include flavoproteins that act as photosensors and respond to changes in cellular redox conditions. Biochemical and structural studies of PAS domain flavoproteins have revealed key insights into how flavin redox changes are propagated to the surface of the protein and translated into a new functional output such as the binding of a target protein in a signaling pathway. Mechanistic details of proteins unrelated to the PAS domain are also emerging and provide novel examples of how the flavin redox state governs protein–membrane interactions in response to appropriate stimuli. Analysis of different flavin switch proteins reveals shared mechanistic themes for the regulation of protein structure and function by flavins. Antioxid. Redox Signal. 14, 1079–1091. PMID:21028987

  7. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins.

    PubMed

    Shrivastava, Vibha; Marmor, Hannah; Chernyak, Sholom; Goldstein, Marc; Feliciano, Miriam; Vigodner, Margarita

    2014-01-01

    Sperm are highly dependent on posttranslational modifications of proteins. Massive phosphorylation on tyrosine residue is required for sperm capacitation. Sumoylation has also been recently implicated in spermatogenesis and sperm functions. Cigarette smoke is known to cause oxidative stress in different tissues, and several studies suggest that it causes oxidative stress in sperm. Whether tobacco affects posttranslational modifications in human sperm is currently unknown. In this study, we show that a short exposure of human sperm to physiological concentrations of cigarette smoke extract (CSE) causes the partial de-sumoylation of many sperm proteins. Furthermore, the presence of a low concentration of CSE in the human tubal fluid during an induction of in vitro capacitation inhibits the capacitation-associated increase in protein phosphorylation. Collectively, changes in posttranslational modifications may be one of the mechanisms through which exposure to tobacco can negatively affect sperm functions and cause fertility problems. PMID:24345728

  8. Regulation of bacterial RecA protein function.

    PubMed

    Cox, Michael M

    2007-01-01

    The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes. PMID:17364684

  9. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation.

    PubMed

    Russo, Daniela; Rea, Giuseppina; Lambreva, Maya D; Haertlein, Michael; Moulin, Martine; De Francesco, Alessio; Campi, Gaetano

    2016-07-01

    In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network. PMID:27300078

  10. Evolution of Ftz protein function in insects.

    PubMed

    Alonso, C R; Maxton-Kuechenmeister, J; Akam, M

    2001-09-18

    The Drosophila gene fushi tarazu (ftz) encodes a homeodomain-containing transcriptional regulator (Ftz) required at several stages during development. Drosophila melanogaster ftz (Dm-ftz) is first expressed in seven stripes defining alternate parasegments of the embryo--a "pair-rule" segmentation function [1, 2]. It is then expressed in specific neural precursor cells in the central nervous system and finally in the developing hindgut [3]. An Orthopteran ortholog of ftz (Sg-ftz, formally Dax) has been isolated from the grasshopper Schistocerca gregaria [4]. The pattern of Sg-ftz expression in Schistocerca embryos suggests that some developmental roles of the ftz gene are likely to be conserved between these two species (e.g., CNS functions) while others may have diverged (e.g., segmentation functions). To test whether the function of the Ftz protein itself differs between these two species, here we compare the functions of Sg-Ftz and Dm-Ftz proteins by expressing both in Drosophila embryos. Sg-ftz mimics only poorly several segmentation roles of Dm-ftz (engrailed activation, wingless repression, and embryonic cuticle transformation). However, the two proteins are similarly active in the rescue of a CNS-specific ftz mutant. These findings argue that this ftz CNS function is mediated by conserved parts of the protein, while efficient pair-rule function requires sequences present specifically in the Drosophila protein. PMID:11566109

  11. Genetically modified proteins: functional improvement and chimeragenesis

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Podvolotskaya, Anna; Rasskazov, Valery

    2015-01-01

    This review focuses on the emerging role of site-specific mutagenesis and chimeragenesis for the functional improvement of proteins in areas where traditional protein engineering methods have been extensively used and practically exhausted. The novel path for the creation of the novel proteins has been created on the farther development of the new structure and sequence optimization algorithms for generating and designing the accurate structure models in result of x-ray crystallography studies of a lot of proteins and their mutant forms. Artificial genetic modifications aim to expand nature's repertoire of biomolecules. One of the most exciting potential results of mutagenesis or chimeragenesis finding could be design of effective diagnostics, bio-therapeutics and biocatalysts. A sampling of recent examples is listed below for the in vivo and in vitro genetically improvement of various binding protein and enzyme functions, with references for more in-depth study provided for the reader's benefit. PMID:26211369

  12. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  13. Network-based prediction of protein function

    PubMed Central

    Sharan, Roded; Ulitsky, Igor; Shamir, Ron

    2007-01-01

    Functional annotation of proteins is a fundamental problem in the post-genomic era. The recent availability of protein interaction networks for many model species has spurred on the development of computational methods for interpreting such data in order to elucidate protein function. In this review, we describe the current computational approaches for the task, including direct methods, which propagate functional information through the network, and module-assisted methods, which infer functional modules within the network and use those for the annotation task. Although a broad variety of interesting approaches has been developed, further progress in the field will depend on systematic evaluation of the methods and their dissemination in the biological community. PMID:17353930

  14. Quantitative assessment of protein function prediction programs.

    PubMed

    Rodrigues, B N; Steffens, M B R; Raittz, R T; Santos-Weiss, I C R; Marchaukoski, J N

    2015-01-01

    Fast prediction of protein function is essential for high-throughput sequencing analysis. Bioinformatic resources provide cheaper and faster techniques for function prediction and have helped to accelerate the process of protein sequence characterization. In this study, we assessed protein function prediction programs that accept amino acid sequences as input. We analyzed the classification, equality, and similarity between programs, and, additionally, compared program performance. The following programs were selected for our assessment: Blast2GO, InterProScan, PANTHER, Pfam, and ScanProsite. This selection was based on the high number of citations (over 500), fully automatic analysis, and the possibility of returning a single best classification per sequence. We tested these programs using 12 gold standard datasets from four different sources. The gold standard classification of the databases was based on expert analysis, the Protein Data Bank, or the Structure-Function Linkage Database. We found that the miss rate among the programs is globally over 50%. Furthermore, we observed little overlap in the correct predictions from each program. Therefore, a combination of multiple types of sources and methods, including experimental data, protein-protein interaction, and data mining, may be the best way to generate more reliable predictions and decrease the miss rate. PMID:26782400

  15. Evolution-Based Functional Decomposition of Proteins.

    PubMed

    Rivoire, Olivier; Reynolds, Kimberly A; Ranganathan, Rama

    2016-06-01

    The essential biological properties of proteins-folding, biochemical activities, and the capacity to adapt-arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment-a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  16. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  17. Protein structure, spectral properties, and photobiological function of lumazine protein

    NASA Astrophysics Data System (ADS)

    Lee, John W.; Bradley, Elizabeth A.; O'Kane, Dennis J.

    1992-04-01

    Protein sequence analysis, nuclear magnetic resonance, and fluorescence dynamics have been applied in a determination of the interactions of the lumazine derivative with the amino acid residues in the proposed ligand binding site of lumazine protein. It is these interactions that `tune' the excited state properties of the bound lumazine so that it can perform its photobiological function as the emitter of bioluminescence in Photobacterium species. A three- way sequence alignment shows that lumazine protein is homologous with the yellow- fluorescent protein of Vibrio fischeri and the riboflavin synthase from Bacillus subtilis. This last enzyme is ubiquitous in procaryotes, and utilizes two of these same lumazines as substrates for the production of riboflavin. By analogy with riboflavin synthase, a short sequence in the lumazine protein has been suggested as the ligand binding site. In riboflavin synthase there is a second binding site, but this is absent in lumazine protein, thus negating any synthase activity for this protein. Hydrogen bonds to the residues in this binding domain and `freeze' the lumazine structure into the highly polar tautomer deduced from NMR evidence. This also accounts for the rigidity of binding shown by the 23 ns (2 degree(s)C) rotational correlation time of the bound ligand as well as the strong blue shift of the fluorescence maximum, from 490 nm free to 475 nm when bound.

  18. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  19. Membrane bending by protein crowding is affected by protein lateral confinement.

    PubMed

    Derganc, Jure; Čopič, Alenka

    2016-06-01

    Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches. PMID:26969088

  20. SUMO1 Affects Synaptic Function, Spine Density and Memory

    PubMed Central

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E.

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  1. SUMO1 Affects Synaptic Function, Spine Density and Memory.

    PubMed

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  2. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  3. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  4. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins.

    PubMed

    Ly, Hoai J; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses. PMID:27368371

  5. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  6. Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension.

    PubMed

    Palaniyar, N; Ikegami, M; Korfhagen, T; Whitsett, J; McCormack, F X

    2001-05-01

    Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates. PMID:11369537

  7. Functions of TET Proteins in Hematopoietic Transformation

    PubMed Central

    Han, Jae-A; An, Jungeun; Ko, Myunggon

    2015-01-01

    DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents. PMID:26552488

  8. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  9. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  10. Functional Characteristics of Milk Protein Concentrates and Their Modification.

    PubMed

    Uluko, Hankie; Liu, Lu; Lv, Jia-Ping; Zhang, Shu-Wen

    2016-05-18

    A major deterrent to the usage of milk protein concentrate (MPC), a high-protein milk product with increasing demand as a food and sports drink ingredient, has been its poor functional characteristics when compared with other milk protein products such as whey protein concentrate and sodium caseinates. This review discusses the recent research on functional properties of MPC, focusing on factors that may contribute to the poor functional characteristics before, during, and after production. Current research, methods employed, and new understanding on the causes of poor solubility of MPC at mild temperatures (about 20°C) has been presented, including loss of solubility during storage as these areas have received unprecedented attention over the past decade, and also affects other useful functional properties of MPC, such as emulsifying properties, gelation, and foaming. Processing methods, which include heat treatment, high-pressure application, microwave heating, ultrasound application, and enzyme and salts modification, have been used or have potential to modify or improve the functional properties of MPCs. Future research on the effects of these processing methods on the functional properties, including effects of enzyme hydrolysis on bitterness and bioactivity, has also been discussed. PMID:26048645

  11. FUNCTIONALITY OF MEMBRANE SEPARATED EGG WHITE PROTEINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The excellent nutritional and functional properties of liquid egg white (LEW), which is essentially a viscous fat-free protein solution, are exploited in many food preparations. Thermal pasteurization (at 56.6oC for 3.5 min. minimum) is currently used by industry to eliminate the microflora in LEW ...

  12. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. PMID:26091838

  13. Functional prediction of hypothetical proteins in human adenoviruses.

    PubMed

    Dorden, Shane; Mahadevan, Padmanabhan

    2015-01-01

    Assigning functional information to hypothetical proteins in virus genomes is crucial for gaining insight into their proteomes. Human adenoviruses are medium sized viruses that cause a range of diseases. Their genomes possess proteins with uncharacterized function known as hypothetical proteins. Using a wide range of protein function prediction servers, functional information was obtained about these hypothetical proteins. A comparison of functional information obtained from these servers revealed that some of them produced functional information, while others provided little functional information about these human adenovirus hypothetical proteins. The PFP, ESG, PSIPRED, 3d2GO, and ProtFun servers produced the most functional information regarding these hypothetical proteins. PMID:26664031

  14. Functional roles of HIV-1 Tat protein in the nucleus.

    PubMed

    Musinova, Yana R; Sheval, Eugene V; Dib, Carla; Germini, Diego; Vassetzky, Yegor S

    2016-02-01

    Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis. PMID:26507246

  15. [Pathophysiological functions of follistatin related protein].

    PubMed

    Shen, Hua; Liu, Yu-Yang

    2009-10-01

    Follistatin related protein (FRP) is an extra-cellular glycoprotein, involved in several pathological and physiological processes such as cell proliferation, migration, tissue remodeling, embryonic development, and cell-cell interaction. Nowadays researches showed that FRP possesses dual functions, including inhibiting cell apoptosis and inhibiting cell proliferation. In myocardial ischemia model, FRP is certified to have the effect of protecting myocardial cell and inhibiting apoptosis. At the same time FRP promotes endothelial cell proliferation. FRP is also synthesized by vascular smooth muscle cell (VSMC) to regulate the functions of VSMC via feedback mechanism. FRP can induce apoptosis in various cancer cell lines. In this review, we summarized the up-to-date data to show the structure, functions, mechanisms and regulation pathways of the protein. PMID:21417029

  16. Lifetime affect and midlife cognitive function: prospective birth cohort study

    PubMed Central

    Richards, M.; Barnett, J. H.; Xu, M. K.; Croudace, T. J.; Gaysina, D.; Kuh, D.; Jones, P. B.

    2014-01-01

    Background Recurrent affective problems are predictive of cognitive impairment, but the timing and directionality, and the nature of the cognitive impairment, are unclear. Aims To test prospective associations between life-course affective symptoms and cognitive function in late middle age. Method A total of 1668 men and women were drawn from the Medical Research Council National Survey of Health and Development (the British 1946 birth cohort). Longitudinal affective symptoms spanning age 13-53 years served as predictors; outcomes consisted of self-reported memory problems at 60-64 years and decline in memory and information processing from age 53 to 60-64 years. Results Regression analyses revealed no clear pattern of association between longitudinal affective symptoms and decline in cognitive test scores, after adjusting for gender, childhood cognitive ability, education and midlife socioeconomic status. In contrast, affective symptoms were strongly, diffusely and independently associated with self-reported memory problems. Conclusions Affective symptoms are more clearly associated with self-reported memory problems in late midlife than with objectively measured cognitive performance. PMID:24357571

  17. Does Subacromial Osteolysis Affect Shoulder Function after Clavicle Hook Plating?

    PubMed Central

    Sun, Siwei; Gan, Minfeng; Sun, Han; Wu, Guizhong; Yang, Huilin; Zhou, Feng

    2016-01-01

    Purpose. To evaluate whether subacromial osteolysis, one of the major complications of the clavicle hook plate procedure, affects shoulder function. Methods. We had performed a retrospective study of 72 patients diagnosed with a Neer II lateral clavicle fracture or Degree-III acromioclavicular joint dislocation in our hospital from July 2012 to December 2013. All these patients had undergone surgery with clavicle hook plate and were divided into two groups based on the occurrence of subacromial osteolysis. By using the Constant-Murley at the first follow-up visit after plates removal, we evaluated patients' shoulder function to judge if it has been affected by subacromial osteolysis. Results. We have analyzed clinical data for these 72 patients, which shows that there is no significant difference between group A (39 patients) and group B (33 patients) in age, gender, injury types or side, and shoulder function (the Constant-Murley scores are 93.38 ± 3.56 versus 94.24 ± 3.60, P > 0.05). Conclusion. The occurrence of subacromial osteolysis is not rare, and also it does not significantly affect shoulder function. PMID:27034937

  18. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  19. Uridine Affects Liver Protein Glycosylation, Insulin Signaling, and Heme Biosynthesis

    PubMed Central

    Urasaki, Yasuyo; Pizzorno, Giuseppe; Le, Thuc T.

    2014-01-01

    Purines and pyrimidines are complementary bases of the genetic code. The roles of purines and their derivatives in cellular signal transduction and energy metabolism are well-known. In contrast, the roles of pyrimidines and their derivatives in cellular function remain poorly understood. In this study, the roles of uridine, a pyrimidine nucleoside, in liver metabolism are examined in mice. We report that short-term uridine administration in C57BL/6J mice increases liver protein glycosylation profiles, reduces phosphorylation level of insulin signaling proteins, and activates the HRI-eIF-2α-ATF4 heme-deficiency stress response pathway. Short-term uridine administration is also associated with reduced liver hemin level and reduced ability for insulin-stimulated blood glucose removal during an insulin tolerance test. Some of the short-term effects of exogenous uridine in C57BL/6J mice are conserved in transgenic UPase1−/− mice with long-term elevation of endogenous uridine level. UPase1−/− mice exhibit activation of the liver HRI-eIF-2α-ATF4 heme-deficiency stress response pathway. UPase1−/− mice also exhibit impaired ability for insulin-stimulated blood glucose removal. However, other short-term effects of exogenous uridine in C57BL/6J mice are not conserved in UPase1−/− mice. UPase1−/− mice exhibit normal phosphorylation level of liver insulin signaling proteins and increased liver hemin concentration compared to untreated control C57BL/6J mice. Contrasting short-term and long-term consequences of uridine on liver metabolism suggest that uridine exerts transient effects and elicits adaptive responses. Taken together, our data support potential roles of pyrimidines and their derivatives in the regulation of liver metabolism. PMID:24918436

  20. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria.

    PubMed

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and "interologs" in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  1. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  2. ADAMTS proteins as modulators of microfibril formation and function

    PubMed Central

    Hubmacher, Dirk; Apte, Suneel S.

    2016-01-01

    The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin-type 1 motifs) protein superfamily includes 19 secreted metalloproteases and 7 secreted ADAMTS-like (ADAMTSL) glycoproteins. The possibility of functional linkage between ADAMTS proteins and fibrillin microfibrils was first revealed by a human genetic consilience, in which mutations in ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 were found to phenocopy rare genetic disorders caused by mutations affecting fibrillin-1 (FBN1), the major microfibril component in adults. The manifestations of these ADAMTS gene disorders in humans and animals suggested that they participated in the structural and regulatory roles of microfibrils. Whereas two such disorders, Weill–Marchesani syndrome 1 and Weill–Marchesani-like syndrome involve proteases (ADAMTS10 and ADAMTS17, respectively), geleophysic dysplasia and isolated ectopia lentis in humans involve ADAMTSL2 and ADAMTSL4, respectively, which are not proteases. In addition to broadly similar dysmorphology, individuals affected by Weill–Marchesani syndrome 1, Weill–Marchesani-like syndrome or geleophysic dysplasia each show characteristic anomalies suggesting molecule-, tissue-, or context-specific functions for the respective ADAMTS proteins. Ectopia lentis occurs in each of these conditions except geleophysic dysplasia, and is due to a defect in the ciliary zonule, which is predominantly composed of FBN1 microfibrils. Together, this strongly suggests that ADAMTS proteins are involved either in microfibril assembly, stability, and anchorage, or the formation of function-specific supramolecular networks having microfibrils as their foundation. Here, the genetics and molecular biology of this subset of ADAMTS proteins is discussed from the perspective of how they might contribute to fully functional or function-specific microfibrils. PMID:25957949

  3. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  4. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  5. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  6. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  7. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  8. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    SciTech Connect

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  9. Heterogeneity in Retroviral Nucleocapsid Protein Function

    NASA Astrophysics Data System (ADS)

    Landes, Christy

    2009-03-01

    Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity as compared to that of the HIV-1 NC protein. HTLV-1 NC contains two zinc fingers with each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is required for recognition and packaging of the viral RNA and is also a nucleic acid chaperone protein that facilitates nucleic acid restructuring during reverse transcription. Because of similarities in structures between the two retroviruses, we have used single-molecule fluorescence energy transfer to investigate the chaperoning activity of HTLV-1 NC protein. The results indicate that HTLV-1 NC protein induces structural changes by opening the transactivation response (TAR)-DNA hairpin to an even greater extent than HIV-1 NC. However, unlike HIV-1 NC, HTLV-1 NC does not chaperone the strand-transfer reaction involving TAR-DNA. These results suggest that despite its effective destabilization capability, HTLV-1 NC is not as effective at overall chaperone function as is its HIV-1 counterpart.

  10. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    PubMed

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle. PMID:26813519

  11. Functional significance of preserved affect recognition in schizophrenia

    PubMed Central

    Fiszdon, Joanna M.; Johannesen, Jason K.

    2009-01-01

    Affect recognition (AR) is a core component of social information processing, thus may be critical to understanding social behavior and functioning in broader aspects of daily living. Deficits in AR are well documented in schizophrenia, however, there is also evidence that many individuals with schizophrenia perform AR tasks at near-normal levels. In the current study, we sought to evaluate the functional significance of AR deficits in schizophrenia by comparing subgroups with normal-range and impaired AR performance on proxy and interviewer-rated measures of real-world functioning. Schizophrenia outpatients were classified as normal-range (N=17) and impaired (N=31) based on a logistic cut point in the sample distribution of BLERT scores, referenced to a normative sample of healthy control subjects (N=56). The derived schizophrenia subgroups were then compared on proxy (UCSD, UPSA, SSPA, MMAA) and interviewer-rated (QLS, ILSS) measures of functioning, as well as battery of neurocognitive tests. Initial analyses indicated superior MMAA and QLS performance in the near-normal AR subgroup. Covariate analyses indicated that group differences in neurocognition fully mediated the observed associations between AR and MMAA and attenuated the observed relationships between AR classification and QLS. These results support three main conclusions. First, AR, like many other domains of psychopathology studied in schizophrenia, is preserved in select subgroups. Second, there is a positive relationship between AR performance and functional outcome measures. Third, neurocognition appears to mediate the relationship between AR and measures of functioning. PMID:20202689

  12. Amyloid Precursor Protein (APP) Affects Global Protein Synthesis in Dividing Human Cells

    PubMed Central

    Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J.; Alani, Sara; Bocchetta, Maurizio

    2015-01-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. PMID:25283437

  13. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. PMID:25283437

  14. Functionalized nanoparticle probes for protein detection

    NASA Astrophysics Data System (ADS)

    Park, Do Hyun; Lee, Jae-Seung

    2015-05-01

    In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.

  15. Protein function in precision medicine: deep understanding with machine learning.

    PubMed

    Rost, Burkhard; Radivojac, Predrag; Bromberg, Yana

    2016-08-01

    Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both. PMID:27423136

  16. GABA(B) receptor subunit 1 binds to proteins affected in 22q11 deletion syndrome.

    PubMed

    Zunner, Dagmar; Deschermeier, Christina; Kornau, Hans-Christian

    2010-03-01

    GABA(B) receptors mediate slow inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABA(B1) and GABA(B2), which are linked through a coiled-coil interaction. The ligand-binding subunit GABA(B1) is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABA(B2). Here, we report that GABA(B1), via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABA(B1)-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABA(B2) interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABA(B1). Thus, sequential coiled-coil interactions may direct GABA(B1) into functional receptors. PMID:20036641

  17. Functional proteomic and interactome analysis of proteins associated with beef tenderness in angus cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef is a source of high quality protein for the human population, and beef tenderness has significant influence on beef palatability, consumer expectation and industry profitability. To further elucidate the factors affecting beef tenderness, functional proteomics and bioinformatics interactome ana...

  18. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling

    PubMed Central

    Fröhlich, Florian; Moreira, Karen; Aguilar, Pablo S.; Hubner, Nina C.; Mann, Matthias; Walter, Peter

    2009-01-01

    The protein and lipid composition of eukaryotic plasma membranes is highly dynamic and regulated according to need. The sphingolipid-responsive Pkh kinases are candidates for mediating parts of this regulation, as they affect a diverse set of plasma membrane functions, such as cortical actin patch organization, efficient endocytosis, and eisosome assembly. Eisosomes are large protein complexes underlying the plasma membrane and help to sort a group of membrane proteins into distinct domains. In this study, we identify Nce102 in a genome-wide screen for genes involved in eisosome organization and Pkh kinase signaling. Nce102 accumulates in membrane domains at eisosomes where Pkh kinases also localize. The relative abundance of Nce102 in these domains compared with the rest of the plasma membrane is dynamically regulated by sphingolipids. Furthermore, Nce102 inhibits Pkh kinase signaling and is required for plasma membrane organization. Therefore, Nce102 might act as a sensor of sphingolipids that regulates plasma membrane function. PMID:19564405

  19. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon.

    PubMed

    Hering, Nina A; Fromm, Anja; Kikhney, Judith; Lee, In-Fah M; Moter, Annette; Schulzke, Jörg D; Bücker, Roland

    2016-04-01

    Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea. PMID:26621910

  20. Factors affecting sexual function in menopause: A review article.

    PubMed

    Nazarpour, Soheila; Simbar, Masoumeh; Tehrani, Fahimeh Ramezani

    2016-08-01

    This study aimed to systematically review the articles on factors affecting sexual function during menopause. Searching articles indexed in Pubmed, Science Direct, Iranmedex, EMBASE, Scopus, and Scientific Information Database databases, a total number of 42 studies published between 2003 and 2013 were selected. Age, estrogen deficiency, type of menopause, chronic medical problems, partner's sex problems, severity of menopause symptoms, dystocia history, and health status were the physical factors influencing sexual function of menopausal women. There were conflicting results regarding the amount of androgens, hormonal therapy, exercise/physical activity, and obstetric history. In the mental-emotional area, all studies confirmed the impact of depression and anxiety. Social factors, including smoking, alcohol consumption, the quality of relationship with husband, partner's loyalty, sexual knowledge, access to health care, a history of divorce or the death of a husband, living apart from a spouse, and a negative understanding of women's health were found to affect sexual function; however, there were conflicting results regarding the effects of education, occupation, socioeconomic status, marital duration, and frequency of sexual intercourse. PMID:27590367

  1. Multiple Post-translational Modifications Affect Heterologous Protein Synthesis*

    PubMed Central

    Tokmakov, Alexander A.; Kurotani, Atsushi; Takagi, Tetsuo; Toyama, Mitsutoshi; Shirouzu, Mikako; Fukami, Yasuo; Yokoyama, Shigeyuki

    2012-01-01

    Post-translational modifications (PTMs) are required for proper folding of many proteins. The low capacity for PTMs hinders the production of heterologous proteins in the widely used prokaryotic systems of protein synthesis. Until now, a systematic and comprehensive study concerning the specific effects of individual PTMs on heterologous protein synthesis has not been presented. To address this issue, we expressed 1488 human proteins and their domains in a bacterial cell-free system, and we examined the correlation of the expression yields with the presence of multiple PTM sites bioinformatically predicted in these proteins. This approach revealed a number of previously unknown statistically significant correlations. Prediction of some PTMs, such as myristoylation, glycosylation, palmitoylation, and disulfide bond formation, was found to significantly worsen protein amenability to soluble expression. The presence of other PTMs, such as aspartyl hydroxylation, C-terminal amidation, and Tyr sulfation, did not correlate with the yield of heterologous protein expression. Surprisingly, the predicted presence of several PTMs, such as phosphorylation, ubiquitination, SUMOylation, and prenylation, was associated with the increased production of properly folded soluble proteins. The plausible rationales for the existence of the observed correlations are presented. Our findings suggest that identification of potential PTMs in polypeptide sequences can be of practical use for predicting expression success and optimizing heterologous protein synthesis. In sum, this study provides the most compelling evidence so far for the role of multiple PTMs in the stability and solubility of heterologously expressed recombinant proteins. PMID:22674579

  2. Process conditions affect starch structure and its interactions with proteins in rice pasta.

    PubMed

    Barbiroli, Alberto; Bonomi, Francesco; Casiraghi, Maria Cristina; Iametti, Stefania; Pagani, Maria Ambrogina; Marti, Alessandra

    2013-02-15

    Structural changes of starch and proteins in rice pasta were investigated as a function of raw-materials and pasta-making conditions, and their impact on cooking behaviour and glycaemic index was assessed. Rice pasta was prepared from untreated or parboiled rice flour by conventional extrusion or by extrusion-cooking. Starch structure was studied by assessing starch accessibility to specific enzymes (α-amylase and pullulanase), and by evaluating the molecular properties of fragments from enzymatic action. Protein solubility in presence/absence of chaotropes and accessibility of protein cysteine thiols allowed to evaluate the intensity and nature of inter-protein interactions. Parboiling stiffens the protein network in rice flour and makes starch more accessible to hydrolysis. Pasta-making induced further changes in the starch structure, that were most evident in pasta made from untreated rice and were mainly related to the amylopectin fraction. Thus, the interplay among structural modifications on starch and/or proteins affects the features of products. PMID:23399230

  3. Microbial composition affects the functioning of estuarine sediments

    PubMed Central

    Reed, Heather E; Martiny, Jennifer BH

    2013-01-01

    Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. PMID:23235294

  4. Nanostructured functional films from engineered repeat proteins

    PubMed Central

    Grove, Tijana Z.; Regan, Lynne; Cortajarena, Aitziber L.

    2013-01-01

    Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR). We have designed three peptide-binding sites into the 18 repeat CTPR to allow for further specific and non-covalent functionalization of films through binding of fluorescein labelled peptides. The fluorescence signal from the peptide ligand bound to the protein in the solid film is anisotropic, demonstrating that CTPR films can impose order on otherwise isotropic moieties. Circular dichroism measurements show that the individual protein molecules retain their secondary structure in the film, and X-ray scattering, birefringence and atomic force microscopy experiments confirm macroscopic alignment of CTPR molecules within the film. This work opens the door to the generation of innovative biomaterials with tailored structure and function. PMID:23594813

  5. [Location and functions of secretagogin protein].

    PubMed

    Liu, Qin; Lai, Maode

    2016-01-01

    Secretagogin (SCGN) is a novel member of EF-hand Ca2+-binding proteins, which was identified in islet β cells by Wagner. SCGN is a six EF-hand Ca2+-binding protein, primarily expressed on the neuroendocrine axis and the central nervous system. The protein has abundant biological functions. A certain concentration of calcium ion can lead to conformation change of SCGN, resulting in the change of intracellular signal transduction. Preliminary studies showed that SCGN would be used to treat stress reaction, such as mental illness (depression), burns or post-traumatic stress disorder and chronic stress reaction caused by pain. In Alzheimer's disease, the expression of SCGN in the hippocampus can boycott neurodegeneration. In neuroendocrine tumors, SCGN presents a good consistency with neuroendocrine markers such as CgA, Syn, and NSE, with a higher overall sensitivity and specificity. In addition, SCGN is released into serum after neural damage in cerebral ischemic diseases, suggesting that SCGN can be used as a marker for brain trauma. In this article, we review the recent research progress of secretagogin, focus on its distribution and functions in various tumorous diseases and non-tumorous diseases, such as Alzheimer's disease. PMID:27045242

  6. A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

    PubMed Central

    Eronina, Tatyana; Borzova, Vera; Maloletkina, Olga; Kleymenov, Sergey; Asryants, Regina; Markossian, Kira; Kurganov, Boris

    2011-01-01

    To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = Kagg(T−T0)2, where Kagg is the parameter characterizing the initial rate of aggregation and T0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets. PMID:21760963

  7. [Functions of prion protein PrPc].

    PubMed

    Cazaubon, Sylvie; Viegas, Pedro; Couraud, Pierre-Olivier

    2007-01-01

    It is now well established that both normal and pathological (or scrapie) isoforms of prion protein, PrPc and PrPsc respectively, are involved in the development and progression of various forms of neurodegenerative diseases, including scrapie in sheep, bovine spongiform encephalopathy (or "mad cow disease") and Creutzfeldt-Jakob disease in human, collectively known as prion diseases. The protein PrPc is highly expressed in the central nervous system in neurons and glial cells, and also present in non-brain cells, such as immune cells or epithelial and endothelial cells. Identification of the physiological functions of PrPc in these different cell types thus appears crucial for understanding the progression of prion diseases. Recent studies highlighted several major roles for PrPc that may be considered in two major domains : (1) cell survival (protection against oxidative stress and apoptosis) and (2) cell adhesion. In association with cell adhesion, distinct functions of PrPc were observed, depending on cell types : neuronal differentiation, epithelial and endothelial barrier integrity, transendothelial migration of monocytes, T cell activation. These observations suggest that PrPc functions may be particularly relevant to cellular stress, as well as inflammatory or infectious situations. PMID:17875293

  8. Collective prediction of protein functions from protein-protein interaction networks

    PubMed Central

    2014-01-01

    Background Automated assignment of functions to unknown proteins is one of the most important task in computational biology. The development of experimental methods for genome scale analysis of molecular interaction networks offers new ways to infer protein function from protein-protein interaction (PPI) network data. Existing techniques for collective classification (CC) usually increase accuracy for network data, wherein instances are interlinked with each other, using a large amount of labeled data for training. However, the labeled data are time-consuming and expensive to obtain. On the other hand, one can easily obtain large amount of unlabeled data. Thus, more sophisticated methods are needed to exploit the unlabeled data to increase prediction accuracy for protein function prediction. Results In this paper, we propose an effective Markov chain based CC algorithm (ICAM) to tackle the label deficiency problem in CC for interrelated proteins from PPI networks. Our idea is to model the problem using two distinct Markov chain classifiers to make separate predictions with regard to attribute features from protein data and relational features from relational information. The ICAM learning algorithm combines the results of the two classifiers to compute the ranks of labels to indicate the importance of a set of labels to an instance, and uses an ICA framework to iteratively refine the learning models for improving performance of protein function prediction from PPI networks in the paucity of labeled data. Conclusion Experimental results on the real-world Yeast protein-protein interaction datasets show that our proposed ICAM method is better than the other ICA-type methods given limited labeled training data. This approach can serve as a valuable tool for the study of protein function prediction from PPI networks. PMID:24564855

  9. Pretreatment of amphiphilic comb polymer surfaces dramatically affects protein adsorption.

    PubMed

    Zhang, Zhanping; Ma, Hongwei; Hausner, Douglas B; Chilkoti, Ashutosh; Beebe, Thomas P

    2005-01-01

    New applications in regenerative biotechnology require the ability to understand and control protein-surface interactions on micrometer and submicrometer length scales. Evidence presented here shows that micropatterned amphiphilic comb polymer films exhibit a pretreatment-dependent behavior with respect to protein adsorption for the proteins fibronectin, laminin, and for serum. A micropatterned surface, consisting of protein-reactive regions, separated by comb polymer, was created and tested for protein adsorption using the surface-sensitive imaging tool TOF-SIMS. Immersion of micropatterned surfaces in solutions of fibronectin or laminin resulted in uniform protein coverage on both the comb polymer and protein-reactive regions. However, preimmersion of similarly patterned surfaces in water for 2 h prior to protein incubation was found to dramatically improve the protein-resistant properties of the comb polymer regions. These results are consistent with poly(ethylene glycol) (PEG) side chain reorientation and/or hydration and poly(methyl methacrylate) (PMMA) backbone segregation away from the interface region. PMID:16283770

  10. Functions and possible provenance of primordial proteins.

    PubMed

    Sommer, Andrei P; Miyake, Norimune; Wickramasinghe, N Chandra; Narlikar, Jayant V; Al-Mufti, Shirwan

    2004-01-01

    Nanobacteria or living nanovesicles are of great interest to the scientific community because of their dual nature: on the one hand, they appear as primal biosystems originating life; on the other hand, they can cause severe diseases. Their survival as well as their pathogenic potential is apparently linked to a self-synthesized protein-based slime, rich in calcium and phosphate (when available). Here, we provide challenging evidence for the occurrence of nanobacteria in the stratosphere, reflecting a possibly primordial provenance of the slime. An analysis of the slime's biological functions may lead to novel strategies suitable to block adhesion modalities in modern bacterial populations. PMID:15595742

  11. Overlapping functions of the yeast oxysterol-binding protein homologues.

    PubMed Central

    Beh, C T; Cool, L; Phillips, J; Rine, J

    2001-01-01

    The Saccharomyces cerevisiae genome encodes seven homologues of the mammalian oxysterol-binding protein (OSBP), a protein implicated in lipid trafficking and sterol homeostasis. To determine the functions of the yeast OSBP gene family (OSH1-OSH7), we used a combination of genetics, genomics, and sterol lipid analysis to characterize OSH deletion mutants. All 127 combinations and permutations of OSH deletion alleles were constructed. Individual OSH genes were not essential for yeast viability, but the elimination of the entire gene family was lethal. Thus, the family members shared an essential function. In addition, the in vivo depletion of all Osh proteins disrupted sterol homeostasis. Like mutants that affect ergosterol production, the viable combinations of OSH deletion alleles exhibited specific sterol-related defects. Although none of the single OSH deletion mutants was defective for growth, gene expression profiles revealed that each mutant had a characteristic molecular phenotype. Therefore, each gene performed distinct nonessential functions and contributed to a common essential function. Our findings indicated that OSH genes performed a multitude of nonessential roles defined by specific subsets of the genes and that most shared at least one essential role potentially linked to changes in sterol lipid levels. PMID:11238399

  12. Probing High-density Functional Protein Microarrays to Detect Protein-protein Interactions.

    PubMed

    Fasolo, Joseph; Im, Hogune; Snyder, Michael P

    2015-01-01

    High-density functional protein microarrays containing ~4,200 recombinant yeast proteins are examined for kinase protein-protein interactions using an affinity purified yeast kinase fusion protein containing a V5-epitope tag for read-out. Purified kinase is obtained through culture of a yeast strain optimized for high copy protein production harboring a plasmid containing a Kinase-V5 fusion construct under a GAL inducible promoter. The yeast is grown in restrictive media with a neutral carbon source for 6 hr followed by induction with 2% galactose. Next, the culture is harvested and kinase is purified using standard affinity chromatographic techniques to obtain a highly purified protein kinase for use in the assay. The purified kinase is diluted with kinase buffer to an appropriate range for the assay and the protein microarrays are blocked prior to hybridization with the protein microarray. After the hybridization, the arrays are probed with monoclonal V5 antibody to identify proteins bound by the kinase-V5 protein. Finally, the arrays are scanned using a standard microarray scanner, and data is extracted for downstream informatics analysis to determine a high confidence set of protein interactions for downstream validation in vivo. PMID:26274875

  13. Can the hydrophilicity of functional monomers affect chemical interaction?

    PubMed

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts. PMID:24284259

  14. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

    PubMed

    Smith, Everett Clinton; Smith, Stacy E; Carter, James R; Webb, Stacy R; Gibson, Kathleen M; Hellman, Lance M; Fried, Michael G; Dutch, Rebecca Ellis

    2013-12-13

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion. PMID:24178297

  15. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    PubMed

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors. PMID:26992923

  16. Physiological Functions of APP Family Proteins

    PubMed Central

    Müller, Ulrike C.; Zheng, Hui

    2012-01-01

    Biochemical and genetic evidence establishes a central role of the amyloid precursor protein (APP) in Alzheimer disease (AD) pathogenesis. Biochemically, deposition of the β-amyloid (Aβ) peptides produced from proteolytic processing of APP forms the defining pathological hallmark of AD; genetically, both point mutations and duplications of wild-type APP are linked to a subset of early onset of familial AD (FAD) and cerebral amyloid angiopathy. As such, the biological functions of APP and its processing products have been the subject of intense investigation, and the past 20+ years of research have met with both excitement and challenges. This article will review the current understanding of the physiological functions of APP in the context of APP family members. PMID:22355794

  17. Multiple functions of microsomal triglyceride transfer protein

    PubMed Central

    2012-01-01

    Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition. PMID:22353470

  18. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency

    NASA Astrophysics Data System (ADS)

    Kim, Young Eun; Kim, Yu-Na; Kim, Jung A.; Kim, Ho Min; Jung, Yongwon

    2015-05-01

    Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein-protein interactions and tools to manipulate receptor clustering on live cell surfaces.

  19. Glucose Autoxidation Induces Functional Damage to Proteins via Modification of Critical Arginine Residues†

    PubMed Central

    Chetyrkin, Sergei; Mathis, Missy; Pedchenko, Vadim; Sanchez, Otto A.; McDonald, W. Hayes; Hachey, David L.; Madu, Hartman; Stec, Donald; Hudson, Billy; Voziyan, Paul

    2011-01-01

    Non-enzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to αVβ3 integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while non-oxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation. PMID:21661747

  20. Nuclear cyclophilins affect spliceosome assembly and function in vitro

    PubMed Central

    Adams, B.M.; Coates, Miranda N.; Jackson, S. RaElle; Jurica, Melissa S.; Davis, Tara L.

    2015-01-01

    Cyclophilins are ubiquitously expressed proteins that bind to prolines and can catalyse cis/trans isomerization of proline residues. There are 17 annotated members of the cyclophilin family in humans, ubiquitously expressed and localized variously to the cytoplasm, nucleus or mitochondria. Surprisingly, all eight of the nuclear localized cyclophilins are found associated with spliceosomal complexes. However, their particular functions within this context are unknown. We have therefore adapted three established assays for in vitro pre-mRNA splicing to probe the functional roles of nuclear cyclophilins in the context of the human spliceosome. We find that four of the eight spliceosom-associated cyclophilins exert strong effects on splicing in vitro. These effects are dose-dependent and, remarkably, uniquely characteristic of each cyclophilin. Using both qualitative and quantitative means, we show that at least half of the nuclear cyclophilins can act as regulatory factors of spliceosome function in vitro. The present work provides the first quantifiable evidence that nuclear cyclophilins are splicing factors and provides a novel approach for future work into small molecule-based modulation of pre-mRNA splicing. PMID:25967372

  1. Dietary proteins and functional gastrointestinal disorders.

    PubMed

    Boettcher, Erica; Crowe, Sheila E

    2013-05-01

    Food intolerance is a common complaint amongst patients with functional gastrointestinal (GI) disorders (FGIDs), including those with irritable bowel syndrome (IBS), functional dyspepsia, as well as gastroesophageal reflux disease. Although there has been a longstanding interest in the possible role of food allergy in IBS, there are limited data supporting the association. However, the prevalence of food allergy is sufficiently high that patients with FGID may also have food allergies or hypersensitivities. Food intolerances or sensitivities are reactions to foods, which are not due to immunological mechanisms. Lactose intolerance is common in the general population and can mimic symptoms of FGID or coexist with FGID. As discussed in other articles in this series, other carbohydrate intolerances may be responsible for symptom generation in patients with IBS and perhaps other FGIDs. There is a great interest in the role of a major dietary protein, gluten, in the production of symptoms that are very similar to those of patients with celiac disease without the enteropathy that characterizes celiac disease. Emerging research into a syndrome known as nonceliac gluten sensitivity suggests a heterogeneous condition with some features of celiac disease but often categorized as FGIDs, including IBS. This article summarizes the role of dietary proteins in the symptoms and pathophysiology of FGIDs. PMID:23567359

  2. Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

    PubMed

    Rocheleau, Gail; Petrillo, Jessica; Guogas, Laura; Gehrke, Lee

    2004-08-01

    The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity. PMID:15254175

  3. Functionalized periodic mesoporous organosilicas for selective adsorption of proteins

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Liu, Xiaoyan; Chen, Tong; Xu, Zhigang; Yan, Wenfu; Zhang, Haixia

    2012-07-01

    The periodic mesoporous organosilicas (PMO) with an organobridged (sbnd CH2sbnd ) was synthesized and functionalized with amino or carboxylic groups by post-synthesis methods. The functionalized PMO by changing the hydrophilic/hydrophobic property and the net charge could be used to selectively adsorb and purify proteins with different shapes and different isoelectric points (pI). The experimental result showed that Bovine serum albumin (BSA) was adsorbed quicker than hemoglobin (Hb) on the materials, and lysozyme (Lys) could not be adsorbed on these PMO materials at all. The adsorption capacity of amino groups modified PMO (PMO-(NH2)2) for BSA was 44.67 mg/g and 300.0 mg/gfor Hb on carboxylic groups modified PMO (PMO-(COOH)2). The adsorption behavior of proteins was affected strongly by the interaction among different constituents in the mixture of proteins. In addition, it is found that the adsorption rate of (PMO-(NH2)2 for adsorption of proteins was much slower than PMO-(COOH)2.

  4. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  5. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells.

    PubMed

    Ballweg, Korbinian; Mutze, Kathrin; Königshoff, Melanie; Eickelberg, Oliver; Meiners, Silke

    2014-12-01

    Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD. PMID:25326581

  6. Characterization of the functional properties of carob germ proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins from the carob germ were identified as having gluten-like proteins in 1935. While some biochemical characterization of carob germ proteins and their functionality has been carried out, relatively little has been done when compared to proteins such as gluten. Carob germ proteins were separ...

  7. Bisphenol A affects androgen receptor function via multiple mechanisms

    PubMed Central

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B. Alex; Jetten, Anton M.; Austin, Christopher, P.; Tice, Raymond R.

    2013-01-01

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  8. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  9. The E4 protein; structure, function and patterns of expression

    SciTech Connect

    Doorbar, John

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  10. Can lifestyle modification affect men’s erectile function?

    PubMed Central

    Hehemann, Marah C.

    2016-01-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  11. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  12. Role of PDZ Proteins in Regulating Trafficking, Signaling, and Function of GPCRs: Means, Motif, and Opportunity

    PubMed Central

    Romero, Guillermo; von Zastrow, Mark; Friedman, Peter A.

    2016-01-01

    PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200–300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein–protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates. PMID:21907913

  13. Integrating Negative Affect Measures in a Measurement Model: Assessing the Function of Negative Affect as Interference to Self-Regulation

    ERIC Educational Resources Information Center

    Magno, Carlo

    2010-01-01

    The present study investigated the composition of negative affect and its function as inhibitory to thought processes such as self-regulation. Negative affect in the present study were composed of anxiety, worry, thought suppression, and fear of negative evaluation. These four factors were selected based on the criteria of negative affect by…

  14. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  15. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity

    PubMed Central

    Colbert, Paul L.; Vermeer, Daniel W.; Wieking, Bryant G.; Lee, John H.; Vermeer, Paola D.

    2015-01-01

    Microtubules (MTs) are components of the cytoskeleton made up of polymerized alpha and beta tubulin dimers. MT structure and function must be maintained throughout the cell cycle to ensure proper execution of mitosis and cellular homeostasis. The protein tyrosine phosphatase, PTPN13, localizes to distinct compartments during mitosis and cytokinesis. We have previously demonstrated that the HPV16 E6 oncoprotein binds PTPN13 and leads to its degradation. Thus, we speculated that HPV infection may affect cellular proliferation by altering the localization of a PTPN13 phosphatase substrate, EphrinB1, during mitosis. Here we report that EphrinB1 co-localizes with MTs during all phases of the cell cycle. Specifically, a cleaved, unphosphorylated EphrinB1 fragment directly binds tubulin, while its phosphorylated form lacks MT binding capacity. These findings suggest that EphrinB1 is a novel microtubule associated protein (MAP). Importantly, we show that in the context of HPV16 E6 expression, EphrinB1 affects taxane response in vitro. We speculate that this reflects PTPN13's modulation of EphrinB1 phosphorylation and suggest that EphrinB1 is an important contributor to taxane sensitivity/resistance phenotypes in epithelial cancers. Thus, HPV infection or functional mutations of PTPN13 in non-viral cancers may predict taxane sensitivity. PMID:25436983

  16. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  17. Functional Characterization of Clostridium difficile Spore Coat Proteins

    PubMed Central

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R.; Fairweather, Neil; Hong, Huynh A.

    2013-01-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. PMID:23335421

  18. Grape polyphenols do not affect vascular function in healthy men.

    PubMed

    van Mierlo, Linda A J; Zock, Peter L; van der Knaap, Henk C M; Draijer, Richard

    2010-10-01

    Data suggest that polyphenol-rich products may improve endothelial function and other cardiovascular health risk factors. Grape and wine contain high amounts of polyphenols, but effects of these polyphenols have hardly been investigated in isolation in randomized controlled studies. Our objective in this study was to test the chronic effect of polyphenol-rich solids derived from either a wine grape mix or grape seed on flow-mediated dilation (FMD). Blood pressure and other vascular function measures, platelet function, and blood lipids were secondary outcomes. Thirty-five healthy males were randomized in a double-blind, placebo-controlled crossover study consisting of three 2-wk intervention periods separated by 1-wk washout periods. The test products, containing 800 mg of polyphenols, were consumed as capsules. At the end of each intervention period, effects were measured after consumption of a low-fat breakfast (~751 kJ, 25% fat) and a high-fat lunch (~3136 kJ, 78% fat). After the low-fat breakfast, the treatments did not significantly affect FMD. The absolute difference after the wine grape solid treatment was -0.4% (95% CI = -1.8 to 0.9; P = 0.77) and after grape seed solids, 0.2% (95% CI = -1.2 to 1.5; P = 0.94) compared with after the placebo treatment. FMD effects after the high-fat lunch and effects on secondary outcomes also showed no consistent differences between both of the grape solids and placebo treatment. In conclusion, consumption of grape polyphenols has no major impact on FMD in healthy men. Future studies should address whether grape polyphenols can improve FMD and other cardiovascular health risk factors in populations with increased cardiovascular risk. PMID:20702747

  19. Does Bowel Preparation for Colonoscopy Affect Cognitive Function?

    PubMed Central

    Wadsworth, P.; Blackburne, H.; Dixon, L.; Dobbs, B.; Eglinton, T.; Ing, A.; Mulder, R.; Porter, R.J.; Wakeman, C.; Frizelle, F.A.

    2015-01-01

    Abstract Colonoscopy is a common procedure used in the diagnosis and treatment of a range of bowel disorders. Prior preparation involving potent laxatives is a necessary stage to ensure adequate visualization of the bowel wall. It is known that the sedatives given to most patients during the colonoscopy cause a temporary impairment in cognitive function; however, the potential for bowel preparation to affect cognitive function has not previously been investigated. To assess the effect of bowel preparation for colonoscopy on cognitive function. This was a prospective, nonrandomized controlled study of cognitive function in patients who had bowel preparation for colonoscopy compared with those having gastroscopy and therefore no bowel preparation. Cognitive function was assessed using the Modified Mini Mental State Examination (MMMSE) and selected tests from the Cambridge Neuropsychological Test Automated Battery. Individual test scores and changes between initial and subsequent tests were compared between the groups. Age, gender, and weight were also compared. Forty-three colonoscopy and 25 gastroscopy patients were recruited. The 2 groups were similar for age and gender; however, patients having gastroscopy were heavier. MMMSE scores for colonoscopy and gastroscopy groups, respectively, were 28.6 and 29.5 (P = 0.24) at baseline, 28.7 and 29.8 (P = 0.32) at test 2, 28.1 and 28.5 (P = 0.76) at test 3. Motor screening scores for colonoscopy and gastroscopy groups, respectively, were 349.3 and 354.1 (P = 0.97) at baseline, 307.5 and 199.7 (P = 0.06) at test 2, 212.0 and 183.2 (P = 0.33) at test 3. Spatial working memory scores for colonoscopy and gastroscopy groups, respectively, were 14.4 and 6.7 (P = 0.29) at baseline, 9.7 and 4.3 (P = 0.27) at test 2, 10 and 4.5 (P = 0.33) at test 3. Digit Symbol Substitution Test scores for colonoscopy and gastroscopy groups, respectively, were 36.3 and 37.8 (P = 0.84) at baseline, 36.4 and

  20. Does Bowel Preparation for Colonoscopy Affect Cognitive Function?

    PubMed

    Wadsworth, P; Blackburne, H; Dixon, L; Dobbs, B; Eglinton, T; Ing, A; Mulder, R; Porter, R J; Wakeman, C; Frizelle, F A

    2015-11-01

    Colonoscopy is a common procedure used in the diagnosis and treatment of a range of bowel disorders. Prior preparation involving potent laxatives is a necessary stage to ensure adequate visualization of the bowel wall. It is known that the sedatives given to most patients during the colonoscopy cause a temporary impairment in cognitive function; however, the potential for bowel preparation to affect cognitive function has not previously been investigated. To assess the effect of bowel preparation for colonoscopy on cognitive function. This was a prospective, nonrandomized controlled study of cognitive function in patients who had bowel preparation for colonoscopy compared with those having gastroscopy and therefore no bowel preparation. Cognitive function was assessed using the Modified Mini Mental State Examination (MMMSE) and selected tests from the Cambridge Neuropsychological Test Automated Battery. Individual test scores and changes between initial and subsequent tests were compared between the groups. Age, gender, and weight were also compared. Forty-three colonoscopy and 25 gastroscopy patients were recruited. The 2 groups were similar for age and gender; however, patients having gastroscopy were heavier. MMMSE scores for colonoscopy and gastroscopy groups, respectively, were 28.6 and 29.5 (P = 0.24) at baseline, 28.7 and 29.8 (P = 0.32) at test 2, 28.1 and 28.5 (P = 0.76) at test 3. Motor screening scores for colonoscopy and gastroscopy groups, respectively, were 349.3 and 354.1 (P = 0.97) at baseline, 307.5 and 199.7 (P = 0.06) at test 2, 212.0 and 183.2 (P = 0.33) at test 3. Spatial working memory scores for colonoscopy and gastroscopy groups, respectively, were 14.4 and 6.7 (P = 0.29) at baseline, 9.7 and 4.3 (P = 0.27) at test 2, 10 and 4.5 (P = 0.33) at test 3. Digit Symbol Substitution Test scores for colonoscopy and gastroscopy groups, respectively, were 36.3 and 37.8 (P = 0.84) at baseline, 36.4 and 40.0 (P

  1. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  2. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  3. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12.

    PubMed

    Ueno-Noto, Kaori; Takano, Keiko

    2016-10-01

    Water molecules inside biomolecules constitute integral parts of their structure and participate in the functions of the proteins. Some of the X-ray crystallographic data are insufficient for analyzing a series of ligand-protein complexes in the same condition. We theoretically investigated antibody binding abilities of saccharide ligands and the effects of the inner water molecules of ligand-antibody complexes. Classical molecular dynamics and quantum chemical simulations using a model with possible water molecules inside the protein were performed with saccharide ligands and Human Immunodeficiency Virus 1 neutralizing antibody 2G12 complexes to estimate how inner water molecules of the protein affect the dynamics of the complexes as well as the ligand-antibody interaction. Our results indicate the fact that d-fructose's strong affinity to the antibody was partly due to the good retentiveness of solvent water molecules of the ligand and its stability of the ligand's conformation and relative position in the active site. © 2016 Wiley Periodicals, Inc. PMID:27388036

  4. Protein composition affects variation in coagulation properties of buffalo milk.

    PubMed

    Bonfatti, V; Gervaso, M; Rostellato, R; Coletta, A; Carnier, P

    2013-07-01

    The aim of this study was to investigate the effects exerted by the content of casein and whey protein fractions on variation of pH, rennet-coagulation time (RCT), curd-firming time (K20), and curd firmness of Mediterranean buffalo individual milk. Measures of milk protein composition and assessment of genotypes at CSN1S1 and CSN3 were obtained by reversed-phase HPLC analysis of 621 individual milk samples. Increased content of αS1-casein (CN) was associated with delayed coagulation onset and increased K20, whereas average pH, RCT, and K20 decreased when β-CN content increased. Milk with low κ-CN content exhibited low pH and RCT relative to milk with high content of κ-CN. Increased content of glycosylated κ-CN was associated with unfavorable effects on RCT. Effects of milk protein composition on curd firmness were less important than those on pH, RCT, and K20. Likely, this occurred as a consequence of the very short RCT of buffalo milk, which guaranteed a complete strengthening of the curd even in the restricted 31 min time of analysis of coagulation properties and for samples initially showing soft curds. Effects of CSN1S1-CSN3 genotypes on coagulation properties were not to be entirely ascribed to existing variation in milk protein composition associated with polymorphisms at CSN1S1 and CSN3 genes. Although the role of detailed milk protein composition in variation of cheese yield needs to be further investigated, findings of this study suggest that modification of the relative content of specific CN fractions can relevantly influence the behavior of buffalo milk during processing. PMID:23684020

  5. How special is the biochemical function of native proteins?

    PubMed Central

    Skolnick, Jeffrey; Gao, Mu; Zhou, Hongyi

    2016-01-01

    Native proteins perform an amazing variety of biochemical functions, including enzymatic catalysis, and can engage in protein-protein and protein-DNA interactions that are essential for life. A key question is how special are these functional properties of proteins. Are they extremely rare, or are they an intrinsic feature? Comparison to the properties of compact conformations of artificially generated compact protein structures selected for thermodynamic stability but not any type of function, the artificial (ART) protein library, demonstrates that a remarkable number of the properties of native-like proteins are recapitulated. These include the complete set of small molecule ligand-binding pockets and most protein-protein interfaces. ART structures are predicted to be capable of weakly binding metabolites and cover a significant fraction of metabolic pathways, with the most enriched pathways including ancient ones such as glycolysis. Native-like active sites are also found in ART proteins. A small fraction of ART proteins are predicted to have strong protein-protein and protein-DNA interactions. Overall, it appears that biochemical function is an intrinsic feature of proteins which nature has significantly optimized during evolution. These studies raise questions as to the relative roles of specificity and promiscuity in the biochemical function and control of cells that need investigation. PMID:26962440

  6. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.

    PubMed

    Eshpari, H; Jimenez-Flores, R; Tong, P S; Corredig, M

    2015-12-01

    Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble

  7. Next generation high density self assembling functional protein arrays

    PubMed Central

    Ramachandran, Niroshan; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Fuentes, Manuel G.; Rolfs, Andreas; Hu, Yanhui; LaBaer, Joshua

    2009-01-01

    We report a high-density self assembling protein microarray that displays thousands of proteins, produced and captured in situ from immobilized cDNA templates. Over 1500 unique cDNAs were tested with > 90% success with nearly all proteins displaying yields within 2 fold of the mean, minimal sample variation and good day to day reproducibility. The displayed proteins revealed selective protein interactions. This method will enable various experimental approaches to study protein function in high throughput. PMID:18469824

  8. The Chromatin-binding Protein HMGN1 Regulates the Expression of Methyl CpG-binding Protein 2 (MECP2) and Affects the Behavior of Mice*

    PubMed Central

    Abuhatzira, Liron; Shamir, Alon; Schones, Dustin E.; Schäffer, Alejandro A.; Bustin, Michael

    2011-01-01

    High mobility group N1 protein (HMGN1), a nucleosomal-binding protein that affects the structure and function of chromatin, is encoded by a gene located on chromosome 21 and is overexpressed in Down syndrome, one of the most prevalent genomic disorders. Misexpression of HMGN1 affects the cellular transcription profile; however, the biological function of this protein is still not fully understood. We report that HMGN1 modulates the expression of methyl CpG-binding protein 2 (MeCP2), a DNA-binding protein known to affect neurological functions including autism spectrum disorders, and whose alterations in HMGN1 levels affect the behavior of mice. Quantitative PCR and Western analyses of cell lines and brain tissues from mice that either overexpress or lack HMGN1 indicate that HMGN1 is a negative regulator of MeCP2 expression. Alterations in HMGN1 levels lead to changes in chromatin structure and histone modifications in the MeCP2 promoter. Behavior analyses by open field test, elevated plus maze, Reciprocal Social Interaction, and automated sociability test link changes in HMGN1 levels to abnormalities in activity and anxiety and to social deficits in mice. Targeted analysis of the Autism Genetic Resource Exchange genotype collection reveals a non-random distribution of genotypes within 500 kbp of HMGN1 in a region affecting its expression in families predisposed to autism spectrum disorders. Our results reveal that HMGN1 affects the behavior of mice and suggest that epigenetic changes resulting from altered HMGN1 levels could play a role in the etiology of neurodevelopmental disorders. PMID:22009741

  9. Candidate genes that affect aging through protein homeostasis.

    PubMed

    Argon, Yair; Gidalevitz, Tali

    2015-01-01

    Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans. We highlight several themes that emerge from recent research—the interconnections of pathways that regulate aging, the pleiotropic effects of mutations and other manipulations of the candidate proteins and the tissue specificity in these pleiotropic outcomes. This body of knowledge highlights the need for multiple specific readouts of manipulating longevity genes, beyond measuring lifespan, as well as the need to understand the integrated picture, beyond examining the immediate outputs of individual longevity pathways. PMID:25916585

  10. Functional proteins from a random-sequence library

    PubMed Central

    Keefe, Anthony D; Szostak, Jack W.

    2015-01-01

    Functional primordial proteins presumably originated from random sequences, but it is not known how frequently functional, or even folded, proteins occur in collections of random sequences. Here we have used in vitro selection of messenger RNA displayed proteins, in which each protein is covalently linked through its carboxy terminus to the 3′ end of its encoding mRNA1, to sample a large number of distinct random sequences. Starting from a library of 6 × 1012 proteins each containing 80 contiguous random amino acids, we selected functional proteins by enriching for those that bind to ATP. This selection yielded four new ATP-binding proteins that appear to be unrelated to each other or to anything found in the current databases of biological proteins. The frequency of occurrence of functional proteins in random-sequence libraries appears to be similar to that observed for equivalent RNA libraries2,3. PMID:11287961

  11. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions

    PubMed Central

    Antonucci, Flavia; Corradini, Irene; Fossati, Giuliana; Tomasoni, Romana; Menna, Elisabetta; Matteoli, Michela

    2016-01-01

    A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different “synaptopathies”. The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions. PMID:27047369

  12. Protein sources for finishing calves as affected by management system.

    PubMed

    Sindt, M H; Stock, R A; Klopfenstein, T J; Vieselmeyer, B A

    1993-03-01

    Two beef production systems were evaluated in conjunction with an evaluation of escape protein sources for finishing calves. Two hundred forty crossbred steers and 80 crossbred heifer calves (BW = 267 +/- 2 kg) were split into two groups: 1) control, finished (207 d) after a 3-wk feedlot adjustment period and 2) grazing cornstalks for 74 d after a 3-wk feedlot adjustment period, then finished (164 d). Finishing treatments were sources and proportions of supplemental CP: 1) urea 100%; 2) soybean meal (SBM) 100%; 3) blood meal (BM) 50%, urea 50%; 4) feather meal (FTH) 50%, urea 50%; 5) SBM 50%, FTH 25%, urea 25%; 6) SBM 25%, FTH 38%, urea 37%; 7) FTH 25%, BM 25%, urea 50%, and 8) FTH 38%, BM 13%, urea 50%. Treatments 1 to 8 were fed in dry-rolled corn (DRC)-based diets. Treatments 9 and 10 were supplement Treatments 1 and 7 fed in diets based on high-moisture corn. Calves finished after a 74-d period of grazing cornstalks consumed more feed (P < .01) and gained faster (P < .01) but were less efficient (P < .05) than calves finished directly after weaning. Although not statistically different, calves finished after grazing cornstalks and supplemented with natural protein in the feedlot were 7% more efficient than calves supplemented with urea alone. Efficiency of calves finished directly after weaning was similar for calves supplemented with natural protein or urea alone. Supplementing SBM/FTH/urea or BM/FTH/urea improved feed efficiency compared with supplementing FTH/urea alone. These data suggest that allowing calves to graze cornstalks before finishing is a possible management option, but this system may require more metabolizable protein in the finishing diet to maximize feed efficiency if the calves are expressing compensatory growth. PMID:8463161

  13. Marginal B-6 intake affects protein synthesis in rat tissues

    SciTech Connect

    Sampson, D.A.; Kretsch, M.J.; Young, L.A.; Jansen, G.R.

    1986-03-05

    The role of vitamin B-6 in amino acid metabolism suggests that inadequate B-6 intake may impair protein synthesis. To test this hypothesis, 30 male rats (initially 227 g) were fed AIN76A diets that contained control, marginal or devoid levels of B-6 (5.8, 1.2 or 0.1 mg B-6/kg diet, by analysis) ad libitum for 9 weeks. Protein synthesis rates (PSRs) were measured in liver, kidney and calf muscle using a flooding dose of /sup 3/H-phenylalanine. Marginal and control groups ate and gained weight at similar rates. The marginal diet did not elevate xanthurenic acid (XA) excretion following a tryptophan load. However, marginal B-6 intake did depress liver PSR by 29% (2182 vs 1549 mg/day, P<.05), liver wet weight by 15% (19.0 vs 16.1 g, P<.05) and muscle PSR by 23% (3.0 vs 2.3%/day, P<.10). Unexpectedly, marginal B-6 intake increased PSR in kidney 47% (90 vs 132 mg/day, P<.05). The devoid diet, which increased XA excretion following a tryptophan load by more than 3-fold, depressed PSRs 56% in liver and 31% in muscle. However, the devoid diet decreased food intake by 40% (25.0 vs 15.0 g/day); therefore effects of devoid B-6 intake on PSRs may have been confounded by deficits in protein-energy intake in devoid vs control groups. These data demonstrate that marginal B-6 intake alters protein synthesis in tissues of the rat.

  14. Using search engine technology for protein function prediction.

    PubMed

    Chen, Ziyang; Cai, Zhao; Li, Min; Liu, Binbin

    2011-01-01

    Prediction of protein function is one of the most challenging problems in the post-genomic era. In this paper, we propose a novel algorithm Improved ProteinRank (IPR) for protein function prediction, which is based on the search engine technology and the preferential attachment criteria. In addition, an improved algorithm IPRW is developed from IPR to be used in the weighted protein?protein interaction (PPI) network. The proposed algorithms IPR and IPRW are applied to the PPI network of S.cerevisiae. The experimental results show that both IPR and IPRW outweigh the previous methods for the prediction of protein functions. PMID:21441099

  15. Synthetic protein interactions reveal a functional map of the cell

    PubMed Central

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  16. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells.

    PubMed

    Tu, Lan N; Zhao, Amy H; Hussein, Mahmoud; Stocco, Douglas M; Selvaraj, Vimal

    2016-03-01

    Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism. PMID:26741196

  17. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  18. The CCN family of proteins: structure–function relationships

    PubMed Central

    Holbourn, Kenneth P.; Acharya, K. Ravi; Perbal, Bernard

    2008-01-01

    The CCN proteins are key signalling and regulatory molecules involved in many vital biological functions, including cell proliferation, angiogenesis, tumourigenesis and wound healing. How these proteins influence such a range of functions remains incompletely understood but is probably related to their discrete modular nature and a complex array of intra- and inter-molecular interactions with a variety of regulatory proteins and ligands. Although certain aspects of their biology can be attributed to the four individual modules that constitute the CCN proteins, recent results suggest that some of their biological functions require cooperation between modules. Indeed, the modular structure of CCN proteins provides important insight into their structure–function relationships. PMID:18789696

  19. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.

    PubMed

    Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming

    2016-07-01

    Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences. PMID:27267620

  20. Integrated protein function prediction by mining function associations, sequences, and protein–protein and gene–gene interaction networks

    PubMed Central

    Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    Motivations Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein–protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene–gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. Results In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein–protein interaction and spatial gene–gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein–protein interaction and spatial gene–gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile–sequence comparison, profile–profile comparison, and domain co-occurrence networks according to the maximum F-measure. PMID:26370280

  1. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  2. The function of EHD2 in endocytosis and defense signaling is affected by SUMO.

    PubMed

    Bar, Maya; Schuster, Silvia; Leibman, Meirav; Ezer, Ran; Avni, Adi

    2014-03-01

    Post-translational modification of target proteins by the small ubiquitin-like modifier protein (SUMO) regulates many cellular processes. SUMOylation has been shown to regulate cellular localization and function of a variety of proteins, in some cases affecting nuclear import or export. We have previously characterized two EHDs (EH domain containing proteins) in Arabidospis and showed their involvement in plant endocytosis. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and the leucine rich repeat receptor like protein LeEix2, an effect that requires and intact coiled-coil domain. Inhibition of endocytosis of LeEix2 by EHD2 is effective in inhibiting defense responses mediated by the LeEix2 receptor in response to its ligand EIX. In the present work we demonstrate that SUMOylation of EHD2 appears to be required for EHD2-induced inhibition of LeEix2 endocytosis. Indeed, we found that a mutant form of EHD2, possessing a defective SUMOylation site, has an increased nuclear abundance, can no longer be SUMOylated and is no longer effective in inhibiting LeEix2 endocytosis or defense signaling in response to EIX. PMID:24154852

  3. Arabidopsis protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing

    PubMed Central

    Hang, Runlai; Liu, Chunyan; Ahmad, Ayaz; Zhang, Yong; Lu, Falong; Cao, Xiaofeng

    2014-01-01

    Ribosome biogenesis is a fundamental and tightly regulated cellular process, including synthesis, processing, and assembly of rRNAs with ribosomal proteins. Protein arginine methyltransferases (PRMTs) have been implicated in many important biological processes, such as ribosome biogenesis. Two alternative precursor rRNA (pre-rRNA) processing pathways coexist in yeast and mammals; however, how PRMT affects ribosome biogenesis remains largely unknown. Here we show that Arabidopsis PRMT3 (AtPRMT3) is required for ribosome biogenesis by affecting pre-rRNA processing. Disruption of AtPRMT3 results in pleiotropic developmental defects, imbalanced polyribosome profiles, and aberrant pre-rRNA processing. We further identify an alternative pre-rRNA processing pathway in Arabidopsis and demonstrate that AtPRMT3 is required for the balance of these two pathways to promote normal growth and development. Our work uncovers a previously unidentified function of PRMT in posttranscriptional regulation of rRNA, revealing an extra layer of complexity in the regulation of ribosome biogenesis. PMID:25352672

  4. Evolutionary and functional diversity of coronin proteins.

    PubMed

    Xavier, Charles-Peter; Eichinger, Ludwig; Fernandez, M Pilar; Morgan, Reginald O; Clemen, Christoph S

    2008-01-01

    This chapter discusses various aspects of coronin phylogeny, structure and function that are of specific interest. Two subfamilies of ancient coronins of unicellular pathogens such as Entamoeba, Trypanosoma, Leishmania and Acanthamoeba as well as of Plasmodium, Babesia, and Trichomonas are presented in the first two sections. Their coronins generally bind to F-actin and apparently are involved in proliferation, locomotion and phagocytosis. However, there are so far no studies addressing a putative role of coronin in the virulence of these pathogens. The following section delineates genetic anomalies like the chimeric coronin-fusion products with pelckstrin homology and gelsolin domains that are found in amoeba. Moreover, most nonvertebrate metazoa appear to encode CRN8, CRN9 and CRN7 representatives (for these coronin symbols see Chapter 2), but in e.g., Drosophila melanogaster and Caenorhabditis elegans a CRN9 is missing. The forth section deals with the evolutionary expansion of vertebrate coronins. Experimental data on the F-actin binding CRN2 of Xenopus (Xcoronin) including a Cdc42/Rac interactive binding (CRIB) motif that is also present in other members of the coronin protein family are discussed. Xenopus laevis represents a case for the expansion of the seven vertebrate coronins due to tetraploidization events. Other examples for a change in the number of coronin paralogs are zebrafish and birds, but (coronin) gene duplication events also occurred in unicellular protozoa. The fifth section of this chapter briefly summarizes three different cellular processes in which CRN4/CORO1A is involved, namely actin-binding, superoxide generation and Ca(2+)-signaling and refers to the largely unexplored mammalian coronins CRN5/CORO2A and CRN6/CORO2B, the latter binding to vinculin. The final section discusses how, by unveiling the aspects of coronin function in organisms reported so far, one can trace a remarkable evolution and diversity in their individual roles

  5. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  6. INTEGRATING COMPUTATIONAL PROTEIN FUNCTION PREDICTION INTO DRUG DISCOVERY INITIATIVES

    PubMed Central

    Grant, Marianne A.

    2014-01-01

    Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies for identifying valid targets and discovering leads against them as a way of accelerating drug discovery. The ever increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold-standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical and genetic knowledge have emerged. Herein, we review current bioinformatic programs and approaches for protein function prediction/annotation and discuss their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully utilizing the vast amounts of genomic sequence information available to drug discovery and development processes. PMID:25530654

  7. Applications in high-content functional protein microarrays.

    PubMed

    Moore, Cedric D; Ajala, Olutobi Z; Zhu, Heng

    2016-02-01

    Protein microarray technology provides a versatile platform for characterization of hundreds to thousands of proteins in a parallel and high-throughput manner. Over the last decade, applications of functional protein microarrays in particular have flourished in studying protein function at a systems level and have led to the construction of networks and pathways describing these functions. Relevant areas of research include the detection of various binding properties of proteins, the study of enzyme-substrate relationships, the analysis of host-microbe interactions, and profiling antibody specificity. In addition, discovery of novel biomarkers in autoimmune diseases and cancers is emerging as a major clinical application of functional protein microarrays. In this review, we will summarize the recent advances of functional protein microarrays in both basic and clinical applications. PMID:26599287

  8. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes.

    PubMed

    Singh, Puja; Thomas, Geethu Emily; Gireesh, Koyikulangara K; Manna, Tapas K

    2014-11-14

    Centrosome-mediated microtubule nucleation is essential for spindle assembly during mitosis. Although γ-tubulin complexes have primarily been implicated in the nucleation process, details of the underlying mechanisms remain poorly understood. Here, we demonstrated that a member of the human transforming acidic coiled-coil (TACC) protein family, TACC3, plays a critical role in microtubule nucleation at the centrosome. In mitotic cells, TACC3 knockdown substantially affected the assembly of microtubules in the astral region and impaired microtubule nucleation at the centrosomes. The TACC3 depletion-induced mitotic phenotype was rescued by expression of the TACC3 C terminus predominantly consisting of the TACC domain, suggesting that the TACC domain plays an important role in microtubule assembly. Consistently, experiments with the recombinant TACC domain of TACC3 demonstrated that this domain possesses intrinsic microtubule nucleating activity. Co-immunoprecipitation and sedimentation experiments revealed that TACC3 mediates interactions with proteins of both the γ-tubulin ring complex (γ-TuRC) and the γ-tubulin small complex (γ-TuSC). Interestingly, TACC3 depletion resulted in reduced levels of γ-TuRC and increased levels of γ-TuSC, indicating that the assembly of γ-TuRC from γ-TuSC requires TACC3. Detailed analyses suggested that TACC3 facilitates the association of γ-TuSC-specific proteins with the proteins known to be involved in the assembly of γ-TuRC. Consistent with such a role for TACC3, the suppression of TACC3 disrupted localization of γ-TuRC proteins to the centrosome. Our findings reveal that TACC3 is involved in the regulation of microtubule nucleation at the centrosome and functions in the stabilization of the γ-tubulin ring complex assembly. PMID:25246530

  9. Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data

    PubMed Central

    Nariai, Naoki; Kolaczyk, Eric D.; Kasif, Simon

    2007-01-01

    Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI) data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins) represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO) terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function. PMID:17396164

  10. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. PMID:27309309

  11. Functional properties of select edible oilseed proteins.

    PubMed

    Sharma, Girdhari M; Su, Mengna; Joshi, Aditya U; Roux, Kenneth H; Sathe, Shridhar K

    2010-05-12

    Borate saline buffer (0.1 M, pH 8.45) solubilized proteins from almond, Brazil nut, cashew nut, hazelnut, macadamia, pine nut, pistachio, Spanish peanut, Virginia peanut, and soybean seeds were prepared from the corresponding defatted flour. The yield was in the range from 10.6% (macadamia) to 27.4% (almond). The protein content, on a dry weight basis, of the lyophilized preparations ranged from 69.23% (pine nut) to 94.80% (soybean). Isolated proteins from Brazil nut had the lightest and hazelnut the darkest color. Isolated proteins exhibited good solubility in aqueous media. Foaming capacity (<40% overrun) and stability (<1 h) of the isolated proteins were poor to fair. Almond proteins had the highest viscosity among the tested proteins. Oil-holding capacity of the isolated proteins ranged from 2.8 (macadamia) to 7 (soybean) g of oil/g of protein. Least gelation concentrations (% w/v) for almond, Brazil nut, cashew, hazelnut, macadamia, pine nut, pistachio, Spanish peanut, Virginia peanut, and soybean were, respectively, 6, 8, 8, 12, 20, 12, 10, 14, 14, and 16. PMID:20201552

  12. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  13. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  14. Selective destruction of protein function by chromophore-assisted laser inactivation

    SciTech Connect

    Jay, D.G.

    1988-08-01

    Chromophore-assisted laser inactivation of protein function has been achieved. After a protein binds a specific ligand or antibody conjugated with malachite green (C.I. 42,000), it is selectively inactivated by laser irradiation at a wavelength of light absorbed by the dye but not significantly absorbed by cellular components. Ligand-bound proteins in solution and on the surfaces of cells can be denatured without other proteins in the same samples being affected. Chromophore-assisted laser inactivation can be used to study cell surface phenomena by inactivating the functions of single proteins on living cells, a molecular extension of cellular laser ablation. It has an advantage over genetics and the use of specific inhibitors in that the protein function of a single cell within the organism can be inactivated by focusing the laser beam.

  15. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  16. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  17. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  18. Printing Proteins as Microarrays for High-Throughput Function Determination

    NASA Astrophysics Data System (ADS)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  19. The effect of high pressure on the functional properties of pork myofibrillar proteins.

    PubMed

    Grossi, Alberto; Olsen, Karsten; Bolumar, Tomas; Rinnan, Åsmund; Øgendal, Lars H; Orlien, Vibeke

    2016-04-01

    Complementary methodologies were used to analyse the pressure-induced modification and functionality of myofibrillar proteins from pork meat pressurised at 200, 400, 600, or 800 MPa (10 min, 5 or 20 °C). Pressure at 400 MPa was found to be the threshold for loss of solubility, and the structural proteins, myosin and actin, lost their native solubility due to aggregation. The results from the extraction of proteins with different reagents targeting the disruption of specific molecular interactions suggested that pressure-induced aggregation was caused mainly by hydrogen bonding during pressurisation and not hydrophobic interactions nor disulphide cross-links. Furthermore, the soluble proteins were exposed to remarkable structural changes already at 200 MPa and lost their native functionality. The modification of the proteins in pressurised meat affected the water binding sites of the myofibrillar proteins and, thereby, the interactions between proteins and water molecules, and distribution between myofibrillar and extra-myofibrillar compartments. PMID:26593583

  20. Protein Function Annotation By Local Binding Site Surface Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Varela, Rocco; Jain, Ajay N.

    2013-01-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against approximately 60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that pre-dated query protein biochemical annotation for five out of the eight query proteins. A panel of twelve currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins. PMID:24166661

  1. Correspondence between immunological and functional domains in the transforming protein of Fujinami sarcoma virus.

    PubMed Central

    Stone, J C; Pawson, T

    1985-01-01

    Monoclonal antibodies reactive with either gag or fps portions of the wild-type Fujinami sarcoma virus transforming protein have been used to probe the structure of proteins encoded by mutant genomes constructed in vitro. The pattern of immunoreactivity suggests that the functional domain defined in genetic studies (Stone et al., Cell 37:549-558, 1984) corresponds to a discrete immunological domain in the native, wild-type Fujinami sarcoma virus protein. At least one mutation affecting both the structure and function of the proposed NH2-terminal fps-specific domain encodes a product with high specific activities in kinase assays. Furthermore, a cell line expressing high levels of this mutant protein is only moderately transformed. The striking correspondence between the immunological domain defined here and the functional domain inferred from the results of transfection experiments suggests that this non-kinase-specifying region constitutes a discrete structural as well as functional component of the viral protein. Images PMID:2991592

  2. Functional interplay between histone H1 and HMG proteins in chromatin.

    PubMed

    Postnikov, Yuri V; Bustin, Michael

    2016-03-01

    The dynamic interaction of nucleosome binding proteins with their chromatin targets is an important element in regulating the structure and function of chromatin. Histone H1 variants and High Mobility Group (HMG) proteins are ubiquitously expressed in all vertebrate cells, bind dynamically to chromatin, and are known to affect chromatin condensation and the ability of regulatory factors to access their genomic binding sites. Here, we review the studies that focus on the interactions between H1 and HMGs and highlight the functional consequences of the interplay between these architectural chromatin binding proteins. H1 and HMG proteins are mobile molecules that bind to nucleosomes as members of a dynamic protein network. All HMGs compete with H1 for chromatin binding sites, in a dose dependent fashion, but each HMG family has specific effects on the interaction of H1 with chromatin. The interplay between H1 and HMGs affects chromatin organization and plays a role in epigenetic regulation. PMID:26455954

  3. Recent approaches in physical modification of protein functionality.

    PubMed

    Mirmoghtadaie, Leila; Shojaee Aliabadi, Saeedeh; Hosseini, Seyede Marzieh

    2016-05-15

    Today, there is a growing demand for novel technologies, such as high hydrostatic pressure, irradiation, ultrasound, filtration, supercritical carbon dioxide, plasma technology, and electrical methods, which are not based on chemicals or heat treatment for modifying ingredient functionality and extending product shelf life. Proteins are essential components in many food processes, and provide various functions in food quality and stability. They can create interfacial films that stabilize emulsions and foams as well as interact to make networks that play key roles in gel and edible film production. These properties of protein are referred to as 'protein functionality', because they can be modified by different processing. The common protein modification (chemical, enzymatic and physical) methods have strong effects on the structure and functionality of food proteins. Furthermore, novel technologies can modify protein structure and functional properties that will be reviewed in this study. PMID:26776016

  4. Spatial and functional organization of mitochondrial protein network

    PubMed Central

    Yang, Jae-Seong; Kim, Jinho; Park, Solip; Jeon, Jouhyun; Shin, Young-Eun; Kim, Sanguk

    2013-01-01

    Characterizing the spatial organization of the human mitochondrial proteome will enhance our understanding of mitochondrial functions at the molecular level and provide key insight into protein-disease associations. However, the sub-organellar location and possible association with mitochondrial diseases are not annotated for most mitochondrial proteins. Here, we characterized the functional and spatial organization of mitochondrial proteins by assessing their position in the Mitochondrial Protein Functional (MPF) network. Network position was assigned to the MPF network and facilitated the determination of sub-organellar location and functional organization of mitochondrial proteins. Moreover, network position successfully identified candidate disease genes of several mitochondrial disorders. Thus, our data support the use of network position as a novel method to explore the molecular function and pathogenesis of mitochondrial proteins. PMID:23466738

  5. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  6. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress. PMID:24702262

  7. Zebrafish WNK Lysine Deficient Protein Kinase 1 (wnk1) Affects Angiogenesis Associated with VEGF Signaling

    PubMed Central

    Chen, Wen-Chuan; Kou, Fong-Ji; Lu, Jeng-Wei; Wang, Horng-Dar; Huang, Chou-Long; Yuh, Chiou-Hwa

    2014-01-01

    The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. PMID:25171174

  8. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy.

    PubMed

    Wang, Zhaohui; Gong, Xiangjun; Ngai, To

    2015-03-17

    Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions. PMID:25719226

  9. Method for printing functional protein microarrays

    NASA Technical Reports Server (NTRS)

    Delehanty, James B.; Ligler, Frances S.

    2003-01-01

    Piezoelectric dispensing of proteins from borosilicate glass capillaries is a popular method of protein biochip fabrication that offers the advantages of sample recovery and noncontact with the printing substrate. However, little regard has been given to the quantitative aspects of dispensing minute volumes (1 nL or less) at the low protein concentrations (20 micrograms/mL or less) typically used in microprinting. Specifically, loss of protein sample due to nonspecific adsorption to the glass surface of the dispensing capillaries can limit the amount of protein delivered to the substrate. We demonstrate the benefits of a low ionic strength buffer containing the carrier protein BSA that effectively minimizes the ionic strength-dependent phenomenon of nonspecific protein adsorption to borosilicate glass. Over the concentration range of 20-2.5 micrograms/mL, the dispensing of a reference IgG in 10 mM PBS including 0.1% BSA resulted in the deposition of 3.6- to 44-fold more IgG compared to the deposition of IgG in standard 150 mM PBS in the absence of BSA. Furthermore, when the IgG was dispensed with carrier protein, the resulting spots exhibited a more uniform morphology. In a direct immunoassay for cholera toxin, capture antibody spots dispensed in 10 mM PBS containing 0.1% BSA produced fluorescent signals that were 2.8- to 4.3-fold more intense than antibody spots that were dispensed in 150 mM PBS without BSA. Interestingly, no differences were observed in the specific activities of the capture antibodies as a result of printing in the different buffers. The implications of these results on the future development of protein biochips are discussed.

  10. Deletions or duplications in the BtuB protein affect its level in the outer membrane of Escherichia coli.

    PubMed Central

    Köster, W; Gudmundsdottir, A; Lundrigan, M D; Seiffert, A; Kadner, R J

    1991-01-01

    The Escherichia coli btuB product is an outer membrane protein that mediates the TonB-coupled active transport of cobalamins and the uptake of the E colicins and bacteriophage BF23. The roles of various segments of the BtuB protein in its function or cellular localization were investigated by analysis of several genetic constructs. Hybrid proteins in which various lengths from the amino terminus of BtuB were linked to alkaline phosphatase (btuB::phoA genes) were all secreted across the cytoplasmic membrane. The BtuB-PhoA proteins that carried up to 327 amino acids of BtuB appeared to reside in the periplasmic space, whereas hybrid proteins containing at least 399 amino acids of BtuB were associated with the outer membrane. Eleven in-frame internal deletion mutations that spanned more than half of the mature sequence were prepared by combining appropriate restriction fragments from btuB variants with 6-bp linker insertions. None of the deleted proteins was able to complement any BtuB functions, and only three of them were detectable in the outer membrane, suggesting that most of the deletions affected sequences needed for stable association with the outer membrane. Duplications covering the same portions of BtuB were prepared in the same manner. All of these partial duplication variants complemented all BtuB functions, although some gave substantially reduced levels of activity. These proteins were found in the outer membrane, although some were subject to proteolytic cleavage within or near the duplicated segment. These results indicate that the insertion of BtuB into the outer membrane requires the presence of several regions of teh BtuB protein and that the presence of extra or redundant segments of the protein can be tolerated during its insertion and function. Images PMID:1885541

  11. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  12. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  13. A large-scale evaluation of computational protein function prediction.

    PubMed

    Radivojac, Predrag; Clark, Wyatt T; Oron, Tal Ronnen; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kaßner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Boehm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas A; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-03-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools. PMID:23353650

  14. Neuroprotective Function of 14-3-3 Proteins in Neurodegeneration

    PubMed Central

    Shimada, Tadayuki; Fournier, Alyson E.; Yamagata, Kanato

    2013-01-01

    14-3-3 proteins are abundantly expressed adaptor proteins that interact with a vast number of binding partners to regulate their cellular localization and function. They regulate substrate function in a number of ways including protection from dephosphorylation, regulation of enzyme activity, formation of ternary complexes and sequestration. The diversity of 14-3-3 interacting partners thus enables 14-3-3 proteins to impact a wide variety of cellular and physiological processes. 14-3-3 proteins are broadly expressed in the brain, and clinical and experimental studies have implicated 14-3-3 proteins in neurodegenerative disease. A recurring theme is that 14-3-3 proteins play important roles in pathogenesis through regulating the subcellular localization of target proteins. Here, we review the evidence that 14-3-3 proteins regulate aspects of neurodegenerative disease with a focus on their protective roles against neurodegeneration. PMID:24364034

  15. Computational design of proteins with novel structure and functions

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Lu-Hua, Lai

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed. Project supported by the National Basic Research Program of China (Grant No. 2015CB910300), the National High Technology Research and Development Program of China (Grant No. 2012AA020308), and the National Natural Science Foundation of China (Grant No. 11021463).

  16. Linking structural features of protein complexes and biological function.

    PubMed

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. PMID:26131659

  17. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    SciTech Connect

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei; Bissell, Mina J.

    2009-06-03

    protein secretion (as syntaxin-2), amphoterin/high mobility group box-1 (HMGB1), which may link inflammation (as amphoterin) with regulation of gene expression (as HMGB1), and tissue transglutaminase, which affects delivery of and response to apoptotic signals by serving a related function on both sides of the plasma membrane. As it is notable that all three of these proteins have been reported to transit the plasma membrane through non-classical secretory mechanisms, we will also discuss why coordinated inside/outside functions may be found in some examples of proteins which transit the plasma membrane through non-classical mechanisms and how this relationship can be used to identify additional proteins that share these characteristics.

  18. Post-translational control of protein function with light using a LOV-intein fusion protein.

    PubMed

    Jones, D C; Mistry, I N; Tavassoli, A

    2016-04-01

    Methods for the post-translational control of protein function with light hold much value as tools in cell biology. To this end, we report a fusion protein that consists of DnaE split-inteins, flanking the light sensitive LOV2 domain of Avena sativa. The resulting chimera combines the activities of these two unrelated proteins to enable controlled formation of a functional protein via upregulation of intein splicing with blue light in bacterial and human cells. PMID:26940144

  19. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    PubMed Central

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey

    2011-01-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112

  20. Concomitant gastroparesis negatively affects children with functional gallbladder disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to determine whether concomitant gastroparesis and biliary dyskinesia (BD) occur in children, and if so, to determine whether concomitant gastroparesis affects clinical outcome in children with BD. We conducted a retrospective chart review of children with BD (ejecti...

  1. Is protein classification necessary? Towards alternative approaches to function annotation

    PubMed Central

    Petrey, Donald; Honig, Barry

    2009-01-01

    The current non-redundant protein sequence database contains over seven million entries and the number of individual functional domains is significantly larger than this value. The vast quantity of data associated with these proteins poses enormous challenges to any attempt at function annotation. Classification of proteins into sequence and structural groups has been widely used as an approach to simplifying the problem. In this article we question such strategies. We describe how the multi-functionality and structural diversity of even closely related proteins confounds efforts to assign function based on overall sequence or structural similarity. Rather, we suggest that strategies that avoid classification may offer a more robust approach to protein function annotation. PMID:19269161

  2. Study of Functional and Allosteric Sites in Protein Superfamilies

    PubMed Central

    Suplatov, D.; Švedas, V.

    2015-01-01

    The interaction of proteins (enzymes) with a variety of low-molecular-weight compounds, as well as protein-protein interactions, is the most important factor in the regulation of their functional properties. To date, research effort has routinely focused on studying ligand binding to the functional sites of proteins (active sites of enzymes), whereas the molecular mechanisms of allosteric regulation, as well as binding to other pockets and cavities in protein structures, remained poorly understood. Recent studies have shown that allostery may be an intrinsic property of virtually all proteins. Novel approaches are needed to systematically analyze the architecture and role of various binding sites and establish the relationship between structure, function, and regulation. Computational biology, bioinformatics, and molecular modeling can be used to search for new regulatory centers, characterize their structural peculiarities, as well as compare different pockets in homologous proteins, study the molecular mechanisms of allostery, and understand the communication between topologically independent binding sites in protein structures. The establishment of an evolutionary relationship between different binding centers within protein superfamilies and the discovery of new functional and allosteric (regulatory) sites using computational approaches can improve our understanding of the structure-function relationship in proteins and provide new opportunities for drug design and enzyme engineering. PMID:26798490

  3. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  4. SMN affects membrane remodelling and anchoring of the protein synthesis machinery.

    PubMed

    Gabanella, Francesca; Pisani, Cinzia; Borreca, Antonella; Farioli-Vecchioli, Stefano; Ciotti, Maria Teresa; Ingegnere, Tiziano; Onori, Annalisa; Ammassari-Teule, Martine; Corbi, Nicoletta; Canu, Nadia; Monaco, Lucia; Passananti, Claudio; Di Certo, Maria Grazia

    2016-02-15

    Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis. PMID:26743087

  5. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  6. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake

    NASA Astrophysics Data System (ADS)

    Schöttler, S.; Klein, Katja; Landfester, K.; Mailänder, V.

    2016-03-01

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake.Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance

  7. Artificial supramolecular protein assemblies as functional high-order protein scaffolds.

    PubMed

    Kim, Yu-Na; Jung, Yongwon

    2016-06-28

    Supramolecular assemblies of protein building blocks potentially offer unique biomaterials with unmatched functionalities as well as atomic level structural accuracy. An increasing number of assembling strategies have been reported for the fabrication of diverse artificial protein assemblies, ranging from rather heterogeneous protein oligomers to computationally designed discrete protein architectures. In this perspective, we discuss these artificial protein supramolecules in terms of their use as highly potent high-order protein scaffolds that can display various functional proteins with precise structural and valency control. Following a brief overview of current approaches for protein assembly, several examples of functional protein assemblies have been introduced, with a particular focus on our recent report of valency-controlled green fluorescent protein nano-assemblies. Our supramolecular protein scaffolds allow building a series of polygonal assemblies of functional binding proteins, which provide unprecedented ways to study multivalent protein interactions. Even with many remaining challenges, there is unlimited potential of artificial protein scaffolds in many fields from nanotechnology to vaccine development. PMID:26964520

  8. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell

    PubMed Central

    Procházková Schrumpfová, Petra; Schořová, Šárka; Fajkus, Jiří

    2016-01-01

    Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms. PMID:27446102

  9. Effects of high-energy ultrasound on the functional properties of proteins.

    PubMed

    Higuera-Barraza, O A; Del Toro-Sanchez, C L; Ruiz-Cruz, S; Márquez-Ríos, E

    2016-07-01

    In recent years, high-energy ultrasound has been used as an alternative to improve the functional properties of various proteins, such as from milk, eggs, soy and poultry. The benefits of implementing this technology depend on the inherent characteristics of the protein source and the intensity and amplitude of the ultrasound, as well as on the pH, temperature, ionic strength, time, and all of the variables that have an effect on the physicochemical properties of proteins. Therefore, it is necessary to establish the optimal conditions for each type of food. The use of ultrasound is a promising technique in food technology with a low impact on the environment, and it has thus become known as a green technology. Therefore, this review focuses on the application of high-energy ultrasound to food; its effects on the functional properties of proteins; and how different conditions such as the frequency, time, amplitude, temperature, and protein concentration affect the functional properties. PMID:26964983

  10. Bioinformatics pipeline for functional identification and characterization of proteins

    NASA Astrophysics Data System (ADS)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; Krzywkowski, Tomasz; Świerkula, Katarzyna; PlÄ der, Wojciech; Przybecki, Zbigniew

    2015-09-01

    The new sequencing methods, called Next Generation Sequencing gives an opportunity to possess a vast amount of data in short time. This data requires structural and functional annotation. Functional identification and characterization of predicted proteins could be done by in silico approches, thanks to a numerous computational tools available nowadays. However, there is a need to confirm the results of proteins function prediction using different programs and comparing the results or confirm experimentally. Here we present a bioinformatics pipeline for structural and functional annotation of proteins.

  11. Composition and functional properties of Lupinus campestris protein isolates.

    PubMed

    Rodríguez-Ambriz, S L; Martínez-Ayala, A L; Millán, F; Dávila-Ortíz, G

    2005-09-01

    Protein isolates from L. campestris and soybean seeds were prepared using isoelectric precipitation (PI) and micellization (MI) procedures. The amount of protein recovered was considerably higher with the isoelectric precipitation than with the micellization procedure (60% and 30%, respectively). Protein contents were higher than 90% in protein isolates. Antinutritional factors content (alkaloids, lectins, and tannins) were reduced to innocuous levels after protein isolate preparation. Minimum protein solubility for the precipitated lupin protein isolate (LPI) was at pH 4.0, and between pH 4 and 6 for the micellized lupin protein isolate (LMI), increasing at both extremes of the pH scale. Water absorption for the LMI was 1.3 ml/g of protein and its oil absorption 2.2 ml/g of protein. The LPI had 1.7 ml/g of protein in both water and oil absorption. Foaming capacity and stability was pH-dependent. Foaming capacity was higher at pH 2 and lower near the protein isoelectric points. Minimum protein concentration for gelation in LMI was 8% w/v at pH 4, while for LPI was 6% at pH 4 and 6. Amino acid composition in L. campestris flour and protein isolates was high in lysine and low in methionine. Most of the essential amino acids in lupin protein isolates were at acceptable levels compared to a reference pattern for infants and adults. The electrophoretic pattern of both protein isolates showed three bands with different mobilities, suggesting that the protein fractions belong to alpha-conglutin (11S-like protein), beta-conglutin (7S-like protein) and gamma-conglutin. It is proven that some of the functional properties of L. campestris protein isolates are similar to those soybean protein isolates recovered under equal conditions. PMID:16187011

  12. Functional assembly of a randomly cleaved protein.

    PubMed Central

    Shiba, K; Schimmel, P

    1992-01-01

    The sequence of a 939-amino acid polypeptide that is a member of the aminoacyl-tRNA synthetase class of enzymes has been aligned with sequences of 15 related proteins. This alignment guided the design of 18 fragment pairs that were tested for internal sequence complementarity by reconstitution of enzyme activity. Reconstitution was achieved with fragments that divide the protein at both nonconserved and conserved sequences, including locations proximal to or within elements believed to form critical elements of secondary structure. Structure assembly is sufficiently flexible to accommodate fusion of short segments of unrelated sequences at fragment junctions. Complementary chain packing interactions and chain flexibility appear to be widely distributed throughout the sequence and are sufficient to reconstruct large three-dimensional structures from an array of disconnected pieces. The results may have implications for the evolution and assembly of large proteins. Images PMID:1542687

  13. Integrative analysis of human protein, function and disease networks

    PubMed Central

    Liu, Wei; Wu, Aiping; Pellegrini, Matteo; Wang, Xiaofan

    2015-01-01

    Protein-protein interaction (PPI) networks serve as a powerful tool for unraveling protein functions, disease-gene and disease-disease associations. However, a direct strategy for integrating protein interaction, protein function and diseases is still absent. Moreover, the interrelated relationships among these three levels are poorly understood. Here we present a novel systematic method to integrate protein interaction, function, and disease networks. We first identified topological modules in human protein interaction data using the network topological algorithm (NeTA) we previously developed. The resulting modules were then associated with functional terms using Gene Ontology to obtain functional modules. Finally, disease modules were constructed by associating the modules with OMIM and GWAS. We found that most topological modules have cohesive structure, significant pathway annotations and good modularity. Most functional modules (70.6%) fully cover corresponding topological modules, and most disease modules (88.5%) are fully covered by the corresponding functional modules. Furthermore, we identified several protein modules of interest that we describe in detail, which demonstrate the power of our integrative approach. This approach allows us to link genes, and pathways with their corresponding disorders, which may ultimately help us to improve the prevention, diagnosis and treatment of disease. PMID:26399914

  14. Phosphatidylethanolamine binding protein 4 (PEBP4) is a secreted protein and has multiple functions.

    PubMed

    He, Huan; Liu, Dan; Lin, Hui; Jiang, Shanshan; Ying, Ying; Chun, Shao; Deng, Haiteng; Zaia, Joseph; Wen, Rong; Luo, Zhijun

    2016-07-01

    Phosphatidylethanolamine binding proteins (PEBP) represent a superfamily of proteins that are conserved from bacteria to humans. In mammals, four members have been identified, PEBP1-4. To determine the functional differences among PEBP1-4 and the underlying mechanism for their actions, we performed a sequence alignment and found that PEBP4 contains a signal peptide and potential glycosylation sites, whereas PEBP1-3 are intracellular proteins. To test if PEBP4 is secreted, we made constructs with Myc epitope at the amino (N) terminus or carboxyl (C) terminus to mask the signal sequence or keep it free, respectively. Our data revealed that both mouse and human PEBP4 were secreted when the epitope was tagged at their C-terminus. To our surprise, secretion was dependent upon the C-terminal conserved domain in addition to the N-terminal signal sequence. When the epitope was placed to the N-terminus, the recombinant protein failed to secrete and instead, was retained in the cytoplasm. Mass spectrometry detected asparagine (N)-glycosylation on the secreted PEBP4. Although overexpression of N-terminal tagged PEBP4 resulted in an inhibition of ERK activation by EGF, that with a C-terminal epitope tag did not have such an effect. Likewise, transfection of PEBP4 shRNA did not appear to affect ERK activation, suggesting that PEBP4 does not participate in the regulation of this pathway. In contrast, PEBP4 siRNA suppressed phosphorylation of Act at S473. Therefore, our results suggest that PEBP4 is a multifunctional protein and can be secreted. It will be important to investigate the mechanism by which PEBP4 is secreted and regulates cellular events. PMID:27033522

  15. Mammalian cadherins DCHS1-FAT4 affect functional cerebral architecture.

    PubMed

    Beste, Christian; Ocklenburg, Sebastian; von der Hagen, Maja; Di Donato, Nataliya

    2016-06-01

    Cortical development is a complex process where a multitude of factors, including cadherins, plays an important role and where disruptions are known to have far reaching effects in neural development and cortical patterning. Cadherins play a central role in structural left-right differentiation during brain and body development, but their effect on a functional level remains elusive. We addressed this question by examining functional cerebral asymmetries in a patient with Van Maldergem Syndrome (VMS) (MIM#601390), which is caused by mutations in DCHS1-FAT4 cadherins, using a dichotic listening task. Using neurophysiological (EEG) data, we show that when key regulators during mammalian cerebral cortical development are disrupted due to DCHS1-FAT4 mutations, functional cerebral asymmetries are stronger. Basic perceptual processing of biaurally presented auditory stimuli was unaffected. This suggests that the strength and emergence of functional cerebral asymmetries is a direct function of proliferation and differentiation of neuronal stem cells. Moreover, these results support the recent assumption that the molecular mechanisms establishing early left-right differentiation are an important factor in the ontogenesis of functional lateralization. PMID:25930014

  16. Macronutrient content of a hypoenergy diet affects nitrogen retention and muscle function in weight lifters.

    PubMed

    Walberg, J L; Leidy, M K; Sturgill, D J; Hinkle, D E; Ritchey, S J; Sebolt, D R

    1988-08-01

    Weight lifters (WL) attempt to achieve a low body fat while maintaining fat free mass (FFM) and muscle function. Body composition and isometric muscular endurance were tested in 19 experienced male WL at the end of a weight maintenance and exercise routine standardization week. The subjects were assigned to either a control (C), moderate-protein (0.8 g.kg-1.d-1), high-carbohydrate hypoenergy diet (MP/HC), or high-protein (1.6 g.kg-1.d-1), moderate-carbohydrate hypoenergy diet (HP/MC). Both hypoenergy diets provided 75.3 kJ (18 kcal).kg-1.d-1. Apparent nitrogen balance (NBAL) was assessed using nitrogen in the diet, urine, and sweat. Body fat and FFM loss via hydrostatic weighing were not different between the hypoenergy groups. However, lean body mass (LBM) change as assessed by NBAL showed that the MP/HC group had an average negative NBAL of -3.19 g.d-1 while the HP/MC group had a positive NBAL of 4.13 g.d-1. Macronutrient mix did not affect biceps endurance, but quadriceps endurance declined for the HP/MC group during the experimental week. In conclusion, a hypoenergy diet providing twice the RDA for protein was more effective in retaining body protein in WL than a diet with higher carbohydrate but the RDA for protein. However, the lower carbohydrate of this diet contributed to reduced muscular endurance in these athletes. PMID:3182156

  17. Infrared Structural Biology: Detect Functionally Important Structural Motions of Proteins

    NASA Astrophysics Data System (ADS)

    Xie, Aihua

    Proteins are dynamic. Lack of dynamic structures of proteins hampers our understanding of protein functions. Infrared structural biology (IRSB) is an emerging technology. There are several advantages of IRSB for mechanistic studies of proteins: (1) its excellent dynamic range (detecting structural motions from picoseconds to >= seconds); (2) its high structural sensitivity (detect tiny but functionally important structural motions such as proton transfer and changes in hydrogen bonding interaction); (3) its ability to detect different structural motions simultaneously. Successful development of infrared structural biology demands not only new experimental techniques (from infrared technologies to chemical synthesis and cell biology), but also new data processing (how to translate infrared signals into quantitative structural information of proteins). These topics will be discussed as well as examples of how to use IRSB to study structure-function relationship of proteins. This work was supported by NSF DBI1338097 and OCAST HR10-078.

  18. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  19. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake.

    PubMed

    Schöttler, S; Klein, Katja; Landfester, K; Mailänder, V

    2016-03-14

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake. PMID:26804616

  20. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    PubMed Central

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  1. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  2. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    PubMed Central

    Shen, Ru; Wang, Xiaosheng; Guda, Chittibabu

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks. PMID:26495282

  3. The AAA+ superfamily of functionally diverse proteins

    PubMed Central

    Snider, Jamie; Thibault, Guillaume; Houry, Walid A

    2008-01-01

    The AAA+ superfamily is a large and functionally diverse superfamily of NTPases that are characterized by a conserved nucleotide-binding and catalytic module, the AAA+ module. Members are involved in an astonishing range of different cellular processes, attaining this functional diversity through additions of structural motifs and modifications to the core AAA+ module. PMID:18466635

  4. Temperament Affects Sympathetic Nervous Function in a Normal Population

    PubMed Central

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. Results A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. Conclusion These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population. PMID:22993530

  5. Fetal urinoma and prenatal hydronephrosis: how is renal function affected?

    PubMed Central

    Oktar, Tayfun; Salabaş, Emre; Kalelioğlu, İbrahim; Atar, Arda; Ander, Haluk; Ziylan, Orhan; Has, Recep; Yüksel, Atıl

    2013-01-01

    Objective: In our study, the functional prognosis of kidneys with prenatal urinomas were investigated. Material and methods: Between 2006 and 2010, fetal urinomas were detected in 19 fetuses using prenatal ultrasonography (US), and the medical records were reviewed retrospectively. Of the 19 cases, the follow-up data were available for 10 fetuses. The gestational age at diagnosis, prognosis of urinomas, clinical course and renal functions were recorded. Postnatal renal functions were assessed with renal scintigraphy. Results: Unilateral urinomas and increased parenchyma echogenicity in the ipsilateral kidney were detected in all of the fetuses. Of the 10 fetuses with follow-up data, the option of termination was offered in 6 cases of anhydramnios, including 3 cases with signs of infravesical obstruction (a possible posterior urethral valve (PUV) and poor prognostic factors and 3 cases with unilateral hydronephrosis and increased echogenicity in the contralateral kidney. Only one family agreed the termination. The other 5 fetuses died during the early postnatal period. The average postnatal follow-up period in the 4 surviving fetuses was 22.5 months (8–38 months). One patient with a PUV underwent ablation surgery during the early postnatal period. In the postnatal period, none of the 4 kidneys that were ipsilateral to the urinoma were functional on scintigraphic evaluation. The urinomas disappeared in 3 cases. Nephrectomy was performed in one case due to recurrent urinary tract infections. Conclusion: In our study, no function was detected in the ipsilateral kidney of surviving patients with urinomas. Upper urinary tract dilatation accompanied by a urinoma is a poor prognostic factor for renal function. PMID:26328088

  6. Feeding modality affects muscle protein deposition by influencing protein synthesis, but not degradation in muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal pigs can serve as dual-use models for nutrition research in animal agriculture and biomedical fields. To determine how feeding modality by either intermittent bolus or continuous schedule affects protein anabolism and catabolism, neonatal pigs (n = 6/group, 9-d-old) were overnight fasted (F...

  7. Protein mislocalization: mechanisms, functions and clinical applications in cancer

    PubMed Central

    Wang, Xiaohong; Li, Shulin

    2014-01-01

    The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy. PMID:24709009

  8. Characterization of Functionalized Nanoporous Supports for Protein Confinement

    SciTech Connect

    Lei, Chenghong; Shin, Yongsoon; Magnuson, Jon K.; Fryxell, Glen E.; Lasure, Linda L.; Elliott, Douglas C.; Liu, Jun; Ackerman, Eric J.

    2006-11-28

    Here we characterize a highly efficient approach for protein confinement and enzyme immobilization in NH2- or HOOC- functionalized mesoporous silica (FMS) with pore sizes as large as tens of nanometers. We observed a dramatic increase of enzyme loading in both enzyme activity and protein amount when using appropriate FMS in comparison with unfunctionalized mesoporous silica and normal porous silica. In principle, the general approach described here should be applicable to many enzymes, proteins, and protein complexes since both pore sizes and functional groups of FMS are controllable.

  9. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  10. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. PMID:26325197

  11. The time correlation function perspective of NMR relaxation in proteins

    NASA Astrophysics Data System (ADS)

    Shapiro, Yury E.; Meirovitch, Eva

    2013-08-01

    We applied over a decade ago the two-body coupled-rotator slowly relaxing local structure (SRLS) approach to NMR relaxation in proteins. One rotator is the globally moving protein and the other rotator is the locally moving probe (spin-bearing moiety, typically the 15N-1H bond). So far we applied SRLS to 15N-H relaxation from seven different proteins within the scope of the commonly used data-fitting paradigm. Here, we solve the SRLS Smoluchowski equation using typical best-fit parameters as input, to obtain the corresponding generic time correlation functions (TCFs). The following new information is obtained. For actual rhombic local ordering and main ordering axis pointing along C_{i - 1}^α - C_i^α, the measurable TCF is dominated by the (K,K') = (-2,2), (2,2), and (0,2) components (K is the order of the rank 2 local ordering tensor), determined largely by the local motion. Global diffusion axiality affects the analysis significantly when the ratio between the parallel and perpendicular components exceeds approximately 1.5. Local diffusion axiality has a large and intricate effect on the analysis. Mode-coupling becomes important when the ratio between the global and local motional rates falls below 0.01. The traditional method of analysis - model-free (MF) - represents a simple limit of SRLS. The conditions under which the MF and SRLS TCFs are the same are specified. The validity ranges of wobble-in-a-cone and rotation on the surface of a cone as local motions are determined. The evolution of the intricate Smoluchowski operator from the simple diffusion operator for a sphere reorienting in isotropic medium is delineated. This highlights the fact that SRLS is an extension of the established stochastic theories for treating restricted motions. This study lays the groundwork for TCF-based comparison between mesoscopic SRLS and atomistic molecular dynamics.

  12. Fish protein hydrolysates: production, biochemical, and functional properties.

    PubMed

    Kristinsson, H G; Rasco, B A

    2000-01-01

    Considerable amounts of fish processing byproducts are discarded each year. By developing enzyme technologies for protein recovery and modification, production of a broad spectrum of food ingredients and industrial products may be possible. Hydrolyzed vegetable and milk proteins are widely used food ingredients. There are few hydrolyzed fish protein foods with the exception of East Asian condiments and sauces. This review describes various manufacturing techniques for fish protein hydrolysates using acid, base, endogenous enzymes, and added bacterial or digestive proteases. The chemical and biochemical characteristics of hydrolyzed fish proteins are discussed. In addition, functional properties of fish protein hydrolysates are described, including solubility, water-holding capacity, emulsification, and foam-forming ability. Possible applications of fish protein hydrolysates in food systems are provided, and comparison with other food protein hydrolysates where pertinent. PMID:10674201

  13. Arginine Depletion by Arginine Deiminase Does Not Affect Whole Protein Metabolism or Muscle Fractional Protein Synthesis Rate in Mice

    PubMed Central

    Marini, Juan C.; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  14. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  15. Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    PubMed Central

    Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-01-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  16. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  17. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    PubMed Central

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, the lattice architecture of membrane protein clusters, and the collective function of membrane protein lattices. PMID:26771082

  18. The formation and the functionality of soy protein-dextran and soy protein mannose conjugates.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermally modified, readily reconstituted, soy protein isolate (SPI) demonstrated improved heat stability and cold-set gel functionality when prepared at 8% protein (w/w) for three hours at 95°C compared to the control SPI. When SPI was heated at 3% protein (w/w) equivalently, prior to reconstitu...

  19. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the tempalte protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured. PMID:21541664

  20. SLE-associated risk factors affect DC function

    PubMed Central

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity. PMID:26683148

  1. RIGHT HEMISPHERIC FUNCTION IN NORMALS, AFFECTIVE DISORDER AND SCHIZOPHRENIA

    PubMed Central

    Borde, Milind; Roy, Amal; Davis, Elizabeth J.B.; Davis, Rachel

    1996-01-01

    The happy-sad chimeric faces test has been established as a useful test of right hemispheric function. It is known to elicit a left hemifacial bias (LHF bias) in right handed subjects. 41 normals and 19 manic, depressive and schizophrenic patients each were tested. All subjects were strictly right handed. Normals and depressives showed significant LHF bias. Monies and schizophrenics did not show significant LHF Bias. This suggests right hemispheric dysfunction in both mania and schizophrenia. PMID:21584135

  2. Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity

    PubMed Central

    Salzwedel, Andrew P.; Vachet, Clement; Gerig, Guido; Lin, Weili

    2015-01-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  3. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  4. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  5. The effect of negative affect on cognition: Anxiety, not anger, impairs executive function.

    PubMed

    Shields, Grant S; Moons, Wesley G; Tewell, Carl A; Yonelinas, Andrew P

    2016-09-01

    It is often assumed that negative affect impairs the executive functions that underlie our ability to control and focus our thoughts. However, support for this claim has been mixed. Recent work has suggested that different negative affective states like anxiety and anger may reflect physiologically separable states with distinct effects on cognition. However, the effects of these 2 affective states on executive function have never been assessed. As such, we induced anxiety or anger in participants and examined the effects on executive function. We found that anger did not impair executive function relative to a neutral mood, whereas anxiety did. In addition, self-reports of induced anxiety, but not anger, predicted impairments in executive function. These results support functional models of affect and cognition, and highlight the need to consider differences between anxiety and anger when investigating the influence of negative affect on fundamental cognitive processes such as memory and executive function. (PsycINFO Database Record PMID:27100367

  6. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  7. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.

    PubMed

    Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. PMID:26590254

  8. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures

    PubMed Central

    Lua, Rhonald C.; Wilson, Stephen J.; Konecki, Daniel M.; Wilkins, Angela D.; Venner, Eric; Morgan, Daniel H.; Lichtarge, Olivier

    2016-01-01

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. PMID:26590254

  9. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    PubMed Central

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  10. Elastic Properties of Protein Functionalized Nanoporous Polymer Films.

    PubMed

    Wang, Haoyu; Black, Charles T; Akcora, Pinar

    2016-01-12

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces. PMID:26672623

  11. Elastic properties of protein functionalized nanoporous polymer films

    SciTech Connect

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.

  12. A functional protein retention and release multilayer with high stability

    NASA Astrophysics Data System (ADS)

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-01

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device.Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by

  13. Biochemical functional predictions for protein structures of unknown or uncertain function

    PubMed Central

    Mills, Caitlyn L.; Beuning, Penny J.; Ondrechen, Mary Jo

    2015-01-01

    With the exponential growth in the determination of protein sequences and structures via genome sequencing and structural genomics efforts, there is a growing need for reliable computational methods to determine the biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating the function at the molecular level of uncharacterized proteins. While sequence- and three-dimensional-structure-based methods for protein function prediction have been reviewed previously, the recent trends in local structure-based methods have received less attention. These local structure-based methods are the primary focus of this review. Computational methods have been developed to predict the residues important for catalysis and the local spatial arrangements of these residues can be used to identify protein function. In addition, the combination of different types of methods can help obtain more information and better predictions of function for proteins of unknown function. Global initiatives, including the Enzyme Function Initiative (EFI), COMputational BRidges to EXperiments (COMBREX), and the Critical Assessment of Function Annotation (CAFA), are evaluating and testing the different approaches to predicting the function of proteins of unknown function. These initiatives and global collaborations will increase the capability and reliability of methods to predict biochemical function computationally and will add substantial value to the current volume of structural genomics data by reducing the number of absent or inaccurate functional annotations. PMID:25848497

  14. A Correlation between Protein Function and Ligand Binding Profiles

    PubMed Central

    Shortridge, Matthew D.; Bokemper, Michael; Copeland, Jennifer C.; Stark, Jaime L.; Powers, Robert

    2011-01-01

    We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally-derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure or evolutionary information, and therefore, extends our ability to analyze and functionally annotate novel genes. PMID:21366353

  15. Affected functional networks associated with sentence production in classic galactosemia.

    PubMed

    Timmers, Inge; van den Hurk, Job; Hofman, Paul Am; Zimmermann, Luc Ji; Uludağ, Kâmil; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2015-08-01

    Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients. PMID:25979518

  16. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    PubMed

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups. PMID:21809957

  17. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder.

    PubMed

    Whelan, Jillian N; Reddy, Krishna D; Uversky, Vladimir N; Teng, Michael N

    2016-04-26

    Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication. PMID:27062995

  18. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ . PMID:25424913

  19. Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches

    PubMed Central

    MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF

    2008-01-01

    Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962

  20. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin hydrolysates. The objectives of this study were to: isolating soluble and insoluble proteins from hydrolyzed catfish skin and study the chemical and functional properties of the prote...

  1. Tactile Teaching: Exploring Protein Structure/Function Using Physical Models

    ERIC Educational Resources Information Center

    Herman, Tim; Morris, Jennifer; Colton, Shannon; Batiza, Ann; Patrick, Michael; Franzen, Margaret; Goodsell, David S.

    2006-01-01

    The technology now exists to construct physical models of proteins based on atomic coordinates of solved structures. We review here our recent experiences in using physical models to teach concepts of protein structure and function at both the high school and the undergraduate levels. At the high school level, physical models are used in a…

  2. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  3. Does Vitamin C Deficiency Affect Cognitive Development and Function?

    PubMed Central

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies. PMID:25244370

  4. Mevalonate availability affects human and rat resistance vessel function.

    PubMed Central

    Roullet, J B; Xue, H; Roullet, C M; Fletcher, W S; Cipolla, M J; Harker, C T; McCarron, D A

    1995-01-01

    Previous data in rat conductance vessels indicated that cellular mevalonate contributes to vascular tone and systemic blood pressure control. Using exogenous mevalonate (M) or lovastatin, a 3-hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitor (L), we characterized the role of mevalonate availability in resistance artery function, both in experimental animals and humans. Rat mesenteric artery resistance vessels (MARV, n = 9) were incubated for 48 h with either L, M, L + M, or vehicle (V) and tested for reactivity to NE, serotonin, acetylcholine, atrial natriuretic peptide, and sodium nitroprusside (SNP). Lovastatin increased sensitivity to NE (P < 0.03) and serotonin (P < 0.003), and significantly impaired the response to all three vasodilators. These effects were reversed by co-incubation with mevalonate. Mevalonate alone had no effect. In separate experiments, intravascular free Ca2+ concentration (ivfCa2+) was determined in fura-2AM loaded MARV. Basal ivfCa2+ was increased after a 48-h exposure to L (52.7 +/- 4.6 nM, L, vs. 29.7 +/- 2.4 nM, V, n = 12, P < 0.003), as were ivfCa2+ levels following stimulation with low (100 nM) NE concentrations. Similar ivfCa2+ concentrations were achieved during maximum contraction with NE (10 mM) in both groups. Human resistance arteries of human adipose tissue were also studied. Lovastatin increased the sensitivity to NE (ED50 = 372 +/- 56 nM, V, and 99 +/- 33 nM, L, P < 0.001) and significantly decreased the relaxation to acetylcholine and SNP of human vessels. We conclude that mevalonate availability directly contribute to resistance vessel function and vascular signal transduction systems in both experimental animals and humans. The study calls for the identification of non-sterol, mevalonate-derived vasoactive metabolites, and suggests that disorders of the mevalonate pathway can alter vascular tone and cause hypertension. PMID:7615793

  5. Functions and mechanics of dynein motor proteins

    PubMed Central

    Roberts, Anthony J.; Kon, Takahide; Knight, Peter J.; Sutoh, Kazuo; Burgess, Stan A.

    2014-01-01

    Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement. PMID:24064538

  6. Discovering conformational sub-states relevant to protein function

    SciTech Connect

    Agarwal, Pratul K; Ramanathan, Arvind

    2011-01-01

    Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function.

  7. Discovering Conformational Sub-States Relevant to Protein Function

    PubMed Central

    Ramanathan, Arvind; Savol, Andrej J.; Langmead, Christopher J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2011-01-01

    Background Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. Methods and Findings To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. PMID:21297978

  8. Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing.

    PubMed

    Tkacz, Itai Dov; Gupta, Sachin Kumar; Volkov, Vadim; Romano, Mali; Haham, Tomer; Tulinski, Pawel; Lebenthal, Ilana; Michaeli, Shulamit

    2010-09-01

    In trypanosomatids, all mRNAs are processed via trans-splicing, although cis-splicing also occurs. In trans-splicing, a common small exon, the spliced leader (SL), which is derived from a small SL RNA species, is added to all mRNAs. Sm and Lsm proteins are core proteins that bind to U snRNAs and are essential for both these splicing processes. In this study, SmD3- and Lsm3-associated complexes were purified to homogeneity from Leishmania tarentolae. The purified complexes were analyzed by mass spectrometry, and 54 and 39 proteins were purified from SmD3 and Lsm complexes, respectively. Interestingly, among the proteins purified from Lsm3, no mRNA degradation factors were detected, as in Lsm complexes from other eukaryotes. The U1A complex was purified and mass spectrometry analysis identified, in addition to U1 small nuclear ribonucleoprotein (snRNP) proteins, additional co-purified proteins, including the polyadenylation factor CPSF73. Defects observed in cells silenced for U1 snRNP proteins suggest that the U1 snRNP functions exclusively in cis-splicing, although U1A also participates in polyadenylation and affects trans-splicing. The study characterized several trypanosome-specific nuclear factors involved in snRNP biogenesis, whose function was elucidated in Trypanosoma brucei. Conserved factors, such as PRP19, which functions at the heart of every cis-spliceosome, also affect SL RNA modification; GEMIN2, a protein associated with SMN (survival of motor neurons) and implicated in selective association of U snRNA with core Sm proteins in trypanosomes, is a master regulator of snRNP assembly. This study demonstrates the existence of trypanosomatid-specific splicing factors but also that conserved snRNP proteins possess trypanosome-specific functions. PMID:20592024

  9. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  10. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  11. CATH FunFHMMer web server: protein functional annotations using functional family assignments

    PubMed Central

    Das, Sayoni; Sillitoe, Ian; Lee, David; Lees, Jonathan G.; Dawson, Natalie L.; Ward, John; Orengo, Christine A.

    2015-01-01

    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence–structure–function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer. PMID:25964299

  12. CATH FunFHMMer web server: protein functional annotations using functional family assignments.

    PubMed

    Das, Sayoni; Sillitoe, Ian; Lee, David; Lees, Jonathan G; Dawson, Natalie L; Ward, John; Orengo, Christine A

    2015-07-01

    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence-structure-function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer. PMID:25964299

  13. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    SciTech Connect

    Marg, Andreas; Haase, Hannelore; Neumann, Tanja; Kouno, Michiyoshi; Morano, Ingo

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubule system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.

  14. Borrelia burgdorferi Proteins Whose Expression Is Similarly Affected by Culture Temperature and pH

    PubMed Central

    Ramamoorthy, Ramesh; Scholl-Meeker, Dorothy

    2001-01-01

    Previously, we had demonstrated the upregulation in the expression of several proteins, including the lipoproteins OspC and P35, of Borrelia burgdorferi in the stationary growth phase. Since the expression of OspC is also known to be affected by culture temperature and pH, we examined the effects of both variables on the expression of the remaining stationary-phase-upregulated proteins. Our study revealed that the expression of each of the remaining stationary-phase-upregulated proteins, P35 included, was also influenced by culture temperature; these proteins were selectively expressed at 34°C but not at 24°C. Significantly, the expression of a majority of these proteins was also affected by culture pH, since they were abundantly expressed at pH 7.0 (resembling the tick midgut pH of 6.8 during feeding) but only sparsely at pH 8.0 (a condition closer to that of the unfed tick midgut pH of 7.4). We propose that this group of B. burgdorferi proteins, which in culture is selectively expressed under conditions of 34°C and pH 7.0, may be induced in the tick midgut during the feeding event. Furthermore, the differential and coordinate expression of these proteins under different environmental conditions suggests that the encoding genes may be coregulated. PMID:11254645

  15. Consumption of bee pollen affects rat ovarian functions.

    PubMed

    Kolesarova, A; Bakova, Z; Capcarova, M; Galik, B; Juracek, M; Simko, M; Toman, R; Sirotkin, A V

    2013-12-01

    The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin-like growth factor I (IGF-I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl-2, Bax and caspase-3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF-I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl-2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase-3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF-I and steroid hormones progesterone and estradiol) and apoptosis (anti- and pro-apoptotic markers Bcl-2, Bax and caspase-3). Bee pollen is shown to be a potent regulator of rat ovarian functions. PMID:23137268

  16. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis.

    PubMed Central

    Tapprich, W E; Goss, D J; Dahlberg, A E

    1989-01-01

    A single base was mutated from guanine to adenine at position 791 in 16S rRNA in the Escherichia coli rrnB operon on the multicopy plasmid pKK3535. The plasmid-coded rRNA was processed and assembled into 30S ribosomal subunits in E. coli and caused a retardation of cell growth. The mutation affected crucial functional roles of the 30S subunit in the initiation of protein synthesis. The affinity of the mutant 30S subunits for 50S subunits was reduced and the association equilibrium constant for initiation factor 3 was decreased by a factor of 10 compared to wild-type 30S subunits. The interrelationship among the region of residue 790 in 16S rRNA, subunit association, and initiation factor 3 binding during initiation complex formation, as revealed by this study, offers insights into the functional role of rRNA in protein synthesis. PMID:2662189

  17. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function

    PubMed Central

    Thomas, Paul D.; Campbell, Michael J.; Kejariwal, Anish; Mi, Huaiyu; Karlak, Brian; Daverman, Robin; Diemer, Karen; Muruganujan, Anushya; Narechania, Apurva

    2003-01-01

    In the genomic era, one of the fundamental goals is to characterize the function of proteins on a large scale. We describe a method, PANTHER, for relating protein sequence relationships to function relationships in a robust and accurate way. PANTHER is composed of two main components: the PANTHER library (PANTHER/LIB) and the PANTHER index (PANTHER/X). PANTHER/LIB is a collection of “books,” each representing a protein family as a multiple sequence alignment, a Hidden Markov Model (HMM), and a family tree. Functional divergence within the family is represented by dividing the tree into subtrees based on shared function, and by subtree HMMs. PANTHER/X is an abbreviated ontology for summarizing and navigating molecular functions and biological processes associated with the families and subfamilies. We apply PANTHER to three areas of active research. First, we report the size and sequence diversity of the families and subfamilies, characterizing the relationship between sequence divergence and functional divergence across a wide range of protein families. Second, we use the PANTHER/X ontology to give a high-level representation of gene function across the human and mouse genomes. Third, we use the family HMMs to rank missense single nucleotide polymorphisms (SNPs), on a database-wide scale, according to their likelihood of affecting protein function. PMID:12952881

  18. Functional Assembly of Protein Fragments Induced by Spatial Confinement

    PubMed Central

    Yu, Yongsheng; Wang, Jianpeng; Liu, Jiahui; Ling, Daishun; Xia, Jiang

    2015-01-01

    Natural proteins are often confined within their local microenvironments, such as three-dimensional confinement in organelles or two-dimensional confinement in lipid rafts on cytoplasmic membrane. Spatial confinement restricts proteins' entropic freedom, forces their lateral interaction, and induces new properties that the same proteins lack at the soluble state. So far, the phenomenon of environment-induced protein functional alteration still lacks a full illustration. We demonstrate here that engineered protein fragments, although being non-functional in solution, can be re-assembled within the nanometer space to give the full activity of the whole protein. Specific interaction between hexahistidine-tag (His-tag) and NiO surface immobilizes protein fragments on NiO nanoparticles to form a self-assembled protein "corona" on the particles inside the nanopores of mesoporous silica. Site-specific assembly forces a shoulder-by-shoulder orientation and promotes fragment−fragment interaction; this interaction together with spatial confinement of the mesopores results in functional re-assembly of the protein half fragments. To our surprise, a single half fragment of luciferase (non-catalytic in solution) exhibited luciferase activity when immobilized on NiO in the mesopores, in the absence of the complimentary half. This shows for the first time that spatial confinement can induce the folding of a half fragment, reconstitute the enzyme active site, and re-gain the catalytic capability of the whole protein. Our work thereby highlights the under-documented notion that aside from the chemical composition such as primary sequence, physical environment of a protein also determines its function. PMID:25875003

  19. Functional assembly of protein fragments induced by spatial confinement.

    PubMed

    Yu, Yongsheng; Wang, Jianpeng; Liu, Jiahui; Ling, Daishun; Xia, Jiang

    2015-01-01

    Natural proteins are often confined within their local microenvironments, such as three-dimensional confinement in organelles or two-dimensional confinement in lipid rafts on cytoplasmic membrane. Spatial confinement restricts proteins' entropic freedom, forces their lateral interaction, and induces new properties that the same proteins lack at the soluble state. So far, the phenomenon of environment-induced protein functional alteration still lacks a full illustration. We demonstrate here that engineered protein fragments, although being non-functional in solution, can be re-assembled within the nanometer space to give the full activity of the whole protein. Specific interaction between hexahistidine-tag (His-tag) and NiO surface immobilizes protein fragments on NiO nanoparticles to form a self-assembled protein "corona" on the particles inside the nanopores of mesoporous silica. Site-specific assembly forces a shoulder-by-shoulder orientation and promotes fragment-fragment interaction; this interaction together with spatial confinement of the mesopores results in functional re-assembly of the protein half fragments. To our surprise, a single half fragment of luciferase (non-catalytic in solution) exhibited luciferase activity when immobilized on NiO in the mesopores, in the absence of the complimentary half. This shows for the first time that spatial confinement can induce the folding of a half fragment, reconstitute the enzyme active site, and re-gain the catalytic capability of the whole protein. Our work thereby highlights the under-documented notion that aside from the chemical composition such as primary sequence, physical environment of a protein also determines its function. PMID:25875003

  20. Evidence that high pCO2 affects protein metabolism in tropical reef corals.

    PubMed

    Edmunds, Peter J; Wall, Christopher B

    2014-08-01

    Early life stages of the coral Seriatopora caliendrum were used to test the hypothesis that the depression of dark respiration in coral recruits by high pCO2 is caused by perturbed protein metabolism. First, the contribution of protein anabolism to respiratory costs under high pCO2 was evaluated by measuring the aerobic respiration of S. caliendrum recruits with and without the protein synthesis inhibitor emetine following 1 to 4 days at 45 Pa versus 77 Pa pCO2. Second, protein catabolism under high pCO2 was evaluated by measuring the flux of ammonium (NH4 (+)) from juvenile colonies of S. caliendrum incubated in darkness at 47 Pa and 90 Pa pCO2. Two days after settlement, respiration of recruits was affected by an interaction between emetine and pCO2, with emetine reducing respiration 63% at 45 Pa pCO2 and 27% at 77 Pa pCO2. The interaction disappeared 5 days after settlement, when respiration was reduced 27% by emetine under both pCO2 conditions. These findings suggest that protein anabolism accounted for a large proportion of metabolic costs in coral recruits and was affected by high pCO2, with consequences detected in aerobic respiration. Juvenile S. caliendrum showed net uptake of NH4 (+) at 45 Pa pCO2 but net release of NH4 (+) at 90 Pa pCO2, indicating that protein catabolism, NH4 (+) recycling, or both were affected by high pCO2. Together, these results are consistent with the hypothesis that high pCO2 affects protein metabolism in corals. PMID:25216504

  1. Deciphering the Molecular and Functional Basis of Dbl Family Proteins

    PubMed Central

    Jaiswal, Mamta; Dvorsky, Radovan; Ahmadian, Mohammad Reza

    2013-01-01

    The diffuse B-cell lymphoma (Dbl) family of the guanine nucleotide exchange factors is a direct activator of the Rho family proteins. The Rho family proteins are involved in almost every cellular process that ranges from fundamental (e.g. the establishment of cell polarity) to highly specialized processes (e.g. the contraction of vascular smooth muscle cells). Abnormal activation of the Rho proteins is known to play a crucial role in cancer, infectious and cognitive disorders, and cardiovascular diseases. However, the existence of 74 Dbl proteins and 25 Rho-related proteins in humans, which are largely uncharacterized, has led to increasing complexity in identifying specific upstream pathways. Thus, we comprehensively investigated sequence-structure-function-property relationships of 21 representatives of the Dbl protein family regarding their specificities and activities toward 12 Rho family proteins. The meta-analysis approach provides an unprecedented opportunity to broadly profile functional properties of Dbl family proteins, including catalytic efficiency, substrate selectivity, and signaling specificity. Our analysis has provided novel insights into the following: (i) understanding of the relative differences of various Rho protein members in nucleotide exchange; (ii) comparing and defining individual and overall guanine nucleotide exchange factor activities of a large representative set of the Dbl proteins toward 12 Rho proteins; (iii) grouping the Dbl family into functionally distinct categories based on both their catalytic efficiencies and their sequence-structural relationships; (iv) identifying conserved amino acids as fingerprints of the Dbl and Rho protein interaction; and (v) defining amino acid sequences conserved within, but not between, Dbl subfamilies. Therefore, the characteristics of such specificity-determining residues identified the regions or clusters conserved within the Dbl subfamilies. PMID:23255595

  2. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  3. Mode of heparin attachment to nanocrystalline hydroxyapatite affects its interaction with bone morphogenetic protein-2.

    PubMed

    Goonasekera, Chandhi S; Jack, Kevin S; Bhakta, Gajadhar; Rai, Bina; Luong-Van, Emma; Nurcombe, Victor; Cool, Simon M; Cooper-White, Justin J; Grøndahl, Lisbeth

    2015-01-01

    Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer. The chemical composition of the particles was evaluated using X-ray photoelectron spectroscopy and elemental microanalysis, revealing that the heparin grafting densities achieved were dependent on the curing temperature used in the fabrication of APTES-modified HAP. Comparable amounts of heparin were attached via both covalent coupling and adsorption to the APTES-modified particles, but characterization of the particle surfaces by zeta potential and Brunauer-Emmett-Teller measurements indicated that the conformation of the heparin on the surface was dependent on the method of attachment, which in turn affected the stability of heparin on the surface. The release of BMP-2 from the particles after 7 days in phosphate-buffered saline found that 31% of the loaded BMP-2 was released from the APTES-modified particles with heparin covalently attached, compared to 16% from the APTES-modified particles with the heparin adsorbed. Moreover, when heparin was adsorbed onto pure HAP, it was found that the BMP-2 released after 7 days was 5% (similar to that from unmodified HAP). This illustrates that by altering the mode of attachment of heparin to HAP the release profile and total release of BMP-2 can be manipulated. Importantly, the BMP-2 released from all the heparin particle types was found by the SMAD 1/5/8 phosphorylation assay to be biologically active. PMID:26474791

  4. Dissecting Protein Function: An Efficient Protocol for Identifying Separation-of-Function Mutations That Encode Structurally Stable Proteins

    PubMed Central

    Lubin, Johnathan W.; Rao, Timsi; Mandell, Edward K.; Wuttke, Deborah S.; Lundblad, Victoria

    2013-01-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3− mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations. PMID:23307900

  5. Topology of Protein Interaction Network Shapes Protein Abundances and Strengths of Their Functional and Nonspecific Interactions

    SciTech Connect

    Maslov, S.; Heo, M.; Shakhnovich, E.

    2011-03-08

    How do living cells achieve sufficient abundances of functional protein complexes while minimizing promiscuous nonfunctional interactions? Here we study this problem using a first-principle model of the cell whose phenotypic traits are directly determined from its genome through biophysical properties of protein structures and binding interactions in a crowded cellular environment. The model cell includes three independent prototypical pathways, whose topologies of protein-protein interaction (PPI) subnetworks are different, but whose contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and phenotypic protein copy number variations. We found a strong relationship between evolved physical-chemical properties of protein interactions and their abundances due to a 'frustration' effect: Strengthening of functional interactions brings about hydrophobic interfaces, which make proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations of hub proteins while raising solubilities and abundances of functional monomers. On the basis of these principles we generated and analyzed a possible realization of the proteome-wide PPI network in yeast. In this simulation we found that high-throughput affinity capture-mass spectroscopy experiments can detect functional interactions with high fidelity only for high-abundance proteins while missing most interactions for low-abundance proteins.

  6. Functional TLR5 genetic variants affect human colorectal cancer survival.

    PubMed

    Klimosch, Sascha N; Försti, Asta; Eckert, Jana; Knezevic, Jelena; Bevier, Melanie; von Schönfels, Witigo; Heits, Nils; Walter, Jessica; Hinz, Sebastian; Lascorz, Jesus; Hampe, Jochen; Hartl, Dominik; Frick, Julia-Stefanie; Hemminki, Kari; Schafmayer, Clemens; Weber, Alexander N R

    2013-12-15

    Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1β mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development. PMID:24154872

  7. RNA editing differently affects protein-coding genes in D. melanogaster and H. sapiens

    PubMed Central

    Grassi, Luigi; Leoni, Guido; Tramontano, Anna

    2015-01-01

    When an RNA editing event occurs within a coding sequence it can lead to a different encoded amino acid. The biological significance of these events remains an open question: they can modulate protein functionality, increase the complexity of transcriptomes or arise from a loose specificity of the involved enzymes. We analysed the editing events in coding regions that produce or not a change in the encoded amino acid (nonsynonymous and synonymous events, respectively) in D. melanogaster and in H. sapiens and compared them with the appropriate random models. Interestingly, our results show that the phenomenon has rather different characteristics in the two organisms. For example, we confirm the observation that editing events occur more frequently in non-coding than in coding regions, and report that this effect is much more evident in H. sapiens. Additionally, in this latter organism, editing events tend to affect less conserved residues. The less frequently occurring editing events in Drosophila tend to avoid drastic amino acid changes. Interestingly, we find that, in Drosophila, changes from less frequently used codons to more frequently used ones are favoured, while this is not the case in H. sapiens. PMID:26169954

  8. Functional anatomy of an allosteric protein

    NASA Astrophysics Data System (ADS)

    Purohit, Prasad; Gupta, Shaweta; Jadey, Snehal; Auerbach, Anthony

    2013-12-01

    Synaptic receptors are allosteric proteins that switch on and off to regulate cell signalling. Here, we use single-channel electrophysiology to measure and map energy changes in the gating conformational change of a nicotinic acetylcholine receptor. Two separated regions in the α-subunits—the transmitter-binding sites and αM2-αM3 linkers in the membrane domain—have the highest ϕ-values (change conformation the earliest), followed by the extracellular domain, most of the membrane domain and the gate. Large gating-energy changes occur at the transmitter-binding sites, α-subunit interfaces, the αM1 helix and the gate. We hypothesize that rearrangements of the linkers trigger the global allosteric transition, and that the hydrophobic gate unlocks in three steps. The mostly local character of side-chain energy changes and the similarly high ϕ-values of separated domains, both with and without ligands, suggest that gating is not strictly a mechanical process initiated by the affinity change for the agonist.

  9. Artificial membranes for membrane protein purification, functionality and structure studies.

    PubMed

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. PMID:27284055

  10. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  11. Predicting protein functions from redundancies in large-scale protein interaction networks

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj Pratim; Liang, Shoudan

    2003-01-01

    Interpreting data from large-scale protein interaction experiments has been a challenging task because of the widespread presence of random false positives. Here, we present a network-based statistical algorithm that overcomes this difficulty and allows us to derive functions of unannotated proteins from large-scale interaction data. Our algorithm uses the insight that if two proteins share significantly larger number of common interaction partners than random, they have close functional associations. Analysis of publicly available data from Saccharomyces cerevisiae reveals >2,800 reliable functional associations, 29% of which involve at least one unannotated protein. By further analyzing these associations, we derive tentative functions for 81 unannotated proteins with high certainty. Our method is not overly sensitive to the false positives present in the data. Even after adding 50% randomly generated interactions to the measured data set, we are able to recover almost all (approximately 89%) of the original associations.

  12. A functional protein retention and release multilayer with high stability.

    PubMed

    Nie, Kun; An, Qi; Zhang, Yihe

    2016-04-21

    Effective and robust interfacial protein retention lies at the heart of the fabrication of protein-based functional interfaces, which is potentially applicable in catalysis, medical therapy, antifouling, and smart devices, but remains challenging due to the sensitive nature of proteins. This study reports a general protein retention strategy to spatial-temporally confine various types of proteins at interfacial regions. The proteins were preserved in mesoporous silica nanoparticles embedded in covalently woven multilayers. It is worth noting that the protein retention strategy effectively preserves the catalytic capabilities of the proteins, and the multilayer structure is robust enough to withstand the bubbling catalytic reactions and could be repeatedly used due to conservation of proteins. The spatiotemporal retention of proteins could be adjusted by varying the number of capping layers. Furthermore, we demonstrate that the protein-loaded interfacial layers could not only be used to construct catalytic-active interfaces, but also be integrated as the power-generating unit to propel a macroscopic floating device. PMID:27064353

  13. The APOBEC Protein Family: United by Structure, Divergent in Function.

    PubMed

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated. PMID:27283515

  14. Isolation and study of the functional properties of pea proteins.

    PubMed

    Tömösközi, S; Lásztity, R; Haraszi, R; Baticz, O

    2001-10-01

    Proteins of pea seeds were isolated after defatting with hexane using alkaline (0.1 M sodium hydroxide) extraction and acid (HCl) precipitation. Concentrates were also prepared by hexane extraction and ethanolic extraction (pH = 5). Gross chemical composition amino acid content and functional properties (solubility profile, emulsifying--and foaming properties, water--and oil absorption) were studied. The results were compared with the same parameters of soy and lupin protein products. Although the majority of functional characteristics of isolates were lower in comparison to soy isolates, pea protein concentrate and isolate could be successfully used in bakery products for enrichment in protein and improvement of biological value. Their utilization as meat protein substitute in some Frankfurter type sausages is also possibly. PMID:11712241

  15. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGESBeta

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  16. High Pressure NMR Methods for Characterizing Functional Substates of Proteins.

    PubMed

    Kalbitzer, Hans Robert

    2015-01-01

    Proteins usually exist in multiple conformational states in solution. High pressure NMR spectroscopy is a well-suited method to identify these states. In addition, these states can be characterized by their thermodynamic parameters, the free enthalpies at ambient pressure, the partial molar volumes, and the partial molar compressibility that can be obtained from the analysis of the high pressure NMR data. Two main types of states of proteins exist, functional states and folding states. There is a strong link between these two types, the functional states represent essential folding states (intermediates), other folding states may have no functional meaning (optional folding states). In this chapter, this concept is tested on the Ras protein, an important proto-oncogen in humans where all substates required by theory can be identified experimentally by high pressure NMR spectroscopy. Finally, we show how these data can be used to develop allosteric inhibitors of proteins. PMID:26174382

  17. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  18. Predicting Protein Function via Semantic Integration of Multiple Networks.

    PubMed

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically i ntegrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet. PMID:26800544

  19. The Protein Information Resource: an integrated public resource of functional annotation of proteins

    PubMed Central

    Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.

    2002-01-01

    The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247

  20. Surface Functionalization for Protein and Cell Patterning

    NASA Astrophysics Data System (ADS)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  1. Protein Conformational Populations and Functionally Relevant Sub-states

    SciTech Connect

    Agarwal, Pratul K; Burger, Virginia; Savol, Andrej; Ramanathan, Arvind; Chennubhotla, Chakra

    2013-01-01

    Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of the protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow

  2. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution

    PubMed Central

    Bloom, Jesse D; Romero, Philip A; Lu, Zhongyi; Arnold, Frances H

    2007-01-01

    Background Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's original biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. Results Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one activity based on the measurement of several others. Conclusion Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection favor new functions in the future. Reviewers This article was reviewed by Martijn Huynen, Fyodor Kondrashov, and Dan Tawfik (nominated by Christoph Adami). PMID:17598905

  3. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings as Affected by Mineral Nutrition. II. Micronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Activity of nitrate reductase from Triticum aestivum L. seedlings was decreased by deficiencies of molybdenum, zinc, and chlorine. Nitrate accumulated in molybdenum-deficient seedlings, declined in zinc-deficient seedlings, and was unaffected by the other micronutrient treatments. Glutamic acid dehydrogenase activity was decreased by deficiency of molybdenum, the only nutrient that affected the enzyme. Glutamine synthetase activity was decreased only by copper deficiency, and glutamic-oxaloacetic transaminase was not affected by any micronutrient deficiencies. Incorporation of 14C-leucine into protein by wheat seedlings was increased by molybdenum deficiency, apparently because of decreased inhibition from endogenous amino acids, and was decreased by copper deficiency. Protein content was not affected significantly by the micronutrient treatments. PMID:16657114

  4. Network Analysis of Circular Permutations in Multidomain Proteins Reveals Functional Linkages for Uncharacterized Proteins

    PubMed Central

    Adjeroh, Donald; Jiang, Yue; Jiang, Bing-Hua; Lin, Jie

    2014-01-01

    Various studies have implicated different multidomain proteins in cancer. However, there has been little or no detailed study on the role of circular multidomain proteins in the general problem of cancer or on specific cancer types. This work represents an initial attempt at investigating the potential for predicting linkages between known cancer-associated proteins with uncharacterized or hypothetical multidomain proteins, based primarily on circular permutation (CP) relationships. First, we propose an efficient algorithm for rapid identification of both exact and approximate CPs in multidomain proteins. Using the circular relations identified, we construct networks between multidomain proteins, based on which we perform functional annotation of multidomain proteins. We then extend the method to construct subnetworks for selected cancer subtypes, and performed prediction of potential link-ages between uncharacterized multidomain proteins and the selected cancer types. We include practical results showing the performance of the proposed methods. PMID:25741177

  5. Biochemical Properties and Biological Functions of FET Proteins.

    PubMed

    Schwartz, Jacob C; Cech, Thomas R; Parker, Roy R

    2015-01-01

    Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis. PMID:25494299

  6. Alteration of POLDIP3 Splicing Associated with Loss of Function of TDP-43 in Tissues Affected with ALS

    PubMed Central

    Shiga, Atsushi; Ishihara, Tomohiko; Miyashita, Akinori; Kuwabara, Misaki; Kato, Taisuke; Watanabe, Norihiro; Yamahira, Akie; Kondo, Chigusa; Yokoseki, Akio; Takahashi, Masuhiro; Kuwano, Ryozo; Kakita, Akiyoshi; Nishizawa, Masatoyo; Takahashi, Hitoshi; Onodera, Osamu

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease caused by selective loss of motor neurons. In the ALS motor neurons, TAR DNA-binding protein of 43 kDa (TDP-43) is dislocated from the nucleus to cytoplasm and forms inclusions, suggesting that loss of a nuclear function of TDP-43 may underlie the pathogenesis of ALS. TDP-43 functions in RNA metabolism include regulation of transcription, mRNA stability, and alternative splicing of pre-mRNA. However, a function of TDP-43 in tissue affected with ALS has not been elucidated. We sought to identify the molecular indicators reflecting on a TDP-43 function. Using exon array analysis, we observed a remarkable alteration of splicing in the polymerase delta interacting protein 3 (POLDIP3) as a result of the depletion of TDP-43 expression in two types of cultured cells. In the cells treated with TDP-43 siRNA, wild-type POLDIP3 (variant-1) decreased and POLDIP3 lacking exon 3 (variant-2) increased. The RNA binding ability of TDP-43 was necessary for inclusion of POLDIP3 exon 3. Moreover, we found an increment of POLDIP3 variant-2 mRNA in motor cortex, spinal cord and spinal motor neurons collected by laser capture microdissection with ALS. Our results suggest a loss of TDP-43 function in tissues affected with ALS, supporting the hypothesis that a loss of function of TDP-43 underlies the pathogenesis of ALS. PMID:22900096

  7. Scoring functions for prediction of protein-ligand interactions.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin

    2013-01-01

    The scoring functions for protein-ligand interactions plays central roles in computational drug design, virtual screening of chemical libraries for new lead identification, and prediction of possible binding targets of small chemical molecules. An ideal scoring function for protein-ligand interactions is expected to be able to recognize the native binding pose of a ligand on the protein surface among decoy poses, and to accurately predict the binding affinity (or binding free energy) so that the active molecules can be discriminated from the non-active ones. Due to the empirical nature of most, if not all, scoring functions for protein-ligand interactions, the general applicability of empirical scoring functions, especially to domains far outside training sets, is a major concern. In this review article, we will explore the foundations of different classes of scoring functions, their possible limitations, and their suitable application domains. We also provide assessments of several scoring functions on weakly-interacting protein-ligand complexes, which will be useful information in computational fragment-based drug design or virtual screening. PMID:23016847

  8. Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking▿

    PubMed Central

    de Jong, Arjan S.; de Mattia, Fabrizio; Van Dommelen, Michiel M.; Lanke, Kjerstin; Melchers, Willem J. G.; Willems, Peter H. G. M.; van Kuppeveld, Frank J. M.

    2008-01-01

    The family Picornaviridae consists of a large group of plus-strand RNA viruses that share a similar genome organization. The nomenclature of the picornavirus proteins is based on their position in the viral RNA genome but does not necessarily imply a conserved function of proteins of different genera. The enterovirus 2B protein is a small hydrophobic protein that, upon individual expression, is localized to the endoplasmic reticulum (ER) and the Golgi complex, reduces ER and Golgi complex Ca2+ levels, most likely by forming transmembrane pores, and inhibits protein trafficking through the Golgi complex. At present, little is known about the function of the other picornavirus 2B proteins. Here we show that rhinovirus 2B, which is phylogenetically closely related to enterovirus 2B, shows a similar subcellular localization and function to those of enterovirus 2B. In contrast, 2B proteins of hepatitis A virus, foot-and-mouth disease virus, and encephalomyocarditis virus, all of which are more distantly related to enteroviruses, show a different localization and have little, if any, effects on Ca2+ homeostasis and intracellular protein trafficking. Our data suggest that the 2B proteins of enterovirus and rhinovirus share the same function in virus replication, while the other picornavirus 2B proteins support the viral life cycle in a different manner. Moreover, we show that an enterovirus 2B protein that is retained in the ER is unable to modify Ca2+ homeostasis and inhibit protein trafficking, demonstrating the importance of Golgi complex localization for its functioning. PMID:18216106

  9. Structural and functional properties of hemp seed protein products.

    PubMed

    Malomo, Sunday A; He, Rong; Aluko, Rotimi E

    2014-08-01

    The effects of pH and protein concentration on some structural and functional properties of hemp seed protein isolate (HPI, 84.15% protein content) and defatted hemp seed protein meal (HPM, 44.32% protein content) were determined. The HPI had minimum protein solubility (PS) at pH 4.0, which increased as pH was decreased or increased. In contrast, the HPM had minimum PS at pH 3.0, which increased at higher pH values. Gel electrophoresis showed that some of the high molecular weight proteins (>45 kDa) present in HPM were not well extracted by the alkali and were absent or present in low ratio in the HPI polypeptide profile. The amino acid composition showed that the isolation process increased the Arg/Lys ratio of HPI (5.52%) when compared to HPM (3.35%). Intrinsic fluorescence and circular dichroism data indicate that the HPI proteins had a well-defined structure at pH 3.0, which was lost as pH value increased. The differences in structural conformation of HPI at different pH values were reflected as better foaming capacity at pH 3.0 when compared to pH 5.0, 7.0, and 9.0. At 10 and 25 mg/mL protein concentrations, emulsions formed by the HPM had smaller oil droplet sizes (higher quality), when compared to the HPI-formed emulsions. In contrast at 50 mg/mL protein concentration, the HPI-formed emulsions had smaller oil droplet sizes (except at pH 3.0). We conclude that the functional properties of hemp seed protein products are dependent on structural conformations as well as protein concentration and pH. PMID:25048774

  10. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of

  11. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna

    PubMed Central

    Meadows, Melissa G.; Roudybush, Thomas E.; McGraw, Kevin J.

    2012-01-01

    SUMMARY Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent. PMID:22837446

  12. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna.

    PubMed

    Meadows, Melissa G; Roudybush, Thomas E; McGraw, Kevin J

    2012-08-15

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent. PMID:22837446

  13. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  14. Functional annotation of hypothetical proteins – A review

    PubMed Central

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2006-01-01

    The complete human genome sequences in the public database provide ways to understand the blue print of life. As of June 29, 2006, 27 archaeal, 326 bacterial and 21 eukaryotes is complete genomes are available and the sequencing for 316 bacterial, 24 archaeal, 126 eukaryotic genomes are in progress. The traditional biochemical/molecular experiments can assign accurate functions for genes in these genomes. However, the process is time-consuming and costly. Despite several efforts, only 50-60 % of genes have been annotated in most completely sequenced genomes. Automated genome sequence analysis and annotation may provide ways to understand genomes. Thus, determination of protein function is one of the challenging problems of the post-genome era. This demands bioinformatics to predict functions of un-annotated protein sequences by developing efficient tools. Here, we discuss some of the recent and popular approaches developed in Bioinformatics to predict functions for hypothetical proteins. PMID:17597916

  15. Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family.

    PubMed

    Thakur, Subarna; Bothra, Asim K; Sen, Arnab

    2013-11-01

    Biological nitrogen fixation is accomplished by prokaryotes through the catalytic action of complex metalloenzyme, nitrogenase. Nitrogenase is a two-protein component system comprising MoFe protein (NifD and K) and Fe protein (NifH). NifH shares structural and mechanistic similarities as well as evolutionary relationships with light-independent protochlorophyllide reductase (BchL), a photosynthesis-related metalloenzyme belonging to the same protein family. We performed a comprehensive bioinformatics analysis of the NifH/BchL family in order to elucidate the intrinsic functional diversity and the underlying evolutionary mechanism among the members. To analyse functional divergence in the NifH/ BchL family, we have conducted pair-wise estimation in altered evolutionary rates between the member proteins. We identified a number of vital amino acid sites which contribute to predicted functional diversity. We have also made use of the maximum likelihood tests for detection of positive selection at the amino acid level followed by the structure-based phylogenetic approach to draw conclusion on the ancient lineage and novel characterization of the NifH/BchL protein family. Our investigation provides ample support to the fact that NifH protein and BchL share robust structural similarities and have probably deviated from a common ancestor followed by divergence in functional properties possibly due to gene duplication. PMID:24287653

  16. Proteins: sequence to structure and function--current status.

    PubMed

    Shenoy, Sandhya R; Jayaram, B

    2010-11-01

    In an era that has been dominated by Structural Biology for the last 30-40 years, a dramatic change of focus towards sequence analysis has spurred the advent of the genome projects and the resultant diverging sequence/structure deficit. The central challenge of Computational Structural Biology is therefore to rationalize the mass of sequence information into biochemical and biophysical knowledge and to decipher the structural, functional and evolutionary clues encoded in the language of biological sequences. In investigating the meaning of sequences, two distinct analytical themes have emerged: in the first approach, pattern recognition techniques are used to detect similarity between sequences and hence to infer related structures and functions; in the second ab initio prediction methods are used to deduce 3D structure, and ultimately to infer function, directly from the linear sequence. In this article, we attempt to provide a critical assessment of what one may and may not expect from the biological sequences and to identify major issues yet to be resolved. The presentation is organized under several subtitles like protein sequences, pattern recognition techniques, protein tertiary structure prediction, membrane protein bioinformatics, human proteome, protein-protein interactions, metabolic networks, potential drug targets based on simple sequence properties, disordered proteins, the sequence-structure relationship and chemical logic of protein sequences. PMID:20887265

  17. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins▿

    PubMed Central

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng

    2010-01-01

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 Å, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface. PMID:20089642

  18. Exon skipping causes atypical phenotypes associated with a loss-of-function mutation in FLNA by restoring its protein function.

    PubMed

    Oda, Hirotsugu; Sato, Tatsuhiro; Kunishima, Shinji; Nakagawa, Kenji; Izawa, Kazushi; Hiejima, Eitaro; Kawai, Tomoki; Yasumi, Takahiro; Doi, Hiraku; Katamura, Kenji; Numabe, Hironao; Okamoto, Shinya; Nakase, Hiroshi; Hijikata, Atsushi; Ohara, Osamu; Suzuki, Hidenori; Morisaki, Hiroko; Morisaki, Takayuki; Nunoi, Hiroyuki; Hattori, Seisuke; Nishikomori, Ryuta; Heike, Toshio

    2016-03-01

    Loss-of-function mutations in filamin A (FLNA) cause an X-linked dominant disorder with multiple organ involvement. Affected females present with periventricular nodular heterotopia (PVNH), cardiovascular complications, thrombocytopenia and Ehlers-Danlos syndrome. These mutations are typically lethal to males, and rare male survivors suffer from failure to thrive, PVNH, and severe cardiovascular and gastrointestinal complications. Here we report two surviving male siblings with a loss-of-function mutation in FLNA. They presented with multiple complications, including valvulopathy, intestinal malrotation and chronic intestinal pseudo-obstruction (CIPO). However, these siblings had atypical clinical courses, such as a lack of PVNH and a spontaneous improvement of CIPO. Trio-based whole-exome sequencing revealed a 4-bp deletion in exon 40 that was predicted to cause a lethal premature protein truncation. However, molecular investigations revealed that the mutation induced in-frame skipping of the mutated exon, which led to the translation of a mutant FLNA missing an internal region of 41 amino acids. Functional analyses of the mutant protein suggested that its binding affinity to integrin, as well as its capacity to induce focal adhesions, were comparable to those of the wild-type protein. These results suggested that exon skipping of FLNA partially restored its protein function, which could contribute to amelioration of the siblings' clinical courses. This study expands the diversity of the phenotypes associated with loss-of-function mutations in FLNA. PMID:26059841

  19. An Atomistic Statistically Effective Energy Function for Computational Protein Design.

    PubMed

    Topham, Christopher M; Barbe, Sophie; André, Isabelle

    2016-08-01

    Shortcomings in the definition of effective free-energy surfaces of proteins are recognized to be a major contributory factor responsible for the low success rates of existing automated methods for computational protein design (CPD). The formulation of an atomistic statistically effective energy function (SEEF) suitable for a wide range of CPD applications and its derivation from structural data extracted from protein domains and protein-ligand complexes are described here. The proposed energy function comprises nonlocal atom-based and local residue-based SEEFs, which are coupled using a novel atom connectivity number factor to scale short-range, pairwise, nonbonded atomic interaction energies and a surface-area-dependent cavity energy term. This energy function was used to derive additional SEEFs describing the unfolded-state ensemble of any given residue sequence based on computed average energies for partially or fully solvent-exposed fragments in regions of irregular structure in native proteins. Relative thermal stabilities of 97 T4 bacteriophage lysozyme mutants were predicted from calculated energy differences for folded and unfolded states with an average unsigned error (AUE) of 0.84 kcal mol(-1) when compared to experiment. To demonstrate the utility of the energy function for CPD, further validation was carried out in tests of its capacity to recover cognate protein sequences and to discriminate native and near-native protein folds, loop conformers, and small-molecule ligand binding poses from non-native benchmark decoys. Experimental ligand binding free energies for a diverse set of 80 protein complexes could be predicted with an AUE of 2.4 kcal mol(-1) using an additional energy term to account for the loss in ligand configurational entropy upon binding. The atomistic SEEF is expected to improve the accuracy of residue-based coarse-grained SEEFs currently used in CPD and to extend the range of applications of extant atom-based protein statistical

  20. TFPI cofactor function of protein S: essential role of the protein S SHBG-like domain

    PubMed Central

    Reglińska-Matveyev, Natalia; Andersson, Helena M.; Rezende, Suely M.; Dahlbäck, Björn; Crawley, James T. B.; Lane, David A.; Ahnström, Josefin

    2014-01-01

    Protein S is a cofactor for tissue factor pathway inhibitor (TFPI), accelerating the inhibition of activated factor X (FXa). TFPI Kunitz domain 3 residue Glu226 is essential for enhancement of TFPI by protein S. To investigate the complementary functional interaction site on protein S, we screened 44 protein S point, composite or domain swap variants spanning the whole protein S molecule for their TFPI cofactor function using a thrombin generation assay. Of these variants, two protein S/growth arrest–specific 6 chimeras, with either the whole sex hormone–binding globulin (SHBG)-like domain (Val243-Ser635; chimera III) or the SHBG laminin G-type 1 subunit (Ser283-Val459; chimera I), respectively, substituted by the corresponding domain in growth arrest–specific 6, were unable to enhance TFPI. The importance of the protein S SHBG-like domain (and its laminin G-type 1 subunit) for binding and enhancement of TFPI was confirmed in FXa inhibition assays and using surface plasmon resonance. In addition, protein S bound to C4b binding protein showed greatly reduced enhancement of TFPI-mediated inhibition of FXa compared with free protein S. We show that binding of TFPI to the protein S SHBG-like domain enables TFPI to interact optimally with FXa on a phospholipid membrane. PMID:24740810

  1. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  2. Phytochemicals perturb membranes and promiscuously alter protein function.

    PubMed

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  3. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  4. Metrnl: a secreted protein with new emerging functions

    PubMed Central

    Zheng, Si-li; Li, Zhi-yong; Song, Jie; Liu, Jian-min; Miao, Chao-yu

    2016-01-01

    Secreted proteins play critical roles in physiological and pathological processes and can be used as biomarkers and therapies for aging and disease. Metrnl is a novel secreted protein homologous to the neurotrophin Metrn. But this protein, unlike Metrn that is mainly expressed in the brain, shows a relatively wider distribution in the body with high levels of expression in white adipose tissue and barrier tissues. This protein plays important roles in neural development, white adipose browning and insulin sensitization. Based on its expression and distinct functions, this protein is also called Cometin, Subfatin and Interleukin 39, which refer to its neurotrophic effect, adipokine function and the possible action as a cytokine, respectively. The spectrum of Metrnl functions remains to be determined, and the mechanisms of Metrnl action need to be elucidated. In this review, we focus on the discovery, structural characteristics, expression pattern and physiological functions of Metrnl, which will assist in developing this protein as a new therapeutic target or agent. PMID:27063217

  5. Approaches for functional analysis of flagellar proteins in African trypanosomes

    PubMed Central

    Oberholzer, Michael; Lopez, Miguel A.; Ralston, Katherine S.; Hill, Kent L.

    2013-01-01

    The eukaryotic flagellum is a highly conserved organelle serving motility, sensory and transport functions. Although genetic, genomic and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei lifecycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins. PMID:20409810

  6. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera.

    PubMed

    Kumar, Suresh

    2015-01-01

    Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency. PMID:25780274

  7. Roles and functions of HIV-1 Tat protein in the CNS: an overview

    PubMed Central

    2013-01-01

    Nearly 50% of HIV-infected individuals suffer from some form of HIV-associated neurocognitive disorders (HAND). HIV-1 Tat (a key HIV transactivator of transcription) protein is one of the first HIV proteins to be expressed after infection occurs and is absolutely required for the initiation of the HIV genome transcription. In addition to its canonical functions, various studies have shown the deleterious role of HIV-1 Tat in the development and progression of HAND. Within the CNS, only specific cell types can support productive viral replication (astrocytes and microglia), however Tat protein can be released form infected cells to affects HIV non-permissive cells such as neurons. Therefore, in this review, we will summarize the functions of HIV-1 Tat proteins in neural cells and its ability to promote HAND. PMID:24359561

  8. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  9. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  10. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.

    PubMed

    Jones, Owen Griffith; McClements, David Julian

    2010-03-01

    Biopolymer nanoparticles can be formed by heating globular protein-ionic polysaccharide electrostatic complexes above the thermal denaturation temperature of the protein. This study examined how the size and concentration of biopolymer particles formed by heating beta-lactoglobulin-pectin complexes could be manipulated by controlling preparation conditions: pH, ionic strength, protein concentration, holding time, and holding temperature. Biopolymer particle size and concentration increased with increasing holding time (0 to 30 min), decreasing holding temperature (90 to 70 degrees C), increasing protein concentration (0 to 2 wt/wt%), increasing pH (4.5 to 5), and increasing salt concentration (0 to 50 mol/kg). The influence of these factors on biopolymer particle size was attributed to their impact on protein-polysaccharide interactions, and on the kinetics of nucleation and particle growth. The knowledge gained from this study will facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes. PMID:20492252

  11. A Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins

    PubMed Central

    Slagowski, Naomi L; Kramer, Roger W; Morrison, Monica F; LaBaer, Joshua; Lesser, Cammie F

    2008-01-01

    Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to

  12. False occurrences of functional motifs in protein sequences highlight evolutionary constraints

    PubMed Central

    Via, Allegra; Gherardini, Pier Federico; Ferraro, Enrico; Ausiello, Gabriele; Scalia Tomba, Gianpaolo; Helmer-Citterich, Manuela

    2007-01-01

    Background False occurrences of functional motifs in protein sequences can be considered as random events due solely to the sequence composition of a proteome. Here we use a numerical approach to investigate the random appearance of functional motifs with the aim of addressing biological questions such as: How are organisms protected from undesirable occurrences of motifs otherwise selected for their functionality? Has the random appearance of functional motifs in protein sequences been affected during evolution? Results Here we analyse the occurrence of functional motifs in random sequences and compare it to that observed in biological proteomes; the behaviour of random motifs is also studied. Most motifs exhibit a number of false positives significantly similar to the number of times they appear in randomized proteomes (=expected number of false positives). Interestingly, about 3% of the analysed motifs show a different kind of behaviour and appear in biological proteomes less than they do in random sequences. In some of these cases, a mechanism of evolutionary negative selection is apparent; this helps to prevent unwanted functionalities which could interfere with cellular mechanisms. Conclusion Our thorough statistical and biological analysis showed that there are several mechanisms and evolutionary constraints both of which affect the appearance of functional motifs in protein sequences. PMID:17331242

  13. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    PubMed Central

    Das, Sayoni; Lee, David; Sillitoe, Ian; Dawson, Natalie L.; Lees, Jonathan G.; Orengo, Christine A.

    2015-01-01

    Motivation: Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. The superfamilies are sub-classified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer. Results: FunFHMMer generates more functionally coherent groupings of protein sequences than other domain-based protein classifications. This has been validated using known functional information. The conserved positions predicted by the FunFams are also found to be enriched in known functional residues. Moreover, the functional annotations provided by the FunFams are found to be more precise than other domain-based resources. FunFHMMer currently identifies 110 439 FunFams in 2735 superfamilies which can be used to functionally annotate > 16 million domain sequences. Availability and implementation: All FunFam annotation data are made available through the CATH webpages (http://www.cathdb.info). The FunFHMMer webserver (http://www.cathdb.info/search/by_funfhmmer) allows users to submit query sequences for assignment to a CATH FunFam. Contact: sayoni.das.12@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26139634

  14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  15. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids.

    PubMed

    Cohen, Hagai; Pajak, Agnieszka; Pandurangan, Sudhakar; Amir, Rachel; Marsolais, Frédéric

    2016-06-01

    Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition. PMID:26888094

  16. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  17. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function.

    PubMed

    Scott, Emily E; Wolf, C Roland; Otyepka, Michal; Humphreys, Sara C; Reed, James R; Henderson, Colin J; McLaughlin, Lesley A; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P; Barnaba, Carlo; Brozik, James A; Jones, Jeffrey P; Estrada, D Fernando; Laurence, Jennifer S; Park, Ji Won; Backes, Wayne L

    2016-04-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  18. Functionally Relevant Specific Packing Can Determine Protein Folding Routes.

    PubMed

    Yadahalli, Shilpa; Gosavi, Shachi

    2016-01-29

    Functional residues can modulate the folding mechanisms of proteins. In some proteins, mutations to such residues can radically change the primary folding route. Is it possible then to learn more about the functional regions of a protein by investigating just its choice of folding route? The folding and the function of the protein Escherichia coli ribonuclease H (ecoRNase-H) have been extensively studied and its folding route is known to near-residue resolution. Here, we computationally study the folding of ecoRNase-H using molecular dynamics simulations of structure-based models of increasing complexity. The differences between a model that correctly predicts the experimentally determined folding route and a simpler model that does not can be attributed to a set of six aromatic residues clustered together in a region of the protein called CORE. This clustering, which we term "specific" packing, drives CORE to fold early and determines the folding route. Both the residues involved in specific packing and their packing are largely conserved across E. coli-like RNase-Hs from diverse species. Residue conservation is usually implicated in function. Here, the identified residues either are known to bind substrate in ecoRNase-H or pack against the substrate in the homologous human RNase-H where a substrate-bound crystal structure exists. Thus, the folding mechanism of ecoRNase-H is a byproduct of functional demands upon its sequence. Using our observations on specific packing, we suggest mutations to an engineered HIV RNase-H to make its function better. Our results show that understanding folding route choice in proteins can provide unexpected insights into their function. PMID:26724535

  19. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties

    PubMed Central

    Zhao, Xue; Vázquez-Gutiérrez, José Luis; Johansson, Daniel P.; Landberg, Rikard; Langton, Maud

    2016-01-01

    A protocol for extraction of yellow mealworm larvae proteins was established, conditions were evaluated and the resulting protein extract was characterised. The freeze-dried yellow mealworm larvae contained around 33% fat, 51% crude protein and 43% true protein on a dry matter basis. The true protein content of the protein extract was about 75%, with an extraction rate of 70% under optimised extraction conditions using 0.25 M NaOH, a NaOH solution:ethanol defatted worm ratio of 15:1 mL/g, 40°C for 1 h and extraction twice. The protein extract was a good source of essential amino acids. The lowest protein solubility in distilled water solution was found between pH 4 and 5, and increased with either increasing or decreasing pH. Lower solubility was observed in 0.5 M NaCl solution compared with distilled water. The rheological tests indicated that temperature, sample concentration, addition of salt and enzyme, incubation time and pH alterations influenced the elastic modulus of yellow mealworm protein extract (YMPE). These results demonstrate that the functional properties of YMPE can be modified for different food applications. PMID:26840533

  20. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296

  1. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties.

    PubMed

    Zhao, Xue; Vázquez-Gutiérrez, José Luis; Johansson, Daniel P; Landberg, Rikard; Langton, Maud

    2016-01-01

    A protocol for extraction of yellow mealworm larvae proteins was established, conditions were evaluated and the resulting protein extract was characterised. The freeze-dried yellow mealworm larvae contained around 33% fat, 51% crude protein and 43% true protein on a dry matter basis. The true protein content of the protein extract was about 75%, with an extraction rate of 70% under optimised extraction conditions using 0.25 M NaOH, a NaOH solution:ethanol defatted worm ratio of 15:1 mL/g, 40°C for 1 h and extraction twice. The protein extract was a good source of essential amino acids. The lowest protein solubility in distilled water solution was found between pH 4 and 5, and increased with either increasing or decreasing pH. Lower solubility was observed in 0.5 M NaCl solution compared with distilled water. The rheological tests indicated that temperature, sample concentration, addition of salt and enzyme, incubation time and pH alterations influenced the elastic modulus of yellow mealworm protein extract (YMPE). These results demonstrate that the functional properties of YMPE can be modified for different food applications. PMID:26840533

  2. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    NASA Astrophysics Data System (ADS)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  3. Versatile multi-functionalization of protein nanofibrils for biosensor applications

    NASA Astrophysics Data System (ADS)

    Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.

    2014-01-01

    Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the

  4. The KCTD family of proteins: structure, function, disease relevance

    PubMed Central

    2013-01-01

    The family of potassium channel tetramerizationdomain (KCTD) proteins consists of 26 members with mostly unknown functions. The name of the protein family is due to the sequence similarity between the conserved N-terminal region of KCTD proteins and the tetramerization domain in some voltage-gated potassium channels. Dozens of publications suggest that KCTD proteins have roles in various biological processes and diseases. In this review, we summarize the character of Bric-a-brack,Tram-track, Broad complex(BTB) of KCTD proteins, their roles in the ubiquitination pathway, and the roles of KCTD mutants in diseases. Furthermore, we review potential downstream signaling pathways and discuss future studies that should be performed. PMID:24268103

  5. Protein-based functional nanomaterial design for bioengineering applications.

    PubMed

    Desai, Malav S; Lee, Seung-Wuk

    2015-01-01

    In this review article, we describe recent progress in the field of protein-based bionanomaterial design with focus on the four well-characterized proteins: mammalian elastin and collagen, and insect-derived silk and resilin. These proteins are important structural components and understanding their physical and biochemical properties has allowed us to not only replicate them but also create novel smart materials. The 'smart' properties of a material include its ability to self-assemble, respond to stimuli, and/or promote cell interactions. Such properties can be attributed to unique structural modules from elastin, collagen, silk, and resilin as well as functional modules identified from other proteins directly or using display techniques such as phage display. Thus, the goal of this article is to not only emphasize the types of protein-based peptide modules and their uses but also encourage and inspire the reader to create new toolsets of smart polypeptides to overcome their challenges. PMID:25392986

  6. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function. PMID:26453804

  7. Proteins that associate with lamins: Many faces, many functions

    SciTech Connect

    Schirmer, Eric C. . E-mail: e.schirmer@ed.ac.uk; Foisner, Roland . E-mail: roland.foisner@meduniwien.ac.at

    2007-06-10

    Lamin-associated polypeptides (LAPs) comprise inner nuclear membrane proteins tightly associated with the peripheral lamin scaffold as well as proteins forming stable complexes with lamins in the nucleoplasm. The involvement of LAPs in a wide range of human diseases may be linked to an equally bewildering range of their functions, including sterol reduction, histone modification, transcriptional repression, and Smad- and {beta}-catenin signaling. Many LAPs are likely to be at the center of large multi-protein complexes, components of which may dictate their functions, and a few LAPs have defined enzymatic activities. Here we discuss the definition of LAPs, review their many binding partners, elaborate their functions in nuclear architecture, chromatin organization, gene expression and signaling, and describe what is currently known about their links to human disease.

  8. Pattern recognition methods for protein functional site prediction.

    PubMed

    Yang, Zheng Rong; Wang, Lipo; Young, Natasha; Trudgian, Dave; Chou, Kuo-Chen

    2005-10-01

    Protein functional site prediction is closely related to drug design, hence to public health. In order to save the cost and the time spent on identifying the functional sites in sequenced proteins in biology laboratory, computer programs have been widely used for decades. Many of them are implemented using the state-of-the-art pattern recognition algorithms, including decision trees, neural networks and support vector machines. Although the success of this effort has been obvious, advanced and new algorithms are still under development for addressing some difficult issues. This review will go through the major stages in developing pattern recognition algorithms for protein functional site prediction and outline the future research directions in this important area. PMID:16248799

  9. Functional analysis of glucan binding protein B from Streptococcus mutans.

    PubMed

    Mattos-Graner, Renata O; Porter, Kristen A; Smith, Daniel J; Hosogi, Yumiko; Duncan, Margaret J

    2006-06-01

    Mutans streptococci are major etiological agents of dental caries, and several of their secreted products contribute to bacterial accumulation on teeth. Of these, Streptococcus mutans glucan binding protein B (GbpB) is a novel, immunologically dominant protein. Its biological function is unclear, although GbpB shares homology with a putative peptidoglycan hydrolase from S. agalactiae and S. pneumoniae, indicative of a role in murein biosynthesis. To determine the cellular function of GbpB, we used several approaches to inactivate the gene, analyze its expression, and identify interacting proteins. None of the transformants analyzed were true gbpB mutants, since they all contained both disrupted and wild-type gene copies, and expression of functional GbpB was always conserved. Thus, the inability to obtain viable gbpB null mutants supports the notion that gbpB is an essential gene. Northern blot and real-time PCR analyses suggested that induction of gbpB expression in response to stress was a strain-dependent phenomenon. Proteins that interacted with GbpB were identified in pull-down and coimmunoprecipitation assays, and these data suggest that GbpB interacts with ribosomal protein L7/L12, possibly as part of a protein complex involved in peptidoglycan synthesis and cell division. PMID:16707674

  10. Exceptional overproduction of a functional human membrane protein.

    PubMed

    Nyblom, Maria; Oberg, Fredrik; Lindkvist-Petersson, Karin; Hallgren, Karin; Findlay, Heather; Wikström, Jennie; Karlsson, Anders; Hansson, Orjan; Booth, Paula J; Bill, Roslyn M; Neutze, Richard; Hedfalk, Kristina

    2007-11-01

    Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. PMID:17869538

  11. LINC complex proteins in cardiac structure, function, and disease

    PubMed Central

    Stroud, Matthew J; Banerjee, Indroneal; Lowe, Jennifer; Chen, Ju

    2014-01-01

    The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which are causative for skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field. PMID:24481844

  12. Regulation of Genome Architecture and Function by Polycomb Proteins.

    PubMed

    Entrevan, Marianne; Schuettengruber, Bernd; Cavalli, Giacomo

    2016-07-01

    Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes. PMID:27198635

  13. Oligomers of Heat-Shock Proteins: Structures That Don’t Imply Function

    PubMed Central

    Jacobs, William M.; Knowles, Tuomas P. J.; Frenkel, Daan

    2016-01-01

    Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as small heat-shock proteins, suppress thermodynamic instabilities in protein solutions. Given fixed concentrations of chaperones and client proteins, the solubility of the proteome can be increased by tuning the chaperone–client binding strength. Surprisingly, we find that the binding strength that optimizes solubility while preventing irreversible chaperone binding also promotes the formation of weakly bound chaperone oligomers, although the presence of these oligomers does not significantly affect the thermodynamic stability of the solution. Such oligomers are commonly observed in experiments on small heat-shock proteins, but their connection to the biological function of these chaperones has remained unclear. Our simulations suggest that this clustering may not have any essential biological function, but rather emerges as a natural side-effect of optimizing the thermodynamic stability of the proteome. PMID:26928170

  14. Effect of short-term prednisone use on blood flow, muscle protein metabolism, and function.

    PubMed

    Short, Kevin R; Nygren, Jonas; Bigelow, Maureen L; Nair, K Sreekumaran

    2004-12-01

    Glucocorticoids can cause muscle atrophy, but the effect on muscle protein metabolism in humans has not been adequately studied to know whether protein synthesis, breakdown, or both are altered. We tested the effect of 6 d of oral prednisone (Pred, 0.5 mg/kg.d) on muscle protein metabolism and function. Six healthy subjects (three men/three women, 22-41 yr) completed two trials (randomized, double-blind, cross-over) with Pred and placebo. Fasting glucose, insulin, IGF-I, and glucagon were higher on Pred vs. placebo, whereas IGF-II and IGF binding protein-1 and -2 were lower. Whole-body amino acid fluxes, blood urea nitrogen, and urinary nitrogen loss were not statistically different between trials. Leg blood flow was 25% lower on Pred leading to 15-30% lower amino acid flux among the artery, vein, and muscle. However, amino acid net balance and rates of protein synthesis and breakdown were unchanged, as were synthesis rates of total mixed, mitochondrial, sarcoplasmic, and myosin heavy chain muscle proteins. Muscle mitochondrial function, muscle strength, and resting energy expenditure were also unchanged. These results demonstrate that a short-term moderate dose of prednisone affects glucose metabolism but has no effect on whole-body or leg muscle protein metabolism or muscle function. PMID:15579778

  15. Functional conservation of an ancestral Pellino protein in helminth species.

    PubMed

    Cluxton, Christopher D; Caffrey, Brian E; Kinsella, Gemma K; Moynagh, Paul N; Fares, Mario A; Fallon, Padraic G

    2015-01-01

    The immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster. The TLR pathway is ubiquitous and controls sensitivity to pathogen-associated molecular patterns (PAMPs) in eukaryotes. There is, however, a marked absence of this pathway from the plathyhelminthes, with the exception of the Pellino protein family, which is present in a number of species from this phylum. Helminth Pellino proteins are conserved having high similarity, both at the sequence and predicted structural protein level, with that of human Pellino proteins. Pellino from a model helminth, Schistosoma mansoni Pellino (SmPellino), was shown to bind and poly-ubiquitinate human IRAK-1, displaying E3 ligase activity consistent with its human counterparts. When transfected into human cells SmPellino is functional, interacting with signaling proteins and modulating mammalian signaling pathways. Strict conservation of a protein family in species lacking its niche signalling pathway is rare and provides a platform to examine the ancestral functions of Pellino proteins that may translate into novel mechanisms of immune regulation in humans. PMID:26120048

  16. Structures and functions of autotransporter proteins in microbial pathogens.

    PubMed

    Benz, Inga; Schmidt, M Alexander

    2011-08-01

    Since their discovery more than 20 years ago the autotransporter protein superfamily has been growing continuously and currently represents the largest protein family in (pathogenic) Gram-negative bacteria. Autotransporter proteins (AT) adhere to a common structural principle and are composed of a C-terminal β-barrel-shaped 'translocator' domain and an N-terminal 'passenger' domain. The translocator is anchored in the outer membrane and is indispensable for the N-terminal passenger part to traverse the outer membrane. Most if not all AT harbor a chaperone segment that increases protein stability and may be located in the passenger or translocator domain. The passenger mediates the specific virulence function(s) of the particular AT. Accordingly, passenger domains of AT can be quite variable. Interestingly, AT have been identified as the first glycosylated proteins in Gram-negative bacteria. Despite the considerable efforts invested in the characterization of autotransporter biogenesis, various aspects such as the participation of accessory proteins, the fate of the translocator, or the translocation of glycosylated proteins still remain only poorly understood. In addition, recent evidence indicates that the prefix 'auto' might be slightly exaggerated. Here, we will selectively discuss novel insights at various stages of AT biogenesis. PMID:21616712

  17. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    PubMed

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  18. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  19. Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy Via the Receptor of Advanced Glycation End Products/Raf Protein/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase/Extracellular Signal-regulated Kinase (RAGE/Raf/MEK/ERK) Pathway.

    PubMed

    Meng, Hong-Zheng; Zhang, Wei-Lin; Liu, Fei; Yang, Mao-Wei

    2015-11-20

    The interaction between advanced glycation end products (AGEs) and receptor of AGEs (RAGE) is associated with the development and progression of diabetes-associated osteoporosis, but the mechanisms involved are still poorly understood. In this study, we found that AGE-modified bovine serum albumin (AGE-BSA) induced a biphasic effect on the viability of hFOB1.19 cells; cell proliferation was stimulated after exposure to low dose AGE-BSA, but cell apoptosis was stimulated after exposure to high dose AGE-BSA. The low dose AGE-BSA facilitates proliferation of hFOB1.19 cells by concomitantly promoting autophagy, RAGE production, and the Raf/MEK/ERK signaling pathway activation. Furthermore, we investigated the effects of AGE-BSA on the function of hFOB1.19 cells. Interestingly, the results suggest that the short term effects of low dose AGE-BSA increase osteogenic function and decrease osteoclastogenic function, which are likely mediated by autophagy and the RAGE/Raf/MEK/ERK signal pathway. In contrast, with increased treatment time, the opposite effects were observed. Collectively, AGE-BSA had a biphasic effect on the viability of hFOB1.19 cells in vitro, which was determined by the concentration of AGE-BSA and treatment time. A low concentration of AGE-BSA activated the Raf/MEK/ERK signal pathway through the interaction with RAGE, induced autophagy, and regulated the proliferation and function of hFOB1.19 cells. PMID:26472922

  20. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females. PMID:23036371

  1. Protein-protein interactions in intracellular Ca2+-release channel function.

    PubMed Central

    MacKrill, J J

    1999-01-01

    Release of Ca2+ ions from intracellular stores can occur via two classes of Ca2+-release channel (CRC) protein, the inositol 1,4, 5-trisphosphate receptors (InsP3Rs) and the ryanodine receptors (RyRs). Multiple isoforms and subtypes of each CRC class display distinct but overlapping distributions within mammalian tissues. InsP3Rs and RyRs interact with a plethora of accessory proteins which modulate the activity of their intrinsic channels. Although many aspects of CRC structure and function have been reviewed in recent years, the properties of proteins with which they interact has not been comprehensively surveyed, despite extensive current research on the roles of these modulators. The aim of this article is to review the regulation of CRC activity by accessory proteins and, wherever possible, to outline the structural details of such interactions. The CRCs are large transmembrane proteins, with the bulk of their structure located cytoplasmically. Intra- and inter-complex protein-protein interactions between these cytoplasmic domains also regulate CRC function. Some accessory proteins modulate channel activity of all CRC subtypes characterized, whereas other have class- or even isoform-specific effects. Certain accessory proteins exert both direct and indirect forms of regulation on CRCs, occasionally with opposing effects. Others are themselves modulated by changes in Ca2+ concentration, thereby participating in feedback mechanisms acting on InsP3R and RyR activity. CRCs are therefore capable of integrating numerous signalling events within a cell by virtue of such protein-protein interactions. Consequently, the functional properties of InsP3Rs and RyRs within particular cells and subcellular domains are 'customized' by the accessory proteins present. PMID:9895277

  2. [Functionally-relevant conformational dynamics of water-soluble proteins].

    PubMed

    Novikov, G V; Sivozhelezov, V S; Shaĭtan, K V

    2013-01-01

    A study is reported of the functional-relevant dynamics of three typical water-soluble proteins: Calmodulin, Src-tyrosine kinase as well as repressor of Trp operon. Application of the state-of-art methods of structural bioinformatics allowed to identify dynamics seen in the X-ray structures of the investigated proteins associated with their specific biological functions. In addition, Normal Mode analysis technique revealed the most probable directions of the functionally-relevant motions for all that proteins were also predicted. Importantly, overall type of the motions observed on the lowest-frequency modes was very similar to the motions seen from the analysis of the X-ray data of the examined macromolecules. Thereby it was shown that the large-scale as well as local conformational motions of the proteins might be predetermined already at the level of their tertiary structures. In particular, the determining factor might be the specific fold of the alpha-helixes. Thus functionally-relevant in vivo dynamics of the investigated proteins might be evolutionally formed by means of natural selection at the level of the spatial topology. PMID:23705506

  3. Functionality of alternative protein in gluten-free product development.

    PubMed

    Deora, Navneet Singh; Deswal, Aastha; Mishra, Hari Niwas

    2015-07-01

    Celiac disease is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. The current treatment for celiac disease is life-long adherence to a strict gluten-exclusion diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. A major limitation in the production of gluten-free products is the lack of protein functionality in non-wheat cereals. Additionally, commercial gluten-free mixes usually contain only carbohydrates, which may significantly limit the amount of protein in the diet. In the recent past, various approaches are attempted to incorporate protein-based ingredients and to modify the functional properties for gluten-free product development. This review aims to the highlight functionality of the alternative protein-based ingredients, which can be utilized for gluten-free product development both functionally as well as nutritionally. PMID:26048849

  4. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.

    PubMed

    Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J

    2016-08-18

    Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. PMID:27499296

  5. Protein level affects the relative lysine requirement of growing rainbow trout (Oncorhynchus mykiss) fry.

    PubMed

    Bodin, Noelie; Govaerts, Bernadette; Abboudi, Tarik; Detavernier, Christel; De Saeger, Sarah; Larondelle, Yvan; Rollin, Xavier

    2009-07-01

    The effect of two digestible protein levels (310 and 469 g/kg DM) on the relative lysine (Lys; g Lys/kg DM or g Lys/100 g protein) and the absolute Lys (g Lys intake/kg 0.75 per d) requirements was studied in rainbow trout fry using a dose-response trial. At each protein level, sixteen isoenergetic (22-23 MJ digestible energy/kg DM) diets were tested, involving a full range (2-70 g/kg DM) of sixteen Lys levels. Each diet was given to one group of sixty rainbow trout fry (mean initial body weight 0.78 g) reared at 15 degrees C for 31 feeding d. The Lys requirements were estimated based on the relationships between weight, protein, and Lys gains (g/kg 0.75 per d) and Lys concentration (g/kg DM or g/100 g protein) or Lys intake (g/kg 0.75 per d), using the broken-line model (BLM) and the non-linear four-parameter saturation kinetics model (SKM-4). Both the model and the response criterion chosen markedly impacted the relative Lys requirement. The relative Lys requirement for Lys gain of rainbow trout estimated with the BLM (and SKM-4 at 90 % of the maximum response) increased from 16.8 (19.6) g/kg DM at a low protein level to 23.4 (24.5) g/kg DM at a high protein level. However, the dietary protein content affected neither the absolute Lys requirement nor the relative Lys requirement expressed as g Lys/100 g protein nor the Lys requirement for maintenance (21 mg Lys/kg 0.75 per d). PMID:19138439

  6. Significant proteins affecting cerebral vasospasm using complementary ICPMS and MALDI-MS.

    PubMed

    Easter, Renee N; Barry, Colin G; Pyne-Geithman, Gail; Caruso, Joseph A

    2012-01-01

    Cerebral vasospasm (CV) following subarachnoid hemorrhagic stroke affects more than one million people each year. The etiology and prevention of CV is currently of great interest to researchers in various fields of medical science. More recently, the idea that selenium could be playing a major role in the onset of cerebral vasospasm has come into the spotlight. This study focused on using newly established metallomics techniques in order to explore the proteome associated with CV and if selenium might affect the discovered proteins. Size exclusion chromatography coupled to inductively coupled plasma mass spectrometry, along with LC-MALDI-TOF/TOF were both essential in determining protein identifications in three different sample types; a control (normal, healthy patient, CSF control), SAH stroke patients (no vasospasm, CSF C) and SAH CV patients (CSF V). The results of this study, although preliminary, indicate the current methods are applicable and warrant further application to these clinically important targets. PMID:21976047

  7. New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy.

    PubMed

    Kay, Lewis E

    2016-01-29

    In the past several decades solution NMR spectroscopy has emerged as a powerful technique for the study of the structure and dynamics of proteins, providing detailed insights into biomolecular function. Herein, I provide a summary of two important areas of application, focusing on NMR studies of (i) supramolecular systems with aggregate molecular masses in the hundreds of kilodaltons and of (ii) sparsely populated and transiently formed protein states that are thermally accessible from populated ground-state conformers. The critical role of molecular dynamics in function is emphasized, highlighting the utility of the NMR technique in providing such often elusive information. PMID:26707200

  8. Deducing protein function by forensic integrative cell biology.

    PubMed

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones. PMID:24358025

  9. ACBD3 Interaction with TBC1 Domain 22 Protein Is Differentially Affected by Enteroviral and Kobuviral 3A Protein Binding

    PubMed Central

    Greninger, Alexander L.; Knudsen, Giselle M.; Betegon, Miguel; Burlingame, Alma L.; DeRisi, Joseph L.

    2013-01-01

    ABSTRACT Despite wide sequence divergence, multiple picornaviruses use the Golgi adaptor acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GCP60) to recruit phosphatidylinositol 4-kinase class III beta (PI4KIIIβ/PI4KB), a factor required for viral replication. The molecular basis of this convergent interaction and the cellular function of ACBD3 are not fully understood. Using affinity purification-mass spectrometry, we identified the putative Rab33 GTPase-activating proteins TBC1D22A and TBC1D22B as ACBD3-interacting factors. Fine-scale mapping of binding determinants within ACBD3 revealed that the interaction domains for TBC1D22A/B and PI4KB are identical. Affinity purification confirmed that PI4KB and TBC1D22A/B interactions with ACBD3 are mutually exclusive, suggesting a possible regulatory mechanism for recruitment of PI4KB. The C-terminal Golgi dynamics (GOLD) domain of ACBD3 has been previously shown to bind the 3A replication protein from Aichi virus. We find that the 3A proteins from several additional picornaviruses, including hepatitis A virus, human parechovirus 1, and human klassevirus, demonstrate an interaction with ACBD3 by mammalian two-hybrid assay; however, we also find that the enterovirus and kobuvirus 3A interactions with ACBD3 are functionally distinct with respect to TBC1D22A/B and PI4KB recruitment. These data reinforce the notion that ACBD3 organizes numerous cellular functionalities and that RNA virus replication proteins likely modulate these interactions by more than one mechanism. PMID:23572552

  10. Nitric oxide decreases coagulation protein function in rabbits as assessed by thromboelastography.

    PubMed

    Nielsen, V G

    2001-02-01

    Nitric oxide (NO) is administered via infusion of donors such as nitroglycerin or in inhaled form for treatment of ischemia and pulmonary hypertension, respectively. In rabbits, the NO donor, DETANONOate, decreases whole blood clotting function as assessed by thromboelastographic variables (R, reaction time; alpha, angle; and G, a measure of clot strength). I hypothesized that DETANONOate-derived NO would adversely affect coagulation protein and platelet function. Blood obtained from ear arteries of conscious rabbits (n = 8) anticoagulated with sodium citrate. The blood was then incubated with 0 or 10mM DETANONOate for 30 min. After incubation and recalcification, thromboelastography was performed for 60 min under four conditions: 1) 0mM DETANONOate, 2) 0mM DETANONOate with platelet inhibition with cytochalasin D, 3) 10mM DETANONOate, and 4) 10mM DETANONOate with platelet inhibition. DETANONOate significantly (P < 0.05) increased R and decreased alpha and G in samples with or without platelet inhibition, compared with samples not exposed to DETANONOate. Lastly, the percentage of total G (G(T)) attributable to platelet function (G(P)) was significantly more in the absence of DETANONOate (G(P) = 92.3% +/- 1.6%; mean +/- SD) than after exposure to DETANONOate (G(P) = 90.2% +/- 2.3%). DETANONOate-derived NO significantly decreased coagulation protein function and platelet function. Coagulation protein function may be similarly affected in clinical situations involving the administration of NO or NO donors. PMID:11159223

  11. Use of intein-mediated protein ligation strategies for the fabrication of functional protein arrays.

    PubMed

    Chattopadhaya, Souvik; Abu Bakar, Farhana B; Yao, Shao Q

    2009-01-01

    This section introduces a simple, rapid, high-throughput methodology for the site-specific biotinylation of proteins for the purpose of fabricating functional protein arrays. Step-by-step protocols are provided to generate biotinylated proteins using in vitro, in vivo, or cell-free systems, together with useful hints for troubleshooting. In vitro and in vivo biotinylation rely on the chemoselective native chemical ligation (NCL) reaction between the reactive alpha-thioester group at the C-terminus of target proteins, generated via intein-mediated cleavage, and the added cysteine biotin. The cell-free system uses a low concentration of biotin-conjugated puromycin. The biotinylated proteins can be either purified or directly captured from crude cellular lysates onto an avidin-functionalized slide to afford the corresponding protein array. The methods were designed to preserve the activity of the immobilized protein such that the arrays provide a highly miniaturized platform to simultaneously interrogate the functional activities of thousands of proteins. This is of paramount significance, as new applications of microarray technologies continue to emerge, fueling their growth as an essential tool for high-throughput proteomic studies. PMID:19632476

  12. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  13. Bisphenol-A Affects Male Fertility via Fertility-related Proteins in Spermatozoa

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Lee, June-Sub; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2015-01-01

    The xenoestrogen bisphenol-A (BPA) is a widespread environmental contaminant that has been studied for its impact on male fertility in several species of animals and humans. Growing evidence suggests that xenoestrogens can bind to receptors on spermatozoa and thus alter sperm function. The objective of the study was to investigate the effects of varying concentrations of BPA (0.0001, 0.01, 1, and 100 μM for 6 h) on sperm function, fertilization, embryonic development, and on selected fertility-related proteins in spermatozoa. Our results showed that high concentrations of BPA inhibited sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa. High BPA concentrations also increased the phosphorylation of tyrosine residues on sperm proteins involved in protein kinase A-dependent regulation and induced a precocious acrosome reaction, which resulted in poor fertilization and compromised embryonic development. In addition, BPA induced the down-regulation of β-actin and up-regulated peroxiredoxin-5, glutathione peroxidase 4, glyceraldehyde-3-phosphate dehydrogenase, and succinate dehydrogenase. Our results suggest that high concentrations of BPA alter sperm function, fertilization, and embryonic development via regulation and/or phosphorylation of fertility-related proteins in spermatozoa. We conclude that BPA-induced changes in fertility-related protein levels in spermatozoa may be provided a potential cue of BPA-mediated disease conditions. PMID:25772901

  14. Blocking and detection chemistries affect antibody performance on reverse phase protein arrays.

    PubMed

    Ambroz, Kristi L H; Zhang, Yonghong; Schutz-Geschwender, Amy; Olive, D Michael

    2008-06-01

    Antibody specificity is critical for RP protein arrays (RPA). The effects of blocking and detection chemistries on antibody specificity were evaluated for Western blots and RPA. Blocking buffers significantly affected nonspecific banding on Western blots, with corresponding effects on arrays. Tyramide signal amplification (TSA) increased both specific and nonspecific signals on Westerns and arrays, masking the expected gradations in signal intensity. These results suggest that consistent blocking and detection conditions should be used for antibody validation and subsequent RPA experiments. PMID:18563731

  15. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  16. From residue coevolution to protein conformational ensembles and functional dynamics

    PubMed Central

    Sutto, Ludovico; Marsili, Simone; Valencia, Alfonso; Gervasio, Francesco Luigi

    2015-01-01

    The analysis of evolutionary amino acid correlations has recently attracted a surge of renewed interest, also due to their successful use in de novo protein native structure prediction. However, many aspects of protein function, such as substrate binding and product release in enzymatic activity, can be fully understood only in terms of an equilibrium ensemble of alternative structures, rather than a single static structure. In this paper we combine coevolutionary data and molecular dynamics simulations to study protein conformational heterogeneity. To that end, we adapt the Boltzmann-learning algorithm to the analysis of homologous protein sequences and develop a coarse-grained protein model specifically tailored to convert the resulting contact predictions to a protein structural ensemble. By means of exhaustive sampling simulations, we analyze the set of conformations that are consistent with the observed residue correlations for a set of representative protein domains, showing that (i) the most representative structure is consistent with the experimental fold and (ii) the various regions of the sequence display different stability, related to multiple biologically relevant conformations and to the cooperativity of the coevolving pairs. Moreover, we show that the proposed protocol is able to reproduce the essential features of a protein folding mechanism as well as to account for regions involved in conformational transitions through the correct sampling of the involved conformers. PMID:26487681

  17. Density functional theory for protein transfer free energy.

    PubMed

    Mills, Eric A; Plotkin, Steven S

    2013-10-24

    We cast the problem of protein transfer free energy within the formalism of density functional theory (DFT), treating the protein as a source of external potential that acts upon the solvent. Solvent excluded volume, solvent-accessible surface area, and temperature dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified "back of the envelope" models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5 to 10 kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged interactions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective interaction potentials between protein backbone or side chains and TMAO are obtained, assuming a simple backbone/side chain two-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy δg shows significant entropy: d(δg)/dT ≈ 20 kB for a 100-residue protein. The application of DFT to effective solvent forces for use in implicit-solvent molecular dynamics is also developed. The simplest DFT expressions for implicit-solvent forces contain both depletion interactions and an "impeded-solvation" repulsive force at larger distances. PMID:23944753

  18. JAFA: a protein function annotation meta-server

    PubMed Central

    Friedberg, Iddo; Harder, Tim; Godzik, Adam

    2006-01-01

    With the high number of sequences and structures streaming in from genomic projects, there is a need for more powerful and sophisticated annotation tools. Most problematic of the annotation efforts is predicting gene and protein function. Over the past few years there has been considerable progress in automated protein function prediction, using a diverse set of methods. Nevertheless, no single method reports all the information possible, and molecular biologists resort to ‘shopping around’ using different methods: a cumbersome and time-consuming practice. Here we present the Joined Assembly of Function Annotations, or JAFA server. JAFA queries several function prediction servers with a protein sequence and assembles the returned predictions in a legible, non-redundant format. In this manner, JAFA combines the predictions of several servers to provide a comprehensive view of what are the predicted functions of the proteins. JAFA also offers its own output, and the individual programs' predictions for further processing. JAFA is available for use from . PMID:16845030

  19. Silencing of the tomato sugar partitioning affecting protein (SPA) modifies sink strength through a shift in leaf sugar metabolism.

    PubMed

    Bermúdez, Luisa; de Godoy, Fabiana; Baldet, Pierre; Demarco, Diego; Osorio, Sonia; Quadrana, Leandro; Almeida, Juliana; Asis, Ramón; Gibon, Yves; Fernie, Alisdair R; Rossi, Magdalena; Carrari, Fernando

    2014-03-01

    Limitations in our understanding about the mechanisms that underlie source-sink assimilate partitioning are increasingly becoming a major hurdle for crop yield enhancement via metabolic engineering. By means of a comprehensive approach, this work reports the functional characterization of a DnaJ chaperone related-protein (named as SPA; sugar partition-affecting) that is involved in assimilate partitioning in tomato plants. SPA protein was found to be targeted to the chloroplast thylakoid membranes. SPA-RNAi tomato plants produced more and heavier fruits compared with controls, thus resulting in a considerable increment in harvest index. The transgenic plants also displayed increased pigment levels and reduced sucrose, glucose and fructose contents in leaves. Detailed metabolic and enzymatic activities analyses showed that sugar phosphate intermediates were increased while the activity of phosphoglucomutase, sugar kinases and invertases was reduced in the photosynthetic organs of the silenced plants. These changes would be anticipated to promote carbon export from foliar tissues. The combined results suggested that the tomato SPA protein plays an important role in plastid metabolism and mediates the source-sink relationships by affecting the rate of carbon translocation to fruits. PMID:24372694

  20. Specific in vivo knockdown of protein function by intrabodies

    PubMed Central

    Marschall, Andrea LJ; Dübel, Stefan; Böldicke, Thomas

    2015-01-01

    Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed. PMID:26252565

  1. Minimizing variations in functionality of whey protein concentrates from different sources.

    PubMed

    Onwulata, C I; Konstance, R P; Tomasula, P M

    2004-03-01

    Enhancement in processing technology has improved the nutritional and functional properties of whey protein concentrates by increasing the content and quality of the protein, leading to their increased use in different food products. The extent of heat treatment affects the quality of the whey protein concentrate, and wide variation in product quality exists due to the various means of manufacture and from the whey product history from farm to factory. The study was carried out with 6 commercial whey protein concentrates with 80% protein (WPC80) to determine variations in physical properties, particle size and density, and functional properties--solubility, gel strength, foam volume, and stability. Significant differences were observed among all the products for every property compared. Particulate size was the most important determinant of functional characteristics. Larger particulate WPC80 had significantly higher fat content and were less soluble with poor foam stability; but narrowing the particle size distribution through sieving, minimized variations. We determined that sieving all products within the particle size distribution range of 100 to 150 microns minimized variation in physical composition, making functionality uniform. WPC80 from different manufacturers can be made to perform uniformly within a narrow functionality range by reducing the particle size distribution through sieving. PMID:15202660

  2. A novel functional module detection algorithm for protein-protein interaction networks

    PubMed Central

    Hwang, Woochang; Cho, Young-Rae; Zhang, Aidong; Ramanathan, Murali

    2006-01-01

    Background The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM. Results STM selects representative proteins for each cluster and iteratively refines clusters based on a combination of the signal transduced and graph topology. STM is found to be effective at detecting clusters with a diverse range of interaction structures that are significant on measures of biological relevance. The STM approach is compared to six competing approaches including the maximum clique, quasi-clique, minimum cut, betweeness cut and Markov Clustering (MCL) algorithms. The clusters obtained by each technique are compared for enrichment of biological function. STM generates larger clusters and the clusters identified have p-values that are approximately 125-fold better than the other methods on biological function. An important strength of STM is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches. Conclusion STM outperforms competing approaches and is capable of effectively detecting both densely and sparsely connected, biologically relevant functional modules with fewer discards. PMID:17147822

  3. Functional module identification in protein interaction networks by interaction patterns

    PubMed Central

    Wang, Yijie; Qian, Xiaoning

    2014-01-01

    Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop

  4. The ts111 Mutation of Paramecium tetraurelia Affects a Member of the Protein Palmitoylation Family.

    PubMed

    Prajer, Małgorzata; Tarcz, Sebastian

    2015-01-01

    The thermosensitive ts111 mutant of Parameciun tetraurelia carries a recessive mutation which causes cell death after 2-8 divisions at the restrictive temperature of 35 degrees C. Expression at 35 degrees C induces disassembly of the infraciliary lattice (ICL). In this study, we found that the ts111 mutation also results in significant abnormalities in the number and structure of contractile vacuole complexes (CVCs) and in their functioning at the restrictive temperature. In order to characterize the ts111 gene, the complementation cloning was performed by microinjection into the macronucleus of an indexed genomic DNA library. The mutation was complemented by a sequence of 852 bp, which differed from the mutant sequence by a single nucleotide substitution. The deduced protein sequence is 284 amino acids long. It contains a domain referred to as the DHHC domain, associated with 2 trans-membrane helices. The DHHC proteins belong to the Palmitoyl-Acyl Transferases (PATs) protein family, which is implicated in the protein palmitoylation process playing the role in protein addressing. The ts111 mutation induces the amino acid change, localized before the first membrane helix. Transformation of ts111 mutant cells with the TS111-GFP gene fusion showed the expected reparation restoring thermoresistance and also demonstrated a localization of the protein in contractile vacuoles, but not in the ICL. The entire gene silencing in wild type cells at restrictive temperature caused the same effect as the expression of a point mutation in ts111 mutant. The authors propose the following hypotheses: (i) function of CVCs at the restrictive temperature depends in Paramecium on the TS111 protein--a member of the PAT family, and the primary effect of the termosensitive ts111 mutation are morphological abnormalities and dysfunction of CVCs, (ii) disassembly of the ICL is a secondary effect of the ts111 mutation, which results from disturbed regulation of the intracellular concentration

  5. HIV Tat protein affects circadian rhythmicity by interfering with the circadian system

    PubMed Central

    Wang, T; Jiang, Z; Hou, W; Li, Z; Cheng, S; Green, LA; Wang, Y; Wen, X; Cai, L; Clauss, M; Wang, Z

    2014-01-01

    Objectives Sleep disorders are common in patients with HIV/AIDS, and can lead to poor quality of life. Although many studies have investigated the aetiology of these disorders, it is still unclear whether impaired sleep quality is associated with HIV itself, social problems, or side effects of antiretroviral therapy (ART). Moreover, despite its known neurological associations, little is known about the role of the trans-activator of transcription (Tat) protein in sleep disorders in patients with HIV/AIDS. The purpose of this study was to test the hypothesis that the sleep quality of patients with HIV/AIDS affected by an altered circadian rhythm correlates with cerebrospinal HIV Tat protein concentration. Methods Ninety-six patients with HIV/AIDS between 20 and 69 years old completed the Pittsburgh Sleep Quality Index. Their circadian rhythm parameters of blood pressure, Tat concentration in cerebrospinal fluid, melatonin concentration, CD4 cell count and HIV RNA viral load in serum were measured. Results The circadian amplitude of systolic blood pressure and the score for sleep quality (Pittsburgh Sleep Quality Index) were negatively correlated with HIV Tat protein concentration, while the melatonin value was positively correlated with Tat protein concentration. Conclusions The HIV Tat protein affects circadian rhythmicity by interfering with the circadian system in patients with HIV/AIDS and further increases the melatonin excretion value. A Tat protein-related high melatonin value may counteract HIV-related poor sleep quality during the progression of HIV infection. This study provides the first clinical evidence offering an explanation for why sleep quality did not show an association with progression of HIV infection in previous studies. PMID:24750691

  6. High Mobility Group Protein N5 (HMGN5) and Lamina-associated Polypeptide 2α (LAP2α) Interact and Reciprocally Affect Their Genome-wide Chromatin Organization*

    PubMed Central

    Zhang, Shaofei; Schones, Dustin E.; Malicet, Cedric; Rochman, Mark; Zhou, Ming; Foisner, Roland; Bustin, Michael

    2013-01-01

    The interactions of nuclear lamins with the chromatin fiber play an important role in regulating nuclear architecture and chromatin function; however, the full spectrum of these interactions is not known. We report that the N-terminal domain of the nucleosome-binding protein HMGN5 interacts with the C-terminal domain of the lamin-binding protein LAP2α and that these proteins reciprocally alter their interaction with chromatin. Chromatin immunoprecipitation analysis of cells lacking either HMGN5 or LAP2α reveals that loss of either protein affects the genome-wide distribution of the remaining partner. Our study identifies a new functional link between chromatin-binding and lamin-binding proteins. PMID:23673662

  7. How to Build a Complex, Functional Propeller Protein, From Parts.

    PubMed

    Clark, Patricia L

    2016-04-01

    By combining ancestral sequence reconstruction and in vitro evolution, Smock et al. identified single motifs that assemble into a functional five-bladed β-propeller, and a likely route for conversion into the more complex, extant single chain fusion. Interestingly, although sequence diversification destabilized five-motif fusions, it also destabilized aggregation-prone intermediates, increasing the level of functional protein in vivo. PMID:26971075

  8. Functional analysis of ZFP36 proteins in keratinocytes.

    PubMed

    Prenzler, Frauke; Fragasso, Annunziata; Schmitt, Angelika; Munz, Barbara

    2016-08-01

    The ZFP36 family of zinc finger proteins, including ZFP36, ZFP36L1, and ZFP36L2, regulates the production of growth factors and cytokines via destabilization of the respective mRNAs. We could recently demonstrate that in cultured keratinocytes, expression of the ZFP36, ZFP36L1, and ZFP36L2 genes is induced by growth factors and cytokines and that ZFP36L1 is a potent regulator of keratinocyte VEGF production. We now further analyzed the localization and function of ZFP36 proteins in the skin, specifically in epidermal keratinocytes. We found that in human epidermis, the ZFP36 protein could be detected in basal and suprabasal keratinocytes, whereas ZFP36L1 and ZFP36L2 were expressed mainly in the basal layer, indicating different and non-redundant functions of the three proteins in the epidermis. Consistently, upon inhibition of ZFP36 or ZFP36L1 expression using specific siRNAs, there was no major effect on expression of the respective other gene. In addition, we demonstrate that both ZFP36 and ZFP36L1 influence keratinocyte cell cycle, differentiation, and apoptosis in a distinct manner. Finally, we show that similarly as ZFP36L1, ZFP36 is a potent regulator of keratinocyte VEGF production. Thus, it is likely that both proteins regulate angiogenesis via paracrine mechanisms. Taken together, our results suggest that ZFP36 proteins might control reepithelialization and angiogenesis in the skin in a multimodal manner. PMID:27182009

  9. Insights into prion protein function from atomistic simulations.

    PubMed

    Hodak, Miroslav; Bernholc, Jerzy

    2010-01-01

    Computer simulations are a powerful tool for studies of biological systems. They have often been used to study prion protein (PrP), a protein responsible for neurodegenerative diseases, which include "mad cow disease" in cattle and Creutzfeldt-Jacob disease in humans. An important aspect of the prion protein is its interaction with copper ion, which is thought to be relevant for PrP's yet undetermined function and also potentially play a role in prion diseases. for studies of copper attachment to the prion protein, computer simulations have often been used to complement experimental data and to obtain binding structures of Cu-PrP complexes. This paper summarizes the results of recent ab initio calculations of copper-prion protein interactions focusing on the recently discovered concentration-dependent binding modes in the octarepeat region of this protein. In addition to determining the binding structures, computer simulations were also used to make predictions about PrP's function and the role of copper in prion diseases. The results demonstrate the predictive power and applicability of ab initio simulations for studies of metal-biomolecular complexes. PMID:20118658

  10. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  11. Protein engineering of Cas9 for enhanced function

    PubMed Central

    Oakes, Benjamin L.; Nadler, Dana C.; Savage, David F.

    2015-01-01

    CRISPR/Cas systems act to protect the cell from invading nucleic acids in many bacteria and archaea. The bacterial immune protein Cas9 is a component of one of these CRISPR/Cas systems and has recently been adapted as a tool for genome editing. Cas9 is easily targeted to bind and cleave a DNA sequence via a complimentary RNA; this straightforward programmability has gained Cas9 rapid acceptance in the field of genetic engineering. While this technology has developed quickly, a number of challenges regarding Cas9 specificity, efficiency, fusion protein function, and spatiotemporal control within the cell remain. In this work, we develop a platform for constructing novel proteins to address these open questions. We demonstrate methods to either screen or select active Cas9 mutants and use the screening technique to isolate functional Cas9 variants with a heterologous PDZ domain inserted directly into the protein. As a proof of concept, these methods lay the groundwork for the future construction of diverse Cas9 proteins. Straightforward and accessible techniques for genetic editing are helping to elucidate biology in new and exciting ways; a platform to engineer new functionalities into Cas9 will help forge the next generation of genome modifying tools. PMID:25398355

  12. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  13. Design of Light-Controlled Protein Conformations and Functions.

    PubMed

    Ritterson, Ryan S; Hoersch, Daniel; Barlow, Kyle A; Kortemme, Tanja

    2016-01-01

    In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality. PMID:27094293

  14. Evolutionary Insights into Premetazoan Functions of the Neuronal Protein Homer

    PubMed Central

    Burkhardt, Pawel; Grønborg, Mads; McDonald, Kent; Sulur, Tara; Wang, Qi; King, Nicole

    2014-01-01

    Reconstructing the evolution and ancestral functions of synaptic proteins promises to shed light on how neurons first evolved. The postsynaptic density (PSD) protein Homer scaffolds membrane receptors and regulates Ca2+ signaling in diverse metazoan cell types (including neurons and muscle cells), yet its ancestry and core functions are poorly understood. We find that the protein domain organization and essential biochemical properties of metazoan Homer proteins, including their ability to tetramerize, are conserved in the choanoflagellate Salpingoeca rosetta, one of the closest living relatives of metazoans. Unlike in neurons, Homer localizes to the nucleoplasm in S. rosetta and interacts directly with Flotillin, a protein more commonly associated with cell membranes. Surprisingly, we found that the Homer/Flotillin interaction and its localization to the nucleus are conserved in metazoan astrocytes. These findings suggest that Homer originally interacted with Flotillin in the nucleus of the last common ancestor of metazoans and choanoflagellates and was later co-opted to function as a membrane receptor scaffold in the PSD. PMID:24899667

  15. Functional and Structural Analysis of the Conserved EFhd2 Protein

    PubMed Central

    Acosta, Yancy Ferrer; Rodríguez Cruz, Eva N.; Vaquer, Ana del C.; Vega, Irving E.

    2013-01-01

    EFhd2 is a novel protein conserved from C. elegans to H. sapiens. This novel protein was originally identified in cells of the immune and central nervous systems. However, it is most abundant in the central nervous system, where it has been found associated with pathological forms of the microtubule-associated protein tau. The physiological or pathological roles of EFhd2 are poorly understood. In this study, a functional and structural analysis was carried to characterize the molecular requirements for EFhd2’s calcium binding activity. The results showed that mutations of a conserved aspartate on either EF-hand motif disrupted the calcium binding activity, indicating that these motifs work in pair as a functional calcium binding domain. Furthermore, characterization of an identified single-nucleotide polymorphisms (SNP) that introduced a missense mutation indicates the importance of a conserved phenylalanine on EFhd2 calcium binding activity. Structural analysis revealed that EFhd2 is predominantly composed of alpha helix and random coil structures and that this novel protein is thermostable. EFhd2’s thermo stability depends on its N-terminus. In the absence of the N-terminus, calcium binding restored EFhd2’s thermal stability. Overall, these studies contribute to our understanding on EFhd2 functional and structural properties, and introduce it into the family of canonical EF-hand domain containing proteins. PMID:22973849

  16. Architecture and function of IFT complex proteins in ciliogenesis

    PubMed Central

    Taschner, Michael; Bhogaraju, Sagar; Lorentzen, Esben

    2014-01-01

    Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT. PMID:22118932

  17. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality

    PubMed Central

    Wu, Nicholas C.; Olson, C. Anders; Du, Yushen; Le, Shuai; Tran, Kevin; Remenyi, Roland; Gong, Danyang; Al-Mawsawi, Laith Q.; Qi, Hangfei; Wu, Ting-Ting; Sun, Ren

    2015-01-01

    Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. PMID:26132554

  18. Formaldehyde Crosses the Human Placenta and Affects Human Trophoblast Differentiation and Hormonal Functions

    PubMed Central

    Pidoux, Guillaume; Gerbaud, Pascale; Guibourdenche, Jean; Thérond, Patrice; Ferreira, Fatima; Simasotchi, Christelle; Evain-Brion, Danièle; Gil, Sophie

    2015-01-01

    The chorionic villus of the human placenta is the source of specific endocrine functions and nutrient exchanges. These activities are ensured by the syncytiotrophobast (ST), which bathes in maternal blood. The ST arises and regenerates throughout pregnancy by fusion of underlying cytotrophoblasts (CT). Any anomaly of ST formation or regeneration can affect pregnancy outcome and fetal growth. Because of its direct interaction with maternal blood, the ST is sensitive to drugs, pollutants and xenohormones. Ex vivo assays of perfused cotyledon show that formaldehyde, a common pollutant present in furniture, paint and plastics, can accumulate in the human placenta and cross to the fetal compartment. By means of RT-qPCR, immunoblot and immunocytochemistry experiments, we demonstrate in vitro that formaldehyde exerts endocrine toxicity on human trophoblasts, including a decrease in the production of protein hormones of pregnancy. In addition, formaldehyde exposure triggered human trophoblast fusion by upregulating syncitin-1 receptor expression (ASC-type amino-acid transporter 2: ASCT2). Moreover, we show that formaldehyde-exposed trophoblasts present an altered redox status associated with oxidative stress, and an increase in ASCT2 expression intended to compensate for this stress. Finally, we demonstrate that the adverse effects of formaldehyde on trophoblast differentiation and fusion are reversed by N-acetyl-L-cysteine (Nac), an antioxidant. PMID:26186596

  19. Structure and Function of Transient Encounters of Redox Proteins.

    PubMed

    Volkov, Alexander N

    2015-12-15

    Many biomolecular interactions proceed via lowly populated, transient intermediates. Believed to facilitate formation of a productive complex, these short-lived species are inaccessible to conventional biophysical and structural techniques and, until recently, could only be studied by theoretical simulations. Recent development of experimental approaches sensitive to the presence of minor species--in particular paramagnetic relaxation enhancement (PRE) NMR spectroscopy--has enabled direct visualization and detailed characterization of such lowly populated states. Collectively referred to as an encounter complex, the binding intermediates are particularly important in transient protein interactions, such as those orchestrating signaling cascades or energy-generating electron transfer (ET) chains. Here I discuss encounter complexes of redox proteins mediating biological ET reactions, which are essential for many vital cellular activities including oxidative phosphorylation and photosynthesis. In particular, this Account focuses on the complex of cytochrome c (Cc) and cytochrome c peroxidase (CcP), which is a paradigm of biomolecular ET and an attractive system for studying protein binding and enzymatic catalysis. The Cc-CcP complex formation proceeds via an encounter state, consisting of multiple protein-protein orientations sampled in the search of the dominant, functionally active bound form and exhibiting a broad spatial distribution, in striking agreement with earlier theoretical simulations. At low ionic strength, CcP binds another Cc molecule to form a weak ternary complex, initially inferred from kinetics experiments and postulated to account for the measured ET activity. Despite strenuous efforts, the ternary complex could not be observed directly and remained eagerly sought for the past two decades. Very recently, we have solved its structure in solution and shown that it consists of two binding forms: the dominant, ET-inactive geometry and an ensemble of

  20. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  1. Function of prokaryotic and eukaryotic ABC proteins in lipid transport.

    PubMed

    Pohl, Antje; Devaux, Philippe F; Herrmann, Andreas

    2005-03-21

    ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry. PMID:15749056

  2. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    PubMed

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  3. Exploring Function Prediction in Protein Interaction Networks via Clustering Methods

    PubMed Central

    Trivodaliev, Kire; Bogojeska, Aleksandra; Kocarev, Ljupco

    2014-01-01

    Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach. PMID:24972109

  4. Insights into common functional domains of tospovirus NSm proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct demonstration of tospovirus gene function has been impeded by the absence of reliable reverse genetics systems for this virus genus. Use of a Tobacco mosaic virus (TMV)-based expression system has demonstrated that the Tomato spotted wilt virus (TSWV) NSm protein supports cell-to-cell moveme...

  5. Functionality of Gliadin Proteins in Wheat Flour Tortillas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gliadins are monomeric proteins that are encoded by the genes at the locus Gli 1 and Gli 2 present on the short arm of homeologous wheat chromosomes 1 and 6, respectively. Studies have suggested that gliadins may play an important role in determining the functional properties of wheat flour. The mai...

  6. Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    PubMed

    Lever, Greg; Cole, Daniel J; Hine, Nicholas D M; Haynes, Peter D; Payne, Mike C

    2013-04-17

    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (Rudberg 2012 J. Phys.: Condens. Matter 24 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals. PMID:23470878

  7. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  8. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle

    PubMed Central

    Winter, Lilli; Kuznetsov, Andrey V.; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-01-01

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion–fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways. PMID:26019234

  9. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle.

    PubMed

    Winter, Lilli; Kuznetsov, Andrey V; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-08-15

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways. PMID:26019234

  10. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein

    PubMed Central

    Ishizawa, Jo; Kojima, Kensuke; Hail, Numsen; Tabe, Yoko; Andreeff, Michael

    2015-01-01

    Nucleocytoplasmic trafficking of proteins/RNAs is essential to normal cellular function. Indeed, accumulating evidence suggests that cancer cells escape anti-neoplastic mechanisms and benefit from pro-survival signals via the dysregulation of this system. The nuclear exporter chromosome region maintenance 1 (CRM1) protein is the only protein in the karyopherin-β protein family that contributes to the trafficking of numerous proteins and RNAs from the nucleus. It is considered to be an oncogenic, anti-apoptotic protein in transformed cells, since it reportedly functions as a gatekeeper for cell survival, including affecting p53 function, and ribosomal biogenesis. Furthermore, abnormally high expression of CRM1 is correlated with poor patient prognosis in various malignancies. Therapeutic targeting of CRM1 has emerged as a novel cancer treatment strategy, starting with a clinical trial with leptomycin B, the original specific inhibitor of CRM1, followed by development of several next-generation small molecules. KPT-330, a novel member of the CRM1-selective inhibitors of nuclear export (SINE) class of compounds, is currently undergoing clinical evaluation for the therapy of various malignancies. Results from these trials suggest that SINE compounds may be particularly useful against hematological malignancies, which often become refractory to standard chemotherapeutic agents. PMID:26048327

  11. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    PubMed Central

    Baum, Jamie I.; Wolfe, Robert R.

    2015-01-01

    Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1). Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA) for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  12. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    PubMed

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. PMID:27041309

  13. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    SciTech Connect

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.; Balagopalan, C.; Whitwill, S.T.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more than or equal to 6.0 in a liquid medium, or pH of more than or equal to 7.0 on solid media. The optimum growth conditions of pH 3.8 and 45 degrees were strongly inhibitive to potential contaminants. It rapidly hydrolyzed cassava starch. It did not utilize sucrose, but approximately 16% of the small sucrose component of cassava was chemically hydrolyzed during the process. Growth with cassava meal (50 g/l) was complete in approximately 20 h, yielding 22.5 g/l (dry biomass), containing 41% crude protein (48-50% crude protein in the mycelium) and 31% true protein (7.0 g/l). Resting and germinating spores (10 to the power of 6 - 10 to the power of 8 per animal) injected by various routes into normal and gamma-irradiated 6-week-old mice and 7-day-old chickens failed to initiate infections.

  14. A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN

    PubMed Central

    Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia

    2014-01-01

    Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881

  15. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice

    SciTech Connect

    Yang Yan; Mahaffey, Connie L.; Berube, Nathalie; Nystuen, Arne; Frankel, Wayne N. . E-mail: wnf@jax.org

    2005-03-10

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.

  16. Increased protein intake augments kidney volume and function in healthy infants.

    PubMed

    Escribano, Joaquin; Luque, Veronica; Ferre, Natalia; Zaragoza-Jordana, Marta; Grote, Veit; Koletzko, Berthold; Gruszfeld, Dariusz; Socha, Piotr; Dain, Elena; Van Hees, Jean-Noel; Verduci, Elvira; Closa-Monasterolo, Ricardo

    2011-04-01

    Protein intake has been directly associated with kidney growth and function in animal and human observational studies. Protein supply can vary widely during the first months of life, thus promoting different kidney growth patterns and possibly affecting kidney and cardiovascular health in the long term. To explore this further, we examined 601 healthy 6-month-old formula-fed infants who had been randomly assigned within the first 8 weeks of life to a 1-year program of formula with low-protein (LP) or high-protein (HP) contents and compared them with 204 breastfed (BF) infants. At 6 months, infants receiving the HP formula had significantly higher kidney volume (determined by ultrasonography) and ratios of kidney volume to body length and kidney volume to body surface area than did infants receiving the LP formula. BF infants did not differ from those receiving the LP formula in any of these parameters. Infants receiving the HP formula had significantly higher serum urea and urea to creatinine ratios than did LP formula and BF infants. Hence, in this European multicenter clinical trial, we found that a higher protein content of the infant formula increases kidney size at 6 months of life, whereas a lower protein supply achieves kidney size indistinguishable from that of healthy BF infants. The potential long-term effects of a higher early protein intake on long-term kidney function needs to be determined. PMID:21191362

  17. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation.

    PubMed

    Viloria, Katrina; Hill, Natasha J

    2016-05-01

    Matricellular proteins influence wide-ranging fundamental cellular processes including cell adhesion, migration, growth and differentiation. They achieve this both through interactions with cell surface receptors and regulation of the matrix environment. Many matricellular proteins are also associated with diverse clinical disorders including cancer and diabetes. Alternative splicing is a precisely regulated process that can produce multiple isoforms with variable functions from a single gene. To date, the expression of alternate transcripts for the matricellular family has been reported for only a handful of genes. Here we analyse the evidence for alternative splicing across the matricellular family including the secreted protein acidic and rich in cysteine (SPARC), thrombospondin, tenascin and CCN families. We find that matricellular proteins have double the average number of splice variants per gene, and discuss the types of domain affected by splicing in matricellular proteins. We also review the clinical significance of alternative splicing for three specific matricellular proteins that have been relatively well characterised: osteopontin (OPN), tenascin-C (TNC) and periostin. Embracing the complexity of matricellular splice variants will be important for understanding the sometimes contradictory function of these powerful regulatory proteins, and for their effective clinical application as biomarkers and therapeutic targets. PMID:27135623

  18. Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles.

    PubMed

    You, Chang-Cheng; Agasti, Sarit S; Rotello, Vincent M

    2008-01-01

    Amino acid and dipeptide-functionalized gold nanoparticles (NPs) possessing L/D-leucine and/or L/D-phenylalanine residues have been constructed in order to target the surfaces of alpha-chymotrypsin (ChT) and cytochrome c (CytC). Isothermal titration calorimetry (ITC) was conducted to evaluate the binding thermodynamics and selectivity of these NP-protein interactions. The chirality of the NP end-groups substantially affects the resultant complex stability, with up to 20-fold differences seen between particles of identical hydrophobicity, demonstrating that structural information from the ligands can be used to control protein recognition. PMID:17972262

  19. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  20. Positive Affect in the Midst of Distress: Implications for Role Functioning

    PubMed Central

    Moskowitz, Judith Tedlie; Shmueli-Blumberg, Dikla; Acree, Michael; Folkman, Susan

    2012-01-01

    Stress has been shown to deplete the self-regulation resources hypothesized to facilitate effective role functioning. However, recent research suggests that positive affect may help to replenish these vital self-regulation resources. Based on revised Stress and Coping theory and the Broaden-and-Build theory of positive emotion, three studies provide evidence of the potential adaptive function of positive affect in the performance of roles for participants experiencing stress. Participants were students (Study 1), caregivers of ill children (Study 2), and individuals recently diagnosed with HIV (Study 3). In cross sectional analyses, using role functioning as an indicator of self-regulation performance, we found that positive affect was significantly correlated with better self regulation performance, independent of the effects of negative affect. The effects were not as strong longitudinally, however, and there was little evidence of a reciprocal association between increases in positive affect and improvements in role functioning over time. The results provide some modest support for hypotheses stemming from the Broaden and Build model of positive emotion and revised Stress and Coping theory, both of which argue for unique adaptive functions of positive affect under stressful conditions. PMID:23175617

  1. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479