Science.gov

Sample records for affects protein structure

  1. Protein crowding affects hydration structure and dynamics

    PubMed Central

    Harada, Ryuhei; Sugita, Yuji; Feig, Michael

    2012-01-01

    The effect of protein crowding on the structure and dynamics of water was examined from explicit solvent molecular dynamics simulations of a series of protein G and protein G/villin systems at different protein concentrations. Hydration structure was analyzed in terms of radial distribution functions, three-dimensional hydration sites, and preservation of tetrahedral coordination. Analysis of hydration dynamics focused on self-diffusion rates and dielectric constants as a function of crowding. The results show significant changes in both structure and dynamics of water under highly crowded conditions. The structure of water is altered mostly beyond the first solvation shell. Diffusion rates and dielectric constants are significantly reduced following linear trends as a function of crowding reflecting highly constrained water in crowded environments. The reduced dynamics of diffusion is expected to be strongly related to hydrodynamic properties of crowded cellular environments while the reduced dielectric constant under crowded conditions has implications for the stability of biomolecules in crowded environments. The results from this study suggest a prescription for modeling solvation in simulations of cellular environments. PMID:22352398

  2. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  3. Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension.

    PubMed

    Palaniyar, N; Ikegami, M; Korfhagen, T; Whitsett, J; McCormack, F X

    2001-05-01

    Surfactant protein A (SP-A) is an abundant protein found in pulmonary surfactant which has been reported to have multiple functions. In this review, we focus on the structural importance of each domain of SP-A in the functions of protein oligomerization, the structural organization of lipids and the surface-active properties of surfactant, with an emphasis on ultrastructural analyses. The N-terminal domain of SP-A is required for disulfide-dependent protein oligomerization, and for binding and aggregation of phospholipids, but there is no evidence that this domain directly interacts with lipid membranes. The collagen-like domain is important for the stability and oligomerization of SP-A. It also contributes shape and dimension to the molecule, and appears to determine membrane spacing in lipid aggregates such as common myelin and tubular myelin. The neck domain of SP-A is primarily involved in protein trimerization, which is critical for many protein functions, but it does not appear to be directly involved in lipid interactions. The globular C-terminal domain of SP-A clearly plays a central role in lipid binding, and in more complex functions such as the formation and/or stabilization of curved membranes. In recent work, we have determined that the maintenance of low surface tension of surfactant in the presence of serum protein inhibitors requires cooperative interactions between the C-terminal and N-terminal domains of the molecule. This effect of SP-A requires a high degree of oligomeric assembly of the protein, and may be mediated by the activity of the protein to alter the form or physical state of surfactant lipid aggregates. PMID:11369537

  4. Process conditions affect starch structure and its interactions with proteins in rice pasta.

    PubMed

    Barbiroli, Alberto; Bonomi, Francesco; Casiraghi, Maria Cristina; Iametti, Stefania; Pagani, Maria Ambrogina; Marti, Alessandra

    2013-02-15

    Structural changes of starch and proteins in rice pasta were investigated as a function of raw-materials and pasta-making conditions, and their impact on cooking behaviour and glycaemic index was assessed. Rice pasta was prepared from untreated or parboiled rice flour by conventional extrusion or by extrusion-cooking. Starch structure was studied by assessing starch accessibility to specific enzymes (α-amylase and pullulanase), and by evaluating the molecular properties of fragments from enzymatic action. Protein solubility in presence/absence of chaotropes and accessibility of protein cysteine thiols allowed to evaluate the intensity and nature of inter-protein interactions. Parboiling stiffens the protein network in rice flour and makes starch more accessible to hydrolysis. Pasta-making induced further changes in the starch structure, that were most evident in pasta made from untreated rice and were mainly related to the amylopectin fraction. Thus, the interplay among structural modifications on starch and/or proteins affects the features of products. PMID:23399230

  5. Artefacts and biases affecting the evaluation of scoring functions on decoy sets for protein structure prediction

    PubMed Central

    Handl, Julia; Knowles, Joshua; Lovell, Simon C.

    2009-01-01

    Motivation: Decoy datasets, consisting of a solved protein structure and numerous alternative native-like structures, are in common use for the evaluation of scoring functions in protein structure prediction. Several pitfalls with the use of these datasets have been identified in the literature, as well as useful guidelines for generating more effective decoy datasets. We contribute to this ongoing discussion an empirical assessment of several decoy datasets commonly used in experimental studies. Results: We find that artefacts and sampling issues in the large majority of these data make it trivial to discriminate the native structure. This underlines that evaluation based on the rank/z-score of the native is a weak test of scoring function performance. Moreover, sampling biases present in the way decoy sets are generated or used can strongly affect other types of evaluation measures such as the correlation between score and root mean squared deviation (RMSD) to the native. We demonstrate how, depending on type of bias and evaluation context, sampling biases may lead to both over- or under-estimation of the quality of scoring terms, functions or methods. Availability: Links to the software and data used in this study are available at http://dbkgroup.org/handl/decoy_sets. Contact: simon.lovell@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19297350

  6. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12.

    PubMed

    Ueno-Noto, Kaori; Takano, Keiko

    2016-10-01

    Water molecules inside biomolecules constitute integral parts of their structure and participate in the functions of the proteins. Some of the X-ray crystallographic data are insufficient for analyzing a series of ligand-protein complexes in the same condition. We theoretically investigated antibody binding abilities of saccharide ligands and the effects of the inner water molecules of ligand-antibody complexes. Classical molecular dynamics and quantum chemical simulations using a model with possible water molecules inside the protein were performed with saccharide ligands and Human Immunodeficiency Virus 1 neutralizing antibody 2G12 complexes to estimate how inner water molecules of the protein affect the dynamics of the complexes as well as the ligand-antibody interaction. Our results indicate the fact that d-fructose's strong affinity to the antibody was partly due to the good retentiveness of solvent water molecules of the ligand and its stability of the ligand's conformation and relative position in the active site. © 2016 Wiley Periodicals, Inc. PMID:27388036

  7. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  8. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin

    PubMed Central

    Mansuroglu, Zeyni; Benhelli-Mokrani, Houda; Marcato, Vasco; Sultan, Audrey; Violet, Marie; Chauderlier, Alban; Delattre, Lucie; Loyens, Anne; Talahari, Smail; Bégard, Séverine; Nesslany, Fabrice; Colin, Morvane; Souès, Sylvie; Lefebvre, Bruno; Buée, Luc; Galas, Marie-Christine; Bonnefoy, Eliette

    2016-01-01

    Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer’s disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons. PMID:27605042

  9. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    PubMed

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated. PMID:16357267

  10. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin.

    PubMed

    Mansuroglu, Zeyni; Benhelli-Mokrani, Houda; Marcato, Vasco; Sultan, Audrey; Violet, Marie; Chauderlier, Alban; Delattre, Lucie; Loyens, Anne; Talahari, Smail; Bégard, Séverine; Nesslany, Fabrice; Colin, Morvane; Souès, Sylvie; Lefebvre, Bruno; Buée, Luc; Galas, Marie-Christine; Bonnefoy, Eliette

    2016-01-01

    Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons. PMID:27605042

  11. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. PMID:27542830

  12. Four Human Thiopurine S-Methyltransferase Alleles Severely Affect Protein Structure and Dynamics

    PubMed Central

    Rutherford, Karen; Daggett, Valerie

    2008-01-01

    Summary Thiopurine S-methyltransferase (TPMT) metabolizes cytotoxic thiopurine drugs used in the treatment of leukemia and inflammatory bowel disease. TPMT is a major pharmacogenomic target with 23 alleles identified to date. Several of these alleles cause rapid protein degradation and/or aggregation, making it extremely difficult to study the structural impact of the TPMT polymorphisms experimentally. We, therefore, have performed multiple molecular dynamics simulations of the four most common alleles (TPMT 2 (A80P), 3A (A154T/Y240C), 3B (A154T) and 3C (Y240C)) to investigate the molecular mechanism of TPMT inactivation at an atomic level. The A80P polymorphism in TPMT *2 disrupts helix α3 bordering the active site, which breaks several salt-bridge interactions and opens up a large cleft in the protein. The A154T polymorphism is located within the co-substrate binding-site. The larger threonine alters the packing of substrate binding residues (P68, L69, Y166), increasing the solvent exposure of the polymorphic site. This packing rearrangement may account for the complete lack of activity in the A154T mutant. The Y240C polymorphism is located in β-strand 9, distant from the active site. Side-chain contacts between residue 240 and helix α8 are lost in TPMT *3C. Residues 154 and 240 in TPMT *3A are connected through a hydrogen-bonding network. The dual polymorphisms result in a flattened, slightly distorted protein structure and an increase in the thiopurine-binding site solvent accessibility. The two variants that undergo the most rapid degradation in vivo, TPMT*2 and *3A, are also the most deformed in the simulations. PMID:18482735

  13. Search for mutations affecting protein structure in children of atomic bomb survivors: preliminary report

    SciTech Connect

    Neel, J.V.; Satoh, C.; Hamilton, H.B.; Otake, M.; Goriki, K.; Kageoka, T.; Fujita, M.; Neriishi, S.; Asakawa J.

    1980-07-01

    A total of 289,868 locus tests, based on 28 different protein phenotypes and using one-dimensional electrophoresis to detect variant proteins, has yielded one probable mutation in the offspring of proximally exposed parents, who received an estimated average gonadal exposure of 31 to 39 rem in the atomic bombings of Hiroshima and Nagasaki. There were no mutations in 208,196 locus tests involving children of distally exposed parents, who had essentially no radiation exposure.

  14. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders. PMID:25893743

  15. Drosophila rhino encodes a female-specific chromo-domain protein that affects chromosome structure and egg polarity.

    PubMed Central

    Volpe, A M; Horowitz, H; Grafer, C M; Jackson, S M; Berg, C A

    2001-01-01

    Here we describe our analyses of Rhino, a novel member of the Heterochromatin Protein 1(HP1) subfamily of chromo box proteins. rhino (rhi) is expressed only in females and chiefly in the germline, thus providing a new tool to dissect the role of chromo-domain proteins in development. Mutations in rhi disrupt eggshell and embryonic patterning and arrest nurse cell nuclei during a stage-specific reorganization of their polyploid chromosomes, a mitotic-like state called the "five-blob" stage. These visible alterations in chromosome structure do not affect polarity by altering transcription of key patterning genes. Expression levels of gurken (grk), oskar (osk), bicoid (bcd), and decapentaplegic (dpp) transcripts are normal, with a slight delay in the appearance of bcd and dpp mRNAs. Mislocalization of grk and osk transcripts, however, suggests a defect in the microtubule reorganization that occurs during the middle stages of oogenesis and determines axial polarity. This defect likely results from aberrant Grk/Egfr signaling at earlier stages, since rhi mutations delay synthesis of Grk protein in germaria and early egg chambers. In addition, Grk protein accumulates in large, actin-caged vesicles near the endoplasmic reticulum of stages 6-10 egg chambers. We propose two hypotheses to explain these results. First, Rhi may play dual roles in oogenesis, independently regulating chromosome compaction in nurse cells at the end of the unique endoreplication cycle 5 and repressing transcription of genes that inhibit Grk synthesis. Thus, loss-of-function mutations arrest nurse cell chromosome reorganization at the five-blob stage and delay production or processing of Grk protein, leading to axial patterning defects. Second, Rhi may regulate chromosome compaction in both nurse cells and oocyte. Loss-of-function mutations block nurse cell nuclear transitions at the five-blob stage and activate checkpoint controls in the oocyte that arrest Grk synthesis and/or inhibit cytoskeletal

  16. Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity

    PubMed Central

    Khasnatinov, Maxim A.; Tuplin, Andrew; Gritsun, Dmitri J.; Slovak, Mirko; Kazimirova, Maria; Lickova, Martina; Havlikova, Sabina; Klempa, Boris; Gould, Ernest A.

    2016-01-01

    Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras. PMID:27341437

  17. The Small Heat Shock Protein Hsp27 Affects Assembly Dynamics and Structure of Keratin Intermediate Filament Networks

    PubMed Central

    Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R.

    2013-01-01

    The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. PMID:24138853

  18. Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701

    SciTech Connect

    Anderson, L.K.; Rayner, M.C.; Eiserling, F.A.

    1987-01-01

    The unicellular cyanobacterium Synechocystis sp. strain 6701 was mutagenized with UV irradiation and screened for pigment changes that indicated genetic lesions involving the light-harvesting proteins of the phycobilisome. A previous examination of the pigment mutant UV16 showed an assembly defect in the phycocyanin component of the phycobilisome. Mutagenesis of UV16 produced an additional double mutant, UV16-40, with decreased phycoerythrin content. Phycocyanin and phycoerythrin were isolated from UV16-40 and compared with normal biliproteins. The results suggested that the UV16 mutation affected the alpha subunit of phycocyanin, while the phycoerythrin beta subunit from UV16-40 had lost one of its three chromophores. Characterization of the unassembled phycobilisome components in these mutants suggests that these strains will be useful for probing in vivo the regulated expression and assembly of phycobilisomes.

  19. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin

    SciTech Connect

    Mogi, T.; Marti, T.; Khorana, H.G. )

    1989-08-25

    Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. (1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. (2) As also reported previously, substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. (3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.

  20. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  1. Individual difference variables, affective differentiation, and the structures of affect.

    PubMed

    Terracciano, Antonio; McCrae, Robert R; Hagemann, Dirk; Costa, Paul T

    2003-10-01

    Methodological arguments are usually invoked to explain variations in the structure of affect. Using self-rated affect from Italian samples (N=600), we show that individual difference variables related to affective differentiation can moderate the observed structure. Indices of circumplexity and congruence coefficients to the hypothesized target were used to quantify the observed structures. Results did not support the circumplex model as a universal structure. A circular structure with axes of activation and valence was approximated only among more affectively differentiated groups: students and respondents with high scores on Openness to Feelings and measures of negative emotionality. A different structure, with unipolar Positive Affect and Negative Affect factors, was observed among adults and respondents with low Openness to Feelings and negative emotionality. The observed structure of affect will depend in part on the nature of the sample studied. PMID:12932207

  2. Individual Difference Variables, Affective Differentiation, and the Structures of Affect

    PubMed Central

    Terracciano, Antonio; McCrae, Robert R.; Hagemann, Dirk; Costa, Paul T.

    2008-01-01

    Methodological arguments are usually invoked to explain variations in the structure of affect. Using self-rated affect from Italian samples (N = 600), we show that individual difference variables related to affective differentiation can moderate the observed structure. Indices of circumplexity (Browne, 1992) and congruence coefficients to the hypothesized target were used to quantify the observed structures. Results did not support the circumplex model as a universal structure. A circular structure with axes of activation and valence was approximated only among more affectively differentiated groups: students and respondents with high scores on Openness to Feelings and measures of negative emotionality. A different structure, with unipolar Positive Affect and Negative Affect factors, was observed among adults and respondents with low Openness to Feelings and negative emotionality. The observed structure of affect will depend in part on the nature of the sample studied. PMID:12932207

  3. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  4. Homocysteine thiolactone affects protein ubiquitination in yeast.

    PubMed

    Bretes, Ewa; Zimny, Jarosław

    2013-01-01

    The formation of homocysteine thiolactone (HcyTl) from homocysteine occurs in all examined so far organisms including bacteria, yeast, and humans. Protein N-homocysteinylation at the ε-amino group of lysine is an adverse result of HcyTl accumulation. Since tagging of proteins by ubiquitination before their proteasomal degradation takes place at the same residue, we wondered how N-homocysteinylation may affect the ubiquitination of proteins. We used different yeast strains carrying mutations in genes involved in the homocysteine metabolism. We found positive correlation between the concentration of endogenous HcyTl and the concentration of ubiquitinated proteins. This suggests that N-homocysteinylation of proteins apparently does not preclude but rather promotes their decomposition. PMID:24051443

  5. Protein Structure Databases.

    PubMed

    Laskowski, Roman A

    2016-01-01

    Web-based protein structure databases come in a wide variety of types and levels of information content. Those having the most general interest are the various atlases that describe each experimentally determined protein structure and provide useful links, analyses, and schematic diagrams relating to its 3D structure and biological function. Also of great interest are the databases that classify 3D structures by their folds as these can reveal evolutionary relationships which may be hard to detect from sequence comparison alone. Related to these are the numerous servers that compare folds-particularly useful for newly solved structures, and especially those of unknown function. Beyond these are a vast number of databases for the more specialized user, dealing with specific families, diseases, structural features, and so on. PMID:27115626

  6. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  7. Protein folding: When ribosomes pick the structure

    NASA Astrophysics Data System (ADS)

    Sivertsson, Elin M.; Itzhaki, Laura S.

    2014-05-01

    Anfinsen's principle tells us that the folded structure of a protein is determined solely by its sequence. Now, it has been shown that the rate at which a polypeptide chain is synthesized in the cell can affect which of two alternative folded structures it adopts.

  8. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  9. Protein structure mining using a structural alphabet.

    PubMed

    Tyagi, M; de Brevern, A G; Srinivasan, N; Offmann, B

    2008-05-01

    We present a comprehensive evaluation of a new structure mining method called PB-ALIGN. It is based on the encoding of protein structure as 1D sequence of a combination of 16 short structural motifs or protein blocks (PBs). PBs are short motifs capable of representing most of the local structural features of a protein backbone. Using derived PB substitution matrix and simple dynamic programming algorithm, PB sequences are aligned the same way amino acid sequences to yield structure alignment. PBs are short motifs capable of representing most of the local structural features of a protein backbone. Alignment of these local features as sequence of symbols enables fast detection of structural similarities between two proteins. Ability of the method to characterize and align regions beyond regular secondary structures, for example, N and C caps of helix and loops connecting regular structures, puts it a step ahead of existing methods, which strongly rely on secondary structure elements. PB-ALIGN achieved efficiency of 85% in extracting true fold from a large database of 7259 SCOP domains and was successful in 82% cases to identify true super-family members. On comparison to 13 existing structure comparison/mining methods, PB-ALIGN emerged as the best on general ability test dataset and was at par with methods like YAKUSA and CE on nontrivial test dataset. Furthermore, the proposed method performed well when compared to flexible structure alignment method like FATCAT and outperforms in processing speed (less than 45 s per database scan). This work also establishes a reliable cut-off value for the demarcation of similar folds. It finally shows that global alignment scores of unrelated structures using PBs follow an extreme value distribution. PB-ALIGN is freely available on web server called Protein Block Expert (PBE) at http://bioinformatics.univ-reunion.fr/PBE/. PMID:18004784

  10. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  11. [Protein structure: Folding and prions].

    PubMed

    Rey-Gayo, Antonio; Calbo Torrecilla, Francisco

    2002-04-01

    Transmissible spongiform encephalopathies have become a subject of prime social concern in recent years because of its relation to "mad cow disease" and their potential for transmission to humans. Among the most important scientific aspects of these diseases are the peculiar characteristics of the agent involved in their transmission. In this article we briefly describe the outstanding features of prions, the most widely accepted hypothesis for these diseases. We focus on the molecular characteristics of this protein, coded in the genome of the affected host, and describe the conformational alterations in the protein's tertiary structure that have been blamed for its pathologic activity. Our aim is to summarize the state-of-the-art knowledge on prions, the hypotheses proposed to explain mechanisms of disease transmission without agents containing genetic material, and some specific peculiarities of this new infectious agent. The links between this knowledge and possible therapeutic strategies to overcome the disease justify, once again, close interaction among chemistry, molecular biology, and medicine. PMID:11996702

  12. Toolbox for Protein Structure Prediction.

    PubMed

    Roche, Daniel Barry; McGuffin, Liam James

    2016-01-01

    Protein tertiary structure prediction algorithms aim to predict, from amino acid sequence, the tertiary structure of a protein. In silico protein structure prediction methods have become extremely important, as in vitro-based structural elucidation is unable to keep pace with the current growth of sequence databases due to high-throughput next-generation sequencing, which has exacerbated the gaps in our knowledge between sequences and structures.Here we briefly discuss protein tertiary structure prediction, the biennial competition for the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and its role in shaping the field. We also discuss, in detail, our cutting-edge web-server method IntFOLD2-TS for tertiary structure prediction. Furthermore, we provide a step-by-step guide on using the IntFOLD2-TS web server, along with some real world examples, where the IntFOLD server can and has been used to improve protein tertiary structure prediction and aid in functional elucidation. PMID:26519323

  13. Arterivirus structural proteins and assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the structural characteristics of the Arteriviridae, including the basic molecular details of all of the proteins involved, the interactions of these proteins and where they occur, and further functional characterization. Most recent available literature has been focused on equi...

  14. Structure Prediction of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Hu, Xiche

    Membrane proteins play a central role in many cellular and physiological processes. It is estimated that integral membrane proteins make up about 20-30% of the proteome (Krogh et al., 2001b; Stevens and Arkin, 2000; von Heijne, 1999). They are essential mediators of material and information transfer across cell membranes. Their functions include active and passive transport of molecules into and out of cells and organelles; transduction of energy among various forms (light, electrical, and chemical energy); as well as reception and transduction of chemical and electrical signals across membranes (Avdonin, 2005; Bockaert et al., 2002; Pahl, 1999; Rehling et al., 2004; Stack et al., 1995). Identifying these transmembrane (TM) proteins and deciphering their molecular mechanisms, then, is of great importance, particularly as applied to biomedicine. Membrane proteins are the targets of a large number of pharmacologically and toxicologically active substances, and are directly involved in their uptake, metabolism, and clearance (Bettler et al., 1998; Cohen, 2002; Heusser and Jardieu, 1997; Tibes et al., 2005; Xu et al., 2005). Despite the importance of membrane proteins, the knowledge of their high-resolution structures and mechanisms of action has lagged far behind in comparison to that of water-soluble proteins: less than 1% of all three-dimensional structures deposited in the Protein Data Bank are of membrane proteins. This unfortunate disparity stems from difficulties in overexpression and the crystallization of membrane proteins (Grisshammer and Tate, 1995; Michel, 1991).

  15. De Novo Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram

    An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.

  16. Protein interfacial structure and nanotoxicology

    NASA Astrophysics Data System (ADS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, Jhih-Min

    2009-02-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle "corona" thought to be important for nanoparticle-cell wall penetration.

  17. Method for protein structure alignment

    DOEpatents

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  18. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

    NASA Astrophysics Data System (ADS)

    Tenzer, Stefan; Docter, Dominic; Kuharev, Jörg; Musyanovych, Anna; Fetz, Verena; Hecht, Rouven; Schlenk, Florian; Fischer, Dagmar; Kiouptsi, Klytaimnistra; Reinhardt, Christoph; Landfester, Katharina; Schild, Hansjörg; Maskos, Michael; Knauer, Shirley K.; Stauber, Roland H.

    2013-10-01

    In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

  19. Structural hot spots for the solubility of globular proteins.

    PubMed

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  20. Structural hot spots for the solubility of globular proteins

    PubMed Central

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  1. Protein Structure Comparison and Classification

    NASA Astrophysics Data System (ADS)

    Çamoǧlu, Orhan; Singh, Ambuj K.

    The success of genome projects has generated an enormous amount of sequence data. In order to realize the full value of the data, we need to understand its functional role and its evolutionary origin. Sequence comparison methods are incredibly valuable for this task. However, for sequences falling in the twilight zone (usually between 20 and 35% sequence similarity), we need to resort to structural alignment and comparison for a meaningful analysis. Such a structural approach can be used for classification of proteins, isolation of structural motifs, and discovery of drug targets.

  2. Structural Assessment of the Effects of Amino Acid Substitutions on Protein Stability and Protein-Protein Interaction

    PubMed Central

    Teng, Shaolei; Wang, Liangjiang; Srivastava, Anand K.; Schwartz, Charles E.; Alexov, Emil

    2012-01-01

    A structure-based approach is described for predicting the effects of amino acid substitutions on protein function. Structures were predicted using a homology modelling method. Folding and binding energy differences between wild-type and mutant structures were computed to quantitatively assess the effects of amino acid substitutions on protein stability and protein–protein interaction, respectively. We demonstrated that pathogenic mutations at the interaction interface could affect binding energy and destabilise protein complex, whereas mutations at the non-interface might reduce folding energy and destabilise monomer structure. The results suggest that the structure-based analysis can provide useful information for understanding the molecular mechanisms of diseases. PMID:21297231

  3. Sequence repeats and protein structure

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos

    2012-11-01

    Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.

  4. Sucralose Destabilization of Protein Structure.

    PubMed

    Chen, Lee; Shukla, Nimesh; Cho, Inha; Cohn, Erin; Taylor, Erika A; Othon, Christina M

    2015-04-16

    Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein model. For sucralose solutions, however, the diffusion is dependent on the concentration, strongly diverging from the viscosity predictions, and results in heterogeneous rotational diffusion. PMID:26263149

  5. A protein structure data and analysis system.

    PubMed

    Tian, Hao; Sunderraman, Rajshekhar; Weber, Irene; Wang, Haibin; Yang, Hong

    2005-01-01

    In this paper, we present the design and implementation of a protein structure data and analysis system that is only used in the lab for analyzing the proprietary data. It is capable of storing public protein data, such as the data in Protein Data Bank (PDB) [1], and life scientists' proprietary data. This toolkit is targeted at life scientists who want to maintain proprietary protein structure data (may be incomplete), to search and query publicly known protein structures and to compare their structure data with others. The comparison functions can be used to find structure differences between two proteins at atom level, especially in mutant versions of proteins. The system can also be used as a tool of choosing better protein structure template in new protein's tertiary structure prediction. The system is developed in Java and the protein data is stored in a relational database (Oracle 9i). PMID:17282836

  6. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  7. Photoinduced structural changes to protein kinase A

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Thomas, Robert J.; Brancaleon, Lorenzo

    2014-03-01

    The importance of porphyrins in organisms is underscored by the ubiquitous biological and biochemical functions that are mediated by these compounds and by their potential biomedical and biotechnological applications. Protoporphyrin IX (PPIX) is the precursor to heme and has biomedical applications such as its use as a photosensitizer in phototherapy and photodetection of cancer. Among other applications, our group has demonstrated that low-irradiance exposure to laser irradiation of PPIX, Fe-PPIX, or meso-tetrakis (4-sulfonatophenyl) porphyrin (TSPP) non-covalently docked to a protein causes conformational changes in the polypeptide. Such approach can have remarkable consequences in the study of protein structure/function relationship and can be used to prompt non-native protein properties. Therefore we have investigated protein kinase A (PKA), a more relevant protein model towards the photo-treatment of cancer. PKA's enzymatic functions are regulated by the presence of cyclic adenosine monophosphate for intracellular signal transduction involved in, among other things, stimulation of transcription, tumorigenesis in Carney complex and migration of breast carcinoma cells. Since phosphorylation is a necessary step in some cancers and inflammatory diseases, inhibiting the protein kinase, and therefore phosphorylation, may serve to treat these diseases. Changes in absorption, steady-state fluorescence, and fluorescence lifetime indicate: 1) both TSPP and PPIX non-covalently bind to PKA where they maintain photoreactivity; 2) absorptive photoproduct formation occurs only when PKA is bound to TSPP and irradiated; and 3) PKA undergoes secondary structural changes after irradiation with either porphyrin bound. These photoinduced changes could affect the protein's enzymatic and signaling capabilities.

  8. Introduction to Protein Structure through Genetic Diseases

    ERIC Educational Resources Information Center

    Schneider, Tanya L.; Linton, Brian R.

    2008-01-01

    An illuminating way to learn about protein function is to explore high-resolution protein structures. Analysis of the proteins involved in genetic diseases has been used to introduce students to protein structure and the role that individual mutations can play in the onset of disease. Known mutations can be correlated to changes in protein…

  9. Protein structure alignment beyond spatial proximity

    PubMed Central

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures. PMID:23486213

  10. An Interactive Introduction to Protein Structure

    ERIC Educational Resources Information Center

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  11. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  12. PDBFlex: exploring flexibility in protein structures.

    PubMed

    Hrabe, Thomas; Li, Zhanwen; Sedova, Mayya; Rotkiewicz, Piotr; Jaroszewski, Lukasz; Godzik, Adam

    2016-01-01

    The PDBFlex database, available freely and with no login requirements at http://pdbflex.org, provides information on flexibility of protein structures as revealed by the analysis of variations between depositions of different structural models of the same protein in the Protein Data Bank (PDB). PDBFlex collects information on all instances of such depositions, identifying them by a 95% sequence identity threshold, performs analysis of their structural differences and clusters them according to their structural similarities for easy analysis. The PDBFlex contains tools and viewers enabling in-depth examination of structural variability including: 2D-scaling visualization of RMSD distances between structures of the same protein, graphs of average local RMSD in the aligned structures of protein chains, graphical presentation of differences in secondary structure and observed structural disorder (unresolved residues), difference distance maps between all sets of coordinates and 3D views of individual structures and simulated transitions between different conformations, the latter displayed using JSMol visualization software. PMID:26615193

  13. PDBFlex: exploring flexibility in protein structures

    PubMed Central

    Hrabe, Thomas; Li, Zhanwen; Sedova, Mayya; Rotkiewicz, Piotr; Jaroszewski, Lukasz; Godzik, Adam

    2016-01-01

    The PDBFlex database, available freely and with no login requirements at http://pdbflex.org, provides information on flexibility of protein structures as revealed by the analysis of variations between depositions of different structural models of the same protein in the Protein Data Bank (PDB). PDBFlex collects information on all instances of such depositions, identifying them by a 95% sequence identity threshold, performs analysis of their structural differences and clusters them according to their structural similarities for easy analysis. The PDBFlex contains tools and viewers enabling in-depth examination of structural variability including: 2D-scaling visualization of RMSD distances between structures of the same protein, graphs of average local RMSD in the aligned structures of protein chains, graphical presentation of differences in secondary structure and observed structural disorder (unresolved residues), difference distance maps between all sets of coordinates and 3D views of individual structures and simulated transitions between different conformations, the latter displayed using JSMol visualization software. PMID:26615193

  14. Sucralose Destabilization of Protein Structure

    NASA Astrophysics Data System (ADS)

    Cho, Inha; Chen, Lee; Shukla, Nimesh; Othon, Christina

    2015-03-01

    Sucralose is a commonly employed artificial sweetener. Sucralose behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of the globular protein Bovine Serum Albumin (BSA). The melting temperature decreases as a linear function of sucralose concentration. We correlate this destabilization with the increased polarity of the sucralose molecule as compared to sucrose. The strongly polar nature is observed as a large dielectric friction exerted on the excited state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein diffusional model. For sucralose solutions however, the diffusion is linearly dependent with the concentration, strongly diverging from the viscosity predictions. The polar nature of sucralose causes a dramatically different interaction with biomolecules than natural disaccharide molecules. Connecticut Space Grant Consortium.

  15. Constrained Peptides as Miniature Protein Structures

    PubMed Central

    Yin, Hang

    2012-01-01

    This paper discusses the recent developments of protein engineering using both covalent and noncovalent bonds to constrain peptides, forcing them into designed protein secondary structures. These constrained peptides subsequently can be used as peptidomimetics for biological functions such as regulations of protein-protein interactions. PMID:25969758

  16. Infrared Structural Biology: Detect Functionally Important Structural Motions of Proteins

    NASA Astrophysics Data System (ADS)

    Xie, Aihua

    Proteins are dynamic. Lack of dynamic structures of proteins hampers our understanding of protein functions. Infrared structural biology (IRSB) is an emerging technology. There are several advantages of IRSB for mechanistic studies of proteins: (1) its excellent dynamic range (detecting structural motions from picoseconds to >= seconds); (2) its high structural sensitivity (detect tiny but functionally important structural motions such as proton transfer and changes in hydrogen bonding interaction); (3) its ability to detect different structural motions simultaneously. Successful development of infrared structural biology demands not only new experimental techniques (from infrared technologies to chemical synthesis and cell biology), but also new data processing (how to translate infrared signals into quantitative structural information of proteins). These topics will be discussed as well as examples of how to use IRSB to study structure-function relationship of proteins. This work was supported by NSF DBI1338097 and OCAST HR10-078.

  17. Designing transthyretin mutants affecting tetrameric structure: implications in amyloidogenicity.

    PubMed Central

    Redondo, C; Damas, A M; Saraiva, M J

    2000-01-01

    The molecular mechanisms that convert soluble transthyretin (TTR) tetramers into insoluble amyloid fibrils are still unknown; dissociation of the TTR tetramer is a pre-requisite for amyloid formation in vitro and involvement of monomers and/or dimers in fibril formation has been suggested by structural studies. We have designed four mutated proteins with the purpose of stabilizing [Ser(117)-->Cys (S117C) and Glu(92)-->Cys (E92C)] or destabilizing [Asp(18)-->Asn (D18N) and Leu(110)-->Ala (D110A)] the dimer/tetramer interactions in TTR, aiming at elucidating structural determinants in amyloidogenesis. The resistance of the mutated proteins to dissociation was analysed by HPLC studies of diluted TTR preparations. Both 'stabilized' mutants migrated as tetramers and, upon dilution, no other TTR species was observed, confirming the increased resistance to dissociation. For the 'destabilized' mutants, a mixture of tetrameric and monomeric forms co-existed at low dilution and the latter increased upon 10-fold dilution. Both of the destabilizing mutants formed amyloid in vitro when acidified. This result indicated that both the AB loop of TTR, destabilized in D18N, and the hydrophobic interactions affecting the dimer-dimer interfaces in L110A are implicated in the stability of the tetrameric structure. The stabilized mutants, which were dimeric in nature through disulphide bonding, were unable to polymerize into amyloid, even at pH 3.2. When the amyloid formation assay was repeated in the presence of 2-mercaptoethanol, upon disruption of the S-S bridges of these stable dimers, amyloid fibril formation was observed. This experimental evidence suggests that monomers, rather than dimers, are the repeating structural subunit comprising the amyloid fibrils. PMID:10794728

  18. Practical lessons from protein structure prediction

    PubMed Central

    Ginalski, Krzysztof; Grishin, Nick V.; Godzik, Adam; Rychlewski, Leszek

    2005-01-01

    Despite recent efforts to develop automated protein structure determination protocols, structural genomics projects are slow in generating fold assignments for complete proteomes, and spatial structures remain unknown for many protein families. Alternative cheap and fast methods to assign folds using prediction algorithms continue to provide valuable structural information for many proteins. The development of high-quality prediction methods has been boosted in the last years by objective community-wide assessment experiments. This paper gives an overview of the currently available practical approaches to protein structure prediction capable of generating accurate fold assignment. Recent advances in assessment of the prediction quality are also discussed. PMID:15805122

  19. Structural templates for comparative protein docking

    PubMed Central

    Anishchenko, Ivan; Kundrotas, Petras J.; Tuzikov, Alexander V.; Vakser, Ilya A.

    2014-01-01

    Structural characterization of protein-protein interactions is important for understanding life processes. Because of the inherent limitations of experimental techniques, such characterization requires computational approaches. Along with the traditional protein-protein docking (free search for a match between two proteins), comparative (template-based) modeling of protein-protein complexes has been gaining popularity. Its development puts an emphasis on full and partial structural similarity between the target protein monomers and the protein-protein complexes previously determined by experimental techniques (templates). The template-based docking relies on the quality and diversity of the template set. We present a carefully curated, non-redundant library of templates containing 4,950 full structures of binary complexes and 5,936 protein-protein interfaces extracted from the full structures at 12Å distance cut-off. Redundancy in the libraries was removed by clustering the PDB structures based on structural similarity. The value of the clustering threshold was determined from the analysis of the clusters and the docking performance on a benchmark set. High structural quality of the interfaces in the template and validation sets was achieved by automated procedures and manual curation. The library is included in the Dockground resource for molecular recognition studies at http://dockground.bioinformatics.ku.edu. PMID:25488330

  20. Crystal structures of MBP fusion proteins.

    PubMed

    Waugh, David S

    2016-03-01

    Although chaperone-assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose-binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter-domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP-mediated structural distortions are very rare. PMID:26682969

  1. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  2. NAPS: Network Analysis of Protein Structures.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2016-07-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  3. Structure of mutant human oncogene protein determined

    SciTech Connect

    Baum, R.

    1989-01-16

    The protein encoded by a mutant human oncogene differs only slightly in structure from the native protein that initiates normal cell division, a finding that may complicate efforts to develop inhibitors of the mutant protein. Previously, the x-ray structure of the protein encoded by the normal c-Ha-ras gene, a protein believed to signal cells to start or stop dividing through its interaction with guanosine triphosphate (GTP), was reported. The structure of the protein encoded by a transforming c-Ha-ras oncogene, in which a valine codon replaces the normal glycine codon at position 12 in the gene, has now been determined. The differences in the structures of the mutant and normal proteins are located primarily in a loop that interacts with the /beta/-phosphate of a bound guanosine diphosphate (GDP) molecule.

  4. Structural alphabets for protein structure classification: a comparison study.

    PubMed

    Le, Quan; Pollastri, Gianluca; Koehl, Patrice

    2009-03-27

    Finding structural similarities between proteins often helps reveal shared functionality, which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures, however, remains a hard problem. An alternative approach is to approximate each three-dimensional protein structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences or structural sequences. In this article, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments having four residues. We show that the global structural sequences approximate well the native structures of proteins, with an average coordinate root mean square of 0.69 A over 2225 test proteins. The approximation is best for all alpha-proteins, while relatively poorer for all beta-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary-structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary-structure information or local information from the

  5. Recent Experience Affects the Strength of Structural Priming

    ERIC Educational Resources Information Center

    Kaschak, Michael P.; Loney, Renrick A.; Borreggine, Kristin L.

    2006-01-01

    In two experiments, we explore how recent experience with particular syntactic constructions affects the strength of the structural priming observed for those constructions. The results suggest that (1) the strength of structural priming observed for double object and prepositional object constructions is affected by the relative frequency with…

  6. Comparative Protein Structure Modeling Using Modeller

    PubMed Central

    Eswar, Narayanan; Marti-Renom, Marc A.; Madhusudhan, M.S.; Eramian, David; Shen, Min-yi; Pieper, Ursula

    2014-01-01

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:18428767

  7. Membrane bending by protein crowding is affected by protein lateral confinement.

    PubMed

    Derganc, Jure; Čopič, Alenka

    2016-06-01

    Crowding of asymmetrically-distributed membrane proteins has been recently recognized as an important factor in remodeling of biological membranes, for example during transport vesicle formation. In this paper, we theoretically analyze the effect of protein crowding on membrane bending and examine its dependence on protein size, shape, transmembrane asymmetry and lateral confinement. We consider three scenarios of protein lateral organization, which are highly relevant for cellular membranes in general: freely diffusing membrane proteins without lateral confinement, the presence of a diffusion barrier and interactions with a vesicular coat. We show that protein crowding affects vesicle formation even if the proteins are distributed symmetrically across the membrane and that this effect depends significantly on lateral confinement. The largest crowding effect is predicted for the proteins that are confined to the forming vesicle by a diffusion barrier. We calculate the bending properties of a crowded membrane and find that its spontaneous curvature depends primarily on the degree of transmembrane asymmetry, and its effective bending modulus on the type of lateral confinement. Using the example of COPII vesicle formation from the endoplasmic reticulum, we analyze the energetic cost of vesicle formation. The results provide a novel insight into the effects of lateral and transmembrane organization of membrane proteins, and can guide data interpretation and future experimental approaches. PMID:26969088

  8. Template-based structure modeling of protein-protein interactions

    PubMed Central

    Szilagyi, Andras; Zhang, Yang

    2014-01-01

    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449

  9. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average. PMID:25343279

  10. Structural Factors Affecting Health Examination Behavioral Intention.

    PubMed

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  11. Structural Factors Affecting Health Examination Behavioral Intention

    PubMed Central

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-01-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  12. Protein Structures Revealed at Record Pace

    ScienceCinema

    Greg Hura

    2010-01-08

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  13. Protein Structures Revealed at Record Pace

    ScienceCinema

    Hura, Greg

    2013-05-29

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  14. Protein Structures Revealed at Record Pace

    SciTech Connect

    Hura, Greg

    2009-01-01

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  15. Protein Structures Revealed at Record Pace

    SciTech Connect

    Greg Hura

    2009-07-09

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  16. Predicting protein dynamics from structural ensembles

    NASA Astrophysics Data System (ADS)

    Copperman, J.; Guenza, M. G.

    2015-12-01

    The biological properties of proteins are uniquely determined by their structure and dynamics. A protein in solution populates a structural ensemble of metastable configurations around the global fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes knowledge of the important metastable folded states of the protein to predict the protein dynamics. This approach is based upon the Langevin Equation for Protein Dynamics (LE4PD), a Langevin formalism in the coordinates of the protein backbone. The linear modes of this Langevin formalism organize the fluctuations of the protein, so that more extended dynamical cooperativity relates to increasing energy barriers to mode diffusion. The accuracy of the LE4PD is verified by analyzing the predicted dynamics across a set of seven different proteins for which both relaxation data and NMR solution structures are available. Using experimental NMR conformers as the input structural ensembles, LE4PD predicts quantitatively accurate results, with correlation coefficient ρ = 0.93 to NMR backbone relaxation measurements for the seven proteins. The NMR solution structure derived ensemble and predicted dynamical relaxation is compared with molecular dynamics simulation-derived structural ensembles and LE4PD predictions and is consistent in the time scale of the simulations. The use of the experimental NMR conformers frees the approach from computationally demanding simulations.

  17. Genome-wide Membrane Protein Structure Prediction

    PubMed Central

    Piccoli, Stefano; Suku, Eda; Garonzi, Marianna; Giorgetti, Alejandro

    2013-01-01

    Transmembrane proteins allow cells to extensively communicate with the external world in a very accurate and specific way. They form principal nodes in several signaling pathways and attract large interest in therapeutic intervention, as the majority pharmaceutical compounds target membrane proteins. Thus, according to the current genome annotation methods, a detailed structural/functional characterization at the protein level of each of the elements codified in the genome is also required. The extreme difficulty in obtaining high-resolution three-dimensional structures, calls for computational approaches. Here we review to which extent the efforts made in the last few years, combining the structural characterization of membrane proteins with protein bioinformatics techniques, could help describing membrane proteins at a genome-wide scale. In particular we analyze the use of comparative modeling techniques as a way of overcoming the lack of high-resolution three-dimensional structures in the human membrane proteome. PMID:24403851

  18. Protein structures in SDS micelle-protein complexes.

    PubMed Central

    Parker, W; Song, P S

    1992-01-01

    Sodium dodecyl sulfate (SDS) is used more often than any other detergent as an excellent denaturing or "unfolding" detergent. However, formation of ordered structure (alpha-helix or beta-sheet) in certain peptides is known to be induced by interaction with SDS micelles. The SDS-induced structures formed by these peptides are amphiphilic, having both a hydrophobic and a hydrophilic face. Previous work in this area has revealed that SDS induces helical folding in a wide variety of non-helical proteins. Here, we describe the interaction of several structurally unrelated proteins with SDS micelles and the correlation of these structures to helical amphiphilic regions present in the primary sequence. It is likely that the ability of native nonordered protein structures to form induced amphiphilic ordered structures is rather common. PMID:1600087

  19. The unfolded protein response affects readthrough of premature termination codons

    PubMed Central

    Oren, Yifat S; McClure, Michelle L; Rowe, Steven M; Sorscher, Eric J; Bester, Assaf C; Manor, Miriam; Kerem, Eitan; Rivlin, Joseph; Zahdeh, Fouad; Mann, Matthias; Geiger, Tamar; Kerem, Batsheva

    2014-01-01

    One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions. PMID:24705877

  20. Water Collective Dynamics in Whole Photosynthetic Green Algae as Affected by Protein Single Mutation.

    PubMed

    Russo, Daniela; Rea, Giuseppina; Lambreva, Maya D; Haertlein, Michael; Moulin, Martine; De Francesco, Alessio; Campi, Gaetano

    2016-07-01

    In the context of the importance of water molecules for protein function/dynamics relationship, the role of water collective dynamics in Chlamydomonas green algae carrying both native and mutated photosynthetic proteins has been investigated by neutron Brillouin scattering spectroscopy. Results show that single point genetic mutation may notably affect collective density fluctuations in hydrating water providing important insight on the transmission of information possibly correlated to biological functionality. In particular, we highlight that the damping factor of the excitations is larger in the native compared to the mutant algae as a signature of a different plasticity and structure of the hydrogen bond network. PMID:27300078

  1. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  2. Protein-protein interface prediction based on hexagon structure similarity.

    PubMed

    Guo, Fei; Ding, Yijie; Li, Shuai Cheng; Shen, Chao; Wang, Lusheng

    2016-08-01

    Studies on protein-protein interaction are important in proteome research. How to build more effective models based on sequence information, structure information and physicochemical characteristics, is the key technology in protein-protein interface prediction. In this paper, we study the protein-protein interface prediction problem. We propose a novel method for identifying residues on interfaces from an input protein with both sequence and 3D structure information, based on hexagon structure similarity. Experiments show that our method achieves better results than some state-of-the-art methods for identifying protein-protein interface. Comparing to existing methods, our approach improves F-measure value by at least 0.03. On a common dataset consisting of 41 complexes, our method has overall precision and recall values of 63% and 57%. On Benchmark v4.0, our method has overall precision and recall values of 55% and 56%. On CAPRI targets, our method has overall precision and recall values of 52% and 55%. PMID:26936323

  3. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    PubMed Central

    Tatarinova, Tatiana; Dien Bard, Jennifer; Cohen, Irit

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content. PMID:26114113

  4. Water Determines the Structure and Dynamics of Proteins.

    PubMed

    Bellissent-Funel, Marie-Claire; Hassanali, Ali; Havenith, Martina; Henchman, Richard; Pohl, Peter; Sterpone, Fabio; van der Spoel, David; Xu, Yao; Garcia, Angel E

    2016-07-13

    Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist. PMID:27186992

  5. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. PMID:26091838

  6. Local backbone structure prediction of proteins.

    PubMed

    de Brevern, Alexandre G; Benros, Cristina; Gautier, Romain; Valadié, Héléne; Hazout, Serge; Etchebest, Catherine

    2004-01-01

    A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (phi, psi) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288

  7. The effect of denaturants on protein structure.

    PubMed Central

    Dunbar, J.; Yennawar, H. P.; Banerjee, S.; Luo, J.; Farber, G. K.

    1997-01-01

    Virtually all studies of the protein-folding reaction add either heat, acid, or a chemical denaturant to an aqueous protein solution in order to perturb the protein structure. When chemical denaturants are used, very high concentrations are usually necessary to observe any change in protein structure. In a solution with such high denaturant concentrations, both the structure of the protein and the structure of the solvent around the protein can be altered. X-ray crystallography is the obvious experimental technique to probe both types of changes. In this paper, we report the crystal structures of dihydrofolate reductase with urea and of ribonuclease A with guanidinium chloride. These two classic denaturants have similar effects on the native structure of the protein. The most important change that occurs is a reduction in the overall thermal factor. These structures offer a molecular explanation for the reduction in mobility. Although the reduction is observed only with the native enzyme in the crystal, a similar decrease in mobility has also been observed in the unfolded state in solution (Makhatadze G, Privalov PL. 1992. Protein interactions with urea and guanidinium chloride: A calorimetric study. PMID:9260285

  8. Optimized Null Model for Protein Structure Networks

    PubMed Central

    Lappe, Michael; Pržulj, Nataša

    2009-01-01

    Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by

  9. PSSweb: protein structural statistics web server.

    PubMed

    Gaillard, Thomas; Stote, Roland H; Dejaegere, Annick

    2016-07-01

    With the increasing number of protein structures available, there is a need for tools capable of automating the comparison of ensembles of structures, a common requirement in structural biology and bioinformatics. PSSweb is a web server for protein structural statistics. It takes as input an ensemble of PDB files of protein structures, performs a multiple sequence alignment and computes structural statistics for each position of the alignment. Different optional functionalities are proposed: structure superposition, Cartesian coordinate statistics, dihedral angle calculation and statistics, and a cluster analysis based on dihedral angles. An interactive report is generated, containing a summary of the results, tables, figures and 3D visualization of superposed structures. The server is available at http://pssweb.org. PMID:27174930

  10. PSSweb: protein structural statistics web server

    PubMed Central

    Gaillard, Thomas; Stote, Roland H.; Dejaegere, Annick

    2016-01-01

    With the increasing number of protein structures available, there is a need for tools capable of automating the comparison of ensembles of structures, a common requirement in structural biology and bioinformatics. PSSweb is a web server for protein structural statistics. It takes as input an ensemble of PDB files of protein structures, performs a multiple sequence alignment and computes structural statistics for each position of the alignment. Different optional functionalities are proposed: structure superposition, Cartesian coordinate statistics, dihedral angle calculation and statistics, and a cluster analysis based on dihedral angles. An interactive report is generated, containing a summary of the results, tables, figures and 3D visualization of superposed structures. The server is available at http://pssweb.org. PMID:27174930

  11. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  12. Mapping membrane protein structure with fluorescence

    PubMed Central

    Taraska, Justin W.

    2012-01-01

    Membrane proteins regulate many cellular processes including signaling cascades, ion transport, membrane fusion, and cell-to-cell communications. Understanding the architecture and conformational fluctuations of these proteins is critical to understanding their regulation and functions. Fluorescence methods including intensity mapping, fluorescence resonance energy transfer, and photo-induced electron transfer, allow for targeted measurements of domains within membrane proteins. These methods can reveal how a protein is structured and how it transitions between different conformational states. Here, I will review recent work done using fluorescence to map the structures of membrane proteins, focusing on how each of these methods can be applied to understanding the dynamic nature of individual membrane proteins and protein complexes. PMID:22445227

  13. Structure based prediction of protein folding intermediates.

    PubMed

    Xie, D; Freire, E

    1994-09-01

    The complete unfolding of a protein involves the disruption of non-covalent intramolecular interactions within the protein and the subsequent hydration of the backbone and amino acid side-chains. The magnitude of the thermodynamic parameters associated with this process is known accurately for a growing number of globular proteins for which high-resolution structures are also available. The existence of this database of structural and thermodynamic information has facilitated the development of statistical procedures aimed at quantifying the relationships existing between protein structure and the thermodynamic parameters of folding/unfolding. Under some conditions proteins do not unfold completely, giving rise to states (commonly known as molten globules) in which the molecule retains some secondary structure and remains in a compact configuration after denaturation. This phenomenon is reflected in the thermodynamics of the process. Depending on the nature of the residual structure that exists after denaturation, the observed enthalpy, entropy and heat capacity changes will deviate in a particular and predictable way from the values expected for complete unfolding. For several proteins, these deviations have been shown to exhibit similar characteristics, suggesting that their equilibrium folding intermediates exhibit some common structural features. Employing empirically derived structure-energetic relationships, it is possible to identify in the native structure of the protein those regions with the higher probability of being structured in equilibrium partly folded states. In this work, a thermodynamic search algorithm aimed at identifying the structural determinants of the molten globule state has been applied to six globular proteins; alpha-lactalbumin, barnase, IIIGlc, interleukin-1 beta, phage T4 lysozyme and phage 434 repressor. Remarkably, the structural features of the predicted equilibrium intermediates coincide to a large extent with the known

  14. Homology-Based Modeling of Protein Structure

    NASA Astrophysics Data System (ADS)

    Xiang, Zhexin

    The human genome project has already discovered millions of proteins (http://www.swissprot.com). The potential of the genome project can only be fully realized once we can assign, understand, manipulate, and predict the function of these new proteins (Sanchez and Sali, 1997; Frishman et al., 2000; Domingues et al., 2000). Predicting protein function generally requires knowledge of protein three-dimensional structure (Blundell et al., 1978;Weber, 1990), which is ultimately determined by protein sequence (Anfinsen, 1973). Protein structure determination using experimental methods such as X-ray crystallography or NMR spectroscopy is very time consuming (Johnson et al. 1994). To date, fewer than 2% of the known proteins have had their structures solved experimentally. In 2004, more than half a million new proteins were sequenced that almost doubled the efforts in the previous year, but only 5300 structures were solved. Although the rate of experimental structure determination will continue to increase, the number of newly discovered sequences grows much faster than the number of structures solved (see Fig. 10.1).

  15. Protein structure prediction from sequence variation

    PubMed Central

    Marks, Debora S; Hopf, Thomas A; Sander, Chris

    2015-01-01

    Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics. PMID:23138306

  16. Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling

    PubMed Central

    Andreeva, Antonina

    2016-01-01

    The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling. PMID:27284063

  17. Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling.

    PubMed

    Andreeva, Antonina

    2016-06-15

    The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling. PMID:27284063

  18. Modeling Protein Aggregate Assembly and Structure

    NASA Astrophysics Data System (ADS)

    Guo, Jun-tao; Hall, Carol K.; Xu, Ying; Wetzel, Ronald

    One might say that "protein science" got its start in the domestic arts, built around the abilities of proteins to aggregate in response to environmental stresses such as heating (boiled eggs), heating and cooling (gelatin), and pH (cheese). Characterization of proteins in the late nineteenth century likewise focused on the ability of proteins to precipitate in response to certain salts and to aggregate in response to heating. Investigations by Chick and Martin (Chick and Martin, 1910) showed that the inactivating response of proteins to heat or solvent treatment is a two-step process involving separate denaturation and precipitation steps. Monitoring the coagulation and flocculation responses of proteins to heat and other stresses remained a major approach to understanding protein structure for decades, with solubility, or susceptibility to aggregation, serving as a kind of benchmark against which results of other methods, such as viscosity, chemical susceptibility, immune activity, crystallizability, and susceptibility to proteolysis, were compared (Mirsky and Pauling, 1936;Wu, 1931). Toward the middle of the last century, protein aggregation studies were largely left behind, as improved methods allowed elucidation of the primary sequence of proteins, reversible unfolding studies, and ultimately high-resolution structures. Curiously, the field of protein science, and in particular protein folding, is now gravitating back to a closer look at protein aggregation and protein aggregates. Unfortunately, the means developed during the second half of the twentieth century for studying native, globular proteins have not proved immediately amenable to the study of aggregate structures. Great progress is being made, however, to modify classical methods, including NMR and X-ray diffraction, as well as to develop newer techniques, that together should continue to expand our picture of aggregate structure (Kheterpal and Wetzel, 2006; Wetzel, 1999).

  19. Improvement of protein structure comparison using a structural alphabet.

    PubMed

    Joseph, Agnel Praveen; Srinivasan, N; de Brevern, Alexandre G

    2011-09-01

    The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBs) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. PMID:21569819

  20. Bioinformatics and variability in drug response: a protein structural perspective

    PubMed Central

    Lahti, Jennifer L.; Tang, Grace W.; Capriotti, Emidio; Liu, Tianyun; Altman, Russ B.

    2012-01-01

    Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk–benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein–drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein–drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants. PMID:22552919

  1. Human cytomegalovirus RL13 protein interacts with host NUDT14 protein affecting viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanping; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-03-01

    The interaction between the host and human cytomegalovirus (HCMV) is important in determining the outcome of a viral infection. The HCMV RL13 gene product exerts independent, inhibitory effects on viral growth in fibroblasts and epithelial cells. At present, there are few reports on the interactions between the HCMV RL13 protein and human host proteins. The present study provided direct evidence for the specific interaction between HCMV RL13 and host nucleoside diphosphate linked moiety X (nudix)‑type motif 14 (NUDT14), a UDP‑glucose pyrophosphatase, using two‑hybrid screening, an in vitro glutathione S‑transferase pull‑down assay, and co‑immunoprecipitation in human embryonic kidney HEK293 cells. Additionally, the RL13 protein was shown to co‑localize with the NUDT14 protein in the HEK293 cell membrane and cytoplasm, demonstrated using fluorescence confocal microscopy. Decreasing the expression level of NUDT14 via NUDT14‑specific small interfering RNAs increased the number of viral DNA copies in the HCMV‑infected cells. However, the overexpression of NUDT14 in a stably expressing cell line did not affect viral DNA levels significantly in the HCMV infected cells. Based on the known functions of NUDT14, the results of the present study suggested that the interaction between the RL13 protein and NUDT14 protein may be involved in HCMV DNA replication, and that NUDT14 may offer potential in the modulation of viral infection. PMID:26781650

  2. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    PubMed

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions. PMID:18491388

  3. Embracing proteins: structural themes in aptamer-protein complexes.

    PubMed

    Gelinas, Amy D; Davies, Douglas R; Janjic, Nebojsa

    2016-02-01

    Understanding the structural rules that govern specific, high-affinity binding characteristic of aptamer-protein interactions is important in view of the increasing use of aptamers across many applications. From the modest number of 16 aptamer-protein structures currently available, trends are emerging. The flexible phosphodiester backbone allows folding into precise three-dimensional structures using known nucleic acid motifs as scaffolds that orient specific functional groups for target recognition. Still, completely novel motifs essential for structure and function are found in modified aptamers with diversity-enhancing side chains. Aptamers and antibodies, two classes of macromolecules used as affinity reagents with entirely different backbones and composition, recognize protein epitopes of similar size and with comparably high shape complementarity. PMID:26919170

  4. Higher order structure of proteins solubilized in AOT reverse micelles.

    PubMed

    Naoe, Kazumitsu; Noda, Kazuki; Kawagoe, Mikio; Imai, Masanao

    2004-11-15

    The higher order structure of proteins solubilized in an bis(2-ethylhexyl) sulfosuccinate sodium (AOT) reverse micellar system was investigated. From circular dichroic (CD) measurement, CD spectra of cytochrome c, which is solubilized at the interface of reverse micelles, markedly changed on going from buffer solution to the reverse micellar solution, and the ellipticity values in the far- and near-UV regions decreased with decreasing the water content (W0: molar ratio of water to AOT), indicating that the secondary and tertiary structures of cytochrome c changed with the water content. The ellipticity of ribonuclease A, which is solubilized in the center of micellar water pool, in the near-UV region was dependent on W0 and became minimum when W0 of ca. 8 while the ellipticity in the far-UV region was almost constant, indicating that the tertiary structure of ribonuclease A was affected by the water content, but the secondary structure was conserved. The degree of curvature of the micellar interface appears to influence the protein structure because the reverse micelle size is linearly proportional to the W0 value. As evidence of this, when the micelle size was comparable to the protein's dimensions, the structures were more affected by the water content. Judging from the dependence of the factor influencing the protein structure on the protein species, the location of solubilized protein in reverse micelles is significantly related to whether the protein structure in the system is affected by the micellar interface. In the cases of cytochrome c and lysozyme, the ellipticity against W0 was dependent on the AOT concentration. In contrast, ribonuclease A gave very similar ellipticity values whatever the AOT concentration. In the n-hexane micellar system, cytochrome c exhibited lower ellipticity values and ribonuclease A in the lower W0 range (W0protein and the micellar

  5. Principles for designing ideal protein structures

    PubMed Central

    Koga, Nobuyasu; Tatsumi-Koga, Rie; Liu, Gaohua; Xiao, Rong; Acton, Thomas B.; Montelione, Gaetano T.; Baker, David

    2013-01-01

    Unlike random heteropolymers, natural proteins fold into unique ordered structures. Understanding how these are encoded in amino-acid sequences is complicated by energetically unfavourable non-ideal features—for example kinked α-helices, bulged β-strands, strained loops and buried polar groups—that arise in proteins from evolutionary selection for biological function or from neutral drift. Here we describe an approach to designing ideal protein structures stabilized by completely consistent local and non-local interactions. The approach is based on a set of rules relating secondary structure patterns to protein tertiary motifs, which make possible the design of funnel-shaped protein folding energy landscapes leading into the target folded state. Guided by these rules, we designed sequences predicted to fold into ideal protein structures consisting of α-helices, β-strands and minimal loops. Designs for five different topologies were found to be monomeric and very stable and to adopt structures in solution nearly identical to the computational models. These results illuminate how the folding funnels of natural proteins arise and provide the foundation for engineering a new generation of functional proteins free from natural evolution. PMID:23135467

  6. Protein Structure Is Related to RNA Structural Reactivity In Vivo.

    PubMed

    Tang, Yin; Assmann, Sarah M; Bevilacqua, Philip C

    2016-02-27

    We assessed whether in vivo mRNA structural reactivity and the structure of the encoded protein are related. This is the first investigation of such a relationship that utilizes information on RNA structure obtained in living cells. Based on our recent genome-wide Structure-seq analysis in Arabidopsis thaliana, we report that, as a meta property, regions of individual mRNAs that code for protein domains generally have higher reactivity to DMS (dimethyl sulfate), a chemical that covalently modifies accessible As and Cs, than regions that encode protein domain junctions. This relationship is prominent for proteins annotated for catalytic activity and reversed in proteins annotated for binding and transcription regulatory activity. Upon analyzing intrinsically disordered proteins, we found a similar pattern for disordered regions as compared to ordered regions: regions of individual mRNAs that code for ordered regions have significantly higher DMS reactivity than regions that code for intrinsically disordered regions. Based on these effects, we hypothesize that the decreased DMS reactivity of RNA regions that encode protein domain junctions or intrinsically disordered regions may reflect increased RNA structure that may slow translation, allowing time for the nascent protein domain or ordered region of the protein to fold, thereby reducing protein misfolding. In addition, a drop in DMS reactivity was observed on portions of mRNA sequences that correspond to the C-termini of protein domains, suggesting ribosome protection at these mRNA regions. Structural relationships between mRNAs and their encoded proteins may have evolved to allow efficient and accurate protein folding. PMID:26598238

  7. HMGA proteins as modulators of chromatin structure during transcriptional activation

    PubMed Central

    Ozturk, Nihan; Singh, Indrabahadur; Mehta, Aditi; Braun, Thomas; Barreto, Guillermo

    2013-01-01

    High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer. PMID:25364713

  8. Structural proteins of Herpesvirus saimiri.

    PubMed Central

    Keil, G; Fleckenstein, B; Bodemer, W

    1983-01-01

    Herpesvirus saimiri particles were purified from productively infected owl monkey kidney cell cultures, and the virion polypeptides were analyzed by polyacrylamide gel electrophoresis. A total of 21 predominant proteins were found in lysates of H. saimiri 11 particles by Coomassie blue staining or by [35S]methionine labeling and autoradiography; all proteins were between 160,000 and 12,000 daltons in size. They are most probably virion constituents, as most of them were precipitated by immune sera, and no dominant proteins of equivalent sizes were found in mock-infected cultures. Four glycoproteins (gp 155/160, gp 128, gp 84/90, gp 55) and three polypeptides that appeared not to be glycosylated (p71, p35, p28) were assigned to the envelope or matrix of virions, whereas at least four phosphoproteins (pp132, pp118, pp55, pp13) and ten polypeptides without apparent secondary modification (p155/160, p106, p96, p67, p53, p36, p32, p15, p14, p12) were found in the nucleocapsid fraction. Analysis of virion proteins from different H. saimiri strains did not reveal appreciable differences in the migration behavior of most polypeptides, including all glycoproteins; however, determination of a strain-specific size pattern was possible for three of four phosphoproteins. The overall similarity in protein architecture of H. saimiri strains obviously does not reflect the variability in biology, such as oncogenic properties. In comparison, DNA sequence divergences appear to remain a better taxonomic criterion for strain distinction. Images PMID:6312078

  9. Datamining protein structure databanks for crystallization patterns of proteins.

    PubMed

    Valafar, Homayoun; Prestegard, James H; Valafar, Faramarz

    2002-12-01

    A study of 345 protein structures selected among 1,500 structures determined by nuclear magnetic resonance (NMR) methods, revealed useful correlations between crystallization properties and several parameters for the studied proteins. NMR methods of structure determination do not require the growth of protein crystals, and hence allow comparison of properties of proteins that have or have not been the subject of crystallographic approaches. One- and two-dimensional statistical analyses of the data confirmed a hypothesized relation between the size of the molecule and its crystallization potential. Furthermore, two-dimensional Bayesian analysis revealed a significant relationship between relative ratio of different secondary structures and the likelihood of success for crystallization trials. The most immediate result is an apparent correlation of crystallization potential with protein size. Further analysis of the data revealed a relationship between the unstructured fraction of proteins and the success of its crystallization. Utilization of Bayesian analysis on the latter correlation resulted in a prediction performance of about 64%, whereas a two-dimensional Bayesian analysis succeeded with a performance of about 75%. PMID:12594078

  10. Fast loop modeling for protein structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  11. Protein structure. Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism.

    PubMed

    Li, Fei; Liu, Jian; Zheng, Yi; Garavito, R Michael; Ferguson-Miller, Shelagh

    2015-01-30

    The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)→Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding. PMID:25635101

  12. Unlocking the eukaryotic membrane protein structural proteome

    PubMed Central

    Lee, John Kyongwon; Stroud, Robert Michael

    2012-01-01

    Summary Most of the 231 unique membrane protein structures (as of 3/2010) are of bacterial membrane proteins (MPs) expressed in bacteria, or eukaryotic MPs from natural sources. However eukaryotic membrane proteins, especially those with more than three membrane crossings rarely succumb to any suitable expression in bacterial cells. They typically require expression in eukaryotic cells that can provide appropriate endoplasmic reticulum, chaperones, targeting and post-translational processing. In evidence, only ~20 eukaryotic MP structures have resulted from heterologous expression. This is required for a general approach to target particular human or pathogen membrane proteins of importance to human health. The first of these appeared in 2005. Our review addresses the special issues that pertain to the expression of eukaryotic and human membrane proteins, and recent advances in the tool kit for crystallization and structure determination. PMID:20739007

  13. AMASS: a database for investigating protein structures

    PubMed Central

    Mielke, Clinton J.; Mandarino, Lawrence J.; Dinu, Valentin

    2014-01-01

    Motivation: Modern techniques have produced many sequence annotation databases and protein structure portals, but these Web resources are rarely integrated in ways that permit straightforward exploration of protein functional residues and their co-localization. Results: We have created the AMASS database, which maps 1D sequence annotation databases to 3D protein structures with an intuitive visualization interface. Our platform also provides an analysis service that screens mass spectrometry sequence data for post-translational modifications that reside in functionally relevant locations within protein structures. The system is built on the premise that functional residues such as active sites, cancer mutations and post-translational modifications within proteins may co-localize and share common functions. Availability and implementation: AMASS database is implemented with Biopython and Apache as a freely available Web server at amass-db.org. Contact: clinton.mielke@gmail.com PMID:24497503

  14. Protein structure database search and evolutionary classification.

    PubMed

    Yang, Jinn-Moon; Tung, Chi-Hua

    2006-01-01

    As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw]. PMID:16885238

  15. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  16. Contemporary Methodology for Protein Structure Determination.

    ERIC Educational Resources Information Center

    Hunkapiller, Michael W.; And Others

    1984-01-01

    Describes the nature and capabilities of methods used to characterize protein and peptide structure, indicating that they have undergone changes which have improved the speed, reliability, and applicability of the process. Also indicates that high-performance liquid chromatography and gel electrophoresis have made purifying proteins and peptides a…

  17. PEGylated nanoparticles: protein corona and secondary structure

    NASA Astrophysics Data System (ADS)

    Runa, Sabiha; Hill, Alexandra; Cochran, Victoria L.; Payne, Christine K.

    2014-09-01

    Nanoparticles have important biological and biomedical applications ranging from drug and gene delivery to biosensing. In the presence of extracellular proteins, a "corona" of proteins adsorbs on the surface of the nanoparticles, altering their interaction with cells, including immune cells. Nanoparticles are often functionalized with polyethylene glycol (PEG) to reduce this non-specific adsorption of proteins. To understand the change in protein corona that occurs following PEGylation, we first quantified the adsorption of blood serum proteins on bare and PEGylated gold nanoparticles using gel electrophoresis. We find a threefold decrease in the amount of protein adsorbed on PEGylated gold nanoparticles compared to the bare gold nanoparticles, showing that PEG reduces, but does not prevent, corona formation. To determine if the secondary structure of corona proteins was altered upon adsorption onto the bare and PEGylated gold nanoparticles, we use CD spectroscopy to characterize the secondary structure of bovine serum albumin following incubation with the nanoparticles. Our results show no significant change in protein secondary structure following incubation with bare or PEGylated nanoparticles. Further examination of the secondary structure of bovine serum albumin, α2-macroglobulin, and transferrin in the presence of free PEG showed similar results. These findings provide important insights for the use of PEGylated gold nanoparticles under physiological conditions.

  18. Information-driven structural modelling of protein-protein interactions.

    PubMed

    Rodrigues, João P G L M; Karaca, Ezgi; Bonvin, Alexandre M J J

    2015-01-01

    Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes. PMID:25330973

  19. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel

  20. Structural Characteristics of Novel Protein Folds

    PubMed Central

    Fernandez-Fuentes, Narcis; Dybas, Joseph M.; Fiser, Andras

    2010-01-01

    Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region. PMID:20421995

  1. Defining and predicting structurally conserved regions in protein superfamilies

    PubMed Central

    Huang, Ivan K.; Grishin, Nick V.

    2013-01-01

    Motivation: The structures of homologous proteins are generally better conserved than their sequences. This phenomenon is demonstrated by the prevalence of structurally conserved regions (SCRs) even in highly divergent protein families. Defining SCRs requires the comparison of two or more homologous structures and is affected by their availability and divergence, and our ability to deduce structurally equivalent positions among them. In the absence of multiple homologous structures, it is necessary to predict SCRs of a protein using information from only a set of homologous sequences and (if available) a single structure. Accurate SCR predictions can benefit homology modelling and sequence alignment. Results: Using pairwise DaliLite alignments among a set of homologous structures, we devised a simple measure of structural conservation, termed structural conservation index (SCI). SCI was used to distinguish SCRs from non-SCRs. A database of SCRs was compiled from 386 SCOP superfamilies containing 6489 protein domains. Artificial neural networks were then trained to predict SCRs with various features deduced from a single structure and homologous sequences. Assessment of the predictions via a 5-fold cross-validation method revealed that predictions based on features derived from a single structure perform similarly to ones based on homologous sequences, while combining sequence and structural features was optimal in terms of accuracy (0.755) and Matthews correlation coefficient (0.476). These results suggest that even without information from multiple structures, it is still possible to effectively predict SCRs for a protein. Finally, inspection of the structures with the worst predictions pinpoints difficulties in SCR definitions. Availability: The SCR database and the prediction server can be found at http://prodata.swmed.edu/SCR. Contact: 91huangi@gmail.com or grishin@chop.swmed.edu Supplementary information: Supplementary data are available at Bioinformatics

  2. Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet.

    PubMed

    Tyagi, M; Sharma, P; Swamy, C S; Cadet, F; Srinivasan, N; de Brevern, A G; Offmann, B

    2006-07-01

    Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/PBE/. PMID:16844973

  3. Amyloid Precursor Protein (APP) Affects Global Protein Synthesis in Dividing Human Cells

    PubMed Central

    Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J.; Alani, Sara; Bocchetta, Maurizio

    2015-01-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. PMID:25283437

  4. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells.

    PubMed

    Sobol, Anna; Galluzzo, Paola; Liang, Shuang; Rambo, Brittany; Skucha, Sylvia; Weber, Megan J; Alani, Sara; Bocchetta, Maurizio

    2015-05-01

    Hypoxic non-small cell lung cancer (NSCLC) is dependent on Notch-1 signaling for survival. Targeting Notch-1 by means of γ-secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post-mortem analysis of GSI-treated, NSCLC-burdened mice suggested enhanced phosphorylation of 4E-BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non-canonical 4E-BP1 phosphorylation pattern rearrangement-a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF-4F composition indicating increased recruitment of eIF-4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF-4A assembly into eIF-4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap- and IRES-dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin-1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC-1) inhibition affected 4E-BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC-1. Key phenomena described in this study were reversed by overexpression of the APP C-terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC-1 regulation of cap-dependent protein synthesis. PMID:25283437

  5. Extracting knowledge from protein structure geometry

    PubMed Central

    Røgen, Peter; Koehl, Patrice

    2013-01-01

    Protein structure prediction techniques proceed in two steps, namely the generation of many structural models for the protein of interest, followed by an evaluation of all these models to identify those that are native-like. In theory, the second step is easy, as native structures correspond to minima of their free energy surfaces. It is well known however that the situation is more complicated as the current force fields used for molecular simulations fail to recognize native states from misfolded structures. In an attempt to solve this problem we follow an alternate approach and derive a new potential from geometric knowledge extracted from native and misfolded conformers of protein structures. This new potential, MPP, has two main features that are key to its success. Firstly, it is composite in that it includes local and non local geometric information on proteins. At the short range level it captures and quantifies the mapping between the sequences and structures of short (7-mer) fragments of protein backbones through the introduction of a new local energy term. The local energy term is then augmented with a non local residue-based pairwise potential, and a solvent potential. Secondly, it is optimized to yield a maximized correlation between the energy of a structural model and its RMS to the native structure of the corresponding protein. We have shown that MPP yields high correlation values between RMS and energy and that it is able to retrieve the native structure of a protein from a set of high-resolution decoys. PMID:23280479

  6. Multiple Post-translational Modifications Affect Heterologous Protein Synthesis*

    PubMed Central

    Tokmakov, Alexander A.; Kurotani, Atsushi; Takagi, Tetsuo; Toyama, Mitsutoshi; Shirouzu, Mikako; Fukami, Yasuo; Yokoyama, Shigeyuki

    2012-01-01

    Post-translational modifications (PTMs) are required for proper folding of many proteins. The low capacity for PTMs hinders the production of heterologous proteins in the widely used prokaryotic systems of protein synthesis. Until now, a systematic and comprehensive study concerning the specific effects of individual PTMs on heterologous protein synthesis has not been presented. To address this issue, we expressed 1488 human proteins and their domains in a bacterial cell-free system, and we examined the correlation of the expression yields with the presence of multiple PTM sites bioinformatically predicted in these proteins. This approach revealed a number of previously unknown statistically significant correlations. Prediction of some PTMs, such as myristoylation, glycosylation, palmitoylation, and disulfide bond formation, was found to significantly worsen protein amenability to soluble expression. The presence of other PTMs, such as aspartyl hydroxylation, C-terminal amidation, and Tyr sulfation, did not correlate with the yield of heterologous protein expression. Surprisingly, the predicted presence of several PTMs, such as phosphorylation, ubiquitination, SUMOylation, and prenylation, was associated with the increased production of properly folded soluble proteins. The plausible rationales for the existence of the observed correlations are presented. Our findings suggest that identification of potential PTMs in polypeptide sequences can be of practical use for predicting expression success and optimizing heterologous protein synthesis. In sum, this study provides the most compelling evidence so far for the role of multiple PTMs in the stability and solubility of heterologously expressed recombinant proteins. PMID:22674579

  7. Novel bioresorbabale composite fiber structures loaded with proteins for tissue regeneration applications: microstructure and protein release.

    PubMed

    Levy, Yair; Zilberman, Meital

    2006-12-15

    Novel bioresorbable core/shell composite fiber structures loaded with proteins were developed and studied. These unique polymeric structures are designed to combine good mechanical properties with a desired controlled protein-release profile, to serve as scaffolds for tissue regeneration applications. Core/shell fiber structures were formed by "coating" poly(L-lactic acid) fibers with protein-containing poly(DL-lactic-co-glycolic acid) porous structures. Shell preparation (coating) was performed by the freeze-drying of water in oil emulsions. The present study focused on the effect of the emulsion's formulation on the porous shell structure and on the resulting cumulative protein release from the composite fibers for 90 days. Horseradish peroxidase (HRP) was used as the protein source. The release profiles usually exhibited an initial burst effect, accompanied by a decrease in release rate with time, as is typical for diffusion-controlled systems. The HRP content and the emulsion's organic:aqueous phase ratio exhibited significant effects on both the shell microstructure and the HRP release profile from the composite fibers, whereas the polymer content of the emulsion's organic phase only affected these fiber characteristics in certain cases. Proper selection of the emulsion's parameters can yield core/shell fiber structures with the desired protein release behavior and other useful physical properties. PMID:16883584

  8. Multipass Membrane Protein Structure Prediction Using Rosetta

    PubMed Central

    Yarov-Yarovoy, Vladimir; Schonbrun, Jack; Baker, David

    2006-01-01

    We describe the adaptation of the Rosetta de novo structure prediction method for prediction of helical transmembrane protein structures. The membrane environment is modeled by embedding the protein chain into a model membrane represented by parallel planes defining hydrophobic, interface, and polar membrane layers for each energy evaluation. The optimal embedding is determined by maximizing the exposure of surface hydrophobic residues within the membrane and minimizing hydrophobic exposure outside of the membrane. Protein conformations are built up using the Rosetta fragment assembly method and evaluated using a new membrane-specific version of the Rosetta low-resolution energy function in which residue–residue and residue–environment interactions are functions of the membrane layer in addition to amino acid identity, distance, and density. We find that lower energy and more native-like structures are achieved by sequential addition of helices to a growing chain, which may mimic some aspects of helical protein biogenesis after translocation, rather than folding the whole chain simultaneously as in the Rosetta soluble protein prediction method. In tests on 12 membrane proteins for which the structure is known, between 51 and 145 residues were predicted with root-mean-square deviation <4Å from the native structure. PMID:16372357

  9. A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

    PubMed Central

    Eronina, Tatyana; Borzova, Vera; Maloletkina, Olga; Kleymenov, Sergey; Asryants, Regina; Markossian, Kira; Kurganov, Boris

    2011-01-01

    To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = Kagg(T−T0)2, where Kagg is the parameter characterizing the initial rate of aggregation and T0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets. PMID:21760963

  10. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  11. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  12. Protein structure, stability and folding in the cell -- in silico biophysical approaches

    NASA Astrophysics Data System (ADS)

    Cheung, Margaret

    2010-03-01

    How the crowded environment inside a cell affects the structural conformation of a protein with aspherical shape is a vital question because the geometry of proteins and protein-protein complexes are far from globules in vivo. Here we address this question by combining computational and experimental studies of a spherical protein (i.e. apoflavodoxin), a football-shaped protein (i.e., Borrelia burgdorferi VlsE) and a dumbbell-shaped protein (i.e. calmodulin) under crowded, cell-like conditions. The results show that macromolecular crowding affects protein folding dynamics as well as an overall protein shape associated with changes in secondary structures. Our work demonstrates the malleability of ``native'' proteins and implies that crowding-induced shape changes may be important for protein function and malfunction in vivo.

  13. Protein structural domains: definition and prediction.

    PubMed

    Ezkurdia, Iakes; Tress, Michael L

    2011-11-01

    Recognition and prediction of structural domains in proteins is an important part of structure and function prediction. This unit lists the range of tools available for domain prediction, and describes sequence and structural analysis tools that complement domain prediction methods. Also detailed are the basic domain prediction steps, along with suggested strategies for different protein sequences and potential pitfalls in domain boundary prediction. The difficult problem of domain orientation prediction is also discussed. All the resources necessary for domain boundary prediction are accessible via publicly available Web servers and databases and do not require computational expertise. PMID:22045561

  14. Pretreatment of amphiphilic comb polymer surfaces dramatically affects protein adsorption.

    PubMed

    Zhang, Zhanping; Ma, Hongwei; Hausner, Douglas B; Chilkoti, Ashutosh; Beebe, Thomas P

    2005-01-01

    New applications in regenerative biotechnology require the ability to understand and control protein-surface interactions on micrometer and submicrometer length scales. Evidence presented here shows that micropatterned amphiphilic comb polymer films exhibit a pretreatment-dependent behavior with respect to protein adsorption for the proteins fibronectin, laminin, and for serum. A micropatterned surface, consisting of protein-reactive regions, separated by comb polymer, was created and tested for protein adsorption using the surface-sensitive imaging tool TOF-SIMS. Immersion of micropatterned surfaces in solutions of fibronectin or laminin resulted in uniform protein coverage on both the comb polymer and protein-reactive regions. However, preimmersion of similarly patterned surfaces in water for 2 h prior to protein incubation was found to dramatically improve the protein-resistant properties of the comb polymer regions. These results are consistent with poly(ethylene glycol) (PEG) side chain reorientation and/or hydration and poly(methyl methacrylate) (PMMA) backbone segregation away from the interface region. PMID:16283770

  15. Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

    SciTech Connect

    Haibo Cao

    2003-12-12

    In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  16. Protein structure, spectral properties, and photobiological function of lumazine protein

    NASA Astrophysics Data System (ADS)

    Lee, John W.; Bradley, Elizabeth A.; O'Kane, Dennis J.

    1992-04-01

    Protein sequence analysis, nuclear magnetic resonance, and fluorescence dynamics have been applied in a determination of the interactions of the lumazine derivative with the amino acid residues in the proposed ligand binding site of lumazine protein. It is these interactions that `tune' the excited state properties of the bound lumazine so that it can perform its photobiological function as the emitter of bioluminescence in Photobacterium species. A three- way sequence alignment shows that lumazine protein is homologous with the yellow- fluorescent protein of Vibrio fischeri and the riboflavin synthase from Bacillus subtilis. This last enzyme is ubiquitous in procaryotes, and utilizes two of these same lumazines as substrates for the production of riboflavin. By analogy with riboflavin synthase, a short sequence in the lumazine protein has been suggested as the ligand binding site. In riboflavin synthase there is a second binding site, but this is absent in lumazine protein, thus negating any synthase activity for this protein. Hydrogen bonds to the residues in this binding domain and `freeze' the lumazine structure into the highly polar tautomer deduced from NMR evidence. This also accounts for the rigidity of binding shown by the 23 ns (2 degree(s)C) rotational correlation time of the bound ligand as well as the strong blue shift of the fluorescence maximum, from 490 nm free to 475 nm when bound.

  17. SCOP: a structural classification of proteins database.

    PubMed Central

    Hubbard, T J; Murzin, A G; Brenner, S E; Chothia, C

    1997-01-01

    The Structural Classification of Proteins (SCOP) database provides a detailed and comprehensive description of the relationships of all known proteins structures. The classification is on hierarchical levels: the first two levels, family and superfamily, describe near and far evolutionary relationships; the third, fold, describes geometrical relationships. The distinction between evolutionary relationships and those that arise from the physics and chemistry of proteins is a feature that is unique to this database, so far. SCOP also provides for each structure links to atomic co-ordinates, images of the structures, interactive viewers, sequence data, data on any conformational changes related to function and literature references. The database is freely accessible on the World Wide Web (WWW) with an entry point at URL http://scop.mrc-lmb.cam.ac.uk/scop/ PMID:9016544

  18. Recurrent Structural Motifs in Non-Homologous Protein Structures

    PubMed Central

    Johansson, Maria U.; Zoete, Vincent; Guex, Nicolas

    2013-01-01

    We have extracted an extensive collection of recurrent structural motifs (RSMs), which consist of sequentially non-contiguous structural motifs (4–6 residues), each of which appears with very similar conformation in three or more mutually unrelated protein structures. We find that the proteins in our set are covered to a substantial extent by the recurrent non-contiguous structural motifs, especially the helix and strand regions. Computational alanine scanning calculations indicate that the average folding free energy changes upon alanine mutation for most types of non-alanine residues are higher for amino acids that are present in recurrent structural motifs than for amino acids that are not. The non-alanine amino acids that are most common in the recurrent structural motifs, i.e., phenylalanine, isoleucine, leucine, valine and tyrosine and the less abundant methionine and tryptophan, have the largest folding free energy changes. This indicates that the recurrent structural motifs, as we define them, describe recurrent structural patterns that are important for protein stability. In view of their properties, such structural motifs are potentially useful for inter-residue contact prediction and protein structure refinement. PMID:23574940

  19. Structure and Non-Structure of Centrosomal Proteins

    PubMed Central

    Bertero, Michela G.; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G.; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M.; Gonzalez, Cayetano; Reina, José; Valpuesta, José M.; Vernos, Isabelle; Zabala, Juan C.; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php. PMID:23671615

  20. The Challenge of Producing Ubiquitinated Proteins for Structural Studies

    PubMed Central

    Faggiano, Serena; Pastore, Annalisa

    2014-01-01

    Protein ubiquitination is an important post-translational modification involved in several essential signalling pathways. It has different effects on the target protein substrate, i.e., it can trigger the degradation of the protein in the proteasome, change the interactions of the modified protein with its partners, or affect its localization and activity. In order to understand the molecular mechanisms underlying the consequences of protein ubiquitination, scientists have to face the challenging task of producing ubiquitinated proteins for structural characterization with X-ray crystallography and/or nuclear magnetic resonance (NMR) spectroscopy. These techniques require milligrams of homogeneous samples of high purity. The strategies proposed so far for the production of ubiquitinated proteins can be divided into two groups, i.e., chemical (or non-enzymatic) and enzymatic methodologies. In this review, we summarize the still very sparse examples available in the literature that describe successful production of ubiquitinated proteins amenable for biochemical and structural studies, and discuss advantages and disadvantages of the techniques proposed. We also give a perspective of the direction in which the field might evolve. PMID:24926903

  1. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  2. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling

    PubMed Central

    Tsuji, Toshiyuki; Yoda, Takao; Shirai, Tsuyoshi

    2015-01-01

    Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures. PMID:26549015

  3. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  4. Protein structures by spallation neutron crystallography

    PubMed Central

    Langan, Paul; Fisher, Zoë; Kovalevsky, Andrii; Mustyakimov, Marat; Sutcliffe Valone, Amanda; Unkefer, Cliff; Waltman, Mary Jo; Coates, Leighton; Adams, Paul D.; Afonine, Pavel V.; Bennett, Brad; Dealwis, Chris; Schoenborn, Benno P.

    2008-01-01

    The Protein Crystallography Station at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. This capability also includes the Macromolecular Neutron Crystallography (MNC) consortium between Los Alamos (LANL) and Lawrence Berkeley National Laboratories for developing computational tools for neutron protein crystallography, a biological deuteration laboratory, the National Stable Isotope Production Facility, and an MNC drug design consortium between LANL and Case Western Reserve University. PMID:18421142

  5. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  6. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  7. Structure of Yellow Fever Virus Envelope Protein Domain III

    PubMed Central

    Volk, David E.; May, Fiona J.; Gandham, Sai H. A.; Anderson, Anjenique; Von Lindern, Jana J.; Beasley, David W. C.; Barrett, Alan D. T.; Gorenstein, David G.

    2009-01-01

    The structure of recombinant domain III of the envelope protein (rED3) of yellow fever virus (YFV), containing the major neutralization site, was determined using NMR spectroscopy. The amino acid sequence and structure of the YFV-rED3 shows differences from ED3s of other mosquito-borne flaviviruses; in particular, the partially surface-exposed BC loop where methionine-304 and valine-324 were identified as being critical for the structure of the loop. Variations in the structure and surface chemistry of ED3 between flaviviruses affect neutralization sites and may affect host cell receptor interactions and play a role in the observed variations in viral pathogenesis and tissue tropism. PMID:19818466

  8. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.

    PubMed

    Eshpari, H; Jimenez-Flores, R; Tong, P S; Corredig, M

    2015-12-01

    Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble

  9. Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration*

    PubMed Central

    Carrara, Guia; Saraiva, Nuno; Parsons, Maddy; Byrne, Bernadette; Prole, David L.; Taylor, Colin W.; Smith, Geoffrey L.

    2015-01-01

    Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently. PMID:25713081

  10. Atomic-level analysis of membrane-protein structure.

    PubMed

    Hendrickson, Wayne A

    2016-06-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins. PMID:27273628

  11. Structure of the Nitrosomonas Europaea Rh Protein

    SciTech Connect

    Li, X.; Jayachandran, S.; Nguyen, H.-H.T.; Chan, M.K.

    2009-06-01

    Amt/MEP/Rh proteins are a family of integral membrane proteins implicated in the transport of NH3, CH(2)NH2, and CO2. Whereas Amt/MEP proteins are agreed to transport ammonia (NH3/NH4+), the primary substrate for Rh proteins has been controversial. Initial studies suggested that Rh proteins also transport ammonia, but more recent evidence suggests that they transport CO2. Here we report the first structure of an Rh family member, the Rh protein from the chemolithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea. This Rh protein exhibits a number of similarities to its Amt cousins, including a trimeric oligomeric state, a central pore with an unusual twin-His site in the middle, and a Phe residue that blocks the channel for small-molecule transport. However, there are some significant differences, the most notable being the presence of an additional cytoplasmic C-terminal alpha-helix, an increased number of internal proline residues along the transmembrane helices, and a specific set of residues that appear to link the C-terminal helix to Phe blockage. This latter linkage suggests a mechanism in which binding of a partner protein to the C terminus could regulate channel opening. Another difference is the absence of the extracellular pi-cation binding site conserved in Amt/Mep structures. Instead, CO2 pressurization experiments identify a CO2 binding site near the intracellular exit of the channel whose residues are highly conserved in all Rh proteins, except those belonging to the Rh30 subfamily. The implications of these findings on the functional role of the human Rh antigens are discussed.

  12. Membrane protein structure from rotational diffusion☆

    PubMed Central

    Das, Bibhuti B.; Park, Sang Ho; Opella, Stanley J.

    2014-01-01

    The motional averaging of powder pattern line shapes is one of the most fundamental aspects of sold-state NMR. Since membrane proteins in liquid crystalline phospholipid bilayers undergo fast rotational diffusion, all of the signals reflect the angles of the principal axes of their dipole–dipole and chemical shift tensors with respect to the axis defined by the bilayer normal. The frequency span and sign of the axially symmetric powder patterns that result from motional averaging about a common axis provide sufficient structural restraints for the calculation of the three-dimensional structure of a membrane protein in a phospholipid bilayer environment. The method is referred to as rotationally aligned (RA) solid-state NMR and demonstrated with results on full-length, unmodified membrane proteins with one, two, and seven trans-membrane helices. RA solid-state NMR is complementary to other solid-state NMR methods, in particular oriented sample (OS) solid-state NMR of stationary, aligned samples. Structural distortions of membrane proteins from the truncations of terminal residues and other sequence modifications, and the use of detergent micelles instead of phospholipid bilayers have also been demonstrated. Thus, it is highly advantageous to determine the structures of unmodified membrane proteins in liquid crystalline phospholipid bilayers under physiological conditions. RA solid-state NMR provides a general method for obtaining accurate and precise structures of membrane proteins under near-native conditions. This article is part of a Special Issue entitled: NMR Spectroscopy for Atomistic Views of Biomembranes and Cell Surfaces. PMID:24747039

  13. Utilization of Protein Crystal Structures in Industry

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kohki

    In industry, protein crystallography is used in mainly two technologies. One is structure-based drug design, and the other is structure-based enzyme engineering. Some successful cases together with recent advances are presented in this article. The cases include the development of an anti-influenza drug, and the introduction of engineered acid phosphatase to the manufacturing process of nucleotides used as umami seasoning.

  14. Reconstruction of SAXS Profiles from Protein Structures

    PubMed Central

    Putnam, Daniel K.; Lowe, Edward W.

    2013-01-01

    Small angle X-ray scattering (SAXS) is used for low resolution structural characterization of proteins often in combination with other experimental techniques. After briefly reviewing the theory of SAXS we discuss computational methods based on 1) the Debye equation and 2) Spherical Harmonics to compute intensity profiles from a particular macromolecular structure. Further, we review how these formulas are parameterized for solvent density and hydration shell adjustment. Finally we introduce our solution to compute SAXS profiles utilizing GPU acceleration. PMID:24688746

  15. Structural mechanisms of nonplanar hemes in proteins

    SciTech Connect

    Shelnutt, J.A.

    1997-05-01

    The objective is to assess the occurrence of nonplanar distortions of hemes and other tetrapyrroles in proteins and to determine the biological function of these distortions. Recently, these distortions were found by us to be conserved among proteins belonging to a functional class. Conservation of the conformation of the heme indicates a possible functional role. Researchers have suggested possible mechanisms by which heme distortions might influence biological properties; however, no heme distortion has yet been shown conclusively to participate in a structural mechanism of hemoprotein function. The specific aims of the proposed work are: (1) to characterize and quantify the distortions of the hemes in all of the more than 300 hemoprotein X-ray crystal structures in terms of displacements along the lowest-frequency normal coordinates, (2) to determine the structural features of the protein component that generate and control these nonplanar distortions by using spectroscopic studies and molecular-mechanics calculations for the native proteins, their mutants and heme-peptide fragments, and model porphyrins, (3) to determine spectroscopic markers for the various types of distortion, and, finally, (4) to discover the functional significance of the nonplanar distortions by correlating function with porphyrin conformation for proteins and model porphyrins.

  16. Repeating covalent structure of streptococcal M protein.

    PubMed Central

    Beachey, E H; Seyer, J M; Kang, A H

    1978-01-01

    We have attempted to identify the covalent structure of the M protein molecule of group A streptococci that is responsible for inducing type-specific, protective immunity. M protein was extracted from type 24 streptococci, purified, and cleaved with cyanogen bromide. Seven cyanogen bromide peptides were purified and further characterized. Together, the peptides account for the entire amino acid content of the M protein molecule. Each of the purified peptides possessed the type-specific determinant that inhibits opsonic antibodies for group A streptococci. The primary structures of the amino-terminal regions of each of the purified peptides was studied by automated Edman degradation. The partial sequences of two of the peptides were found to be identical to each other and to that of the uncleaved M protein molecule through at least the first 27 residues. The amino-terminal sequences of the remaining five peptides were identical to each other through the twentieth residue but completely different from the amino-terminal region of the other two peptides. However, the type-specific immunoreactivity and the incomplete analysis of the primary structure of the seven peptides suggest that the antiphagocytic determinant resides in a repeating amino acid sequence in the M protein molecule. PMID:80011

  17. A structural alphabet for local protein structures: improved prediction methods.

    PubMed

    Etchebest, Catherine; Benros, Cristina; Hazout, Serge; de Brevern, Alexandre G

    2005-06-01

    Three-dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have been used to describe protein backbones and to predict local structures from protein sequences. The Q16 prediction rate reaches 40.7% with an optimization procedure. This article examines two aspects of PBs. First, we determine the effect of the enlargement of databanks on their definition. The results show that the geometrical features of the different PBs are preserved (local RMSD value equal to 0.41 A on average) and sequence-structure specificities reinforced when databanks are enlarged. Second, we improve the methods for optimizing PB predictions from sequences, revisiting the optimization procedure and exploring different local prediction strategies. Use of a statistical optimization procedure for the sequence-local structure relation improves prediction accuracy by 8% (Q16 = 48.7%). Better recognition of repetitive structures occurs without losing the prediction efficiency of the other local folds. Adding secondary structure prediction improved the accuracy of Q16 by only 1%. An entropy index (Neq), strongly related to the RMSD value of the difference between predicted PBs and true local structures, is proposed to estimate prediction quality. The Neq is linearly correlated with the Q16 prediction rate distributions, computed for a large set of proteins. An "expected" prediction rate QE16 is deduced with a mean error of 5%. PMID:15822101

  18. Protein composition affects variation in coagulation properties of buffalo milk.

    PubMed

    Bonfatti, V; Gervaso, M; Rostellato, R; Coletta, A; Carnier, P

    2013-07-01

    The aim of this study was to investigate the effects exerted by the content of casein and whey protein fractions on variation of pH, rennet-coagulation time (RCT), curd-firming time (K20), and curd firmness of Mediterranean buffalo individual milk. Measures of milk protein composition and assessment of genotypes at CSN1S1 and CSN3 were obtained by reversed-phase HPLC analysis of 621 individual milk samples. Increased content of αS1-casein (CN) was associated with delayed coagulation onset and increased K20, whereas average pH, RCT, and K20 decreased when β-CN content increased. Milk with low κ-CN content exhibited low pH and RCT relative to milk with high content of κ-CN. Increased content of glycosylated κ-CN was associated with unfavorable effects on RCT. Effects of milk protein composition on curd firmness were less important than those on pH, RCT, and K20. Likely, this occurred as a consequence of the very short RCT of buffalo milk, which guaranteed a complete strengthening of the curd even in the restricted 31 min time of analysis of coagulation properties and for samples initially showing soft curds. Effects of CSN1S1-CSN3 genotypes on coagulation properties were not to be entirely ascribed to existing variation in milk protein composition associated with polymorphisms at CSN1S1 and CSN3 genes. Although the role of detailed milk protein composition in variation of cheese yield needs to be further investigated, findings of this study suggest that modification of the relative content of specific CN fractions can relevantly influence the behavior of buffalo milk during processing. PMID:23684020

  19. Protein tertiary structure recognition using optimized Hamiltonians with local interactions.

    PubMed Central

    Goldstein, R A; Luthey-Schulten, Z A; Wolynes, P G

    1992-01-01

    Protein folding codes embodying local interactions including surface and secondary structure propensities and residue-residue contacts are optimized for a set of training proteins by using spin-glass theory. A screening method based on these codes correctly matches the structure of a set of test proteins with proteins of similar topology with 100% accuracy, even with limited sequence similarity between the test proteins and the structural homologs and the absence of any structurally similar proteins in the training set. PMID:1409599

  20. Structural mechanisms of chaperone mediated protein disaggregation

    PubMed Central

    Sousa, Rui

    2014-01-01

    The ClpB/Hsp104 and Hsp70 classes of molecular chaperones use ATP hydrolysis to dissociate protein aggregates and complexes, and to move proteins through membranes. ClpB/Hsp104 are members of the AAA+ family of proteins which form ring-shaped hexamers. Loops lining the pore in the ring engage substrate proteins as extended polypeptides. Interdomain rotations and conformational changes in these loops coupled to ATP hydrolysis unfold and pull proteins through the pore. This provides a mechanism that progressively disrupts local secondary and tertiary structure in substrates, allowing these chaperones to dissociate stable aggregates such as β-sheet rich prions or coiled coil SNARE complexes. While the ClpB/Hsp104 mechanism appears to embody a true power-stroke in which an ATP powered conformational change in one protein is directly coupled to movement or structural change in another, the mechanism of force generation by Hsp70s is distinct and less well understood. Both active power-stroke and purely passive mechanisms in which Hsp70 captures spontaneous fluctuations in a substrate have been proposed, while a third proposed mechanism—entropic pulling—may be able to generate forces larger than seen in ATP-driven molecular motors without the conformational coupling required for a power-stroke. The disaggregase activity of these chaperones is required for thermotolerance, but unrestrained protein complex/aggregate dissociation is potentially detrimental. Disaggregating chaperones are strongly auto-repressed, and are regulated by co-chaperones which recruit them to protein substrates and activate the disaggregases via mechanisms involving either sequential transfer of substrate from one chaperone to another and/or simultaneous interaction of substrate with multiple chaperones. By effectively subjecting substrates to multiple levels of selection by multiple chaperones, this may insure that these potent disaggregases are only activated in the appropriate context. PMID

  1. Structural neighboring property for identifying protein-protein binding sites

    PubMed Central

    2015-01-01

    Background The protein-protein interaction plays a key role in the control of many biological functions, such as drug design and functional analysis. Determination of binding sites is widely applied in molecular biology research. Therefore, many efficient methods have been developed for identifying binding sites. In this paper, we calculate structural neighboring property through Voronoi diagram. Using 6,438 complexes, we study local biases of structural neighboring property on interface. Results We propose a novel statistical method to extract interacting residues, and interacting patches can be clustered as predicted interface residues. In addition, structural neighboring property can be adopted to construct a new energy function, for evaluating docking solutions. It includes new statistical property as well as existing energy items. Comparing to existing methods, our approach improves overall Fnat value by at least 3%. On Benchmark v4.0, our method has average Irmsd value of 3.31Å and overall Fnat value of 63%, which improves upon Irmsd of 3.89 Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46% for ClusPro. On the CAPRI targets, our method has average Irmsd value of 3.46 Å and overall Fnat value of 45%, which improves upon Irmsd of 4.18 Å and Fnat of 40% for ZRANK, and Irmsd of 5.12 Å and Fnat of 32% for ClusPro. Conclusions Experiments show that our method achieves better results than some state-of-the-art methods for identifying protein-protein binding sites, with the prediction quality improved in terms of CAPRI evaluation criteria. PMID:26356630

  2. Candidate genes that affect aging through protein homeostasis.

    PubMed

    Argon, Yair; Gidalevitz, Tali

    2015-01-01

    Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans. We highlight several themes that emerge from recent research—the interconnections of pathways that regulate aging, the pleiotropic effects of mutations and other manipulations of the candidate proteins and the tissue specificity in these pleiotropic outcomes. This body of knowledge highlights the need for multiple specific readouts of manipulating longevity genes, beyond measuring lifespan, as well as the need to understand the integrated picture, beyond examining the immediate outputs of individual longevity pathways. PMID:25916585

  3. Solving coiled-coil protein structures

    DOE PAGESBeta

    Dauter, Zbigniew

    2015-02-26

    With the availability of more than 100,000 entries stored in the Protein Data Bank (PDB) that can be used as search models, molecular replacement (MR) is currently the most popular method of solving crystal structures of macromolecules. Significant methodological efforts have been directed in recent years towards making this approach more powerful and practical. This resulted in the creation of several computer programs, highly automated and user friendly, that are able to successfully solve many structures even by researchers who, although interested in structures of biomolecules, are not very experienced in crystallography.

  4. Protein sources for finishing calves as affected by management system.

    PubMed

    Sindt, M H; Stock, R A; Klopfenstein, T J; Vieselmeyer, B A

    1993-03-01

    Two beef production systems were evaluated in conjunction with an evaluation of escape protein sources for finishing calves. Two hundred forty crossbred steers and 80 crossbred heifer calves (BW = 267 +/- 2 kg) were split into two groups: 1) control, finished (207 d) after a 3-wk feedlot adjustment period and 2) grazing cornstalks for 74 d after a 3-wk feedlot adjustment period, then finished (164 d). Finishing treatments were sources and proportions of supplemental CP: 1) urea 100%; 2) soybean meal (SBM) 100%; 3) blood meal (BM) 50%, urea 50%; 4) feather meal (FTH) 50%, urea 50%; 5) SBM 50%, FTH 25%, urea 25%; 6) SBM 25%, FTH 38%, urea 37%; 7) FTH 25%, BM 25%, urea 50%, and 8) FTH 38%, BM 13%, urea 50%. Treatments 1 to 8 were fed in dry-rolled corn (DRC)-based diets. Treatments 9 and 10 were supplement Treatments 1 and 7 fed in diets based on high-moisture corn. Calves finished after a 74-d period of grazing cornstalks consumed more feed (P < .01) and gained faster (P < .01) but were less efficient (P < .05) than calves finished directly after weaning. Although not statistically different, calves finished after grazing cornstalks and supplemented with natural protein in the feedlot were 7% more efficient than calves supplemented with urea alone. Efficiency of calves finished directly after weaning was similar for calves supplemented with natural protein or urea alone. Supplementing SBM/FTH/urea or BM/FTH/urea improved feed efficiency compared with supplementing FTH/urea alone. These data suggest that allowing calves to graze cornstalks before finishing is a possible management option, but this system may require more metabolizable protein in the finishing diet to maximize feed efficiency if the calves are expressing compensatory growth. PMID:8463161

  5. Marginal B-6 intake affects protein synthesis in rat tissues

    SciTech Connect

    Sampson, D.A.; Kretsch, M.J.; Young, L.A.; Jansen, G.R.

    1986-03-05

    The role of vitamin B-6 in amino acid metabolism suggests that inadequate B-6 intake may impair protein synthesis. To test this hypothesis, 30 male rats (initially 227 g) were fed AIN76A diets that contained control, marginal or devoid levels of B-6 (5.8, 1.2 or 0.1 mg B-6/kg diet, by analysis) ad libitum for 9 weeks. Protein synthesis rates (PSRs) were measured in liver, kidney and calf muscle using a flooding dose of /sup 3/H-phenylalanine. Marginal and control groups ate and gained weight at similar rates. The marginal diet did not elevate xanthurenic acid (XA) excretion following a tryptophan load. However, marginal B-6 intake did depress liver PSR by 29% (2182 vs 1549 mg/day, P<.05), liver wet weight by 15% (19.0 vs 16.1 g, P<.05) and muscle PSR by 23% (3.0 vs 2.3%/day, P<.10). Unexpectedly, marginal B-6 intake increased PSR in kidney 47% (90 vs 132 mg/day, P<.05). The devoid diet, which increased XA excretion following a tryptophan load by more than 3-fold, depressed PSRs 56% in liver and 31% in muscle. However, the devoid diet decreased food intake by 40% (25.0 vs 15.0 g/day); therefore effects of devoid B-6 intake on PSRs may have been confounded by deficits in protein-energy intake in devoid vs control groups. These data demonstrate that marginal B-6 intake alters protein synthesis in tissues of the rat.

  6. The structural stability of wild-type horse prion protein.

    PubMed

    Zhang, Jiapu

    2011-10-01

    Prion diseases (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or 'mad-cow' disease) and chronic wasting disease (CWD) in cattles) are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the β2-α2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of horse prion protein. Thus, the region of β2-α2 loop might be a potential drug target region. Besides this very important salt bridge, other four important salt bridges GLU196-ARG156-HIS187, ARG156-ASP202 and GLU211-HIS177 are also found to greatly contribute to the structural stability of horse prion protein. Rich databases of salt bridges, hydrogen bonds and hydrophobic contacts for horse prion protein can be found in this paper. PMID:21875155

  7. Simulations of kinetically irreversible protein aggregate structure.

    PubMed Central

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short- and long-range order all as a function of (i) the extent of monomer hydrophobic surface area and its distribution on the model protein surface and (ii) the magnitude of the hydrophobic-hydrophobic contact energy. An increase in the extent of monomer hydrophobic surface area resulted in increased aggregate densities with concomitant decreased system free energies. These effects are accompanied by increases in the number of hydrophobic-hydrophobic contacts and decreases in the solvent-exposed hydrophobic surface area of the aggregates. Grouping monomer hydrophobic surfaces in a single contiguous stretch resulted in lower aggregate densities and lower short range order. More favorable hydrophobic-hydrophobic contact energies produced structures with higher densities but the number of unfavorable protein-protein contacts was also observed to increase; greater configurational entropy produced the opposite effect. Properties predicted by our model are in good qualitative agreement with available experimental observations. Images FIGURE 6 FIGURE 13 PMID:8061184

  8. Exploiting Microbeams for Membrane Protein Structure Determination.

    PubMed

    Warren, Anna J; Axford, Danny; Paterson, Neil G; Owen, Robin L

    2016-01-01

    A reproducible, and sample independent means of predictably obtaining large, well-ordered crystals has proven elusive in macromolecular crystallography. In the structure determination pipeline, crystallisation often proves to be a rate-limiting step, and the process of obtaining even small or badly ordered crystals can prove time-consuming and laborious. This is particularly true in the field of membrane protein crystallography and this is reflected in the limited number of unique membrane protein structures deposited in the protein data bank (less than 650 by June 2016 - http://blanco.biomol.uci.edu/mpstruc ). Over recent years the requirement for, and time and cost associated with obtaining, large crystals has been partially alleviated through the development of beamline instrumentation allowing data collection, and structure solution, from ever-smaller crystals. Advances in several areas have led to a step change in what might be considered achievable during a synchrotron trip over the last decade. This chapter will briefly review the current status of the field, the tools available to ease data collection and processing, and give some examples of exploitation of these for membrane protein microfocus macromolecular crystallography. PMID:27553238

  9. Structural changes in emulsion-bound bovine beta-lactoglobulin affect its proteolysis and immunoreactivity.

    PubMed

    Marengo, Mauro; Miriani, Matteo; Ferranti, Pasquale; Bonomi, Francesco; Iametti, Stefania; Barbiroli, Alberto

    2016-07-01

    Adsorption on the surface of sub-micrometric oil droplets resulted in significant changes in the tertiary structure of bovine beta-lactoglobulin (BLG), a whey protein broadly used as a food ingredient and a major food allergen. The adsorbed protein had increased sensitivity to trypsin, and increased immunoreactivity towards specific monoclonal antibodies. In spite of the extensive tryptic breakdown of emulsion-bound BLG, some sequence stretches in BLG became trypsin-insensitive upon absorption of the protein on the fat droplets. As a consequence - at contrast with free BLG - proteolysis of emulsion-bound BLG did not decrease the immunoreactivity of the protein, and some of the large peptides generated by trypsinolysis of emulsion-bound BLG were still recognizable by specific monoclonal antibodies. Structural changes occurring in emulsion-bound BLG and their consequences are discussed in comparison with those occurring when the tertiary structure of BLG is modified by lipophilic salts, by urea, or upon interaction with solid hydrophobic surfaces. Such a comparison highlights the relevance of situation-specific structural modifications, that in turn may affect physiologically relevant features of the protein. PMID:27085639

  10. Dynamic Structure in Artificial Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott B.; Hong, Mei; de Azevedo, Eduardo; Tirrell, David A.; Russell, Thomas P.

    2000-03-01

    Artificial proteins that form reversible hydrogels have been designed and synthesized using recombinant DNA methodologies. Proteins are designed such that two helical, leucine zipper domains flank a central, water soluble domain. Under proper conditions of concentration, pH, and temperature the helical domains aggregate as coiled coils and act as physical crosslinks. Small angle x-ray and neutron scattering have been used to elucidate the gel structure, and NMR and fluorescence exchange experiments have been used to probe the dynamics of the gel system.

  11. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  12. ADAR proteins: structure and catalytic mechanism.

    PubMed

    Goodman, Rena A; Macbeth, Mark R; Beal, Peter A

    2012-01-01

    Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function. PMID:21769729

  13. Uridine Affects Liver Protein Glycosylation, Insulin Signaling, and Heme Biosynthesis

    PubMed Central

    Urasaki, Yasuyo; Pizzorno, Giuseppe; Le, Thuc T.

    2014-01-01

    Purines and pyrimidines are complementary bases of the genetic code. The roles of purines and their derivatives in cellular signal transduction and energy metabolism are well-known. In contrast, the roles of pyrimidines and their derivatives in cellular function remain poorly understood. In this study, the roles of uridine, a pyrimidine nucleoside, in liver metabolism are examined in mice. We report that short-term uridine administration in C57BL/6J mice increases liver protein glycosylation profiles, reduces phosphorylation level of insulin signaling proteins, and activates the HRI-eIF-2α-ATF4 heme-deficiency stress response pathway. Short-term uridine administration is also associated with reduced liver hemin level and reduced ability for insulin-stimulated blood glucose removal during an insulin tolerance test. Some of the short-term effects of exogenous uridine in C57BL/6J mice are conserved in transgenic UPase1−/− mice with long-term elevation of endogenous uridine level. UPase1−/− mice exhibit activation of the liver HRI-eIF-2α-ATF4 heme-deficiency stress response pathway. UPase1−/− mice also exhibit impaired ability for insulin-stimulated blood glucose removal. However, other short-term effects of exogenous uridine in C57BL/6J mice are not conserved in UPase1−/− mice. UPase1−/− mice exhibit normal phosphorylation level of liver insulin signaling proteins and increased liver hemin concentration compared to untreated control C57BL/6J mice. Contrasting short-term and long-term consequences of uridine on liver metabolism suggest that uridine exerts transient effects and elicits adaptive responses. Taken together, our data support potential roles of pyrimidines and their derivatives in the regulation of liver metabolism. PMID:24918436

  14. Accurate Prediction of Docked Protein Structure Similarity.

    PubMed

    Akbal-Delibas, Bahar; Pomplun, Marc; Haspel, Nurit

    2015-09-01

    One of the major challenges for protein-protein docking methods is to accurately discriminate nativelike structures. The protein docking community agrees on the existence of a relationship between various favorable intermolecular interactions (e.g. Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native structure. Different docking algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights against specific training data to evaluate and rank candidate structures. However, the exact form of this relationship is unknown and the accuracy of such methods is impaired by the pervasiveness of false positives. Unlike the conventional scoring functions, we propose a novel machine learning approach that not only ranks the candidate structures relative to each other but also indicates how similar each candidate is to the native conformation. We trained the AccuRMSD neural network with an extensive dataset using the back-propagation learning algorithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å error margin. PMID:26335807

  15. NMR structural studies on antifreeze proteins.

    PubMed

    Sönnichsen, F D; Davies, P L; Sykes, B D

    1998-01-01

    Antifreeze proteins (AFPs) are a structurally diverse class of proteins that bind to ice and inhibit its growth in a noncolligative manner. This adsorption-inhibition mechanism operating at the ice surface results in a lowering of the (nonequilibrium) freezing point below the melting point. A lowering of approximately 1 degree C, which is sufficient to prevent fish from freezing in ice-laden seawater, requires millimolar AFP levels in the blood. The solubility of AFPs at these millimolar concentrations and the small size of the AFPs (typically 3-15 kDa) make them ideal subjects for NMR analysis. Although fish AFPs are naturally abundant, seasonal expression, restricted access to polar fishes, and difficulties in separating numerous similar isoforms have made protein expression the method of choice for producing AFPs for structural studies. Expression of recombinant AFPs has also facilitated NMR analysis by permitting isotopic labeling with 15N and 13C and has permitted mutations to be made to help with the interpretation of NMR data. NMR analysis has recently solved two AFP structures and provided valuable information about the disposition of ice-binding side chains in a third. The potential exists to solve other AFP structures, including the newly described insect AFPs, and to use solid-state NMR techniques to address fundamental questions about the nature of the interaction between AFPs and ice. PMID:9923697

  16. Recognizing the fold of a protein structure.

    PubMed

    Harrison, Andrew; Pearl, Frances; Sillitoe, Ian; Slidel, Tim; Mott, Richard; Thornton, Janet; Orengo, Christine

    2003-09-22

    This paper reports a graph-theoretic program, GRATH, that rapidly, and accurately, matches a novel structure against a library of domain structures to find the most similar ones. GRATH generates distributions of scores by comparing the novel domain against the different types of folds that have been classified previously in the CATH database of structural domains. GRATH uses a measure of similarity that details the geometric information, number of secondary structures and number of residues within secondary structures, that any two protein structures share. Although GRATH builds on well established approaches for secondary structure comparison, a novel scoring scheme has been introduced to allow ranking of any matches identified by the algorithm. More importantly, we have benchmarked the algorithm using a large dataset of 1702 non-redundant structures from the CATH database which have already been classified into fold groups, with manual validation. This has facilitated introduction of further constraints, optimization of parameters and identification of reliable thresholds for fold identification. Following these benchmarking trials, the correct fold can be identified with the top score with a frequency of 90%. It is identified within the ten most likely assignments with a frequency of 98%. GRATH has been implemented to use via a server (http://www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl). GRATH's speed and accuracy means that it can be used as a reliable front-end filter for the more accurate, but computationally expensive, residue based structure comparison algorithm SSAP, currently used to classify domain structures in the CATH database. With an increasing number of structures being solved by the structural genomics initiatives, the GRATH server also provides an essential resource for determining whether newly determined structures are related to any known structures from which functional properties may be inferred. PMID:14512345

  17. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis.

    PubMed

    Music, Nedzad; Gagnon, Carl A

    2010-12-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis. PMID:20388230

  18. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity

    PubMed Central

    Colbert, Paul L.; Vermeer, Daniel W.; Wieking, Bryant G.; Lee, John H.; Vermeer, Paola D.

    2015-01-01

    Microtubules (MTs) are components of the cytoskeleton made up of polymerized alpha and beta tubulin dimers. MT structure and function must be maintained throughout the cell cycle to ensure proper execution of mitosis and cellular homeostasis. The protein tyrosine phosphatase, PTPN13, localizes to distinct compartments during mitosis and cytokinesis. We have previously demonstrated that the HPV16 E6 oncoprotein binds PTPN13 and leads to its degradation. Thus, we speculated that HPV infection may affect cellular proliferation by altering the localization of a PTPN13 phosphatase substrate, EphrinB1, during mitosis. Here we report that EphrinB1 co-localizes with MTs during all phases of the cell cycle. Specifically, a cleaved, unphosphorylated EphrinB1 fragment directly binds tubulin, while its phosphorylated form lacks MT binding capacity. These findings suggest that EphrinB1 is a novel microtubule associated protein (MAP). Importantly, we show that in the context of HPV16 E6 expression, EphrinB1 affects taxane response in vitro. We speculate that this reflects PTPN13's modulation of EphrinB1 phosphorylation and suggest that EphrinB1 is an important contributor to taxane sensitivity/resistance phenotypes in epithelial cancers. Thus, HPV infection or functional mutations of PTPN13 in non-viral cancers may predict taxane sensitivity. PMID:25436983

  19. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  20. Influence of drying on the secondary structure of intrinsically disordered and globular proteins.

    PubMed

    Hundertmark, Michaela; Popova, Antoaneta V; Rausch, Saskia; Seckler, Robert; Hincha, Dirk K

    2012-01-01

    Circular dichroism (CD) spectroscopy of five Arabidopsis late embryogenesis abundant (LEA) proteins constituting the plant specific families LEA_5 and LEA_6 showed that they are intrinsically disordered in solution and partially fold during drying. Structural predictions were comparable to these results for hydrated LEA_6, but not for LEA_5 proteins. FTIR spectroscopy showed that verbascose, but not sucrose, strongly affected the structure of the dry proteins. The four investigated globular proteins were only mildly affected by drying in the absence, but strongly in the presence of sugars. These data highlight the larger structural flexibility of disordered compared to globular proteins and the impact of sugars on the structure of both disordered and globular proteins during drying. PMID:22155233

  1. Heat-induced Protein Structure and Subfractions in Relation to Protein Degradation Kinetics and Intestinal Availability in Dairy Cattle

    SciTech Connect

    Doiron, K.; Yu, P; McKinnon, J; Christensen, D

    2009-01-01

    The objectives of this study were to reveal protein structures of feed tissues affected by heat processing at a cellular level, using the synchrotron-based Fourier transform infrared microspectroscopy as a novel approach, and quantify protein structure in relation to protein digestive kinetics and nutritive value in the rumen and intestine in dairy cattle. The parameters assessed included (1) protein structure a-helix to e-sheet ratio; (2) protein subfractions profiles; (3) protein degradation kinetics and effective degradability; (4) predicted nutrient supply using the intestinally absorbed protein supply (DVE)/degraded protein balance (OEB) system for dairy cattle. In this study, Vimy flaxseed protein was used as a model feed protein and was autoclave-heated at 120C for 20, 40, and 60 min in treatments T1, T2, and T3, respectively. The results showed that using the synchrotron-based Fourier transform infrared microspectroscopy revealed and identified the heat-induced protein structure changes. Heating at 120C for 40 and 60 min increased the protein structure a-helix to e-sheet ratio. There were linear effects of heating time on the ratio. The heating also changed chemical profiles, which showed soluble CP decreased upon heating with concomitant increases in nonprotein nitrogen, neutral, and acid detergent insoluble nitrogen. The protein subfractions with the greatest changes were PB1, which showed a dramatic reduction, and PB2, which showed a dramatic increase, demonstrating a decrease in overall protein degradability. In situ results showed a reduction in rumen-degradable protein and in rumen-degradable dry matter without differences between the treatments. Intestinal digestibility, determined using a 3-step in vitro procedure, showed no changes to rumen undegradable protein. Modeling results showed that heating increased total intestinally absorbable protein (feed DVE value) and decreased degraded protein balance (feed OEB value), but there were no differences

  2. How Rab proteins determine Golgi structure.

    PubMed

    Liu, Shijie; Storrie, Brian

    2015-01-01

    Rab proteins, small GTPases, are key regulators of mammalian Golgi apparatus organization. Based on the effect of Rab activation state, Rab proteins fall into two functional classes. In Class1, inactivation induces Golgi ribbon fragmentation and/or redistribution of Golgi enzymes to the Endoplasmic Reticulum, while overexpression of wild type or activation has little, if any, effect on Golgi ribbon organization. In Class 2, the reverse is true. We give emphasis to Rab6, the most abundant Golgi-associated Rab protein. Rab6 depletion in HeLa cells causes an increase in Golgi cisternal number, longer, more continuous cisternae, and a pronounced accumulation of vesicles; the effect of Rab6 on Golgi ribbon organization is probably through regulation of vesicle transport. In effector studies, motor proteins and their regulators are found to be key Rab6 effectors. A related Rab, Rab41, affects Golgi ribbon organization in a contrasting manner. The balance between minus- and plus-end directed motor recruitment may well be the major Rab-dependent factor in Golgi ribbon organization. PMID:25708460

  3. The Chromatin-binding Protein HMGN1 Regulates the Expression of Methyl CpG-binding Protein 2 (MECP2) and Affects the Behavior of Mice*

    PubMed Central

    Abuhatzira, Liron; Shamir, Alon; Schones, Dustin E.; Schäffer, Alejandro A.; Bustin, Michael

    2011-01-01

    High mobility group N1 protein (HMGN1), a nucleosomal-binding protein that affects the structure and function of chromatin, is encoded by a gene located on chromosome 21 and is overexpressed in Down syndrome, one of the most prevalent genomic disorders. Misexpression of HMGN1 affects the cellular transcription profile; however, the biological function of this protein is still not fully understood. We report that HMGN1 modulates the expression of methyl CpG-binding protein 2 (MeCP2), a DNA-binding protein known to affect neurological functions including autism spectrum disorders, and whose alterations in HMGN1 levels affect the behavior of mice. Quantitative PCR and Western analyses of cell lines and brain tissues from mice that either overexpress or lack HMGN1 indicate that HMGN1 is a negative regulator of MeCP2 expression. Alterations in HMGN1 levels lead to changes in chromatin structure and histone modifications in the MeCP2 promoter. Behavior analyses by open field test, elevated plus maze, Reciprocal Social Interaction, and automated sociability test link changes in HMGN1 levels to abnormalities in activity and anxiety and to social deficits in mice. Targeted analysis of the Autism Genetic Resource Exchange genotype collection reveals a non-random distribution of genotypes within 500 kbp of HMGN1 in a region affecting its expression in families predisposed to autism spectrum disorders. Our results reveal that HMGN1 affects the behavior of mice and suggest that epigenetic changes resulting from altered HMGN1 levels could play a role in the etiology of neurodevelopmental disorders. PMID:22009741

  4. Foldons, Protein Structural Modules, and Exons

    NASA Astrophysics Data System (ADS)

    Panchenko, Anna R.; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1996-03-01

    Foldons, which are kinetically competent, quasi-independently folding units of a protein, may be defined using energy landscape analysis. Foldons can be identified by maxima in a scan of the ratio of a contiguous segment's energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. The predicted foldons are compared with the exons and structural modules for 16 of the 30 proteins studied. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules, but there are marked sequence-dependent effects. There is only a weak correlation of foldons to exons. For γ II-crystallin, myoglobin, barnase, α -lactalbumin, and cytochrome c the foldons and some noncontiguous clusters of foldons compare well with intermediates observed in experiment.

  5. Structural Determinants of Misfolding in Multidomain Proteins

    PubMed Central

    Tian, Pengfei; Best, Robert B.

    2016-01-01

    Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins. PMID:27163669

  6. Proton assisted recoupling and protein structure determination

    PubMed Central

    De Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Böckmann, Anja; Griffin, Robert G.

    2008-01-01

    We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between 13C or 15N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between 1H–13C (or 1H–15N) couplings to mediate zero quantum 13C–13C (or 15N–15N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C1±C2∓HZ for 13C–13C recoupling experiments (or N1±N2∓HZ for 15N–15N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with 13C–13C spectra of uniformly 13C, 15N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2×10.4 kDa). The spectra, which were acquired at high MAS frequencies (ωr2π>20 kHz) and magnetic fields (750–900 MHz 1H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6–7 Å) 13C–13C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein. PMID:19123534

  7. Proton assisted recoupling and protein structure determination

    NASA Astrophysics Data System (ADS)

    de Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Böckmann, Anja; Griffin, Robert G.

    2008-12-01

    We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between 13C or 15N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between 1H-13C (or 1H-15N) couplings to mediate zero quantum 13C-13C (or 15N-15N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C1+/-C2-/+HZ for 13C-13C recoupling experiments (or N1+/-N2-/+HZ for 15N-15N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with 13C-13C spectra of uniformly 13C, 15N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2×10.4 kDa). The spectra, which were acquired at high MAS frequencies (ωr2π>20 kHz) and magnetic fields (750-900 MHz 1H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6-7 A˚) 13C-13C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein.

  8. Structural Determinants of Misfolding in Multidomain Proteins.

    PubMed

    Tian, Pengfei; Best, Robert B

    2016-05-01

    Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins. PMID:27163669

  9. Membrane protein structure determination by electron crystallography

    PubMed Central

    Ubarretxena-Belandia, Iban; Stokes, David L.

    2012-01-01

    During the past year, electron crystallography of membrane proteins has provided structural insights into the mechanism of several different transporters and into their interactions with lipid molecules within the bilayer. From a technical perspective there have been important advances in high-throughput screening of crystallization trials and in automated imaging of membrane crystals with the electron microscope. There have also been key developments in software, and in molecular replacement and phase extension methods designed to facilitate the process of structure determination. PMID:22572457

  10. Protein Structure Prediction with Evolutionary Algorithms

    SciTech Connect

    Hart, W.E.; Krasnogor, N.; Pelta, D.A.; Smith, J.

    1999-02-08

    Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.

  11. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  12. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  13. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  14. An atomic view of additive mutational effects in a protein structure

    SciTech Connect

    Skinner, M.M.; Terwilliger, T.C.

    1996-04-01

    Substitution of a single amino acid in a protein will often lead to substantial changes in properties. If these properties could be altered in a rational way then proteins could be readily generated with functions tailored to specific uses. When amino acid substitutions are made at well-separated locations in a single protein, their effects are generally additive. Additivity of effects of amino acid substitutions is very useful because the properties of proteins with any combination of substitutions can be inferred directly from those of the proteins with single changes. It would therefore be of considerable interest to have a means of knowing whether substitutions at a particular pair of sites in a protein are likely to lead to additive effects. The structural basis for additivity of effects of mutations on protein function was examined by determining crystal structures of single and double mutants in the hydrophobic core of gene V protein. Structural effects of mutations were found to be cumulative when two mutations were made in a single protein. Additivity occurs in this case because the regions structurally affected by mutations at the two sites do not overlap even though the sites are separated by only 9 {angstrom}. Structural distortions induced by mutations in gene V protein decrease rapidly, but not isotropically, with distance from the site of mutation. It is anticipated that cases where structural and functional effects of mutations will be additive could be identified simply by examining whether the regions structurally affected by each component mutation overlap.

  15. Protein thermal denaturation is modulated by central residues in the protein structure network.

    PubMed

    Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R

    2016-03-01

    Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-d-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. PMID:26785700

  16. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress. PMID:24702262

  17. Mutations in the classical swine fever virus NS4B protein affects virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Inte...

  18. How differentiated do children experience affect? An investigation of the within- and between-person structure of children's affect.

    PubMed

    Leonhardt, Anja; Könen, Tanja; Dirk, Judith; Schmiedek, Florian

    2016-05-01

    Research on the structure of children's affect is limited. It is possible that children's perception of their own affect might be less differentiated than that of adults. Support for the 2-factor model of positive and negative affect and the pleasure-arousal model suggests that children in middle childhood can distinguish positive and negative affect as well as valence and arousal. Whether children are able to differentiate further aspects of affect, as proposed by the 3-dimensional model of affect (good-bad mood, alertness-tiredness, calmness-tension), is an unresolved issue. The aim of our study was the comparison of these 3 affect models to establish how differentiated children experience their affect and which model best describes affect in children. We examined affect structures on the between- and within-person level, acknowledging that affect varies across time and that no valid interpretation of either level is feasible if both are confounded. For this purpose, 214 children (age 8-11 years) answered affect items once a day for 5 consecutive days on smartphones. We tested all affect models by means of 2-level confirmatory factor analysis. Although all affect models had an acceptable fit, the 3-dimensional model best described affect in children on both the within- and between-person level. Thus, children in middle childhood can already describe affect in a differentiated way. Also, affect structures were similar on the within- and between-person level. We conclude that in order to acquire a thorough picture of children's affect, measures for children should include items of all 3 affect dimensions. (PsycINFO Database Record PMID:26280488

  19. Quaternion maps of global protein structure.

    PubMed

    Hanson, Andrew J; Thakur, Sidharth

    2012-09-01

    The geometric structures of proteins are vital to the understanding of biochemical interactions. However, there is much yet to be understood about the spatial arrangements of the chains of amino acids making up any given protein. In particular, while conventional analysis tools like the Ramachandran plot supply some insight into the local relative orientation of pairs of amino acid residues, they provide little information about the global relative orientations of large groups of residues. We apply quaternion maps to families of coordinate frames defined naturally by amino acid residue structures as a way to expose global spatial relationships among residues within proteins. The resulting visualizations enable comparisons of absolute orientations as well as relative orientations, and thus generalize the framework of the Ramachandran plot. There are a variety of possible quaternion frames and visual representation strategies that can be chosen, and very complex quaternion maps can result. Just as Ramachandran plots are useful for addressing particular questions and not others, quaternion tools have characteristic domains of relevance. In particular, quaternion maps show great potential for answering specific questions about global residue alignment in crystallographic data and statistical orientation properties in Nuclear Magnetic Resonance (NMR) data that are very difficult to treat by other methods. PMID:23099777

  20. Structures of the agouti signaling protein.

    PubMed

    McNulty, Joseph C; Jackson, Pilgrim J; Thompson, Darren A; Chai, Biaoxin; Gantz, Ira; Barsh, Gregory S; Dawson, Philip E; Millhauser, Glenn L

    2005-03-01

    Expression of the agouti signaling protein (ASIP) during hair growth produces the red/yellow pigment pheomelanin. ASIP, and its neuropeptide homolog the agouti-related protein (AgRP) involved in energy balance, are novel, paracrine signaling molecules that act as inverse agonists at distinct subsets of melanocortin receptors. Ubiquitous ASIP expression in mice gives rise to a pleiotropic phenotype characterized by a uniform yellow coat color, obesity, overgrowth, and metabolic derangements similar to type II diabetes in humans. Here we report the synthesis and NMR structure of ASIP's active, cysteine-rich, C-terminal domain. ASIP adopts the inhibitor cystine knot fold and, along with AgRP, are the only known mammalian proteins in this structure class. Moreover, ASIP populates two distinct conformers resulting from a cis peptide bond at Pro102-Pro103 and a coexistence of cis/trans isomers of Ala104-Pro105. Pharmacologic studies of Pro-->Ala mutants demonstrate that the minor conformation with two cis peptide bonds is responsible for activity at all MCRs. The loop containing the heterogeneous Ala-Pro peptide bond is conserved in mammals, and suggests that ASIP is either trapped by evolution in this unusual configuration or possesses function outside of strict MCR antagonism. PMID:15701517

  1. DAPS: Database of Aligned Protein Structures

    DOE Data Explorer

    Mallick, Parag; Rice, Danny; Eisenberg, David

    DAPS is based on the FSSP, DSSP, PDB and CATH databases. There also exists a subset of DAPS known as DDAPS (also pronounced DAPS) - Database of Distant Aligned Protein Structures. It is a database of structures that have low sequence similarity but share a similar fold. There are a number of filters used to make the DDAPS list more useful. The algorithm requires that an FSSP file exists for one of the members of a pair and that the other member is listed in that FSSP file. It requires that each member of the pair be within the CATH database and share a common CAT classification. It also requires that the secondary structure can be determined by DSSP. How is DAPS constructed? We begin with the set of all chains from the current release of the PDB. An all on all search is done on the list to find pairs that have the same fold acoording to both the FSSP and CATH databases and clustered into groups by a representative structure (representative structures have less than 25% sequence identity to each other). For each protein pair, regions aligned by the DALI program are extracted from the corresponding FSSP file, or recomputed using DALI-lite. In domain DAPS, only regions that are called "domains" by CATH are included in the alignment. The amino acid type, secondary structure type, and solvent accessibility are extracted from the DSSP file and written pairwise into the database. DAPS is updated with updates of CATH.[Taken from http://nihserver.mbi.ucla.edu/DAPS/daps_help.html

  2. Two homologous host proteins interact with potato virus X RNAs and CPs and affect viral replication and movement

    PubMed Central

    Choi, Hoseong; Cho, Won Kyong; Kim, Kook-Hyung

    2016-01-01

    Because viruses encode only a small number of proteins, all steps of virus infection rely on specific interactions between viruses and hosts. We previously screened several Nicotiana benthamiana (Nb) proteins that interact with the stem-loop 1 (SL1) RNA structure located at the 5′ end of the potato virus X (PVX) genome. In this study, we characterized two of these proteins (NbCPIP2a and NbCPIP2b), which are homologous and are induced upon PVX infection. Electrophoretic mobility shift assay confirmed that both proteins bind to either SL1(+) or SL1(−) RNAs of PVX. The two proteins also interact with the PVX capsid protein (CP) in planta. Overexpression of NbCPIP2a positively regulated systemic movement of PVX in N. benthamiana, whereas NbCPIP2b overexpression did not affect systemic movement of PVX. Transient overexpression and silencing experiments demonstrated that NbCPIP2a and NbCPIP2b are positive regulators of PVX replication and that the effect on replication was greater for NbCPIP2a than for NbCPIP2b. Although these two host proteins are associated with plasma membranes, PVX infection did not affect their subcellular localization. Taken together, these results indicate that NbCPIP2a and NbCPIP2b specifically bind to PVX SL1 RNAs as well as to CP and enhance PVX replication and movement. PMID:27353522

  3. Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding.

    PubMed

    Rocheleau, Gail; Petrillo, Jessica; Guogas, Laura; Gehrke, Lee

    2004-08-01

    The alfalfa mosaic virus (AMV) RNAs are infectious only in the presence of the viral coat protein; however, the mechanisms describing coat protein's role during replication are disputed. We reasoned that mechanistic details might be revealed by identifying RNA mutations in the 3'-terminal coat protein binding domain that increased or decreased RNA replication without affecting coat protein binding. Degenerate (doped) in vitro genetic selection, based on a pool of randomized 39-mers, was used to select 30 variant RNAs that bound coat protein with high affinity. AUGC sequences that are conserved among AMV and ilarvirus RNAs were among the invariant nucleotides in the selected RNAs. Five representative clones were analyzed in functional assays, revealing diminished viral RNA expression resulting from apparent defects in replication and/or translation. These data identify a set of mutations, including G-U wobble pairs and nucleotide mismatches in the 5' hairpin, which affect viral RNA functions without significant impact on coat protein binding. Because the mutations associated with diminished function were scattered over the 3'-terminal nucleotides, we considered the possibility that RNA conformational changes rather than disruption of a precise motif might limit activity. Native polyacrylamide gel electrophoresis experiments showed that the 3' RNA conformation was indeed altered by nucleotide substitutions. One interpretation of the data is that coat protein binding to the AUGC sequences determines the orientation of the 3' hairpins relative to one another, while local structural features within these hairpins are also critical determinants of functional activity. PMID:15254175

  4. Can the structure of an explosive caldera affect eruptive behaviour?

    NASA Astrophysics Data System (ADS)

    Willcox, C. P.; Branney, M.; Carrasco-Nuñez, G.; Barford, D.

    2010-12-01

    Explosive caldera volcanoes cause catastrophic events at the Earth’s surface, yet we know little about how their internal structures evolve with time, and whether this can affect both differentiation and eruptive behaviour. Distinguishing how structural evolution impacts upon eruption behaviour and periodicity is challenging because the resolution of eruption frequencies can be difficult at ancient exhumed calderas, whereas at young volcanoes, most of the caldera floor faults and associated conduits are hidden. Some exhumed calderas reveal caldera floor faults and conduits; some of these apparently underwent a single collapse event that was piecemeal, i.e. fragmentation into several, variously subsided fault-blocks (e.g. Scafell caldera, UK). In contrast, the present study tests whether some caldera volcanoes may become more intensely fractured with time as a result of successive distinct caldera-collapse eruptions (“multi-cyclic calderas”). It has been proposed that this scenario could lead to an increase in eruption frequency, with smaller eruptions over time. Magma leakage through the increasingly fractured volcano might also lead to less evolved compositions with time due to shorter residence times. We have returned to the volcano where this hypothesis was formulated, the ~ 20 km diameter, hydrothermally active Los Humeros caldera in eastern central México. We aim to see how well the structural evolution of this modern caldera can be reconstructed, and whether changes in structure affected the styles and periodicity of large explosive eruptions. How a caldera evolves structurally could have important implications for predicting future catastrophic eruptions. Detailed structural mapping (e.g. of fault scarps, vent positions, and tilted strata), documentation of draping and cross-cutting field relations, together with logging, optical and SEM petrography, XRF major and trace element geochemistry and new 40Ar-39Ar and radiocarbon dating of the pyroclastic

  5. Structural characterization of soy protein nanoparticles from high shear microfluidization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein nanoparticles were produced with a microfluidizer and characterized in terms of particle size, size distribution, morphology, rheological properties, and aggregate structure. Three stages of structure breakdown were observed when the soy protein dispersion was passed through the microflu...

  6. Structure prediction of magnetosome-associated proteins.

    PubMed

    Nudelman, Hila; Zarivach, Raz

    2014-01-01

    Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region - the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure-function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models' overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs. PMID:24523717

  7. An overview of the structures of protein-DNA complexes

    PubMed Central

    Luscombe, Nicholas M; Austin, Susan E; Berman , Helen M; Thornton, Janet M

    2000-01-01

    On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. PMID:11104519

  8. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  9. NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein

    PubMed Central

    Brown, Lola A.; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G.; Kuo, Lillian; Freed, Eric O.; Summers, Michael F.

    2015-01-01

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag’s N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly. PMID:25941825

  10. NMR structure of the myristylated feline immunodeficiency virus matrix protein.

    PubMed

    Brown, Lola A; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G; Kuo, Lillian; Freed, Eric O; Summers, Michael F

    2015-05-01

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly. PMID:25941825

  11. Structure based alignment and clustering of proteins (STRALCP)

    DOEpatents

    Zemla, Adam T.; Zhou, Carol E.; Smith, Jason R.; Lam, Marisa W.

    2013-06-18

    Disclosed are computational methods of clustering a set of protein structures based on local and pair-wise global similarity values. Pair-wise local and global similarity values are generated based on pair-wise structural alignments for each protein in the set of protein structures. Initially, the protein structures are clustered based on pair-wise local similarity values. The protein structures are then clustered based on pair-wise global similarity values. For each given cluster both a representative structure and spans of conserved residues are identified. The representative protein structure is used to assign newly-solved protein structures to a group. The spans are used to characterize conservation and assign a "structural footprint" to the cluster.

  12. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  13. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  14. Course 12: Proteins: Structural, Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Finkelstein, A. V.

    1 Introduction 2 Overview of protein architectures and discussion of physical background of their natural selection 2.1 Protein structures 2.2 Physical selection of protein structures 3 Thermodynamic aspects of protein folding 3.1 Reversible denaturation of protein structures 3.2 What do denatured proteins look like? 3.3 Why denaturation of a globular protein is the first-order phase transition 3.4 "Gap" in energy spectrum: The main characteristic that distinguishes protein chains from random polymers 4 Kinetic aspects of protein folding 4.1 Protein folding in vivo 4.2 Protein folding in vitro (in the test-tube) 4.3 Theory of protein folding rates and solution of the Levinthal paradox

  15. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  16. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  17. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake

    NASA Astrophysics Data System (ADS)

    Schöttler, S.; Klein, Katja; Landfester, K.; Mailänder, V.

    2016-03-01

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake.Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance

  18. Hyperlipidemia affects multiscale structure and strength of murine femur

    PubMed Central

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-01-01

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone’s micro-structural strength; and, ii) hyperlipidemia affects collagen orientation and µCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr−/−, a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups; and that microindentation results strongly correlate with elastic modulus of collagen-density models (r2=0.85, p=10−5). Collagen-density models yielded 1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and 2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. PMID:24795172

  19. Hyperlipidemia affects multiscale structure and strength of murine femur.

    PubMed

    Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce

    2014-07-18

    To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. PMID:24795172

  20. Protein flexibility in the light of structural alphabets.

    PubMed

    Craveur, Pierrick; Joseph, Agnel P; Esque, Jeremy; Narwani, Tarun J; Noël, Floriane; Shinada, Nicolas; Goguet, Matthieu; Leonard, Sylvain; Poulain, Pierre; Bertrand, Olivier; Faure, Guilhem; Rebehmed, Joseph; Ghozlane, Amine; Swapna, Lakshmipuram S; Bhaskara, Ramachandra M; Barnoud, Jonathan; Téletchéa, Stéphane; Jallu, Vincent; Cerny, Jiri; Schneider, Bohdan; Etchebest, Catherine; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G

    2015-01-01

    Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases. PMID:26075209

  1. Protein flexibility in the light of structural alphabets

    PubMed Central

    Craveur, Pierrick; Joseph, Agnel P.; Esque, Jeremy; Narwani, Tarun J.; Noël, Floriane; Shinada, Nicolas; Goguet, Matthieu; Leonard, Sylvain; Poulain, Pierre; Bertrand, Olivier; Faure, Guilhem; Rebehmed, Joseph; Ghozlane, Amine; Swapna, Lakshmipuram S.; Bhaskara, Ramachandra M.; Barnoud, Jonathan; Téletchéa, Stéphane; Jallu, Vincent; Cerny, Jiri; Schneider, Bohdan; Etchebest, Catherine; Srinivasan, Narayanaswamy; Gelly, Jean-Christophe; de Brevern, Alexandre G.

    2015-01-01

    Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases. PMID:26075209

  2. The continuity of protein structure space is an intrinsic property of proteins

    PubMed Central

    Skolnick, Jeffrey; Arakaki, Adrian K.; Lee, Seung Yup; Brylinski, Michal

    2009-01-01

    The classical view of the space of protein structures is that it is populated by a discrete set of protein folds. For proteins up to 200 residues long, by using structural alignments and building upon ideas of the completeness and continuity of structure space, we show that nearly any structure is significantly related to any other using a transitive set of no more than 7 intermediate structurally related proteins. This result holds for all structures in the Protein Data Bank, even when structural relationships between evolutionary related proteins (as detected by threading or functional analyses) are excluded. A similar picture holds for an artificial library of compact, hydrogen-bonded, homopolypeptide structures. The 3 sets share the global connectivity features of random graphs, in which the local connectivity of each node (i.e., the number of neighboring structures per protein) is preserved. This high connectivity supports the continuous view of single-domain protein structure space. More importantly, these results do not depend on evolution, rather just on the physics of protein structures. The fact that evolutionary divergence need not be invoked to explain the continuous nature of protein structure space has implications for how the universe of protein structures might have originated, and how function should be transferred between proteins of similar structure. PMID:19805219

  3. Comprehensive assessment of cancer missense mutation clustering in protein structures.

    PubMed

    Kamburov, Atanas; Lawrence, Michael S; Polak, Paz; Leshchiner, Ignaty; Lage, Kasper; Golub, Todd R; Lander, Eric S; Getz, Gad

    2015-10-01

    Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations. PMID:26392535

  4. Comprehensive assessment of cancer missense mutation clustering in protein structures

    PubMed Central

    Kamburov, Atanas; Lawrence, Michael S.; Polak, Paz; Leshchiner, Ignaty; Lage, Kasper; Golub, Todd R.; Lander, Eric S.; Getz, Gad

    2015-01-01

    Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations. PMID:26392535

  5. Structure prediction of magnetosome-associated proteins

    PubMed Central

    Nudelman, Hila; Zarivach, Raz

    2014-01-01

    Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region – the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure–function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models’ overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs. PMID:24523717

  6. Structure-Based Druggability Assessment of the Mammalian Structural Proteome with Inclusion of Light Protein Flexibility

    PubMed Central

    Loving, Kathryn A.; Lin, Andy; Cheng, Alan C.

    2014-01-01

    Advances reported over the last few years and the increasing availability of protein crystal structure data have greatly improved structure-based druggability approaches. However, in practice, nearly all druggability estimation methods are applied to protein crystal structures as rigid proteins, with protein flexibility often not directly addressed. The inclusion of protein flexibility is important in correctly identifying the druggability of pockets that would be missed by methods based solely on the rigid crystal structure. These include cryptic pockets and flexible pockets often found at protein-protein interaction interfaces. Here, we apply an approach that uses protein modeling in concert with druggability estimation to account for light protein backbone movement and protein side-chain flexibility in protein binding sites. We assess the advantages and limitations of this approach on widely-used protein druggability sets. Applying the approach to all mammalian protein crystal structures in the PDB results in identification of 69 proteins with potential druggable cryptic pockets. PMID:25079060

  7. Novel protein folds and their nonsequential structural analogs

    PubMed Central

    Guerler, Aysam; Knapp, Ernst-Walter

    2008-01-01

    Newly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold. The recently introduced protein structure alignment tool, GANGSTA, is specialized to perform nonsequential alignments with proper assignment of the secondary structure types by focusing on helices and strands only. In the new version, GANGSTA+, the underlying algorithms were completely redesigned, yielding enhanced quality of structure alignments, offering alignment against a larger database of protein structures, and being more efficient. We applied DaliLite, TM-align, and GANGSTA+ on three protein crystal structures considered to be novel folds. Applying GANGSTA+ to these novel folds, we find proteins in the ASTRAL40 database, which possess significant structural similarities, albeit the alignments are nonsequential and in some cases involve secondary structure elements aligned in reverse orientation. A web server is available at http://agknapp.chemie.fu-berlin.de/gplus for pairwise alignment, visualization, and database comparison. PMID:18583523

  8. Structural determination of intact proteins using mass spectrometry

    DOEpatents

    Kruppa, Gary; Schoeniger, Joseph S.; Young, Malin M.

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  9. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake.

    PubMed

    Schöttler, S; Klein, Katja; Landfester, K; Mailänder, V

    2016-03-14

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake. PMID:26804616

  10. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  11. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  12. Feeding modality affects muscle protein deposition by influencing protein synthesis, but not degradation in muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal pigs can serve as dual-use models for nutrition research in animal agriculture and biomedical fields. To determine how feeding modality by either intermittent bolus or continuous schedule affects protein anabolism and catabolism, neonatal pigs (n = 6/group, 9-d-old) were overnight fasted (F...

  13. Arginine Depletion by Arginine Deiminase Does Not Affect Whole Protein Metabolism or Muscle Fractional Protein Synthesis Rate in Mice

    PubMed Central

    Marini, Juan C.; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  14. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.

    PubMed

    Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming

    2016-07-01

    Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences. PMID:27267620

  15. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.

    PubMed

    Fang, Yi; Sun, Mengtian; Dai, Guoxian; Ramain, Karthik

    2016-01-01

    Recent developments in high-throughput technologies for measuring protein-protein interaction (PPI) have profoundly advanced our ability to systematically infer protein function and regulation. However, inherently high false positive and false negative rates in measurement have posed great challenges in computational approaches for the prediction of PPI. A good PPI predictor should be 1) resistant to high rate of missing and spurious PPIs, and 2) robust against incompleteness of observed PPI networks. To predict PPI in a network, we developed an intrinsic geometry structure (IGS) for network, which exploits the intrinsic and hidden relationship among proteins in network through a heat diffusion process. In this process, all explicit PPIs participate simultaneously to glue local infinitesimal and noisy experimental interaction data to generate a global macroscopic descriptions about relationships among proteins. The revealed implicit relationship can be interpreted as the probability of two proteins interacting with each other. The revealed relationship is intrinsic and robust against individual, local and explicit protein interactions in the original network. We apply our approach to publicly available PPI network data for the evaluation of the performance of PPI prediction. Experimental results indicate that, under different levels of the missing and spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relationship for PPI prediction with a higher sensitivity and specificity compared to that of recently proposed methods. PMID:26886733

  16. Fold assessment for comparative protein structure modeling.

    PubMed

    Melo, Francisco; Sali, Andrej

    2007-11-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences. PMID:17905832

  17. Graph Theory In Protein Sequence Clustering And Tertiary Structural Matching

    NASA Astrophysics Data System (ADS)

    Abdullah, Rosni; Rashid, Nur'Aini Abdul; Othman, Fazilah

    2008-01-01

    The principle of graph theory which has been widely used in computer networks is now being adopted for work in protein clustering, protein structural matching, and protein folding and modeling. In this work, we present two case studies on the use of graph theory for protein clustering and tertiary structural matching. In protein clustering, we extended a clustering algorithm based on a maximal clique while in the protein tertiary structural matching we explored the bipartite graph matching algorithm. The results obtained in both the case studies will be presented.

  18. The E4 protein; structure, function and patterns of expression

    SciTech Connect

    Doorbar, John

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  19. Relating structure and internalization for ROMP-based protein mimics.

    PubMed

    Backlund, Coralie M; Takeuchi, Toshihide; Futaki, Shiroh; Tew, Gregory N

    2016-07-01

    Elucidating the predominant cellular entry mechanism for protein transduction domains (PTDs) and their synthetic mimics (PTDMs) is a complicated problem that continues to be a significant source of debate in the literature. The PTDMs reported here provide a well-controlled platform to vary molecular composition for structure activity relationship studies to further our understanding of PTDs, their non-covalent association with cargo, and their cellular internalization pathways. Specifically, several guanidine rich homopolymers, along with an amphiphilic block copolymer were used to investigate the relationship between structure and internalization activity in HeLa cells, both alone and non-covalently complexed with EGFP by flow cytometery and confocal imaging. The findings indicate that while changing the amount of positive charge on our PTDMs does not seem to affect the endosomal uptake, the presence of hydrophobicity appears to be a critical factor for the polymers to enter cells either alone, or with associated cargo. PMID:27039278

  20. Criteria for folding in structure-based models of proteins

    NASA Astrophysics Data System (ADS)

    Wołek, Karol; Cieplak, Marek

    2016-05-01

    In structure-based models of proteins, one often assumes that folding is accomplished when all contacts are established. This assumption may frequently lead to a conceptual problem that folding takes place in a temperature region of very low thermodynamic stability, especially when the contact map used is too sparse. We consider six different structure-based models and show that allowing for a small, but model-dependent, percentage of the native contacts not being established boosts the folding temperature substantially while affecting the time scales of folding only in a minor way. We also compare other properties of the six models. We show that the choice of the description of the backbone stiffness has a substantial effect on the values of characteristic temperatures that relate both to equilibrium and kinetic properties. Models without any backbone stiffness (like the self-organized polymer) are found to perform similar to those with the stiffness, including in the studies of stretching.

  1. Criteria for folding in structure-based models of proteins.

    PubMed

    Wołek, Karol; Cieplak, Marek

    2016-05-14

    In structure-based models of proteins, one often assumes that folding is accomplished when all contacts are established. This assumption may frequently lead to a conceptual problem that folding takes place in a temperature region of very low thermodynamic stability, especially when the contact map used is too sparse. We consider six different structure-based models and show that allowing for a small, but model-dependent, percentage of the native contacts not being established boosts the folding temperature substantially while affecting the time scales of folding only in a minor way. We also compare other properties of the six models. We show that the choice of the description of the backbone stiffness has a substantial effect on the values of characteristic temperatures that relate both to equilibrium and kinetic properties. Models without any backbone stiffness (like the self-organized polymer) are found to perform similar to those with the stiffness, including in the studies of stretching. PMID:27179507

  2. Connectivity independent protein-structure alignment: a hierarchical approach

    PubMed Central

    Kolbeck, Bjoern; May, Patrick; Schmidt-Goenner, Tobias; Steinke, Thomas; Knapp, Ernst-Walter

    2006-01-01

    Background Protein-structure alignment is a fundamental tool to study protein function, evolution and model building. In the last decade several methods for structure alignment were introduced, but most of them ignore that structurally similar proteins can share the same spatial arrangement of secondary structure elements (SSE) but differ in the underlying polypeptide chain connectivity (non-sequential SSE connectivity). Results We perform protein-structure alignment using a two-level hierarchical approach implemented in the program GANGSTA. On the first level, pair contacts and relative orientations between SSEs (i.e. α-helices and β-strands) are maximized with a genetic algorithm (GA). On the second level residue pair contacts from the best SSE alignments are optimized. We have tested the method on visually optimized structure alignments of protein pairs (pairwise mode) and for database scans. For a given protein structure, our method is able to detect significant structural similarity of functionally important folds with non-sequential SSE connectivity. The performance for structure alignments with strictly sequential SSE connectivity is comparable to that of other structure alignment methods. Conclusion As demonstrated for several applications, GANGSTA finds meaningful protein-structure alignments independent of the SSE connectivity. GANGSTA is able to detect structural similarity of protein folds that are assigned to different superfamilies but nevertheless possess similar structures and perform related functions, even if these proteins differ in SSE connectivity. PMID:17118190

  3. 3-Dimensional Protein Structure of Influenza

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.

  4. Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly.

    PubMed

    Sawatsky, Bevan; Bente, Dennis A; Czub, Markus; von Messling, Veronika

    2016-05-01

    The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle. PMID:26813519

  5. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    PubMed Central

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  6. Ensemble-based evaluation for protein structure models

    PubMed Central

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2016-01-01

    Motivation: Comparing protein tertiary structures is a fundamental procedure in structural biology and protein bioinformatics. Structure comparison is important particularly for evaluating computational protein structure models. Most of the model structure evaluation methods perform rigid body superimposition of a structure model to its crystal structure and measure the difference of the corresponding residue or atom positions between them. However, these methods neglect intrinsic flexibility of proteins by treating the native structure as a rigid molecule. Because different parts of proteins have different levels of flexibility, for example, exposed loop regions are usually more flexible than the core region of a protein structure, disagreement of a model to the native needs to be evaluated differently depending on the flexibility of residues in a protein. Results: We propose a score named FlexScore for comparing protein structures that consider flexibility of each residue in the native state of proteins. Flexibility information may be extracted from experiments such as NMR or molecular dynamics simulation. FlexScore considers an ensemble of conformations of a protein described as a multivariate Gaussian distribution of atomic displacements and compares a query computational model with the ensemble. We compare FlexScore with other commonly used structure similarity scores over various examples. FlexScore agrees with experts’ intuitive assessment of computational models and provides information of practical usefulness of models. Availability and implementation: https://bitbucket.org/mjamroz/flexscore Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307633

  7. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    SciTech Connect

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  8. PSSARD: protein sequence-structure analysis relational database.

    PubMed

    Guruprasad, Kunchur; Srikanth, K; Babu, A V N

    2005-09-15

    We have implemented a relational database comprising a representative dataset of amino acid sequences and their associated secondary structure. The representative amino acid sequences were selected according to the PDB_SELECT program by choosing proteins corresponding to protein crystal structure data deposited in the protein data bank that share less than 25% overall pair-wise sequence identity. The secondary structure was extracted from the protein data bank website. The information content in the database includes the protein description, PDB code, crystal structure resolution, total number of amino acid residues in the protein chain, amino acid sequence, secondary structure conformation and its summary. The database is freely accessible from the website mentioned below and is useful to query on any of the above fields. The database is particularly useful to quickly retrieve amino acid sequences that are compatible to any super-secondary structure conformation from several proteins simultaneously. PMID:16054209

  9. Prediction of protein folding rates from simplified secondary structure alphabet.

    PubMed

    Huang, Jitao T; Wang, Titi; Huang, Shanran R; Li, Xin

    2015-10-21

    Protein folding is a very complicated and highly cooperative dynamic process. However, the folding kinetics is likely to depend more on a few key structural features. Here we find that secondary structures can determine folding rates of only large, multi-state folding proteins and fails to predict those for small, two-state proteins. The importance of secondary structures for protein folding is ordered as: extended β strand > α helix > bend > turn > undefined secondary structure>310 helix > isolated β strand > π helix. Only the first three secondary structures, extended β strand, α helix and bend, can achieve a good correlation with folding rates. This suggests that the rate-limiting step of protein folding would depend upon the formation of regular secondary structures and the buckling of chain. The reduced secondary structure alphabet provides a simplified description for the machine learning applications in protein design. PMID:26247139

  10. Influences of Membrane Mimetic Environments on Membrane Protein Structures

    PubMed Central

    Zhou, Huan-Xiang; Cross, Timothy A.

    2013-01-01

    The number of membrane protein structures in the Protein Data Bank is becoming significant and growing. Here, the transmembrane domain structures of the helical membrane proteins are evaluated to assess the influences of the membrane mimetic environments. Toward this goal, many of the biophysical properties of membranes are discussed and contrasted with those of the membrane mimetics commonly used for structure determination. Although the mimetic environments can perturb the protein structures to an extent that potentially gives rise to misinterpretation of functional mechanisms, there are also many structures that have a native-like appearance. From this assessment, an initial set of guidelines is proposed for distinguishing native-like from nonnative-like membrane protein structures. With experimental techniques for validation and computational methods for refinement and quality assessment and enhancement, there are good prospects for achieving native-like structures for these very important proteins. PMID:23451886

  11. On lattice protein structure prediction revisited.

    PubMed

    Dotu, Ivan; Cebrián, Manuel; Van Hentenryck, Pascal; Clote, Peter

    2011-01-01

    Protein structure prediction is regarded as a highly challenging problem both for the biology and for the computational communities. In recent years, many approaches have been developed, moving to increasingly complex lattice models and off-lattice models. This paper presents a Large Neighborhood Search (LNS) to find the native state for the Hydrophobic-Polar (HP) model on the Face-Centered Cubic (FCC) lattice or, in other words, a self-avoiding walk on the FCC lattice having a maximum number of H-H contacts. The algorithm starts with a tabu-search algorithm, whose solution is then improved by a combination of constraint programming and LNS. The flexible framework of this hybrid algorithm allows an adaptation to the Miyazawa-Jernigan contact potential, in place of the HP model, thus suggesting its potential for tertiary structure prediction. Benchmarking statistics are given for our method against the hydrophobic core threading program HPstruct, an exact method which can be viewed as complementary to our method. PMID:21358007

  12. Protein Structure, Function Set for Explosive Increase in Understanding.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Cites advances in x-ray diffraction, nuclear magnetic resonance, computer modeling, and display to guide the design and analysis of protein structures. Reviews recent advances in knowledge, synthesis techniques, and theory of proteins. (JM)

  13. Borrelia burgdorferi Proteins Whose Expression Is Similarly Affected by Culture Temperature and pH

    PubMed Central

    Ramamoorthy, Ramesh; Scholl-Meeker, Dorothy

    2001-01-01

    Previously, we had demonstrated the upregulation in the expression of several proteins, including the lipoproteins OspC and P35, of Borrelia burgdorferi in the stationary growth phase. Since the expression of OspC is also known to be affected by culture temperature and pH, we examined the effects of both variables on the expression of the remaining stationary-phase-upregulated proteins. Our study revealed that the expression of each of the remaining stationary-phase-upregulated proteins, P35 included, was also influenced by culture temperature; these proteins were selectively expressed at 34°C but not at 24°C. Significantly, the expression of a majority of these proteins was also affected by culture pH, since they were abundantly expressed at pH 7.0 (resembling the tick midgut pH of 6.8 during feeding) but only sparsely at pH 8.0 (a condition closer to that of the unfed tick midgut pH of 7.4). We propose that this group of B. burgdorferi proteins, which in culture is selectively expressed under conditions of 34°C and pH 7.0, may be induced in the tick midgut during the feeding event. Furthermore, the differential and coordinate expression of these proteins under different environmental conditions suggests that the encoding genes may be coregulated. PMID:11254645

  14. Evidence that high pCO2 affects protein metabolism in tropical reef corals.

    PubMed

    Edmunds, Peter J; Wall, Christopher B

    2014-08-01

    Early life stages of the coral Seriatopora caliendrum were used to test the hypothesis that the depression of dark respiration in coral recruits by high pCO2 is caused by perturbed protein metabolism. First, the contribution of protein anabolism to respiratory costs under high pCO2 was evaluated by measuring the aerobic respiration of S. caliendrum recruits with and without the protein synthesis inhibitor emetine following 1 to 4 days at 45 Pa versus 77 Pa pCO2. Second, protein catabolism under high pCO2 was evaluated by measuring the flux of ammonium (NH4 (+)) from juvenile colonies of S. caliendrum incubated in darkness at 47 Pa and 90 Pa pCO2. Two days after settlement, respiration of recruits was affected by an interaction between emetine and pCO2, with emetine reducing respiration 63% at 45 Pa pCO2 and 27% at 77 Pa pCO2. The interaction disappeared 5 days after settlement, when respiration was reduced 27% by emetine under both pCO2 conditions. These findings suggest that protein anabolism accounted for a large proportion of metabolic costs in coral recruits and was affected by high pCO2, with consequences detected in aerobic respiration. Juvenile S. caliendrum showed net uptake of NH4 (+) at 45 Pa pCO2 but net release of NH4 (+) at 90 Pa pCO2, indicating that protein catabolism, NH4 (+) recycling, or both were affected by high pCO2. Together, these results are consistent with the hypothesis that high pCO2 affects protein metabolism in corals. PMID:25216504

  15. Algorithms, applications, and challenges of protein structure alignment.

    PubMed

    Ma, Jianzhu; Wang, Sheng

    2014-01-01

    As a fundamental problem in computational structure biology, protein structure alignment has attracted the focus of the community for more than 20 years. While the pairwise structure alignment could be applied to measure the similarity between two proteins, which is a first step for homology search and fold space construction, the multiple structure alignment could be used to understand evolutionary conservation and divergence from a family of protein structures. Structure alignment is an NP-hard problem, which is only computationally tractable by using heuristics. Three levels of heuristics for pairwise structure alignment have been proposed, from the representations of protein structure, the perspectives of viewing protein as a rigid-body or flexible, to the scoring functions as well as the search algorithms for the alignment. For multiple structure alignment, the fourth level of heuristics is applied on how to merge all input structures to a multiple structure alignment. In this review, we first present a small survey of current methods for protein pairwise and multiple alignment, focusing on those that are publicly available as web servers. In more detail, we also discuss the advancements on the development of the new approaches to increase the pairwise alignment accuracy, to efficiently and reliably merge input structures to the multiple structure alignment. Finally, besides broadening the spectrum of the applications of structure alignment for protein template-based prediction, we also list several open problems that need to be solved in the future, such as the large complex alignment and the fast database search. PMID:24629187

  16. The Histamine N-Methyltransferase T105I Polymorphism Affects Active Site Structure and Dynamics†

    PubMed Central

    Rutherford, Karen; Parson, William W.; Daggett, Valerie

    2010-01-01

    Histamine N-methyltransferase (HNMT) is the sole enzyme responsible for inactivating histamine in the mammalian brain. The human HNMT gene contains a common threonine-isoleucine polymorphism at residue 105, distal from the active site. The 105I variant has decreased activity and lower protein levels relative to the 105T protein. Crystal structures of both variants have been solved, but reveal little regarding how the T105I polymorphism affects activity. We performed molecular dynamics simulations of both 105T and 105I at 37°C to explore the structural and dynamic consequences of the polymorphism. The simulations indicate that replacing Thr with the larger Ile residue leads to greater burial of residue 105 and heightened packing interactions between residue105 and residues within helix α3 and strand β3. This altered packing is directly translated to the active site resulting in the reorientation of several co-substrate-binding residues. The simulations also show that the hydrophobic histamine-binding domain in both proteins undergoes a large-scale breathing motion that exposes key catalytic residues and lessens the hydrophobicity of the substrate-binding site. PMID:18154359

  17. A hidden markov model derived structural alphabet for proteins.

    PubMed

    Camproux, A C; Gautier, R; Tufféry, P

    2004-06-01

    Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction. PMID:15147844

  18. Implementation of a parallel protein structure alignment service on cloud.

    PubMed

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  19. Implementation of a Parallel Protein Structure Alignment Service on Cloud

    PubMed Central

    Hung, Che-Lun; Lin, Yaw-Ling

    2013-01-01

    Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842

  20. The Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...

  1. The Alba protein family: Structure and function.

    PubMed

    Goyal, Manish; Banerjee, Chinmoy; Nag, Shiladitya; Bandyopadhyay, Uday

    2016-05-01

    Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far. PMID:26900088

  2. Structure and Function of Microbial Metal-Reduction Proteins

    SciTech Connect

    Xu, Ying; Crawford, Oakly H.; Xu, Dong; Larimer, Frank W.; Uberbacher, Edward C.; Zhou, Jizhong

    2009-09-02

    In this project, we proposed (i) identification of metal-reduction genes, (ii) development of new threading techniques and (iii) fold recognition and structure prediction of metal-reduction proteins. However, due to the reduction of the budget, we revised our plan to focus on two specific aims of (i) developing a new threading-based protein structure prediction method, and (ii) developing an expert system for protein structure prediction.

  3. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins.

    PubMed

    Shrivastava, Vibha; Marmor, Hannah; Chernyak, Sholom; Goldstein, Marc; Feliciano, Miriam; Vigodner, Margarita

    2014-01-01

    Sperm are highly dependent on posttranslational modifications of proteins. Massive phosphorylation on tyrosine residue is required for sperm capacitation. Sumoylation has also been recently implicated in spermatogenesis and sperm functions. Cigarette smoke is known to cause oxidative stress in different tissues, and several studies suggest that it causes oxidative stress in sperm. Whether tobacco affects posttranslational modifications in human sperm is currently unknown. In this study, we show that a short exposure of human sperm to physiological concentrations of cigarette smoke extract (CSE) causes the partial de-sumoylation of many sperm proteins. Furthermore, the presence of a low concentration of CSE in the human tubal fluid during an induction of in vitro capacitation inhibits the capacitation-associated increase in protein phosphorylation. Collectively, changes in posttranslational modifications may be one of the mechanisms through which exposure to tobacco can negatively affect sperm functions and cause fertility problems. PMID:24345728

  4. Neonatal handling alters the structure of maternal behavior and affects mother-pup bonding.

    PubMed

    Reis, A R; de Azevedo, M S; de Souza, M A; Lutz, M L; Alves, M B; Izquierdo, I; Cammarota, M; Silveira, P P; Lucion, A B

    2014-05-15

    During early life, a mother and her pups establish a very close relationship, and the olfactory learning of the nest odor is very important for the bond formation. The olfactory bulb (OB) is a structure that plays a fundamental role in the olfactory learning (OL) mechanism that also involves maternal behavior (licking and contact). We hypothesized that handling the pups would alter the structure of the maternal behavior, affect OL, and alter mother-pup relationships. Moreover, changes in the cyclic AMP-response element binding protein phosphorylation (CREB) and neurotrophic factors could be a part of the mechanism of these changes. This study aimed to analyze the effects of neonatal handling, 1 min per day from postpartum day 1 to 10 (PPD 1 to PPD 10), on the maternal behavior and pups' preference for the nest odor in a Y maze (PPD 11). We also tested CREB's phosphorylation and BDNF signaling in the OB of the pups (PPD 7) by Western blot analysis. The results showed that handling alters mother-pups interaction by decreasing mother-pups contact and changing the temporal pattern of all components of the maternal behavior especially the daily licking and nest-building. We found sex-dependent changes in the nest odor preference, CREB and BDNF levels in pups OB. Male pups were more affected by alterations in the licking pattern, and female pups were more affected by changes in the mother-pup contact (the time spent outside the nest and nursing). PMID:24598277

  5. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings as Affected by Mineral Nutrition. II. Micronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Activity of nitrate reductase from Triticum aestivum L. seedlings was decreased by deficiencies of molybdenum, zinc, and chlorine. Nitrate accumulated in molybdenum-deficient seedlings, declined in zinc-deficient seedlings, and was unaffected by the other micronutrient treatments. Glutamic acid dehydrogenase activity was decreased by deficiency of molybdenum, the only nutrient that affected the enzyme. Glutamine synthetase activity was decreased only by copper deficiency, and glutamic-oxaloacetic transaminase was not affected by any micronutrient deficiencies. Incorporation of 14C-leucine into protein by wheat seedlings was increased by molybdenum deficiency, apparently because of decreased inhibition from endogenous amino acids, and was decreased by copper deficiency. Protein content was not affected significantly by the micronutrient treatments. PMID:16657114

  6. A Remote Mutation Affects the Hydride Transfer by Disrupting Concerted Protein Motions in Thymidylate Synthase

    PubMed Central

    Wang, Zhen; Abeysinghe, Thelma; Finer-Moore, Janet S.; Stroud, Robert M.; Kohen, Amnon

    2012-01-01

    The role of protein flexibility in enzyme-catalyzed activation of chemical bonds is an evolving perspective in enzymology. Here we examine the role of protein motions in the hydride transfer reaction catalyzed by thymidylate synthase (TSase). Being remote from the chemical reaction site, the Y209W mutation of E. coli TSase significantly reduces the protein activity, despite the remarkable similarity between the crystal structures of the wild type and mutant enzymes with ligands representing their Michaelis complexes. The most conspicuous difference between those two crystal structures is in the anisotropic B-factors, which indicates disruption of the correlated atomic vibrations of protein residues in the mutant. This dynamically altered mutant allows a variety of small thiols to compete for the reaction intermediate that precedes the hydride transfer, indicating disruption of motions that preorganize the protein environment for this chemical step. Although the mutation causes higher enthalpy of activation of the hydride transfer, it only shows a small effect on the temperature-dependence of the intrinsic KIE, suggesting marginal changes in the geometry and dynamics of the H-donor and acceptor at the tunneling ready state. These observations suggest that that the mutation disrupts the concerted motions that bring the H-donor and acceptor together during the pre- and re-organization of the protein environment. The integrated structural and kinetic data allow us to probe the impact of protein motions on different timescales on the hydride transfer reaction within a complex enzymatic mechanism. PMID:23034004

  7. Interaction of organic solvents with protein structures at protein-solvent interface.

    PubMed

    Khabiri, Morteza; Minofar, Babak; Brezovský, Jan; Damborský, Jiří; Ettrich, Rudiger

    2013-11-01

    The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents. PMID:22760789

  8. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  9. Protein structure prediction and analysis using the Robetta server

    PubMed Central

    Kim, David E.; Chivian, Dylan; Baker, David

    2004-01-01

    The Robetta server (http://robetta.bakerlab.org) provides automated tools for protein structure prediction and analysis. For structure prediction, sequences submitted to the server are parsed into putative domains and structural models are generated using either comparative modeling or de novo structure prediction methods. If a confident match to a protein of known structure is found using BLAST, PSI-BLAST, FFAS03 or 3D-Jury, it is used as a template for comparative modeling. If no match is found, structure predictions are made using the de novo Rosetta fragment insertion method. Experimental nuclear magnetic resonance (NMR) constraints data can also be submitted with a query sequence for RosettaNMR de novo structure determination. Other current capabilities include the prediction of the effects of mutations on protein–protein interactions using computational interface alanine scanning. The Rosetta protein design and protein–protein docking methodologies will soon be available through the server as well. PMID:15215442

  10. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna

    PubMed Central

    Meadows, Melissa G.; Roudybush, Thomas E.; McGraw, Kevin J.

    2012-01-01

    SUMMARY Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent. PMID:22837446

  11. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna.

    PubMed

    Meadows, Melissa G; Roudybush, Thomas E; McGraw, Kevin J

    2012-08-15

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent. PMID:22837446

  12. Structural evolution during protein denaturation as induced by different methods.

    PubMed

    Chodankar, S; Aswal, V K; Kohlbrecher, J; Vavrin, R; Wagh, A G

    2008-03-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to study conformational changes in protein bovine serum albumin (BSA) due to perturbation in its native structure as induced by varying temperature and pressure, and in presence of protein denaturating agents urea and surfactant. BSA has prolate ellipsoidal shape at ambient temperature and we observe no effect of temperature on its structure up to a temperature of about 60 degrees C . At temperatures beyond 60 degrees C , protein denaturation leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64 degrees C , and its fractal dimension increases with temperature. This is an indication of aggregation followed by gelation that evolves with increasing temperature. It is known for some of the proteins (e.g., Staphylococcal Nuclease) that pressure of 200 MPa can unfold the protein, whereas BSA does not show any protein unfolding even up to the pressure of 450 MPa . In presence of urea, the BSA protein unfolds for urea concentrations greater than 4M and acquires a random coil configuration. We make use of the dilution method to show the reversibility of protein unfolding with urea. The addition of surfactant denaturates the protein by the formation of micellelike aggregates of surfactants along the unfolded polypeptide chains of the protein. We show such structure of the protein-surfactant complex can be stabilized at higher temperatures, which is not the case for pure protein. PMID:18517416

  13. Structural evolution during protein denaturation as induced by different methods

    NASA Astrophysics Data System (ADS)

    Chodankar, S.; Aswal, V. K.; Kohlbrecher, J.; Vavrin, R.; Wagh, A. G.

    2008-03-01

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to study conformational changes in protein bovine serum albumin (BSA) due to perturbation in its native structure as induced by varying temperature and pressure, and in presence of protein denaturating agents urea and surfactant. BSA has prolate ellipsoidal shape at ambient temperature and we observe no effect of temperature on its structure up to a temperature of about 60°C . At temperatures beyond 60°C , protein denaturation leads to aggregation. The protein solution exhibits a fractal structure at temperatures above 64°C , and its fractal dimension increases with temperature. This is an indication of aggregation followed by gelation that evolves with increasing temperature. It is known for some of the proteins (e.g., Staphylococcal Nuclease) that pressure of 200MPa can unfold the protein, whereas BSA does not show any protein unfolding even up to the pressure of 450MPa . In presence of urea, the BSA protein unfolds for urea concentrations greater than 4M and acquires a random coil configuration. We make use of the dilution method to show the reversibility of protein unfolding with urea. The addition of surfactant denaturates the protein by the formation of micellelike aggregates of surfactants along the unfolded polypeptide chains of the protein. We show such structure of the protein-surfactant complex can be stabilized at higher temperatures, which is not the case for pure protein.

  14. Dissecting the relationship between protein structure and sequence variation

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team

    2015-03-01

    Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.

  15. Expression strategies for structural studies of eukaryotic membrane proteins.

    PubMed

    Lyons, Joseph A; Shahsavar, Azadeh; Paulsen, Peter Aasted; Pedersen, Bjørn Panyella; Nissen, Poul

    2016-06-01

    Integral membrane proteins in eukaryotes are central to various cellular processes and key targets in structural biology, biotechnology and drug development. However, the number of available structures for eukaryotic membrane protein belies their physiological importance. Recently, the number of available eukaryotic membrane protein structures has been steadily increasing due to the development of novel strategies in construct design, expression and structure determination. Here, we examine the major expression systems exploited for eukaryotic membrane proteins. Additionally we strive to tabulate and describe the recent expression strategies in eukaryotic membrane protein structural biology. We find that a majority of targets have been expressed in advanced host systems and modified from their wild-type form with distinct focus on conformation and thermostabilisation. However, strategies for native protein purification should also be considered where possible, particularly in light of the recent advances in single particle cryo electron microscopy. PMID:27362979

  16. GWIDD: a comprehensive resource for genome-wide structural modeling of protein-protein interactions

    PubMed Central

    2012-01-01

    Protein-protein interactions are a key component of life processes. The knowledge of the three-dimensional structure of these interactions is important for understanding protein function. Genome-Wide Docking Database (http://gwidd.bioinformatics.ku.edu) offers an extensive source of data for structural studies of protein-protein complexes on genome scale. The current release of the database combines the available experimental data on the structure and characteristics of protein interactions with structural modeling of protein complexes for 771 organisms spanned over the entire universe of life from viruses to humans. The interactions are stored in a relational database with user-friendly interface that includes various search options. The search results can be interactively previewed; the structures, downloaded, along with the interaction characteristics. PMID:23245398

  17. The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools.

    PubMed

    Figueroa, Maximiliano; Sleutel, Mike; Vandevenne, Marylene; Parvizi, Gregory; Attout, Sophie; Jacquin, Olivier; Vandenameele, Julie; Fischer, Axel W; Damblon, Christian; Goormaghtigh, Erik; Valerio-Lepiniec, Marie; Urvoas, Agathe; Durand, Dominique; Pardon, Els; Steyaert, Jan; Minard, Philippe; Maes, Dominique; Meiler, Jens; Matagne, André; Martial, Joseph A; Van de Weerdt, Cécile

    2016-07-01

    Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αβα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features. PMID:27181418

  18. A New Hidden Markov Model for Protein Quality Assessment Using Compatibility Between Protein Sequence and Structure

    PubMed Central

    He, Zhiquan; Ma, Wenji; Zhang, Jingfen; Xu, Dong

    2015-01-01

    Protein structure Quality Assessment (QA) is an essential component in protein structure prediction and analysis. The relationship between protein sequence and structure often serves as a basis for protein structure QA. In this work, we developed a new Hidden Markov Model (HMM) to assess the compatibility of protein sequence and structure for capturing their complex relationship. More specifically, the emission of the HMM consists of protein local structures in angular space, secondary structures, and sequence profiles. This model has two capabilities: (1) encoding local structure of each position by jointly considering sequence and structure information, and (2) assigning a global score to estimate the overall quality of a predicted structure, as well as local scores to assess the quality of specific regions of a structure, which provides useful guidance for targeted structure refinement. We compared the HMM model to state-of-art single structure quality assessment methods OPUSCA, DFIRE, GOAP, and RW in protein structure selection. Computational results showed our new score HMM.Z can achieve better overall selection performance on the benchmark datasets. PMID:26221066

  19. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes

    PubMed Central

    Yancey, Paul H.; Somero, George N.

    1979-01-01

    Intracellular fluids of marine elasmobranchs (sharks, skates and rays), holocephalans and the coelacanth contain urea at concentrations averaging 0.4m, high enough to significantly affect the structural and functional properties of many proteins. Also present in the cells of these fishes are a family of methylamine compounds, largely trimethylamine N-oxide with some betaine and sarcosine, and certain free amino acids, mainly β-alanine and taurine, whose total concentration is approx. 0.2m. These methylamine compounds and amino acids have been found to be effective stabilizers of protein structure, and, at a 1:2 molar concentration ratio of these compounds to urea, perturbations of protein structure by urea are largely or fully offset. These counteracting effects of solutes on proteins are seen for: (1) thermal stability of protein secondary and tertiary structure (bovine ribonuclease); (2) the rate and extent of enzyme renaturation after acid denaturation (rabbit and shark lactate dehydrogenases); and (3) the reactivity of thiol groups of an enzyme (bovine glutamate dehydrogenase). Attaining osmotic equilibrium with seawater by these fishes has thus involved the selective accumulation of certain nitrogenous metabolites that individually have significant effects on protein structure, but that have virtually no net effects on proteins when these solutes are present at elasmobranch physiological concentrations. These experiments indicate that evolutionary changes in intracellular solute compositions as well as in protein amino acid sequences can have important roles in intracellular protein function. PMID:534499

  20. Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks.

    PubMed

    Agarwal, Garima; Mahajan, Swapnil; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2011-01-01

    Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been

  1. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  2. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids.

    PubMed

    Cohen, Hagai; Pajak, Agnieszka; Pandurangan, Sudhakar; Amir, Rachel; Marsolais, Frédéric

    2016-06-01

    Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition. PMID:26888094

  3. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  4. Structural study of skeletal muscle fibres in healthy and pseudomyotonia affected cattle.

    PubMed

    Mascarello, Francesco; Sacchetto, Roberta

    2016-09-01

    Cattle congenital pseudomyotonia (PMT), recognized as naturally occurring animal model of human Brody disease, is an inherited recessive autosomal muscular disorder due to missense mutations in ATP2A1 gene, encoding sarco(endo)plasmic reticulum Ca(2+)-ATPase protein, isoform 1 (SERCA1). PMT has been described in the Chianina and Romagnola italian cattle breeds and as a single case in Dutch improved Red and White cross-breed. The genetic defect turned out to be heterogeneous in different cattle breeds, even though clinical symptoms were homogeneous. Skeletal muscles of affected animals are characterized by a selective deficiency of SERCA1 in sarcoplasmic reticulum (SR) membranes. Recently, we provided evidence that in Chianina breed, the ubiquitin proteasome system is responsible for SERCA1 mutant premature disposal, even when the mutation does not affect the catalytic properties of the pump. Results presented here show that all SERCA1 mutants described until now, although expressed at low level, are correctly targeted to SR membranes. Ultrastructural studies confirm that in pathological muscle fibres, structure, as well as triads, is well preserved. All together these results suggest that a possible therapeutical approach based on the rescue of the defective protein at SR membranes could be hypothesized. Only fully functionally active missense mutants, whem located at the SR membrane could restore the efficient control of Ca(2+) homeostasis and prevent the appearance of the pathological signs. Moreover, these data demonstrate the increasing importance of domestic animals as genetic models of human pathologies. PMID:27210062

  5. Addressing the Role of Conformational Diversity in Protein Structure Prediction

    PubMed Central

    Parisi, Gustavo; Fornasari, Maria Silvina

    2016-01-01

    Computational modeling of tertiary structures has become of standard use to study proteins that lack experimental characterization. Unfortunately, 3D structure prediction methods and model quality assessment programs often overlook that an ensemble of conformers in equilibrium populates the native state of proteins. In this work we collected sets of publicly available protein models and the corresponding target structures experimentally solved and studied how they describe the conformational diversity of the protein. For each protein, we assessed the quality of the models against known conformers by several standard measures and identified those models ranked best. We found that model rankings are defined by both the selected target conformer and the similarity measure used. 70% of the proteins in our datasets show that different models are structurally closest to different conformers of the same protein target. We observed that model building protocols such as template-based or ab initio approaches describe in similar ways the conformational diversity of the protein, although for template-based methods this description may depend on the sequence similarity between target and template sequences. Taken together, our results support the idea that protein structure modeling could help to identify members of the native ensemble, highlight the importance of considering conformational diversity in protein 3D quality evaluations and endorse the study of the variability of the native structure for a meaningful biological analysis. PMID:27159429

  6. Addressing the Role of Conformational Diversity in Protein Structure Prediction.

    PubMed

    Palopoli, Nicolas; Monzon, Alexander Miguel; Parisi, Gustavo; Fornasari, Maria Silvina

    2016-01-01

    Computational modeling of tertiary structures has become of standard use to study proteins that lack experimental characterization. Unfortunately, 3D structure prediction methods and model quality assessment programs often overlook that an ensemble of conformers in equilibrium populates the native state of proteins. In this work we collected sets of publicly available protein models and the corresponding target structures experimentally solved and studied how they describe the conformational diversity of the protein. For each protein, we assessed the quality of the models against known conformers by several standard measures and identified those models ranked best. We found that model rankings are defined by both the selected target conformer and the similarity measure used. 70% of the proteins in our datasets show that different models are structurally closest to different conformers of the same protein target. We observed that model building protocols such as template-based or ab initio approaches describe in similar ways the conformational diversity of the protein, although for template-based methods this description may depend on the sequence similarity between target and template sequences. Taken together, our results support the idea that protein structure modeling could help to identify members of the native ensemble, highlight the importance of considering conformational diversity in protein 3D quality evaluations and endorse the study of the variability of the native structure for a meaningful biological analysis. PMID:27159429

  7. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    SciTech Connect

    Feng, Yingang; Song, Xiaxia; Lin, Jinzhong; Xuan, Jinsong; Cui, Qiu; Wang, Jinfeng

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  8. Ser/Thr motifs in transmembrane proteins: conservation patterns and effects on local protein structure and dynamics.

    PubMed

    Del Val, Coral; White, Stephen H; Bondar, Ana-Nicoleta

    2012-11-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide. PMID:22836667

  9. Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics

    PubMed Central

    del Val, Coral; White, Stephen H.

    2014-01-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide. PMID:22836667

  10. PSI-2: Structural Genomics to Cover Protein Domain Family Space

    PubMed Central

    Dessailly, Benoît H.; Nair, Rajesh; Jaroszewski, Lukasz; Fajardo, J. Eduardo; Kouranov, Andrei; Lee, David; Fiser, Andras; Godzik, Adam; Rost, Burkhard; Orengo, Christine

    2010-01-01

    Summary One major objective of structural genomics efforts, including the NIH-funded Protein Structure Initiative (PSI), has been to increase the structural coverage of protein sequence space. Here, we present the target selection strategy used during the second phase of PSI (PSI-2). This strategy, jointly devised by the bioinformatics groups associated with the PSI-2 large-scale production centres, targets representatives from large, structurally uncharacterised protein domain families, and from structurally uncharacterised subfamilies in very large and diverse families with incomplete structural coverage. These very large families are extremely diverse both structurally and functionally, and are highly over-represented in known proteomes. On the basis of several metrics, we then discuss to what extent PSI-2, during its first three years, has increased the structural coverage of genomes, and contributed structural and functional novelty. Together, the results presented here suggest that PSI-2 is successfully meeting its objectives and provides useful insights into structural and functional space. PMID:19523904

  11. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.

    PubMed

    Tajnik, Mojca; Rogalska, Malgorzata Ewa; Bussani, Erica; Barbon, Elena; Balestra, Dario; Pinotti, Mirko; Pagani, Franco

    2016-05-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  12. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function

    PubMed Central

    Bussani, Erica; Barbon, Elena; Pinotti, Mirko; Pagani, Franco

    2016-01-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  13. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    NASA Astrophysics Data System (ADS)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  14. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  15. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.

    2013-06-01

    Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.

  16. Comparison of protein structures using 3D profile alignment.

    PubMed

    Suyama, M; Matsuo, Y; Nishikawa, K

    1997-01-01

    A novel method for protein structure comparison using 3D profile alignment is presented. The 3D profile is a position-dependent scoring matrix derived from three-dimensional structures and is basically used to estimate sequence-structure compatibility for prediction of protein structure. Our idea is to compare two 3D profiles using a dynamic programming algorithm to obtain optimal alignment and a similarity score between them. When the 3D profile of hemoglobin was compared with each of the profiles in the library, which contained 325 profiles of representative structures, all the profiles of other globins were detected with relatively high scores, and proteins in the same structural class followed the globins. Exhaustive comparison of 3D profiles in the library was also performed to depict protein relatedness in the structure space. Using multidimensional scaling, a planar projection of points in the protein structure space revealed an overall grouping in terms of structural classes, i.e., all-alpha, all-beta, alpha/beta, and alpha+beta. These results differ in implication from those obtained by the conventional structure-structure comparison method. Differences are discussed with respect to the structural divergence of proteins in the course of molecular evolution. PMID:9071025

  17. The history of the CATH structural classification of protein domains

    PubMed Central

    Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine

    2015-01-01

    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families. PMID:26253692

  18. Overview on the use of NMR to examine protein structure.

    PubMed

    Breukels, Vincent; Konijnenberg, Albert; Nabuurs, Sanne M; Doreleijers, Jurgen F; Kovalevskaya, Nadezda V; Vuister, Geerten W

    2011-04-01

    Any protein structure determination process contains several steps, starting from obtaining a suitable sample, then moving on to acquiring data and spectral assignment, and lastly to the final steps of structure determination and validation. This unit describes all of these steps, starting with the basic physical principles behind NMR and some of the most commonly measured and observed phenomena such as chemical shift, scalar and residual coupling, and the nuclear Overhauser effect. Then, in somewhat more detail, the process of spectral assignment and structure elucidation is explained. Furthermore, the use of NMR to study protein-ligand interaction, protein dynamics, or protein folding is described. PMID:21488042

  19. The history of the CATH structural classification of protein domains.

    PubMed

    Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine

    2015-12-01

    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families. PMID:26253692

  20. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    SciTech Connect

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani; Fox, Daniel A.; Sim, Adelene Y.L.; Doniach, Sebastian; Lesley, Scott A.

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.

  1. Design of structurally distinct proteins using strategies inspired by evolution.

    PubMed

    Jacobs, T M; Williams, B; Williams, T; Xu, X; Eletsky, A; Federizon, J F; Szyperski, T; Kuhlman, B

    2016-05-01

    Natural recombination combines pieces of preexisting proteins to create new tertiary structures and functions. We describe a computational protocol, called SEWING, which is inspired by this process and builds new proteins from connected or disconnected pieces of existing structures. Helical proteins designed with SEWING contain structural features absent from other de novo designed proteins and, in some cases, remain folded at more than 100°C. High-resolution structures of the designed proteins CA01 and DA05R1 were solved by x-ray crystallography (2.2 angstrom resolution) and nuclear magnetic resonance, respectively, and there was excellent agreement with the design models. This method provides a new strategy to rapidly create large numbers of diverse and designable protein scaffolds. PMID:27151863

  2. Computational design of proteins with novel structure and functions

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Lu-Hua, Lai

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed. Project supported by the National Basic Research Program of China (Grant No. 2015CB910300), the National High Technology Research and Development Program of China (Grant No. 2012AA020308), and the National Natural Science Foundation of China (Grant No. 11021463).

  3. A threading approach to protein structure prediction: Studies on TNF-like molecules, Rev proteins, and protein kinases

    NASA Astrophysics Data System (ADS)

    Ihm, Yungok

    The main focus of this dissertation is the application of the threading approach to specific biological problems. The threading scheme developed in our group targets incorporating important structural features necessary for detecting structural similarity between the target sequence and the template structure. This enables us to use our threading method to solve problems for which sequence-based methods are not very much useful. We applied our threading method to predict the three-dimensional structures of lentivirus (EIAV, HIV-1, FIV, SIV) Rev proteins. Predicted structures of Rev proteins suggest that they share a structural similarity among themselves (four-helix bundle). Also, the threading approach has been utilized for screening for potential TNF-like molecules in Arabidopsis. The threading approach identified 35 potential TNF-like proteins in Arabidopsis, six of which are particularly interesting to be tested for the receptor kinase ligand activity. Threading method has also been used to identify potentially new protein kinases, which are not included in the protein kinase data base of C. elegans and Arabidopis. We identified eleven potentially new protein kinases and an additional protein worth investigating for protein kinase activity in C. elegans. Further, we identified ten potentially new protein kinases and additional four proteins worth investigating for the protein kinase activity in Arabidopsis.

  4. Tactile Teaching: Exploring Protein Structure/Function Using Physical Models

    ERIC Educational Resources Information Center

    Herman, Tim; Morris, Jennifer; Colton, Shannon; Batiza, Ann; Patrick, Michael; Franzen, Margaret; Goodsell, David S.

    2006-01-01

    The technology now exists to construct physical models of proteins based on atomic coordinates of solved structures. We review here our recent experiences in using physical models to teach concepts of protein structure and function at both the high school and the undergraduate levels. At the high school level, physical models are used in a…

  5. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    PubMed

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  6. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  7. How Knowledge Management Is Affected by Organizational Structure

    ERIC Educational Resources Information Center

    Mahmoudsalehi, Mehdi; Moradkhannejad, Roya; Safari, Khalil

    2012-01-01

    Purpose: Identifying the impact of organizational structure on knowledge management (KM) is the aim of this study, as well as recognizing the importance of each variable indicator in creating, sharing and utility of knowledge. Design/methodology/approach: For understanding relationships between the main variables (organizational structure-KM), the…

  8. Protein level affects the relative lysine requirement of growing rainbow trout (Oncorhynchus mykiss) fry.

    PubMed

    Bodin, Noelie; Govaerts, Bernadette; Abboudi, Tarik; Detavernier, Christel; De Saeger, Sarah; Larondelle, Yvan; Rollin, Xavier

    2009-07-01

    The effect of two digestible protein levels (310 and 469 g/kg DM) on the relative lysine (Lys; g Lys/kg DM or g Lys/100 g protein) and the absolute Lys (g Lys intake/kg 0.75 per d) requirements was studied in rainbow trout fry using a dose-response trial. At each protein level, sixteen isoenergetic (22-23 MJ digestible energy/kg DM) diets were tested, involving a full range (2-70 g/kg DM) of sixteen Lys levels. Each diet was given to one group of sixty rainbow trout fry (mean initial body weight 0.78 g) reared at 15 degrees C for 31 feeding d. The Lys requirements were estimated based on the relationships between weight, protein, and Lys gains (g/kg 0.75 per d) and Lys concentration (g/kg DM or g/100 g protein) or Lys intake (g/kg 0.75 per d), using the broken-line model (BLM) and the non-linear four-parameter saturation kinetics model (SKM-4). Both the model and the response criterion chosen markedly impacted the relative Lys requirement. The relative Lys requirement for Lys gain of rainbow trout estimated with the BLM (and SKM-4 at 90 % of the maximum response) increased from 16.8 (19.6) g/kg DM at a low protein level to 23.4 (24.5) g/kg DM at a high protein level. However, the dietary protein content affected neither the absolute Lys requirement nor the relative Lys requirement expressed as g Lys/100 g protein nor the Lys requirement for maintenance (21 mg Lys/kg 0.75 per d). PMID:19138439

  9. The Structural Characterization of Tumor Fusion Genes and Proteins.

    PubMed

    Wang, Dandan; Li, Daixi; Qin, Guangrong; Zhang, Wen; Ouyang, Jian; Zhang, Menghuan; Xie, Lu

    2015-01-01

    Chromosomal translocation, which generates fusion proteins in blood tumor or solid tumor, is considered as one of the major causes leading to cancer. Recent studies suggested that the disordered fragments in a fusion protein might contribute to its carcinogenicity. Here, we investigated the sequence feature near the breakpoints in the fusion partner genes, the structure features of breakpoints in fusion proteins, and the posttranslational modification preference in the fusion proteins. Results show that the breakpoints in the fusion partner genes have both sequence preference and structural preference. At the sequence level, nucleotide combination AG is preferred before the breakpoint and GG is preferred at the breakpoint. At the structural level, the breakpoints in the fusion proteins prefer to be located in the disordered regions. Further analysis suggests the phosphorylation sites at serine, threonine, and the methylation sites at arginine are enriched in disordered regions of the fusion proteins. Using EML4-ALK as an example, we further explained how the fusion protein leads to the protein disorder and contributes to its carcinogenicity. The sequence and structural features of the fusion proteins may help the scientific community to predict novel breakpoints in fusion genes and better understand the structure and function of fusion proteins. PMID:26347798

  10. The Structural Characterization of Tumor Fusion Genes and Proteins

    PubMed Central

    Wang, Dandan; Li, Daixi; Qin, Guangrong; Zhang, Wen; Ouyang, Jian; Zhang, Menghuan; Xie, Lu

    2015-01-01

    Chromosomal translocation, which generates fusion proteins in blood tumor or solid tumor, is considered as one of the major causes leading to cancer. Recent studies suggested that the disordered fragments in a fusion protein might contribute to its carcinogenicity. Here, we investigated the sequence feature near the breakpoints in the fusion partner genes, the structure features of breakpoints in fusion proteins, and the posttranslational modification preference in the fusion proteins. Results show that the breakpoints in the fusion partner genes have both sequence preference and structural preference. At the sequence level, nucleotide combination AG is preferred before the breakpoint and GG is preferred at the breakpoint. At the structural level, the breakpoints in the fusion proteins prefer to be located in the disordered regions. Further analysis suggests the phosphorylation sites at serine, threonine, and the methylation sites at arginine are enriched in disordered regions of the fusion proteins. Using EML4-ALK as an example, we further explained how the fusion protein leads to the protein disorder and contributes to its carcinogenicity. The sequence and structural features of the fusion proteins may help the scientific community to predict novel breakpoints in fusion genes and better understand the structure and function of fusion proteins. PMID:26347798

  11. In-Cell Protein Structures from 2D NMR Experiments.

    PubMed

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  12. Automating the determination of 3D protein structure

    SciTech Connect

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  13. Significant proteins affecting cerebral vasospasm using complementary ICPMS and MALDI-MS.

    PubMed

    Easter, Renee N; Barry, Colin G; Pyne-Geithman, Gail; Caruso, Joseph A

    2012-01-01

    Cerebral vasospasm (CV) following subarachnoid hemorrhagic stroke affects more than one million people each year. The etiology and prevention of CV is currently of great interest to researchers in various fields of medical science. More recently, the idea that selenium could be playing a major role in the onset of cerebral vasospasm has come into the spotlight. This study focused on using newly established metallomics techniques in order to explore the proteome associated with CV and if selenium might affect the discovered proteins. Size exclusion chromatography coupled to inductively coupled plasma mass spectrometry, along with LC-MALDI-TOF/TOF were both essential in determining protein identifications in three different sample types; a control (normal, healthy patient, CSF control), SAH stroke patients (no vasospasm, CSF C) and SAH CV patients (CSF V). The results of this study, although preliminary, indicate the current methods are applicable and warrant further application to these clinically important targets. PMID:21976047

  14. A local average distance descriptor for flexible protein structure comparison

    PubMed Central

    2014-01-01

    Background Protein structures are flexible and often show conformational changes upon binding to other molecules to exert biological functions. As protein structures correlate with characteristic functions, structure comparison allows classification and prediction of proteins of undefined functions. However, most comparison methods treat proteins as rigid bodies and cannot retrieve similarities of proteins with large conformational changes effectively. Results In this paper, we propose a novel descriptor, local average distance (LAD), based on either the geodesic distances (GDs) or Euclidean distances (EDs) for pairwise flexible protein structure comparison. The proposed method was compared with 7 structural alignment methods and 7 shape descriptors on two datasets comprising hinge bending motions from the MolMovDB, and the results have shown that our method outperformed all other methods regarding retrieving similar structures in terms of precision-recall curve, retrieval success rate, R-precision, mean average precision and F1-measure. Conclusions Both ED- and GD-based LAD descriptors are effective to search deformed structures and overcome the problems of self-connection caused by a large bending motion. We have also demonstrated that the ED-based LAD is more robust than the GD-based descriptor. The proposed algorithm provides an alternative approach for blasting structure database, discovering previously unknown conformational relationships, and reorganizing protein structure classification. PMID:24694083

  15. Blocking and detection chemistries affect antibody performance on reverse phase protein arrays.

    PubMed

    Ambroz, Kristi L H; Zhang, Yonghong; Schutz-Geschwender, Amy; Olive, D Michael

    2008-06-01

    Antibody specificity is critical for RP protein arrays (RPA). The effects of blocking and detection chemistries on antibody specificity were evaluated for Western blots and RPA. Blocking buffers significantly affected nonspecific banding on Western blots, with corresponding effects on arrays. Tyramide signal amplification (TSA) increased both specific and nonspecific signals on Westerns and arrays, masking the expected gradations in signal intensity. These results suggest that consistent blocking and detection conditions should be used for antibody validation and subsequent RPA experiments. PMID:18563731

  16. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    SciTech Connect

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-06-15

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [{sup 3}H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [{sup 3}H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-{kappa}B, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  17. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions.

    PubMed

    Cau, Ylenia; Fiorillo, Annarita; Mori, Mattia; Ilari, Andrea; Botta, Maurizo; Lalle, Marco

    2015-12-28

    Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies. PMID:26551337

  18. Protein structure. Structure and activity of tryptophan-rich TSPO proteins.

    PubMed

    Guo, Youzhong; Kalathur, Ravi C; Liu, Qun; Kloss, Brian; Bruni, Renato; Ginter, Christopher; Kloppmann, Edda; Rost, Burkhard; Hendrickson, Wayne A

    2015-01-30

    Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 Å resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress. PMID:25635100

  19. Balancing Protein Stability and Activity in Cancer: A New Approach for Identifying Driver Mutations Affecting CBL Ubiquitin Ligase Activation.

    PubMed

    Li, Minghui; Kales, Stephen C; Ma, Ke; Shoemaker, Benjamin A; Crespo-Barreto, Juan; Cangelosi, Andrew L; Lipkowitz, Stanley; Panchenko, Anna R

    2016-02-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved, depicting the protein at different stages of its activation cycle and thus providing mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins-may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than random noncancer mutations. We further tested the ability of these computational models, assessing the changes in CBL stability and its binding to ubiquitin-conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  20. Advances in Protein NMR Impacting Drug Discovery Provided by the NIGMS Protein Structure Initiative

    PubMed Central

    Montelione, Gaetano T.; Szyperski, Thomas

    2014-01-01

    Rational drug design relies on three-dimensional structures of biological macromolecules, especially proteins. Structural genomics high-throughput (HTP) structure determination platforms established by the NIH Protein Structure Initiative are uniquely suited to provide these structures. NMR plays a critical role since (i) many important protein targets do not form single crystals required for X-ray diffraction and (ii) NMR can provide valuable structural and dynamic information on proteins and their drug complexes that cannot be obtained with X-ray crystallography. In this article, recent advances of NMR driven by structural genomics projects are reviewed. These advances promise that future pharmaceutical discovery and design of drugs can increasingly rely on protocols for rapid and accurate NMR structure determination. PMID:20443167

  1. Changes in protein structure monitored by use of gas‐phase hydrogen/deuterium exchange

    PubMed Central

    Beeston, Helen S.; Ault, James R.; Pringle, Steven D.; Brown, Jeffery M.

    2015-01-01

    The study of protein conformation by solution‐phase hydrogen/deuterium exchange (HDX) coupled to MS is well documented. This involves monitoring the exchange of backbone amide protons with deuterium and provides details concerning the protein's tertiary structure. However, undesired back‐exchange during post‐HDX analyses can be difficult to control. Here, gas‐phase HDX‐MS, during which labile hydrogens on amino acid side chains are exchanged in sub‐millisecond time scales, has been employed to probe changes within protein structures. Addition of the solvent 2,2,2‐trifluoroethanol to a protein in solution can affect the structure of the protein, resulting in an increase in secondary and/or tertiary structure which is detected using circular dichroism. Using a Synapt G2‐S ESI‐mass spectrometer modified to allow deuterated ammonia into the transfer ion guide (situated between the ion mobility cell and the TOF analyser), gas‐phase HDX‐MS is shown to reflect minor structural changes experienced by the proteins β‐lactoglobulin and ubiquitin, as observed by the reduction in the level of deuterium incorporation. Additionally, the use of gas‐phase HDX‐MS to distinguish between co‐populated proteins conformers within a solution is demonstrated with the disordered protein calmodulin; the gas‐phase HDX‐MS results correspond directly with complementary data obtained by use of ion mobility spectrometry‐MS. PMID:25603979

  2. Computational Methods for Domain Partitioning of Protein Structures

    NASA Astrophysics Data System (ADS)

    Veretnik, Stella; Shindyalov, Ilya

    Analysis of protein structures typically begins with decomposition of structure into more basic units, called "structural domains". The underlying goal is to reduce a complex protein structure to a set of simpler yet structurally meaningful units, each of which can be analyzed independently. Structural semi-independence of domains is their hallmark: domains often have compact structure and can fold or function independently. Domains can undergo so-called "domain shuffling"when they reappear in different combinations in different proteins thus implementing different biological functions (Doolittle, 1995). Proteins can then be conceived as being built of such basic blocks: some, especially small proteins, consist usually of just one domain, while other proteins possess a more complex architecture containing multiple domains. Therefore, the methods for partitioning a structure into domains are of critical importance: their outcome defines the set of basic units upon which structural classifications are built and evolutionary analysis is performed. This is especially true nowadays in the era of structural genomics. Today there are many methods that decompose the structure into domains: some of them are manual (i.e., based on human judgment), others are semiautomatic, and still others are completely automatic (based on algorithms implemented as software). Overall there is a high level of consistency and robustness in the process of partitioning a structure into domains (for ˜80% of proteins); at least for structures where domain location is obvious. The picture is less bright when we consider proteins with more complex architectures—neither human experts nor computational methods can reach consistent partitioning in many such cases. This is a rather accurate reflection of biological phenomena in general since domains are formed by different mechanisms, hence it is nearly impossible to come up with a set of well-defined rules that captures all of the observed cases.

  3. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  4. Supramolecular Structures with Blood Plasma Proteins, Sugars and Nanosilica

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gun'ko, V. M.; Galagan, N. P.; Rugal, A. A.; Barvinchenko, V. M.; Gorbyk, P. P.

    Supramolecular structures with blood plasma proteins (albumin, immunoglobulin and fibrinogen (HPF)), protein/water/silica and protein/water/ silica/sugar (glucose, fructose and saccharose) were studied by NMR, adsorption, IR and UV spectroscopy methods. Hydration parameters, amounts of weakly and strongly bound waters and interfacial energy (γ S) were determined over a wide range of component concentrations. The γ S(C protein,C silica) graphs were used to estimate the energy of protein-protein, protein-surface and particle-particle interactions. It was shown that interfacial energy of self-association (γ as) of protein molecules depends on a type of proteins. A large fraction of water bound to proteins can be displaced by sugars, and the effect of disaccharide (saccharose) was greater than that of monosugars. Changes in the structural parameters of cavities in HPF molecules and complexes with HPF/silica nanoparticles filled by bound water were analysed using NMR-cryoporometry showing that interaction of proteins with silica leads to a significant decrease in the amounts of water bound to both protein and silica surfaces. Bionanocomposites with BSA/nanosilica/sugar can be used to influence states of living cells and tissues after cryopreservation or other treatments. It was shown that interaction of proteins with silica leads to strong decrease in the volume of all types of internal cavities filled by water.

  5. Methods for optimizing the structure alphabet sequences of proteins.

    PubMed

    Dong, Qi-wen; Wang, Xiao-long; Lin, Lei

    2007-11-01

    Protein structure prediction based on fragment assemble has made great progress in recent years. Local protein structure prediction is receiving increased attention. One essential step of local protein structure prediction method is that the three-dimensional conformations must be compressed into one-dimensional series of letters of a structural alphabet. The traditional method assigns each structure fragment the structure alphabet that has the best local structure similarity. However, such locally optimal structure alphabet sequence does not guarantee to produce the globally optimal structure. This study presents two efficient methods trying to find the optimal structure alphabet sequence, which can model the native structures as accuracy as possible. First, a 28-letter structure alphabet is derived by clustering fragment in Cartesian space with fragment length of seven residues. The average quantization error of the 28 letters is 0.82 A in term of root mean square deviation. Then, two efficient methods are presented to encode the protein structures into series of structure alphabet letters, that is, the greedy and dynamic programming algorithm. They are tested on PDB database using the structure alphabet developed in Cartesian coordinates space (our structure alphabet) and in torsion angles space (the PB structure alphabet), respectively. The experimental results show that these two methods can find the approximately optimal structure alphabet sequences by searching a small fraction of the modeling space. The traditional local-optimization method achieves 26.27 A root mean square deviations between the reconstructed structures and the native one, while the modeling accuracy is improved to 3.28 A by the greedy algorithm. The results are helpful for local protein structure prediction. PMID:17493604

  6. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling

    PubMed Central

    Podgornaia, Anna I.; Casino, Patricia; Marina, Alberto; Laub, Michael T.

    2013-01-01

    Summary Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, E. coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes, along with a systematic mutagenesis study, reveals how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions, protein evolution, and the design of novel protein interfaces. PMID:23954504

  7. Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling.

    PubMed

    Podgornaia, Anna I; Casino, Patricia; Marina, Alberto; Laub, Michael T

    2013-09-01

    Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces. PMID:23954504

  8. Macromolecular crowding increases structural content of folded proteins.

    PubMed

    Perham, Michael; Stagg, Loren; Wittung-Stafshede, Pernilla

    2007-10-30

    Here we show that increased amount of secondary structure is acquired in the folded states of two structurally-different proteins (alpha-helical VlsE and alpha/beta flavodoxin) in the presence of macromolecular crowding agents. The structural content of flavodoxin and VlsE is enhanced by 33% and 70%, respectively, in 400 mg/ml Ficoll 70 (pH 7, 20 degrees C) and correlates with higher protein-thermal stability. In the same Ficoll range, there are only small effects on the unfolded-state structures of the proteins. This is the first in vitro assessment of crowding effects on the native-state structures at physiological conditions. Our findings imply that for proteins with low intrinsic stability, the functional structures in vivo may differ from those observed in dilute buffers. PMID:17919600

  9. Desiccation enhances phosphorylation of PSII and affects the distribution of protein complexes in the thylakoid membrane.

    PubMed

    Gao, Shan; Gu, Wenhui; Xiong, Qian; Ge, Feng; Xie, Xiujun; Li, Jian; Chen, Weizhou; Pan, Guanghua; Wang, Guangce

    2015-03-01

    Desiccation has significant effects on photosynthetic processes in intertidal macro-algae. We studied an intertidal macro-alga, Ulva sp., which can tolerate desiccation, to investigate changes in photosynthetic performance and the components and structure of thylakoid membrane proteins in response to desiccation. Our results demonstrate that photosystem II (PSII) is more sensitive to desiccation than photosystem I (PSI) in Ulva sp. Comparative proteomics of the thylakoid membrane proteins at different levels of desiccation suggested that there were few changes in the content of proteins involved in photosynthesis during desiccation. Interestingly, we found that both the PSII subunit, PsbS (Photosystem II S subunit) (a four-helix protein in the LHC superfamily), and light-harvesting complex stress-related (LHCSR) proteins, which are required for non-photochemical quenching in land plants and algae, respectively, were present under both normal and desiccation conditions and both increased slightly during desiccation. In addition, the results of immunoblot analysis suggested that the phosphorylation of PSII and LHCII increases during desiccation. To investigate further, we separated out a supercomplex formed during desiccation by blue native-polyacrylamide gel electrophoresis and identified the components by mass spectrometry analysis. Our results show that phosphorylation of the complex increases slightly with decreased water content. All the results suggest that during the course of desiccation, few changes occur in the content of thylakoid membrane proteins, but a rearrangement of the protein complex occurs in the intertidal macro-alga Ulva sp. PMID:25132456

  10. Proteins: sequence to structure and function--current status.

    PubMed

    Shenoy, Sandhya R; Jayaram, B

    2010-11-01

    In an era that has been dominated by Structural Biology for the last 30-40 years, a dramatic change of focus towards sequence analysis has spurred the advent of the genome projects and the resultant diverging sequence/structure deficit. The central challenge of Computational Structural Biology is therefore to rationalize the mass of sequence information into biochemical and biophysical knowledge and to decipher the structural, functional and evolutionary clues encoded in the language of biological sequences. In investigating the meaning of sequences, two distinct analytical themes have emerged: in the first approach, pattern recognition techniques are used to detect similarity between sequences and hence to infer related structures and functions; in the second ab initio prediction methods are used to deduce 3D structure, and ultimately to infer function, directly from the linear sequence. In this article, we attempt to provide a critical assessment of what one may and may not expect from the biological sequences and to identify major issues yet to be resolved. The presentation is organized under several subtitles like protein sequences, pattern recognition techniques, protein tertiary structure prediction, membrane protein bioinformatics, human proteome, protein-protein interactions, metabolic networks, potential drug targets based on simple sequence properties, disordered proteins, the sequence-structure relationship and chemical logic of protein sequences. PMID:20887265

  11. HIV Tat protein affects circadian rhythmicity by interfering with the circadian system

    PubMed Central

    Wang, T; Jiang, Z; Hou, W; Li, Z; Cheng, S; Green, LA; Wang, Y; Wen, X; Cai, L; Clauss, M; Wang, Z

    2014-01-01

    Objectives Sleep disorders are common in patients with HIV/AIDS, and can lead to poor quality of life. Although many studies have investigated the aetiology of these disorders, it is still unclear whether impaired sleep quality is associated with HIV itself, social problems, or side effects of antiretroviral therapy (ART). Moreover, despite its known neurological associations, little is known about the role of the trans-activator of transcription (Tat) protein in sleep disorders in patients with HIV/AIDS. The purpose of this study was to test the hypothesis that the sleep quality of patients with HIV/AIDS affected by an altered circadian rhythm correlates with cerebrospinal HIV Tat protein concentration. Methods Ninety-six patients with HIV/AIDS between 20 and 69 years old completed the Pittsburgh Sleep Quality Index. Their circadian rhythm parameters of blood pressure, Tat concentration in cerebrospinal fluid, melatonin concentration, CD4 cell count and HIV RNA viral load in serum were measured. Results The circadian amplitude of systolic blood pressure and the score for sleep quality (Pittsburgh Sleep Quality Index) were negatively correlated with HIV Tat protein concentration, while the melatonin value was positively correlated with Tat protein concentration. Conclusions The HIV Tat protein affects circadian rhythmicity by interfering with the circadian system in patients with HIV/AIDS and further increases the melatonin excretion value. A Tat protein-related high melatonin value may counteract HIV-related poor sleep quality during the progression of HIV infection. This study provides the first clinical evidence offering an explanation for why sleep quality did not show an association with progression of HIV infection in previous studies. PMID:24750691

  12. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    PubMed

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors. PMID:26992923

  13. Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size.

    PubMed

    Khan, S; Gupta, A; Verma, N C; Nandi, C K

    2015-10-28

    The spontaneous protein adsorption on nanomaterial surfaces and the formation of a protein corona around nanoparticles are poorly understood physical phenomena, with high biological relevance. The complexity arises mainly due to the poor knowledge of the structural orientation of the adsorbed proteins onto the nanoparticle surface and difficulties in correlating the protein nanoparticle interaction to the protein corona in real time scale. Here, we provide quantitative insights into the kinetics, number, and binding orientation of a few common blood proteins when they interact with citrate and cetyltriethylammoniumbromide stabilized spherical gold nanoparticles with variable sizes. The kinetics of the protein adsorption was studied experimentally by monitoring the change in hydrodynamic diameter and zeta potential of the nanoparticle-protein complex. To understand the competitive binding of human serum albumin and hemoglobin, time dependent fluorescence quenching was studied using dual fluorophore tags. We have performed molecular docking of three different proteins--human serum albumin, bovine serum albumin, and hemoglobin--on different nanoparticle surfaces to elucidate the possible structural orientation of the adsorbed protein. Our data show that the growth kinetics of a protein corona is exclusively dependent on both protein structure and surface chemistry of the nanoparticles. The study quantitatively suggests that a general physical law of protein adsorption is unlikely to exist as the interaction is unique and specific for a given pair. PMID:26520545

  14. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  15. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGESBeta

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  16. Tuning structure of oppositely charged nanoparticle and protein complexes

    SciTech Connect

    Kumar, Sugam Aswal, V. K.; Callow, P.

    2014-04-24

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  17. Genome Pool Strategy for Structural Coverage of Protein Families

    SciTech Connect

    Jaroszewski, L.; Slabinski, L.; Wooley, J.; Deacon, A.M.; Lesley, S.A.; Wilson, I.A.; Godzik, A.

    2009-05-18

    Even closely homologous proteins often have different crystallization properties and propensities. This observation can be used to introduce an additional dimension into crystallization trials by simultaneous targeting multiple homologs in what we call a 'genome pool' strategy. We show that this strategy works because protein physicochemical properties correlated with crystallization success have a surprisingly broad distribution within most protein families. There are also easy and difficult families where this distribution is tilted in one direction. This leads to uneven structural coverage of protein families, with more easy ones solved. Increasing the size of the genome pool can improve chances of solving the difficult ones. In contrast, our analysis does not indicate that any specific genomes are easy or difficult. Finally, we show that the group of proteins with known 3D structures is systematically different from the general pool of known proteins and we assess the structural consequences of these differences.

  18. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Opella, Stanley J.

    2014-01-01

    Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein–coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy. PMID:23577669

  19. [Structure, Immunogenicity and Clinical Value of Chlamydiaphage Capsid Protein 3].

    PubMed

    Yao, Weifeng; Li, Yiju; Yuan, Jing; Wang, Lei; Li, Qunyan; Song, Mengmeng; Lu, Guiling; Zhang, Litao

    2015-07-01

    We wished to assess the role of chlamydia micro virus capsid protein Vp3 in recombinant molecules, chart its molecular evolution, screen the wild-type strain, and reveal its value in clinical research. Using a protein BLAST multiple-alignment program, we compared various strains of Chlamydia micro virus capsid protein Vp3 sequences. Using a "distance tree" of those results, we created a phylogenetic tree. We applied the Karplus-Schulz method of flexible-region analyses for highly conserved alignments of amino-acid sequences. Gamier-Robson and Chou-Fasman methods were employed to analyze two-level structures of sequences. The Emini method was used for analyses of the accessibility of surface epitopes. Studies of hydrophilic proteins were undertaken using Kyte-Doolittle and Hopp-Woods methods. Analyses of antigen epitopes helped to reveal the antigen index using the Jameson-Wolf method. All sequences in the six strains of chlamydia micro virus capsid protein Vp3 were highly conserved, with the main differences being between Vp3 protein in Chp1 and the other five strains of the micro virus. The viral strain of Vp3 protein was based mainly on micro-alpha helix structures, and multiple epitopes were noted in highly conserved regions. Vp3 protein was highly conserved structurally, and was an important protein of the chlamydiaphage capsid. Vp3 protein has a complicated molecular structure, highly conserved regions with strong immunogenicity, and has considerable research value. PMID:26524915

  20. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: As Affected by Hydration in Powders.

    PubMed

    Yucel, Umut; Peterson, Devin G

    2015-09-01

    There is a broad need to reformulate lower sodium food products without affecting their original taste. The present study focuses on characterizing the role of protein-salt interactions on the salt release in low-moisture systems and saltiness perception during hydration. Sodium release from freeze-dried protein powders and emulsion powders formulated at different protein/lipid ratios (5:0 to 1:4) were characterized using a chromatography column modified with a porcine tongue. Emulsion systems with protein structured at the interface were found to have faster initial sodium release rates and faster hydration and were perceived to have a higher initial salt intensity with a lower salty aftertaste. In summary, exposure of the hydrophilic segments of the interface-structured proteins in emulsions was suggested to facilitate hydration and release of sodium during dissolution of low-moisture powder samples. PMID:26255668

  1. Structural and Energetic Characterization of the Ankyrin Repeat Protein Family

    PubMed Central

    Parra, R. Gonzalo; Espada, Rocío; Verstraete, Nina; Ferreiro, Diego U.

    2015-01-01

    Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins. PMID:26691182

  2. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage.

    PubMed

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-15

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1×, DE3×, ME3×, NEL3×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P=0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P=0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P=0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P=0.09), RD of PB2 (29 vs. 62 g/kg CP, P=0.02), RD of CB2 (251 vs. 198 g/kg DM, P=0.06), RD of CB3 (236 vs. 261 g/kg CHO, P=0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P=0.06), and metabolic bioenergy (P=0.095). As to protein molecular structure, there were differences in protein structure 1st and 2nd amide groups (P

  3. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  4. Structural Analysis of Protein-Protein Interactions in Type I Polyketide Synthases

    PubMed Central

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo- selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system. PMID:23249187

  5. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  6. Multiple oligomeric structures of a bacterial small heat shock protein

    PubMed Central

    Mani, Nandini; Bhandari, Spraha; Moreno, Rodolfo; Hu, Liya; Prasad, B. V. Venkataram; Suguna, Kaza

    2016-01-01

    Small heat shock proteins are ubiquitous molecular chaperones that form the first line of defence against the detrimental effects of cellular stress. Under conditions of stress they undergo drastic conformational rearrangements in order to bind to misfolded substrate proteins and prevent cellular protein aggregation. Owing to the dynamic nature of small heat shock protein oligomers, elucidating the structural basis of chaperone action and oligomerization still remains a challenge. In order to understand the organization of sHSP oligomers, we have determined crystal structures of a small heat shock protein from Salmonella typhimurium in a dimeric form and two higher oligomeric forms: an 18-mer and a 24-mer. Though the core dimer structure is conserved in all the forms, structural heterogeneity arises due to variation in the terminal regions. PMID:27053150

  7. Revealing Higher Order Protein Structure Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi

    2016-04-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.

  8. Revealing Higher Order Protein Structure Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi

    2016-06-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.

  9. Revealing Higher Order Protein Structure Using Mass Spectrometry.

    PubMed

    Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P; Shi, Yi

    2016-06-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope. Graphical Abstract ᅟ. PMID:27080007

  10. PDBparam: Online Resource for Computing Structural Parameters of Proteins

    PubMed Central

    Nagarajan, R.; Archana, A.; Thangakani, A. Mary; Jemimah, S.; Velmurugan, D.; Gromiha, M. Michael

    2016-01-01

    Understanding the structure–function relationship in proteins is a longstanding goal in molecular and computational biology. The development of structure-based parameters has helped to relate the structure with the function of a protein. Although several structural features have been reported in the literature, no single server can calculate a wide-ranging set of structure-based features from protein three-dimensional structures. In this work, we have developed a web-based tool, PDBparam, for computing more than 50 structure-based features for any given protein structure. These features are classified into four major categories: (i) interresidue interactions, which include short-, medium-, and long-range interactions, contact order, long-range order, total contact distance, contact number, and multiple contact index, (ii) secondary structure propensities such as α-helical propensity, β-sheet propensity, and propensity of amino acids to exist at various positions of α-helix and amino acid compositions in high B-value regions, (iii) physicochemical properties containing ionic interactions, hydrogen bond interactions, hydrophobic interactions, disulfide interactions, aromatic interactions, surrounding hydrophobicity, and buriedness, and (iv) identification of binding site residues in protein–protein, protein–nucleic acid, and protein–ligand complexes. The server can be freely accessed at http://www.iitm.ac.in/bioinfo/pdbparam/. We suggest the use of PDBparam as an effective tool for analyzing protein structures. PMID:27330281

  11. Bayesian inference of protein structure from chemical shift data

    PubMed Central

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  12. Rotamer strain as a determinant of protein structural specificity.

    PubMed Central

    Lazar, G. A.; Johnson, E. C.; Desjarlais, J. R.; Handel, T. M.

    1999-01-01

    We present direct evidence for a change in protein structural specificity due to hydrophobic core packing. High resolution structural analysis of a designed core variant of ubiquitin reveals that the protein is in slow exchange between two conformations. Examination of side-chain rotamers indicates that this dynamic response and the lower stability of the protein are coupled to greater strain and mobility in the core. The results suggest that manipulating the level of side-chain strain may be one way of fine tuning the stability and specificity of proteins. PMID:10631975

  13. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  14. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.

    PubMed

    Grussendorf, Kelly A; Trezza, Christopher J; Salem, Alexander T; Al-Hashimi, Hikmat; Mattingly, Brendan C; Kampmeyer, Drew E; Khan, Liakot A; Hall, David H; Göbel, Verena; Ackley, Brian D; Buechner, Matthew

    2016-08-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  15. On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shao, Qiang; Wang, Jinan; Zhu, Weiliang

    2014-09-01

    Mixtures of osmolytes and/or inorganic salts are present in the cell. Therefore, the understanding of the interplay of mixed osmolyte molecules and inorganic salts and their combined effects on protein structure is of fundamental importance. A novel test is presented to investigate the combined effects of urea and a chaotropic inorganic salt, potassium iodide (KI), on protein structure by using molecular dynamics simulation. It is found that the coexistence of KI and urea does not affect their respective distribution in solution. The solvation of KI salt in urea solution makes the electrostatic interactions of urea more favorable, promoting the hydrogen bonding between urea (and water) to protein backbone. The interactions from K+ and hydrogen bonding from urea and water to protein backbone work as the driving force for protein denaturation. The collaborative behavior of urea and KI salt thus enhances the denaturing ability of urea and KI mixed solution.

  16. Solid state NMR strategy for characterizing native membrane protein structures.

    PubMed

    Murray, Dylan T; Das, Nabanita; Cross, Timothy A

    2013-09-17

    Unlike water soluble proteins, the structures of helical transmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric constant, and other properties. Solid state NMR is a collection of tools that can characterize high resolution membrane protein structure in this environment. Indeed, prior work has shown that this complex environment significantly influences transmembrane protein structure. Therefore, it is important to characterize such structures under conditions that closely resemble its native environment. Researchers have used two approaches to gain protein structural restraints via solid state NMR spectroscopy. The more traditional approach uses magic angle sample spinning to generate isotropic chemical shifts, much like solution NMR. As with solution NMR, researchers can analyze the backbone chemical shifts to obtain torsional restraints. They can also examine nuclear spin interactions between nearby atoms to obtain distances between atomic sites. Unfortunately, for membrane proteins in lipid preparations, the spectral resolution is not adequate to obtain complete resonance assignments. Researchers have developed another approach for gaining structural restraints from membrane proteins: the use of uniformly oriented lipid bilayers, which provides a method for obtaining high resolution orientational restraints. When the bilayers are aligned with respect to the magnetic field of the NMR spectrometer, researchers can obtain orientational restraints in which atomic sites in the protein are restrained relative to the alignment axis. However, this approach does not allow researchers to determine the relative packing between helices. By combining the two approaches, we can take advantage of the information acquired from each technique to minimize the challenges and maximize the quality of the

  17. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    PubMed

    Paes, T A S V; Costa, I A S; Silva, A P C; Eskinazi-Sant'Anna, E M

    2016-06-01

    The aim of our study was to assess whether cyanotoxins (microcystins) can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers). Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001), but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = - 0.01; P > 0.01) with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001). The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass) do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers). These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton. PMID:26959954

  18. Distant homology recognition using structural classification of proteins.

    PubMed

    Murzin, A G; Bateman, A

    1997-01-01

    Protein structure prediction is arguably the biggest unsolved problem of structural biology. The notion of the number of naturally occurring different protein folds being limited allows partial solution of this problem by the use of fold recognition methods, which "thread" the sequence in question through a library of known protein folds. The fold recognition methods were thought to be superior to the distant homology recognition methods when there is no significant sequence similarity to known structures. We show here that the Structural Classification of Proteins (SCOP) database, organizing all known protein folds according their structural and evolutionary relationships, can be effectively used to enhance the sensitivity of the distant homology recognition methods to rival the "threading" methods. In the CASP2 experiment, our approach correctly assigned into existing SCOP superfamilies all of the six "fold recognition" targets we attempted. For each of the six targets, we correctly predicted the homologous protein with a very similar structure; often, it was the most similar structure. We correctly predicted local alignments of the sequence features that we found to be characteristic for the protein superfamily containing a given target. Our global alignments, extended manually from these local alignments, also appeared to be rather accurate. PMID:9485501

  19. Rice proteins, extracted by alkali and α-amylase, differently affect in vitro antioxidant activity.

    PubMed

    Wang, Zhengxuan; Liu, Ye; Li, Hui; Yang, Lin

    2016-09-01

    Alkali treatment and α-amylase degradation are different processes for rice protein (RP) isolation. The major aim of this study was to determine the influence of two different extraction methods on the antioxidant capacities of RPA, extracted by alkaline (0.2% NaOH), and RPE, extracted by α-amylase, during in vitro digestion for 2h with pepsin and for 3h with pancreatin. Upon pepsin-pancreatin digestion, the protein hydrolysates (RPA-S, RPE-S), which were the supernatants in the absence of undigested residue, and the whole protein digests (RPA, RPE), in which undigested residue remained, were measured. RPE exhibited the stronger antioxidant responses to free radical scavenging activity, metal chelating activity, and reducing power, whereas the weakest antioxidant capacities were produced by RPE-S. In contrast, no significant differences in antioxidant activity were observed between RPA and RPA-S. The present study demonstrated that the in vitro antioxidant responses induced by the hydrolysates and the protein digests of RPs could be affected differently by alkali treatment and α-amylase degradation, suggesting that the extraction is a vital processing step to modify the antioxidant capacities of RPs. The results of the current study indicated that the protein digests, in which undigested residues remained, could exhibit more efficacious antioxidant activity compared to the hydrolysates. PMID:27041309

  20. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    SciTech Connect

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.; Balagopalan, C.; Whitwill, S.T.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more than or equal to 6.0 in a liquid medium, or pH of more than or equal to 7.0 on solid media. The optimum growth conditions of pH 3.8 and 45 degrees were strongly inhibitive to potential contaminants. It rapidly hydrolyzed cassava starch. It did not utilize sucrose, but approximately 16% of the small sucrose component of cassava was chemically hydrolyzed during the process. Growth with cassava meal (50 g/l) was complete in approximately 20 h, yielding 22.5 g/l (dry biomass), containing 41% crude protein (48-50% crude protein in the mycelium) and 31% true protein (7.0 g/l). Resting and germinating spores (10 to the power of 6 - 10 to the power of 8 per animal) injected by various routes into normal and gamma-irradiated 6-week-old mice and 7-day-old chickens failed to initiate infections.

  1. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  2. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  3. Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size

    NASA Astrophysics Data System (ADS)

    Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K.

    2015-10-01

    The spontaneous protein adsorption on nanomaterial surfaces and the formation of a protein corona around nanoparticles are poorly understood physical phenomena, with high biological relevance. The complexity arises mainly due to the poor knowledge of the structural orientation of the adsorbed proteins onto the nanoparticle surface and difficulties in correlating the protein nanoparticle interaction to the protein corona in real time scale. Here, we provide quantitative insights into the kinetics, number, and binding orientation of a few common blood proteins when they interact with citrate and cetyltriethylammoniumbromide stabilized spherical gold nanoparticles with variable sizes. The kinetics of the protein adsorption was studied experimentally by monitoring the change in hydrodynamic diameter and zeta potential of the nanoparticle-protein complex. To understand the competitive binding of human serum albumin and hemoglobin, time dependent fluorescence quenching was studied using dual fluorophore tags. We have performed molecular docking of three different proteins—human serum albumin, bovine serum albumin, and hemoglobin—on different nanoparticle surfaces to elucidate the possible structural orientation of the adsorbed protein. Our data show that the growth kinetics of a protein corona is exclusively dependent on both protein structure and surface chemistry of the nanoparticles. The study quantitatively suggests that a general physical law of protein adsorption is unlikely to exist as the interaction is unique and specific for a given pair.

  4. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV.

    PubMed

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Hernández-Lugo, Andrés; Hernández, Jesús

    2015-01-01

    The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp) and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC). Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein) than against nsp (nsp2). In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed. PMID:26633527

  5. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    PubMed Central

    Rascón-Castelo, Edgar; Burgara-Estrella, Alexel; Reséndiz-Sandoval, Mónica; Hernández-Lugo, Andrés; Hernández, Jesús

    2015-01-01

    The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp) and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC). Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein) than against nsp (nsp2). In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed. PMID:26633527

  6. Conservation of protein structure over four billion years

    PubMed Central

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M.; Gaucher, Eric A.; Sanchez-Ruiz, Jose M.; Gavira, Jose A.

    2013-01-01

    SUMMARY Little is known with certainty about the evolution of protein structures in general and the degree of protein structure conservation over planetary time scales in particular. Here we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating back up to ~4 billion years before present. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold while only small structural changes have occurred over 4 billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods of time and is followed by long periods of structural stasis. PMID:23932589

  7. Conservation of protein structure over four billion years.

    PubMed

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M; Gaucher, Eric A; Sanchez-Ruiz, Jose M; Gavira, Jose A

    2013-09-01

    Little is known about the evolution of protein structures and the degree of protein structure conservation over planetary time scales. Here, we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating up to approximately four billion years ago. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold, whereas only small structural changes have occurred over four billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods and is followed by long periods of structural stasis. PMID:23932589

  8. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing.

    PubMed

    Kang, Da-Cheng; Zou, Yun-He; Cheng, Yu-Ping; Xing, Lu-Juan; Zhou, Guang-Hong; Zhang, Wan-Gang

    2016-11-01

    The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96Wcm(-2)) and treatment time (30, 60, 90 and 120min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20kHz and fresh beef at 48h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P<0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P<0.05). SDS-PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals. PMID:27245955

  9. Proteins comparison through probabilistic optimal structure local alignment

    PubMed Central

    Micale, Giovanni; Pulvirenti, Alfredo; Giugno, Rosalba; Ferro, Alfredo

    2014-01-01

    Multiple local structure comparison helps to identify common structural motifs or conserved binding sites in 3D structures in distantly related proteins. Since there is no best way to compare structures and evaluate the alignment, a wide variety of techniques and different similarity scoring schemes have been proposed. Existing algorithms usually compute the best superposition of two structures or attempt to solve it as an optimization problem in a simpler setting (e.g., considering contact maps or distance matrices). Here, we present PROPOSAL (PROteins comparison through Probabilistic Optimal Structure local ALignment), a stochastic algorithm based on iterative sampling for multiple local alignment of protein structures. Our method can efficiently find conserved motifs across a set of protein structures. Only the distances between all pairs of residues in the structures are computed. To show the accuracy and the effectiveness of PROPOSAL we tested it on a few families of protein structures. We also compared PROPOSAL with two state-of-the-art tools for pairwise local alignment on a dataset of manually annotated motifs. PROPOSAL is available as a Java 2D standalone application or a command line program at http://ferrolab.dmi.unict.it/proposal/proposal.html. PMID:25228906

  10. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  11. The Effect of Loops on the Structural Organization of α-Helical Membrane Proteins

    PubMed Central

    Tastan, Oznur; Klein-Seetharaman, Judith; Meirovitch, Hagai

    2009-01-01

    Loops connecting the transmembrane (TM) α-helices in membrane proteins are expected to affect the structural organization of the thereby connected helices and the helical bundles as a whole. This effect, which has been largely ignored previously, is studied here by analyzing the x-ray structures of 41 α-helical membrane proteins. First we define the loop flexibility ratio, R, and find that 53% of the loops are stretched, where a stretched loop constrains the distance between the two connected helices. The significance of this constraining effect is supported by experiments carried out with bacteriorhodopsin and rhodopsin, in which cutting or eliminating their (predominately stretched) loops has led to a decrease in protein stability, and for rhodopsin, in most cases, also to the destruction of the structure. We show that for nonstretched loops in the extramembranous regions, the fraction of hydrophobic residues is comparable to that for soluble proteins; furthermore (as is also the case for soluble proteins), the hydrophobic residues in these regions are preferentially buried. This is expected to lead to the compact structural organization of the loops, which is transferred to the TM helices, causing them to assemble. We argue that a soluble protein complexed with a membrane protein similarly promotes compactness; other properties of such complexes are also studied. We calculate complementary attractive interactions between helices, including hydrogen bonds and van der Waals interactions of sequential motifs, such as GXXXG. The relative and combined effects of all these factors on the association of the TM helices are discussed and protein structures with only a few of these factors are analyzed. Our study emphasizes the need for classifying membrane proteins into groups according to structural organization. This classification should be considered when procedures for structural analysis or prediction are developed and applied. Detailed analysis of each structure

  12. Atrazine Affects Phosphoprotein and Protein Expression in MCF-10A Human Breast Epithelial Cells

    PubMed Central

    Huang, Peixin; Yang, John; Song, Qisheng; Sheehan, David

    2014-01-01

    Atrazine, a member of the 2-chloro-s-triazine family of herbicides, is the most widely used pesticide in the world and often detected in agriculture watersheds. Although it was generally considered as an endocrine disruptor, posing a potential threat to human health, the molecular mechanisms of atrazine effects remain unclear. Using two-dimensional gel electrophoresis, we identified a panel of differentially expressed phosphoproteins and total proteins in human breast epithelial MCF-10A cells after being exposed to environmentally relevant concentrations of atrazine. Atrazine treatments for 6 h resulted in differential expression of 4 phosphoproteins and 8 total-proteins as compared to the control cells (>1.5-fold, p < 0.05). MALDI-TOF MS/MS analysis revealed that the differentially expressed proteins belong to various cellular compartments (nucleus, cytosol, membrane) and varied in function, including those regulating the stress response such as peroxiredoxin I, HSP70 and HSP27; structural proteins such as tropomyosin and profilin 1; and oncogenesis proteins such as ANP32A. Six of the 12 identified proteins were verified by quantitative PCR for their transcript levels. The most up-regulated phosphoprotein by atrazine treatment, ANP32A, was further analyzed for its expression, distribution and cellular localization using Western blot and immunocytochemical approaches. The results revealed that ANP32 expression after atrazine treatment increased dose and time dependently and was primarily located in the nucleus. This study may provide new evidence on the potential toxicity of atrazine in human cells. PMID:25275270

  13. Structural and leakage integrity of tubes affected by circumferential cracking

    SciTech Connect

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  14. Structure characterization of protein fractions from lotus ( Nelumbo nucifera) seed

    NASA Astrophysics Data System (ADS)

    Zeng, Hong-Yan; Cai, Lian-Hui; Cai, Xi-Ling; Wang, Ya-Ju; Li, Yu-Qin

    2011-08-01

    Protein fractionation of lotus seed was carried out and the structures of the protein fractions were studied. Fourier transform infrared spectroscopy (FTIR) as well as ultraviolet visible spectroscopy (UV-vis) was used to investigate changes in molecular structures of the protein fractions. FTIR and UV-vis spectra showed the protein fractions had different protein molecular structures. FTIR spectra showed β-sheets and β-turns as the major secondary structures in the individual protein fractions, while the amounts of α-helix and random coil structures among the different fractions did not significantly change. The amounts of β-sheet structures of albumin and globulin were significantly higher than ones of prolamin and glutelin, implying albumin and globulin had high stabilities because of the high content in β-sheet structures. The observed similarity in the amounts of α-helix, random coil, β-sheet and β-turn structures shared by albumin and globulin indicated that their interior conformations were similar.

  15. Sequence and structural analysis of BTB domain proteins

    PubMed Central

    Stogios, Peter J; Downs, Gregory S; Jauhal, Jimmy JS; Nandra, Sukhjeen K; Privé, Gilbert G

    2005-01-01

    Background The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure. Results We surveyed the protein architecture, genomic distribution and sequence conservation of BTB domain proteins in 17 fully sequenced eukaryotes. The BTB domain is typically found as a single copy in proteins that contain only one or two other types of domain, and this defines the BTB-zinc finger (BTB-ZF), BTB-BACK-kelch (BBK), voltage-gated potassium channel T1 (T1-Kv), MATH-BTB, BTB-NPH3 and BTB-BACK-PHR (BBP) families of proteins, among others. In contrast, the Skp1 and ElonginC proteins consist almost exclusively of the core BTB fold. There are numerous lineage-specific expansions of BTB proteins, as seen by the relatively large number of BTB-ZF and BBK proteins in vertebrates, MATH-BTB proteins in Caenorhabditis elegans, and BTB-NPH3 proteins in Arabidopsis thaliana. Using the structural homology between Skp1 and the PLZF BTB homodimer, we present a model of a BTB-Cul3 SCF-like E3 ubiquitin ligase complex that shows that the BTB dimer or the T1 tetramer is compatible in this complex. Conclusion Despite widely divergent sequences, the BTB fold is structurally well conserved. The fold has adapted to several different modes of self-association and interactions with non-BTB proteins. PMID:16207353

  16. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  17. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the tempalte protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured. PMID:21541664

  18. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  19. A Dominant Factor for Structural Classification of Protein Crystals.

    PubMed

    Qi, Fei; Fudo, Satoshi; Neya, Saburo; Hoshino, Tyuji

    2015-08-24

    With the increasing number of solved protein crystal structures, much information on protein shape and atom geometry has become available. It is of great interest to know the structural diversity for a single kind of protein. Our preliminary study suggested that multiple crystal structures of a single kind of protein can be classified into several groups from the viewpoint of structural similarity. In order to broadly examine this finding, cluster analysis was applied to the crystal structures of hemoglobin (Hb), myoglobin (Mb), human serum albumin (HSA), hen egg-white lysozyme (HEWL), and human immunodeficiency virus type 1 protease (HIV-1 PR), downloaded from the Protein Data Bank (PDB). As a result of classification by cluster analysis, 146 crystal structures of Hb were separated into five groups. The crystal structures of Mb (n = 284), HEWL (n = 336), HSA (n = 63), and HIV-1 PR (n = 488) were separated into six, five, three, and six groups, respectively. It was found that a major factor causing these structural separations is the space group of crystals and that crystallizing agents have an influence on the crystal structures. Amino acid mutation is a minor factor for the separation because no obvious point mutation making a specific cluster group was observed for the five kinds of proteins. In the classification of Hb and Mb, the species of protein source such as humans, rabbits, and mice is another significant factor. When the difference in amino sequence is large among species, the species of protein source is the primary factor causing cluster separation in the classification of crystal structures. PMID:26230289

  20. Protein structure determination by exhaustive search of Protein Data Bank derived databases

    PubMed Central

    Stokes-Rees, Ian; Sliz, Piotr

    2010-01-01

    Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database. PMID:21098306

  1. Protein structure determination by exhaustive search of Protein Data Bank derived databases.

    PubMed

    Stokes-Rees, Ian; Sliz, Piotr

    2010-12-14

    Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database. PMID:21098306

  2. ArchDB 2014: structural classification of loops in proteins

    PubMed Central

    Bonet, Jaume; Planas-Iglesias, Joan; Garcia-Garcia, Javier; Marín-López, Manuel A.; Fernandez-Fuentes, Narcis; Oliva, Baldo

    2014-01-01

    The function of a protein is determined by its three-dimensional structure, which is formed by regular (i.e. β-strands and α-helices) and non-periodic structural units such as loops. Compared to regular structural elements, non-periodic, non-repetitive conformational units enclose a much higher degree of variability—raising difficulties in the identification of regularities, and yet represent an important part of the structure of a protein. Indeed, loops often play a pivotal role in the function of a protein and different aspects of protein folding and dynamics. Therefore, the structural classification of protein loops is an important subject with clear applications in homology modelling, protein structure prediction, protein design (e.g. enzyme design and catalytic loops) and function prediction. ArchDB, the database presented here (freely available at http://sbi.imim.es/archdb), represents such a resource and has been an important asset for the scientific community throughout the years. In this article, we present a completely reworked and updated version of ArchDB. The new version of ArchDB features a novel, fast and user-friendly web-based interface, and a novel graph-based, computationally efficient, clustering algorithm. The current version of ArchDB classifies 149,134 loops in 5739 classes and 9608 subclasses. PMID:24265221

  3. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  4. Protein Structure and Stability in Neat Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Bihari, Malvika; Russell, Thomas P.; Hoagland, David A.

    2010-03-01

    Ionic liquid (IL) as a medium for room temperature preservation of biomacromolecules has been proposed, and to investigate the possibility, we studied physicochemical and enzymatic properties of several proteins in the neat hydrophilic IL, ethylmethyl imidazolium ethyl sulfate [EMIM][EtSO4]. Molecular dissolution of α-chymotypsin, cytochrome-c and other proteins could be achieved with moderate heating (60C). Dynamic light scattering and dilute solution viscometry typically reveal protein size slightly larger than in buffer, suggesting different solvation or protein unfolding. Spectroscopic methods (UV-Vis, fluorescence, FTIR, CD) show largely unchanged secondary structure but significantly changed tertiary structure. IL-dissolved cytochrome-c has heightened peroxidase activity, supporting the same conclusions. Transfer of dissolved protein from IL to buffer and ensuing alterations to protein conformation/activity will be discussed.

  5. Biological Insights from Structures of Two-Component Proteins

    PubMed Central

    Gao, Rong; Stock, Ann M.

    2013-01-01

    Two-component signal transduction based on phosphotransfer from a histidine protein kinase to a response regulator protein is a prevalent strategy for coupling environmental stimuli to adaptive responses in bacteria. In both histidine kinases and response regulators, modular domains with conserved structures and biochemical activities adopt different conformational states in the presence of stimuli or upon phosphorylation, enabling a diverse array of regulatory mechanisms based on inhibitory and/or activating protein-protein interactions imparted by different domain arrangements. This review summarizes some of the recent structural work that has provided insight to the functioning of bacterial histidine kinases and response regulators. Particular emphasis is placed on identifying features that are expected to be conserved among different two-component proteins from those that are expected to differ, with the goal of defining the extent to which knowledge of previously characterized two-component proteins can be applied to newly discovered systems. PMID:19575571

  6. Drug leads for interactive protein targets with unknown structure.

    PubMed

    Fernández, Ariel; Scott, L Ridgway

    2016-04-01

    The disruption of protein-protein interfaces (PPIs) remains a challenge in drug discovery. The problem becomes daunting when the structure of the target protein is unknown and is even further complicated when the interface is susceptible to disruptive phosphorylation. Based solely on protein sequence and information about phosphorylation-susceptible sites within the PPI, a new technology has been developed to identify drug leads to inhibit protein associations. Here we reveal this technology and contrast it with current structure-based technologies for the generation of drug leads. The novel technology is illustrated by a patented invention to treat heart failure. The success of this technology shows that it is possible to generate drug leads in the absence of target structure. PMID:26484433

  7. A novel method to compare protein structures using local descriptors

    PubMed Central

    2011-01-01

    Background Protein structure comparison is one of the most widely performed tasks in bioinformatics. However, currently used methods have problems with the so-called "difficult similarities", including considerable shifts and distortions of structure, sequential swaps and circular permutations. There is a demand for efficient and automated systems capable of overcoming these difficulties, which may lead to the discovery of previously unknown structural relationships. Results We present a novel method for protein structure comparison based on the formalism of local descriptors of protein structure - DEscriptor Defined Alignment (DEDAL). Local similarities identified by pairs of similar descriptors are extended into global structural alignments. We demonstrate the method's capability by aligning structures in difficult benchmark sets: curated alignments in the SISYPHUS database, as well as SISY and RIPC sets, including non-sequential and non-rigid-body alignments. On the most difficult RIPC set of sequence alignment pairs the method achieves an accuracy of 77% (the second best method tested achieves 60% accuracy). Conclusions DEDAL is fast enough to be used in whole proteome applications, and by lowering the threshold of detectable structure similarity it may shed additional light on molecular evolution processes. It is well suited to improving automatic classification of structure domains, helping analyze protein fold space, or to improving protein classification schemes. DEDAL is available online at http://bioexploratorium.pl/EP/DEDAL. PMID:21849047

  8. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data.

    PubMed

    Ohue, Masahito; Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ishida, Takashi; Akiyama, Yutaka

    2014-01-01

    The elucidation of protein-protein interaction (PPI) networks is important for understanding cellular structure and function and structure-based drug design. However, the development of an effective method to conduct exhaustive PPI screening represents a computational challenge. We have been investigating a protein docking approach based on shape complementarity and physicochemical properties. We describe here the development of the protein-protein docking software package "MEGADOCK" that samples an extremely large number of protein dockings at high speed. MEGADOCK reduces the calculation time required for docking by using several techniques such as a novel scoring function called the real Pairwise Shape Complementarity (rPSC) score. We showed that MEGADOCK is capable of exhaustive PPI screening by completing docking calculations 7.5 times faster than the conventional docking software, ZDOCK, while maintaining an acceptable level of accuracy. When MEGADOCK was applied to a subset of a general benchmark dataset to predict 120 relevant interacting pairs from 120 x 120 = 14,400 combinations of proteins, an F-measure value of 0.231 was obtained. Further, we showed that MEGADOCK can be applied to a large-scale protein-protein interaction-screening problem with accuracy better than random. When our approach is combined with parallel high-performance computing systems, it is now feasible to search and analyze protein-protein interactions while taking into account three-dimensional structures at the interactome scale. MEGADOCK is freely available at http://www.bi.cs.titech.ac.jp/megadock. PMID:23855673

  9. Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation.

    PubMed

    Bate, Clive; Nolan, William; Williams, Alun

    2016-03-01

    There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrP(C)). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc) in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrP(C) was associated with greater concentrations of gangliosides and cholesterol than PrP(C). In addition, the targeting of desialylated PrP(C) to lipid rafts showed greater resistance to cholesterol depletion than PrP(C). The presence of desialylated PrP(C) caused the dissociation of cytoplasmic phospholipase A2 (cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrP(Sc) production. We conclude that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation. PMID:26901126

  10. Cyanobacteria Affect Fitness and Genetic Structure of Experimental Daphnia Populations.

    PubMed

    Drugă, Bogdan; Turko, Patrick; Spaak, Piet; Pomati, Francesco

    2016-04-01

    Zooplankton communities can be strongly affected by cyanobacterial blooms, especially species of genus Daphnia, which are key-species in lake ecosystems. Here, we explored the effect of microcystin/nonmicrocystin (MC/non-MC) producing cyanobacteria in the diet of experimental Daphnia galeata populations composed of eight genotypes. We used D. galeata clones hatched from ephippia 10 to 60 years old, which were first tested in monocultures, and then exposed for 10 weeks as mixed populations to three food treatments consisting of green algae combined with cyanobacteria able/unable of producing MC. We measured the expression of nine genes potentially involved in Daphnia acclimation to cyanobacteria: six protease genes, one ubiquitin-conjugating enzyme gene, and two rRNA genes, and then we tracked the dynamics of the genotypes in mixed populations. The expression pattern of one protease and the ubiquitin-conjugating enzyme genes was positively correlated with the increased fitness of competing clones in the presence of cyanobacteria, suggesting physiological plasticity. The genotype dynamics in mixed populations was only partially related to the growth rates of clones in monocultures and varied strongly with the food. Our results revealed strong intraspecific differences in the tolerance of D. galeata clones to MC/non-MC-producing cyanobacteria in their diet, suggesting microevolutionary effects. PMID:26943751

  11. Earthworm ecology affects the population structure of their Verminephrobacter symbionts.

    PubMed

    Viana, Flávia; Jensen, Christopher Erik; Macey, Michael; Schramm, Andreas; Lund, Marie Braad

    2016-05-01

    Earthworms carry species-specific Verminephrobacter symbionts in their nephridia (excretory organs). The symbionts are vertically transmitted via the cocoon, can only colonize the host during early embryonic development, and have co-speciated with their host for about 100 million years. Although several studies have addressed Verminephrobacter diversity between worm species, the intra-species diversity of the symbiont population has never been investigated. In this study, symbiont population structure was examined by using a multi-locus sequence typing (MLST) approach on Verminephrobacter isolated from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and Eisenia fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils. Three distinct populations were investigated for both types and, according to MLST analysis of 193 Verminephrobacter isolates, the symbiont community in each worm individual was very homogeneous. The more solitary A. tuberculata carried unique symbiont populations in 9 out of 10 host individuals, whereas the symbiont populations in the social compost worms were homogeneous across host individuals from the same population. These data suggested that host ecology shaped the population structure of Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms led to the hypothesis that Verminephrobacter could be transferred bi-parentally or via leaky horizontal transmission in high-density, frequently mating worm populations. PMID:27040820

  12. Does small scale structure significantly affect cosmological dynamics?

    PubMed

    Adamek, Julian; Clarkson, Chris; Durrer, Ruth; Kunz, Martin

    2015-02-01

    The large-scale homogeneity and isotropy of the Universe is generally thought to imply a well-defined background cosmological model. It may not. Smoothing over structure adds in an extra contribution, transferring power from small scales up to large. Second-order perturbation theory implies that the effect is small, but suggests that formally the perturbation series may not converge. The amplitude of the effect is actually determined by the ratio of the Hubble scales at matter-radiation equality and today-which are entirely unrelated. This implies that a universe with significantly lower temperature today could have significant backreaction from more power on small scales, and so provides the ideal testing ground for understanding backreaction. We investigate this using two different N-body numerical simulations-a 3D Newtonian and a 1D simulation which includes all relevant relativistic effects. We show that while perturbation theory predicts an increasing backreaction as more initial small-scale power is added, in fact the virialization of structure saturates the backreaction effect at the same level independently of the equality scale. This implies that backreaction is a small effect independently of initial conditions. Nevertheless, it may still contribute at the percent level to certain cosmological observables and therefore it cannot be neglected in precision cosmology. PMID:25699430

  13. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8

    SciTech Connect

    Wang, Chengliang; Zhang, Qiongdi; Hang, Tianrong; Tao, Yue; Ma, Xukai; Wu, Minhao; Zhang, Xuan Zang, Jianye

    2015-08-28

    The structure of the complex of NO66 and Rpl8 was solved in the native state and NO66 recognizes the consensus motif NHXH . Tetramerization is required for efficient substrate binding and catalysis by NO66. The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66{sup 176–C} complexed with Rpl8{sup 204–224} in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.

  14. Structural and functional properties of hemp seed protein products.

    PubMed

    Malomo, Sunday A; He, Rong; Aluko, Rotimi E

    2014-08-01

    The effects of pH and protein concentration on some structural and functional properties of hemp seed protein isolate (HPI, 84.15% protein content) and defatted hemp seed protein meal (HPM, 44.32% protein content) were determined. The HPI had minimum protein solubility (PS) at pH 4.0, which increased as pH was decreased or increased. In contrast, the HPM had minimum PS at pH 3.0, which increased at higher pH values. Gel electrophoresis showed that some of the high molecular weight proteins (>45 kDa) present in HPM were not well extracted by the alkali and were absent or present in low ratio in the HPI polypeptide profile. The amino acid composition showed that the isolation process increased the Arg/Lys ratio of HPI (5.52%) when compared to HPM (3.35%). Intrinsic fluorescence and circular dichroism data indicate that the HPI proteins had a well-defined structure at pH 3.0, which was lost as pH value increased. The differences in structural conformation of HPI at different pH values were reflected as better foaming capacity at pH 3.0 when compared to pH 5.0, 7.0, and 9.0. At 10 and 25 mg/mL protein concentrations, emulsions formed by the HPM had smaller oil droplet sizes (higher quality), when compared to the HPI-formed emulsions. In contrast at 50 mg/mL protein concentration, the HPI-formed emulsions had smaller oil droplet sizes (except at pH 3.0). We conclude that the functional properties of hemp seed protein products are dependent on structural conformations as well as protein concentration and pH. PMID:25048774

  15. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    NASA Astrophysics Data System (ADS)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2016-07-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow ( Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  16. Dietary zinc depletion and repletion affects plasma proteins: an analysis of the plasma proteome

    PubMed Central

    Wickwire, Kathie; Ho, Emily; Chung, Carolyn S.; King, Janet

    2014-01-01

    Zinc (Zn) deficiency is a problem worldwide. Current methods for assessing Zn status are limited to measuring plasma or serum Zn within populations suspected of deficiency. Despite the high prevalence of Zn deficiency in the human population there are no methods currently available for sensitively assessing Zn status among individuals. The purpose of this research was to utilize a proteomic approach using two-dimensional gel electrophoresis (2DE) and mass spectrometry to identify protein biomarkers that were sensitive to changes in dietary Zn levels in humans. Proteomic analysis was performed in human plasma samples (n = 6) obtained from healthy adult male subjects that completed a dietary Zn depletion/repletion protocol, current dietary zinc intake has a greater effect on fractional zinc absorption than does longer term zinc consumption in healthy adult men. Chung et al. (Am J Clin Nutr 87 (5):1224–1229, 2008). After a 13 day Zn acclimatization period where subjects consumed a Zn-adequate diet, the male subjects consumed a marginal Zn-depleted diet for 42 days followed by consumption of a Zn-repleted diet for 28 days. The samples at baseline, end of depletion and end of repletion were pre-fractionated through immuno-affinity columns to remove 14 highly abundant proteins, and each fraction separated by 2DE. Following staining by colloidal Coomassie blue and densitometric analysis, three proteins were identified by mass spectrometry as affected by changes in dietary Zn. Fibrin β and chain E, fragment double D were observed in the plasma protein fraction that remained bound to the immuno-affinity column. An unnamed protein that was related to immunoglobulins was observed in the immunode-pleted plasma fraction. Fibrin β increased two-fold following the Zn depletion period and decreased to baseline values following the Zn repletion period; this protein may serve as a viable biomarker for Zn status in the future. PMID:23255060

  17. Dopamine induces the accumulation of insoluble prion protein and affects autophagic flux

    PubMed Central

    da Luz, Marcio H. M.; Peres, Italo T.; Santos, Tiago G.; Martins, Vilma R.; Icimoto, Marcelo Y.; Lee, Kil S.

    2015-01-01

    Accumulation of protein aggregates is a histopathological hallmark of several neurodegenerative diseases, but in most cases the aggregation occurs without defined mutations or clinical histories, suggesting that certain endogenous metabolites can promote aggregation of specific proteins. One example that supports this hypothesis is dopamine and its metabolites. Dopamine metabolism generates several oxidative metabolites that induce aggregation of α-synuclein, and represents the main etiology of Parkinson's diseases. Because dopamine and its metabolites are unstable and can be highly reactive, we investigated whether these molecules can also affect other proteins that are prone to aggregate, such as cellular prion protein (PrPC). In this study, we showed that dopamine treatment of neuronal cells reduced the number of viable cells and increased the production of reactive oxygen species (ROS) as demonstrated in previous studies. Overall PrPC expression level was not altered by dopamine treatment, but its unglycosylated form was consistently reduced at 100 μM of dopamine. At the same concentration, the level of phosphorylated mTOR and 4EBP1 was also reduced. Moreover, dopamine treatment decreased the solubility of PrPC, and increased its accumulation in autophagosomal compartments with concomitant induction of LC3-II and p62/SQSTM1 levels. In vitro oxidation of dopamine promoted formation of high-order oligomers of recombinant prion protein. These results suggest that dopamine metabolites alter the conformation of PrPC, which in turn is sorted to degradation pathway, causing autophagosome overload and attenuation of protein synthesis. Accumulation of PrPC aggregates is an important feature of prion diseases. Thus, this study brings new insight into the dopamine metabolism as a source of endogenous metabolites capable of altering PrPC solubility and its subcellular localization. PMID:25698927

  18. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    NASA Astrophysics Data System (ADS)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2015-10-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow (Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  19. The Use of Experimental Structures to Model Protein Dynamics

    PubMed Central

    Katebi, Ataur R.; Sankar, Kannan; Jia, Kejue; Jernigan, Robert L.

    2014-01-01

    Summary The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high – for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods – Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to

  20. The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum.

    PubMed

    Lipschutz, Joshua H; Lingappa, Vishwanath R; Mostov, Keith E

    2003-06-01

    We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259-4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61beta homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61beta is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By co-immunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61beta component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61beta. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of m

  1. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  2. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures.

    PubMed

    Slinger, Betty L; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M

    2015-12-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  3. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. PMID:25787689

  4. Structural studies of human glioma pathogenesis-related protein 1

    SciTech Connect

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  5. Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches

    PubMed Central

    MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF

    2008-01-01

    Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962

  6. Crystal structures of fusion proteins with large-affinity tags.

    PubMed

    Smyth, Douglas R; Mrozkiewicz, Marek K; McGrath, William J; Listwan, Pawel; Kobe, Bostjan

    2003-07-01

    The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest. PMID:12824478

  7. Structural Similarity and Classification of Protein Interaction Interfaces

    PubMed Central

    Zhao, Nan; Pang, Bin; Shyu, Chi-Ren; Korkin, Dmitry

    2011-01-01

    Interactions between proteins play a key role in many cellular processes. Studying protein-protein interactions that share similar interaction interfaces may shed light on their evolution and could be helpful in elucidating the mechanisms behind stability and dynamics of the protein complexes. When two complexes share structurally similar subunits, the similarity of the interaction interfaces can be found through a structural superposition of the subunits. However, an accurate detection of similarity between the protein complexes containing subunits of unrelated structure remains an open problem. Here, we present an alignment-free machine learning approach to measure interface similarity. The approach relies on the feature-based representation of protein interfaces and does not depend on the superposition of the interacting subunit pairs. Specifically, we develop an SVM classifier of similar and dissimilar interfaces and derive a feature-based interface similarity measure. Next, the similarity measure is applied to a set of 2,806×2,806 binary complex pairs to build a hierarchical classification of protein-protein interactions. Finally, we explore case studies of similar interfaces from each level of the hierarchy, considering cases when the subunits forming interactions are either homologous or structurally unrelated. The analysis has suggested that the positions of charged residues in the homologous interfaces are not necessarily conserved and may exhibit more complex conservation patterns. PMID:21589874

  8. A physical approach to protein structure prediction: CASP4 results

    SciTech Connect

    Crivelli, Silvia; Eskow, Elizabeth; Bader, Brett; Lamberti, Vincent; Byrd, Richard; Schnabel, Robert; Head-Gordon, Teresa

    2001-02-27

    We describe our global optimization method called Stochastic Perturbation with Soft Constraints (SPSC), which uses information from known proteins to predict secondary structure, but not in the tertiary structure predictions or in generating the terms of the physics-based energy function. Our approach is also characterized by the use of an all atom energy function that includes a novel hydrophobic solvation function derived from experiments that shows promising ability for energy discrimination against misfolded structures. We present the results obtained using our SPSC method and energy function for blind prediction in the 4th Critical Assessment of Techniques for Protein Structure Prediction (CASP4) competition, and show that our approach is more effective on targets for which less information from known proteins is available. In fact our SPSC method produced the best prediction for one of the most difficult targets of the competition, a new fold protein of 240 amino acids.

  9. An object-oriented database for protein structure analysis.

    PubMed

    Gray, P M; Paton, N W; Kemp, G J; Fothergill, J E

    1990-03-01

    An object-oriented database system has been developed which is being used to store protein structure data. The database can be queried using the logic programming language Prolog or the query language Daplex. Queries retrieve information by navigating through a network of objects which represent the primary, secondary and tertiary structures of proteins. Routines written in both Prolog and Daplex can integrate complex calculations with the retrieval of data from the database, and can also be stored in the database for sharing among users. Thus object-oriented databases are better suited to prototyping applications and answering complex queries about protein structure than relational databases. This system has been used to find loops of varying length and anchor positions when modelling homologous protein structures. PMID:2188261

  10. Elasticity of vesicles affects hairless mouse skin structure and permeability.

    PubMed

    van den Bergh, B A; Bouwstra, J A; Junginger, H E; Wertz, P W

    1999-12-01

    One of the possibilities for increasing the penetration rate of drugs through the skin is the use of vesicular systems. Currently, special attention is paid to the elastic properties of liquid-state vesicles, which are supposed to have superior properties compared to gel-state vesicles with respect to skin interactions. In this study, the effects of vesicles on hairless mouse skin, both in vivo and in vitro, were studied in relation to the composition of vesicles. The interactions of elastic vesicles containing the single chain surfactant octaoxyethylene laurate-ester (PEG-8-L) and sucrose laurate-ester (L-595) with hairless mouse skin were studied, in vivo, after non-occlusive application for 1, 3 and 6 h. The skin ultrastructure was examined by ruthenium tetroxide electron microscopy (TEM) and histology. The extent, to which vesicle constituents penetrated into the stratum corneum, was quantified by thin layer chromatography (TLC). The interactions of the elastic vesicles containing PEG-8-L and L-595 surfactants were compared with those observed after treatment with rigid vesicles containing the surfactant sucrose stearate-ester (Wasag-7). Furthermore, skin permeability experiments were carried out to investigate the effect of treatment with PEG-8-L micelles, elastic vesicles (containing PEG-8-L and L-595 surfactants) or rigid Wasag-7 vesicles on the 3H(2)O transport through hairless mouse skin, in vitro, after non-occlusive application. Treatment of hairless mouse skin with the elastic vesicles affected the ultrastructure of the stratum corneum: distinct regions with lamellar stacks derived from the vesicles were observed in intercellular spaces of the stratum corneum. These stacks disrupted the organization of skin bilayers leading to an increased skin permeability, whereas no changes in the ultrastructure of the underlying viable epidermis were observed. Treatment with rigid Wasag-7 vesicles did not affect the skin ultrastructure or skin permeability. TLC

  11. GABA(B) receptor subunit 1 binds to proteins affected in 22q11 deletion syndrome.

    PubMed

    Zunner, Dagmar; Deschermeier, Christina; Kornau, Hans-Christian

    2010-03-01

    GABA(B) receptors mediate slow inhibitory effects of the neurotransmitter gamma-aminobutyric acid (GABA) on synaptic transmission in the central nervous system. They function as heterodimeric G-protein-coupled receptors composed of the seven-transmembrane domain proteins GABA(B1) and GABA(B2), which are linked through a coiled-coil interaction. The ligand-binding subunit GABA(B1) is at first retained in the endoplasmic reticulum and is transported to the cell surface only upon assembly with GABA(B2). Here, we report that GABA(B1), via the coiled-coil domain, can also bind to soluble proteins of unknown function, that are affected in 22q11 deletion/DiGeorge syndrome and are therefore referred to as DiGeorge critical region 6 (DGCR6). In transfected neurons the GABA(B1)-DGCR6 association resulted in a redistribution of both proteins into intracellular clusters. Furthermore, the C-terminus of GABA(B2) interfered with the novel interaction, consistent with heterodimer formation overriding transient DGCR6-binding to GABA(B1). Thus, sequential coiled-coil interactions may direct GABA(B1) into functional receptors. PMID:20036641

  12. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  13. Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values

    PubMed Central

    2015-01-01

    This study was investigated to determine the effect of microbial transglutaminase (MTG) with or without red bean protein isolate (RBPI) on the porcine myofibrillar protein (MP) gel functionality at different pH values (pH 5.75-6.5). Cooking yield (CY, %), gel strength (GS, gf), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were determined to measure gel characteristics. Since no differences were observed the interaction between 1% RBPI and pH, data were pooled. CY increased with the addition of 1% RBPI, while it was not affected by pH values. GS increased with increased pH and increased when 1% RBPI was added, regardless of pH. There were distinctive endothermic protein peaks, at 56.55 and 75.02℃ at pH 5.75, and 56.47 and 72.43℃ at pH 6.5 in DSC results, which revealed decreased temperature of the first peak with the addition of 1% RBPI and increased pH. In SEM, a more compact structure with fewer voids was shown with the addition of 1% RBPI and increased pH from 5.75 to 6.5. In addition, the three-dimensional structure was highly dense and hard at pH 6.5 when RBPI was added. These results indicated that the addition of 1% RBPI at pH 6.5 in MTG-mediated MP represent the optimum condition to attain maximum gel-formation and protein gel functionality. PMID:26877645

  14. Bovine parotid secretory protein: structure, expression and relatedness to other BPI (bactericidal/permeability-increasing protein)-like proteins.

    PubMed

    Wheeler, T T; Hood, K; Oden, K; McCracken, J; Morris, C A

    2003-08-01

    Members of the family of BPI (bactericidal/permeability-increasing protein)-like proteins are as yet incompletely characterized, particularly in cattle, where full-length sequence information is available for only three of the 13 family members known from other species. Structural bioinformatic analyses incorporating bovine homologues of several members of the BPI-like protein family, including two forms of bovine parotid secretory protein (PSP), showed that this family is also present in cattle. Expression analyses of several members of the BPI-like protein family in cattle, including PSP (Bsp30), von Ebner's minor salivary gland protein (VEMSGP) and lung-specific X protein (LUNX), showed a restricted pattern of expression, consistent with earlier hypotheses that these proteins function in the innate immune response to bacteria. The possible role of bovine PSP in susceptibility to pasture bloat in cattle is discussed. PMID:12887305

  15. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    PubMed

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  16. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  17. Enigma, a mitochondrial protein affecting lifespan and oxidative stress response in Drosophila

    PubMed Central

    Mourikis, Philippos; Hurlbut, Gregory D.; Artavanis-Tsakonas, Spyros

    2006-01-01

    Deregulation of energy metabolism by external interventions or mutations in metabolic genes can extend lifespan in a wide range of species. We describe mutations in Drosophila melanogaster that confer resistance to oxidative stress and display a longevity phenotype. These phenotypes are associated with molecular lesions in a hitherto uncharacterized gene we named Enigma. We show that Enigma encodes a mitochondrial protein with homology to enzymes of the β-oxidation of fatty acids and that mutations in this locus affect lipid homeostasis. Our analysis provides further support to the notion that lipid metabolism may play a central role in metazoan lifespan regulation. PMID:16434470

  18. Depletion of BBS Protein LZTFL1 Affects Growth and Causes Retinal Degeneration in Mice.

    PubMed

    Jiang, Jiangsong; Promchan, Kanyarat; Jiang, Hong; Awasthi, Parirokh; Marshall, Heather; Harned, Adam; Natarajan, Ven

    2016-06-20

    Bardet-Biedl syndrome (BBS) is a heterogeneous disease characterized by deficiencies in various organs that are caused by defects in genes involved in the genesis, structural maintenance, and protein trafficking of cilia. Leucine zipper transcription factor-like 1 (LZTFL1) has been identified as a BBS protein (BBS17), because patients with mutations in this gene exhibit the common BBS phenotypes. In this study, we generated a knockout mouse model to investigate the effects of LZTFL1 depletion. Lztfl1 knockout mice were born with low birth weight, reached similar weight to those of wild-type mice at 10 weeks of age, and later gained more weight than their wild-type counterparts. LZTFL1 was localized to the primary cilium of kidney cells, and the absence of LZTFL1 increased the ciliary localization of BBS9. Moreover, in the retinas of Lztfl1 knockout mice, the photoreceptor outer segment was shortened, the distal axoneme of photoreceptor connecting cilium was significantly enlarged, and rhodopsin was targeted to the outer nuclear layer. TUNEL assay showed that many of these abnormal photoreceptor cells in Lztfl1 knockout mice underwent apoptosis. Interestingly, the absence of LZTFL1 caused an abnormal increase of the adaptor protein complex 1 (AP1) in some photoreceptor cells. Based on these data, we conclude that LZTFL1 is a cilium protein and regulates animal weight and photoreceptor connecting cilium function probably by controlling microtubule assembly and protein trafficking in cilia. PMID:27312011

  19. Structural protein 4.1 is located in mammalian centrosomes

    SciTech Connect

    Krauss, S.W.; Chasis, J.A.; Rogers, C.; Mohandas, N.; Krockmalnic, G.; Penman, S.

    1997-07-01

    Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are rearranged during the cell cycle. Here we report that protein 4.1 epitopes are present in centrosomes of human and murine cells and are detected by using affinity-purified antibodies specific for 80-kDa red cell 4.1 and for 4.1 peptides. Immunofluorescence, by both conventional and confocal microscopy, showed that protein 4.1 epitopes localized in the pericentriolar region. Protein 4.1 epitopes remained in centrosomes after extraction of cells with detergent, salt, and DNase. Higher resolution electron microscopy of detergent-extracted cell whole mounts showed centrosomal protein 4.1 epitopes distributed along centriolar cylinders and on pericentriolar fibers, at least some of which constitute the filamentous network surrounding each centriole. Double-label electron microscopy showed that protein 4.1 epitopes were predominantly localized in regions also occupied by epitopes for centrosome-specific autoimmune serum 5051 but were not found on microtubules. Our results suggest that protein 4.1 is an integral component of centrosome structure, in which it may play an important role in centrosome function during cell division and organization of cellular architecture.

  20. Overcoming bottlenecks in the membrane protein structural biology pipeline.

    PubMed

    Hardy, David; Bill, Roslyn M; Jawhari, Anass; Rothnie, Alice J

    2016-06-15

    Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future. PMID:27284049

  1. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    PubMed

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  2. Illuminating structural proteins in viral "dark matter" with metaproteomics

    DOE PAGESBeta

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun -Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; Verberkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-02-16

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional darkmatter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore,more » four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Altogether, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.« less

  3. The ts111 Mutation of Paramecium tetraurelia Affects a Member of the Protein Palmitoylation Family.

    PubMed

    Prajer, Małgorzata; Tarcz, Sebastian

    2015-01-01

    The thermosensitive ts111 mutant of Parameciun tetraurelia carries a recessive mutation which causes cell death after 2-8 divisions at the restrictive temperature of 35 degrees C. Expression at 35 degrees C induces disassembly of the infraciliary lattice (ICL). In this study, we found that the ts111 mutation also results in significant abnormalities in the number and structure of contractile vacuole complexes (CVCs) and in their functioning at the restrictive temperature. In order to characterize the ts111 gene, the complementation cloning was performed by microinjection into the macronucleus of an indexed genomic DNA library. The mutation was complemented by a sequence of 852 bp, which differed from the mutant sequence by a single nucleotide substitution. The deduced protein sequence is 284 amino acids long. It contains a domain referred to as the DHHC domain, associated with 2 trans-membrane helices. The DHHC proteins belong to the Palmitoyl-Acyl Transferases (PATs) protein family, which is implicated in the protein palmitoylation process playing the role in protein addressing. The ts111 mutation induces the amino acid change, localized before the first membrane helix. Transformation of ts111 mutant cells with the TS111-GFP gene fusion showed the expected reparation restoring thermoresistance and also demonstrated a localization of the protein in contractile vacuoles, but not in the ICL. The entire gene silencing in wild type cells at restrictive temperature caused the same effect as the expression of a point mutation in ts111 mutant. The authors propose the following hypotheses: (i) function of CVCs at the restrictive temperature depends in Paramecium on the TS111 protein--a member of the PAT family, and the primary effect of the termosensitive ts111 mutation are morphological abnormalities and dysfunction of CVCs, (ii) disassembly of the ICL is a secondary effect of the ts111 mutation, which results from disturbed regulation of the intracellular concentration

  4. Protein short loop prediction in terms of a structural alphabet.

    PubMed

    Tyagi, Manoj; Bornot, Aurélie; Offmann, Bernard; de Brevern, Alexandre G

    2009-08-01

    Loops connect regular secondary structures. In many instances, they are known to play crucial biological roles. To bypass the limitation of secondary structure description, we previously defined a structural alphabet composed of 16 structural prototypes, called Protein Blocks (PBs). It leads to an accurate description of every region of 3D protein backbones and has been used in local structure prediction. In the present study, we used our structural alphabet to predict the loops connecting two repetitive structures. Thus, we showed interest to take into account the flanking regions, leading to prediction rate improvement up to 19.8%, but we also underline the sensitivity of such an approach. This research can be used to propose different structures for the loops and to probe and sample their flexibility. It is a useful tool for ab initio loop prediction and leads to insights into flexible docking approach. PMID:19625218

  5. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    PubMed

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  6. Conformational changes in redox pairs of protein structures

    PubMed Central

    Fan, Samuel W; George, Richard A; Haworth, Naomi L; Feng, Lina L; Liu, Jason Y; Wouters, Merridee A

    2009-01-01

    Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox-active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox-active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox-activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity. PMID:19598234

  7. Microhabitat use affects brain size and structure in intertidal gobies.

    PubMed

    White, Gemma E; Brown, Culum

    2015-01-01

    The ecological cognition hypothesis poses that the brains and behaviours of individuals are largely shaped by the environments in which they live and the associated challenges they must overcome during their lives. Here we examine the effect of environmental complexity on relative brain size in 4 species of intertidal gobies from differing habitats. Two species were rock pool specialists that lived on spatially complex rocky shores, while the remainder lived on dynamic, but structurally simple, sandy shores. We found that rock pool-dwelling species had relatively larger brains and telencephalons in particular, while sand-dwelling species had a larger optic tectum and hypothalamus. In general, it appears that various fish species trade off neural investment in specific brain lobes depending on the environment in which they live. Our previous research suggests that rock pool species have greater spatial learning abilities, enabling them to navigate their spatially complex environment, which may account for their enlarged telencephalon, while sand-dwelling species likely have a reduced need for spatial learning, due to their spatially simple habitat, and a greater need for visual acuity. The dorsal medulla and cerebellum size was unaffected by the habitat in which the fish lived, but there were differences between species indicative of species-specific trade-offs in neural investment. PMID:25896449

  8. Generating folded protein structures with a lattice chain growth algorithm

    NASA Astrophysics Data System (ADS)

    Gan, Hin Hark; Tropsha, Alexander; Schlick, Tamar

    2000-10-01

    We present a new application of the chain growth algorithm to lattice generation of protein structure and thermodynamics. Given the difficulty of ab initio protein structure prediction, this approach provides an alternative to current folding algorithms. The chain growth algorithm, unlike Metropolis folding algorithms, generates independent protein structures to achieve rapid and efficient exploration of configurational space. It is a modified version of the Rosenbluth algorithm where the chain growth transition probability is a normalized Boltzmann factor; it was previously applied only to simple polymers and protein models with two residue types. The independent protein configurations, generated segment-by-segment on a refined cubic lattice, are based on a single interaction site for each amino acid and a statistical interaction energy derived by Miyazawa and Jernigan. We examine for several proteins the algorithm's ability to produce nativelike folds and its effectiveness for calculating protein thermodynamics. Thermal transition profiles associated with the internal energy, entropy, and radius of gyration show characteristic folding/unfolding transitions and provide evidence for unfolding via partially unfolded (molten-globule) states. From the configurational ensembles, the protein structures with the lowest distance root-mean-square deviations (dRMSD) vary between 2.2 to 3.8 Å, a range comparable to results of an exhaustive enumeration search. Though the ensemble-averaged dRMSD values are about 1.5 to 2 Å larger, the lowest dRMSD structures have similar overall folds to the native proteins. These results demonstrate that the chain growth algorithm is a viable alternative to protein simulations using the whole chain.

  9. A Historical Perspective and Overview of Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Wooley, John C.; Ye, Yuzhen

    Carrying on many different biological functions, proteins are all composed of one or more polypeptide chains, each containing from several to hundreds or even thousands of the 20 amino acids. During the 1950s at the dawn of modern biochemistry, an essential question for biochemists was to understand the structure and function of these polypeptide chains. The sequences of protein, also referred to as their primary structures, determine the different chemical properties for different proteins, and thus continue to captivate much of the attention of biochemists. As an early step in characterizing protein chemistry, British biochemist Frederick Sanger designed an experimental method to identify the sequence of insulin (Sanger et al., 1955). He became the first person to obtain the primary structure of a protein and in 1958 won his first Nobel Price in Chemistry. This important progress in sequencing did not answer the question of whether a single (individual) protein has a distinctive shape in three dimensions (3D), and if so, what factors determine its 3D architecture. However, during the period when Sanger was studying the primary structure of proteins, American biochemist Christian Anfinsen observed that the active polypeptide chain of a model protein, bovine pancreatic ribonuclease (RNase), could fold spontaneously into a unique 3D structure, which was later called native conformation of the protein (Anfinsen et al., 1954). Anfinsen also studied the refolding of RNase enzyme and observed that an enzyme unfolded under extreme chemical environment could refold spontaneously back into its native conformation upon changing the environment back to natural conditions (Anfinsen et al., 1961). By 1962, Anfinsen had developed his theory of protein folding (which was summarized in his 1972 Nobel acceptance speech): "The native conformation is determined by the totality of interatomic interactions and hence, by the amino acid sequence, in a given environment."

  10. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    PubMed Central

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-01-01

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Availability and implementation: Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx. Contact: xin.gao@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307635

  11. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    PubMed Central

    Green, James R; Korenberg, Michael J; Aboul-Magd, Mohammed O

    2009-01-01

    Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures) from primary sequence data which makes use of Parallel Cascade Identification (PCI), a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs) are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at . In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP) interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input protein sequence data and also to encode the resulting

  12. First Crystal Structure for a Gold Carbene-Protein Adduct.

    PubMed

    Ferraro, Giarita; Gabbiani, Chiara; Merlino, Antonello

    2016-07-20

    The X-ray structure of the adduct formed in the reaction between the gold N-heterocyclic carbene compound Au(NHC)Cl (with NHC = 1-butyl-3-methyl-imidazole-2-ylidene) and the model protein thaumatin is reported here. The structure reveals binding of Au(NHC)(+) fragments to distinct protein sites. Notably, binding of the gold compound occurs at lysine side chains and at the N-terminal tail; the metal binds the protein after releasing Cl(-) ligand, but retaining NHC fragment. PMID:27364343

  13. Computing a new family of shape descriptors for protein structures.

    PubMed

    Røgen, Peter; Sinclair, Robert

    2003-01-01

    The large-scale 3D structure of a protein can be represented by the polygonal curve through the carbon alpha atoms of the protein backbone. We introduce an algorithm for computing the average number of times that a given configuration of crossings on such polygonal curves is seen, the average being taken over all directions in space. Hereby, we introduce a new family of global geometric measures of protein structures, which we compare with the so-called generalized Gauss integrals. PMID:14632419

  14. Artificial membranes for membrane protein purification, functionality and structure studies.

    PubMed

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. PMID:27284055

  15. SNP2Structure: A Public and Versatile Resource for Mapping and Three-Dimensional Modeling of Missense SNPs on Human Protein Structures

    PubMed Central

    Wang, Difei; Song, Lei; Singh, Varun; Rao, Shruti; An, Lin; Madhavan, Subha

    2015-01-01

    One of the long-standing challenges in biology is to understand how non-synonymous single nucleotide polymorphisms (nsSNPs) change protein structure and further affect their function. While it is impractical to solve all the mutated protein structures experimentally, it is quite feasible to model the mutated structures in silico. Toward this goal, we built a publicly available structure database resource (SNP2Structure, https://apps.icbi.georgetown.edu/snp2structure) focusing on missense mutations, msSNP. Compared with web portals with similar aims, SNP2Structure has the following major advantages. First, our portal offers direct comparison of two related 3D structures. Second, the protein models include all interacting molecules in the original PDB structures, so users are able to determine regions of potential interaction changes when a protein mutation occurs. Third, the mutated structures are available to download locally for further structural and functional analysis. Fourth, we used Jsmol package to display the protein structure that has no system compatibility issue. SNP2Structure provides reliable, high quality mapping of nsSNPs to 3D protein structures enabling researchers to explore the likely functional impact of human disease-causing mutations. PMID:26949480

  16. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis

    PubMed Central

    Wauer, Tobias; Swatek, Kirby N; Wagstaff, Jane L; Gladkova, Christina; Pruneda, Jonathan N; Michel, Martin A; Gersch, Malte; Johnson, Christopher M; Freund, Stefan MV; Komander, David

    2015-01-01

    The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which β5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system. PMID:25527291

  17. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes.

    PubMed

    Singh, Puja; Thomas, Geethu Emily; Gireesh, Koyikulangara K; Manna, Tapas K

    2014-11-14

    Centrosome-mediated microtubule nucleation is essential for spindle assembly during mitosis. Although γ-tubulin complexes have primarily been implicated in the nucleation process, details of the underlying mechanisms remain poorly understood. Here, we demonstrated that a member of the human transforming acidic coiled-coil (TACC) protein family, TACC3, plays a critical role in microtubule nucleation at the centrosome. In mitotic cells, TACC3 knockdown substantially affected the assembly of microtubules in the astral region and impaired microtubule nucleation at the centrosomes. The TACC3 depletion-induced mitotic phenotype was rescued by expression of the TACC3 C terminus predominantly consisting of the TACC domain, suggesting that the TACC domain plays an important role in microtubule assembly. Consistently, experiments with the recombinant TACC domain of TACC3 demonstrated that this domain possesses intrinsic microtubule nucleating activity. Co-immunoprecipitation and sedimentation experiments revealed that TACC3 mediates interactions with proteins of both the γ-tubulin ring complex (γ-TuRC) and the γ-tubulin small complex (γ-TuSC). Interestingly, TACC3 depletion resulted in reduced levels of γ-TuRC and increased levels of γ-TuSC, indicating that the assembly of γ-TuRC from γ-TuSC requires TACC3. Detailed analyses suggested that TACC3 facilitates the association of γ-TuSC-specific proteins with the proteins known to be involved in the assembly of γ-TuRC. Consistent with such a role for TACC3, the suppression of TACC3 disrupted localization of γ-TuRC proteins to the centrosome. Our findings reveal that TACC3 is involved in the regulation of microtubule nucleation at the centrosome and functions in the stabilization of the γ-tubulin ring complex assembly. PMID:25246530

  18. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  19. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  20. An Algebro-Topological Description of Protein Domain Structure

    PubMed Central

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  1. Impact of structure space continuity on protein fold classification

    PubMed Central

    Xu, Jinrui; Zhang, Jianzhi

    2016-01-01

    Protein structure classification hierarchically clusters domain structures based on structure and/or sequence similarities and plays important roles in the study of protein structure-function relationship and protein evolution. Among many classifications, SCOP and CATH are widely viewed as the gold standards. Fold classification is of special interest because this is the lowest level of classification that does not depend on protein sequence similarity. The current fold classifications such as those in SCOP and CATH are controversial because they implicitly assume that folds are discrete islands in the structure space, whereas increasing evidence suggests significant similarities among folds and supports a continuous fold space. Although this problem is widely recognized, its impact on fold classification has not been quantitatively evaluated. Here we develop a likelihood method to classify a domain into the existing folds of CATH or SCOP using both query-fold structure similarities and within-fold structure heterogeneities. The new classification differs from the original classification for 3.4–12% of domains, depending on factors such as the structure similarity score and original classification scheme used. Because these factors differ for different biological purposes, our results indicate that the importance of considering structure space continuity in fold classification depends on the specific question asked. PMID:27006112

  2. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins

    PubMed Central

    Whitten, Steven T.; García-Moreno E., Bertrand; Hilser, Vincent J.

    2005-01-01

    Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are important determinants of the cooperativity of ligand-driven global structural transitions, and (iii) are well represented thermodynamically as local unfolding processes. These studies illustrate how an ensemble-based description of proteins can be used to describe quantitatively the interdependence of local conformational fluctuations, ligand-binding processes, and global structural transitions. This level of understanding of the relationship between conformation, energy, and dynamics is required for a detailed mechanistic understanding of allostery, cooperativity, and other complex functional and regulatory properties of macromolecules. PMID:15767576

  3. Proteins at flowing interfaces: From understanding structure to treating disease

    NASA Astrophysics Data System (ADS)

    Posada, David; Young, James; Hirsa, Amir

    2012-11-01

    The field of soft matter offers vast opportunities for scientific and technological developments, with many challenges that need to be addressed by various disciplines. Fluid dynamics has a tremendous potential for greater impact, from broadening fundamental understanding to treating disease. Here we demonstrate the use of fluid dynamics in two biotechnology problems involving proteins at the air/water interface: a) 2-Dimensional protein crystallization and b) amyloid fibril formation. Protein crystallization is usually the most challenging step in X-ray diffraction analysis of protein structure. Recently it was demonstrated that flow can induce 2-D protein crystallization at conditions under which quiescent systems do not form crystals. A different form of protein structuring, namely amyloid fibrillization, is also of interest due to its association with several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Protein denaturation, which is the root of the fibrillization process, is also a significant concern in biotherapeutics production. Both problems are studied by using shearing free-surface flows in simple geometries. The common finding is that flow can significantly enhance the growth of protein structures.

  4. Protein-Nanoparticle Interaction-Induced Changes in Protein Structure and Aggregation.

    PubMed

    Kim, Yuna; Ko, Sung Min; Nam, Jwa-Min

    2016-07-01

    Large surface area, small size, strong optical properties, controllable structural features, variety of bioconjugation chemistries, and biocompatibility make many different types of nanoparticles (NPs), such as gold NPs, useful for many biological applications, such as biosensing, cellular imaging, disease diagnostics, drug delivery, and therapeutics. Recently, interactions between proteins and NPs have been extensively studied to understand, control, and utilize the interactions involved in biomedical applications of NPs and several biological processes, such as protein aggregation, for many diseases, including Alzheimer's disease. These studies also offer fundamental knowledge on changes in protein structure, protein aggregation mechanisms, and ways to unravel the roles and fates of NPs within the human body. This review focuses on recent studies on the roles and uses of NPs in protein structural changes and aggregation processes. PMID:27062521

  5. Characterizing Protein Structure, Dynamics and Conformation in Lyophilized Solids

    PubMed Central

    Moorthy, Balakrishnan S.; Iyer, Lavanya K.; Topp, Elizabeth M.

    2015-01-01

    The long-term stability of protein therapeutics in the solid-state depends on the preservation of native structure during lyophilization and in the lyophilized powder. Proteins can reversibly or irreversibly unfold upon lyophilization, acquiring conformations susceptible to degradation during storage. Therefore, characterizing proteins in the dried state is crucial for the design of safe and efficacious formulations. This review summarizes the basic principles and applications of the analytical techniques that are commonly used to characterize protein structure, dynamics and conformation in lyophilized solids. The review also discusses the applications of recently developed mass spectrometry based methods (solid-state hydrogen deuterium exchange mass spectrometry (ssHDX-MS) and solid-state photolytic labeling mass spectrometry (ssPL-MS)) and their ability to study proteins in the solid-state at high resolution. PMID:26446463

  6. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    SciTech Connect

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  7. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour

    PubMed Central

    Hernández-Hernández, Oscar; Guiraud-Dogan, Céline; Sicot, Géraldine; Huguet, Aline; Luilier, Sabrina; Steidl, Esther; Saenger, Stefanie; Marciniak, Elodie; Obriot, Hélène; Chevarin, Caroline; Nicole, Annie; Revillod, Lucile; Charizanis, Konstantinos; Lee, Kuang-Yung; Suzuki, Yasuhiro; Kimura, Takashi; Matsuura, Tohru; Cisneros, Bulmaro; Swanson, Maurice S.; Trovero, Fabrice; Buisson, Bruno; Bizot, Jean-Charles; Hamon, Michel; Humez, Sandrine; Bassez, Guillaume; Metzger, Friedrich; Buée, Luc; Munnich, Arnold; Sergeant, Nicolas; Gourdon, Geneviève

    2013-01-01

    Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology. PMID:23404338

  8. Arabidopsis protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing

    PubMed Central

    Hang, Runlai; Liu, Chunyan; Ahmad, Ayaz; Zhang, Yong; Lu, Falong; Cao, Xiaofeng

    2014-01-01

    Ribosome biogenesis is a fundamental and tightly regulated cellular process, including synthesis, processing, and assembly of rRNAs with ribosomal proteins. Protein arginine methyltransferases (PRMTs) have been implicated in many important biological processes, such as ribosome biogenesis. Two alternative precursor rRNA (pre-rRNA) processing pathways coexist in yeast and mammals; however, how PRMT affects ribosome biogenesis remains largely unknown. Here we show that Arabidopsis PRMT3 (AtPRMT3) is required for ribosome biogenesis by affecting pre-rRNA processing. Disruption of AtPRMT3 results in pleiotropic developmental defects, imbalanced polyribosome profiles, and aberrant pre-rRNA processing. We further identify an alternative pre-rRNA processing pathway in Arabidopsis and demonstrate that AtPRMT3 is required for the balance of these two pathways to promote normal growth and development. Our work uncovers a previously unidentified function of PRMT in posttranscriptional regulation of rRNA, revealing an extra layer of complexity in the regulation of ribosome biogenesis. PMID:25352672

  9. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility.

    PubMed

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui

    2016-08-01

    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins. PMID:26954145

  10. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility

    PubMed Central

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui

    2016-01-01

    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller’s dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins. PMID:26954145

  11. New approach to protein fold recognition based on Delaunay tessellation of protein structure

    SciTech Connect

    Zheng, W.; Cho, S.J.; Vaisman, I.I.; Tropsha, A.

    1996-12-31

    We propose new algorithms for sequence-structure compatibility (fold recognition) searches in multidimensional sequence-structure space. Individual amino acid residues in protein structures are represented by their C{sup {alpha}} atoms; thus each protein is described as a collection of points in three-dimensional space. Delaunay tessellation of a protein generates an aggregate of space-filling, irregular tetrahedra, or Delaunay simplices. Statistical analysis of quadruplet residue compositions of all Delaunay simplices in a representative dataset of protein structures leads to a novel four body contact residue potential expressed as log likelihood factor q. The q factors are calculated for native 20 letter amino acid alphabet and several reduced alphabets. Two sequence structure compatibility functions are computed as (i) the sum of q factors for all Delaunay simplices in a given protein, or (ii) 3D-1D Delaunay tessellation profiles where the individual residue profile value is calculated as the sum of q factors for all simplices that share this vertex residue. Both threading functions have been implemented in structure-recognizes-sequence and sequence-recognizes-structure protocols for protein fold recognition. We find that both profile and total score based threading functions can distinguish both the native fold from incorrect folds for a sequence, and the native sequence from non-native sequences for a fold. 25 refs., 4 figs., 1 tab.

  12. Crystal structure of Homo sapiens protein LOC79017

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Aceti, David J.; Phillips, Jr., George N.

    2010-02-08

    LOC79017 (MW 21.0 kDa, residues 1-188) was annotated as a hypothetical protein encoded by Homo sapiens chromosome 7 open reading frame 24. It was selected as a target by the Center for Eukaryotic Structural Genomics (CESG) because it did not share more than 30% sequence identity with any protein for which the three-dimensional structure is known. The biological function of the protein has not been established yet. Parts of LOC79017 were identified as members of uncharacterized Pfam families (residues 1-95 as PB006073 and residues 104-180 as PB031696). BLAST searches revealed homologues of LOC79017 in many eukaryotes, but none of them have been functionally characterized. Here, we report the crystal structure of H. sapiens protein LOC79017 (UniGene code Hs.530024, UniProt code O75223, CESG target number go.35223).

  13. Applications of graph theory in protein structure identification.

    PubMed

    Yan, Yan; Zhang, Shenggui; Wu, Fang-Xiang

    2011-01-01

    There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers' attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given. PMID:22165974

  14. Linkers in the structural biology of protein–protein interactions

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J

    2013-01-01

    Linkers or spacers are short amino acid sequences created in nature to separate multiple domains in a single protein. Most of them are rigid and function to prohibit unwanted interactions between the discrete domains. However, Gly-rich linkers are flexible, connecting various domains in a single protein without interfering with the function of each domain. The advent of recombinant DNA technology made it possible to fuse two interacting partners with the introduction of artificial linkers. Often, independent proteins may not exist as stable or structured proteins until they interact with their binding partner, following which they gain stability and the essential structural elements. Gly-rich linkers have been proven useful for these types of unstable interactions, particularly where the interaction is weak and transient, by creating a covalent link between the proteins to form a stable protein–protein complex. Gly-rich linkers are also employed to form stable covalently linked dimers, and to connect two independent domains that create a ligand-binding site or recognition sequence. The lengths of linkers vary from 2 to 31 amino acids, optimized for each condition so that the linker does not impose any constraints on the conformation or interactions of the linked partners. Various structures of covalently linked protein complexes have been described using X-ray crystallography, nuclear magnetic resonance and cryo-electron microscopy techniques. In this review, we evaluate several structural studies where linkers have been used to improve protein quality, to produce stable protein–protein complexes, and to obtain protein dimers. PMID:23225024

  15. Protein structure prediction with local adjust tabu search algorithm

    PubMed Central

    2014-01-01

    Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708

  16. Identification of structural domains in proteins by a graph heuristic.

    PubMed

    Wernisch, L; Hunting, M; Wodak, S J

    1999-05-15

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain segments. The core algorithm uses the Kernighan-Lin graph heuristic to partition the protein into residue sets which display minimum interactions between them. These interactions are deduced from the weighted Voronoi diagram. The generated partitions are accepted or rejected on the basis of optimized criteria, representing basic expected physical properties of structural domains. The graph heuristic approach is shown to be very effective, it approximates closely the exact solution provided by a branch and bound algorithm for a number of test proteins. In addition, the overall performance of STRUDL is assessed on a set of 787 representative proteins from the Protein Data Bank by comparison to domain definitions in the CATH protein classification. The domains assigned by STRUDL agree with the CATH assignments in at least 81% of the tested proteins. This result is comparable to that obtained previously using PUU (Holm and Sander, Proteins 1994;9:256-268), the only other available algorithm designed to identify domains with any number of non-contiguous chain segments. A detailed discussion of the structures for which our assignments differ from those in CATH brings to light some clear inconsistencies between the concept of structural domains based on minimizing inter-domain interactions and that of delimiting structural motifs that represent acceptable folding topologies or architectures. Considering both concepts as complementary and combining them in a layered approach might be the way forward. PMID:10328269

  17. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  18. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide.

    PubMed

    Démares, Fabien J; Crous, Kendall L; Pirk, Christian W W; Nicolson, Susan W; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  19. spn-F encodes a novel protein that affects oocyte patterning and bristle morphology in Drosophila.

    PubMed

    Abdu, Uri; Bar, Dikla; Schüpbach, Trudi

    2006-04-01

    The anteroposterior and dorsoventral axes of the Drosophila embryo are established during oogenesis through the activities of Gurken (Grk), a Tgfalpha-like protein, and the Epidermal growth factor receptor (Egfr). spn-F mutant females produce ventralized eggs similar to the phenotype produced by mutations in the grk-Egfr pathway. We found that the ventralization of the eggshell in spn-F mutants is due to defects in the localization and translation of grk mRNA during mid-oogenesis. Analysis of the microtubule network revealed defects in the organization of the microtubules around the oocyte nucleus. In addition, spn-F mutants have defective bristles. We cloned spn-F and found that it encodes a novel coiled-coil protein that localizes to the minus end of microtubules in the oocyte, and this localization requires the microtubule network and a Dynein heavy chain gene. We also show that Spn-F interacts directly with the Dynein light chain Ddlc-1. Our results show that we have identified a novel protein that affects oocyte axis determination and the organization of microtubules during Drosophila oogenesis. PMID:16540510

  20. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide

    PubMed Central

    Démares, Fabien J.; Crous, Kendall L.; Pirk, Christian W. W.; Nicolson, Susan W.; Human, Hannelie

    2016-01-01

    Over a decade, declines in honey bee colonies have raised worldwide concerns. Several potentially contributing factors have been investigated, e.g. parasites, diseases, and pesticides. Neonicotinoid pesticides have received much attention due to their intensive use in crop protection, and their adverse effects on many levels of honey bee physiology led the European Union to ban these compounds. Due to their neuronal target, a receptor expressed throughout the insect nervous system, studies have focused mainly on neuroscience and behaviour. Through the Geometric Framework of nutrition, we investigated effects of the neonicotinoid thiamethoxam on survival, food consumption and sucrose sensitivity of honey bees (Apis mellifera). Thiamethoxam did not affect protein and carbohydrate intake, but decreased responses to high concentrations of sucrose. Interestingly, when bees ate fixed unbalanced diets, dietary protein facilitated better sucrose detection. Both thiamethoxam and dietary protein influenced survival. These findings suggest that, in the presence of a pesticide and unbalanced food, honey bee health may be severely challenged. Consequences for foraging efficiency and colony activity, cornerstones of honey bee health, are also discussed. PMID:27272274

  1. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E. M.

    2004-01-01

    Serinehhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we resolved the mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a con served Aspn-271-M(sub 1):M(sub 2)-W(sup 1)-His-427-His-304-Asp-274 catalytic motif. The structure of PPSc provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  2. Seeking significance in three-dimensional protein structure comparisons.

    PubMed

    Mizuguchi, K; Go, N

    1995-06-01

    What is the significance of three-dimensional structural similarity? This fundamental question still remains unanswered in spite of advances in automatic structure comparison methods that have been made in the last few years. The answer to this question will give us a much deeper insight into the principles of protein architecture. PMID:7583636

  3. Matt: local flexibility aids protein multiple structure alignment.

    PubMed

    Menke, Matthew; Berger, Bonnie; Cowen, Lenore

    2008-01-01

    Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root

  4. SCOPmap: Automated assignment of protein structures to evolutionary superfamilies

    PubMed Central

    Cheek, Sara; Qi, Yuan; Krishna, S Sri; Kinch, Lisa N; Grishin, Nick V

    2004-01-01

    Background Inference of remote homology between proteins is very challenging and remains a prerogative of an expert. Thus a significant drawback to the use of evolutionary-based protein structure classifications is the difficulty in assigning new proteins to unique positions in the classification scheme with automatic methods. To address this issue, we have developed an algorithm to map protein domains to an existing structural classification scheme and have applied it to the SCOP database. Results The general strategy employed by this algorithm is to combine the results of several existing sequence and structure comparison tools applied to a query protein of known structure in order to find the homologs already classified in SCOP database and thus determine classification assignments. The algorithm is able to map domains within newly solved structures to the appropriate SCOP superfamily level with ~95% accuracy. Examples of correctly mapped remote homologs are discussed. The algorithm is also capable of identifying potential evolutionary relationships not specified in the SCOP database, thus helping to make it better. The strategy of the mapping algorithm is not limited to SCOP and can be applied to any