Science.gov

Sample records for affects seed predation

  1. Factors affecting seed predation of Eriotheca gracilipes (Bombacaceae) by parakeets in a cerrado fragment

    NASA Astrophysics Data System (ADS)

    Francisco, Mercival R.; Lunardi, Vitor O.; Guimarães, Paulo R., Jr.; Galetti, Mauro

    2008-03-01

    Psittacids are important pre-dispersal seed predators. However, little is known about the parameters that may determine seed predation rates by these birds, such as plants' characteristics and microhabitat. Eriotheca gracilipes (Bombacaceae) is a semi-deciduous tree widely distributed in the Brazilian cerrado. The fruits are dehiscent pods and the seeds are wind-dispersed. Some individuals lose their leaves during the fruiting season, getting very conspicuous. Here we tested the hypothesis that the absence of leaves in E. gracilipes during the fruiting season may increase pre-dispersal seed predation by psittacids. We also tested the hypotheses that (1) seed predation intensity increases with increasing plant size and (2) number of fruits, (3) seed predation decreases with the increasing number of conspecific plants in a range of 15 m, and (4) seed predation intensity is lower in plants with higher vegetation cover over their crowns. The small parakeet Brotogeris versicolurus was the only species observed preying upon the seeds of E. gracilipes. The percentage of fruits damaged by the parakeets ranged from 0 to 100% (66.98 ± 43.11%, n = 72) among the different plants. Our data give weak support to the hypothesis that the absence of leaves may facilitate plants and/or fruits detection by the parakeets. However, seed predation intensity was significantly affected by crop size. The hypothesis that conspecific fruiting plants surrounding the studied individuals may reduce predation rate was not supported. Nevertheless, trees without higher vegetation cover over their crowns were significantly affected by increased seed predation. This suggests that seed predation by parakeets can be a potential selective factor influencing fruit crop sizes in E. gracilipes.

  2. Corridors cause differential seed predation.

    SciTech Connect

    Orrock, John L.; Damschen, Ellen I.

    2005-06-01

    Orrock, John, L., and Ellen I. Damschen. 2005. Corridors cause differential seed predation. Ecol. Apps. 15(3):793-798. Abstract. Corridors that connect disjunct populations are heavily debated in conservation, largely because the effects of corridors have rarely been evaluated by replicated, large-scale studies. Using large-scale experimental landscapes, we found that, in addition to documented positive effects, corridors also have negative impacts on bird-dispersed plants by affecting seed predation, and that overall predation is a function of the seeds primary consumer (rodents or arthropods). Both large-seeded Prunus serotina and small-seeded Rubus allegheniensis experienced greater predation in connected patches. However, P. serotina experienced significantly less seed predation compared to R. allegheniensis in unconnected patches, due to decreased impacts of rodent seed predators on this large-seeded species. Viewed in light of previous evidence that corridors have beneficial impacts by increasing pollination and seed dispersal, this work demonstrates that corridors may have both positive and negative effects for the same plant species at different life stages. Moreover, these effects may differentially affect plant species within the same community: seeds primarily consumed by rodents suffer less predation in unconnected patches. By shifting the impact of rodent and arthropod seed predators, corridors constructed for plant conservation could lead to shifts in the seed bank.

  3. Endophyte status of tall fescue (festuca arundinacea) affects seed predation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a preliminary study seed of a tall fescue (Festuca arundinacea Schreb.) variety ‘Jesup’ without endophyte were consumed at a slightly higher rate by common cricket (Acheta domesticus L.) in a standard feeding trial than the same fescue variety with the endophyte. Although, the preference for the...

  4. Differential predation of forage seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent field experiments we observed that the main invertebrate seed predators of overseeded tall fescue (Festuca arundinacea Schreb.) or Italian ryegrass (Lolium multiflorum Lam.) seed in unimproved pastures were harvester ants (Pogonomyrmex sp.) and common field crickets (Gryllus sp.) To determ...

  5. Pre-dispersal predation effect on seed packaging strategies and seed viability.

    PubMed

    DeSoto, Lucía; Tutor, David; Torices, Rubén; Rodríguez-Echeverría, Susana; Nabais, Cristina

    2016-01-01

    An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging. PMID:26400794

  6. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.

    SciTech Connect

    J. L . Orrock; B. J. Danielson; M. J. Burns; D. J. Levey

    2003-02-03

    J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seeds germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core

  7. Gender inequality in predispersal seed predation contributes to female seed set advantage in a gynodioecious species.

    PubMed

    Clarke, Gretel L; Brody, Alison K

    2015-05-01

    Most flowering plants are hermaphrodites. However, in gynodioecious species, some members of the population are male-sterile and reproduce only by setting seed, while others gain fitness through both male and female function. How females compensate for the loss of male function remains unresolved for most gynodioecious species. Here, as with many plants, fitness differences may be influenced by interactions with multiple species. However, whether multiple species interactions result in gender-specific fitness differences remains unknown. Using observational data from 2009-2010, we quantified seed set of the two sex morphs of Polemonium foliosissimu and asked how it is affected by pollination, and seed predation from a dipteran predispersal seed predator (Anthomyiidae: Hylemya sp.). We assessed seed production and losses to predation in 27 populations for one year and in six populations for a second year. Females set significantly more seed than did hermaphrodites in both years. Of the fitness components we assessed, including the number of flowers per plant, fruit set, seeds/fruit, and proportion of fruits destroyed by Hylemya, only fruit destruction differed significantly between the sexes. In one year, seeds/fruit and predation had a stronger effect on seed set for hermaphrodites than for females. Because predispersal seed predators do not pollinate flowers, their effects may depend on successful pollination of flowers on which they oviposit. To examine if genders differed in pollen limitation and seed predation and/or their interactive effects, in 2011 we hand-pollinated flowers and removed seed predator eggs in a fully factorial design. Both sexes were pollen limited, but their degree of pollen limitation did not differ. However, predation reduced.seed set more for hermaphrodites than for females. We found no significant interaction between hand pollen and seed predation, and no interaction between hand pollination and gender. Our results suggest that while

  8. Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds.

    PubMed

    Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J

    2016-01-01

    Large "hypercarnivorous" felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km(2). Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning. PMID:26791932

  9. Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds

    PubMed Central

    Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J.

    2016-01-01

    Large “hypercarnivorous” felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km2. Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning. PMID:26791932

  10. Effects of rodent species, seed species, and predator cues on seed fate

    USGS Publications Warehouse

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-01-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat (Dipodomys ordii) and the Great Basin pocket mouse (Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote (Canis latrans) vocalization, (3) coyote scent, (4) red fox (Vulpes vulpes) scent, or (5) short-eared owl (Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass (Achnatherum hymenoides) and bluebunch wheatgrass (Pseudoroegneria spicata), and the non-native cereal rye (Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  11. Effects of rodent species, seed species, and predator cues on seed fate

    NASA Astrophysics Data System (ADS)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-07-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat ( Dipodomys ordii) and the Great Basin pocket mouse ( Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote ( Canis latrans) vocalization, (3) coyote scent, (4) red fox ( Vulpes vulpes) scent, or (5) short-eared owl ( Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass ( Achnatherum hymenoides) and bluebunch wheatgrass ( Pseudoroegneria spicata), and the non-native cereal rye ( Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  12. Seed predators exert selection on the subindividual variation of seed size.

    PubMed

    Sobral, M; Guitián, J; Guitián, P; Larrinaga, A R

    2014-07-01

    Subindividual variation among repeated organs in plants constitutes an overlooked level of variation in phenotypic selection studies, despite being a major component of phenotypic variation. Animals that interact with plants could be selective agents on subindividual variation. This study examines selective pressures exerted during post-dispersal seed predation and germination on the subindividual variation of seed size in hawthorn (Crataegus monogyna). With a seed offering experiment and a germination test, we estimated phenotypic selection differentials for average and subindividual variation of seed size due to seed predation and germination. Seed size affects germination, growth rate and the probability of an individual seed of escaping predation. Longer seeds showed higher germination rates, but this did not result in significant selection on phenotypes of the maternal trees. On the other hand, seed predators avoided wider seeds, and by doing so exerted phenotypic selection on adult average and subindividual variation of seed size. The detected selection on subindividual variation suggests that the levels of phenotypic variation within individual plants may be, at least partly, the adaptive consequence of animal-mediated selection. PMID:24176051

  13. Hierarchical Levels of Seed Predation Variation by Introduced Beetles on an Endemic Mediterranean Palm

    PubMed Central

    Rodríguez, Marta; Delibes, Miguel; Fedriani, José Mª.

    2014-01-01

    Seed predators can limit plant recruitment and thus profoundly impinge the dynamics of plant populations, especially when diverse seed predators (e.g., native and introduced) attack particular plant populations. Surprisingly, however, we know little concerning the potential hierarchy of spatial scales (e.g., region, population, patch) and coupled ecological correlates governing variation in the overall impact that native and introduced seed predators have on plant populations. We investigated several spatial scales and ecological correlates of pre-dispersal seed predation by invasive borer beetles in Chamaerops humilis (Arecaceae), a charismatic endemic palm of the Mediteranean basin. To this end, we considered 13 palm populations (115 palms) within four geographical regions of the Iberian Peninsula. The observed interregional differences in percentages of seed predation by invasive beetles were not significant likely because of considerable variation among populations within regions. Among population variation in seed predation was largely related to level of human impact. In general, levels of seed predation were several folds higher in human-altered populations than in natural populations. Within populations, seed predation declined significantly with the increase in amount of persisting fruit pulp, which acted as a barrier against seed predators. Our results revealed that a native species (a palm) is affected by the introduction of related species because of the concurrent introduction of seed predators that feed on both the introduced and native palms. We also show how the impact of invasive seed predators on plants can vary across a hierarchy of levels ranging from variation among individuals within local populations to large scale regional divergences. PMID:25340462

  14. Empty Seeds Are Not Always Bad: Simultaneous Effect of Seed Emptiness and Masting on Animal Seed Predation

    PubMed Central

    Perea, Ramón; Venturas, Martin; Gil, Luis

    2013-01-01

    Seed masting and production of empty seeds have often been considered independently as different strategies to reduce seed predation by animals. Here, we integrate both phenomena within the whole assemblage of seed predators (both pre and post-dispersal) and in two contrasting microsites (open vs. sheltered) to improve our understanding of the factors controlling seed predation in a wind-dispersed tree (Ulmus laevis). In years with larger crop sizes more avian seed predators were attracted with an increase in the proportion of full seeds predated on the ground. However, for abundant crops, the presence of empty seeds decreased the proportion of full seeds predated. Empty seeds remained for a very long period in the tree, making location of full seeds more difficult for pre-dispersal predators and expanding the overall seed drop period at a very low cost (in dry biomass and allocation of C, N and P). Parthenocarpy (non-fertilized seeds) was the main cause of seed emptiness whereas seed abortion was produced in low quantity. These aborted seeds fell prematurely and, thus, could not work as deceptive seeds. A proportion of 50% empty seeds significantly reduced ground seed predation by 26%. However, a high rate of parthenocarpy (beyond 50% empty seeds) did not significantly reduce seed predation in comparison to 50% empty seeds. We also found a high variability and unpredictability in the production of empty seeds, both at tree and population level, making predator deception more effective. Open areas were especially important to facilitate seed survival since rodents (the main post-dispersal predators) consumed seeds mostly under shrub cover. In elm trees parthenocarpy is a common event that might work as an adaptive strategy to reduce seed predation. Masting per se did not apparently reduce the overall proportion of seeds predated in this wind-dispersed tree, but kept great numbers of seeds unconsumed. PMID:23776503

  15. New approaches to understanding weed seed predation in agroecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postdispersal predation of weed seeds in arable systems can be a valuable ecosystem service, with the potential to support ecological approaches to weed management by reducing inputs to the soil seed bank. Scientific understanding of factors regulating weed seed predation rates is still insufficient...

  16. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables. In order to quantify relative contributio...

  17. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation in arable systems focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables on this process. In orde...

  18. Indirect effects of prey swamping: differential seed predation during a bamboo masting event.

    PubMed

    Kitzberger, Thomas; Chaneton, Enrique J; Caccia, Fernando

    2007-10-01

    Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding

  19. Temporal scaling of episodic point estimates of weed seed predation to long-term predation rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. For convenience, measurements of seed predation are often made at very short time scales (< 3 d). However, one of the primary uses of such data, the parameterization of models of cr...

  20. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    PubMed

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution. PMID:26132017

  1. Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics

    PubMed Central

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125

  2. Seed size variation in the palm Euterpe edulis and the effects of seed predators on germination and seedling survival

    NASA Astrophysics Data System (ADS)

    Pizo, Marco A.; Von Allmen, Christiane; Morellato, L. Patricia C.

    2006-05-01

    Intraspecific variation in seed size is common in wild plant populations and has important consequences for the reproductive success of individual plants. Multiple, often conflicting evolutionary forces mediated by biotic as well as abiotic agents may maintain such a variation. In this paper we assessed seed size variation in a population of the threatened, commercially important palm Euterpe edulis in southeast Brazil. We investigated (i) how this variation affects the probability of attack by vertebrate and invertebrate post-dispersal seed predators, and (ii) if seed size influences the outcome of seeds damaged by beetles in terms of seed germination and early survival of seedlings. Euterpe edulis seeds varied in diameter from 8.3 to 14.1 mm. Neither insects nor rodents selected the seeds they preyed upon based on seed size. Seed germination and total, shoot and root biomasses of one-year seedlings were significantly and positively affected by seed size. Root biomass and seedling survival were negatively affected by seed damage caused by a scolytid beetle ( Coccotrypes palmarum) whose adults bore into seeds to consume part of the endosperm, but do not oviposit on them. Seed size had a marginally significant effect on seedling survival. Therefore, if any advantage is accrued by E. edulis individuals producing large seeds, this is because of greater seed germination success and seedling vigor. If this is so, even a relatively narrow range of variation in seed size as observed in the E. edulis population studied may translate into differential success of individual plants.

  3. Seed predation, not seed dispersal, explains the landscape-level abundance of an early-successional plant.

    SciTech Connect

    Orrock, John, L.; Douglas J. Levey; Brent J. Danielson; Ellen I Damschen.

    2006-01-01

    Plants may not occur in a given area if there are no suitable sites for seeds to establish (microsite limitation), if seeds fail to arrive in suitable microsites (dispersal limitation) or if seeds in suitable microsites are destroyed by predators (predator limitation). When dispersal and microsites are not limiting, the role of local seed predators can be important for generating emergent, large-scale patterns of plant abundance across landscapes. Moreover, because predators may generate large-scale patterns that resemble other forms of limitation and predators may target specific species, predator impacts should be more frequently incorporated into experiments on the role of seed limitation and plant community composition.

  4. Effects of carbaryl-bran bait on trap catch and seed predation by ground beetles (Coleoptera: Carabidae).

    PubMed

    Fielding, Dennis J; DeFoliart, Linda S; Hagerty, Aaron M

    2013-04-01

    Carbaryl-bran bait is effective against grasshoppers without many impacts on nontarget organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species and their consumption of weed seeds have not been previously studied in agricultural settings in Alaska. This study examined the effect of grasshopper bran bait on carabid activity-density, as measured by pitfall trap catches, and subsequent predation by invertebrates of seeds of three species of weed. Data were collected in fallow fields in agricultural landscape in the interior of Alaska, near Delta Junction, in 2008 and 2010. Bait applications reduced ground beetle activity-density by over half in each of 2 yr of bait applications. Seed predation was generally low overall (1-10%/wk) and not strongly affected by the bait application, but predation of lambsquarters (Chenopodium album L.) seed was lower on treated plots in 1 yr (340 seeds recovered versus 317 seeds, on treated versus untreated plots, respectively). Predation of dandelion (Taraxacum officinale G. H. Weber ex Wiggers) seeds was correlated with ground beetle activity-density in 1 yr, and predation of dragonhead mint (Dracocephalum parvifolium Nutt.) seed in the other year. We conclude that applications of carbaryl-bran bait for control of grasshoppers will have only a small, temporary effect on weed seed populations in high-latitude agricultural ecosystems. PMID:23786053

  5. Predation of italian ryegrass (Lolium multiflorum) seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Italian ryegrass (Lolium multiflorum Lam.) can be a productive and high-quality cool-season forage, but is considered a weed in some pastures. Italian ryegrass does not form a persistent seed bank and needs to produce sufficient seed annually for effective re-establishment. Before the re-seeding ...

  6. Parthenocarpy and Seed Predation by Insects in Bursera morelensis

    PubMed Central

    Ramos-Ordoñez, María F.; Márquez-Guzmán, Judith; Del Coro Arizmendi, Ma.

    2008-01-01

    Background and Aims While parthenocarpy (meaning the production of fruits without seeds) may limit fecundity in many plants, its function is not clear; it has been proposed, however, that it might be associated with a strategy to avoid seed predation. Bursera morelensis is a dioecious endemic plant that produces fruits with and without seeds, and its fruits are parasitized by insects. Its reproductive system is not well described and no published evidence of parthenocarpy exists for the species. The purpose of this work was to describe the breeding system of B. morelensis and its relationship to seed predation by insects. Methods The breeding system was described using pollination experiments, verifying the presence of parthenocarpic fruits and apomictic seeds. Reproductive structures from flower buds to mature fruits were quantified. For fruits, an anatomical and histological characterization was made. The number of fruits in which seeds had been predated by insects was correlated with parthenocarpic fruit production. Key Results The major abortion of reproductive structures occurred during fruit set. The results discard the formation of apomictic seeds. Flowers that were not pollinated formed parthenocarpic fruits and these could be distinguished during early developmental stages. In parthenocarpic fruits in the first stages of development, an unusual spread of internal walls of the ovary occurred invading the locule and preventing ovule development. Unlike fruits with seeds, parthenocarpic fruits do not have calcium oxalate crystals in the ovary wall. Both fruit types can be separated in the field at fruit maturity by the presence of dehiscence, complete in seeded and partial in parthenocarpic fruits. Trees with more parthenocarpic fruits had more parasitized fruits. Conclusions This is the first time the anatomy of parthenocarpic fruits in Burseraceae has been described. Parthenocarpic fruits in B. morelensis might function as a deceit strategy for insect seed

  7. Seed Dispersers, Seed Predators, and Browsers Act Synergistically as Biotic Filters in a Mosaic Landscape

    PubMed Central

    Zamora, Regino; Matías, Luis

    2014-01-01

    In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees. PMID:25233342

  8. Seed dispersers, seed predators, and browsers act synergistically as biotic filters in a mosaic landscape.

    PubMed

    Zamora, Regino; Matías, Luis

    2014-01-01

    In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees. PMID:25233342

  9. Seed predation by insects in tropical mangrove forests: extent and effects on seed viability and the growth of seedlings.

    PubMed

    Robertson, A I; Giddins, R; Smith, T J

    1990-06-01

    Although insects are known to be important seed predators in most terrestrial forests, their role in marine tidal (mangrove) forests has not been examined. Surveys at 12 sites in tropical Australia showed that between 3.1 and 92.7 percent of the seeds or propagules of 12 mangrove tree species had been attacked by insects. Seeds/propagules of six species (Avicennia marina, Bruguiera gymnorrhiza, B. parviflora, Heritiera littoralis, Xylocarpus australasicus and X. granatum) showed consistently high (>40%) levels of insect damage. Greater than 99% of H. littoralis seeds were attacked by insect predators. The survival and subsequent growth in height and biomass of insect-damaged and non-damaged control seeds/propagules of eight mangrove species were compared in shadehouse experiments. Mangrove species fell into 4 groups with regard to the effect of insect predators on their seeds and seedlings. Xylocarpus australasicus and X. granatum had significantly decreased survival (X 48 and 70%) and growth in height (X 61 and 96%) and biomass (X 66 and 85%). Bruguiera parviflora showed decreased survival (X 59%), but there was no effect of insects on the growth of surviving propagules. In contrast, there was no effect of insect damage on the survival of seedlings of Avicennia marina and Bruguiera exaristata, but decreased growth in height (X 22 and 25%) and biomass (X 22 and 26%). Survival and growth of seedlings of Rhizophora stylosa and Bruguiera gymnorrhiza were not affected. The influence of insect seed predators on the survival and growth of seeds of mangrove species in forests will depend on the relative abundance of seed-eating crabs and intertidal position in mangrove forests. PMID:22160114

  10. Seed predation and climate impacts on reproductive variation in temperate forests of the southeastern USA.

    PubMed

    Bell, David M; Clark, James S

    2016-04-01

    Climatic effects on tree recruitment will be determined by the interactive effects of fecundity and seed predation. Evaluating how insect and vertebrate seed predators mediate tree reproductive responses to climate depends on long-term studies of seed production, development, and predation. In this study, our objectives were to (1) assess the effects of interannual climate variation on seed abortion rates, (2) assess the impact of seed density on predation rates, and (3) examine the degree to which density-dependent seed predation would amplify or dampen interannual variation in fecundity associated with seed abortion. We used a 19-year study of seed abortion and pre-dispersal predation rates by insects and vertebrates (birds and rodents) for five temperate tree species across forest plots from the North Carolina Piedmont to the Southern Appalachian Mountains in the southeastern USA. We found that rates of seed abortion and predation increased reproductive variation for oaks (Quercus species). Probability of seed abortion was greatest during years with cool, dry springs. Responses of seed predation on Quercus species to current year's seed density varied by species, but exhibited positive density-dependence to previous year's seed density consistent with numerical responses of seed predators. Seed abortion and predation rates for two drupe species responded little to variation in climate or seed density, respectively. Given that predation increased interannual variation in seed availability and the negative density-dependence to previous year's seed density, our results indicate that consistent numerical responses of oak seed predators may amplify interannual variation due to climate-mediated processes like seed abortion. PMID:26747267

  11. How much Dillenia indica seed predation occurs from Asian elephant dung?

    NASA Astrophysics Data System (ADS)

    Sekar, Nitin; Giam, Xingli; Sharma, Netra Prasad; Sukumar, Raman

    2016-01-01

    Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (<3 mm wide) for 1-4 months, and c) made available to all seed predators and secondary dispersers for 1-4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (<3 mm) substantially reduces but does not eliminate the success of elephants as dispersers of D. indica in a tropical moist forest habitat.

  12. A seed predator drives the evolution of a seed dispersal mutualism.

    PubMed

    Siepielski, Adam M; Benkman, Craig W

    2008-08-22

    Although antagonists are hypothesized to impede the evolution of mutualisms, they may simultaneously exert selection favouring the evolution of alternative mutualistic interactions. We found that increases in limber pine (Pinus flexilis) seed defences arising from selection exerted by a pre-dispersal seed predator (red squirrel Tamiasciurus hudsonicus) reduced the efficacy of limber pine's primary seed disperser (Clark's nutcracker Nucifraga columbiana) while enhancing seed dispersal by ground-foraging scatter-hoarding rodents (Peromyscus). Thus, there is a shift from relying on primary seed dispersal by birds in areas without red squirrels, to an increasing reliance on secondary seed dispersal by scatter-hoarding rodents in areas with red squirrels. Seed predators can therefore drive the evolution of seed defences, which in turn favour alternative seed dispersal mutualisms that lead to major changes in the mode of seed dispersal. Given that adaptive evolution in response to antagonists frequently impedes one kind of mutualistic interaction, the evolution of alternative mutualistic interactions may be a common by-product. PMID:18460433

  13. Evaluating the Interacting Influences of Pollination, Seed Predation, Invasive Species and Isolation on Reproductive Success in a Threatened Alpine Plant

    PubMed Central

    Krushelnycky, Paul D.

    2014-01-01

    Reproduction in rare plants may be influenced and limited by a complex combination of factors. External threats such as invasive species and landscape characteristics such as isolation may impinge on both pollination and seed predation dynamics, which in turn can strongly affect reproduction. I assessed how patterns in floral visitation, seed predation, invasive ant presence, and plant isolation influenced one another and ultimately affected viable seed production in Haleakalā silverswords (Argyroxiphium sandwicense subsp. macrocephalum) of Hawai’i. Floral visitation was dominated by endemic Hylaeus bees, and patterns of visitation were influenced by floral display size and number of plants clustered together, but not by floral herbivory or nearest flowering neighbor distance. There was also some indication that Argentine ant presence impacted floral visitation, but contradictory evidence and limitations of the study design make this result uncertain. Degree of seed predation was associated only with plant isolation, with the two main herbivores partitioning resources such that one preferentially attacked isolated plants while the other attacked clumped plants; total seed predation was greater in more isolated plants. Net viable seed production was highly variable among individuals (0–55% seed set), and was affected mainly by nearest neighbor distance, apparently owing to low cross-pollination among plants separated by even short distances (>10–20 m). This isolation effect dominated net seed set, with no apparent influence from floral visitation rates, percent seed predation, or invasive ant presence. The measured steep decline in seed set with isolation distance may not be typical of the entire silversword range, and may indicate that pollinators in addition to Hylaeus bees could be important for greater gene flow. Management aimed at maintaining or maximizing silversword reproduction should focus on the spatial context of field populations and outplanting

  14. Are Local Filters Blind to Provenance? Ant Seed Predation Suppresses Exotic Plants More than Natives

    PubMed Central

    Pearson, Dean E.; Icasatti, Nadia S.; Hierro, Jose L.; Bird, Benjamin J.

    2014-01-01

    The question of whether species’ origins influence invasion outcomes has been a point of substantial debate in invasion ecology. Theoretically, colonization outcomes can be predicted based on how species’ traits interact with community filters, a process presumably blind to species’ origins. Yet, exotic plant introductions commonly result in monospecific plant densities not commonly seen in native assemblages, suggesting that exotic species may respond to community filters differently than natives. Here, we tested whether exotic and native species differed in their responses to a local community filter by examining how ant seed predation affected recruitment of eighteen native and exotic plant species in central Argentina. Ant seed predation proved to be an important local filter that strongly suppressed plant recruitment, but ants suppressed exotic recruitment far more than natives (89% of exotic species vs. 22% of natives). Seed size predicted ant impacts on recruitment independent of origins, with ant preference for smaller seeds resulting in smaller seeded plant species being heavily suppressed. The disproportionate effects of provenance arose because exotics had generally smaller seeds than natives. Exotics also exhibited greater emergence and earlier peak emergence than natives in the absence of ants. However, when ants had access to seeds, these potential advantages of exotics were negated due to the filtering bias against exotics. The differences in traits we observed between exotics and natives suggest that higher-order introduction filters or regional processes preselected for certain exotic traits that then interacted with the local seed predation filter. Our results suggest that the interactions between local filters and species traits can predict invasion outcomes, but understanding the role of provenance will require quantifying filtering processes at multiple hierarchical scales and evaluating interactions between filters. PMID:25099535

  15. Effects of frugivore impoverishment and seed predators on the recruitment of a keystone palm

    NASA Astrophysics Data System (ADS)

    Fadini, Rodrigo F.; Fleury, Marina; Donatti, Camila I.; Galetti, Mauro

    2009-03-01

    Many plant species are threatened as a result of extinction of their large-bodied frugivores all over the world. Additionally, introduced herbivores and seed predators may cause severe pressure on early stages of plant recruitment. We studied the seed dispersal and seed predation of the keystone palm Euterpe edulis on a land-bridge island with a highly impoverished frugivore fauna and overabundant seed predators, and in a continuous Atlantic forest in Brazil. While the diversity of avian seed dispersers and predators was higher on the mainland, the abundance of seed dispersers was 4-fold higher on the island. Turdus flavipes was responsible for 72% and 96% of seeds removed in the island and mainland, respectively. However, the higher density of T. flaviceps on the island did not result in higher seed removal. In fact, seed removal rate was 1.7 times lower there than on the mainland, probably due to the aggressive behavior of the major seed disperser who defend palm fruits. Seed predation, on the other hand, was markedly higher on the island, where nearly 100% of seeds were preyed upon, but only 0.3% on the mainland. As a consequence of higher seed predation the population of E. edulis has few numbers of seedlings and saplings on the island. Therefore, management of the seed predator populations on the island is a key priority for recovering the natural population of this keystone palm and the frugivores that depend on its fruits.

  16. Multiple infestation by seed predators: the effect of loculate fruits on intraspecific insect larval competition

    NASA Astrophysics Data System (ADS)

    Serrano, José M.; Delgado, Juan A.; López, Francisco; Acosta, Francisco J.; Fungairiño, Sara G.

    2001-06-01

    Many morphological features of fruits are important factors affecting predispersal seed predation by insects. This paper analyses the predispersal seed predation process of a major predator (a Noctuidae lepidopteran larvae) in loculate fruits of a bushy perennial plant, Cistus ladanifer. The main aim of the study is to assess the potential effect of internal valvae (which partition groups of seeds) in the intraspecific competition between larvae in multiple-infested fruits. Our results show that larvae do not reject already infested fruits, but they avoid the proximity of other larvae within the fruit, keeping an average minimum distance of one locule. In multiple-infested fruits, larval mortality increases and the proportion of seeds consumed by each larvae decreases. In those situations in which valvae keep apart larvae within a fruit, these only suffer the cost of exploitation competition with a low acquisition of resources. However, when all valvae between them are pierced by the larvae, competition switches to an interference component and larval mortality increases markedly. The existence of valvae within a fruit allows larvae to diminish the cost of intraspecific competition, obtaining high life expectancies (70%), even in triple-infested fruits.

  17. Flowering schedule in a perennial plant; life-history trade-offs, seed predation, and total offspring fitness.

    PubMed

    Ehrlén, Johan; Raabova, Jana; Dahlgren, Johan P

    2015-08-01

    Optimal timing of reproduction within a season may be influenced by several abiotic and biotic factors. These factors sometimes affect different components of fitness, making assessments of net selection difficult. We used estimates of offspring fitness to examine how pre-dispersal seed predation influences selection on flowering schedule in an herb with a bimodal flowering pattern, Actaea spicata. Within individuals, seeds from flowers on early terminal inflorescences had a higher germination rate and produced larger seedlings than seeds from flowers on late basal inflorescences. Reproductive value, estimated using demographic integral projection models and accounting for size-dependent differences in future performance, was two times higher for intact seeds from early flowers than for seeds from late flowers. Fruits from late flowers were, however, much more likely to escape seed predation than fruits from early flowers. Reproductive values of early and late flowers balanced at a predation intensity of 63%. Across 15 natural populations, the strength of selection for allocation to late flowers was positively correlated with mean seed predation intensity. Our results suggest that the optimal shape of the flowering schedule, in terms of the allocation between early and late flowers, is determined by the trade-off between offspring number and quality, and that variation in antagonistic interactions among populations influences the balancing of this trade-off. At the same time they illustrate that phenotypic selection analyses that fail to account for differences in offspring fitness might be misleading. PMID:26405752

  18. Ecological Interactions Shape the Dynamics of Seed Predation in Acrocomia aculeata (Arecaceae)

    PubMed Central

    Pereira, Anielle C. F.; Fonseca, Francine S. A.; Mota, Gleicielle R.; Fernandes, Ane K. C.; Fagundes, Marcílio; Reis-Júnior, Ronaldo; Faria, Maurício L.

    2014-01-01

    Background The complex network of direct and indirect relationships determines not only the species abundances but also the community characteristics such as diversity and stability. In this context, seed predation is a direct interaction that affects the reproductive success of the plant. For Acrocomia aculeata, the seed predation by Pachymerus cardo and Speciomerus revoili in post-dispersal may destroy more than 70% of the propagules and is influenced by the herbivory of the fruits during pre-dispersal. Fruits of plants with a higher level of herbivory during pre-dispersal are less attacked by predators in post-dispersal. We proposed a hypothesis that describes this interaction as an indirect defense mediated by fungi in a multitrophic interaction. As explanations, we proposed the predictions: i) injuries caused by herbivores in the fruits of A. aculeata favor fungal colonization and ii) the colonization of A. acuelata fruit by decomposing fungi reduces the selection of the egg-laying site by predator. Methodology/Principal Findings For prediction (i), differences in the fungal colonization in fruits with an intact or damaged epicarp were evaluated in fruits exposed in the field. For prediction (ii), we performed fruit observations in the field to determine the number of eggs of P. cardo and/or S. revoili per fruit and the amount of fungal colonization in the fruits. In another experiment, in the laboratory, we use P. cardo females in a triple-choice protocol. Each insect to choose one of the three options: healthy fruits, fruits with fungus, or an empty pot. The proposed hypothesis was corroborated. Fruits with injuries in the epicarp had a higher fungal colonization, and fruits colonized by fungi were less attractive for egg-laying by seed predators. Conclusion/Significance This study emphasizes the importance of exploring the networks of interactions between multitrophic systems to understand the dynamics and maintenance of natural populations. PMID:24875386

  19. Corridors and olfactory predator cues affect small mammal behavior.

    SciTech Connect

    Brinkerhoff, Robert Jory; Haddad, Nick M.; Orrock, John L.

    2005-03-30

    Abstract The behavior of prey individuals is influenced by a variety of factors including, but not limited to, habitat configuration, risk of predation, and availability of resources, and these habitat-dependent factors may have interactive effects. We studied the responses of mice to an increase in perceived predation risk in a patchy environment to understand how habitat corridors might affect interactions among species in a fragmented landscape. We used a replicated experiment to investigate corridor-mediated prey responses to predator cues in a network of open habitat patches surrounded by a matrix of planted pine forest. Some of the patches were connected by corridors. We used mark–recapture techniques and foraging trays to monitor the movement, behavior, and abundance of small mammals. Predation threat was manipulated in one-half of the replicates by applying an olfactory predator cue. Corridors synchronized small mammal foraging activity among connected patches. Foraging also was inhibited in the presence of an olfactory predator cue but apparently increased in adjacent connected patches. Small mammal abundance did not change as a result of the predator manipulation and was not influenced by the presence of corridors. This study is among the 1st to indicate combined effects of landscape configuration and predation risk on prey behavior. These changes in prey behavior may, in turn, have cascading effects on community dynamics where corridors and differential predation risk influence movement and patch use.

  20. A Simple Relationship Between Short- and Long-term Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. For convenience, measurements of seed predation are often made at very short time scales (< 3 d). However, one of the primary uses of such data, the parameterization of models of cr...

  1. Impact of seed predators on the herb Baptista lanceolata (Fabales: Fabacae).

    SciTech Connect

    Scott Horn; James L. Hanula.

    2004-09-01

    Leguminous seeds are a concentrated source of nutrition (Brashier 2000). In a nutrient-poor habitat, these seeds are important resources for many of the animal species residing there. Several insect predators are known to feed on Baptisia seeds. One such insect is Apion rostrum Say (Coleoptera: Curculionidae), a weevil that feeds on seeds of several wild indigo species. Females lay eggs in developing seed pods where the larvae eat the seeds.

  2. Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation.

    PubMed

    Stuhler, John D; Orrock, John L

    2016-06-01

    Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators. PMID:26905418

  3. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer

    PubMed Central

    Talluto, Matthew V.; Benkman, Craig W.

    2014-01-01

    Recent work has demonstrated that evolutionary processes shape ecological dynamics on relatively short timescales (eco-evolutionary dynamics), but demonstrating these effects at large spatial scales in natural landscapes has proven difficult. We used empirical studies and modeling to investigate how selective pressures from fire and predispersal seed predation affect the evolution of serotiny, an ecologically important trait. Serotiny is a highly heritable key reproductive trait in Rocky Mountain lodgepole pine (Pinus contorta subsp. latifolia), a conifer that dominates millions of hectares in western North America. In these forests, the frequency of serotiny determines postfire seedling density with corresponding community- and ecosystem-level effects. We found that serotinous individuals have a selective advantage at high fire frequencies and low predation pressure; however, very high seed predation shifted the selective advantage to nonserotinous individuals even at high fire frequencies. Simulation modeling suggests that spatial variation in the frequency of serotiny results from heterogeneity in these two selective agents. These results, combined with previous findings showing a negative association between the density of seed predators and the frequency of serotiny at both landscape and continental scales, demonstrate that contemporary patterns in serotiny reflect an evolutionary response to conflicting selection pressures from fire and seed predation. Thus, we show that variation in the frequency of a heritable polygenic trait depends on spatial variation in two dominant selective agents, and, importantly, the effects of the local trait variation propagate with profound consequences to the structure and function of communities and ecosystems across a large landscape. PMID:24979772

  4. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer.

    PubMed

    Talluto, Matthew V; Benkman, Craig W

    2014-07-01

    Recent work has demonstrated that evolutionary processes shape ecological dynamics on relatively short timescales (eco-evolutionary dynamics), but demonstrating these effects at large spatial scales in natural landscapes has proven difficult. We used empirical studies and modeling to investigate how selective pressures from fire and predispersal seed predation affect the evolution of serotiny, an ecologically important trait. Serotiny is a highly heritable key reproductive trait in Rocky Mountain lodgepole pine (Pinus contorta subsp. latifolia), a conifer that dominates millions of hectares in western North America. In these forests, the frequency of serotiny determines postfire seedling density with corresponding community- and ecosystem-level effects. We found that serotinous individuals have a selective advantage at high fire frequencies and low predation pressure; however, very high seed predation shifted the selective advantage to nonserotinous individuals even at high fire frequencies. Simulation modeling suggests that spatial variation in the frequency of serotiny results from heterogeneity in these two selective agents. These results, combined with previous findings showing a negative association between the density of seed predators and the frequency of serotiny at both landscape and continental scales, demonstrate that contemporary patterns in serotiny reflect an evolutionary response to conflicting selection pressures from fire and seed predation. Thus, we show that variation in the frequency of a heritable polygenic trait depends on spatial variation in two dominant selective agents, and, importantly, the effects of the local trait variation propagate with profound consequences to the structure and function of communities and ecosystems across a large landscape. PMID:24979772

  5. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest

    PubMed Central

    Bagchi, Robert; Philipson, Christopher D.; Slade, Eleanor M.; Hector, Andy; Phillips, Sam; Villanueva, Jerome F.; Lewis, Owen T.; Lyal, Christopher H. C.; Nilus, Reuben; Madran, Adzley; Scholes, Julie D.; Press, Malcolm C.

    2011-01-01

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen–Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen–Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m2) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen–Connell mechanism at this site, it may influence the recruitment of particular species. PMID:22006965

  6. Synchrony between fruit maturation and effective dispersers' foraging activity increases seed protection against seed predators

    PubMed Central

    Boulay, Raphaël; Carro, Francisco; Soriguer, Ramón C; Cerdá, Xim

    2007-01-01

    The evolution of pollination and seed dispersal mutualisms is conditioned by the spatial and temporal co-occurrence of animals and plants. In the present study we explore the timing of seed release of a myrmecochorous plant (Helleborus foetidus) and ant activity in two populations in southern Spain during 2 consecutive years. The results indicate that fruit dehiscence and seed shedding occur mostly in the morning and correspond to the period of maximum foraging activity of the most effective ant dispersers. By contrast, ant species that do not transport seeds and/or that do not abound near the plants are active either before or after H. foetidus diaspores are released. Experimental analysis of diet preference for three kinds of food shows that effective ant dispersers are mostly scavengers that readily feed on insect corpses and sugars. Artificial seed depots suggest that seeds deposited on the ground out of the natural daily time window of diaspore releasing are not removed by ants and suffer strong predation by nocturnal rodents Apodemus sylvaticus. Nevertheless, important inter-annual variations in rodent populations cast doubts on their real importance as selection agents. We argue that traits allowing synchrony between seed presentation and effective partners may constitute a crucial pre-adaptation for the evolution of plant–animal mutualisms involving numerous animal partners. PMID:17698486

  7. Escaping peril: perceived predation risk affects migratory propensity

    PubMed Central

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders; Vinterstare, Jerker; Hansson, Lars-Anders; Skov, Christian; Brodersen, Jakob; Baktoft, Henrik; Brönmark, Christer

    2015-01-01

    Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms. Following exposure, we released fish in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics. PMID:26311158

  8. Effects of pollination limitation and seed predation on female reproductive success of a deceptive orchid.

    PubMed

    Walsh, Ryan P; Arnold, Paige M; Michaels, Helen J

    2014-01-01

    For many species of conservation significance, multiple factors limit reproduction. This research examines the contributions of plant height, number of flowers, number of stems, pollen limitation and seed predation to female reproductive success in the deceit-pollinated orchid, Cypripedium candidum. The deceptive pollination strategy employed by many orchids often results in high levels of pollen limitation. While increased floral display size may attract pollinators, C. candidum's multiple, synchronously flowering stems could promote selfing and also increase attack by weevil seed predators. To understand the joint impacts of mutualists and antagonists, we examined pollen limitation, seed predation and the effects of pollen source over two flowering seasons (2009 and 2011) in Ohio. In 2009, 36 pairs of plants size-matched by flower number, receiving either supplemental hand or open pollination, were scored for fruit maturation, mass of seeds and seed predation. Pollen supplementation increased proportion of flowers maturing into fruit, with 87 % fruit set when hand pollinated compared with 46 % for naturally pollinated flowers. Inflorescence height had a strong effect, as taller inflorescences had higher initial fruit set, while shorter stems had higher predation. Seed predation was seen in 73 % of all fruits. A parallel 2011 experiment that included a self-pollination treatment and excluded seed predators found initial and final fruit set were higher in the self and outcross pollination treatments than in the open-pollinated treatment. However, seed mass was higher in both open pollinated and outcross pollination treatments compared with hand self-pollinated. We found greater female reproductive success for taller flowering stems that simultaneously benefited from increased pollination and reduced seed predation. These studies suggest that this species is under strong reinforcing selection to increase allocation to flowering stem height. Our results may help

  9. Effects of pollination limitation and seed predation on female reproductive success of a deceptive orchid

    PubMed Central

    Walsh, Ryan P.; Arnold, Paige M.; Michaels, Helen J.

    2014-01-01

    For many species of conservation significance, multiple factors limit reproduction. This research examines the contributions of plant height, number of flowers, number of stems, pollen limitation and seed predation to female reproductive success in the deceit-pollinated orchid, Cypripedium candidum. The deceptive pollination strategy employed by many orchids often results in high levels of pollen limitation. While increased floral display size may attract pollinators, C. candidum's multiple, synchronously flowering stems could promote selfing and also increase attack by weevil seed predators. To understand the joint impacts of mutualists and antagonists, we examined pollen limitation, seed predation and the effects of pollen source over two flowering seasons (2009 and 2011) in Ohio. In 2009, 36 pairs of plants size-matched by flower number, receiving either supplemental hand or open pollination, were scored for fruit maturation, mass of seeds and seed predation. Pollen supplementation increased proportion of flowers maturing into fruit, with 87 % fruit set when hand pollinated compared with 46 % for naturally pollinated flowers. Inflorescence height had a strong effect, as taller inflorescences had higher initial fruit set, while shorter stems had higher predation. Seed predation was seen in 73 % of all fruits. A parallel 2011 experiment that included a self-pollination treatment and excluded seed predators found initial and final fruit set were higher in the self and outcross pollination treatments than in the open-pollinated treatment. However, seed mass was higher in both open pollinated and outcross pollination treatments compared with hand self-pollinated. We found greater female reproductive success for taller flowering stems that simultaneously benefited from increased pollination and reduced seed predation. These studies suggest that this species is under strong reinforcing selection to increase allocation to flowering stem height. Our results may help

  10. Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora.

    PubMed

    Munguía-Rosas, Miguel A; Abdala-Roberts, Luis; Parra-Tabla, Víctor

    2013-11-01

    Few studies have simultaneously addressed the effects of biotic and abiotic factors on pre-dispersal seed predation (PSP). Plant-seed predator interactions may be influenced by natural enemies and pollinators (the latter through changes in fruit or seed traits), and the activity of pre-dispersal seed predators and their natural enemies may both be affected by the abiotic environment. Additionally, in the case of cleistogamous plants with fruit dimorphism, PSP may be biased towards larger and more seeded chasmogamous (CH) fruits [relative to the smaller cleistogamous (CL) fruits], and the effects of biotic and abiotic factors may be contingent upon this fruit dimorphism. We studied PSP in the cleistogamous Ruellia nudiflora using a split-plot experimental design and asked the following: (1) is PSP biased towards CH fruits and is there an effect of pollen load on PSP? (2) Do parasitoids influence PSP and is their effect influenced by pollen load or fruit type? And (3) do light and water availability modify PSP and parasitoid effects? PSP was higher for CH relative to CL fruits, and under low water availability it was lower for pollen-supplemented CH fruits relative to open-pollinated CH fruits. Parasitoids were not influenced by abiotic conditions, but their negative effect on PSP was stronger for pollen-supplemented CH fruits. Overall, we show that fruit dimorphism, abiotic factors and natural enemies affect PSP, and that these effects can be non-additive. PMID:23576106

  11. Simulated predator extinctions: predator identity affects survival and recruitment of oysters.

    PubMed

    O'Connor, Nessa E; Grabowski, Jonathan H; Ladwig, Laura M; Bruno, John F

    2008-02-01

    The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely

  12. Annual post-dispersal weed seed predation in contrasting field environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in weed seed predation as an ecological weed management tactic has led to a growing number of investigations of agronomic and environmental effects on predation rates. Whereas the measurements in most of these studies have taken place at very short time scales, from days to weeks, measureme...

  13. Implications of Habitat Loss on Seed Predation and Early Recruitment of a Keystone Palm in Anthropogenic Landscapes in the Brazilian Atlantic Rainforest

    PubMed Central

    Soares, Leiza Aparecida S. S.; Faria, Deborah; Vélez-Garcia, Felipe; Vieira, Emerson M.; Talora, Daniela C.; Cazetta, Eliana

    2015-01-01

    Habitat loss is the main driver of the loss of global biodiversity. Knowledge on this subject, however, is highly concentrated on species richness and composition patterns, with little discussion on the consequences of habitat loss for ecological interactions. Therefore, a systemic approach is necessary to maximize the success of conservation efforts by providing more realistic information about the effects of anthropogenic disturbances on natural environmental processes. We investigated the implications of habitat loss for the early recruitment of Euterpe edulis Martius, a keystone palm in the Brazilian Atlantic Forest, in nine sampling sites located in landscapes with different percentages of forest cover (9%-83%). We conducted a paired experiment using E. Edulis seeds set up in experimental stations composed of a vertebrate exclosure versus an open treatment. We used ANCOVA models with treatments as factors to assess the influence of habitat loss on the number of germinated seeds, predation by vertebrates and invertebrates, infestation by fungi, and number of seedlings established. Habitat loss did not affect the probability of transition from a dispersed to a germinated seed. However, when seeds were protected from vertebrate removal, seedling recruitment showed a positive relationship with the amount of forest cover. Seed infestation by fungi was not significant, and seed predation was the main factor limiting seed recruitment. The loss of forest cover antagonistically affected the patterns of seed predation by vertebrates and invertebrates; predation by invertebrates was higher in less forested areas, and predation by vertebrates was higher in forested areas. When seeds were exposed to the action of all biotic mortality factors, the number of recruited seedlings was very low and unrelated to habitat loss. This result indicates that the opposite effects of seed predation by vertebrates and invertebrates mask a differential response of E. edulis recruitment to

  14. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey

    PubMed Central

    Schartel, Tyler E.; Schauber, Eric M.

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  15. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    PubMed

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  16. Dispersal and post-dispersal predation of Italian ryegrass seed in unimproved pasture.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal and post-dispersal predation of Italian ryegrass seed in unimproved pasture. Italian ryegrass (Lolium multiflorum L.) can be a productive and high-quality cool-season forage, but is considered a weed in some pastures. Italian ryegrass does not form a persistent seed bank and needs to prod...

  17. Seed dispersal and predation of Buchenavia tomentosa Eichler (Combretaceae) in a Cerrado sensu stricto, midwest Brazil.

    PubMed

    Farias, J; Sanchez, M; Abreu, M F; Pedroni, F

    2015-11-01

    The ecology of seed dispersal is critical to understand the patterns of distribution and abundance of plant species. We investigated seed dispersal aspects associated with the high abundance of Buchenavia tomentosa in the Serra Azul State Park (PESA). We estimated fruit production and conducted fruit removal experiments. We carried out diurnal and nocturnal observations on frugivory as well as germination tests. Fruiting occurred in the dry season and totaled 1,365,015 ± 762,670 fruits.ha-1. B. tomentosa fruits were utilized by eight animal species. The lowland tapir (Tapirus terrestris) was considered the main seed disperser. Leafcutter ants (Atta laevigata and Atta sexdens) participated in the seed cleaning and occasionally dispersed seeds. The beetle Amblycerus insuturatus, blue-and-yellow macaw (Ara ararauna) and red-and-green macaw (Ara chloropterus) were considered pre-dispersal seed predators. The seeds manually cleaned presented higher germination rate (100%) and speed index (4.2 seeds.d-1) than that of seeds with pulp. Germination of seeds found in tapirs'feces was 40%, while for the seeds without pulp it was 25%. The high abundance of B. tomentosa in the cerrado of PESA may be due to massive fruit production, low rates of seed predation, and efficient seed dispersal by tapirs, occurring before the rains which promote germination and recruitment of this species. PMID:26602355

  18. Indirect interactions among tropical tree species through shared rodent seed predators: a novel mechanism of tree species coexistence.

    PubMed

    Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A

    2015-08-01

    The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest. PMID:25939379

  19. Scatterhoarding rodents favor higher predation risks for cache sites: The potential for predators to influence the seed dispersal process.

    PubMed

    Steele, Michael A; Rompré, Ghislain; Stratford, Jeffrey A; Zhang, Hongmao; Suchocki, Matthew; Marino, Shealyn

    2015-05-01

    Scatterhoarding rodents often place caches in the open where pilferage rates are reduced, suggesting that they tradeoff higher risks of predation for more secure cache sites. We tested this hypothesis in two study systems by measuring predation risks inferred from measures of giving-up densities (GUDs) at known cache sites and other sites for comparison. Rodent GUDs were measured with small trays containing 3 L of fine sand mixed with sunflower seeds. In the first experiment, we relied on a 2-year seed dispersal study in a natural forest to identify caches of eastern gray squirrels (Sciurus carolinensis) and then measured GUDs at: (i) these caches; (ii) comparable points along logs and rocks where rodent activity was assumed highest; and (iii) a set of random points. We found that GUDs and, presumably, predation risks, were higher at both cache and random points than those with cover. At the second site, we measured GUDs of eastern gray squirrels in an open park system and found that GUDs were consistently lowest at the base of the tree compared to more open sites, where previous studies show caching by squirrels to be highest and pilferage rates by naïve competitors to be lowest. These results confirm that predation risks can influence scatterhoarding decisions but that they are also highly context dependent, and that the landscape of fear, now so well documented in the literature, could potentially shape the temporal and spatial patterns of seedling establishment and forest regeneration in systems where scatterhoarding is common. PMID:25827710

  20. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis.

    PubMed

    Zwolak, Rafał; Bogdziewicz, Michał; Wróbel, Aleksandra; Crone, Elizabeth E

    2016-03-01

    The predator satiation and predator dispersal hypotheses provide alternative explanations for masting. Both assume satiation of seed-eating vertebrates. They differ in whether satiation occurs before or after seed removal and caching by granivores (predator satiation and predator dispersal, respectively). This difference is largely unrecognized, but it is demographically important because cached seeds are dispersed and often have a microsite advantage over nondispersed seeds. We conducted rodent exclosure experiments in two mast and two nonmast years to test predictions of the predator dispersal hypothesis in our study system of yellow-necked mice (Apodemus flavicollis) and European beech (Fagus sylvatica). Specifically, we tested whether the fraction of seeds removed from the forest floor is similar during mast and nonmast years (i.e., lack of satiation before seed caching), whether masting decreases the removal of cached seeds (i.e., satiation after seed storage), and whether seed caching increases the probability of seedling emergence. We found that masting did not result in satiation at the seed removal stage. However, masting decreased the removal of cached seeds, and seed caching dramatically increased the probability of seedling emergence relative to noncached seeds. European beech thus benefits from masting through the satiation of scatterhoarders that occurs only after seeds are removed and cached. Although these findings do not exclude other evolutionary advantages of beech masting, they indicate that fitness benefits of masting extend beyond the most commonly considered advantages of predator satiation and increased pollination efficiency. PMID:26612728

  1. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    PubMed Central

    Wenninger, Alexandria; Kim, Tania N.; Spiesman, Brian J.; Gratton, Claudio

    2016-01-01

    Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants) resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers), and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation. PMID:27271673

  2. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators.

    PubMed

    Wenninger, Alexandria; Kim, Tania N; Spiesman, Brian J; Gratton, Claudio

    2016-01-01

    Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta) as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants) resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers), and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation. PMID:27271673

  3. Insect seed predation as a factor in Italian ryegrass persistence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Italian ryegrass can be a productive and high-quality cool-season forage. However, as an annual, it does not form a persistent seed bank and needs to be managed to produce sufficient seed for effective re-establishment. Before the re-seeding dynamics of Italian ryegrass can be modeled, an underst...

  4. Adaptive Advantage of Myrmecochory in the Ant-Dispersed Herb Lamium amplexicaule (Lamiaceae): Predation Avoidance through the Deterrence of Post-Dispersal Seed Predators

    PubMed Central

    Tanaka, Koki; Ogata, Kanako; Mukai, Hiromi; Yamawo, Akira; Tokuda, Makoto

    2015-01-01

    Seed dispersal by ants (myrmecochory) is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants. PMID:26197397

  5. Adaptive Advantage of Myrmecochory in the Ant-Dispersed Herb Lamium amplexicaule (Lamiaceae): Predation Avoidance through the Deterrence of Post-Dispersal Seed Predators.

    PubMed

    Tanaka, Koki; Ogata, Kanako; Mukai, Hiromi; Yamawo, Akira; Tokuda, Makoto

    2015-01-01

    Seed dispersal by ants (myrmecochory) is found worldwide, but the benefits that plants obtain from this mutualism remain uncertain. In the present study, we conducted laboratory experiments to demonstrate seed predator avoidance as a benefit of myrmecochory using the annual ant-dispersed herb Lamium amplexicaule, the disperser ant Tetramorium tsushimae, and the seed predatory burrower bug Adomerus rotundus. We compared the predation intensity of Lamium amplexicaule seeds by Adomerus rotundus under the presence or absence of Tetramorium tsushimae. Both the number of seeds sucked by Adomerus rotundus adults and the feeding duration of sucked seeds by nymphs were significantly reduced in the presence of ants. This effect was most likely due to the behavioral alteration of Adomerus rotundus in response to the ant presence, because ants seldom predated Adomerus rotundus during the experiment. Our results demonstrated that the presence of ants decreases post-dispersal seed predation, even when the ants do not bury the seeds. The present study thus suggests that the non-consumptive effects of ants on seed predators benefit myrmecochorous plants. PMID:26197397

  6. Predation of warm-and cool-season grass seed by the common cricket (Acheta domesticus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In field experiments we noted that one of the main predators of tall fescue (Festuca arundinacea Schreb.) and Italian ryegrass (Lolium multiflorum Lam.) seed was the field cricket (Gryllus sp.). To determine if there might be a seed predation preference among forage grasses a laboratory study was ...

  7. Endocarp thickness affects seed removal speed by small rodents in a warm-temperate broad-leafed deciduous forest, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmao; Zhang, Zhibin

    2008-11-01

    Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study

  8. Negative impacts of a vertebrate predator on insect pollinator visitation and seed output in Chuquiraga oppositifolia, a high Andean shrub.

    PubMed

    Muñoz, Alejandro A; Arroyo, Mary T K

    2004-01-01

    Studies on plant-pollinator interactions have largely neglected the potential negative effects of the predators of pollinators on seed output, even though anti-predatory behaviour of pollinators may affect visitation patterns, pollen transfer, and therefore potentially, plant reproductive output. We tested the hypothesis that the presence of lizards and insectivorous birds, by reducing pollinator visitation, can have significant negative effects on seed output in the insect-pollinated, genetically self-incompatible lower alpine Andean shrub, Chuquiraga oppositifolia (Asteraceae). The lower alpine belt supports a high density of territorial Liolaemus (Tropiduridae) lizards and low shrubs interspersed among rocks of varying sizes, the latter inhabited by lizards and commonly used by flycatchers Muscisaxicola (Tyrannidae) as perching sites. In a 2x2 factorial predator-exclusion experiment, visitation rates of the most frequent pollinators of C. oppositifolia (the satyrid butterfly Cosmosatyrus chilensis and the syrphid fly Scaeva melanostoma), the duration of pollinator visits, and seed output, were 2-4 times greater when lizards were excluded, while birds had no effect. In a natural experiment, visits by S. melanostoma were 9 times shorter, and pollinator visitation rates of C. chilensis and S. melanostoma, and C. oppositifolia seed output were 2-3 times lower on shrubs growing adjacent to lizard-occupied rocks compared to those growing distant from rocks. Our results, verified for additional Andean sites, suggest that lizard predators can alter the behaviour of pollinators and elicit strong top-down indirect negative effects on seed output. Such effects may be especially important in high alpine plant communities, where pollinator activity can be low and erratic, and pollen limitation has been reported. PMID:14551828

  9. Functional traits determine formation of mutualism and predation interactions in seed-rodent dispersal system of a subtropical forest

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2014-02-01

    Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.

  10. Effects of carbaryl-bran bait on trap-catch and seed predation by ground beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbaryl-bran bait is effective against grasshoppers without many impacts on non-target organisms, but ground beetles (Coleoptera: Carabidae) may be susceptible to these baits. Carabids are beneficial in agricultural settings as predators of insect pests and weed seeds. Carabid species composition a...

  11. Preferential predation of cool season grass seed by the common cricket (Acheta domesticus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine if there might be a seed predation preference among forage grasses a laboratory study was conducted using the common cricket (Acheta domesticus L.). Six cool-season grasses were selected and feeding studies were conducted over a three day period. The study was designed as a randomized ...

  12. Population-level compensation by an invasive thistle thwarts biological control from seed predators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predispersal seed predators are often chosen as biocontrol agents because of their high impacts on plant fitness; however, they have a mixed record in realizing decreased plant population growth. Few studies have experimentally removed agents to explore their impact on weed population growth. Here...

  13. [Predation, removal and seed dispersal in a wetland dominated by palms (Arecaceae)].

    PubMed

    Myers, Ronald L

    2013-09-01

    In the Tortuguero floodplains, Costa Rica, a significant number of trees such as Carapa guianensis, Pentaclethra mnacroloba and the palm Manicaria saccifera have floating seeds adapted to hydrocory, while others, such as the almendro Dipteryx oleifera and the raffia palm Raphia taedigera have heavy seeds that do not float. These species have differential distributions, and while C. guianensis, P macroloba and D. oleifera also grow on slopes away from the flood, the palms M saccifera and R. taedigera hardly occur outside the swamps, where they stand as the dominant species. To understand the differences in the micro-distribution of these tree species in waterlogged environments and differences in their seed adaptations, I did a series of experiments to compare the loss and germination of their seeds in the slope forest and in palm swamps in the region. Overall, seeds in the forest slope have higher removal rates than those in the M. saccifera and R. taedigera swamps. This last one exhibits the lowest seed loss of all three habitats. Also, differences in seed predation/removal were noticed between the two species of palms studied. Thus, seeds of M saccifera disappeared rapidly, regardless of density aggregation and location in the swamp. Removal rates in R. taedigera seeds were low in the raffia dominated swamp, where apparently, seed losses are slightly higher in the mounds of palm clumps than in the swamp floor. These observations suggest that both: flooding and microtopography determine, directly or indirectly, the fate of tree species within these wetlands. Restrictions on seed dispersal and the slow germination confine R. taedigera marshes and flooded places, whereas flooding and predators mediate in the distribution of the other tree species. PMID:24459753

  14. When condition trumps location: seed consumption by fruit-eating birds removes pathogens and predator attractants.

    PubMed

    Fricke, Evan C; Simon, Melissa J; Reagan, Karen M; Levey, Douglas J; Riffell, Jeffrey A; Carlo, Tomás A; Tewksbury, Joshua J

    2013-08-01

    Seed ingestion by frugivorous vertebrates commonly benefits plants by moving seeds to locations with fewer predators and pathogens than under the parent. For plants with high local population densities, however, movement from the parent plant is unlikely to result in 'escape' from predators and pathogens. Changes to seed condition caused by gut passage may also provide benefits, yet are rarely evaluated as an alternative. Here, we use a common bird-dispersed chilli pepper (Capsicum chacoense) to conduct the first experimental comparison of escape-related benefits to condition-related benefits of animal-mediated seed dispersal. Within chilli populations, seeds dispersed far from parent plants gained no advantage from escape alone, but seed consumption by birds increased seed survival by 370% - regardless of dispersal distance - due to removal during gut passage of fungal pathogens and chemical attractants to granivores. These results call into question the pre-eminence of escape as the primary advantage of dispersal within populations and document two overlooked mechanisms by which frugivores can benefit fruiting plants. PMID:23786453

  15. When condition trumps location: seed consumption by fruit-eating birds removes pathogens and predator attractants

    PubMed Central

    Fricke, Evan C; Simon, Melissa J; Reagan, Karen M; Levey, Douglas J; Riffell, Jeffrey A; Carlo, Tomás A; Tewksbury, Joshua J

    2013-01-01

    Seed ingestion by frugivorous vertebrates commonly benefits plants by moving seeds to locations with fewer predators and pathogens than under the parent. For plants with high local population densities, however, movement from the parent plant is unlikely to result in ‘escape’ from predators and pathogens. Changes to seed condition caused by gut passage may also provide benefits, yet are rarely evaluated as an alternative. Here, we use a common bird-dispersed chilli pepper (Capsicum chacoense) to conduct the first experimental comparison of escape-related benefits to condition-related benefits of animal-mediated seed dispersal. Within chilli populations, seeds dispersed far from parent plants gained no advantage from escape alone, but seed consumption by birds increased seed survival by 370% – regardless of dispersal distance – due to removal during gut passage of fungal pathogens and chemical attractants to granivores. These results call into question the pre-eminence of escape as the primary advantage of dispersal within populations and document two overlooked mechanisms by which frugivores can benefit fruiting plants. PMID:23786453

  16. Rodent foraging is affected by indirect, but not by direct, cues of predation risk.

    SciTech Connect

    Orrock, John, L.; Danielson, Brent, J.; Brinkerhoff, R., Jory

    2004-01-01

    Behavioral Ecology Vol. 15 No. 3: 433 - 437 We used foraging trays to determine whether old field mice, Peromyscus polionotus , altered foraging in response to direct cues of predation risk (urine of native and nonnative predators) and indirect cues of predation risk (foraging microhabitat, precipitation, and moon illumination). The proportion of seeds remaining in each tray (a measure of the giving-up density [GUD]) was used to measure risk perceived by mice. Mice did not alter their GUD when presented with cues of native predators (bobcats, Lynx r ufus , and red foxes, Vulpes vulpes), recently introduced predators (coyotes, Canis latrans ), nonnative predators (ocelots, Leopardus pardalis ), a native herbivore (white-tailed deer, Odocoileus virginianus), or a water control. Rather, GUD was related to microhabitat: rodents removed more seeds from foraging trays sheltered beneath vegetative cover compared with exposed trays outside of cover. Rodents also removed more seeds during nights with precipitation and when moon illumination was low. Our results suggest that P. polionotus used indirect cues rather than direct cues to assess risk of vertebrate predation. Indirect cues may be more reliable than are direct scent cues for estimating risk from multiple vertebrate predators that present the most risk in open environments.

  17. Gut passage and secondary metabolites alter the source of post-dispersal predation for bird-dispersed chili seeds.

    PubMed

    Fricke, Evan C; Haak, David C; Levey, Douglas J; Tewksbury, Joshua J

    2016-07-01

    Plants can influence the source and severity of seed predation through various mechanisms; the use of secondary metabolites for chemical defense, for example, is well documented. Gut passage by frugivores can also reduce mortality of animal-dispersed seeds, although this mechanism has gained far less attention than secondary metabolites. Apart from influencing the severity of seed predation, gut passage may also influence the source of seed predation. In Bolivia, we compared impacts of these two mechanisms, gut passage and secondary metabolites, on the source of seed predation in Capsicum chacoense, a wild chili species that is polymorphic for pungency (individual plants either produce fruits and seeds containing or lacking capsaicinoids). Using physical exclosures, we isolated seed removal by insects, mammals, and birds; seeds in the trials were from either pungent or non-pungent fruits and were either passed or not passed by seed-dispersing birds. Pungency had little influence on total short-term seed removal by animals, although prior work on this species indicates that capsaicin reduces mortality caused by fungi at longer time scales. Gut passage strongly reduced removal by insects, altering the relative impact of the three predator types. The weak impact of pungency on short-term predation contrasts with previous studies, highlighting the context dependence of secondary metabolites. The strong impact of gut passage demonstrates that this mechanism alone can influence which seed predators consume seeds, and that impacts of gut passage can be larger than those of secondary metabolites, which are more commonly acknowledged as a defense mechanism. PMID:27016078

  18. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants.

    PubMed

    Xu, Yue; Shen, Zehao; Li, Daoxin; Guo, Qinfeng

    2015-01-01

    Pre-dispersal seed predation (PDSP) is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs) or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct "hide-and-seek" strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community. PMID:26575270

  19. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants

    PubMed Central

    Xu, Yue; Shen, Zehao; Li, Daoxin; Guo, Qinfeng

    2015-01-01

    Pre-dispersal seed predation (PDSP) is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs) or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct “hide-and-seek” strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community. PMID:26575270

  20. Seed harvester ants (Polonomyrmex rugosus) as "pulse" predators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed harvesting ants, Pogonomyrmex rugosus, collected grass cicadas at a high rate (>5 min-1 taken into the nest) at one location where cicada emergence exceeded 3m-2. Dry conditions in the winter-spring resulted in no annual plants in the northern Chihuahuan Desert. P. rugosus colonies were inactiv...

  1. Beach almond (Terminalia catappa, Combretaceae) seed production and predation by scarlet macaws (Ara macao) and variegated squirrels (Sciurus variegatoides).

    PubMed

    Henn, Jonathan J; McCoy, Michael B; Vaughan, Christopher S

    2014-09-01

    Knowledge of ecological impacts of exotic beach almond (Terminalia catappa) in the central Pacific of Costa Rica are little known, but studies have found this species to be a potentially important food source for endangered scarlet macaws (Ara macao). In this study, reproductive phenology and seed predation by variegated squirrels (Sciurus variegatoides) and scarlet macaws were measured during March and April 2011 on beaches of central Pacific coastal Costa Rica. Seed productivity and predation levels were quantified on a weekly basis for 111 beach almond trees to assess the importance of beach almond as a food source for scarlet macaws and the extent of resource partitioning between seed predators. Seed production of the trees was great (about 194 272 seeds) and approximately 67% of seeds were predated by seed predators. Macaws consumed an estimated 49% of seeds while squirrels consumed 18%. Additionally, evidence of resource partitioning between squirrels and macaws was found. Scarlet macaws preferred to feed on the northern side and edge of the canopy while squirrels preferred to feed on the southern and inside parts of the canopy. Both species ate most seeds on the ocean side of the tree. Despite the status of this tree as an exotic species, the beach almond appears to be an important resource for scarlet macaw population recovery. The resource produced by this tree should be taken into account as reforestation efforts continue in Costa Rica. PMID:25412525

  2. Does Predation Risk Affect Mating Behavior? An Experimental Test in Dumpling Squid (Euprymna tasmanica)

    PubMed Central

    Franklin, Amanda M.; Squires, Zoe E.; Stuart-Fox, Devi

    2014-01-01

    Introduction One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness). The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies) and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica). Results Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior) before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis). However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time. Conclusions Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high. PMID:25551378

  3. Seed Predators, not Herbivores, Exert Natural Selection on Solidago spp. in an Urban Archipelago.

    PubMed

    Bode, R F; Gilbert, A B

    2016-02-01

    The effects of urbanization on biodiversity are well established, as a growing city will reduce the size and diversity of patches of native plants. Recolonization of old patches and discovery of new ones by arthropod herbivores should occur as predicted by island biogeography theory. Although colonization represents an increase in biodiversity, such arrivals may exert new forms of natural selection on plants through herbivory and seed predation. Using a single species of old-field aster (Solidago altissima L.), we found that the level of natural selection by seed predators and herbivores follows patterns of island biogeography, with lower amounts of damage on smaller islands, where there are fewer species, and hypothetically smaller populations of arthropods. We also found that in an urban system, levels of herbivory are far below the tolerance levels of Solidago, and that seed predators are likely to be the only arthropod to cause reduced fitness. The pattern seen also implies that as a patch of Solidago grows through clonal expansion, it will come under higher selective pressure. PMID:26494854

  4. Plant-Species Diversity Correlates with Genetic Variation of an Oligophagous Seed Predator

    PubMed Central

    Laukkanen, Liisa; Mutikainen, Pia; Muola, Anne; Leimu, Roosa

    2014-01-01

    Several characteristics of habitats of herbivores and their food-plant communities, such as plant-species composition and plant quality, influence population genetics of both herbivores and their host plants. We investigated how different ecological and geographic factors affect genetic variation in and differentiation of 23 populations of the oligophagous seed predator Lygaeus equestris (Heteroptera) in southwestern Finland and in eastern Sweden. We tested whether genetic differentiation of the L. equestris populations was related to the similarity of vegetation, and whether there was more within-population genetic variation in habitats with a high number of plant species or in those with a large population of the primary food plant, Vincetoxicum hirundinaria. We also tested whether genetic differentiation of the populations was related to the geographic distance, and whether location of the populations on islands or on mainland, island size, or population size affected within-population genetic variation. Pairwise FST ranged from 0 to 0.1 indicating low to moderate genetic differentiation of populations. Differentiation increased with geographic distance between the populations, but was not related to the similarity of vegetation between the habitats. Genetic variation within the L. equestris populations did not increase with the population size of the primary food plant. However, the more diverse the plant community the higher was the level of genetic variation within the L. equestris population. Furthermore, the level of genetic variation did not vary significantly between island and mainland populations. The effect of the population size on within-population genetic variation was related to island size. Usually small populations are susceptible to loss of genetic variation, but small L. equestris populations on large islands seemed to maintain a relatively high level of within-population genetic variation. Our findings suggest that, in addition to geographic

  5. Social deprivation affects cooperative predator inspection in a cichlid fish

    PubMed Central

    Hesse, Saskia; Anaya-Rojas, Jaime M.; Frommen, Joachim G.; Thünken, Timo

    2015-01-01

    The social environment individuals are exposed to during ontogeny shapes social skills and social competence in group-living animals. Consequently, social deprivation has serious effects on behaviour and development in animals but little is known about its impact on cooperation. In this study, we examined the effect of social environment on cooperative predator inspection. Predator inspection behaviour is a complex behaviour, which is present in a variety of shoaling fish species. Often, two fish leave the safety of the group and inspect a potentially dangerous predator in order to gather information about the current predation risk. As predator inspection is highly risky, it is prone to conflicts and cheating. However, cooperation among individuals may reduce the individual predation risk. We investigated this complex social behaviour in juveniles of the cichlid fish Pelvicachromis taeniatus that were reared in two different social environments throughout development. Fish reared in a group inspected more often than isolation-reared fish and were more likely to cooperate, i.e. they conducted conjoint inspection of a predator. By contrast, isolation-reared fish were more likely to perform a single inspection without a companion. These results suggest an impairment of cooperative behaviour in isolation-reared fish most probably due to lack of social experience and resulting in lowered social skills needed in coordinated behaviour. PMID:26064616

  6. Fruit production and predispersal seed fall and predation in Rhamnus alaternus (Rhamnaceae)

    NASA Astrophysics Data System (ADS)

    Bas, Josep M.; Gómez, Crisanto; Pons, Pere

    2005-03-01

    In the reproductive cycle of fleshy-fruited plants, and before the seeds are dispersed, some fruits fall down or are predated on the branches. Here, we study the predispersal biology of Rhamnus alaternus in the north-east of the Iberian Peninsula over a 4-year period. Specifically, we examined fruit production, fructification and the phenology of ripening, together with the causes and the consequences of the predispersal loss in female plants. In addition, we evaluated the influence of the biometric traits and the spatial distribution of plants with regard to these aspects. The total estimated fruit production and fruiting phenology varied between localities and years, and there was no relation either to the plant biometry or to the spatial situation. The ripening period was between April and August, with a mean period of fruit permanence on the branches of 102 days. The maximum presence of ripe fruits was from early June to July, 54 days in average after fruit ripening began. The interaction of animals with the fruits has four important consequences: (a) losses in the initial production due to depredation of seeds, mainly by rodents; (b) direct fall of fruit and seeds under the cover of the female plants due to invertebrate predators of pulp; (c) reduction of the period of fruit availability on the branches; and (d) reduction of the proportion of ripe fruits on branches. In summary, the number of seeds available to be dispersed by frugivorous vertebrates is considerably reduced as a consequence of predispersal effects.

  7. Predation.

    ERIC Educational Resources Information Center

    Spain, James D.; Soldan, Theodore

    1983-01-01

    Describes two computer simulations of the predator-prey interaction in which students explore theories and mathematical equations involved in this biological process. The programs (for Apple II), designed for college level ecology, may be used in lecture/demonstrations or as a basis for laboratory assignments. A list of student objectives is…

  8. Endangered plant-parrot mutualisms: seed tolerance to predation makes parrots pervasive dispersers of the Parana pine

    PubMed Central

    Tella, José L.; Dénes, Francisco V.; Zulian, Viviane; Prestes, Nêmora P.; Martínez, Jaime; Blanco, Guillermo; Hiraldo, Fernando

    2016-01-01

    Parrots are largely considered plant antagonists as they usually destroy the seeds they feed on. However, there is evidence that parrots may also act as seed dispersers. We evaluated the dual role of parrots as predators and dispersers of the Critically Endangered Parana pine (Araucaria angustifolia). Eight of nine parrot species predated seeds from 48% of 526 Parana pines surveyed. Observations of the commonest parrot indicated that 22.5% of the picked seeds were dispersed by carrying them in their beaks. Another five parrot species dispersed seeds, at an estimated average distance of c. 250 m. Dispersal distances did not differ from those observed in jays, considered the main avian dispersers. Contrary to jays, parrots often dropped partially eaten seeds. Most of these seeds were handled by parrots, and the proportion of partially eaten seeds that germinated was higher than that of undamaged seeds. This may be explained by a predator satiation effect, suggesting that the large seeds of the Parana pine evolved to attract consumers for dispersal. This represents a thus far overlooked key plant-parrot mutualism, in which both components are threatened with extinction. The interaction is becoming locally extinct long before the global extinction of the species involved. PMID:27546381

  9. Endangered plant-parrot mutualisms: seed tolerance to predation makes parrots pervasive dispersers of the Parana pine.

    PubMed

    Tella, José L; Dénes, Francisco V; Zulian, Viviane; Prestes, Nêmora P; Martínez, Jaime; Blanco, Guillermo; Hiraldo, Fernando

    2016-01-01

    Parrots are largely considered plant antagonists as they usually destroy the seeds they feed on. However, there is evidence that parrots may also act as seed dispersers. We evaluated the dual role of parrots as predators and dispersers of the Critically Endangered Parana pine (Araucaria angustifolia). Eight of nine parrot species predated seeds from 48% of 526 Parana pines surveyed. Observations of the commonest parrot indicated that 22.5% of the picked seeds were dispersed by carrying them in their beaks. Another five parrot species dispersed seeds, at an estimated average distance of c. 250 m. Dispersal distances did not differ from those observed in jays, considered the main avian dispersers. Contrary to jays, parrots often dropped partially eaten seeds. Most of these seeds were handled by parrots, and the proportion of partially eaten seeds that germinated was higher than that of undamaged seeds. This may be explained by a predator satiation effect, suggesting that the large seeds of the Parana pine evolved to attract consumers for dispersal. This represents a thus far overlooked key plant-parrot mutualism, in which both components are threatened with extinction. The interaction is becoming locally extinct long before the global extinction of the species involved. PMID:27546381

  10. Cheating on the mutualistic contract: nutritional gain through seed predation in the frugivorous bat Chiroderma villosum (Phyllostomidae).

    PubMed

    Wagner, Insa; Ganzhorn, Jörg U; Kalko, Elisabeth K V; Tschapka, Marco

    2015-04-01

    Most frugivorous bats are efficient seed dispersers, as they typically do not damage seeds and transport them over long distances. In contrast, bats of the phyllostomid genus Chiroderma cheat fig trees by acting more as seed predators than as seed dispersers. The bats initially separate seeds from fruit pulp in the mouth. After extracting the juice from the fruit pulp, they thoroughly chew the seeds and spit out small seed fragments in a pellet. Consequently, the faeces contain almost no viable seeds. We compared the nutrient content of intact fig seeds with ejecta and faecal samples from both Chiroderma villosum and the 'conventional' frugivorous bat Artibeus watsoni. We show that C. villosum can extract nutrients from the seeds, especially protein and fat. The processing time of figs showed no significant difference between the two bat species. Food-choice experiments showed that C. villosum preferred fig species with more seeds over those with fewer seeds. This preference, in combination with the specialized seed-chewing behaviour, leads to an increased nutrient intake per fig. This unique strategy enables C. villosum to satisfy its nutritional requirements with a lower number of figs than other species, which decreases the amount of energy necessary for foraging flights as well as the predation risk during foraging. PMID:25833133

  11. Fishing top predators indirectly affects condition and reproduction in a reef-fish community.

    PubMed

    Walsh, S M; Hamilton, S L; Ruttenberg, B I; Donovan, M K; Sandin, S A

    2012-03-01

    To examine the indirect effects of fishing on energy allocation in non-target prey species, condition and reproductive potential were measured for five representative species (two-spot red snapper Lutjanus bohar, arc-eye hawkfish Paracirrhites arcatus, blackbar devil Plectroglyphidodon dickii, bicolour chromis Chromis margaritifer and whitecheek surgeonfish Acanthurus nigricans) from three reef-fish communities with different levels of fishing and predator abundance in the northern Line Islands, central Pacific Ocean. Predator abundance differed by five to seven-fold among islands, and despite no clear differences in prey abundance, differences in prey condition and reproductive potential among islands were found. Body condition (mean body mass adjusted for length) was consistently lower at sites with higher predator abundance for three of the four prey species. Mean liver mass (adjusted for total body mass), an indicator of energy reserves, was also lower at sites with higher predator abundance for three of the prey species and the predator. Trends in reproductive potential were less clear. Mean gonad mass (adjusted for total body mass) was high where predator abundance was high for only one of the three species in which it was measured. Evidence of consistently low prey body condition and energy reserves in a diverse suite of species at reefs with high predator abundance suggests that fishing may indirectly affect non-target prey-fish populations through changes in predation and predation risk. PMID:22380551

  12. Predator density and timing of arrival affect reef fish community assembly.

    PubMed

    Stier, Adrian C; Geange, Shane W; Hanson, Kate M; Bolker, Benjamin M

    2013-05-01

    Most empirical studies of predation use simple experimental approaches to quantify the effects of predators on prey (e.g., using constant densities of predators, such as ambient vs. zero). However, predator densities vary in time, and these effects may not be well represented by studies that use constant predator densities. Although studies have independently examined the importance of predator density, temporal variability, and timing of arrival (i.e., early or late relative to prey), the relative contribution of these different predator regimes on prey abundance, diversity, and composition remains poorly understood. The hawkfish (Paracirrhites arcatus), a carnivorous coral reef fish, exhibits substantial variability in patch occupancy, density, and timing of arrival to natural reefs. Our field experiments demonstrated that effects of hawkfish on prey abundance depended on both hawkfish density and the timing of their arrival, but not on variability in hawkfish density. Relative to treatments without hawkfish, hawkfish presence reduced prey abundance by 50%. This effect increased with a doubling of hawkfish density (an additional 33% reduction), and when hawkfish arrived later during community development (a 34% reduction). Hawkfish did not affect within-patch diversity (species richness), but they increased between-patch diversity (beta) based on species incidence (22%), and caused shifts in species composition. Our results suggest that the timing of predator arrival can be as important as predator density in modifying prey abundance and community composition. PMID:23858646

  13. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly. PMID:25000761

  14. Spatial variation in post-dispersal seed removal in an Atlantic forest: Effects of habitat, location and guilds of seed predators

    NASA Astrophysics Data System (ADS)

    Christianini, Alexander V.; Galetti, Mauro

    2007-11-01

    Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.

  15. How Predation and Landscape Fragmentation Affect Vole Population Dynamics

    PubMed Central

    Dalkvist, Trine; Sibly, Richard M.; Topping, Chris J.

    2011-01-01

    Background Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. Significance There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the

  16. Yucca brevifolia fruit production, predispersal seed predation, and fruit removal by rodents during two years of contrasting reproduction

    USGS Publications Warehouse

    Borchert, Mark I.; DeFalco, Lesley

    2016-01-01

    PREMISE OF THE STUDY: The distribution of Yucca brevifolia, a keystone species of the Mojave Desert, may contract with climate change, yet reproduction and dispersal are poorly understood. We tracked reproduction, seed predation, and fruit dispersal for two years and discuss whether Y. brevifolia is a masting species. METHODS: Fruit maturation, seed predation (larval yucca moths), and fruit dispersal (rodents) were monitored on a random sample of panicles during 2013 and 2014, which were years of high and low reproduction, respectively. Fates of fruits placed on the ground and in canopies were also tracked. Rodents were live-trapped to assess abundance and species composition. KEY RESULTS: In 2013, 66% of inflorescences produced fruit of which 53% escaped larval predation; 19.5% of seeds were destroyed in infested fruits. Total seed production was estimated to be >100 times greater in 2013 than 2014. One-third of the fruit crop fell to the ground and was removed by rodents over the course of 120 d. After ground fruits became scarce, rodents exploited canopy fruits. Rodent numbers were low in 2013, so fruits remained in canopies for 370 d. In 2014, fruit production was approximately 20% lower. Larvae infested the majority of fruits, and almost twice the number of seeds were damaged. Fruits were exploited by rodents within 65 d. CONCLUSIONS: High fertilization, prolific seed production, and low predispersal predation in 2013 suggests that pollinator attraction and satiation of seed predators influence masting in Y. brevifolia. Abundant, prolonged fruit availability to seed-dispersing rodents likely extends recruitment opportunities during mast years.

  17. Direct and indirect selection on floral pigmentation by pollinators and seed predators in a color polymorphic South African shrub.

    PubMed

    Carlson, Jane E; Holsinger, Kent E

    2013-04-01

    The coexistence of different color morphs is often attributed to variable selection pressures across space, time, morph frequencies, or selection agents, but the routes by which each morph is favored are rarely identified. In this study we investigated factors that influence floral color polymorphisms on a local scale in Protea, within which approximately 40% of species are polymorphic. Previous work shows that seed predators and reproductive differences likely contribute to maintaining polymorphism in four Protea species. We explored whether selection acts directly or indirectly on floral color in two populations of Protea aurea, using path analysis of pollinator behavior, nectar production, seed predation, color, morphology, and maternal fecundity fitness components. We found that avian pollinators spent more time on white morphs, likely due to nectar differences, but that this had no apparent consequences for fecundity. Instead, the number of flowers per inflorescence underpinned many of the reproductively important differences between color morphs. White morphs had more flowers per inflorescence, which itself was positively correlated with nectar production, seed predator occurrence, and total long-term seed production. The number of seeds per plant to survive predation, in contrast, was not directly associated with color or any other floral trait. Thus, although color differences may be associated with conflicting selection pressures, the selection appears to be associated with the number of flowers per inflorescence and its unmeasured correlates, rather than with inflorescence color itself. PMID:23007806

  18. Plastic hatching timing by red-eyed treefrog embryos interacts with larval predator identity and sublethal predation to affect prey morphology but not performance.

    PubMed

    Touchon, Justin C; Wojdak, Jeremy M

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles' tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation

  19. Plastic Hatching Timing by Red-Eyed Treefrog Embryos Interacts with Larval Predator Identity and Sublethal Predation to Affect Prey Morphology but Not Performance

    PubMed Central

    Touchon, Justin C.; Wojdak, Jeremy M.

    2014-01-01

    Many animals respond to predation risk by altering their morphology, behavior, or life-history. We know a great deal about the cues prey respond to and the changes to prey that can be induced by predation risk, but less is known about how plastic responses to predators may be affected by separate plastic responses occurring earlier in life, particularly during the embryonic period. Embryos of a broad array of taxa can respond to egg- or larval-stage risks by altering hatching timing, which may alter the way organisms respond to future predators. Using the red-eyed treefrog (Agalychnis callidryas), a model for understanding the effects of plasticity across life-stages, we assessed how the combined effects of induced variation in the timing of embryo hatching and variation in the larval predator community impacted tadpole morphology, pigmentation and swimming performance. We found that A. callidryas tadpoles developed deeper tail muscles and fins and darker pigmentation in response to fish predators, either when alone or in diverse community with other predators. Tadpoles altered morphology much less so to dragonfly naiads or water bugs. Interestingly, morphological responses to predators were also affected by induced differences in hatching age, with early and late-hatched tadpoles exhibiting different allometric relationships between tail height and body length in different predator environments. Beyond induced morphological changes, fish predators often damaged tadpoles’ tails without killing them (i.e., sublethal predation), but these tadpoles swam equally quickly to those with fully intact tails. This was due to the fact that tadpoles with more damaged tails increased tail beats to achieve equal swimming speed. This study demonstrates that plastic phenotypic responses to predation risk can be influenced by a complex combination of responses to both the embryo and larval environments, but also that prey performance can be highly resilient to sublethal predation

  20. Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology

    PubMed Central

    Dingemanse, Niels J.; Van der Plas, Fons; Wright, Jonathan; Réale, Denis; Schrama, Maarten; Roff, Derek A.; Van der Zee, Els; Barber, Iain

    2009-01-01

    Predation plays a central role in evolutionary processes, but little is known about how predators affect the expression of heritable variation, restricting our ability to predict evolutionary effects of predation. We reared families of three-spined stickleback Gasterosteus aculeatus from two populations—one with a history of fish predation (predator sympatric) and one without (predator naive)—and experimentally manipulated experience of predators during ontogeny. For a suite of ecologically relevant behavioural (‘personality’) and morphological traits, we then estimated two key variance components, additive genetic variance (VA) and residual variance (VR), that jointly shape narrow-sense heritability (h2= VA/(VA + VR)). Both population and treatment differentially affected VA versus VR, hence h2, but only for certain traits. The predator-naive population generally had lower VA and h2 values than the predator-sympatric population for personality behaviours, but not morphological traits. Values of VR and h2 were increased for some, but decreased for other personality traits in the predator-exposed treatment. For some personality traits, VA and h2 values were affected by treatment in the predator-naive population, but not in the predator-sympatric population, implying that the latter harboured less genetic variation for behavioural plasticity. Replication and experimental manipulation of predation regime are now needed to confirm that these population differences were related to variation in predator-induced selection. Cross-environment genetic correlations (rA) were tight for most traits, suggesting that predator-induced selection can affect the evolution of the same trait expressed in the absence of predators. The treatment effects on variance components imply that predators can affect evolution, not only by acting directly as selective agents, but also by influencing the expression of heritable variation. PMID:19129142

  1. Habitat edges affect patterns of artificial nest predation along a wetland-meadow boundary

    NASA Astrophysics Data System (ADS)

    Suvorov, Petr; Svobodová, Jana; Albrecht, Tomáš

    2014-08-01

    Wetland habitats are among the most endangered ecosystems in the world. However, little is known about factors affecting the nesting success of birds in pristine grass-dominated wetlands. During three breeding periods we conducted an experiment with artificial ground nests to test two basic mechanisms (the matrix and ecotonal effects) that may result in edge effects on nest predation in grass-dominated wetland habitats. Whereas the matrix effect model supposes that predator penetrate from habitat of higher predator density to habitat of lower predator density, thus causing an edge effect in the latter, according to the ecotonal effect model predators preferentially use edge habitats over habitat interiors. In addition, we tested the edge effect in a wetland habitat using artificial shrub nests that simulated the real nests of small open-cup nesting passerines. In our study area, the lowest predation rates on ground nests were found in wetland interiors and were substantially higher along the edges of both wetland and meadow habitat. However, predation was not significantly different between meadow and wetland interiors, indicating that both mechanisms can be responsible for the edge effect in wetland edges. An increased predation rate along wetland edges was also observed for shrub nests, and resembled the predation pattern of real shrub nests in the same study area. Though we are not able to distinguish between the two mechanisms of the edge effect found, our results demonstrate that species nesting in wetland edges bordering arable land may be exposed to higher predation. Therefore, an increase in the size of wetland patches that would lead to a reduced proportion of edge areas might be a suitable management practice to protect wetland bird species in cultural European landscapes.

  2. Elevated CO2 Affects Predator-Prey Interactions through Altered Performance

    PubMed Central

    Allan, Bridie J. M.; Domenici, Paolo; McCormick, Mark I.; Watson, Sue-Ann; Munday, Philip L.

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. PMID:23484032

  3. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails

    USGS Publications Warehouse

    Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.

    2016-01-01

    The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.

  4. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata)

    PubMed Central

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-01-01

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species. PMID:26203003

  5. Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata).

    PubMed

    van der Bijl, Wouter; Thyselius, Malin; Kotrschal, Alexander; Kolm, Niclas

    2015-08-01

    Large brains are thought to result from selection for cognitive benefits, but how enhanced cognition leads to increased fitness remains poorly understood. One explanation is that increased cognitive ability results in improved monitoring and assessment of predator threats. Here, we use male and female guppies (Poecilia reticulata), artificially selected for large and small brain size, to provide an experimental evaluation of this hypothesis. We examined their behavioural response as singletons, pairs or shoals of four towards a model predator. Large-brained females, but not males, spent less time performing predator inspections, an inherently risky behaviour. Video analysis revealed that large-brained females were further away from the model predator when in pairs but that they habituated quickly towards the model when in shoals of four. Males stayed further away from the predator model than females but again we found no brain size effect in males. We conclude that differences in brain size affect the female predator response. Large-brained females might be able to assess risk better or need less sensory information to reach an accurate conclusion. Our results provide experimental support for the general idea that predation pressure is likely to be important for the evolution of brain size in prey species. PMID:26203003

  6. Seed predation and fruit damage of Solanum lycocarpum (Solanaceae) by rodents in the cerrado of central Brazil

    NASA Astrophysics Data System (ADS)

    Briani and, Denis C., Jr.; Guimarães, Paulo R.

    2007-01-01

    Although neotropical savannas and grasslands, collectively referred to as cerrado, are rich in seed-eating species of rodents, little is known about seed predation and its determinants in this habitat. In this study, we investigated seed predation and damage to fruits of the widespread shrub Solanum lycocarpum. In addition, the influence of two possible determinants (distance from the parental plant and total crop size) on the feeding behaviour of Oryzomys scotti (Rodentia, Sigmodontinae) was also examined. O. scotti were captured more frequently close to the shrubs or on shrub crops, indicating that these rodents were attracted to the shrubs and that seed predation was probably distance-dependent. Moreover, the proportion of damaged fruit on the plant decreased as the total crop size increased; consequently, more productive plants were attacked proportionally less by rodents. This pattern of fruit damage may reflect predator satiation caused by the consumption of a large amount of pulp. Alternatively, secondary metabolites in S. lycocarpum fruits may reduce the pulp consumption per feeding event, thereby limiting the number of fruits damaged.

  7. Integrated management of Scotch broom, Cytisus scoparius: is control enhanced when seed predation is combined with prescribed fire or mowing?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated weed management (IWM) strategies are being advocated and employed to control invasive plants species. Prescribed fire, mechanical removal, and biological control (seed predator Exapion fuscirostre) are used to manage the invasive plant, Cytisus scoparius, in prairies at Fort Lewis, Washi...

  8. Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism

    USGS Publications Warehouse

    DeAngelis, Donald L.; Holland, J. Nathaniel

    2006-01-01

    Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as contrasting forms of the predator's functional response describing predator consumption rates on prey resources in predator–prey and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alternative functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditional upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model was then used to show mathematically how these two cases can arise.

  9. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  10. Effects of seed predators and light level on the distribution of Avicennia marina (Forsk.) Vierh. in tropical, tidal forests

    NASA Astrophysics Data System (ADS)

    Smith, Thomas J.

    1987-07-01

    Avicennia marina has an unusual distributional pattern across the intertidal region in mangrove forests of north-eastern Australia. It is often abundant in the low intertidal and high intertidal but is very rare in mid-intertidal areas. The influences of shade intolerance and seed predators on the distribution of Avicennia were investigated. Field observations of 391 light gaps indicated that while seedlings were equally abundant in gaps versus under the neighboring forest canopy, saplings were much more abundant in gaps. Subsequent field studies showed that seedlings survived and grew best in light gaps as opposed to under the forest canopy. Further field experiments revealed that 96·0±3·4% of the post-dispersal propagules of Avicennia are consumed by seed predators, primarily grapsid crabs. Predation on propagules was less in low and high intertidal regions where conspecific adults were common and was highest in the mid intertidal where Avicennia is rarest. Predator exclusion experiments indicated that Avicennia was capable of growing in mid-intertidal areas. It is concluded that the combination of shade intolerance and extensive predation on its' propagules effectively limits the distribution of Avicennia marina across the intertidal and may account for the dominance by members of the Rhizophoraceae in the mangrove forests of northern Australia.

  11. Interspecific and annual variation in pre-dispersal seed predation by a granivorous bird in two East Asian hackberries, Celtis biondii and Celtis sinensis.

    PubMed

    Yoshikawa, T; Masaki, T; Isagi, Y; Kikuzawa, K

    2012-05-01

    Pre-dispersal seed predation by granivorous birds has potential to limit fruit removal and subsequent seed dispersal by legitimate avian seed dispersers in bird-dispersed plants, especially when the birds form flocks. We monitored pre-dispersal seed predation by the Japanese grosbeak, Eophona personata, of two bird-dispersed hackberry species (Cannabaceae), Celtis biondii (four trees) and Celtis sinensis (10 trees), for 3 years (2005, 2007 and 2008) in a fragmented forest in temperate Japan. Throughout the 3 years, predation was more intense on C. biondii, which, as a consequence, lost a larger part of its fruit crop. Grosbeaks preferred C. biondii seeds that had a comparatively lower energy content and lower hardness than C. sinensis, suggesting an association between seed hardness and selective foraging by grosbeaks. In C. biondii, intensive predation markedly reduced fruit duration and strongly limited fruit removal by seed dispersers, especially in 2007 and 2008. In C. sinensis, seed dispersers consumed fruits throughout the fruiting seasons in all 3 years. In C. biondii, variation in the timing of grosbeak migration among years was associated with annual variation in this bird's effects on fruit removal. Our results demonstrate that seed predation by flocks of granivorous birds can dramatically disrupt seed dispersal in fleshy-fruited plants and suggest the importance of understanding their flocking behaviour. PMID:22136589

  12. Interactions between a pollinating seed predator and its host plant: the role of environmental context within a population

    PubMed Central

    Kula, Abigail A R; Castillo, Dean M; Dudash, Michele R; Fenster, Charles B

    2014-01-01

    Plant–insect interactions often are important for plant reproduction, but the outcome of these interactions may vary with environmental context. Pollinating seed predators have positive and negative effects on host plant reproduction, and the interaction outcome is predicted to vary with density or abundance of the partners. We studied the interaction between Silene stellata, an herbaceous perennial, and Hadena ectypa, its specialized pollinating seed predator. Silene stellata is only facultatively dependent upon H. ectypa for pollination because other nocturnal moth co-pollinators are equally effective at pollen transfer. We hypothesized that for plants without conspecific neighbors, H. ectypa would have higher visitation rates compared to co-pollinators, and the plants would experience lower levels of H. ectypa pollen deposition. We predicted similar oviposition throughout the study site but greater H. ectypa predation in the area without conspecific neighbors compared to plants embedded in a naturally high density area. We found that H. ectypa had consistently higher visitation than moth co-pollinators in all host plant contexts. However, H. ectypa pollinator importance declined in areas with low conspecific density because of reduced pollen deposition, resulting in lower seed set. Conversely, oviposition was similar across the study site independent of host plant density. Greater likelihood of very high fruit predation combined with lower pollination by H. ectypa resulted in reduced S. stellata female reproductive success in areas with low conspecific density. Our results demonstrate local context dependency of the outcomes of pollinating seed predator interactions with conspecific host plant density within a population. PMID:25165527

  13. The mechanical defence advantage of small seeds.

    PubMed

    Fricke, Evan C; Wright, S Joseph

    2016-08-01

    Seed size and toughness affect seed predators, and size-dependent investment in mechanical defence could affect relationships between seed size and predation. We tested how seed toughness and mechanical defence traits (tissue density and protective tissue content) are related to seed size among tropical forest species. Absolute toughness increased with seed size. However, smaller seeds had higher specific toughness both within and among species, with the smallest seeds requiring over 2000 times more energy per gram to break than the largest seeds. Investment in mechanical defence traits varied widely but independently of the toughness-mass allometry. Instead, a physical scaling relationship confers a toughness advantage on small seeds independent of selection on defence traits and without a direct cost. This scaling relationship may contribute to seed size diversity by decreasing fitness differences among large and small seeds. Allometric scaling of toughness reconciles predictions and conflicting empirical relationships between seed size and predation. PMID:27324185

  14. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  15. Distribution and abundance of predators that affect duck production--prairie pothole region

    USGS Publications Warehouse

    Sargeant, A.B.; Greenwood, R.J.; Sovada, M.A.; Shaffer, T.L.

    1993-01-01

    During 1983-88, the relative abundance of 18 species and species-groups of mammalian and avian predators affecting duck production in the prairie pothole region was determined in 33 widely scattered study areas ranging in size from 23-26 km2. Accounts of each studied species and species-group include habitat and history, population structure and reported densities, and information on distribution and abundance from the present study. Index values of undetected, scarce, uncommon, common, or numerous were used to rate abundance of nearly all species in each study area. Principal survey methods were livetrapping of striped skunks (Mephitis mephitis) and Franklin's ground squirrels (Spermophilus franklinii), systematic searches for carnivore tracks in quarter sections (0.65 km2), daily records of sightings of individual predator species, and systematic searches for occupied nests of tree-nesting avian predators. Abundances of predators in individual areas were studied 1-3 years.The distribution and abundance of predator species throughout the prairie pothole region have undergone continual change since settlement of the region by Europeans in the late 1800's. Predator populations in areas we studied differed markedly from those of pristine times. The changes occurred from habitat alterations, human-inflicted mortality of predators, and interspecific relations among predator species. Indices from surveys of tracks revealed a decline in the abundance of red foxes (Vulpes vulpes) and an albeit less consistent decline in the abundance of raccoons (Procyon lotor) with an increase in the abundance of coyotes (Canis latrans). Records of locations of occupied nests revealed great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) tended to nest 0.5 km apart, and American crows (Corvus brachyrhynchos) tended to avoid nesting 0.5 km of nests of red-tailed hawks. Excluding large gulls, for which no measurements of abundance were obtained, the number of

  16. Native and exotic earthworms affect orchid seed loss

    PubMed Central

    McCormick, Melissa K.; Parker, Kenneth L.; Szlavecz, Katalin; Whigham, Dennis F.

    2013-01-01

    Non-native earthworms have invaded ecosystems around the world but have recently received increased attention as they invaded previously earthworm-free habitats in northern North America. Earthworms can affect plants by ingesting seeds and burying them in the soil. These effects can be negative or positive but are expected to become increasingly negative with decreasing seed size. Orchids have some of the smallest seeds of any plants, so we hypothesized that earthworm consumption of seeds would decrease seed viability and lead to burial of ingested seeds. We used a combination of mesocosms and field measurements to determine whether native and non-native earthworms would affect Goodyera pubescens seed germination by decreasing seed viability through digestion or burial. To determine soil depths at which seed burial would decrease chances of germination, we used field measurements of the abundance of mycorrhizal fungi needed for G. pubescens germination at different soil depths. We found that the combined effects of earthworm ingestion and burial would be expected to result in a loss of 49 % of orchid seeds in mature forests and 68 % of those in successional forests over an average year. Differences in seed ingestion and burial among soils from mature and successional forests were probably driven by differences in their ability to support earthworm biomass and not by differences in earthworm behaviour as a function of soil type. The combined effects of earthworm ingestion and burial have the potential to result in substantial loss of orchid seeds, particularly in successional forests. This effect may slow the ability of orchids to recolonize forests as they proceed through succession. Determining whether this strong effect of earthworms on G. pubescens viability and germination also applies to other orchid species awaits further testing.

  17. The impact of specialist and generalist pre-dispersal seed predators on the reproductive output of a common and a rare Euphorbia species

    NASA Astrophysics Data System (ADS)

    Boieiro, Mário; Rego, Carla; Serrano, Artur R. M.; Espadaler, Xavier

    2010-03-01

    Pre-dispersal seed predators can have a severe impact on the reproductive output of their hosts, which can translate into negative effects on population dynamics. Here we compared the losses due to specialist and generalist insect seed predators in two Euphorbia species, a rare ( Euphorbia welwitschii) and a common one ( Euphorbia characias). Pre-dispersal losses to specialist seed-wasps ( Eurytoma jaltica) and generalist hemipterans ( Cydnus aterrimus and Dicranocephalus agilis) were on average higher for the rare E. welwitschii than for its widespread congener. In both Euphorbia species, the variation in losses to specialist and generalist seed predators was not related with traits indicative of plant size, fecundity, or isolation. Nevertheless, the temporal variation in losses to seed-wasps seemed to be intimately associated with the magnitude of yearly variation in fruit production. The impact of seed-wasps and hemipterans on the reproductive output of both Euphorbia species was additive, though there was evidence for infochemical-mediated interference at the fruit level. The moderate levels of seed predation in E. welwitschii, together with the results from the comparative analysis with its widespread congener, suggest that insect seed predation is not a causal effect of plant rarity.

  18. Phylogeography of specialist weevil Trichobaris soror: a seed predator of Datura stramonium.

    PubMed

    De-la-Mora, Marisol; Piñero, Daniel; Núñez-Farfán, Juan

    2015-12-01

    Can the genetic structure of a specialist weevil be explained by the geological history of their distribution zone? We analyze the genetic variation of the weevil Trichobaris soror, a specialist seed predator of Datura stramonium, in order to address this question. For the phylogeographic analysis we used the COI gene, and assessed species identity in weevil populations through geometric morphometric approach. In total, we found 53 haplotypes in 413 samples, whose genetic variation supports the formation of three groups: (1) the Transmexican Volcanic Belt (TVB group), (2) the Sierra Madre Sur (SMS group) and (3) the Balsas Basin (BB group). The morphometric analysis suggests that BB group is probably not T. soror. Our results have two implications: first, the phylogeographic pattern of T. soror is explained by both the formation of the geological provinces where it is currently distributed and the coevolution with its host plant, because the TVB and SMS groups could be separated due to the discontinuity of altitude between the geological provinces, but the recent population expansion of TVB group and the high frequency of only one haplotype can be due to specialization to the host plant. Second, we report a new record of a different species of weevil in BB group parasitizing D. stramonium fruits. PMID:26498017

  19. Bird predation affects diurnal and nocturnal web-building spiders in a Mediterranean citrus grove

    NASA Astrophysics Data System (ADS)

    Mestre, L.; Garcia, N.; Barrientos, J. A.; Espadaler, X.; Piñol, J.

    2013-02-01

    Spiders and birds can greatly decrease insect populations, but birds also limit spider densities in some habitats. Bird predation is thought to be one of the causes behind nocturnal activity in spiders, so night-active spiders that hide in retreats during the day should be less affected by bird foraging than day-active spiders. However, this hypothesis has not yet been tested. We investigated the importance of bird predation on the spider community of a Mediterranean organic citrus grove. We excluded birds by placing net cages over the trees and we conducted visual searches in the canopies to sample web-building spiders. As there are many nocturnal species in the family Araneidae, we conducted searches both by day and by night to compare the abundance of active araneids in these two time periods. We sampled the tree trunks with cardboard bands to collect hunting spiders. In bird-excluded canopies there were more spiders of the families Araneidae and Theridiidae. There were higher numbers of active Araneidae at night, but these were just as negatively affected by bird predation as day-active Araneidae, so there was no evidence of nocturnal activity serving as an anti-predator strategy. We did not find any negative impact of birds on hunting spiders. Our results contrast with other studies reporting a negative effect of birds on hunting but not on web-building spiders.

  20. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  1. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    PubMed Central

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-01-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes. PMID:26506134

  2. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-01-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes. PMID:26506134

  3. Impact of the newly arrived seed-predating beetle Specularius impressithorax (Coleoptera: Chrysomelidae: Bruchinae) in Hawai'i

    USGS Publications Warehouse

    Medeiros, A.C.; Von Allmen, E.; Fukada, M.; Samuelson, A.; Lau, T.

    2008-01-01

    Prior to 2001, seed predation was virtually absent in the endemic Wiliwili Erythrina sandwicensis (Fabaceae: Degener), dominant tree species of lower-elevation Hawaiian dryland forests. The African bruchine chrysomelid Specularius impressithorax (Pic) (Coleoptera: Chrysomelidae: Bruchinae) was first detected in Hawai'i in 2001 and became established on all main islands within the next two years. The mode of entry for this invasive Erythrina seed predator into Hawai'i is unknown, but likely occurred with the importation of trinket jewelry from Africa containing characteristically brightly-colored Erythrina seeds. The initial establishment of this insect likely occurred on a non-native host, the widely cultivated coral tree E. variegata. Within three years of its first record, S. impressithorax accounted for 77.4% mean seed crop loss in 12 populations of Wiliwili on six main Hawaiian islands. Specularius impressithorax, dispersed through international commerce and established via E. variegata, has become a threat to a unique Hawaiian forest type and may threaten other Erythrina, especially New World representatives.

  4. Feeding behaviour of an intertidal snail: Does past environmental stress affect predator choices and prey vulnerability?

    NASA Astrophysics Data System (ADS)

    Gestoso, Ignacio; Arenas, Francisco; Olabarria, Celia

    2015-03-01

    Predation is one of the most important factors in determining structure and dynamics of communities on intertidal rocky shores. Such regulatory role may be of special relevance in novel communities resulting from biological invasions. Non-indigenous species frequently escape natural predators that limit their distribution and abundance in the native range. However, biological interactions also can limit the establishment and spread of non-native populations. There is a growing concern that climate change might affect predator-prey interactions exacerbating the ecological impacts of non-indigenous species. However, mechanisms underlying such interactions are poorly understood in marine ecosystems. Here, we explored if past environmental stress, i.e., increasing temperature and decreasing pH, could affect the vulnerability of two mussel prey, the native Mytilus galloprovincialis and the non-indigenous Xenostrobus securis, to predation by the native dogwhelk Nucella lapillus. In addition, we evaluated the consequences on the feeding behaviour of N. lapillus. First, we exposed monospecific assemblages of each mussel species to combined experimental conditions of increasing temperature and decreasing pH in mesocosms for 3 weeks. Then assemblages were placed on a rocky shore and were enclosed in cages with dogwhelks where they remained for 3 weeks. Despite the lack of preference, consumption was much greater on the native than on the invasive mussels, which barely were consumed by dogwhelks. However, this trend was diverted when temperature increased. Thus, under a coastal warming scenario shifts in dogwhelks feeding behaviour may help to contain invader's populations, especially in estuarine areas where these predators are abundant.

  5. Experimental evidence that livestock grazing intensity affects the activity of a generalist predator

    NASA Astrophysics Data System (ADS)

    Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve

    2013-05-01

    Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.

  6. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster.

    PubMed

    Krams, Indrikis; Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Butler, David M; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures. PMID:27602281

  7. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    PubMed Central

    Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Butler, David M.; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures. PMID:27602281

  8. Brain size affects female but not male survival under predation threat

    PubMed Central

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas; Sorci, Gabriele

    2015-01-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  9. Brain size affects female but not male survival under predation threat.

    PubMed

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas

    2015-07-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  10. Along came a spider who sat down beside her: Perceived predation risk, but not female age, affects female mate choosiness.

    PubMed

    Atwell, Ashley; Wagner, William E

    2015-06-01

    Organisms often exhibit behavioral plasticity in response to changes in factors, such as predation risk, mate density, and age. Particularly, female mate choosiness (the strength of female's attraction to male traits as they deviate from preferred trait values) has repeatedly been shown to be plastic. This is due to the costs associated with searching for preferred males fluctuating with changes in such factors. Because these factors can interact naturally, it is important to understand how female mate choosiness responds to these interactions. We studied the interaction between perceived predation risk and female age on the variable field cricket, Gryllus lineaticeps. Females were either exposed or not exposed to predation cues from a sympatric, cursorial, wolf spider predator, Hogna sp. We then tested the females at one of three adult ages and measured their choosiness by recording their responsiveness to a low quality male song. We found female choosiness plasticity was affected by neither age nor the interaction between age and perceived predation risk. Perceived predation risk was the only factor to significantly affect the plasticity of female mate choosiness: females were less choosy when they perceived predation risk and were more choosy when they did not. Predation may be such a strong source of selection that, regardless of differences in other factors, most individuals respond similarly. PMID:25857998

  11. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  12. The Nutritional Content of Prey Affects the Foraging of a Generalist Arthropod Predator

    PubMed Central

    Schmidt, Jason M.; Sebastian, Peter; Wilder, Shawn M.; Rypstra, Ann L.

    2012-01-01

    While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions. PMID:23145130

  13. Variable effects of a generalist parasitoid on a biocontrol seed predator and its target weed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control – the importation of enemies from an invasive species’ native range – is often seen as our best hope of reducing the abundance of the most widespread invaders. Classic predator-prey models provide the theoretical underpinning for the practice of biological control. Ideally, the pr...

  14. Seed chemistry of Sophora chrysophylla (mamane) in relation to diet of specialist avian seed predator Loxioides bailleui (palila) in Hawaii

    USGS Publications Warehouse

    Banko, P.C.; Cipollini, M.L.; Breton, G.W.; Paulk, E.; Wink, M.; Izhaki, I.

    2002-01-01

    This study describes the chemical ecology of a tritrophic interaction among species endemic to the island of Hawaii, USA: a tree (Sophora chrysophylla: mamane), an endangered bird (Loxioides bailleui; palila), and moth larvae (Cydia spp.). Palila and Cydia both specialize on the seed embryos of mamane but avoid eating the seed coats. Palila actively seek out and feed mamane embryos and Cydia larvae to their nestlings. Because mamane embryos contain potentially toxic levels of alkaloids, including broadly toxic quinolizidine alkaloids, and because insects often sequester alkaloids from their food plants, we focus on the questions of why palila forage upon mamane embryos and why they supplement their diet with Cydia larvae. Our data show that mamane embryos contain high amounts of potentially toxic alkaloids, but are well balanced nutritionally and contain lipids, carbohydrates, proteins, amino acids, and minerals at levels that are likely to be sufficient for maintenance and breeding. Mamane seed coats contain lower levels of alkaloids and nutrients, somewhat higher levels of phenolics, and much higher levels of nondigestible fiber. Taken together, these results suggest that palila have evolved tolerance to high levels of alkaloids and that they forage upon embryos primarily because of their availability in the habitat and high nutritional reward. Our data also suggest that Cydia are used by palila because they are readily accessible, nontoxic, and nutritious; the larvae apparently do not sequester alkaloids while feeding upon mamane seeds. Our results are interpreted with respect to the likelihood of current and historical coadaptive responses in this ecologically isolated and simplified island setting.

  15. Predation-risk effects of predator identity on the foraging behaviors of frugivorous bats.

    PubMed

    Breviglieri, C P B; Piccoli, G C O; Uieda, W; Romero, G Q

    2013-11-01

    Predators directly and indirectly affect the density and the behavior of prey. These effects may potentially cascade down to lower trophic levels. In this study, we tested the effects of predator calls (playbacks of bird vocalizations: Tyto alba, Speotyto cunicularia, and Vanellus chilensis), predator visual stimuli (stuffed birds) and interactions of visual and auditory cues, on the behavior of frugivore phyllostomid bats in the field. In addition, we tested if the effects of predation risk cascade down to other trophic levels by measuring rates of seed dispersal of the tree Muntingia calabura. Using video recording, we found that bats significantly decreased the foraging frequency on trees when a visual cue of T. alba was present. However, no stimuli of potential predatory birds, including vocalization of T. alba, affected bat foraging frequency. There was a change in bat behavior during 7 min, but then their frequency of activity gradually increased. Consequently, the presence of T. alba decreased by up to ten times the rate of seed removal. These results indicate that risk sensitivity of frugivorous phyllostomid bats depends on predator identity and presence. Among the predators used in this study, only T. alba is an effective bat predator in the Neotropics. Sound stimuli of T. alba seem not to be a cue of predation risk, possibly because their vocalizations are used only for intraspecific communication. This study emphasizes the importance of evaluating different predator stimuli on the behavior of vertebrates, as well as the effects of these stimuli on trait-mediated trophic cascades. PMID:23657559

  16. Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees

    NASA Astrophysics Data System (ADS)

    Gross-Camp, Nicole D.; Kaplin, Beth A.

    2011-11-01

    We examined the influence of seed handling by two semi-terrestrial African forest primates, chimpanzees ( Pan troglodytes) and l'Hoest's monkeys ( Cercopithecus lhoesti), on the fate of large-seeded tree species in an afromontane forest. Chimpanzees and l'Hoest's monkeys dispersed eleven seed species over one year, with quantity and quality of dispersal varying through time. Primates differed in their seed handling behaviors with chimpanzees defecating large seeds (>0.5 cm) significantly more than l'Hoest's. Furthermore, they exhibited different oral-processing techniques with chimpanzees discarding wadges containing many seeds and l'Hoest's monkeys spitting single seeds. A PCA examined the relationship between microhabitat characteristics and the site where primates deposited seeds. The first two components explained almost half of the observed variation. Microhabitat characteristics associated with sites where seeds were defecated had little overlap with those characteristics describing where spit seeds arrived, suggesting that seed handling in part determines the location where seeds are deposited. We monitored a total of 552 seed depositions through time, recording seed persistence, germination, and establishment. Defecations were deposited significantly farther from an adult conspecific than orally-discarded seeds where they experienced the greatest persistence but poorest establishment. In contrast, spit seeds were deposited closest to an adult conspecific but experienced the highest seed establishment rates. We used experimental plots to examine the relationship between seed handling, deposition site, and seed fate. We found a significant difference in seed handling and fate, with undispersed seeds in whole fruits experiencing the lowest establishment rates. Seed germination differed by habitat type with open forest experiencing the highest rates of germination. Our results highlight the relationship between primate seed handling and deposition site and seed

  17. Radish (Raphanus sativus) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. Studies reporting these results used a large number of plant species that varied in seed size, which might have introduced differences in germination characteristics or various parameter...

  18. Cover crops promote aggregation of omnivorous predators in seed patches and facilitate weed biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omnivores are important consumers of both weed seeds and insect pests, and habitat provisions like cover crops are suggested to promote their ecosystem services in agricultural systems. However, few studies establish direct links between cover, food, and pest suppression because they are entangled a...

  19. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omnivores are important consumers of both weed seeds and insect pests, and habitat provisions like cover crops are suggested to promote their ecosystem services in agricultural systems. However, few studies establish direct links between cover, food, and pest suppression because they are entangled a...

  20. Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Painter, M.M.; Buerkley, M.A.; Julius, M.L.; Vajda, A.M.; Norris, D.O.; Barber, L.B.; Furlong, E.T.; Schultz, M.M.; Schoenfuss, H.L.

    2009-01-01

    The effects of embryonic and larval exposure to environmentally relevant (ng/L) concentrations of common antidepressants, fluoxetine, sertraline, venlafaxine, and bupropion (singularly and in mixture) on C-start escape behavior were evaluated in fathead minnows (Pimephales promelas). Embryos (postfertilization until hatching) were exposed for 5 d and, after hatching, were allowed to grow in control well water until 12 d old. Similarly, posthatch fathead minnows were exposed for 12 d to these compounds. High-speed (1,000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency periods, escape velocities, and total escape response (combination of latency period and escape velocity). When tested 12 d posthatch, fluoxetine and venlafaxine adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 d posthatch did not exhibit altered escape responses when exposed to fluoxetine but were affected by venlafaxine and bupropion exposure. Mixtures of these four antidepressant pharmaceuticals slowed predator avoidance behaviors in larval fathead minnows regardless of the exposure window. The direct impact of reduced C-start performance on survival and, ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration. ?? 2009 SETAC.

  1. Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas).

    USGS Publications Warehouse

    Furlong, Edward T.; Barber, Larry B.; Meghan R. McGee; Megan A. Buerkley; Matthew L. Julius; Vajda, Alan M.; Heiko L. Schoenfuss; Schultz, Melissa M.; Norris, David O.

    2009-01-01

    The effects of embryonic and larval exposure to environmentally relevant (ng/L) concentrations of common antidepressants, fluoxetine, sertraline, venlafaxine, and bupropion (singularly and in mixture) on C-start escape behavior were evaluated in fathead minnows (Pimephales promelas). Embryos (postfertilization until hatching) were exposed for 5 d and, after hatching, were allowed to grow in control well water until 12 d old. Similarly, posthatch fathead minnows were exposed for 12 d to these compounds. High-speed (1,000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by- frame analysis of latency periods, escape velocities, and total escape response (combination of latency period and escape velocity). When tested 12 d posthatch, fluoxetine and venlafaxine adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 d posthatch did not exhibit altered escape responses when exposed to fluoxetine but were affected by venlafaxine and bupropion exposure. Mixtures of these four antidepressant pharmaceuticals slowed predator avoidance behaviors in larval fathead minnows regardless of the exposure window. The direct impact of reduced C-start performance on survival and, ultimately, reproductive fitness provides an avenue to assess the ecological relevance of exposure in an assay of relatively short duration.

  2. Cache placement, pilfering, and a recovery advantage in a seed-dispersing rodent: Could predation of scatter hoarders contribute to seedling establishment?

    NASA Astrophysics Data System (ADS)

    Steele, Michael A.; Bugdal, Melissa; Yuan, Amy; Bartlow, Andrew; Buzalewski, Jarrod; Lichti, Nathan; Swihart, Robert

    2011-11-01

    Scatter-hoarding mammals are thought to rely on spatial memory to relocate food caches. Yet, we know little about how long these granivores (primarily rodents) recall specific cache locations or whether individual hoarders have an advantage when recovering their own caches. Indeed, a few recent studies suggest that high rates of pilferage are common and that individual hoarders may not have a retriever's advantage. We tested this hypothesis in a high-density (>7 animals/ha) population of eastern gray squirrels ( Sciurus carolinensis) by presenting individually marked animals (>20) with tagged acorns, mapping cache sites, and following the fate of seed caches. PIT tags allowed us to monitor individual seeds without disturbing cache sites. Acorns only remained in the caches for 12-119 h (0.5-5 d). However, when we live-trapped and removed some animals from the site immediately after they stored seeds (thus simulating predation), their seed caches remained intact for significantly longer periods (16-27 d). Cache duration corresponded roughly to the time at which squirrels were returned to the study area. These results suggest that squirrels have a retriever's advantage and may remember specific cache sites longer than previously thought. We further suggest that predation of scatter hoarders who store seeds for long periods and also possess a recovery advantage may be one important mechanism by which seed establishment is achieved.

  3. Susceptibility to predation affects trait-mediated indirect interactions by reversing interspecific competition.

    PubMed

    Mowles, Sophie L; Rundle, Simon D; Cotton, Peter A

    2011-01-01

    Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions. PMID:21857993

  4. Susceptibility to Predation Affects Trait-Mediated Indirect Interactions by Reversing Interspecific Competition

    PubMed Central

    Mowles, Sophie L.; Rundle, Simon D.; Cotton, Peter A.

    2011-01-01

    Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions. PMID:21857993

  5. Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs.

    PubMed

    Verdeny-Vilalta, O; Fox, C W; Wise, D H; Moya-Laraño, J

    2015-06-01

    Ecological networks incorporate myriad biotic interactions that determine the selection pressures experienced by the embedded populations. We argue that within food webs, the negative scaling of abundance with body mass and foraging theory predict that the selective advantages of larger egg size should be smaller for sit-and-wait than active-hunting generalist predators, leading to the evolution of a difference in egg size between them. Because body mass usually scales negatively with predator abundance and constrains predation rate, slightly increasing egg mass should simultaneously allow offspring to feed on more prey and escape from more predators. However, the benefits of larger offspring would be relatively smaller for sit-and-wait predators because (i) due to their lower mobility, encounters with other predators are less common, and (ii) they usually employ a set of alternative hunting strategies that help to subdue relatively larger prey. On the other hand, for active predators, which need to confront prey as they find them, body-size differences may be more important in subduing prey. This difference in benefits should lead to the evolution of larger egg sizes in active-hunting relative to sit-and-wait predators. This prediction was confirmed by a phylogenetically controlled analysis of 268 spider species, supporting the view that the structure of ecological networks may serve to predict relevant selective pressures acting on key life history traits. PMID:25882583

  6. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  7. UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency.

    PubMed

    Martin, Mélissa; Théry, Marc; Rodgers, Gwendolen; Goven, Delphine; Sourice, Stéphane; Mège, Pascal; Secondi, Jean

    2016-02-01

    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment. PMID:26843556

  8. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    PubMed

    Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological

  9. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species

    PubMed Central

    Dreher, Corinna E.; Cummings, Molly E.; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological

  10. Tracking Seed Fates of Tropical Tree Species: Evidence for Seed Caching in a Tropical Forest in North-East India

    PubMed Central

    Sidhu, Swati; Datta, Aparajita

    2015-01-01

    Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0

  11. Tracking Seed Fates of Tropical Tree Species: Evidence for Seed Caching in a Tropical Forest in North-East India.

    PubMed

    Sidhu, Swati; Datta, Aparajita

    2015-01-01

    Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0

  12. MATURITY AND TEMPERATURE AFFECTS THE GERMINATION OF STYRAX JAPONICUS SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of seed maturity, warm (18oC) or cold (5.5oC) temperature, and gibberellic acid (GA3) on seed germination of Styrax japonicus Sieb. et. Zucc was investigated. Seed maturity and morphological changes were observed using magnetic resonance (MR) imaging (MRI). Fruits harvested on July 22,...

  13. Proteomic studies on soybean seed quality as affected by high temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term high temperature stresses can occur during soybean seed development through maturity and negatively impact seed quality. We investigated soybean seed quality as affected by high temperature using a proteomic approach. The effects of a prolonged high temperature treatment (37/30ºC day/nigh...

  14. Reproductive state affects hiding behaviour under risk of predation but not exploratory activity of female Spanish terrapins.

    PubMed

    Ibáñez, Alejandro; Marzal, Alfonso; López, Pilar; Martín, José

    2015-02-01

    Female investment during reproduction may reduce survivorship due to increased predation risk. During pregnancy, the locomotor performance of gravid females might be diminished due to the additional weight acquired. In addition, egg production may also increase thermoregulatory, metabolic and physiological costs. Also, pregnant females have greater potential fitness and should take fewer risks. Thus, females should ponder their reproductive state when considering their behavioural responses under risky situations. Here, we examine how reproductive state influence risk-taking behaviour in different contexts in female Spanish terrapins (Mauremys leprosa). We simulated predator attacks of different risk levels and measured the time that the turtles spent hiding entirely inside their own shells (i.e. appearance times). We also assessed the subsequent time after emergence from the shell that the turtles spent immobile monitoring for predators before starting to escape actively (i.e. waiting times). Likewise, we performed a novel-environment test and measured the exploratory activity of turtles. We found no correlations between appearance time, waiting time or exploratory activity, but appearance times were correlated across different risk levels. Only appearance time was affected by the reproductive state, where gravid females reappeared relatively later from their shells after a predator attack than non-gravid ones. Moreover, among gravid females, those carrying greater clutches tended to have longer appearance times. This suggests that only larger clutches could affect hiding behaviour in risky contexts. In contrast, waiting time spent scanning for predators and exploratory activity were not affected by the reproductive state. These differences between gravid and non-gravid females might be explained by the metabolic-physiological costs associated with egg production and embryo maintenance, as well as by the relatively higher potential fitness of gravid females. PMID

  15. Activity, Density, and Weed Seed Predation Potential of Ground Beetles in Annual Row Crops of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regulation of weed seed banks in agricultural systems involves management of seed input from seed rain, and seed removal from mortality and germination. While seed rain, germination, and emergence are managed using a number of methods such as tillage and herbicides, management of seed mortality is f...

  16. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result. PMID:25336757

  17. Prey community structure affects how predators select for Müllerian mimicry

    PubMed Central

    Ihalainen, Eira; Rowland, Hannah M.; Speed, Michael P.; Ruxton, Graeme D.; Mappes, Johanna

    2012-01-01

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create ‘simple community pockets’ where accurate mimicry is selected for. PMID:22237908

  18. [Effects of rodents and litter coverage on the seed fate of wild Prunus divaricata in wild fruit forest of Tianshan Mountain, Northwest China].

    PubMed

    Zhao, Yu; Liu, Ying; Wang, Jian-Ming; Zhang, Yong-Heng; Yang, Yun-Fei

    2014-09-01

    The dynamic variation characteristics of seed bank and the main factors influencing the fate of Prunus divaricata seeds under the pressure of rodent predation and litter coverage were investigated with artificial soil seed banks from September, 2010 to April, 2013. It was found that there was about 48.3% of seeds germinated under the rodent predation disturbance conditions, 50% of the seeds was predated in situ or removed, and only about 4% decayed. The artificial seed bank formed a short-term persistent soil seed bank without any rodent predation disturbance, and the seeds could germinate even though they had been stored in the seed bank for three years. Soil burial provided a lower predation pressure and promoted the recruitment of wild P. divaricata seedlings, removal and predation in situ by animals was an important factor affecting the fate of seeds. At the same time, seeds removed and foraged in situ in the control and litter coverage samples were significantly less than that in the bare soil samples. Ground coverage reduced the removal and predation of seeds by rodents, but the effect was not enough to result in more seedlings. Rodent predation and removal were the main factors that could affect the seed fate and dynamics of seed bank. PMID:25757305

  19. Skin toxins in coral-associated Gobiodon species (Teleostei: Gobiidae) affect predator preference and prey survival

    PubMed Central

    Gratzer, Barbara; Millesi, Eva; Walzl, Manfred; Herler, Juergen

    2015-01-01

    Predation risk is high for the many small coral reef fishes, requiring successful sheltering or other predator defence mechanisms. Coral-dwelling gobies of the genus Gobiodon live in close association with scleractinian corals of the genus Acropora. Earlier studies indicated that the low movement frequency of adult fishes and the development of skin toxins (crinotoxicity) are predation avoidance mechanisms. Although past experiments showed that predators refuse food prepared with goby skin mucus, direct predator–prey interactions have not been studied. The present study compares the toxicity levels of two crinotoxic coral gobies – Gobiodon histrio, representative of a conspicuously coloured species, and Gobiodon sp.3 with cryptic coloration – using a standard bioassay method. The results show that toxin levels of both species differ significantly shortly after mucus release but become similar over time. Predator preferences were tested experimentally in an aquarium in which the two gobies and a juvenile damselfish Chromis viridis were exposed to the small grouper Epinephelus fasciatus. Video-analysis revealed that although coral gobies are potential prey, E. fasciatus clearly preferred the non-toxic control fish (C. viridis) over Gobiodon. When targeting a goby, the predator did not prefer one species over the other. Contrary to our expectations that toxic gobies are generally avoided, gobies were often captured, but they were expelled quickly, repeatedly and alive. This unusual post-capture avoidance confirms that these gobies have a very good chance of surviving attacks in the field due to their skin toxins. Nonetheless, some gobies were consumed: the coral shelter may therefore also provide additional protection, with toxins protecting them mainly during movement between corals. In summary, chemical deterrence by crinotoxic fishes seems to be far more efficient in predation avoidance than in physical deterrence involving body squamation and/or strong fin

  20. Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions

    PubMed Central

    Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto

    2007-01-01

    Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979

  1. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  2. Determinants of spatial behavior of a tropical forest seed predator: The roles of optimal foraging, dietary diversification, and home range defense.

    PubMed

    Palminteri, Suzanne; Powell, George V N; Peres, Carlos A

    2016-05-01

    Specialized seed predators in tropical forests may avoid seasonal food scarcity and interspecific feeding competition but may need to diversify their daily diet to limit ingestion of any given toxin. Seed predators may, therefore, adopt foraging strategies that favor dietary diversity and resource monitoring, rather than efficient energy intake, as suggested by optimal foraging theory. We tested whether fine-scale space use by a small-group-living seed predator-the bald-faced saki monkey (Pithecia irrorata)-reflected optimization of short-term foraging efficiency, maximization of daily dietary diversity, and/or responses to the threat of territorial encroachment by neighboring groups. Food patches across home ranges of five adjacent saki groups were widely spread, but areas with higher densities of stems or food species were not allocated greater feeding time. Foraging patterns-specifically, relatively long daily travel paths that bypassed available fruiting trees and relatively short feeding bouts in undepleted food patches-suggest a strategy that maximizes dietary diversification, rather than "optimal" foraging. Travel distance was unrelated to the proportion of seeds in the diet. Moreover, while taxonomically diverse, the daily diets of our study groups were no more species-rich than randomly derived diets based on co-occurring available food species. Sakis preferentially used overlapping areas of their HRs, within which adjacent groups shared many food trees, yet the density of food plants or food species in these areas was no greater than in other HR areas. The high likelihood of depletion by neighboring groups of otherwise enduring food sources may encourage monitoring of peripheral food patches in overlap areas, even if at the expense of immediate energy intake, suggesting that between-group competition is a key driver of fine-scale home range use in sakis. PMID:25807916

  3. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra.

    PubMed

    Micheletta, Jérôme; Waller, Bridget M; Panggur, Maria R; Neumann, Christof; Duboscq, Julie; Agil, Muhammad; Engelhardt, Antje

    2012-10-01

    Enduring positive social bonds between individuals are crucial for humans' health and well being. Similar bonds can be found in a wide range of taxa, revealing the evolutionary origins of humans' social bonds. Evidence suggests that these strong social bonds can function to buffer the negative effects of living in groups, but it is not known whether they also function to minimize predation risk. Here, we show that crested macaques (Macaca nigra) react more strongly to playbacks of recruitment alarm calls (i.e. calls signalling the presence of a predator and eliciting cooperative mobbing behaviour) if they were produced by an individual with whom they share a strong social bond. Dominance relationships between caller and listener had no effect on the reaction of the listener. Thus, strong social bonds may improve the coordination and efficiency of cooperative defence against predators, and therefore increase chances of survival. This result broadens our understanding of the evolution and function of social bonds by highlighting their importance in the anti-predator context. PMID:22859593

  4. Herbivore and Fungal Pathogen Exclusion Affects the Seed Production of Four Common Grassland Species

    PubMed Central

    Dickson, Timothy L.; Mitchell, Charles E.

    2010-01-01

    Insect herbivores and fungal pathogens can independently affect plant fitness, and may have interactive effects. However, few studies have experimentally quantified the joint effects of insects and fungal pathogens on seed production in non-agricultural populations. We examined the factorial effects of insect herbivore exclusion (via insecticide) and fungal pathogen exclusion (via fungicide) on the population-level seed production of four common graminoid species (Andropogon gerardii, Schizachyrium scoparium, Poa pratensis, and Carex siccata) over two growing seasons in Minnesota, USA. We detected no interactive effects of herbivores and pathogens on seed production. However, the seed production of all four species was affected by either insecticide or fungicide in at least one year of the study. Insecticide consistently doubled the seed production of the historically most common species in the North American tallgrass prairie, A. gerardii (big bluestem). This is the first report of insect removal increasing seed production in this species. Insecticide increased A. gerardii number of seeds per seed head in one year, and mass per seed in both years, suggesting that consumption of flowers and seed embryos contributed to the effect on seed production. One of the primary insect species consuming A. gerardii flowers and seed embryos was likely the Cecidomyiid midge, Contarinia wattsi. Effects on all other plant species varied among years. Herbivores and pathogens likely reduce the dispersal and colonization ability of plants when they reduce seed output. Therefore, impacts on seed production of competitive dominant species may help to explain their relatively poor colonization abilities. Reduced seed output by dominant graminoids may thereby promote coexistence with subdominant species through competition-colonization tradeoffs. PMID:20711408

  5. Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina

    PubMed Central

    Zhang, Shiting; Zhao, Chuan; Lamb, Eric G.

    2011-01-01

    Background and Aims The effects of cotyledon damage on seedling growth and survival are relatively well established, but little is known about the effects on aspects of plant fitness such as seed number and size. Here the direct and indirect mechanisms linking cotyledon damage and plant fitness in the annual species Medicago lupulina are examined. Methods Growth and reproductive traits, including mature plant size, time to first flowering, flower number, seed number and individual seed mass were monitored in M. lupulina plants when zero, one or two cotyledons were removed at 7 d old. Structural equation modelling (SEM) was used to examine the mechanisms linking cotyledon damage to seed number and seed mass. Key Results Cotyledon damage reduced seed number but not individual seed mass. The primary mechanism was a reduction in plant biomass with cotyledon damage that in turn reduced seed number primarily through a reduction in flower numbers. Although cotyledon damage delayed flower initiation, it had little effect on seed number. Individual seed mass was not affected by cotyledon removal, but there was a trade-off between seed number and seed mass. Conclusions It is shown how a network of indirect mechanisms link damage to cotyledons and fitness in M. lupulina. Cotyledon damage had strong direct effects on both plant size and flowering phenology, but an analysis of the causal relationships among plant traits and fitness components showed that a reduction in plant size associated with cotyledon damage was an important mechanism influencing fitness. PMID:21196450

  6. Floral asymmetry and predation risk modify pollinator behavior, but only predation risk decreases plant fitness.

    PubMed

    Antiqueira, Pablo Augusto Poleto; Romero, Gustavo Quevedo

    2016-06-01

    Although predators and floral herbivores can potentially decrease plant fitness by changing pollinator behaviors, studies comparing the strength of these factors as well as their additive and interactive effects on pollinator visitation and plant fitness have not been conducted. In this study, we manipulated the floral symmetry and predator presence (artificial crab spiders) on the flowers of the shrub Rubus rosifolius (Rosaceae) in a 2 × 2 factorial randomized block design. We found that asymmetry and predators decreased pollinator visitation (mainly hymenopterans), and overall these factors did not interact (additive effects). The effect of predation risk on pollinator avoidance behavior was 62 % higher than that of floral asymmetry. Furthermore, path analyses revealed that only predation risk cascaded down to plant fitness, and it significantly decreased fruit biomass by 33 % and seed number by 28 %. We also demonstrated that R. rosifolius fitness is indirectly affected by visiting and avoidance behaviors of pollinators. The strong avoidance behavioral response triggered by predation risk may be related to predator pressure upon flowers. Although floral asymmetry caused by herbivory can alter the quality of resources, it should not exert the same evolutionary pressure as that of predator-prey interactions. Our study highlights the importance of considering simultaneous forces, such as predation risk and floral asymmetry, as well as pollinator behavior when evaluating ecological processes involving mutualistic plant-pollinator systems. PMID:26861474

  7. Seasonal Variation in the Fate of Seeds under Contrasting Logging Regimes

    PubMed Central

    Fleury, Marina; Rodrigues, Ricardo R.; do Couto, Hilton T. Z.; Galetti, Mauro

    2014-01-01

    Seed predators and dispersers may drive the speed and structure of forest regeneration in natural ecosystems. Rodents and ants prey upon and disperse seeds, yet empirical studies on the magnitude of these effects are lacking. Here, we examined the role of ants and rodents on seed predation in 4 plant species in a successional gradient on a tropical rainforest island. We found that (1) seeds are mostly consumed rather than dispersed; (2) rates of seed predation vary by habitat, season, and species; (3) seed size, shape, and hardness do not affect the probability of being depredated. Rodents were responsible for 70% of seed predation and were negligible (0.14%) seed dispersers, whereas ants were responsible for only 2% of seed predation and for no dispersal. We detected seasonal and habitat effects on seed loss, with higher seed predation occurring during the wet season and in old-growth forests. In the absence of predators regulating seed-consumer populations, the densities of these resilient animals explode to the detriment of natural regeneration and may reduce diversity and carrying capacity for consumers and eventually lead to ecological meltdown. PMID:24614500

  8. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J., Jr.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  9. Factors affecting individual foraging specialization and temporal diet stability across the range of a large "generalist" apex predator.

    PubMed

    Rosenblatt, Adam E; Nifong, James C; Heithaus, Michael R; Mazzotti, Frank J; Cherkiss, Michael S; Jeffery, Brian M; Elsey, Ruth M; Decker, Rachel A; Silliman, Brian R; Guillette, Louis J; Lowers, Russell H; Larson, Justin C

    2015-05-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability. PMID:25645268

  10. Waves affect predator-prey interactions between fish and benthic invertebrates.

    PubMed

    Gabel, Friederike; Stoll, Stefan; Fischer, Philipp; Pusch, Martin T; Garcia, Xavier-François

    2011-01-01

    Little is known about the effects of waves on predator-prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking wind-induced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator-prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves. PMID:21104276

  11. The Effect of Pollen Source vs. Flower Type on Progeny Performance and Seed Predation under Contrasting Light Environments in a Cleistogamous Herb

    PubMed Central

    Munguía-Rosas, Miguel A.; Campos-Navarrete, María J.; Parra-Tabla, Víctor

    2013-01-01

    Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved. PMID:24260515

  12. The effect of pollen source vs. flower type on progeny performance and seed predation under contrasting light environments in a cleistogamous herb.

    PubMed

    Munguía-Rosas, Miguel A; Campos-Navarrete, María J; Parra-Tabla, Víctor

    2013-01-01

    Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved. PMID:24260515

  13. Water-triacylglycerol interactions affect oil body structure and seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are investigating interactions between water and triacylglycerols (TAG) that appear to affect oil body stability and viability of seeds. Dried seeds are usually stored at freezer temperatures (-20oC) for long-term conservation of genetic resources. This globally accepted genebanking practice is...

  14. Does multiple paternity affect seed mass in angiosperms? An experimental test in Dalechampia scandens.

    PubMed

    Pélabon, C; Albertsen, E; Falahati-Anbaran, M; Wright, J; Armbruster, W S

    2015-09-01

    Flowers fertilized by multiple fathers may be expected to produce heavier seeds than those fertilized by a single father. However, the adaptive mechanisms leading to such differences remain unclear, and the evidence inconsistent. Here, we first review the different hypotheses predicting an increase in seed mass when multiple paternity occurs. We show that distinguishing between these hypotheses requires information about average seed mass, but also about within-fruit variance in seed mass, bias in siring success among pollen donors, and whether siring success and seed mass are correlated. We then report the results of an experiment on Dalechampia scandens (Euphorbiaceae), assessing these critical variables in conjunction with a comparison of seed mass resulting from crosses with single vs. multiple pollen donors. Siring success differed among males when competing for fertilization, but average seed mass was not affected by the number of fathers. Furthermore, paternal identity explained only 3.8% of the variance in seed mass, and siring success was not correlated with the mass of the seeds produced. Finally, within-infructescence variance in seed mass was not affected by the number of fathers. These results suggest that neither differential allocation nor sibling rivalry has any effect on the average mass of seeds in multiply sired fruits in D. scandens. Overall, the limited paternal effects observed in most studies and the possibility of diversification bet hedging among flowers (but not within flowers), suggest that multiple paternity within fruits or infructescence is unlikely to affect seed mass in a large number of angiosperm species. PMID:26174371

  15. Cultural practices in cotton (Gossypium hirsutum) affect weed seed production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Billions of dollars are lost annually due to weeds or weed control, but weeds persist. Successful weed management systems must reduce weed populations. The objectives of this research were to 1) determine if cotton row spacing has an impact on weed growth and seed production and 2) evaluate the infl...

  16. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    PubMed

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-01

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees. PMID:25901681

  17. Seed Production Affects Maternal Growth and Senescence in Arabidopsis.

    PubMed

    Wuest, Samuel Elias; Philipp, Matthias Anton; Guthörl, Daniela; Schmid, Bernhard; Grossniklaus, Ueli

    2016-05-01

    Correlative control (influence of one organ over another organ) of seeds over maternal growth is one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis (Arabidopsis thaliana) inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We observed transcriptional responses to growth- and branching-inhibitory hormones, and low mitotic activity in meristems upon GPA, but found that meristems retain their identity and proliferative potential. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels, suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA, a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds, allowing offspring control over maternal resources, simultaneously restricting offspring number. This would provide a mechanistic explanation for the constraint between offspring quality and quantity. PMID:27009281

  18. Factors affecting successful establishment of aerially seeded winter rye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishing cover crops in the corn-soybean (Zea mays - Glycine max) rotation in northern climates can be difficult due to the short time between harvest and freezing temperatures. Aerial seeding into standing crops is one way to increase time for germination and growth. Field studies were conducte...

  19. Camelina production affected by seeding rate and depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camelina (Camelina sativa L.) is an oilseed that has shown potential as an alternative crop to diversify wheat-fallow systems in the northern Great Plains. However, agronomic information is lacking for management of this relatively new crop. The impact of seeding depth and rate were determined in s...

  20. Tillage and residue burning affects weed populations and seed banks.

    PubMed

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898

  1. Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators.

    PubMed

    Hossie, Thomas J; Murray, Dennis L

    2016-04-01

    Predators play a key role in shaping natural ecosystems, and understanding the factors that influence a predator's kill rate is central to predicting predator-prey dynamics. While prey density has a well-established effect on predation, it is increasingly apparent that predator density also can critically influence predator kill rates. The effects of both prey and predator density on the functional response will, however, be determined in part by their distribution on the landscape. To examine this complex relationship we experimentally manipulated prey density, predator density, and prey distribution using a tadpole (prey)-dragonfly nymph (predator) system. Predation was strongly ratio-dependent irrespective of prey distribution, but the shape of the functional response changed from hyperbolic to sigmoidal when prey were clumped in space. This sigmoidal functional response reflected a relatively strong negative effect of predator interference on kill rates at low prey: predator ratios when prey were clumped. Prey aggregation also appeared to promote stabilizing density-dependent intraguild predation in our system. We conclude that systems with highly antagonistic predators and patchily distributed prey are more likely to experience stable dynamics, and that our understanding of the functional response will be improved by research that examines directly the mechanisms generating interference. PMID:27220200

  2. Oviposition and predation by Speciomerus revoili (Coleoptera, Bruchidae) on seeds of Acrocomia aculeata (Arecaceae) in Brasília, DF, Brazil.

    PubMed

    Ramos, F A; Martins, I; Farias, J M; Silva, I C; Costa, D C; Miranda, A P

    2001-08-01

    Oviposition and predation levels by Speciomerus revoili bruchid beetles were quantified on fruits and seeds of the macaúba palm, Acrocomia aculeata, collected from below mother-trees within the Sarah Kubitschek Park of Brasília, DF, Brazil. A maximum of 12 eggs per fruit were found, with high variations observed between samples. No clear pattern was found for the distribution of the number of eggs per fruit, perhaps due to the artificial conditions of the study area, the absence of dispersers and/or the plasticity in the oviposition behavior of the insect. The number of eggs per fruit was not related to fruit size, but was associated with their availability under the tree-mother. This suggests that the density of eggs per fruit is a balance between the availability of this resource and the number of females in the beetle population. The observed mortality rate, from the egg phase to the final larval stages, was over 75%. About 40% of the seeds of Acrocomia aculeata were predated by Speciomerus revoili. PMID:11706572

  3. Scatter Hoarding of Seeds Confers Survival Advantages and Disadvantages to Large-Seeded Tropical Plants at Different Life Stages

    PubMed Central

    Kuprewicz, Erin K.

    2015-01-01

    Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate) enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis) and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although tradeoffs in seed

  4. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. PMID:26465806

  5. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds.

    PubMed

    Sakai, Hiroaki; Iwai, Toru; Matsubara, Chie; Usui, Yuto; Okamura, Masaki; Yatou, Osamu; Terada, Yasuko; Aoki, Naohiro; Nishida, Sho; Yoshida, Kaoru T

    2015-09-01

    Phytic acid (myo-inositol hexakisphosphate; InsP6) is the storage compound of phosphorus and many mineral elements in seeds. To determine the role of InsP6 in the accumulation and distribution of mineral elements in seeds, we performed fine mappings of mineral elements through synchrotron-based X-ray microfluorescence analysis using developing seeds from two independent low phytic acid (lpa) mutants of rice (Oryza sativa L.). The reduced InsP6 in lpa seeds did not affect the translocation of mineral elements from vegetative organs into seeds, because the total amounts of phosphorus and the other mineral elements in lpa seeds were identical to those in the wild type (WT). However, the reduced InsP6 caused large changes in mineral localization within lpa seeds. Phosphorus and potassium in the aleurone layer of lpa greatly decreased and diffused into the endosperm. Zinc and copper, which were broadly distributed from the aleurone layer to the inner endosperm in the WT, were localized in the narrower space around the aleurone layer in lpa mutants. We also confirmed that similar distribution changes occurred in transgenic rice with the lpa phenotype. Using these results, we discussed the role of InsP6 in the dynamic accumulation and distribution patterns of mineral elements during seed development. PMID:26259185

  6. Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus.

    PubMed

    Le Jeune, Anne-Hélène; Bourdiol, Floriane; Aldamman, Lama; Perron, Tania; Amyot, Marc; Pinel-Alloul, Bernadette

    2012-06-01

    MeHg biomagnification by the phantom midge Chaoborus in relation to MeHg concentrations in their prey and its migratory behavior was investigated in two Canadian Precambrian Shield lakes. Three Chaoborus species with contrasted migratory behavior were collected in a fishless and a fish-inhabited lake. All species accumulated MeHg through their ontogenic development. In the lake inhabited by fish, all instars of Chaoborus punctipennis displayed a marked migratory behavior and were unable to biomagnify MeHg, whereas in the fishless lake, Chaoborus americanus and Chaoborus trivittatus biomagnified MeHg. Reduced biomagnification capacity of C. trivittatus, the coexisting species living with C. americanus, was also ascribed to a progressive vertical segregation with age. Growth dilution, amount and type of prey items or trophic position could not explain the different patterns of biomagnification. Our findings demonstrate that the most common invertebrate predator of temperate planktonic food webs can biomagnify mercury, contrarily to previous reports. PMID:22420993

  7. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    PubMed

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields. PMID:24665681

  8. EASTERN DODDER (CUSCUTA MONOGYNA VAHL.) SEED GERMINATION AFFECTED BY SOME HERBACEOUS DISTILLATES.

    PubMed

    Movassaghi, M; Hassannejad, S

    2015-01-01

    Eastern dodder (Cuscuta monogyna Vahl.) is one of the noxious parasitic weeds that infected many ornamental trees in green spaces and gardens. Our purpose is to find natural inhibitors for prevention of its seed germination. In order to reach this aim, laboratory studies were conducted by using of herbaceous distillates of Dracocephalum moldavica, Nasturtium officinalis, Malva neglecta, Mentha piperita, Mentha pulegium, Rosa damascene, Ziziphora tenuior, and Urtica dioica on seed germination of C. monogyna. Z. tenuior distillate stimulated C. monogyna seed germination, whereas others reduced this parasitic weed's seed germination. D. moldavica caused maximum inhibition on weed seed germination. Seedling growth of C. monogyna was more affected than its seed germination. All of these herbaceous distillates reduced C. monogyna seedling length so that the latter decreased from 28.2 mm in distilled water to 4.5, 3.97, 3.85, 3.67, 3.1, 2.87, 2.57, 1.9, and 1.17 in M. pulegium, M. piperita, F. officinalis, Z. tenuior, N. officinalis, M. neglecta, R. damascene, U. dioica and D. moldavica, respectively. By using these medicinal plants distillates instead of herbicides, the parasitic weed seedling length and host plant infection will reduce. PMID:27145591

  9. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects

    PubMed Central

    2012-01-01

    Background Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Results Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Conclusions Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. PMID:23006315

  10. The effect of burial depth on removal of seeds of Phytolacca americana.

    SciTech Connect

    Orrock, John, L.: Damschen, Ellen, I.

    2007-04-01

    Abstract - Although burial is known to have important effects on seed predation in a variety of habitats, the role of burial depth in affecting the removal of seeds in early successional systems is poorly known. Phytolacca American (pokeweed) is a model species to examine the role of burial depth in affecting seed removal because it is common in early-successional habitats, studies suggest that seed removal is indicative of seed predation, and seed predation is related to the recruitment of mature plants. To determine how burial depth affects P. americana seed removal, 20 seeds of P. americana were buried at depths of 0, 1, or 3 cm in early-successional habitats at the Savannah River Site in South Carolina for over 6 weeks. The frequency with which seeds were encountered (as measured by the removal of at least one seed) and the proportion of seeds removed was significantly greater when seeds were on the soil surface (0 cm depth) compared to seeds that were buried 1 cm or 3 cm; there was no difference in encounter or removal between seeds at 1 cm or 3 cm. Our findings suggest that burial may have important consequences for P. americana population dynamics, because seed survival depends upon whether or not the seed is buried, and relatively shallow burial can yield large increases in seed survival. Because seed limitation is known to be an important determinant of plant community composition in early successional systems, our work suggests that burial may play an unappreciated role in the dynamics of these communities by reducing predator-mediated seed limitation.

  11. Escherichia coli carbon source metabolism affects longevity of its predator Caenorhabditis elegans.

    PubMed

    Brokate-Llanos, Ana María; Garzón, Andrés; Muñoz, Manuel J

    2014-01-01

    Nutrition is probably the most determinant factor affecting aging. Microorganisms of the intestinal flora lay in the interface between available nutrients and nutrients that are finally absorbed by multicellular organisms. They participate in the processing and transformation of these nutrients in a symbiotic or commensalistic relationship. In addition, they can also be pathogens. Alive Escherichia coli OP50 are usually used to culture the bacteriovorus nematode Caenorhabditis elegans. Here, we report a beneficial effect of low concentration of saccharides on the longevity of C. elegans. This effect is only observed when the bacterium can metabolize the sugar, suggesting that physiological changes in the bacterium feeding on the saccharides are the cause of this beneficial effect. PMID:25263107

  12. Folivory or fruit/seed predation for Mesopithecus, an earliest colobine from the late Miocene of Eurasia?

    PubMed

    Merceron, Gildas; Scott, Jessica; Scott, Robert S; Geraads, Denis; Spassov, Nikolai; Ungar, Peter S

    2009-12-01

    Here we compare dental microwear textures from specimens of the fossil genus Mesopithecus (Cercopithecidae, Colobinae) from the late Miocene of Eastern Europe with dental microwear textures from four extant primate species with known dietary differences. Results indicate that the dental microwear textures of Mesopithecus differ from those of extant leaf eaters Alouatta palliata and Trachypithecus cristatus and instead resemble more closely those of the occasional hard-object feeders Cebus apella and Lophocebus albigena. Microwear texture data presented here in combination with results from previous analyses suggest that Mesopithecus was a widespread, opportunistic feeder that often consumed hard seeds. These data are consistent with the hypothesis that early colobines may have preferred hard seeds to leaves. PMID:19733899

  13. Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators.

    PubMed

    Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2015-01-01

    The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen's inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen's inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697

  14. Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques.

    PubMed

    Tahaei, Amirreza; Soleymani, Ali; Shams, Majid

    2016-09-01

    Reduced seed germination is among the most important factors adversely affecting crop stand and subsequent plant growth. Fennel (Foeniculum vulgare Mill) is an important medicinal plant with poor seed germination rate, occasionally. It is accordingly pertinent to find methods which can enhance fennel seed germination and remove the barriers of dormancy breaking. The present experiments studied the effects of two different priming (cold moist stratification and osmopriming) and 14 dormancy breaking techniques (hormonal, osmopriming, biopriming, chemical priming, and hydropriming) on the seed germination and seedling growth of two different fennel genotypes under growth chamber conditions. In the first and second experiment, the priming techniques including the time lengths of cold moist stratification (0, 15, 30, and 45 days) and the concentrations of polyethylene glycol 6000 (PEG6000, osmopriming at -0.99, -1.35, and -2.33 MPa) were used as the main plots. However, in both experiments, the dormancy breaking techniques and fennel genotypes were factorially combined and used as the subplots. Different seed- and seedling-related parameters including germination (%), plumule, radicle and seedling length, average germination time, rate and homogeneity of germination, and seed vigor index were determined. Both priming techniques were efficient on the enhancement of seed germination and seedling growth. Among the dormancy breaking techniques, Aminol Forte (biopriming), kadostim (biopriming), benzyl adenine + kinetin (biopriming), distilled water (hydropriming), gibberellin + kinetin (hormonal priming), and benzyl adenine + kinetin + gibberellin (biopriming) were the most effective ones. The related concentrations were equal to 100 mg/l, 10(-5) M, and 0.4 %. The fennel genotypes reacted significantly different under priming conditions. It is possible to enhance seed germination and seedling growth of fennel using priming and dormancy breaking

  15. Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J.E. Smith) on Bt cotton.

    PubMed

    Malaquias, J B; Ramalho, F S; Omoto, C; Godoy, W A C; Silveira, R F

    2014-03-01

    Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) is one of the most common asopine species in the neotropical region and its occurrence was reported in several countries of South and Central America, as an important biological control agent for many crops. This study was carried out to identify the imidacloprid impacts on the functional response of predator P. nigrispinus fed on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) strain resistant to lambda-cyhalothrin, on Bt cotton expressing Cry1Ac (Bollgard(®)). Spodoptera frugiperda larvae were used in the following conditions: resistant (1) and susceptible (2) strains to lambda-cyhalothrin fed on Bollgard(®) cotton leaves (DP 404 BG); and resistant (3) and susceptible (4) strains to lambda-cyhalothrin fed on non-genetically modified cotton leaves (cultivar DP4049). The predatory behavior of P. nigrispinus was affected by imidacloprid and the type II asymptotic curve was the one that best described the functional response data. Handling time (T h ) of predator females did not differ among treatments in the presence of imidacloprid. The attack rate did decrease, however, due to an increase in the density of larvae offered. Regardless of the treatment (S. frugiperda strain or cotton cultivar), the predation of P. nigrispinus females on S. frugiperda larvae was significantly lower when exposed to imidacloprid, especially at a density of 16 larvae/predator. The predation behavior of P. nigrispinus on S. frugiperda larvae is affected by the insecticide imidacloprid showing that its applications should be used in cotton crop with caution. PMID:24352830

  16. Effects of Fruit Toxins on Intestinal and Microbial β-Glucosidase Activities of Seed-Predating and Seed-Dispersing Rodents (Acomys spp.).

    PubMed

    Kohl, Kevin D; Samuni-Blank, Michal; Lymberakis, Petros; Kurnath, Patrice; Izhaki, Ido; Arad, Zeev; Karasov, William H; Dearing, M Denise

    2016-01-01

    Plant secondary compounds (PSCs) have profound influence on the ecological interaction between plants and their consumers. Glycosides, a class of PSC, are inert in their intact form and become toxic on activation by either plant β-glucosidase enzymes or endogenous β-glucosidases produced by the intestine of the plant-predator or its microbiota. Many insect herbivores decrease activities of endogenous β-glucosidases to limit toxin exposure. However, such an adaptation has never been investigated in nonmodel mammals. We studied three species of spiny mice (Acomys spp.) that vary in their feeding behavior of the glycoside-rich fruit of Ochradenus baccatus. Two species, the common (Acomys cahirinus) and Crete (Acomys minous) spiny mice, behaviorally avoid activating glycosides, while the golden spiny mouse (Acomys russatus) regularly consumes activated glycosides. We fed each species a nontoxic diet of inert glycosides or a toxic diet of activated fruit toxins and investigated the responses of intestinal and microbial β-glucosidase activities. We found that individuals feeding on activated toxins had lower intestinal β-glucosidase activity and that the species that behaviorally avoid activating glycosides also had lower intestinal β-glucosidase activity regardless of treatment. The microbiota represented a larger source of toxin liberation, and the toxin-adapted species (golden spiny mouse) exhibited almost a fivefold increase in microbial β-glucosidase when fed activated toxins, while other species showed slight decreases. These results are contrary to those in insects, where glycoside-adapted species have lower β-glucosidase activity. The glycoside-adapted golden spiny mouse may have evolved tolerance mechanisms such as enhanced detoxification rather than avoidance mechanisms. PMID:27153129

  17. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses.

    PubMed

    Boukal, David S; Sabelis, Maurice W; Berec, Ludek

    2007-08-01

    In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator's functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g. due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents. PMID:17296212

  18. Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions?

    PubMed Central

    Page, Paul; Favre, Adrien; Schiestl, Florian P.; Karrenberg, Sophie

    2014-01-01

    Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization. PMID:24905986

  19. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14

    PubMed Central

    Rueda-Romero, Paloma; Barrero-Sicilia, Cristina; Gómez-Cadenas, Aurelio; Carbonero, Pilar; Oñate-Sánchez, Luis

    2012-01-01

    Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes. PMID:22155632

  20. Seed trait-mediated selection by rodents affects mutualistic interactions and seedling recruitment of co-occurring tree species.

    PubMed

    Zhang, Hongmao; Yan, Chuan; Chang, Gang; Zhang, Zhibin

    2016-02-01

    As mutualists, seed dispersers may significantly affect mutualistic interactions and seedling recruitment of sympatric plants that share similar seed dispersers, but studies are rare. Here, we compared seed dispersal fitness in two co-occurring plant species (Armeniaca sibirica and Amygdalus davidiana) that inhabit warm temperate deciduous forest in northern China. We tested the hypothesis that seed trait-mediated selection by rodents may influence mutualistic interactions with rodents and then seedling establishment of co-occurring plant species. A. davidiana seeds are larger and harder (thick endocarps) than A. sibirica seeds, but they have similar levels of nutrients (crude fat, crude protein), caloric value and tannin. More A. sibirica seedlings are found in the field. Semi-natural enclosure tests indicated that the two seed species were both harvested by the same six rodent species, but that A. sibirica had mutualistic interactions (scatter hoarding) with four rodent species (Apodemus peninsulae, A. agrarius, Sciurotamias davidianus, Tamias sibiricus), and A. davidiana with only one (S. davidianus). Tagged seed dispersal experiments in the field indicated that more A. sibirica seeds were scatter-hoarded by rodents, and more A. sibirica seeds survived to the next spring and became seedlings. A. sibirica seeds derive more benefit from seed dispersal by rodents than A. davidiana seeds, particularly in years with limited seed dispersers, which well explained the higher seedling recruitment of A. sibirica compared with that of A. davidiana under natural conditions. Our results suggest that seed dispersers may play a significant role in seedling recruitment and indirect competition between co-occurring plant species. PMID:26546082

  1. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids.

    PubMed

    Cohen, Hagai; Pajak, Agnieszka; Pandurangan, Sudhakar; Amir, Rachel; Marsolais, Frédéric

    2016-06-01

    Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition. PMID:26888094

  2. School density affects the strength of collective avoidance responses in wild-caught Atlantic herring Clupea harengus: a simulated predator encounter experiment.

    PubMed

    Rieucau, G; De Robertis, A; Boswell, K M; Handegard, N O

    2014-11-01

    An experimental study in a semi-controlled environment was conducted to examine whether school density in wild-caught Atlantic herring Clupea harengus affects the strength of their collective escape behaviours. Using acoustics, the anti-predator diving responses of C. harengus in two schools that differed in density were quantified by exposing them to a simulated threat. Due to logistical restrictions, the first fish was tested in a low-density school condition (four trials; packing density = 1.5 fish m(-3); c. 6000 fish) followed by fish in a high-density school condition (five trials; packing density = 16 fish m(-3); c. 60 000 fish). The C. harengus in a high-density school exhibited stronger collective diving avoidance responses to the simulated predators than fish in the lower-density school. The findings suggest that the density (and thus the internal organization) of a fish school affects the strength of collective anti-predatory responses, and the extent to which information about predation risk is transferred through the C. harengus school. Therefore, the results challenge the common notion that information transfer within animal groups may not depend on group size and density. PMID:25243659

  3. Landscape and regional context differentially affect nest parasitism and nest predation for Wood Thrush in central Virginia, USA (Presentation)

    EPA Science Inventory

    Many empirical studies have shown that forest-breeding songbirds suffer greater rates of nest predation and nest parasitism in smaller forest patches and in fragmented landscapes. To compare the performance of different metrics of spatial habitat configuration resulting from defo...

  4. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences.

    SciTech Connect

    Kwit, Charles; Levey, Douglas, J.; Greenberg, Cathyrn, H.

    2004-05-03

    Kwit, Charles, D.J. Levey and Cathryn H. Greenberg. 2004. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. Oikos. 107:303-308 A n hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case by generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) I lex opaca trees than under non-fruiting (male) I lex trees in temperate hardwood forest settings in South Carolina, U SA . To determine if density of Cornus and/or I lex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and I lex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and I lex background seed densities. H igher densities of I lex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.

  5. Hairy vetch (Vicia villosa) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. This response may have significant impact on weed control by allelopathic cover crops where the small-seeded weeds would be more effectively controlled than large-seeded species. The stu...

  6. Fenugreek seed affects intestinal microbiota and immunological variables in piglets after weaning.

    PubMed

    Zentek, Jürgen; Gärtner, Stefanie; Tedin, Lydia; Männer, Klaus; Mader, Anneluise; Vahjen, Wilfried

    2013-03-14

    Fenugreek seed has been shown to affect the intestinal microbiota and immunological responses in animals. A feeding trial with male castrated piglets was performed over 28 d without or with the addition of 1·5 g fenugreek seeds/kg complete diet in ten and eleven piglets, weaned at 21 d. In the intestinal tract, pH, lactate and SCFA were measured as major bacterial metabolites. Immune cell phenotypes, phagocytic activity and lymphocyte proliferation after stimulation with pokeweed mitogen, concanavalin A and phytohaemagglutinin M were measured by flow cytometry. Health status and performance of the piglets were not affected by fenugreek. The pH in the caecum and colon were reduced compared with the control (P< 0·05). Higher concentrations of l-lactic acid were recorded in the small-intestinal digesta (average concentrations from the duodenum, jejunum and ileum; P< 0·05), while the concentrations of SCFA remained unchanged except an increase in n-butyric acid in colon contents (P< 0·05). The piglets fed the fenugreek diet had higher Lactobacillus and clostridium cluster I concentrations and lower Escherichia, Hafnia and Shigella concentrations in the small intestine. The addition of fenugreek increased the relative concentration of the γδ T-cell population (TCR1+CD8α-) in the blood with a simultaneous reduction of antigen-presenting cells (MHCII+CD5-) (P< 0·05). Proliferation rate and phagocytosis activity of monocytes were not affected by the additive. In conclusion, fenugreek seeds might be interesting as a feed ingredient for young piglets due to their effects on the intestinal microbiota and immunological variables. The impact on performance and animal health has to be further evaluated. PMID:22874597

  7. Predator Presence and Vegetation Density Affect Capture Rates and Detectability of Litoria aurea Tadpoles: Wide-Ranging Implications for a Common Survey Technique

    PubMed Central

    Sanders, Madeleine R.; Clulow, Simon; Bower, Deborah S.; Clulow, John; Mahony, Michael J.

    2015-01-01

    Trapping is a common sampling technique used to estimate fundamental population metrics of animal species such as abundance, survival and distribution. However, capture success for any trapping method can be heavily influenced by individuals’ behavioural plasticity, which in turn affects the accuracy of any population estimates derived from the data. Funnel trapping is one of the most common methods for sampling aquatic vertebrates, although, apart from fish studies, almost nothing is known about the effects of behavioural plasticity on trapping success. We used a full factorial experiment to investigate the effects that two common environmental parameters (predator presence and vegetation density) have on the trapping success of tadpoles. We estimated that the odds of tadpoles being captured in traps was 4.3 times higher when predators were absent compared to present and 2.1 times higher when vegetation density was high compared to low, using odds ratios based on fitted model means. The odds of tadpoles being detected in traps were also 2.9 times higher in predator-free environments. These results indicate that common environmental factors can trigger behavioural plasticity in tadpoles that biases trapping success. We issue a warning to researchers and surveyors that trapping biases may be commonplace when conducting surveys such as these, and urge caution in interpreting data without consideration of important environmental factors present in the study system. Left unconsidered, trapping biases in capture success have the potential to lead to incorrect interpretations of data sets, and misdirection of limited resources for managing species. PMID:26605923

  8. Does Cold Plasma Affect Breaking Dormancy and Seed Germination? A Study on Seeds of Lamb's Quarters (Chenopodium album agg.)

    NASA Astrophysics Data System (ADS)

    Božena, Šerá; Michal, Šerý; Vitězslav, Štrañák; Petr, Špatenka; Milan, tichý

    2009-12-01

    Low-pressure discharge is applied for stimulation of germination of two seed lots of Lamb's Quarters (Chenopodium album agg.) with different starting germinations (17%, 8%) and in different stages of dormancy. Different exposition durations with cold plasma treatment were applied. The variable of the ratio cumulative germination was calculated. The Richards' equation was used for curve-fitting and simulation of the growth curves. Population parameters, namely Vi - viability, Me - time, Qu - dispersion, and Sk - skewness, counted from the curves described the germination rate well. Significant differences among Qu confirmed the erratic dormancy and gradual germination of Lamb's Quarters. No difference in the Me parameter was found between two tested seed lots, and no interspecies characteristics were changed using low-pressure discharge. The results suggested that plasma treatment changed seed germination in Lamb's Quarters seeds.

  9. Temperature and moisture status affect afterripening of leafy spurge (Euphorbia esula) seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the germination potential of dormant seeds in a population over time generally requires afterripening. Research was conducted to study the relationship between temperature and seed moisture content on afterripening of dormant leafy spurge seeds. Germination of non-afterripened seeds was 5...

  10. Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods

    NASA Astrophysics Data System (ADS)

    Vange, Vibekke; Heuch, Ivar; Vandvik, Vigdis

    2004-05-01

    Germination and seedling establishment are vulnerable stages in the plant life cycle. We investigated how seed mass and family (progeny origin) affect germination and juvenile performance in the grassland herb Knautia arvensis. Seeds were produced by cross-pollination by hand. The fate of 15 individually weighed seeds from each of 15 plants was followed during a 3-month growth chamber experiment. Progeny origin affected germination, both through seed mass and as an independent factor. Two groups of progenies could be distinguished by having rapid or delayed germination. The two groups had similar mean seed masses, but a positive relationship between seed mass and germination rate could be established only among the rapidly germinating progenies. These biologically relevant patterns were revealed because timing of germination was taken into account in the analyses, not only frequencies. Time-to-event data were analysed with failure-time methods, which gave more stable estimates for the relation between germination and seed mass than the commonly applied logistic regression. Progeny origin and seed mass exerted less impact on later characters like juvenile survival, juvenile biomass, and rosette number. These characters were not affected by the timing of germination under the competition-free study conditions. The decrease in the effect of progeny origin from the seed and germination to the juvenile stages suggests that parental effects other than those contributing to the offspring genotype strongly influenced the offspring phenotype at the earliest life stages. Further, the division of progeny germination patterns into two fairly distinct groups indicates that there was a genetic basis for the variation in stratification requirements among parental plants. Field studies are needed to elucidate effects of different timing of germination in the seasonal grasslands that K. arvensis inhabits.

  11. Factors affecting post-control reinvasion by seed of an invasive species, Phragmites australis, in the central Platte River, Nebraska.

    USGS Publications Warehouse

    Galatowitsch, Susan M.; Larson, Diane L.; Larson, Jennifer L.

    2016-01-01

    Invasive plants, such as Phragmites australis, can profoundly affect channel environments of large rivers by stabilizing sediments and altering water flows. Invasive plant removal is considered necessary where restoration of dynamic channels is needed to provide critical habitat for species of conservation concern. However, these programs are widely reported to be inefficient. Post-control reinvasion is frequent, suggesting increased attention is needed to prevent seed regeneration. To develop more effective responses to this invader in the Central Platte River (Nebraska, USA), we investigated several aspects of Phragmites seed ecology potentially linked to post-control reinvasion, in comparison to other common species: extent of viable seed production, importance of water transport, and regeneration responses to hydrology. We observed that although Phragmites seed does not mature until very late in the ice-free season, populations produce significant amounts of viable seed (>50 % of filled seed). Most seed transported via water in the Platte River are invasive perennial species, although Phragmites abundances are much lower than species such as Lythrum salicaria, Cyperus esculentus and Phalaris arundinacea. Seed regeneration of Phragmites varies greatly depending on hydrology, especially timing of water level changes. Flood events coinciding with the beginning of seedling emergence reduced establishment by as much as 59 % compared to flood events that occurred a few weeks later. Results of these investigations suggest that prevention of seed set (i.e., by removal of flowering culms) should be a priority in vegetation stands not being treated annually. After seeds are in the seedbank, preventing reinvasion using prescribed flooding has a low chance of success given that Phragmites can regenerate in a wide variety of hydrologic microsites.

  12. Growth environment but not seed position on the parent plant affect seed germination of two Thlaspi arvense L. populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thlaspi arvense L. is a common weed found in most temperate regions throughout the world that also shows excellent potential for domestication as an oilseed crop. The complexity of T. arvense seed dormancy presently makes it difficult to manage as a weed or oilseed crop. Therefore, a better understa...

  13. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa.

    PubMed

    Wang, Fengxia; Xu, Yan-Ge; Wang, Shuai; Shi, Weiwei; Liu, Ranran; Feng, Gu; Song, Jie

    2015-10-01

    The effect of salinity on brown seeds/black seeds ratio, seed weight, endogenous hormone concentrations, and germination of brown and black seeds in the euhalophyte Suaeda salsa was investigated. The brown seeds/black seeds ratio, seed weight of brown and black seeds and the content of protein increased at a concentration of 500 mM NaCl compared to low salt conditions (1 mM NaCl). The germination percentage and germination index of brown seeds from plants cultured in 500 mM NaCl were higher than those cultured in 1 mM NaCl, but it was not true for black seeds. The concentrations of IAA (indole-3-acetic acid), ZR (free zeatin riboside) and ABA (abscisic acid) in brown seeds were much greater than those in black seeds, but there were no differences in the level of GAs (gibberellic acid including GA1 and GA3) regardless of the degree of salinity. Salinity during plant culture increased the concentration of GAs, but salinity had no effect on the concentrations of the other three endogenous hormones in brown seeds. Salinity had no effect on the concentration of IAA but increased the concentrations of the other three endogenous hormones in black seeds. Accumulation of endogenous hormones at different concentrations of NaCl during plant growth may be related to seed development and to salt tolerance of brown and black S. salsa seeds. These characteristics may help the species to ensure seedling establishment and population succession in variable saline environments. PMID:26184090

  14. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    PubMed

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  15. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity

    PubMed Central

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-01-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  16. Can salvage logging affect seed dispersal by birds into burned forests?

    NASA Astrophysics Data System (ADS)

    Rost, J.; Pons, P.; Bas, J. M.

    2009-09-01

    The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration.

  17. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth.

    PubMed

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from -1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata. PMID:26089829

  18. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth

    PubMed Central

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from −1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata. PMID:26089829

  19. Differences in hoarding behaviors among six sympatric rodent species on seeds of oil tea ( Camellia oleifera) in Southwest China

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2011-05-01

    Seed hoarding is an important behavioral adaptation to food shortages for many rodent species. Sympatric rodents may affect the natural regeneration of large-seeded trees differently as seed dispersers or seed predators. Using seeds of oil tea ( Camellia oleifera), we investigated differences in hoarding behaviors among six sympatric rodent species in semi-natural enclosures in a subtropical forest in southwest of China. We found that all these six species ate seeds of C. oleifera, but only Edward's long-tailed rats ( Leopoldamys edwardsi) were predominantly scatter hoarders; chestnut rats ( Niviventer fulvescens) and white-bellied rats ( Niviventer confucianus) scatter hoarded and larder hoarded few seeds, but were seed predators; South China field mice ( Apodemus draco) exhibited little larder-hoarding behavior; and Chevrier's field mice ( A. chevrieri) as well as Himalayan rats ( Rattus nitidusa) did not hoard seeds at all. The rodents that engaged in scatter hoarding often formed single-seed caches and tended to cache seeds under grass or shrubs. Our findings indicate that sympatric rodents consuming seeds of the same species of plant can have different hoarding strategies, affecting seed dispersal and plant regeneration differently. We conclude by discussing the role of these species in hoarding seeds of C. oleifera and highlight the essential role of Edward's long-tailed rats as predominantly potential dispersers of this plant species.

  20. Conditions favouring hard seededness as a dispersal and predator escape strategy

    PubMed Central

    Paulsen, Torbjørn R; Högstedt, Göran; Thompson, Ken; Vandvik, Vigdis; Eliassen, Sigrunn; Leishman, Michelle

    2014-01-01

    Summery The water-impermeable seed coat of ‘hard’ seeds is commonly considered a dormancy trait. Seed smell is, however, strongly correlated with seed water content, and hard seeds are therefore olfactionally cryptic to foraging rodents. This is the rationale for the crypsis hypothesis, which proposes that the primary functions of hard seeds are to reduce seed predation and promote rodent seed dispersal. We use a mechanistic model to describe seed survival success of plants with different dimorphic soft and hard seed strategies. The model is based on established empirical–ecological relationships of moisture requirements for germination and benefits of seed dispersal, and on experimentally demonstrated relationships between seed volatile emission, predation and predator escape. We find that water-impermeable seed coats can reduce seed predation under a wide range of natural humidity conditions. Plants with rodent dispersed seeds benefit from producing dimorphic soft and hard seeds at ratios where the anti-predator advantages of hard seeds are balanced by the dispersal benefits gained by producing some soft seeds. The seed pathway predicted from the model is similar to those of experimental seed-tracking studies. This validates the relevance and realism of the ecological mechanisms and relationships incorporated in the model. Synthesis. Rodent seed predators are often also important seed dispersers and have the potential to exert strong selective pressures on seeds to evolve methods of avoiding detection, and hard seeds seem to do just that. This work suggests that water-impermeable hard seeds may evolve in the absence of a dormancy function and that optimal seed survival in many environments with rodent seed predators is obtained by plants having a dimorphic soft and hard seed strategy. PMID:25558091

  1. Pollination and seed dispersal are the most threatened processes of plant regeneration.

    PubMed

    Neuschulz, Eike Lena; Mueller, Thomas; Schleuning, Matthias; Böhning-Gaese, Katrin

    2016-01-01

    Plant regeneration is essential for maintaining forest biodiversity and ecosystem functioning, which are globally threatened by human disturbance. Here we present the first integrative meta-analysis on how forest disturbance affects multiple ecological processes of plant regeneration including pollination, seed dispersal, seed predation, recruitment and herbivory. We analysed 408 pairwise comparisons of these processes between near-natural and disturbed forests. Human impacts overall reduced plant regeneration. Importantly, only processes early in the regeneration cycle that often depend on plant-animal interactions, i.e. pollination and seed dispersal, were negatively affected. Later processes, i.e. seed predation, recruitment and herbivory, showed overall no significant response to human disturbance. Conserving pollination and seed dispersal, including the animals that provide these services to plants, should become a priority in forest conservation efforts globally. PMID:27435026

  2. Pollination and seed dispersal are the most threatened processes of plant regeneration

    PubMed Central

    Neuschulz, Eike Lena; Mueller, Thomas; Schleuning, Matthias; Böhning-Gaese, Katrin

    2016-01-01

    Plant regeneration is essential for maintaining forest biodiversity and ecosystem functioning, which are globally threatened by human disturbance. Here we present the first integrative meta-analysis on how forest disturbance affects multiple ecological processes of plant regeneration including pollination, seed dispersal, seed predation, recruitment and herbivory. We analysed 408 pairwise comparisons of these processes between near-natural and disturbed forests. Human impacts overall reduced plant regeneration. Importantly, only processes early in the regeneration cycle that often depend on plant-animal interactions, i.e. pollination and seed dispersal, were negatively affected. Later processes, i.e. seed predation, recruitment and herbivory, showed overall no significant response to human disturbance. Conserving pollination and seed dispersal, including the animals that provide these services to plants, should become a priority in forest conservation efforts globally. PMID:27435026

  3. Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Fungal volatile organic compounds (VOCs) play important ecophysiological roles in mediating inter-kingdom signaling with arthropods but less is known about their interactions with plants. In this study, Arabidopsis thaliana was used as a model in order to test the physiological effects of 23 common vapor-phase fungal VOCs that included alcohols, aldehydes, ketones, and other chemical classes. After exposure to a shared atmosphere with the 23 individual VOCs for 72 hrs, seeds were assayed for rate of germination and seedling formation; vegetative plants were assayed for fresh weight and chlorophyll concentration. All but five of the VOCs tested (1-decene, 2-n-heptylfuran, nonanal, geosmin and -limonene) had a significant effect in inhibiting either germination, seedling formation or both. Seedling formation was entirely inhibited by exposure to 1-octen-3-one, 2-ethylhexanal, 3-methylbutanal, and butanal. As assayed by a combination of fresh weight and chlorophyll concentration, 2-ethylhexanal had a negative impact on two-week-old vegetative plants. Three other compounds (1-octen-3-ol, 2-ethylhexanal, and 2-heptylfuran) decreased fresh weight alone. Most of the VOCs tested did not change the fresh weight or chlorophyll concentration of vegetative plants. In summary, when tested as single compounds, fungal VOCs affected A. thaliana in positive, negative or neutral ways. PMID:25045602

  4. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed.

    PubMed

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-09-15

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  5. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed

    PubMed Central

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-01-01

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  6. Does solar radiation affect the growth of tomato seeds relative to their environment?

    SciTech Connect

    Holzer, K.

    1995-09-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as the authors plans to note growth in artificial verses natural environment as the basic experiment.

  7. Does solar radiation affect the growth of tomato seeds relative to their environment?

    NASA Technical Reports Server (NTRS)

    Holzer, Kristi

    1995-01-01

    The purpose of this experiment is to sequentially study and analyze the data collected from the germination and growth of irradiated Rutgers Supreme tomato seeds to adult producing plants. This experiment will not use irradiated seeds as a control as I plan to note growth in artificial verses natural environment as the basic experiment.

  8. Soybean seed composition as affected by drought and Phomopsis in phomopsis susceptible and resistant genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited research has been done on the effect of phomopsis on seed composition in the Early Soybean Production System (ESPS). The objective of this research was to evaluate the effect of phomopsis on seed protein, oil, fatty acid, sugars, and minerals in phomopsis susceptible, moderately resistant, a...

  9. Particle size affects Brassica seed meal-induced pathogen suppression of Rhizoctonia solani AG-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    R. solani AG-5 is a component of the pathogen complex that incites apple replant disease, and is suppressed via multiple mechanisms in response to B. juncea seed meal (SM) amendment. Allyl isothiocyanate (AITC) functions in suppression of this pathogen during the initial 24 h period post-seed meal a...

  10. Seed and seedling traits affecting critical life stage transitions and recruitment outcomes in dryland grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Seeding native plants is a key management practice to counter land degradation across the globe, yet the majority of seeding efforts fail, limiting the ability of this tool to accelerate ecosystem recovery. 2. Seedling recruitment requires transitions through several life stages, some of which ma...

  11. Ball milling improves extractability and affects molecular properties of psyllium (Plantago ovata Forsk) seed husk arabinoxylan.

    PubMed

    Van Craeyveld, Valerie; Delcour, Jan A; Courtin, Christophe M

    2008-12-10

    Psyllium (Plantago ovata Forsk) seed husk (PSH) is very rich in arabinoxylan (AX). However, its high gelling capacity and the complex nature of the AX make it difficult to process. In this study, ball milling was investigated as a tool for enhancing PSH AX water extractability and molecular mass (MM). A 48 h laboratory-scale ball mill treatment under standardized optimal conditions reduced the PSH average particle size from 161 microm for the untreated sample to 6 microm. Concurrently, it increased the water-extractable AX (WE-AX) level from 13 (untreated PSH) to 90% of the total PSH AX. While the WE-AX of the untreated PSH had a peak MM of 216 kDa and an arabinose to xylose (A/X) ratio of 0.20, WE-AX fragments from ball mill-pretreated PSH had a peak MM of 22 kDa and an A/X ratio of 0.31. Ball milling further drastically reduced the intrinsic viscosity of PSH extracts and their water-holding capacity. Prolonged treatment brought almost all AX (98%) in solution and yielded WE-AX fragments with an even higher A/X ratio (0.42) and a lower peak MM (11 kDa). While impact and jet milling of PSH equally led to significant reductions in particle size, these technologies only marginally affected the water extractability of PSH AX. This implies that ball milling affects PSH particles and their constituent molecules differently than impact and jet milling. PMID:19007123

  12. The transcriptomes of dormant leafy spurge seeds under alternating temperature are differentially affected by a germination-enhancing pretreatment.

    PubMed

    Foley, Michael E; Chao, Wun S; Horvath, David P; Doğramaci, Münevver; Anderson, James V

    2013-04-15

    germination of leafy spurge seeds at an alternating temperature. However, the presence or absence of the pretreatment does affect the rate of germination and the germination transcriptional programs. PMID:23261266

  13. Distance-responsive predation is not necessary for the Janzen-Connell hypothesis.

    PubMed

    Stump, Simon Maccracken; Chesson, Peter

    2015-12-01

    The Janzen-Connell hypothesis states that tree diversity in tropical forests is maintained by specialist predators that are distance- or density-responsive (i.e. predators that reduce seed or seedling survival near adults of their hosts). Many empirical studies have investigated whether predators are distance-responsive; however, few studies have examined whether distance-responsiveness matters for how predators maintain tree diversity. Using a site-occupancy model, we show analytically that distance-responsive predators are actually less able to maintain diversity than specialist predators that are not distance-responsive. Generally, specialist predators maintain diversity because they become rare when their host's densities are low, reducing predation risk. However, if predators are distance-responsive, and most seeds cannot disperse away from these predators, then seed predation rates will remain high, even if predator density is low across the landscape. Consequently, a reduction in a host's population density may not lead to a significant reduction in seed and seedling predation. We show that habitat partitioning can cause recruitment to be highest near conspecific adults, even in the presence of distance-responsive predators, without any change in the effect that the predators have on coexistence (a result contrary to predictions of the Janzen-Connell hypothesis). Rather, specialist predators and habitat partitioning have additive effects on species coexistence in our model, i.e., neither mechanism alters the effect of the other one. PMID:26525355

  14. Predator Arithmetic

    ERIC Educational Resources Information Center

    Shutler, Paul M. E.; Fong, Ng Swee

    2010-01-01

    Modern Hindu-Arabic numeration is the end result of a long period of evolution, and is clearly superior to any system that has gone before, but is it optimal? We compare it to a hypothetical base 5 system, which we dub Predator arithmetic, and judge which of the two systems is superior from a mathematics education point of view. We find that…

  15. Pasta Predation.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  16. Effects of habitat and season on removal and hoarding of seeds of wild apricot (Prunus armeniaca) by small rodents

    NASA Astrophysics Data System (ADS)

    Ji-Qi, Lu; Zhi-Bin, Zhang

    2004-12-01

    The wild apricot (Prunus armeniaca) is widely distributed in the Donglingshan Mountains of Mentougou District of Beijing, China, where its seeds may be an important food resource for rodents. Predation, removal and hoarding of seeds by rodents will inevitably affect the spatio-temporal pattern of seed fate of wild apricot in this area. By marking and releasing tagged seeds of wild apricot, we investigated seeds survival, scatter-hoarding, cache size and seedling establishment, and the preference of micro-habitats used by rodents to store seeds. The results showed that: (1) rodents in this area hoarded food intensively in autumn, as well as in spring and summer. (2) There were significant effects of habitat and season on removal rate of tagged seeds at releasing plots. In both two types of habitats, Low and High shrub, tagged seeds were removed most rapidly by rodents in autumn, at intermediate rates in spring and least rapidly in summer. (3) During three seasons, mean dispersal distance of scatter-hoarded seeds in Low shrub habitat was greater than that in High shrub. Most removed seeds were buried within 21.0 m of the releasing plots. (4) In both two types of habitats, Low and High shrub, rodents tended to carry seeds to US (Under shrub) and SE (Shrub edge) microhabitats for scatter-hoarding or predation. (5) Among the caches made by rodents, most caches contained only one seed, but up to three seeds were observed; caches of 2-3 seeds were common in autumn. (6) By comparing dental marks, we determined that large field mice (Apodemus peninsulae) and David's rock squirrels (Sciurotamias davidianus) contributed to removal and predation of released tagged seeds. However, only the large field mice exerted a pivotal and positive role on the burial of dispersed seeds. (7) Establishment of three seedlings originated from seeds buried by rodents was documented in High shrub habitat.

  17. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule-bound starch synthase 1, Os03g0842900 (putative steroleosin-B), N-carbamoylputrescine amidase, spermidine synthase 1, tubulin α-1 chain and glutelin type-A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature. PMID:25270993

  18. Intraguild predation and competition impacts on a subordinate predator.

    PubMed

    Björklund, Heidi; Santangeli, Andrea; Blanchet, F Guillaume; Huitu, Otso; Lehtoranta, Hannu; Lindén, Harto; Valkama, Jari; Laaksonen, Toni

    2016-05-01

    Intraguild (IG) predation and interspecific competition may affect the settlement and success of species in their habitats. Using data on forest-dwelling hawks from Finland, we addressed the impact of an IG predator, the northern goshawk Accipiter gentilis (goshawk), on the breeding of an IG prey, the common buzzard Buteo buteo. We hypothesized that the subordinate common buzzard avoids breeding in the proximity of goshawks and that interspecific competitors, mainly Strix owls, may also disturb common buzzards by competing for nests and food. Our results show that common buzzards more frequently occupied territories with a low IG predation threat and with no interspecific competitors. We also observed that common buzzards avoided territories with high levels of grouse, the main food of goshawks, possibly due to a risk of IG predation since abundant grouse can attract goshawks. High levels of small rodents attracted interspecific competitors to common buzzard territories and created a situation where there was not only an abundance of food but also an abundance of competitors for the food. These results suggest interplay between top-down and bottom-up processes which influence the interactions between avian predator species. We conclude that the common buzzard needs to balance the risks of IG predation and interference competition with the availability of its own resources. The presence of other predators associated with high food levels may impede a subordinate predator taking full advantage of the available food. Based on our results, it appears that interspecific interactions with dominant predators have the potential to influence the distribution pattern of subordinate predators. PMID:26841931

  19. [Biotic and abiotic factors that affect the quality of Schinopsis balansae Engl. and Aspidosperma quebracho-blanco Schltdl. seeds].

    PubMed

    Alzugaray, Claudia; Carnevale, Nélida J; Salinas, Adriana R; Pioli, Rosanna

    2007-06-01

    Aspidosperma quebracho-blanco (white quebracho) and Schinopsis balansae (red quebracho) are distinctive trees of the South American Park in Argentina. Quebrachos are found in forests that have been exploited very intensively. The object of this work was the identification of biotic and abiotic factors specially fungal pathogen that affect the quality of both species and its relation with germination. Seeds where evaluated through germination test and the percentage of the incidence of fungal agents in two different years of harvest was determined. In S. balansae the germination rate was 77% and of 27% in 2000 and 2001 harvests, respectively. Associations fungi-germination were found in 2001 for Alternaria spp., Curvularia spp., and Fusarium spp., showing an coefficient of correlation = -0.84; -0.85 and -0.73 (p < 0.00004), respectively. A high percentage of vane seeds (55%) was also found in 2001 harvest, due to adverse environmental factors, specifically higher precipitations during flowering. In A. quebracho-blanco seeds, the germination rate was 50% and 90% in 2000 and 2003 respectively, with a 42% of immature seeds in 2000 harvest that was associated to high precipitations and high temperatures during flowering and ripping of fruits. The incidence of pathogens was low and did not have association to germination. PMID:17604434

  20. The emergence of defective predators who never hunt by themselves

    NASA Astrophysics Data System (ADS)

    Wang, Xueting; Pan, Qiuhui; Kang, Yibin; He, Mingfeng

    2013-06-01

    We propose a lattice Monte Carlo model of two populations, predators and prey. We divide predators into cooperative predators and defective predators. Cooperative predators participate in hunting. On the other hand, defective predators only participate to dominate, i.e. take possession of, the food when a kill has already been made by a cooperative predator. Numerous factors have been taken into account in our research, such as individual mobility, predation and hunger time. The model we have constructed displays the features of the population that evolve through time and the spatial distribution of the population. We focus on the emergence of defective predators and how the parameters affect the system. The results indicate that prey can profit from the appearance of these defective predators in some specific situations. It has even been shown that the emergence of defective predators can sometimes save endangered systems.

  1. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?

    PubMed

    Pinto, Delia M; Blande, James D; Nykänen, Riikka; Dong, Wen-Xia; Nerg, Anne-Marja; Holopainen, Jarmo K

    2007-04-01

    Inducible terpenes and lipoxygenase pathway products, e.g., green-leaf volatiles (GLVs), are emitted by plants in response to herbivory. They are used by carnivorous arthropods to locate prey. These compounds are highly reactive with atmospheric pollutants. We hypothesized that elevated ozone (O(3)) may affect chemical communication between plants and natural enemies of herbivores by degrading signal compounds. In this study, we have used two tritrophic systems (Brassica oleracea-Plutella xylostella-Cotesia plutellae and Phaseolus lunatus-Tetranychus urticae-Phytoseiulus persimilis) to show that exposure of plants to moderately enhanced atmospheric O(3) levels (60 and 120 nl l(-1)) results in complete degradation of most herbivore-induced terpenes and GLVs, which is congruent with our hypothesis. However, orientation behavior of natural enemies was not disrupted by O(3) exposure in either tritrophic system. Other herbivore-induced volatiles, such as benzyl cyanide, a nitrile in cabbage, and methyl salicylate in lima bean, were not significantly reduced in reactions with O(3). We suggest that more atmospherically stable herbivore-induced volatile compounds can provide important long-distance plant-carnivore signals and may be used by natural enemies of herbivores to orientate in O(3)-polluted environments. PMID:17333375

  2. Identification of quantitative trait loci (QTL) affecting seed mineral content in the model legume Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the amount of bioavailable micronutrients such as iron and zinc in plant foods for human consumption is a challenge especially in developing countries where plant foods comprise a significant portion of the diet. Legume seeds have the potential to provide the essential nutrients required...

  3. Seed Production Affects Maternal Growth and Senescence in Arabidopsis1[OPEN

    PubMed Central

    Philipp, Matthias Anton; Guthörl, Daniela

    2016-01-01

    Correlative control (influence of one organ over another organ) of seeds over maternal growth is one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis (Arabidopsis thaliana) inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We observed transcriptional responses to growth- and branching-inhibitory hormones, and low mitotic activity in meristems upon GPA, but found that meristems retain their identity and proliferative potential. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels, suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA, a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds, allowing offspring control over maternal resources, simultaneously restricting offspring number. This would provide a mechanistic explanation for the constraint between offspring quality and quantity. PMID:27009281

  4. Widespread seed limitation affects plant density but not population trajectory in the invasive plant Centaurea solstitialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In some plant populations, the availability of seeds strongly regulates recruitment. However, a scarcity of germination microsites, granivory or density dependent mortality can reduce the number of plants that germinate or survive to flowering. The relative strength of these controls is unknown for ...

  5. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  6. Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the amount of bioavailable micronutrients such as iron and zinc in plant foods for human consumption is a challenge, especially in developing countries where plant foods comprise a significant portion of the diet. Legume seeds have the potential to provide the essential nutrients require...

  7. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  8. Soybean seed protein oil fatty acids sugars and minerals as affected by seeding rates and row spacing in the Midsouth USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the effects of seeding rates (SDR) and row spacing (RS) on soybean seed composition is almost non-existent. The objective of this research was to investigate the effect of SDR and RS on soybean seed protein, oil, fatty acids, sugars, and minerals using two soybean cultivars, P 93M90 (ear...

  9. Predator-prey interactions mediated by prey personality and predator hunting mode.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2016-04-13

    Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. PMID:27075257

  10. Predators and Prey

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1975-01-01

    Reviews basic concepts of predator-prey interaction, encourages the presentation of the predator's role and describes a model of predator behavior to be used in secondary school or college classes. (LS)

  11. Evolution: predator versus parasite.

    PubMed

    Stevens, Martin

    2014-05-19

    Both predators and brood parasites can be major threats to the reproduction of many birds. A new study shows that some cuckoo chicks can help deter nest predators, potentially improving host reproductive success when predation risks are high. PMID:24845665

  12. Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley.

    PubMed

    Nagel, Manuela; Kranner, Ilse; Neumann, Kerstin; Rolletschek, Hardy; Seal, Charlotte E; Colville, Louise; Fernández-Marín, Beatriz; Börner, Andreas

    2015-06-01

    Globally, over 7.4 million accessions of crop seeds are stored in gene banks, and conservation of genotypic variation is pivotal for breeding. We combined genetic and biochemical approaches to obtain a broad overview of factors that influence seed storability and ageing in barley (Hordeum vulgare). Seeds from a germplasm collection of 175 genotypes from four continents grown in field plots with different nutrient supply were subjected to two artificial ageing regimes. Genome-wide association mapping revealed 107 marker trait associations, and hence, genotypic effects on seed ageing. Abiotic and biotic stresses were found to affect seed longevity. To address aspects of abiotic, including oxidative, stress, two major antioxidant groups were analysed. No correlation was found between seed deterioration and the lipid-soluble tocochromanols, nor with oil, starch and protein contents. Conversely, the water-soluble glutathione and related thiols were converted to disulphides, indicating a strong shift towards more oxidizing intracellular conditions, in seeds subjected to long-term dry storage at two temperatures or to two artificial ageing treatments. The data suggest that intracellular pH and (bio)chemical processes leading to seed deterioration were influenced by the type of ageing or storage. Moreover, seed response to ageing or storage treatment appears to be significantly influenced by both maternal environment and genetic background. PMID:25328120

  13. Germination Season and Watering Regime, but Not Seed Morph, Affect Life History Traits in a Cold Desert Diaspore-Heteromorphic Annual

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Jerry M.; Baskin, Carol C.

    2014-01-01

    Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat. PMID:25013967

  14. Predator population depending on lemming cycles

    NASA Astrophysics Data System (ADS)

    Anashkina, Ekaterina I.; Chichigina, Olga A.; Valenti, Davide; Kargovsky, Aleksey V.; Spagnolo, Bernardo

    2016-07-01

    In this paper, a Langevin equation for predator population with multiplicative correlated noise is analyzed. The noise source, which is a nonnegative random pulse noise with regulated periodicity, corresponds to the prey population cycling. The increase of periodicity of noise affects the average predator density at the stationary state.

  15. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions.

    PubMed

    Johansen, Anders; Nielsen, Henrik B; Hansen, Christian M; Andreasen, Christian; Carlsgart, Josefine; Hauggard-Nielsen, Henrik; Roepstorff, Allan

    2013-04-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (~1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11 d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48 h and it took up to 10 days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests. PMID:23266071

  16. A Fungal Endosymbiont Affects Host Plant Recruitment Through Seed- and Litter-mediated Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Many grass species are associated with maternally transmitted fungal endophytes. Increasing evidence shows that endophytes enhance host plant success under varied conditions, yet studies have rarely considered alternative mechanisms whereby these mutualistic symbionts may affect regeneration from...

  17. Orally delivered sour cherry seed extract (SCSE) affects cardiovascular and hematological parameters in humans.

    PubMed

    Csiki, Zoltan; Papp-Bata, Agnes; Czompa, Attila; Nagy, Aniko; Bak, Istvan; Lekli, Istvan; Javor, Andras; Haines, David D; Balla, Gyorgy; Tosaki, Arpad

    2015-03-01

    In the present study, we investigated the effects of sour cherry seed extract (SCSE) on a variety of systemic processes that contribute to general health and viability of human subjects. The experiments were conducted according to a double-blind protocol in which six healthy individuals were administered 250-mg/day SCSE for 14 days, while four were treated with placebo. Peripheral blood was collected before and after the treatment period. Samples were analyzed for levels of selected cells, enzymes, or metabolites. Subjects that received SCSE showed increases in the values of mean cell volume, serum transferrin, mean peroxidase index, and representation of peripheral blood lymphocytes. On the other hand, decreases were observed in circulating neutrophils and ferritin levels. Changes observed in the present study do not fit into a clear pattern that might yield additional in-depth understanding of SCSE-mediated alterations in physiologic responses. The most encouraging result of the present study is the absence of any indication of toxicity by subjects consuming the extract. PMID:25640007

  18. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials

    PubMed Central

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  19. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    PubMed

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  20. Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds.

    PubMed

    Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K

    2015-11-01

    Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. PMID:26351151

  1. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    PubMed

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved. PMID:26142888

  2. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  3. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis.

    PubMed

    Zhang, Lizhi; Tan, Qiumin; Lee, Raymond; Trethewy, Alexander; Lee, Yong-Hwa; Tegeder, Mechthild

    2010-11-01

    Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield. PMID:21075769

  4. The transcriptomes of dormant leafy spurge seeds under alternating temperature are differentially affected by a germination-enhancing pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy is an important stage in the life cycle of many non-domesticated plants, often characterized by the temporary failure to germinate under conditions that normally favor the process. Pre-treating dormant imbibed seeds at a constant temperate accelerated germination of leafy spurge seeds ...

  5. Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect.

    PubMed

    Hermann, Sara L; Thaler, Jennifer S

    2014-11-01

    Predators can affect prey in two ways-by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator-prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male "risk" predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29% compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24% less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey's response. Volatile odor cues from predators reduced beetle feeding by 10% overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment. PMID:25234373

  6. Does the passage of seeds through frugivore gut affect their storage: A case study on the endangered plant Euryodendron excelsum

    PubMed Central

    Shikang, Shen; Fuqin, Wu; Yuehua, Wang

    2015-01-01

    Plant-frugivore mutualism serves an important function in multiple ecological processes. Although previous studies have highlighted the effect of frugivore gut passage on fresh seed germinability, no study has investigated the effect on seed storage after frugivore gut passage. We used the endangered plant, Euryodendron excelsum, to determine the combined effects of frugivore gut passage and storage conditions on the germination percentage and rate of seeds. In particular, three treatments that included storage periods, storage methods, and seed types were designed in the experiment. We hypothesized that seeds that passed through the gut will exhibit enhanced germination capacity and rate during storage. Results showed that the final germination percentage decreased in seeds that passed through the gut, whereas the germination rate increased during seed storage. Germination decreased in most types of seeds under both dry and wet storage after 6 months compared with storage after 1 and 3 months. The results suggest that after frugivore gut passage, E. excelsum seeds cannot form persistent soil seed bank in the field, and were not suitable for species germplasm storage. These finding underscore that seeds that passed through frugivore gut have long-term impact on their viability and germination performance. PMID:26109456

  7. Seed composition of soybeans grown in the Harran region of Turkey as affected by row spacing and irrigation.

    PubMed

    Boydak, Erkan; Alpaslan, Mehmet; Hayta, Mehmet; Gerçek, Sinan; Simsek, Mehmet

    2002-07-31

    This study was conducted to determine the effects of row spacing (RS) and irrigation (IR) on protein content, oil content, and fatty acid composition of soybeans grown in the Harran region of Turkey. Oil content of the seed varied from 20.9 to 22.3%. Oil and protein contents were both affected by year. RS and IR affected protein and oil contents significantly (P < 0.01) in both years. RS of 70 cm had the highest protein content, followed by RS of 60, 40, and 50 cm, respectively. IR every 3rd day resulted in the highest level of protein, followed by 6th, 9th, and 12th day irrigation, respectively. The correlation coefficient (r) between protein and oil content was -0.791 in 1998 and -0.721 in 1999. RS (P < 0.01) and IR (P < 0.01) influenced oleic and linoleic acid contents significantly. Interactions of RS and IR were also found to be significant (P < 0.05) for the oleic and linoleic acid contents of soybeans. PMID:12137503

  8. Predation at the Shore.

    ERIC Educational Resources Information Center

    Cook, Helen M.; Matthews, Catherine E.; Hildreth, David P.; Couch, Emma

    2003-01-01

    Describes 10 predator/prey relationships that occur on the coast. Predators are compared to criminals and prey to their victims along with details of crime scenes. Accurately describes the habits and habitats of the criminals and presents games and activities that feature the relationships between predators and their prey. (Author/SOE)

  9. Effects of stream predator richness on the prey community and ecosystem attributes.

    PubMed

    Nilsson, Erika; Olsson, Karin; Persson, Anders; Nyström, Per; Svensson, Gustav; Nilsson, Ulf

    2008-10-01

    It is important to understand the role that different predators can have to be able to predict how changes in the predator assemblage may affect the prey community and ecosystem attributes. We tested the effects of different stream predators on macroinvertebrates and ecosystem attributes, in terms of benthic algal biomass and accumulation of detritus, in artificial stream channels. Predator richness was manipulated from zero to three predators, using two fish and one crayfish species, while density was kept equal (n = 6) in all treatments with predators. Predators differed in their foraging strategies (benthic vs. drift feeding fish and omnivorous crayfish) but had overlapping food preferences. We found effects of both predator species richness and identity, but the direction of effects differed depending on the response variable. While there was no effect on macroinvertebrate biomass, diversity of predatory macroinvertebrates decreased with increasing predator species richness, which suggests complementarity between predators for this functional feeding group. Moreover, the accumulation of detritus was affected by both predator species richness and predator identity. Increasing predator species richness decreased detritus accumulation and presence of the benthic fish resulted in the lowest amounts of detritus. Predator identity (the benthic fish), but not predator species richness had a positive effect on benthic algal biomass. Furthermore, the results indicate indirect negative effects between the two ecosystem attributes, with a negative correlation between the amount of detritus and algal biomass. Hence, interactions between different predators directly affected stream community structure, while predator identity had the strongest impact on ecosystem attributes. PMID:18597120

  10. A quantitative approach to identifying predators from nest remains

    USGS Publications Warehouse

    Anthony, R.M.; Grand, J.B.; Fondell, T.F.; Manly, B.F.

    2004-01-01

    Nesting success of Dusky Canada Geese (Branta canadensis occidentalis) has declined greatly since a major earthquake affected southern Alaska in 1964. To identify nest predators, we collected predation data at goose nests and photographs of predators at natural nests containing artificial eggs in 1997-2000. To document feeding behavior by nest predators, we compiled the evidence from destroyed nests with known predators on our study site and from previous studies. We constructed a profile for each predator group and compared the evidence from 895 nests with unknown predators to our predator profiles using mixture-model analysis. This analysis indicated that 72% of destroyed nests were depredated by Bald Eagles and 13% by brown bears, and also yielded the probability that each nest was correctly assigned to a predator group based on model fit. Model testing using simulations indicated that the proportion estimated for eagle predation was unbiased and the proportion for bear predation was slightly overestimated. This approach may have application whenever there are adequate data on nests destroyed by known predators and predators exhibit different feeding behavior at nests.

  11. PREDATOR IDENTITY AND ADDITIVE EFFECTS IN A TREEHOLE COMMUNITY

    PubMed Central

    Griswold, Marcus W.; Lounibos, L. Philip

    2007-01-01

    Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized. PMID:16676542

  12. Intense or Spatially Heterogeneous Predation Can Select against Prey Dispersal

    PubMed Central

    Barraquand, Frederic; Murrell, David J.

    2012-01-01

    Dispersal theory generally predicts kin competition, inbreeding, and temporal variation in habitat quality should select for dispersal, whereas spatial variation in habitat quality should select against dispersal. The effect of predation on the evolution of dispersal is currently not well-known: because predation can be variable in both space and time, it is not clear whether or when predation will promote dispersal within prey. Moreover, the evolution of prey dispersal affects strongly the encounter rate of predator and prey individuals, which greatly determines the ecological dynamics, and in turn changes the selection pressures for prey dispersal, in an eco-evolutionary feedback loop. When taken all together the effect of predation on prey dispersal is rather difficult to predict. We analyze a spatially explicit, individual-based predator-prey model and its mathematical approximation to investigate the evolution of prey dispersal. Competition and predation depend on local, rather than landscape-scale densities, and the spatial pattern of predation corresponds well to that of predators using restricted home ranges (e.g. central-place foragers). Analyses show the balance between the level of competition and predation pressure an individual is expected to experience determines whether prey should disperse or stay close to their parents and siblings, and more predation selects for less prey dispersal. Predators with smaller home ranges also select for less prey dispersal; more prey dispersal is favoured if predators have large home ranges, are very mobile, and/or are evenly distributed across the landscape. PMID:22247764

  13. Growth of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, native microbial load, and Pseudomonas fluorescens 2-79

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of human illness associated with the consumption of fresh sprouts has increased very sharply during the past decade. The objective of this study was to investigate the growth dynamics of salmonellae on sprouting alfalfa seeds as affected by the inoculum size, native microbial load, an...

  14. Dietary strawberry seed oil affects metabolite formation in the distal intestine and ameliorates lipid metabolism in rats fed an obesogenic diet

    PubMed Central

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-01-01

    Objective To answer the question whether dietary strawberry seed oil rich in α-linolenic acid and linoleic acid (29.3 and 47.2% of total fatty acids, respectively) can beneficially affect disorders induced by the consumption of an obesogenic diet. Design Thirty-two male Wistar rats were randomly assigned to four groups of eight animals each and fed with a basal or obesogenic (high in fat and low in fiber) diet that contained either strawberry seed oil or an edible rapeseed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. Results After 8 weeks of feeding, the obesogenic diet increased the body weight and the liver mass and fat content, whereas decreased the cecal acetate and butyrate concentration. This diet also altered the plasma lipid profile and decreased the liver sterol regulatory element-binding protein 1c (SREBP-1c) content. However, the lowest liver SREBP-1c content was observed in rats fed an obesogenic diet containing strawberry seed oil. Moreover, dietary strawberry seed oil decreased the cecal short-chain fatty acid concentrations (acetate, propionate, and butyrate) regardless of the diet type, whereas the cecal β-glucuronidase activity was considerably increased only in rats fed an obesogenic diet containing strawberry seed oil. Dietary strawberry seed oil also lowered the liver fat content, the plasma triglyceride level and the atherogenic index of plasma. Conclusions Strawberry seed oil has a potent lipid-lowering activity but can unfavorably affect microbial metabolism in the distal intestine. The observed effects are partly due to the synergistic action of the oil and the obesogenic diet. PMID:25636326

  15. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.

    PubMed

    Zhang, Xiangqian; Sun, Jing; Cao, Xiaofeng; Song, Xianwei

    2015-11-01

    Heritable epigenetic variants of genes, termed epialleles, can broaden genetic and phenotypic diversity in eukaryotes. Epialleles may also provide a new source of beneficial traits for crop breeding, but very few epialleles related to agricultural traits have been identified in crops. Here, we identified Epi-rav6, a gain-of-function epiallele of rice (Oryza sativa) RELATED TO ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1 (VP1) 6 (RAV6), which encodes a B3 DNA-binding domain-containing protein. The Epi-rav6 plants show larger lamina inclination and smaller grain size; these agronomically important phenotypes are inherited in a semidominant manner. We did not find nucleotide sequence variation of RAV6. Instead, we found hypomethylation in the promoter region of RAV6, which caused ectopic expression of RAV6 in Epi-rav6 plants. Bisulfite analysis revealed that cytosine methylation of four CG and two CNG loci within a continuous 96-bp region plays essential roles in regulating RAV6 expression; this region contains a conserved miniature inverted repeat transposable element transposon insertion in cultivated rice genomes. Overexpression of RAV6 in the wild type phenocopied the Epi-rav6 phenotype. The brassinosteroid (BR) receptor BR INSENSITIVE1 and BR biosynthetic genes EBISU DWARF, DWARF11, and BR-DEFICIENT DWARF1 were ectopically expressed in Epi-rav6 plants. Also, treatment with a BR biosynthesis inhibitor restored the leaf angle defects of Epi-rav6 plants. This indicates that RAV6 affects rice leaf angle by modulating BR homeostasis and demonstrates an essential regulatory role of epigenetic modification on a key gene controlling important agricultural traits. Thus, our work identifies a unique rice epiallele, which may represent a common phenomenon in complex crop genomes. PMID:26351308

  16. Risk of predation and weather events affect nest site selection by sympatric Pacific (Gavia pacifica) and Yellow-billed (Gavia adamsii) loons in Arctic habitats

    USGS Publications Warehouse

    Haynes, Trevor B.; Schmutz, Joel A.; Lindberg, Mark S.; Rosenberger, Amanda E.

    2014-01-01

    Pacific (Gavia pacifica) and Yellow-billed (G. adamsii) loons nest sympatrically in Arctic regions. These related species likely face similar constraints and requirements for nesting success; therefore, use of similar habitats and direct competition for nesting habitat is likely. Both of these loon species must select a breeding lake that provides suitable habitat for nesting and raising chicks; however, characteristics of nest site selection by either species on interior Arctic lakes remains poorly understood. Here, logistic regression was used to compare structural and habitat characteristics of all loon nest locations with random points from lakes on the interior Arctic Coastal Plain, Alaska. Results suggest that both loon species select nest sites to avoid predation and exposure to waves and shifting ice. Loon nest sites were more likely to be on islands and peninsulas (odds ratio = 16.13, 95% CI = 4.64–56.16) than mainland shoreline, which may help loons avoid terrestrial predators. Further, nest sites had a higher degree of visibility (mean degrees of visibility to 100 and 200 m) of approaching predators than random points (odds ratio = 2.57, 95% CI = 1.22–5.39). Nests were sheltered from exposure, having lower odds of being exposed to prevailing winds (odds ratio = 0.34, 95% CI = 0.13–0.92) and lower odds of having high fetch values (odds ratio = 0.46, 95% CI = 0.22–0.96). Differences between Pacific and Yellow-billed loon nesting sites were subtle, suggesting that both species have similar general nest site requirements. However, Yellow-billed Loons nested at slightly higher elevations and were more likely to nest on peninsulas than Pacific Loons. Pacific Loons constructed built up nests from mud and vegetation, potentially in response to limited access to suitable shoreline due to other territorial loons. Results suggest that land managers wishing to protect habitats for these species should focus on lakes with islands as well as shorelines

  17. Predator-induced neophobia in juvenile cichlids.

    PubMed

    Meuthen, Denis; Baldauf, Sebastian A; Bakker, Theo C M; Thünken, Timo

    2016-08-01

    Predation is an important but often fluctuating selection factor for prey animals. Accordingly, individuals plastically adopt antipredator strategies in response to current predation risk. Recently, it was proposed that predation risk also plastically induces neophobia (an antipredator response towards novel cues). Previous studies, however, do not allow a differentiation between general neophobia and sensory channel-specific neophobic responses. Therefore, we tested the neophobia hypothesis focusing on adjustment in shoaling behavior in response to a novel cue addressing a different sensory channel than the one from which predation risk was initially perceived. From hatching onwards, juveniles of the cichlid Pelvicachromis taeniatus were exposed to different chemical cues in a split-clutch design: conspecific alarm cues which signal predation risk and heterospecific alarm cues or distilled water as controls. At 2 months of age, their shoaling behavior was examined prior and subsequent to a tactical disturbance cue. We found that fish previously exposed to predation risk formed more compact shoals relative to the control groups in response to the novel disturbance cue. Moreover, the relationship between shoal density and shoal homogeneity was also affected by experienced predation risk. Our findings indicate predator-induced, increased cross-sensory sensitivity towards novel cues making neophobia an effective antipredator mechanism. PMID:26578223

  18. Chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods.

    PubMed

    Jung, Dong Min; Yoon, Suk Hoo; Jung, Mun Yhung

    2012-12-01

    The chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods (supercritical carbon dioxide [SC-CO(2)], mechanical press, and solvent extraction) were studied. The SC-CO(2) extraction at 420 bar and 50 °C and hexane extraction showed significantly higher oil yield than mechanical press extraction (P < 0.05). The fatty acid compositions in the oils were virtually identical regardless of the extraction methods. The contents of tocopherol, sterol, policosanol, and phosphorus in the perilla oils greatly varied with the extraction methods. The SC-CO(2) -extracted perilla oils contained significantly higher contents of tocopherols, sterols, and policosanols than the mechanical press-extracted and hexane-extracted oils (P < 0.05). The SC-CO(2) -extracted oil showed the greatly lower oxidative stability than press-extracted and hexane-extracted oils during the storage in the oven under dark at 60 °C. However, the photooxidative stabilities of the oils were not considerably different with extraction methods. PMID:23106331

  19. Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties.

    PubMed

    Yousefi, Ali R; Eivazlou, Razieh; Razavi, Seyed M A

    2016-10-01

    The rheological properties of food hydrocolloids are remarkably influenced by the quality of solvent/cosolutes in a food system. In this work, the steady shear flow behavior of sage seed gum (SSG, 0.5% w/w) at the presence of different levels of salts (KCl & MgCl2, 0-100mM) and sugars (sucrose, lactose & glucose, 0-6% w/w) was studied. It was found that the rheological properties of SSG were affected by the type of sugars and salts and their concentrations as well. Synergistic interaction was observed between SSG and sugars which enhanced the viscosity of gum solutions, while salts addition diminished the viscosity. SSG solutions exhibited a shear thinning behavior at all conditions tested. Various time-independent rheological models were used to fit the shear stress-shear rate data, although the Herschel-Bulkley (R(2)=0.994-0.999) and Sisko (R(2)=0.995-0.999) models showed the best results to describe the flow behavior of SSG. In the presence of salts, the yield stress (τ0), consistency coefficient (k), and flow behavior index (n) values decreased. The k and τ0 values enhanced and the n value lowered in the presence of sugars. Divalent cations of Mg(2+) and sucrose roughly showed more effect on rheological parameters than others. PMID:27316768

  20. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species. PMID:17009759

  1. Do predators influence the behaviour of bats?

    PubMed

    Lima, Steven L; O'Keefe, Joy M

    2013-08-01

    Many aspects of animal behaviour are affected by real-time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti-predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti-predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator-driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide-ranging exploration of these issues in bat behaviour. We first cover the basic predator-prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape-related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day-active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much-needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate-zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent

  2. Leafy spurge (Euphorbia esula) affects vegetation more than seed banks in mixed-grass prairies of the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Haines, Dustin F.; Larson, Jennifer L.

    2013-01-01

    Exotic plants have the ability to modify soil seed banks in habitats they invade, but little is known about the legacy of invasion on seed banks once an exotic plant has successfully been controlled. Natural areas previously invaded by leafy spurge in the northern Great Plains typically have one of two fates following its removal: a return of native plants, or a secondary invasion of other exotic plants. It is unknown, however, if this difference in plant communities following leafy spurge control is due to seed bank differences. To answer this question, we monitored seed banks and standing vegetation for 2 yr in mixed-grass prairies that were previously invaded by leafy spurge but controlled within 5 yr of our study. We found that native plant seed banks were largely intact in areas previously invaded by leafy spurge, regardless of the current living plant community, and leafy spurge invasion history had a larger impact on cover and diversity of the vegetation than on the seed banks. Differences in plant communities following leafy spurge control do not appear to be related to the seed banks, and soil conditions may be more important in determining trajectories of these postinvasion communities.

  3. Predation-competition interactions for seasonally recruiting species.

    PubMed

    Kuang, Jessica J; Chesson, Peter

    2008-03-01

    We investigate the interacting effects of predation and competition on species coexistence in a model of seasonally recruiting species in a constant environment. For these species, life-history parameters, such as maximum productivity and survival, have important roles in fluctuation-dependent species coexistence in that they introduce nonlinearities into population growth rates and cause endogenous population fluctuations, which can activate the coexistence mechanism termed "relative nonlinearity." Under this mechanism, different species must differ in the nonlinearities of their growth rates and must make different contributions to fluctuations in competition and predation. Both of these features can result from life-history trade-offs associated with seasonal recruitment. Coexistence by relative nonlinearity can occur with or without predation. However, predation can undermine coexistence. It does this by reducing variance contrasts between species. However, when competition is not sufficient to cause endogenous population fluctuations, predation can enable fluctuation-dependent coexistence by destabilizing the equilibrium. This model also reproduces the classic finding that coexistence can occur with selective predation provided that it causes a trade-off between competition and predation. Our model is formulated for competition between annual plant species subject to seed predation, but it also applies to perennial communities where competition and predation limit recruitment to the adult population. PMID:18201119

  4. Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    PubMed Central

    Davis, Sandra L.; Dudle, Dana A.; Nawrocki, Jenna R.; Freestone, Leah M.; Konieczny, Peter; Tobin, Michael B.; Britton, Michael M.

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual

  5. Sexual dimorphism of staminate- and pistillate-phase flowers of Saponaria officinalis (bouncing bet) affects pollinator behavior and seed set.

    PubMed

    Davis, Sandra L; Dudle, Dana A; Nawrocki, Jenna R; Freestone, Leah M; Konieczny, Peter; Tobin, Michael B; Britton, Michael M

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual

  6. Modeling of extraction process of crude polysaccharides from Basil seeds (Ocimum basilicum l.) as affected by process variables.

    PubMed

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Tadayyon, Ali; Arabameri, Fatemeh

    2015-08-01

    Basil seed (Ocimum basilicum L.) has practical amounts of gum with good functional properties. In this work, extraction of gum from Basil seed was studied. Effect of pH, temperature and water/seed ratio on the kinetic and thermodynamic parameters; entropy, enthalpy and free energy of extraction were investigated. The maximum gum yield was 17.95 % at 50 °C for pH=7 and water/seed ratio 30:1. In this study, the experimental data were fitted to a mathematical model of mass transfer and equations constants were obtained. The kinetic of Basil seed gum extraction was found to be a first order mass transfer model. Statistical results indicated that the model used in this study will be able to predict the gum extraction from Basil seed adequately. It also found that ΔH and ΔS were positive and ΔG was negative indicating that the extraction process was spontaneous, irreversible and endothermic. The ΔH, ΔS and ΔG values were 0.26-7.87 kJ/mol, 8.12-33.2 J/mol K and 1.62-4.42 kJ/mol, respectively. PMID:26243945

  7. Limited spatial response to direct predation risk by African herbivores following predator reintroduction.

    PubMed

    Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P

    2016-08-01

    Predators affect ecosystems not only through direct mortality of prey, but also through risk effects on prey behavior, which can exert strong influences on ecosystem function and prey fitness. However, how functionally different prey species respond to predation risk and how prey strategies vary across ecosystems and in response to predator reintroduction are poorly understood. We investigated the spatial distributions of six African herbivores varying in foraging strategy and body size in response to environmental factors and direct predation risk by recently reintroduced lions in the thicket biome of the Addo Elephant National Park, South Africa, using camera trap surveys, GPS telemetry, kill site locations and Light Detection and Ranging. Spatial distributions of all species, apart from buffalo, were driven primarily by environmental factors, with limited responses to direct predation risk. Responses to predation risk were instead indirect, with species distributions driven by environmental factors, and diel patterns being particularly pronounced. Grazers were more responsive to the measured variables than browsers, with more observations in open areas. Terrain ruggedness was a stronger predictor of browser distributions than was vegetation density. Buffalo was the only species to respond to predator encounter risk, avoiding areas with higher lion utilization. Buffalo therefore behaved in similar ways to when lions were absent from the study area. Our results suggest that direct predation risk effects are relatively weak when predator densities are low and the time since reintroduction is short and emphasize the need for robust, long-term monitoring of predator reintroductions to place such events in the broader context of predation risk effects. PMID:27547350

  8. Magnitude and Timing of Leaf Damage Affect Seed Production in a Natural Population of Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Akiyama, Reiko; Ågren, Jon

    2012-01-01

    Background The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size. Methodology/Principal Findings In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected. Conclusions/Significance The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels. PMID:22276140

  9. Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium Myrtaceae) as affected by roasting processes.

    PubMed

    El Anany, Ayman Mohammed

    2015-04-01

    The purpose of this study was to explore the influences of roasting process on the nutritional composition and nutritive value, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds. Roasting process caused significant (P ≤ 0.05) decreases in moisture content, crude protein, crude fiber, ash and mineral contents, isoleucine, arginine, glutamic and total aromatic and sulfur amino acids, antinutritional factors (tannins and phytic acid) and flavonoids, while oil content increased. Subjecting guava seeds to 150 °C for 10, 15 and 20 min increased the total essential amino acids from 35.19 g/100 g protein in the raw sample to 36.96, 37.30 and 37.47 g/100 g protein in roasted samples, respectively. Protein efficiency ratio (PER) of guava seeds roasted at 150 °C for 10, 15 and 20 min were about 1.08, 1.14 and 1.18 times as high as that in unroasted seeds. Lysine was the first limiting amino acid, while leucine was the second limiting amino acid in raw and roasted guava seeds. Total phenolic contents was significantly (P ≤ 0.05) increased by roasting at 150 °C for 10 min. However, roasting at 150 °C for 15 and 20 min caused significant decrease in the phenolic content of guava seeds. Guava seeds subjected to roasting process showed higher DPPH radical scavenging and reducing power activities. PMID:25829598

  10. A predator-prey model with diseases in both prey and predator

    NASA Astrophysics Data System (ADS)

    Gao, Xubin; Pan, Qiuhui; He, Mingfeng; Kang, Yibin

    2013-12-01

    In this paper, we present and analyze a predator-prey model, in which both predator and prey can be infected. Each of the predator and prey is divided into two categories, susceptible and infected. The epidemics cannot be transmitted between prey and predator by predation. The predation ability of susceptible predators is stronger than infected ones. Likewise, it is more difficult to catch a susceptible prey than an infected one. And the diseases cannot be hereditary in both of the predator and prey populations. Based on the assumptions above, we find that there are six equilibrium points in this model. Using the base reproduction number, we discuss the stability of the equilibrium points qualitatively. Then both of the local and global stabilities of the equilibrium points are analyzed quantitatively by mathematical methods. We provide numerical results to discuss some interesting biological cases that our model exhibits. Lastly, we discuss how the infectious rates affect the stability, and how the other parameters work in the five possible cases within this model.

  11. Frequency-dependent selection by predators.

    PubMed

    Allen, J A

    1988-07-01

    Sometimes predators tend to concentrate on common varieties of prey and overlook rare ones. Within prey species, this could result in the fitness of each variety being inversely related to its frequency in the population. Such frequency-dependent or 'apostatic' selection by predators hunting by sight could maintain polymorphism for colour pattern, and much of the supporting evidence for this idea has come from work on birds and artificial prey. These and other studies have shown that the strength of the observed selection is affected by prey density, palatability, coloration and conspicuousness. When the prey density is very high, selection becomes 'anti-apostatic': predators preferentially remove rare prey. There is still much to be learned about frequency-dependent selection by predators on artificial prey: work on natural polymorphic prey has hardly begun. PMID:2905488

  12. Performance, carcass characteristics and chemical composition of beef affected by lupine seed, rapeseed meal and soybean meal.

    PubMed

    Sami, A S; Schuster, M; Schwarz, F J

    2010-08-01

    To test the effects of different protein sources and levels on performance, carcass characteristics and beef chemical composition, concentrates with three protein sources [Lupine seed (L), Rapeseed meal (R) and Soybean meal (S)] and two protein levels ['normal protein' (NP) or 'high protein' (HP)] were fed to 36 Simmental calves. Calves initially weighed 276 +/- 3.9 kg and averaged 6 months of age and were randomly allocated to the six treatments. Maize silage was offered ad libitum and supplemented with increasing amounts of concentrates (wheat, maize grain, protein sources, vitamin-mineral mix). Normal protein and HP diets were formulated to contain 12.4% and 14.0% crude protein (CP) dry matter (DM) respectively. At the end of the fattening period of 278 days, the final live weight averaged 683 +/- 14.7 kg. Neither level of protein nor its interaction with protein sources had any effects on most of the traits studied. Feeding the R diet significantly increased final weight, average daily gain (ADG), DM intake and CP intake in relation to the L diet; no differences were observed between the L and S diets for these measures. No differences were observed between the R and S groups in final weight or ADG, but the calves fed the R diet consumed more DM and CP than the calves fed the S diet. Bulls fed R diet had higher carcass weight and dressing percentage than the L groups, and no significant differences were detected between the S and L groups. Chemical composition of the Musculus longissimus dorsi was not significantly affected by source of protein. Also, the major saturated fatty acid (SFA) (C16:0 and C18:0) did not significantly differ among the three treatments. Samples from R group had significantly higher proportions of C16:1 t9, C18:1 c11, C18:2 c9 t11, C18:3 c9, 12, 15 and SigmaC18:1 t fatty acids in relation to L and S groups. Although polyunsaturated fatty acid/SFA ratio was similar for the three dietary groups, n-6/n-3 ratio and Sigman-3 fatty acids

  13. Inoculation Preparation Affects Survival of Salmonella enterica on Whole Black Peppercorns and Cumin Seeds Stored at Low Water Activity.

    PubMed

    Bowman, Lauren S; Waterman, Kim M; Williams, Robert C; Ponder, Monica A

    2015-07-01

    Salmonellosis has been increasingly associated with contaminated spices. Identifying inoculation and stabilization methods for Salmonella on whole spices is important for development of validated inactivation processes. The objective of this study was to examine the effects of inoculation preparation on the recoverability of Salmonella enterica from dried whole peppercorns and cumin seeds. Whole black peppercorns and cumin seeds were inoculated with S. enterica using one dry transfer method and various wet inoculation methods: immersion of spice seeds in tryptic soy broth (TSB) plus Salmonella for 24 h (likely leading to inclusion of Salmonella in native microbiota biofilms formed around the seeds), application of cells grown in TSB, and/or application of cells scraped from tryptic soy agar (TSA). Postinoculation seeds were dried to a water activity of 0.3 within 24 h and held for 28 days. Seeds were sampled after drying (time 0) and periodically during the 28 days of storage. Salmonella cells were enumerated by serial dilution and plated onto xylose lysine Tergitol (XLT4) agar and TSA. Recovery of Salmonella was high after 28 days of storage but was dependent on inoculation method, with 4.05 to 6.22 and 3.75 to 8.38 log CFU/g recovered from peppercorns and cumin seeds, respectively, on XLT4 agar. The changes in surviving Salmonella (log CFU per gram) from initial inoculation levels after 28 days were significantly smaller for the biofilm inclusion method (+0.142pepper, +0.186cumin) than for the other inoculation methods (-0.425pepper, -2.029cumin for cells grown on TSA; -0.641pepper, -0.718cumin for dry transfer; -1.998pepper for cells grown in TSB). In most cases, trends for reductions of total aerobic bacteria were similar to those of Salmonella. The inoculation method influenced the recoverability of Salmonella from whole peppercorns and cumin seeds after drying. The most stable inoculum strategies were dry transfer, 24-h incubation of Salmonella and spices in

  14. Demographic parameters of the insecticide-exposed predator Podisus nigrispinus: implications for IPM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) shows potential for Integrated Pest Management programs of defoliating caterpillars in agricultural and forestry systems. Insecticides can indirectly affect caterpillar predators through consumption of contaminated prey. We examin...

  15. Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity.

    PubMed Central

    Katavic, V; Reed, D W; Taylor, D C; Giblin, E M; Barton, D L; Zou, J; Mackenzie, S L; Covello, P S; Kunst, L

    1995-01-01

    In characterizing the enzymes involved in the formation of very long-chain fatty acids (VLCFAs) in the Brassicaceae, we have generated a series of mutants of Arabidopsis thaliana that have reduced VLCFA content. Here we report the characterization of a seed lipid mutant, AS11, which, in comparison to wild type (WT), has reduced levels of 20:1 and 18:1 and accumulates 18:3 as the major fatty acid in triacylglycerols. Proportions of 18:2 remain similar to WT. Genetic analyses indicate that the fatty acid phenotype is caused by a semidominant mutation in a single nuclear gene, designated TAG1, located on chromosome 2. Biochemical analyses have shown that the AS11 phenotype is not due to a deficiency in the capacity to elongate 18:1 or to an increase in the relative delta 15 or delta 12 desaturase activities. Indeed, the ratio of desaturase/elongase activities measured in vitro is virtually identical in developing WT and AS11 seed homogenates. Rather, the fatty acid phenotype of AS11 is the result of reduced diacylglycerol acyltransferase activity throughout development, such that triacylglycerol biosynthesis is reduced. This leads to a reduction in 20:1 biosynthesis during seed development, leaving more 18:1 available for desaturation. Thus, we have demonstrated that changes to triacylglycerol biosynthesis can result in dramatic changes in fatty acid composition and, in particular, in the accumulation of VLCFAs in seed storage lipids. PMID:7784510

  16. Ozone and density affect the response of biomass and seed yield to elevated CO2 in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric O3 reduces growth and yield of many crop species, whereas CO2 ameliorates the negative effects of O3. Thus in a combined elevated CO2 and O3 atmosphere, seed yield is at least restored to that of charcoal-filtered (CF) air at ambient CO2. The CO2-induced yield increase in CF air is hi...

  17. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grape juice processing by-products, namely grape seed and pomace, are a rich source of procyanidins, compounds that may afford protection against coronary heart disease, type II diabetes, and obesity. This study was undertaken to identify optimal extrusion conditions to enhance the contents of monom...

  18. Efficiency of pollination and satiation of predators determine reproductive output in Iberian Juniperus thurifera woodlands.

    PubMed

    Mezquida, E T; Rodríguez-García, E; Olano, J M

    2016-01-01

    Fruit production in animal-dispersed plants has a strong influence on fitness because large crops increase the number of seeds dispersed by frugivores. Large crops are costly, and environmental control of plant resources is likely play a role in shaping temporal and spatial variations in seed production, particularly in fluctuating environments such as the Mediterranean. The number of fruits that start to develop and the proportion of viable seeds produced are also linked to the number of flowers formed and the efficiency of pollination in wind-pollinated plants. Finally, large fruit displays also attract seed predators, having a negative effect on seed output. We assessed the relative impact of environmental conditions on fruit production, and their combined effect on seed production, abortion and seed loss through three predispersal predators in Juniperus thurifera L., sampling 14 populations across the Iberian Peninsula. Wetter than average conditions during flowering and early fruit development led to larger crop sizes; this effect was amplified at tree level, with the most productive trees during more favourable years yielding fruits with more viable seeds and less empty and aborted seeds. In addition, large crops satiated the less mobile seed predator. The other two predispersal predators responded to plant traits, the presence of other seed predators and environmental conditions, but did not show a satiation response to the current-year crop. Our large-scale study on a dioecious, wind-pollinated Mediterranean juniper indicates that pollination efficiency and satiation of seed predators, mediated by environmental conditions, are important determinants of reproductive output in this juniper species. PMID:25892115

  19. Annual variation in seedfall, postdispersal predation, and recruitment of a neotropical tree

    SciTech Connect

    Schupp, E.W. )

    1990-04-01

    Knowledge of the dynamics of seed production and seedling recruitment of individual tree species is crucial for a complete understanding of tropical forest dynamics, yet multiyear studies on the seed and young seedling stages of tropical trees are virtually nonexistent. In a 4-yr study of the understory tree Faramea occidentalis on Barro Colorado Island, Panama, the author quantified natural levels of viable seedfall, seedling emergence, and seedling establishment, and experimentally estimated postdispersal seed predation. The levels of viable seedfall, seed predation, seedling emergence, early seedling survival, and seedling recruitment all differed significantly among years. The proportion of fallen seeds destroyed by predators before germination was not related to the quantity of F. occidentalis seedfall. Within a year, however, F. occidentalis seed predation appeared to be influenced by community-wide seedfall, with high predation rates during times of low seed abundance and very low predation during the late dry season peak in seedfall by the community. Most of the annual variation in recruitment can be explained by the combination of seedfall and seed predation; in 3 of the 4 yr seedling emergence could be predicted from a knowledge of viable seedfall and the probability of a seed surviving until the peak of germination. The 4th yr, however, demonstrated that environmental conditions provide a sporadic, though important, limitation to recruitment. In comparison to many tree species, early seedling survival was relatively high, as was the ratio of seedlings recruited per seed falling. The highly successful recruitment of F. occidentalis is associated with a high population density of both saplings and adults in the study area.

  20. Vertebrate seed dispersers maintain the composition of tropical forest seedbanks

    PubMed Central

    Wandrag, E. M.; Dunham, A. E.; Miller, R. H.; Rogers, H. S.

    2015-01-01

    The accumulation of seeds in the soil (the seedbank) can set the template for the early regeneration of habitats following disturbance. Seed dispersal is an important factor determining the pattern of seed rain, which affects the interactions those seeds experience. For this reason, seed dispersal should play an important role in structuring forest seedbanks, yet we know little about how that happens. Using the functional extirpation of frugivorous vertebrates from the island of Guam, together with two nearby islands (Saipan and Rota) that each support relatively intact disperser assemblages, we aimed to identify the role of vertebrate dispersers in structuring forest seedbanks. We sampled the seedbank on Guam where dispersers are absent, and compared this with the seedbank on Saipan and Rota where they are present. Almost twice as many species found in the seedbank on Guam, when compared with Saipan and Rota, had a conspecific adult within 2 m. This indicates a strong role of vertebrate dispersal in determining the identity of seeds in the seedbank. In addition, on Guam, a greater proportion of samples contained no seeds and overall species richness was lower than on Saipan. Differences in seed abundance and richness between Guam and Rota were less clear, as seedbanks on Rota also contained fewer species than Saipan, possibly due to increased post-dispersal seed predation. Our findings suggest that vertebrate seed dispersers can have a strong influence on the species composition of seedbanks. Regardless of post-dispersal processes, without dispersal, seedbanks no longer serve to increase the species pool of recruits during regeneration. PMID:26578741

  1. Vertebrate seed dispersers maintain the composition of tropical forest seedbanks.

    PubMed

    Wandrag, E M; Dunham, A E; Miller, R H; Rogers, H S

    2015-01-01

    The accumulation of seeds in the soil (the seedbank) can set the template for the early regeneration of habitats following disturbance. Seed dispersal is an important factor determining the pattern of seed rain, which affects the interactions those seeds experience. For this reason, seed dispersal should play an important role in structuring forest seedbanks, yet we know little about how that happens. Using the functional extirpation of frugivorous vertebrates from the island of Guam, together with two nearby islands (Saipan and Rota) that each support relatively intact disperser assemblages, we aimed to identify the role of vertebrate dispersers in structuring forest seedbanks. We sampled the seedbank on Guam where dispersers are absent, and compared this with the seedbank on Saipan and Rota where they are present. Almost twice as many species found in the seedbank on Guam, when compared with Saipan and Rota, had a conspecific adult within 2 m. This indicates a strong role of vertebrate dispersal in determining the identity of seeds in the seedbank. In addition, on Guam, a greater proportion of samples contained no seeds and overall species richness was lower than on Saipan. Differences in seed abundance and richness between Guam and Rota were less clear, as seedbanks on Rota also contained fewer species than Saipan, possibly due to increased post-dispersal seed predation. Our findings suggest that vertebrate seed dispersers can have a strong influence on the species composition of seedbanks. Regardless of post-dispersal processes, without dispersal, seedbanks no longer serve to increase the species pool of recruits during regeneration. PMID:26578741

  2. Optimal control of native predators

    USGS Publications Warehouse

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  3. Biogeographic variation in behavioral and morphological responses to predation risk.

    PubMed

    Large, Scott I; Smee, Delbert L

    2013-04-01

    The expression of prey antipredator defenses is often related to ambient consumer pressure, and prey express greater defenses under intense consumer pressure. Predation is generally greater at lower latitudes, and antipredator defenses often display a biogeographic pattern. Predation pressure may also vary significantly between habitats within latitudes, making biogeographic patterns difficult to distinguish. Furthermore, invasive predators may also influence the expression of prey defenses in ecological time. The purpose of this study was to determine how these factors influence the strength of antipredator responses. To assess patterns in prey antipredator defenses based upon geographic range (north vs. south), habitat type (wave-protected vs. wave-exposed shores), and invasive predators, we examined how native rock (Cancer irroratus) and invasive green (Carcinus maenas) crab predators influence the behavioral and morphological defenses of dogwhelk (Nucella lapillus) prey from habitats that differ in wave exposure across an ~230 km range within the Gulf of Maine. The expression of behavioral and morphological antipredatory responses varied according to wave exposure, geographic location, and predator species. Dogwhelks from areas with an established history with green crabs exhibited the largest behavioral and morphological antipredator responses to green crabs. Dogwhelk behavioral responses to rock crabs did not vary between habitats or geographic regions, although morphological responses were greater further south where predation pressure was greatest. These findings suggest that dogwhelk responses to invasive and native predators vary according to geographic location and habitat, and are strongly affected by ambient predation pressure due to the invasion history of an exotic predator. PMID:23001623

  4. How membranes organize during seed germination: three patterns of dynamic lipid remodelling define chilling resistance and affect plastid biogenesis

    PubMed Central

    Yu, Xiamei; Li, Aihua; Li, Weiqi

    2016-01-01

    Imbibitional chilling injury during germination causes agricultural losses but this can be overcome by osmopriming. It remains unknown how membranes reorganize during germination. Herein, we comparatively profiled changes of membrane lipids during imbibition under normal and chilling temperatures in chilling-tolerant and -sensitive soybean seeds. We found three patterns of dynamic lipid remodelling during the three phases of germination. Pattern 1 involved a gradual increase in plastidic lipids during phases I and II, with an abrupt increase during phase III. This abrupt increase was associated with initiation of photosynthesis. Pattern 3 involved phosphatidic acid (PA) first decreasing, then increasing, and finally decreasing to a low level. Pattern 1 and 3 were interrupted in chilling-sensitive seeds under low temperature, which lead a block in plastid biogenesis and accumulation of harmful PA respectively. However, they were rescued and returned to their status under a normal temperature after polyethylene glycol (PEG) osmopriming. We specifically inhibited phospholipase D (PLD)-mediated PA formation in chilling-sensitive seeds of soybean, cucumber, and pea and found their germination under low temperature was significantly improved. These results indicate that membranes undergo specific and functional reorganization of lipid composition during germination and demonstrate that PLD-mediated PA causes imibibitional chilling injury. PMID:25474382

  5. How membranes organize during seed germination: three patterns of dynamic lipid remodelling define chilling resistance and affect plastid biogenesis.

    PubMed

    Yu, Xiaomei; Li, Aihua; Li, Weiqi

    2015-07-01

    Imbibitional chilling injury during germination causes agricultural losses, but this can be overcome by osmopriming. It remains unknown how membranes reorganize during germination. Herein, we comparatively profiled changes of membrane lipids during imbibition under normal and chilling temperatures in chilling-tolerant and -sensitive soybean seeds. We found three patterns of dynamic lipid remodelling during the three phases of germination. Pattern 1 involved a gradual increase in plastidic lipids during phases I and II, with an abrupt increase during phase III. This abrupt increase was associated with initiation of photosynthesis. Pattern 3 involved phosphatidic acid (PA) first decreasing, then increasing, and finally decreasing to a low level. Patterns 1 and 3 were interrupted in chilling-sensitive seeds under low temperature, which lead a block in plastid biogenesis and accumulation of harmful PA, respectively. However, they were rescued and returned to their status under normal temperature after polyethylene glycol osmopriming. We specifically inhibited phospholipase D (PLD)-mediated PA formation in chilling-sensitive seeds of soybean, cucumber, and pea, and found their germination under low temperature was significantly improved. These results indicate that membranes undergo specific and functional reorganization of lipid composition during germination and demonstrate that PLD-mediated PA causes imibibitional chilling injury. PMID:25474382

  6. The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus engelmannii) under Global Change

    PubMed Central

    Conlisk, Erin; Lawson, Dawn; Syphard, Alexandra D.; Franklin, Janet; Flint, Lorraine; Flint, Alan; Regan, Helen M.

    2012-01-01

    A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations. PMID:22623955

  7. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes. PMID:23771598

  8. Intraguild relationships between sympatric predators exposed to lethal control: predator manipulation experiments

    PubMed Central

    2013-01-01

    populations of native prey fauna at lower trophic levels are unlikely to be negatively affected by contemporary dingo control practices through the release of mesopredators. We conclude that contemporary lethal control practices used on some top-predator populations do not produce the conditions required to generate positive responses from mesopredators. Functional relationships between sympatric terrestrial predators may not be altered by exposure to spatially and temporally sporadic application of non-selective lethal control. PMID:23842144

  9. Predator-prey role reversals, juvenile experience and adult antipredator behaviour

    PubMed Central

    Choh, Yasuyuki; Ignacio, Maira; Sabelis, Maurice W.; Janssen, Arne

    2012-01-01

    Although biologists routinely label animals as predators and prey, the ecological role of individuals is often far from clear. There are many examples of role reversals in predators and prey, where adult prey attack vulnerable young predators. This implies that juvenile prey that escape from predation and become adult can kill juvenile predators. We show that such an exposure of juvenile prey to adult predators results in behavioural changes later in life: after becoming adult, these prey killed juvenile predators at a faster rate than prey that had not been exposed. The attacks were specifically aimed at predators of the species to which they had been exposed. This suggests that prey recognize the species of predator to which they were exposed during their juvenile stage. Our results show that juvenile experience affects adult behaviour after a role reversal. PMID:23061011

  10. Decontamination method using heat and relative humidity for radish seeds achieves a 7-log reduction of Escherichia coli O157:H7 without affecting product quality.

    PubMed

    Kim, Y B; Kim, H W; Song, M K; Rhee, M S

    2015-05-18

    We developed a novel decontamination method to inactivate Escherichia coli O157:H7 on radish seeds without adversely affecting seed germination or product quality. The use of heat (55, 60, and 65 °C) combined with relative humidity (RH; 25, 45, 65, 85, and 100%) for 24h was evaluated for effective microbial reduction and preservation of seed germination rates. A significant two-way interaction of heat and RH was observed for both microbial reduction and germination rate (P<0.0001). Increases in heat and RH were associated with corresponding reductions in E. coli O157:H7 and in germination rate (P<0.05). The order of lethality for the different treatments was generally as follows: no treatment <55 °C/25-65% RH ≒60 °C/25-45% RH ≒65 °C/25% RH <55 °C/85% RH =60 °C/65% RH <55 °C/100% RH =60 °C/85-100% RH =65 °C/45-100% RH. The most effective condition, 65 °C/45% RH, completely inactivated E. coli O157:H7 on the seeds (7.0 log CFU/g reduction) and had no significant effect on the germination rate (85.4%; P>0.05) or product quality. The method uses only heat and relative humidity without chemicals, and is thus applicable as a general decontamination procedure in spout producing plants where the use of growth chambers is the norm. PMID:25732001

  11. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China

    PubMed Central

    Xia, Ke; Hill, Lisa M.; Li, De-Zhu; Walters, Christina

    2014-01-01

    Background and Aims Quercus species are often considered ‘foundation’ components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Methods Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Key Results Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Conclusions Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. PMID:25326139

  12. The effect of hydroperiod and predation on the diversity of temporary pond zooplankton communities

    PubMed Central

    Zokan, Marcus; Drake, John M

    2015-01-01

    In temporary pond ecosystems, it is hypothesized that the two dominant structuring forces on zooplankton communities are predation and demographic constraints due to wetland drying. Both of these forces are deterministic processes that act most strongly at opposing ends of a hydroperiod gradient. Our objective was to test how these two processes affect α- and β-diversity of zooplankton communities derived from a diverse temporary pond system. We hypothesized that decreased hydroperiod length and the presence of salamander larvae as predators would decrease β-diversity and that intermediate hydroperiod communities would have the greatest species richness. Our 1-year mesocosm experiment (n = 36) consisted of two predation treatments (present/absent) and three hydroperiod treatments (short/medium/long) fully crossed, seeded from the resting egg bank of multiple temporary ponds. In total, we collected 37 species of microcrustacean zooplankton from our mesocosms. A reduction in hydroperiod length resulted in lower α-diversity, with short-hydroperiod treatments affected most strongly. Endpoint community dissimilarity (β-diversity) was greatest in the medium-hydroperiod treatment with regard to species presence/absence, but was greatest in the long-hydroperiod treatment when abundances were included. Predation by salamander larvae led to reduced β-diversity with respect to species presence/absence, but not among abundant species, and had no effect on α-diversity. Our results suggest that environmental changes that reduce hydroperiod length would result in reduced α-diversity; however, intermediate hydroperiod length appear to enhance β-diversity within a group of wetlands. PMID:26357537

  13. Antioxidant activities of lead (Leucaena leucocephala) seed as affected by extraction solvent, prior dechlorophyllisation and drying methods.

    PubMed

    Benjakul, Soottawat; Kittiphattanabawon, Phanat; Sumpavapol, Punnanee; Maqsood, Sajid

    2014-11-01

    Extracts of brown lead (Leucaena leucocephala) seed prepared using different extraction solvents were determined for antioxidative activities using different assays. The highest yield (3.4-4.0%) was obtained when water was used as an extraction solvent, compared with all ethanolic extracts used (1.2-2.0 %) (P < 0.05). Much lower chlorophyll content was found in the water extract. When hot water was used, the resulting extract contained lower total phenolic and mimosine contents (P < 0.05). In general, 60-80 % ethanolic extracts had higher 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, ferric reducing antioxidant power (FRAP) and metal chelating activity than water extracts (P < 0.05). When brown lead seed was dechlorophyllised prior to extraction, the water extract had slightly increased yield with lower chlorophyll content. Nevertheless, prior chlorophyll removal resulted in the increase in antioxidative activities but lower total phenolic and mimosine contents (P < 0.05). Generally, phenolic compounds and mimosine were more released when water was used as the extraction solvent, while the lower amount of chlorophyll was extracted. Oven-drying exhibited the negative effect on antioxidative activities and mimosine content. The higher antioxidative activities with concomitant higher total phenolic and mimosine contents were found in water extract dried by freeze drying. Thus, extraction solvent, dechlorophyllisation and drying methods directly influenced the yield and antioxidative activity of lead seed extract. PMID:26396295

  14. Context-dependent seed dispersal by a scatter-hoarding corvid.

    PubMed

    Pesendorfer, Mario B; Sillett, T Scott; Morrison, Scott A; Kamil, Alan C

    2016-05-01

    Corvids (crows, jays, magpies and nutcrackers) are important dispersers of large-seeded plants. Studies on captive or supplemented birds suggest that they flexibly adjust their scatter-hoarding behaviour to the context of social dynamics and relative seed availability. Because many corvid-dispersed trees show high annual variation in seed production, context-dependent foraging can have strong effects on natural corvid scatter-hoarding behaviour. We investigated how seed availability and social dynamics affected scatter-hoarding in the island scrub jays (Aphelocoma insularis). We quantified rates of scatter-hoarding behaviour and territorial defence of 26 colour-marked birds over a three-year period with variable acorn crops. We tested whether caching parameters were correlated with variation in annual seed production of oaks as predicted by the predator dispersal hypothesis, which states that caching rates and distances should vary with seed abundance in ways that benefit tree fitness. We also tested whether antagonistic interactions with conspecifics would affect scatter-hoarding adversely, as found in experimental studies. Caching behaviour varied with acorn availability. Caching distances correlated positively with annual acorn crop size, increasing by as much as 40% between years. Caching rates declined over time in years with small acorn crops, but increased when crops were large. Acorn foraging and caching rates were also negatively correlated with rates of territorial aggression. Overall foraging rates, however, were not associated with aggression, suggesting that reduced dispersal rates were not simply due to time constraints. Our field results support laboratory findings that caching rates and distances by scatter-hoarding corvids are context-dependent. Furthermore, our results are consistent with predictions of the predator dispersal hypothesis and suggest that large seed crops and social interactions among scatter-hoarders affect dispersal benefits for

  15. Innate defensive behaviour and panic-like reactions evoked by rodents during aggressive encounters with Brazilian constrictor snakes in a complex labyrinth: behavioural validation of a new model to study affective and agonistic reactions in a prey versus predator paradigm.

    PubMed

    Guimarães-Costa, Raquel; Guimarães-Costa, Maria Beatriz; Pippa-Gadioli, Leonardo; Weltson, Alfredo; Ubiali, Walter Adriano; Paschoalin-Maurin, Tatiana; Felippotti, Tatiana Tocchini; Elias-Filho, Daoud Hibrahim; Laure, Carlos Júlio; Coimbra, Norberto Cysne

    2007-09-15

    Defensive behaviour has been extensively studied, and non-invasive methodologies may be interesting approaches to analyzing the limbic system function as a whole. Using experimental models of animals in the state of anxiety has been fundamental in the search for new anxiolytic and antipanic compounds. The aim of this present work is to examine a new model for the study of affective behaviour, using a complex labyrinth consisting of an arena and galleries forming a maze. Furthermore, it aims to compare the defensive behaviour of Wistar rats, Mongolian gerbils and golden hamsters in a complex labyrinth, as well as the defensive behaviour of Meriones unguiculatus in aggressive encounters with either Epicrates cenchria assisi or Boa constrictor amarali in this same model. Among species presently studied, the Mongolian gerbils showed better performance in the exploration of both arena and galleries of the labyrinth, also demonstrating less latency in finding exits of the galleries. This increases the possibility of survival, as well as optimizes the events of encounter with the predator. The duration of alertness and freezing increased during confrontation with living Epicrates, as well as the duration of exploratory behaviour in the labyrinth. There was an increase in the number of freezing and alertness behaviours, as well as in duration of alertness during confrontations involving E.c. assisi, compared with behavioural reactions elicited by jirds in presence of B.c. amarali. Interestingly, the aggressive behaviour of Mongolian gerbils was more prominent against B.c. amarali compared with the other Boidae snake. E.c. assisi elicited more offensive attacks and exhibited a greater time period of body movement than B.c. amarali, which spent more time in the arena and in defensive immobility than the E.c. assisi. Considering that jirds evoked more fear-like reaction in contact with E.c. assisi, a fixed E.c. assisi kept in a hermetically closed acrylic box was used as

  16. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression.

    PubMed

    Brock, Anita K; Willmann, Roland; Kolb, Dagmar; Grefen, Laure; Lajunen, Heini M; Bethke, Gerit; Lee, Justin; Nürnberger, Thorsten; Gust, Andrea A

    2010-07-01

    Abscisic acid (ABA) is an important phytohormone regulating various cellular processes in plants, including stomatal opening and seed germination. Although protein phosphorylation via mitogen-activated protein kinases (MAPKs) has been suggested to be important in ABA signaling, the corresponding phosphatases are largely unknown. Here, we show that a member of the Protein Phosphatase 2C (PP2C) family in Arabidopsis (Arabidopsis thaliana), PP2C5, is acting as a MAPK phosphatase. The PP2C5 protein colocalizes and directly interacts with stress-induced MPK3, MPK4, and MPK6, predominantly in the nucleus. Importantly, altered PP2C5 levels affect MAPK activation. Whereas Arabidopsis plants depleted of PP2C5 show an enhanced ABA-induced activation of MPK3 and MPK6, ectopic expression of PP2C5 in tobacco (Nicotiana benthamiana) resulted in the opposite effect, with the two MAPKs salicylic acid-induced protein kinase and wound-induced protein kinase not being activated any longer after ABA treatment. Moreover, depletion of PP2C5, whose gene expression itself is affected by ABA treatment, resulted in altered ABA responses. Loss-of-function mutation in PP2C5 or AP2C1, a close PP2C5 homolog, resulted in an increased stomatal aperture under normal growth conditions and a partial ABA-insensitive phenotype in seed germination that was most prominent in the pp2c5 ap2c1 double mutant line. In addition, the response of ABA-inducible genes such as ABI1, ABI2, RD29A, and Erd10 was reduced in the mutant plants. Thus, we suggest that PP2C5 acts as a MAPK phosphatase that positively regulates seed germination, stomatal closure, and ABA-inducible gene expression. PMID:20488890

  17. Seed feeding beetles (Bruchidae, Curculionidae, Brentidae) from legumes (Dalea ornata, Astragalus filipes) and other forbs needed for restoring rangelands of the Intermountain West

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Larval seed beetles are common seed predators that feed within individual seeds, and legume plants are especially plagued by seed beetles. This can be problematic for seed growers who raise seeds of North American legumes native to the Intermountain Region of the western U.S. for use in the reveget...

  18. Ecosystem context and historical contingency in apex predator recoveries

    PubMed Central

    Stier, Adrian C.; Samhouri, Jameal F.; Novak, Mark; Marshall, Kristin N.; Ward, Eric J.; Holt, Robert D.; Levin, Phillip S.

    2016-01-01

    Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This “trophic downgrading” has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences. PMID:27386535

  19. Top predators negate the effect of mesopredators on prey physiology.

    PubMed

    Palacios, Maria M; Killen, Shaun S; Nadler, Lauren E; White, James R; McCormick, Mark I

    2016-07-01

    Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three-tier reef fish food web and intermittent-flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non-predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic-level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non-consumptive effects of top predators in marine food webs. PMID:27113316

  20. Ecosystem context and historical contingency in apex predator recoveries.

    PubMed

    Stier, Adrian C; Samhouri, Jameal F; Novak, Mark; Marshall, Kristin N; Ward, Eric J; Holt, Robert D; Levin, Phillip S

    2016-05-01

    Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This "trophic downgrading" has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences. PMID:27386535

  1. Molecular insights into how a deficiency of amylose affects carbon allocation – carbohydrate and oil analyses and gene expression profiling in the seeds of a rice waxy mutant

    PubMed Central

    2012-01-01

    Background Understanding carbon partitioning in cereal seeds is of critical importance to develop cereal crops with enhanced starch yields for food security and for producing specified end-products high in amylose, β-glucan, or fructan, such as functional foods or oils for biofuel applications. Waxy mutants of cereals have a high content of amylopectin and have been well characterized. However, the allocation of carbon to other components, such as β-glucan and oils, and the regulation of the altered carbon distribution to amylopectin in a waxy mutant are poorly understood. In this study, we used a rice mutant, GM077, with a low content of amylose to gain molecular insight into how a deficiency of amylose affects carbon allocation to other end products and to amylopectin. We used carbohydrate analysis, subtractive cDNA libraries, and qPCR to identify candidate genes potentially responsible for the changes in carbon allocation in GM077 seeds. Results Carbohydrate analysis indicated that the content of amylose in GM077 seeds was significantly reduced, while that of amylopectin significantly rose as compared to the wild type BP034. The content of glucose, sucrose, total starch, cell-wall polysaccharides and oil were only slightly affected in the mutant as compared to the wild type. Suppression subtractive hybridization (SSH) experiments generated 116 unigenes in the mutant on the wild-type background. Among the 116 unigenes, three, AGP, ISA1 and SUSIBA2-like, were found to be directly involved in amylopectin synthesis, indicating their possible roles in redirecting carbon flux from amylose to amylopectin. A bioinformatics analysis of the putative SUSIBA2-like binding elements in the promoter regions of the upregulated genes indicated that the SUSIBA2-like transcription factor may be instrumental in promoting the carbon reallocation from amylose to amylopectin. Conclusion Analyses of carbohydrate and oil fractions and gene expression profiling on a global scale in the

  2. Cumulative human impacts on marine predators.

    PubMed

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources. PMID:24162104

  3. Anthropogenic noise increases fish mortality by predation.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Nedelec, Sophie L; Ferrari, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans. PMID:26847493

  4. Anthropogenic noise increases fish mortality by predation

    PubMed Central

    Simpson, Stephen D.; Radford, Andrew N.; Nedelec, Sophie L.; Ferrari, Maud C. O.; Chivers, Douglas P.; McCormick, Mark I.; Meekan, Mark G.

    2016-01-01

    Noise-generating human activities affect hearing, communication and movement in terrestrial and aquatic animals, but direct evidence for impacts on survival is rare. We examined effects of motorboat noise on post-settlement survival and physiology of a prey fish species and its performance when exposed to predators. Both playback of motorboat noise and direct disturbance by motorboats elevated metabolic rate in Ambon damselfish (Pomacentrus amboinensis), which when stressed by motorboat noise responded less often and less rapidly to simulated predatory strikes. Prey were captured more readily by their natural predator (dusky dottyback, Pseudochromis fuscus) during exposure to motorboat noise compared with ambient conditions, and more than twice as many prey were consumed by the predator in field experiments when motorboats were passing. Our study suggests that a common source of noise in the marine environment has the potential to impact fish demography, highlighting the need to include anthropogenic noise in management plans. PMID:26847493

  5. Bioinsecticide-Predator Interactions: Azadirachtin Behavioral and Reproductive Impairment of the Coconut Mite Predator Neoseiulus baraki

    PubMed Central

    Lima, Debora B.; Melo, José Wagner S.; Guedes, Nelsa Maria P.; Gontijo, Lessando M.; Guedes, Raul Narciso C.; Gondim, Manoel Guedes C.

    2015-01-01

    Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents. PMID:25679393

  6. Predator identity influences metacommunity assembly.

    PubMed

    Johnston, Nicole K; Pu, Zhichao; Jiang, Lin

    2016-09-01

    Predation is among the most important biotic factors influencing natural communities, yet we have a rather rudimentary understanding of its role in modulating metacommunity assembly. We experimentally examined the effects of two different predators (a generalist and a specialist) on metacommunity assembly, using protist microcosm metacommunities that varied in predator identity, dispersal among local communities and the history of species colonization into local communities. Generalist predation resulted in reduced α diversity and increased β diversity irrespective of dispersal, likely due to predation-induced stochastic extinction of different prey species in different local communities. Dispersal, however, induced source-sink dynamics in the presence of specialist predators, resulting in higher α diversity and marginally lower β diversity. These results demonstrate the distinct effects of different predators on prey metacommunity assembly, emphasizing the need to explore the role of predator diet breadth in structuring metacommunities. PMID:27349796

  7. Nitrate affects sensu-stricto germination of after-ripened Sisymbrium officinale seeds by modifying expression of SoNCED5, SoCYP707A2 and SoGA3ox2 genes.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; Rodríguez-Gacio, María del Carmen; Iglesias-Fernández, Raquel

    2014-03-01

    The influence of nitrate upon the germination of Sisymbrium officinale seeds is not entirely controlled by after-ripening (AR), a process clearly influenced by nitrate. Recently, we have reported that nitrate affects sensu-stricto germination of non-AR (AR0) seeds by modifying the expression of crucial genes involved in the metabolism of GA and ABA. In this study, we demonstrate that nitrate affects also the germination of AR seeds because: (i) the AR negatively alters the ABA sensitivity being the seed more ABA-sensible as the AR is farthest from optimal (AR0 and AR20 versus AR7); in the presence of diniconazole (DZ), a competitive inhibitor of ABA 8'-hydroxylase, testa rupture is affected while the endosperm rupture is not. (ii) AR7 seed-coat rupture is not inhibited by paclobutrazol (PBZ) suggesting that nitrate can act by a mechanism GA-independent. (iii) The germination process is accelerated by nitrate, most probably by the increase in the expression of SoNCED5, SoCYP707A2 and SoGA3ox2 genes. Taken together, these and previous results demonstrate that nitrate promotes germination of AR and non-AR seeds through transcriptional changes of different genes involved in ABA and GA metabolism. PMID:24467901

  8. Burial of Zostera marina seeds in sediment inhabited by three polychaetes: Laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Delefosse, M.; Kristensen, E.

    2012-07-01

    The large number of seeds produced by eelgrass, Zostera marina, provides this plant with a potential to disperse widely and colonise new areas. After dispersal, seeds must be buried into sediment for assuring long-term survival, successful germination and safe seedling development. Seeds may be buried passively by sedimentation or actively through sediment reworking by benthic fauna. We evaluated the effect of three polychaetes on the burial rate and depth of eelgrass seeds. Burial was first measured in controlled laboratory experiments using different densities of Nereis (Hediste) diversicolor (400-3200 ind m- 2), Arenicola marina (20-80 ind m- 2), and the invasive Marenzelleria viridis (400-1600 ind m- 2). The obtained results were subsequently compared with burial rates of seed mimics in experimental field plots (1 m2) dominated by the respective polychaetes. High recovery of seeds in the laboratory (97-100%) suggested that none of these polychaetes species feed on eelgrass seeds. N. diversicolor transported seeds rapidly (< 1 day) into its burrow, where they remained buried at a median depth of 0.5 cm. A. marina and M. viridis buried seeds by depositing their faeces on top of the sediment. At their highest abundance, A. marina and M. viridis buried seeds to a median depth of 6.7 cm and 0.5 cm, respectively, after a month. The burial efficiency and depth of these species were, in contrast to N. diversicolor, dependent on animal abundance. Only 2% of seed mimics casted in the field plots were recovered, suggesting that physical dispersion by waves and currents was considerably important for horizontal distribution. However, polychaete affected significantly the vertical distribution of seeds. Overall the effects of these three polychaetes indicate that benthic macroinvertebrates may significantly impact eelgrass seed bank at the ecosystem scale. Some species have a positive effect by burying seeds to shallow depths and thereby reducing seed predation and

  9. Production of heteropteran predators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter treats several key aspects of rearing procedures for predatory bugs. The value of natural, factitious, and artificial foods for the major species used in biological control is reviewed. Whereas several types of factitious foods are routinely used in the production of heteropteran predat...

  10. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    PubMed

    Pappas, Maria L; Steppuhn, Anke; Geuss, Daniel; Topalidou, Nikoleta; Zografou, Aliki; Sabelis, Maurice W; Broufas, George D

    2015-01-01

    Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur) on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI), may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood). The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators. PMID:25974207

  11. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites

    PubMed Central

    Pappas, Maria L.; Steppuhn, Anke; Geuss, Daniel; Topalidou, Nikoleta; Zografou, Aliki; Broufas, George D.

    2015-01-01

    Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur) on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI), may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood). The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators. PMID:25974207

  12. Prey-predator system with parental care for predators.

    PubMed

    Wang, Wendi; Takeuchi, Yasuhiro; Saito, Yasuhisa; Nakaoka, Shinji

    2006-08-01

    A stage structure is incorporated into a prey-predator model in which predators are split into immature predators and mature predators. It is assumed that immature predators are raised by their parents in the sense that they cannot catch the prey and their foods are provided by parents. Further, it is assumed that the maturation rate of immature predators is a function of the food availability for one immature individual. It is found that the model admits periodic solutions which are produced from the stage structure. Further, it is shown that two stability switches of positive equilibria may occur due to the transition rate incorporating the influence of nutrient, and that the enrichment of adult predators may lead to the catastrophe of the ecological system. PMID:16414079

  13. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    PubMed

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (affecting VLCFA profiles in seed storage lipids by genotyping and phenotyping wildtype x low erucic acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  14. Cryopreservation of recalcitrant seeds: factors affecting survival of embryonic axes from four Quercus (Fagaceae) species native to the US or China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous tree species of economic and environmental importance are facing pressures from diseases or pests, climate change or habitat fragmentation. Seed banking to preserve the genetic diversity within these species would aid conservation. However, several tree species produce recalcitrant seeds, ...

  15. Influence of edge on predator prey distribution and abundance

    NASA Astrophysics Data System (ADS)

    Ferguson, Steven H.

    2004-03-01

    I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137-305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator-prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator-prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.

  16. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although modern soybean cultivars feature yellow seed coats, with the only color variation found at the hila, the ancestral condition is black seed coats. Both seed coat and hila coloration are due to the presence of phenylpropanoid pathway derivatives, principally anthocyanins. The genetics of soyb...

  17. Cortisol affects tight junction morphology between pavement cells of rainbow trout gills in single-seeded insert culture.

    PubMed

    Sandbichler, Adolf Michael; Farkas, Julia; Salvenmoser, Willi; Pelster, Bernd

    2011-12-01

    A primary culture system of rainbow trout gill pavement cells grown on permeable support (single-seeded insert, SSI) was used to examine histological and physiological changes induced by the addition of the corticosteroid hormone cortisol. Pavement cell epithelia were cultured under symmetrical conditions (L15 apical/L15 basolateral) and developed a high transepithelial resistance (TER, 6.84 ± 1.99 kΩ cm(2), mean ± SEM) with a low phenol red diffusion rate (PRD, 0.15 ± 0.03 μmol l(-1)/day). Addition of cortisol to the basolateral compartment increased TER twofold and reduced PRD threefold over a 5-day period. A similar increase in TER could be seen after 24 h apical freshwater (FW) in control cultures. In cortisol-treated cultures FW exposure did not change TER, but PRD increased significantly. Histochemical staining of the cytoskeleton of cells in SSI culture revealed a morphological partitioning into a single mucosal layer of polarized, polygonal cells featuring cortical F-actin rings which were comparable to F-actin rings of epithelial cells on the lamellar and filamental surface, and several unorganized serosal layers of cells with F-actin stress fibers. Addition of cortisol increased cell density by 18% and in the mucosal layer it led to smaller, less polygonal cells with increased height and increased cell contact area. In transmission electron microscopic images two pairs of cytoplasmatic electron-dense structures confining the zonula occludens apically and basally toward the zonula adhaerens were found. Addition of cortisol increased the distance between those paired structures, hence led to deeper tight junctions. The cortisol-induced increase in barrier properties, therefore, involves a structural fortification of the tight junctions which was not generally modified by a short 24-h apical freshwater stress. These results identify cortisol as a regulator of tight junction morphology between pavement cells of euryhaline fish such as the

  18. Seed fate in the myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination

    NASA Astrophysics Data System (ADS)

    Salazar-Rojas, Betzabeth; Rico-Gray, Víctor; Canto, Azucena; Cuautle, Mariana

    2012-04-01

    Myrmecochory (seed dispersal by ants) differs from other dispersal systems in a series of advantages offered by the ants to the plants. Here, seed fate, from fruit to germination, of the myrmecochorous Neotropical plant Turnera ulmifolia L. is described. Seed movement from the fruit to their germination was studied, using different measurements and experiments. The results show that a T. ulmifolia individual produces ca. 5000 seeds per year. The main pre-seed-fall predators are the larvae of the Microlepidopteran Crocidosema plebejana Zeller, which consumed 1% of the seeds on the plant. The red-land crab Gecarcinus lateralis (Freminville) consumed 19% of the seeds beneath the plant and was the main post-seed-fall predator. Seed removal by ants was recorded on and beneath the plant, and ants removed 49% of the total seed production. Considering the seed removal events, the ant Forelius analis contributed with 64% of the total number of events. F. analis took seeds to its nest and discarded 23% of the seeds collected. Germination of seeds collected by F. analis was two to four times higher than that of seeds with and without elaiosome, respectively. The relatively low seed predation was probably related to ant defense, associated with the presence of extrafloral nectaries in this plant and with seed removal on the plant. Our results suggest that F. analis is a quantitatively efficient but qualitatively inefficient seed disperser of T. ulmifolia.

  19. Plant resistance reduces the strength of consumptive and non-consumptive effects of predators on aphids.

    PubMed

    Kersch-Becker, Mônica F; Thaler, Jennifer S

    2015-09-01

    affect different aspects of prey demography, acting together to shape prey population dynamics. While predation risk accounts for most of the total effect of the predator on aphid dispersal and number of nymphs, the suppressive effect of predators on aphid population occurred largely through consumption. These effects are strongly influenced by plant resistance levels, suggesting that they are context dependent. PMID:25788108

  20. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.

    PubMed

    Klecka, Jan; Boukal, David S

    2013-09-01

    1. Predation is often size selective, but the role of other traits of the prey and predators in their interactions is little known. This hinders our understanding of the causal links between trophic interactions and the structure of animal communities. Better knowledge of trophic traits underlying predator-prey interactions is also needed to improve models attempting to predict food web structure and dynamics from known species traits. 2. We carried out laboratory experiments with common freshwater macroinvertebrate predators (diving beetles, dragonfly and damselfly larvae and water bugs) and their prey to assess how body size and traits related to foraging (microhabitat use, feeding mode and foraging mode) and to prey vulnerability (microhabitat use, activity and escape behaviour) affect predation strength. 3. The underlying predator-prey body mass allometry characterizing mean prey size and total predation pressure was modified by feeding mode of the predators (suctorial or chewing). Suctorial predators fed upon larger prey and had ˜3 times higher mass-specific predation rate than chewing predators of the same size and may thus have stronger effect on prey abundance. 4. Strength of individual trophic links, measured as mortality of the focal prey caused by the focal predator, was determined jointly by the predator and prey body mass and their foraging and vulnerability traits. In addition to the feeding mode, interactions between prey escape behaviour (slow or fast), prey activity (sedentary or active) and predator foraging mode (searching or ambush) strongly affected prey mortality. Searching predators was ineffective in capturing fast-escape prey in comparison with the remaining predator-prey combinations, while ambush predators caused higher mortality than searching predators and the difference was larger in active prey. 5. Our results imply that the inclusion of the commonly available qualitative data on foraging traits of predators and vulnerability traits

  1. Low-Reynolds-number predator

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward.

  2. Low-Reynolds-number predator.

    PubMed

    Ebrahimian, Mehran; Yekehzare, Mohammad; Ejtehadi, Mohammad Reza

    2015-12-01

    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred state, resulting in the drift of the random walker along the gradient of the density of activators. External food or danger sources may attract or repel the body by producing or consuming the chemical activators of the organism's enzymes, inducing chemotaxis behavior. Generalization of the model to three dimensions is straightforward. PMID:26764831

  3. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.).

    PubMed

    Zhu, Yana; Cao, Zhengying; Xu, Fei; Huang, Yi; Chen, Mingxun; Guo, Wanli; Zhou, Weijun; Zhu, Jun; Meng, Jinling; Zou, Jitao; Jiang, Lixi

    2012-02-01

    Seed oil production in oilseed rape is greatly affected by the temperature during seed maturation. However, the molecular mechanism of the interaction between genotype and temperature in seed maturation remains largely unknown. We developed two near-isogenic lines (NIL-9 and NIL-1), differing mainly at a QTL region influencing oil content on Brassica napus chromosome C2 (qOC.C2.2) under high temperature during seed maturation. The NILs were treated under different temperatures in a growth chamber after flowering. RNA from developing seeds was extracted on the 25th day after flowering (DAF), and transcriptomes were determined by microarray analysis. Statistical analysis indicated that genotype, temperature, and the interaction between genotype and temperature (G × T) all significantly affected the expression of the genes in the 25 DAF seeds, resulting in 4,982, 19,111, and 839 differentially expressed unisequences, respectively. NIL-9 had higher seed oil content than NIL-1 under all of the temperatures in the experiments, especially at high temperatures. A total of 39 genes, among which six are located at qOC.C2.2, were differentially expressed among the NILs regardless of temperature, indicating the core genetic divergence that was unaffected by temperature. Increasing the temperature caused a reduction in seed oil content that was accompanied by the downregulation of a number of genes associated with red light response, photosynthesis, response to gibberellic acid stimulus, and translational elongation, as well as several genes of importance in the lipid metabolism pathway. These results contribute to our knowledge of the molecular nature of QTLs and the interaction between genotype and temperature. PMID:22042481

  4. A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    USGS Publications Warehouse

    Klinger, R.; Rejmanek, M.

    2010-01-01

    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.

  5. Leopard predation and primate evolution.

    PubMed

    Zuberbühler, Klaus; Jenny, David

    2002-12-01

    Although predation is an important driving force of natural selection its effects on primate evolution are still not well understood, mainly because little is known about the hunting behaviour of the primates' various predators. Here, we present data on the hunting behaviour of the leopard (Panthera pardus), a major primate predator in the Tai; forest of Ivory Coast and elsewhere. Radio-tracking data showed that forest leopards primarily hunt for monkeys on the ground during the day. Faecal analyses confirmed that primates accounted for a large proportion of the leopards' diet and revealed in detail the predation pressure exerted on the eight different monkey and one chimpanzee species. We related the species-specific predation rates to various morphological, behavioural and demographic traits that are usually considered adaptations to predation (body size, group size, group composition, reproductive behaviour, and use of forest strata). Leopard predation was most reliably associated with density, suggesting that leopards hunt primates according to abundance. Contrary to predictions, leopard predation rates were not negatively, but positively, related to body size, group size and the number of males per group, suggesting that predation by leopards did not drive the evolution of these traits in the predicted way. We discuss these findings in light of some recent experimental data and suggest that the principal effect of leopard predation has been on primates' cognitive evolution. PMID:12473487

  6. Predator experience overrides learned aversion to heterospecifics in stickleback species pairs

    PubMed Central

    Kozak, Genevieve M.; Boughman, Janette W.

    2015-01-01

    Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887

  7. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds.

    PubMed

    Lee, Jinwook; Hwang, Young-Sun; Kim, Sun Tae; Yoon, Won-Byong; Han, Won Young; Kang, In-Kyu; Choung, Myoung-Gun

    2017-01-01

    The distribution and variation of targeted metabolites in soybean seeds are affected by genetic and environmental factors. In this study, we used 192 soybean germplasm accessions collected from two provinces of Korea to elucidate the effects of seed coat color and seeds dry weight on the metabolic variation and responses of targeted metabolites. The effects of seed coat color and seeds dry weight were present in sucrose, total oligosaccharides, total carbohydrates and all measured fatty acids. The targeted metabolites were clustered within three groups. These metabolites were not only differently related to seeds dry weight, but also responded differentially to seed coat color. The inter-relationship between the targeted metabolites was highly present in the result of correlation analysis. Overall, results revealed that the targeted metabolites were diverged in relation to seed coat color and seeds dry weight within locally collected soybean seed germplasm accessions. PMID:27507473

  8. Restricting Prey Dispersal Can Overestimate the Importance of Predation in Trophic Cascades

    PubMed Central

    Geraldi, Nathan R.; Macreadie, Peter I.

    2013-01-01

    Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish – Opsanus tau), prey (mud crab - Panopeus herbstii) and resource (ribbed mussel – Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured. PMID:23408957

  9. What regulates crab predation on mangrove propagules?

    NASA Astrophysics Data System (ADS)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  10. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. PMID:26431773

  11. Fiber and seed loss from seed cotton cleaning machinery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber and seed loss from seed cotton cleaning equipment in cotton gins occurs, but the quantity of material lost, factors affecting fiber and seed loss, and the mechanisms that cause material loss are not well understood. Two experiments were conducted to evaluate the effects of different factors on...

  12. Nut predation and dispersal of Harland Tanoak Lithocarpus harlandii by scatter-hoarding rodents

    NASA Astrophysics Data System (ADS)

    Xiao, Zhishu; Zhang, Zhibin

    2006-03-01

    Plants that use the propagule to co-opt animals as dispersal agents must balance the costs of seed predation with the benefits of dispersal. Successful post-dispersal germination is a key metric that reflects these costs and benefits. By tracking individual nuts with coded tin-tags over 3 years (2000-2003), this study quantified nut predation and dispersal of harland tanoak ( Lithocarpus harlandii) by seed-caching rodents in a subtropical evergreen broadleaved forest in the Duiangyan Region of Sichuan Province, Southwest China. We found that tanoak seedlings established from rodent-generated caches in the primary stands over a 12-month post-dispersal period. Our results indicate that seed-caching rodents are effective dispersers of tanoak nuts, but dispersal effectiveness varies among years and stands, probably due to mast seeding of harland tanoak or community-level seed availability according to the predator satiation hypothesis. Some nut traits in tanoak species, e.g. large seed size, hard nut husk, lower tannin and mast seeding, are important characteristics for seed dispersal by scatter-hoarding rodents, compared with oak species with higher tannin content.

  13. Relocation of Croton sonderianus (Euphorbiaceae) seeds by Pheidole fallax Mayr (Formicidae): a case of post-dispersal seed protection by ants?

    PubMed

    Lôbo, D; Tabarelli, M; Leal, I R

    2011-01-01

    Although seed dispersal by ants might reduce seed predation near the parent plants, predation on discarded seeds clustered on nest refuse piles may reduce any initial benefit provided by seed removal. Here we examine the fate of Croton sonderianus seeds that were discarded by Pheidole fallax Mayr ants on their nest refuses in caatinga vegetation of northeast Brazil. We collected all seeds discarded in refuse piles of 20 nests and within a radius of 50 cm from their borders, and examined them for evidence of predation. A total of 3,017 seeds were recorded either located in the P. fallax refuse piles (89.1%) or nest vicinity (10.9%). Predation was three fold higher in nest vicinity as compared to refuse piles. By removing seeds from beneath parent plants and relocating then to refuse piles, P. fallax is possibly providing double protection services for C. sonderianus seeds. Our findings represent the first evidence for predator-avoidance as benefit for plants resulting from ant seed-dispersal in the neotropics. PMID:21952959

  14. Effect of different predation rate on predator-prey model with harvesting, disease and refuge

    NASA Astrophysics Data System (ADS)

    Pusawidjayanti, K.; Suryanto, A.; Wibowo, R. B. E.

    2015-03-01

    This paper deals with predator-prey interactions with predator harvesting and prey refuge. The predator may be infective by a disease. Therefore the predator is divided into two subclasses, i.e. infective and susceptible predator. It is assumed that susceptible predator have higher predation rate than infective predator, and hence the growth rate of susceptible predator will be higher than infective predator. It is found that the model has five equilibrium points. Finally, numerical simulation are presented not only to illustrate equilibrium point but also to illustrate effect of predation rate.

  15. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  16. Collective Predation and Escape Strategies

    NASA Astrophysics Data System (ADS)

    Angelani, Luca

    2012-09-01

    The phenomenon of collective predation is analyzed by using a simple individual-based model reproducing spatial animal movements. Two groups of self-propelled organisms are simulated by using Vicseklike models including steric intragroup repulsion. Chase and escape are described by intergroups interactions, attraction (for predators) or repulsion (for preys) from nearest particles of the opposite group. The quantitative analysis of some relevant quantities (total catch time, lifetime distribution, predation rate) allows us to characterize many aspects of the predation phenomenon and gives insights into the study of efficient escape strategies. The reported findings could be of relevance for many basic and applied disciplines, from statistical physics, to ecology, and robotics.

  17. Dispersal of mimetic seeds of three species of Ormosia (Leguminosae)

    USGS Publications Warehouse

    Foster, M.S.; DeLay, L.S.

    1998-01-01

    Seeds with 'imitation arils' appear wholly or partially covered by pulp or aril but actually carry no fleshy material. The mimetic seed hypothesis to explain this phenomenon proposes a parasitic relationship in which birds are deceived into dispersing seeds that resemble bird-dispersed fruits, without receiving a nutrient reward. The hard-seed for grit hypothesis proposes a mutualistic relationship in which large, terrestrial birds swallow the exceptionally hard 'mimetic' seeds as grit for grinding the softer seeds on which they feed. They defecate, dispersing the seeds, and abrade the seed surface, enhancing germination. Any fruit mimicry is incidental. Fruiting trees of Ormosia spp. (Leguminosae: Papilionoideae) were observed to ascertain mechanisms of seed dispersal and the role of seemingly mimetic characteristics of the seeds in that dispersal. Seed predation and seed germination were also examined. Ormosia isthamensis and O. macrocalyx (but not O. bopiensis) deceived arboreally-foraging frugivorous birds into taking their mimetic seeds, although rates of seed dispersal were low. These results are consistent with the mimetic seed hypothesis. On the other hand, the rates of disappearance of seeds from the ground under the Ormosia trees, hardness of the seeds, and enhancement of germination with the abrasion of the seed coat are all consistent with the hard-seed for grit hypothesis.

  18. Do mammalian nest predators follow human scent trails in the shortgrass prairie?

    USGS Publications Warehouse

    Skagen, S.K.; Stanley, T.R.; Dillon, M.B.

    1999-01-01

    Nest predation, the major cause of nest failure in passerines, has exerted a strong influence on the evolution of life history traits of birds. Because human disturbance during nest monitoring may alter predation rates, we investigated whether human scent affected the survival of artificial ground nests in shortgrass prairie. Our experiment consisted of two treatments, one in which there was no attempt to mask human scent along travel routes between artificial nests, and one in which we masked human scent with cow manure, a scent familiar to mammalian predators in the study area. We found no evidence that human scent influenced predation rates, nor that mammalian predators followed human trails between nests. We conclude that scent trails made by investigators do not result in lower nesting success of passerines of the shortgrass prairie where vegetation trampling is minimal, mammalian predators predominate, and avian predators are rare.

  19. Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators.

    PubMed

    Wilson, Rory P; Griffiths, Iwan W; Mills, Michael G L; Carbone, Chris; Wilson, John W; Scantlebury, David M

    2015-01-01

    The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely. PMID:26252515

  20. Bat Predation by Spiders

    PubMed Central

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  1. Behavioral and physiological adjustments to new predators in an endemic island species, the Galápagos marine iguana.

    PubMed

    Berger, Silke; Wikelski, Martin; Romero, L Michael; Kalko, Elisabeth K V; Rödl, Thomas

    2007-12-01

    For the past 5 to 15 million years, marine iguanas (Amblyrhynchus cristatus), endemic to the Galápagos archipelago, experienced relaxed predation pressure and consequently show negligible anti-predator behavior. However, over the past few decades introduced feral cats and dogs started to prey on iguanas on some of the islands. We investigated experimentally whether behavioral and endocrine anti-predator responses changed in response to predator introduction. We hypothesized that flight initiation distances (FID) and corticosterone (CORT) concentrations should increase in affected populations to cope with the novel predators. Populations of marine iguanas reacted differentially to simulated predator approach depending on whether or not they were previously naturally exposed to introduced predators. FIDs were larger at sites with predation than at sites without predation. Furthermore, the occurrence of new predators was associated with increased stress-induced CORT levels in marine iguanas. In addition, age was a strong predictor of variation in FID and CORT levels. Juveniles, which are generally more threatened by predators compared to adults, showed larger FIDs and higher CORT baseline levels as well as higher stress-induced levels than adults. The results demonstrate that this naive island species shows behavioral and physiological plasticity associated with actual predation pressure, a trait that is presumably adaptive. However, the adjustments in FID are not sufficient to cope with the novel predators. We suggest that low behavioral plasticity in the face of introduced predators may drive many island species to extinction. PMID:17904141

  2. Investment in seed physical defence is associated with species' light requirement for regeneration and seed persistence: evidence from Macaranga species in Borneo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The life stage from seed dispersal to seedling emergence is often critical in determining the regeneration success of plants. During this period seeds must survive an array of seed predators and pathogens and germinate under conditions favorable for seedling establishment. To maximise recruitment s...

  3. Estimating cougar predation rates from GPS location clusters

    USGS Publications Warehouse

    Anderson, C.R., Jr.; Lindzey, F.G.

    2003-01-01

    sustain or be affected by cougar predation.

  4. Predator cannibalism can intensify negative impacts on heterospecific prey.

    PubMed

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  5. Intraguild predation in pioneer predator communities of alpine glacier forelands

    PubMed Central

    Raso, Lorna; Sint, Daniela; Mayer, Rebecca; Plangg, Simon; Recheis, Thomas; Brunner, Silvia; Kaufmann, Rüdiger; Traugott, Michael

    2014-01-01

    Pioneer communities establishing themselves in the barren terrain in front of glacier forelands consist principally of predator species such as carabid beetles and lycosid spiders. The fact that so many different predators can co-inhabit an area with no apparent primary production was initially explained by allochthonous material deposited in these forelands. However, whether these populations can be sustained on allochthonous material alone is questionable and recent studies point towards this assumption to be flawed. Intraguild predation (IGP) might play an important role in these pioneer predator assemblages, especially in the very early successional stages where other prey is scarce. Here, we investigated IGP between the main predator species and their consumption of Collembola, an important autochthonous alternative prey, within a glacier foreland in the Ötztal (Austrian Alps). Multiplex PCR and stable isotope analysis were used to characterize the trophic niches in an early and late pioneer stage over 2 years. Results showed that intraguild prey was consumed by all invertebrate predators, particularly the larger carabid species. Contrary to our initial hypothesis, the DNA detection frequency of IGP prey was not significantly higher in early than in late pioneer stage, which was corroborated by the stable isotope analysis. Collembola were the most frequently detected prey in all of the predators, and the overall prey DNA detection patterns were consistent between years. Our findings show that IGP appears as a constant in these pioneer predator communities and that it remains unaffected by successional changes. PMID:24383765

  6. Seed handling by primary frugivores differentially influence post-dispersal seed removal of Chinese yew by ground-dwelling animals.

    PubMed

    Pan, Yang; Bai, Bing; Xiong, Tianshi; Shi, Peijian; Lu, Changhu

    2016-05-01

    Seed handling by primary frugivores can influence secondary dispersal and/or predation of post-dispersal seeds by attracting different guilds of ground-dwelling animals. Many studies have focused on seeds embedded in feces of mammals or birds; however, less is known about how ground-dwelling animals treat seeds regurgitated by birds (without pulp and not embedded in feces). To compare the effect of differential seed handling by primary dispersers on secondary seed removal of Chinese yew (Taxus chinensis var. mairei), we conducted a series of exclosure experiments to determine the relative impact of animals on the removal of defecated seeds (handled by masked palm civet), regurgitated seeds (handled by birds) and intact fruits. All types of yew seeds were consistently removed at a higher rate by rodents than by ants. Regurgitated seeds had the highest removal percentage and were only removed by rodents. These seeds were probably eaten in situ without being secondarily dispersed. Defecated seeds were removed by both rodents and ants; only ants might act as secondary dispersers of defecated seeds, whereas rodents ate most of them. We inferred that seeds regurgitated by birds were subjected to the highest rates of predation, whereas those dispersed in the feces of masked palm civets probably had a higher likelihood of secondary dispersal. Seeds from feces attracted ants, which were likely to transport seeds and potentially provided a means by which the seeds could escape predation by rodents. Our study highlighted that primary dispersal by birds might not always facilitate secondary dispersal and establishment of plant populations. PMID:26846724

  7. Tests of landscape influence: Nest predation and brood parasitism in fragmented ecosystems

    USGS Publications Warehouse

    Tewksbury, J.J.; Garner, L.; Garner, S.; Lloyd, J.D.; Saab, V.; Martin, T.E.

    2006-01-01

    The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in >2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an

  8. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  9. Quantitative Analysis of Lysobacter Predation

    PubMed Central

    Seccareccia, Ivana; Kost, Christian

    2015-01-01

    Bacteria of the genus Lysobacter are considered to be facultative predators that use a feeding strategy similar to that of myxobacteria. Experimental data supporting this assumption, however, are scarce. Therefore, the predatory activities of three Lysobacter species were tested in the prey spot plate assay and in the lawn predation assay, which are commonly used to analyze myxobacterial predation. Surprisingly, only one of the tested Lysobacter species showed predatory behavior in the two assays. This result suggested that not all Lysobacter strains are predatory or, alternatively, that the assays were not appropriate for determining the predatory potential of this bacterial group. To differentiate between the two scenarios, predation was tested in a CFU-based bioassay. For this purpose, defined numbers of Lysobacter cells were mixed together with potential prey bacteria featuring phenotypic markers, such as distinctive pigmentation or antibiotic resistance. After 24 h, cocultivated cells were streaked out on agar plates and sizes of bacterial populations were individually determined by counting the respective colonies. Using the CFU-based predation assay, we observed that Lysobacter spp. strongly antagonized other bacteria under nutrient-deficient conditions. Simultaneously, the Lysobacter population was increasing, which together with the killing of the cocultured bacteria indicated predation. Variation of the predator/prey ratio revealed that all three Lysobacter species tested needed to outnumber their prey for efficient predation, suggesting that they exclusively practiced group predation. In summary, the CFU-based predation assay not only enabled the quantification of prey killing and consumption by Lysobacter spp. but also provided insights into their mode of predation. PMID:26231654

  10. A Nonhost Peptidase Inhibitor of ~14 kDa from Butea monosperma (Lam.) Taub. Seeds Affects Negatively the Growth and Developmental Physiology of Helicoverpa armigera

    PubMed Central

    Pandey, Prabhash K.; Singh, Dushyant; Singh, Sangram; Khan, M. Y.; Jamal, Farrukh

    2014-01-01

    Helicoverpa armigera is one of the major devastating pests of crop plants. In this context a serine peptidase inhibitor purified from the seeds of Butea monosperma was evaluated for its effect on developmental physiology of H. armigera larvae. B. monosperma peptidase inhibitor on 12% denaturing polyacrylamide gel electrophoresis exhibited a single protein band of ~14 kDa with or without reduction. In vitro studies towards total gut proteolytic enzymes of H. armigera and bovine trypsin indicated measurable inhibitory activity. B. monosperma peptidase inhibitor dose for 50% mortality and weight reduction by 50% were 0.5% w/w and 0.10% w/w, respectively. The IC50 of B. monosperma peptidase inhibitor against total H. armigera gut proteinases activity was 2.0 µg/mL. The larval feeding assays suggested B. monosperma peptidase inhibitor to be toxic as reflected by its retarded growth and development, consequently affecting fertility and fecundity of pest and prolonging the larval-pupal duration of the insect life cycle of H. armigera. Supplementing B. monosperma peptidase inhibitor in artificial diet at 0.1% w/w, both the efficiencies of conversion of ingested as well as digested food were downregulated, whereas approximate digestibility and metabolic cost were enhanced. The efficacy of Butea monosperma peptidase inhibitor against progressive growth and development of H. armigera suggest its usefulness in insect pest management of food crops. PMID:24860667

  11. Seed transmission rates of Bean pod mottle virus and Soybean mosaic virus in soybean may be affected by mixed infection or expression of the Kunitz trypsin inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To facilitate their spread, plant viruses have developed several methods for dispersal including insect and seed transmission. While insect transmission requires virus stability against insect digestion, seed-transmitted viruses have to overcome barriers to entry into embryos. Bean pod mottle virus ...

  12. Malaria and risk of predation: a comparative study of birds.

    PubMed

    Møller, Anders Pape; Nielsen, Jan Tøttrup

    2007-04-01

    Predators have been hypothesized to prey on individuals in a poor state of health, although this hypothesis has only rarely been examined. We used extensive data on prey abundance and availability from two long-term studies of the European Sparrowhawk (Accipiter nisus) and the Eurasian Goshawk (Accipiter gentilis) to quantify the relationship between predation risk of different prey species and infection with malaria and other protozoan blood parasites. Using a total of 31 745 prey individuals of 65 species of birds from 1709 nests during 1977-1997 for the Sparrowhawk and a total of 21 818 prey individuals of 76 species of birds from 1480 nests for the Goshawk during 1977-2004, we show that prey species with a high prevalence of blood parasites had higher risks of predation than species with a low prevalence. That was also the case when a number of confounding variables of prey species, such as body mass, breeding sociality, sexual dichromatism, and similarity among species in risk of predation due to common descent, were controlled in comparative analyses of standardized linear contrasts. Prevalence of the genera Haemoproteus, Leucocytozoon, Plasmodium, and Trypanosoma were correlated with each other, and we partitioned out the independent effects of different protozoan genera on predation risk in comparative analyses. Prevalence of Haemoproteus, Leucocytozoon, and Plasmodium accounted for interspecific variation in predation risk for the two raptors. These findings suggest that predation is an important factor affecting parasite-host dynamics because predators tend to prey on hosts that are more likely to be infected, thereby reducing the transmission success of parasites. Furthermore, this study demonstrates that protozoan infections are a common cause of death for hosts mediated by increased risk of predation. PMID:17536704

  13. Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    PubMed Central

    Honma, Atsushi; Takakura, Koh-ichi; Nishida, Takayoshi

    2008-01-01

    Background Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator–prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). Methodology/Principal Findings We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a “Pavlovian” predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. Conclusions/Significance Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of

  14. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    USGS Publications Warehouse

    Peterson, B.L.; Kus, B.E.; Deutschman, D.H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  15. Predation risk increases immune response in a larval dragonfly (Leucorrhinia intacta).

    PubMed

    Duong, Tammy M; McCauley, Shannon J

    2016-06-01

    Predators often negatively affect prey performance through indirect, non-consumptive effects. We investigated the potential relationship between predator-induced stress and prey immune response. To test this, we administered a synthetic immune challenge into dragonfly larvae (Leucorrhinia intacta) and assessed a key immune response (level of encapsulation) in the presence and absence of a caged predator (Anax junius) at two temperatures (22 degrees C and 26 degrees C). We hypothesized that immune response would be lowered when predators were present due to lowered allocation of resources to immune function and leading to reduced encapsulation of the synthetic immune challenge. Contrary to our expectations, larvae exposed to caged predators had encapsulated monofilaments significantly more than larvae not exposed to caged predators. Levels of encapsulation did not differ across temperatures, nor interact with predator exposure. Our results suggest that the previously observed increase in mortality of L. intacta exposed to caged predators is not driven by immune suppression. In situations of increased predation risk, the exposure to predator cues may induce higher levels of melanin production, which could lead to physiological damage and high energetic costs. However, the costs and risks of increased allocations to immune responses and interactions with predation stress remain unknown. PMID:27459789

  16. Turbidity interferes with foraging success of visual but not chemosensory predators.

    PubMed

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444

  17. Predation risk drives social complexity in cooperative breeders.

    PubMed

    Groenewoud, Frank; Frommen, Joachim Gerhard; Josi, Dario; Tanaka, Hirokazu; Jungwirth, Arne; Taborsky, Michael

    2016-04-12

    Predation risk is a major ecological factor selecting for group living. It is largely ignored, however, as an evolutionary driver of social complexity and cooperative breeding, which is attributed mainly to a combination of habitat saturation and enhanced relatedness levels. Social cichlids neither suffer from habitat saturation, nor are their groups composed primarily of relatives. This demands alternative ecological explanations for the evolution of advanced social organization. To address this question, we compared the ecology of eight populations of Neolamprologus pulcher, a cichlid fish arguably representing the pinnacle of social evolution in poikilothermic vertebrates. Results show that variation in social organization and behavior of these fish is primarily explained by predation risk and related ecological factors. Remarkably, ecology affects group structure more strongly than group size, with predation inversely affecting small and large group members. High predation and shelter limitation leads to groups containing few small but many large members, which is an effect enhanced at low population densities. Apparently, enhanced safety from predators by cooperative defense and shelter construction are the primary benefits of sociality. This finding suggests that predation risk can be fundamental for the transition toward complex social organization, which is generally undervalued. PMID:27035973

  18. Human shields mediate sexual conflict in a top predator.

    PubMed

    Steyaert, S M J G; Leclerc, M; Pelletier, F; Kindberg, J; Brunberg, S; Swenson, J E; Zedrosser, A

    2016-06-29

    Selecting the right habitat in a risky landscape is crucial for an individual's survival and reproduction. In predator-prey systems, prey often can anticipate the habitat use of their main predator and may use protective associates (i.e. typically an apex predator) as shields against predation. Although never tested, such mechanisms should also evolve in systems in which sexual conflict affects offspring survival. Here, we assessed the relationship between offspring survival and habitat selection, as well as the use of protective associates, in a system in which sexually selected infanticide (SSI), rather than interspecific predation, affects offspring survival. We used the Scandinavian brown bear (Ursus arctos) population with SSI in a human-dominated landscape as our model system. Bears, especially adult males, generally avoid humans in our study system. We used resource selection functions to contrast habitat selection of GPS-collared mothers that were successful (i.e. surviving litters, n = 19) and unsuccessful (i.e. complete litter loss, n = 11) in keeping their young during the mating season (2005-2012). Habitat selection was indeed a predictor of litter survival. Successful mothers were more likely to use humans as protective associates, whereas unsuccessful mothers avoided humans. Our results suggest that principles of predator-prey and fear ecology theory (e.g. non-consumptive and cascading effects) can also be applied to the context of sexual conflict. PMID:27335423

  19. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  20. The seed's protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors.

    PubMed

    Ayerza, Ricardo

    2009-01-01

    As a botanical source, variability in chia seed composition could be expected between growing locations, and between years within a location, due to genotype and environment effects as well genetic x environment's interactions. The objective of the present study was to determine the location effect on the growing cycle length, and seed's protein content, lipid content, and fatty acid profiles, of a single chia genotype. Seeds of chia genotype Tzotzol grown on eight sites in five different ecosystems were tested. One site was in Argentina, in the Semi-Arid Chaco ecosystem (T(5)); one was in Bolivia, in the Sub-Humid Chaco ecosystem (T(4)); and six in Ecuador, one in the Coastal Desert (T(3)), two on the Tropical Rain Forest (T(2)), and three in the Inter-Andean Dry Valley ecosystem (T(1)). Seeds from plants grown in T(4) and in T(3) contained significantly (P <0.05) more protein percentage than did seeds from the other three ecosystems. No significant (P <0.05) differences in protein content were found between T(3) and T(4), and between T(1), T(2), and T(5). Seeds from T(1) and T(5) ecosystems, with 33.5 and 32.2%, respectively, were the numerically highest oil content producers, but their results were only significantly (P <0.05) higher when compared with the T(2) seeds. Significant (P <0.05) differences in palmitic, stearic, oleic, linoleic and alpha-linolenic fatty acids between oils from seeds grown in different ecosystems were detected, however. Oil of seeds grown in the T(3) ecosystem had the palmitic, stearic and oleic fatty acids' highest contents. Palmitic and oleic fatty acid levels were significantly (P <0.05) higher when were compared to that of seeds grown in the T(1) ecosystem, and stearic when was compared to that of seeds grown in the T(5) ecosystem; omega-6 linoleic fatty acid content was significantly (P <0.05) lower in oils of seeds produced in T(1), and T(2) than in those produced in T(3), T(4), and T(5) ecosystems; omega-3 alpha-linolenic fatty

  1. Frugivory and seed dispersal by tapirs: an insight on their ecological role.

    PubMed

    O'Farrill, Georgina; Galetti, Mauro; Campos-Arceiz, Ahimsa

    2013-03-01

    Tapirs are one of the last extant megafauna species that survived the Pleistocene extinctions. Given their size and digestive system characteristics, tapirs might be the last potential seed disperser of plant species that were previously dispersed by other large mammal species that are now extinct. We compiled evidence from 39 published scientific studies showing that tapirs have a key role as seed dispersers and seed predators. Tapirs play an important role either through seed predation or by facilitating the recruitment of seeds over long distances, therefore influencing the diversity of plant species in the ecosystem. Neotropical tapirs might have a unique role as long-distance seed dispersers of large seeds (<20 mm) because they are capable of depositing viable large seeds in favorable places for germination that even large-bodied primates cannot disperse. Given the high diversity of seed species found in tapir diet, more information is needed on the identification of seed traits that allow the survival of seeds in the tapir's gut. Moreover, further studies are necessary on the role of tapirs as seed dispersers and predators; in particular considering spatial patterns of dispersed seeds, seed viability, effect of dung, and seed density in tapir latrines, and the effect of deposition sites on germination and seedling survival. Because all tapir species are highly threatened, it is paramount to identify gaps in our knowledge on the ecological role of tapirs and, in particular, on critical and endangered plant-tapir interactions to avoid possible trophic cascading effects on ecosystem function. PMID:23586556

  2. Stability of an intraguild predation system with mutual predation

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.

    2016-04-01

    We examine intraguild predation (IGP), in which species both compete for resources or space and prey on each other. The IGP system is modeled here by a lattice gas model of the mean-field theory. First, we consider the IGP system of one species in which individuals of the same species cannibalize each other. The dynamical behavior of the model demonstrates a mechanism by which the intraspecific predation promotes persistence of the species. Then we consider the IGP system of two species with mutual predation. Global dynamics of the model exhibit basic properties of IGP: (i) When both species' efficiencies in converting the consumptions into fitness are large, the outcome of their interaction is mutualistic in form and the IGP promotes persistence of both species. (ii) When one species' efficiency is large but the other's is small, the interaction outcomes become parasitic in nature, in which an obligate species can survive through the mutual predation with a facultative one. (iii) When both species' efficiencies are small, the interaction outcomes are competitive in nature and the IGP leads to extinction of one of the species. A novel result of this work is that varying one parameter or population density of the species can lead to transition of interaction outcomes between mutualism, parasitism and competition. On the other hand, dynamics of the models demonstrate that over-predation or under-predation will result in extinction of one/both species, while intermediate predation is favorable under certain parameter ranges.

  3. A guide to forest seed handling

    SciTech Connect

    Willan, R.L.

    1986-01-01

    This guide to forest seed handling focuses on seed quality, i.e., the physiological viability and vigor of the seeds. Seed and fruit development, germination, and dormancy and the fundamentals of planning seed collections are covered. The guide includes discussions on seed collection of fallen fruits or seeds from the forest floor from the crowns of felled trees, and from standing trees with access from the ground and with other means of access. Also considered are precautions to be followed during fruit and seed handling between collection and processing. The different stages in seed processing are detailed, including extraction, depulping, drying, tumbling and threshing, dewinging, cleaning, grading, and mixing. Factors affecting seed longevity in storage and the choice of storage methods are reviewed. Different forms of seed pretreatment and seed testing methods are described.

  4. Materials used for Seed Storage Containers: Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient seed storage is a shared concern among the growing number of seed banks established for crop improvement or ex situ conservation. Container properties greatly affect seed interactions with the environment and the overall cost and success of seed banking operations. Several material proper...

  5. Landscape-moderated bird nest predation in hedges and forest edges

    NASA Astrophysics Data System (ADS)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  6. Interactions between Multiple Recruitment Drivers: Post-Settlement Predation Mortality and Flow-Mediated Recruitment

    PubMed Central

    Knights, Antony M.; Firth, Louise B.; Walters, Keith

    2012-01-01

    Background Dispersal is a primary driver in shaping the future distribution of species in both terrestrial and marine systems. Physical transport by advection can regulate the distance travelled and rate of propagule supply to a habitat but post-settlement processes such as predation can decouple supply from recruitment. The effect of flow-mediated recruitment and predation on the recruitment success of an intertidal species, the eastern oyster Crassostrea virginica was evaluated in two-replicated field experiments. Two key crab species were manipulated to test predator identity effects on oyster mortality. Findings Recruitment was ∼58% higher in high flow compared to low flow, but predation masked those differences. Predation mortality was primarily attributed to the blue crab Callinectes sapidus, whilst the mud crab Panopeus herbstii had no effect on recruit mortality. Recruit mortality from predation was high when recruit densities were high, but when recruit density was low, predation effects were not seen. Under high recruitment (supply), predation determined maximum population size and in low flow environments, recruitment success is likely determined by a combination of recruitment and resource limitation but not predation. Conclusions Four processes are demonstrated: (1) Increases in flow rate positively affect recruitment success; (2) In high flow (recruitment) environments, resource availability is less important than predation; (3) predation is an important source of recruit mortality, but is dependent upon recruit density; and (4) recruitment and/or resource limitation is likely a major driver of population structure and functioning, modifying the interaction between predators and prey. Simultaneous testing of flow-mediated recruitment and predation was required to differentiate between the role of each process in determining population size. Our results reinforce the importance of propagule pressure, predation and post-settlement mortality as

  7. Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole

    USGS Publications Warehouse

    McIntyre, P.B.; Baldwin, S.; Flecker, A.S.

    2004-01-01

    Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wildcaught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation. ?? Springer-Verlag 2004.

  8. Predator-induced changes of female mating preferences: innate and experiential effects

    PubMed Central

    2011-01-01

    Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana). Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared) females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus). In contrast, predator experienced (wild-caught) females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a) predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection), and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b) Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c) Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators. PMID:21726456

  9. Habitat complexity does not promote coexistence in a size-structured intraguild predation system.

    PubMed

    Reichstein, Birte; Schröder, Arne; Persson, Lennart; De Roos, André M

    2013-01-01

    Size-dependent interactions and habitat complexity have been identified as important factors affecting the persistence of intraguild predation (IGP) systems. Habitat complexity has been suggested to promote intraguild (IG) prey and intraguild predator coexistence through weakening trophic interactions particularly the predation link. Here, we experimentally investigate the effects of habitat complexity on coexistence and invasion success of differently sized IG-predators in a size-structured IGP system consisting of the IG-predator Poecilia reticulata and a resident Heterandria formosa IG-prey population. The experiments included medium-long and long-term invasion experiments, predator-prey experiments and competition experiments to elucidate the mechanisms underlying the effect of prey refuges. Habitat complexity did not promote the coexistence of IG-predator and IG-prey, although the predation link was substantially weakened. However, the presence of habitat structure affected the invasion success of large IG-predators negatively and the invasion success of small IG-predators positively. The effect of refuges on size-dependent invasion success could be related to a major decrease in the IG-predator's capture rate and a shift in the size distribution of IG-predator juveniles. In summary, habitat complexity had two main effects: (i) the predation link was diminished, resulting in a more competition driven system and (ii) the overall competitive abilities of the two species were equalized, but coexistence was not promoted. Our results suggest that in a size-structured IGP system, individual level mechanisms may gain in importance over species level mechanisms in the presence of habitat complexity. PMID:23004014

  10. The role of phytophagy by predators in shaping plant interactions with their pests

    PubMed Central

    Pappas, Maria L.; Steppuhn, Anke; Broufas, George D.

    2016-01-01

    ABSTRACT Zoophytophagy is common among predacious arthropods, but research on their role in plant-herbivore interactions is generally focused on predation effects whereas their phytophagy is largely neglected. Our recent study revealed the ability of zoophytophagous predators to induce defense related traits and to affect herbivore performance apart from predation through the plant. Additionally, we show here that predator-exposed plants suffer less damage compared to unexposed plants. Thus, zoophytophagous organisms likely shape community structure by both their predation on herbivores and their phytophagy. Here, we consider zoophytophagous predators as plant vaccination factors and outline how their dual role in affecting herbivores may impact their use in biological pest control. Because plant responses to phytophagy and phytopathogens are known to interact, zoophytophagous predators may also affect plant-pathogen interactions. When we consider these indirect interactions with different plant pest organisms, we will likely better understand the ecology of the complex relationships among plants, herbivores and predators. Moreover, a comprehensive knowledge on the effects of the phytophagy of predators in these ecological interactions will potentially allow us to enhance sustainability in pest control. PMID:27195065

  11. The role of phytophagy by predators in shaping plant interactions with their pests.

    PubMed

    Pappas, Maria L; Steppuhn, Anke; Broufas, George D

    2016-01-01

    Zoophytophagy is common among predacious arthropods, but research on their role in plant-herbivore interactions is generally focused on predation effects whereas their phytophagy is largely neglected. Our recent study revealed the ability of zoophytophagous predators to induce defense related traits and to affect herbivore performance apart from predation through the plant. Additionally, we show here that predator-exposed plants suffer less damage compared to unexposed plants. Thus, zoophytophagous organisms likely shape community structure by both their predation on herbivores and their phytophagy. Here, we consider zoophytophagous predators as plant vaccination factors and outline how their dual role in affecting herbivores may impact their use in biological pest control. Because plant responses to phytophagy and phytopathogens are known to interact, zoophytophagous predators may also affect plant-pathogen interactions. When we consider these indirect interactions with different plant pest organisms, we will likely better understand the ecology of the complex relationships among plants, herbivores and predators. Moreover, a comprehensive knowledge on the effects of the phytophagy of predators in these ecological interactions will potentially allow us to enhance sustainability in pest control. PMID:27195065

  12. Inactivation of the Phloem-Specific Dof Zinc Finger Gene DAG1 Affects Response to Light and Integrity of the Testa of Arabidopsis Seeds1

    PubMed Central

    Papi, Maura; Sabatini, Sabrina; Altamura, Maria Maddalena; Hennig, Lars; Schäfer, Eberhard; Costantino, Paolo; Vittorioso, Paola

    2002-01-01

    We show here that seeds from the knockout mutant of the Arabidopsis DAG1 gene encoding a Dof zinc finger transcription factor have an altered response to red and far-red light. Mutant dag1 seeds are induced to germinate by much lower red light fluence rates, and germination reaches more quickly a point where it is independent of phytochrome signaling. Moreover, although microscopic analysis reveals no obvious structural alterations in the seed coat (testa) of dag1 seeds, staining assays with different dyes point to an abnormal fragility of the testa. By extensive in situ mRNA hybridization analysis we show here that the gene, which is not expressed in the embryo, is specifically expressed in the phloem of all organs of the mother plant. PMID:11842145

  13. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  14. A Naturally Occurring Mutation in an Arabidopsis Accession Affects a β-d-Galactosidase That Increases the Hydrophilic Potential of Rhamnogalacturonan I in Seed Mucilage[W

    PubMed Central

    Macquet, Audrey; Ralet, Marie-Christine; Loudet, Olivier; Kronenberger, Jocelyne; Mouille, Gregory; Marion-Poll, Annie; North, Helen M.

    2007-01-01

    The Arabidopsis thaliana accession Shahdara was identified as a rare naturally occurring mutant that does not liberate seed mucilage on imbibition. The defective locus was found to be allelic to the mum2-1 and mum2-2 mutants. Map-based cloning showed that MUCILAGE-MODIFIED2 (MUM2) encodes the putative β-d-galactosidase BGAL6. Activity assays demonstrated that one of four major β-d-galactosidase activities present in developing siliques is absent in mum2 mutants. No difference was observed in seed coat epidermal cell structure between wild-type and mutant seed; however, weakening of the outer tangential cell wall by chemical treatment resulted in the release of mucilage from mum2 seed coat epidermal cells, and the mum2 mucilage only increased slightly in volume, relative to the wild type. Consistent with the absence of β-d-galactosidase activity in the mutant, the inner layer of mucilage contained more Gal. The allocation of polysaccharides between the inner and outer mucilage layers was also modified in mum2. Mass spectrometry showed that rhamnogalacturonan I in mutant mucilage had more branching between rhamnose and hexose residues relative to the wild type. We conclude that the MUM2/BGAL6 β-d-galactosidase is required for maturation of rhamnogalacturonan I in seed mucilage by the removal of galactose/galactan branches, resulting in increased swelling and extrusion of the mucilage on seed hydration. PMID:18165330

  15. Turbidity interferes with foraging success of visual but not chemosensory predators

    PubMed Central

    Smee, Delbert L.

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444

  16. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians

    PubMed Central

    Sloggett, John J.

    2012-01-01

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups. PMID:26466621

  17. An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey

    PubMed Central

    Orrock, John L.; Fletcher, Robert J.

    2014-01-01

    Anti-predator behaviour affects prey population dynamics, mediates cascading effects in food webs and influences the likelihood of rapid extinctions. Predator manipulations in natural settings provide a rare opportunity to understand how prey anti-predator behaviour is affected by large-scale changes in predators. Here, we couple a long-term, island-wide manipulation of an important rodent predator, the island fox (Urocyon littoralis), with nearly 6 years of measurements on foraging by deer mice (Peromyscus maniculatus) to provide unequivocal evidence that prey closely match their foraging behaviour to the number of fox predators present on the island. Peromyscus maniculatus foraging among exposed and sheltered microhabitats (a measure of aversion to predation risk) closely tracked fox density, but the nature of this effect depended upon nightly environmental conditions known to affect rodent susceptibility to predators. These effects could not be explained by changes in density of deer mice over time. Our work reveals that prey in natural settings are cognizant of the dynamic nature of their predators over timescales that span many years, and that predator removals spanning many generations of prey do not result in a loss of anti-predator behaviour. PMID:24759863

  18. Post-dispersal seed fates of four prairie species.

    PubMed

    Clark, Deborah L; Wilson, Mark V

    2003-05-01

    After dispersal, seeds can germinate and establish as seedlings, persist as seeds, or die. Knowledge of these three seed fates is crucial for understanding the abundance and distribution of plant populations and ultimately, community composition and diversity. Few studies, however, have simultaneously measured these fates, while also examining the factors causing mortality. The goal of this research was to simultaneously quantify the three seed fates and factors causing death (predation and fungal disease) for four species found in prairies in western Oregon, USA. The most common seed fate for the four study species was death (44-80%). Fungal disease, which has seldom been quantified in natural ecosystems, generally caused less than 10% mortality for each of the four species. Vertebrate predation substantially reduced seed numbers only for Bromus carinatus (21%). Of the unmeasured mortality factors, indirect evidence showed invertebrate predation was a cause of death for seeds of only one species, Prunella vulgaris. In addition, competitive pressures caused seedling death for only the two grass species, Bromus carinatus and Cynosurus echinatus. Survival as established seedlings was generally much more common than survival as persistent seed, with the exception of Daucus carota, in which 14% of the sown seeds persisted the first year. PMID:21659169

  19. Landscape features influence postrelease predation on endangered black-footed ferrets

    USGS Publications Warehouse

    Poessel, S.A.; Breck, S.W.; Biggins, D.E.; Livieri, T.M.; Crooks, K.R.; Angeloni, L.

    2011-01-01

    Predation can be a critical factor influencing recovery of endangered species. In most recovery efforts lethal and nonlethal influences of predators are not sufficiently understood to allow prediction of predation risk, despite its importance. We investigated whether landscape features could be used to model predation risk from coyotes (Canis latrans) and great horned owls (Bubo virginianus) on the endangered black-footed ferret (Mustela nigripes). We used location data of reintroduced ferrets from 3 sites in South Dakota to determine whether exposure to landscape features typically associated with predators affected survival of ferrets, and whether ferrets considered predation risk when choosing habitat near perches potentially used by owls or near linear features predicted to be used by coyotes. Exposure to areas near likely owl perches reduced ferret survival, but landscape features potentially associated with coyote movements had no appreciable effect on survival. Ferrets were located within 90 m of perches more than expected in 2 study sites that also had higher ferret mortality due to owl predation. Densities of potential coyote travel routes near ferret locations were no different than expected in all 3 sites. Repatriated ferrets might have selected resources based on factors other than predator avoidance. Considering an easily quantified landscape feature (i.e., owl perches) can enhance success of reintroduction efforts for ferrets. Nonetheless, development of predictive models of predation risk and management strategies to mitigate that risk is not necessarily straightforward for more generalist predators such as coyotes. ?? 2011 American Society of Mammalogists.

  20. Deciphering Scavenging Propensity Among Arthropod Predators.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...

  1. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    USGS Publications Warehouse

    Du, X.; Guo, Q.; Gao, X.; Ma, K.

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.

  2. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. PMID:26812088

  3. Chemotactic predator-prey dynamics.

    PubMed

    Sengupta, Ankush; Kruppa, Tobias; Löwen, Hartmut

    2011-03-01

    A discrete chemotactic predator-prey model is proposed in which the prey secrets a diffusing chemical which is sensed by the predator and vice versa. Two dynamical states corresponding to catching and escaping are identified and it is shown that steady hunting is unstable. For the escape process, the predator-prey distance is diffusive for short times but exhibits a transient subdiffusive behavior which scales as a power law t¹/³ with time t and ultimately crosses over to diffusion again. This allows us to classify the motility and dynamics of various predatory microbes and phagocytes. In particular, there is a distinct region in the parameter space where they prove to be infallible predators. PMID:21517532

  4. A mathematical model of the effect of a predator on species diversity

    NASA Technical Reports Server (NTRS)

    Weston, C. R.; Yang, J. N.

    1970-01-01

    Mathematical model determines reaction between new predator and microbe competitor when the competitor is the predator's sole nutrient resource. The model utilizes differential equations to describe the interactions with the specific growth rates, and analyzes these growth rates as they are affected by population density and nutrient concentration.

  5. Bacterial Alkaloids Prevent Amoebal Predation.

    PubMed

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  6. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  7. Reefscapes of fear: predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour.

    PubMed

    Catano, Laura B; Rojas, Maria C; Malossi, Ryan J; Peters, Joseph R; Heithaus, Michael R; Fourqurean, James W; Burkepile, Deron E

    2016-01-01

    Predators can exert strong direct and indirect effects on ecological communities by intimidating their prey. The nature of predation risk effects is often context dependent, but in some ecosystems these contingencies are often overlooked. Risk effects are often not uniform across landscapes or among species. Indeed, they can vary widely across gradients of habitat complexity and with different prey escape tactics. These context dependencies may be especially important for ecosystems such as coral reefs that vary widely in habitat complexity and have species-rich predator and prey communities. With field experiments using predator decoys of the black grouper (Mycteroperca bonaci), we investigated how reef complexity interacts with predation risk to affect the foraging behaviour and herbivory rates of large herbivorous fishes (e.g. parrotfishes and surgeonfishes) across four coral reefs in the Florida Keys (USA). In both high and low complexity areas of the reef, we measured how herbivory changed with increasing distance from the predator decoy to examine how herbivorous fishes reconcile the conflicting demands of avoiding predation vs. foraging within a reefscape context. We show that with increasing risk, herbivorous fishes consumed dramatically less food (ca. 90%) but fed at a faster rate when they did feed (ca. 26%). Furthermore, we show that fishes foraging closest to the predator decoy were 40% smaller than those that foraged at further distances. Thus, smaller individuals showed muted response to predation risk compared to their larger counterparts, potentially due to their decreased risk to predation or lower reproductive value (i.e. the asset protection principle). Habitat heterogeneity mediated risk effects differently for different species of herbivores, with predation risk more strongly suppressing herbivore feeding in more complex areas and for individuals at higher risk of predation. Predators appear to create a reefscape of fear that changes the size

  8. Seed proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cel...

  9. Plant Resources as a Factor Altering Emergent Multi-Predator Effects

    PubMed Central

    Maselou, Dionyssia A.; Perdikis, Dionyssios Ch.; Fantinou, Argyro A.

    2015-01-01

    Multiple predator effects (MPEs) can modify the strength of pest regulation, causing positive or negative deviations from those that are predicted from independent effects of isolated predators. Despite increasing evidence that omnivory can shape predator-prey interactions, few studies have examined the impact of alternative plant food on interactions between multiple predators. In the present study, we examined the effects and interactions of two omnivorous mirids, Μacrolophus pygmaeus and Nesidiocoris tenuis, on different densities of their aphid prey, Myzus persicae. Prey were offered to the to single or pairs of mirid predator individuals, either conspecific or heterospecific on a leaf, while simultaneously adding or excluding a flower as an alternative food resource. Data were compared with calculated expected values using the multiplicative risk model and the substitutive model. We showed that predation of aphids was reduced in the presence of the alternative flower resource in treatments with single M. pygmaeus individuals, but not with single N. tenuis individuals. When the predators had access only to prey, the effects of multiple predation, either conspecific or heterospecific, were additive. The addition of an alternative plant resource differently affected MPEs depending on the nature of predator pairings. Predation risk was increased in conspecific M. pygmaeus treatments at intermediate prey densities, whereas it was reduced in conspecific N. tenuis treatments at high prey densities. Observations of foraging behaviour concerning the location of conspecific pairings revealed that M. pygmaeus individuals showed a clear tendency to reside mainly in the flower, whereas N. tenuis individuals were found to reside at different posts in the dish. We suggest that the competition between omnivorous predators may be mediated through the diversity of their plant feeding preferences, which directly affects the strength of MPEs. Consequently, the preferences of the

  10. Cascading effects of belowground predators on plant communities are density-dependent.

    PubMed

    Thakur, Madhav Prakash; Herrmann, Martina; Steinauer, Katja; Rennoch, Saskia; Cesarz, Simone; Eisenhauer, Nico

    2015-10-01

    Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density-mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density-dependent population change in predators, that is, an increase in low-density treatments, but a decrease in high-density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in

  11. Body size matters for aposematic prey during predator aversion learning.

    PubMed

    Smith, Karen E; Halpin, Christina G; Rowe, Candy

    2014-11-01

    Aposematic prey advertise their toxicity to predators using conspicuous warning signals, which predators learn to use to reduce their intake of toxic prey. Like other types of prey, aposematic prey often differ in body size, both within and between species. Increasing body size can increase signal size, which make larger aposematic prey more detectable but also gives them a more effective and salient deterrent. However, increasing body size also increases the nutritional value of prey, and larger aposematic prey may make a more profitable meal to predators that are trading off the costs of eating toxins with the benefits of ingesting nutrients. We tested if body size, independent of signal size, affected predation of toxic prey as predators learn to reduce their attacks on them. European starlings (Sturnus vulgaris) learned to discriminate between defended (quinine-injected) and undefended (water-injected) mealworm prey (Tenebrio molitor) using visual signals. During this process, we found that birds attacked and ate more defended prey the larger they were. Body size does affect the probability that toxic prey are attacked and eaten, which has implications for the evolutionary dynamics of aposematism and mimicry (where species share the same warning pattern). PMID:25256160

  12. Increased predation of nutrient-enriched aposematic prey.

    PubMed

    Halpin, Christina G; Skelhorn, John; Rowe, Candy

    2014-04-22

    Avian predators readily learn to associate the warning coloration of aposematic prey with the toxic effects of ingesting them, but they do not necessarily exclude aposematic prey from their diets. By eating aposematic prey 'educated' predators are thought to be trading-off the benefits of gaining nutrients with the costs of eating toxins. However, while we know that the toxin content of aposematic prey affects the foraging decisions made by avian predators, the extent to which the nutritional content of toxic prey affects predators' decisions to eat them remains to be tested. Here, we show that European starlings (Sturnus vulgaris) increase their intake of a toxic prey type when the nutritional content is artificially increased, and decrease their intake when nutritional enrichment is ceased. This clearly demonstrates that birds can detect the nutritional content of toxic prey by post-ingestive feedback, and use this information in their foraging decisions, raising new perspectives on the evolution of prey defences. Nutritional differences between individuals could result in equally toxic prey being unequally predated, and might explain why some species undergo ontogenetic shifts in defence strategies. Furthermore, the nutritional value of prey will likely have a significant impact on the evolutionary dynamics of mimicry systems. PMID:24598424

  13. Increased predation of nutrient-enriched aposematic prey

    PubMed Central

    Halpin, Christina G.; Skelhorn, John; Rowe, Candy

    2014-01-01

    Avian predators readily learn to associate the warning coloration of aposematic prey with the toxic effects of ingesting them, but they do not necessarily exclude aposematic prey from their diets. By eating aposematic prey ‘educated’ predators are thought to be trading-off the benefits of gaining nutrients with the costs of eating toxins. However, while we know that the toxin content of aposematic prey affects the foraging decisions made by avian predators, the extent to which the nutritional content of toxic prey affects predators' decisions to eat them remains to be tested. Here, we show that European starlings (Sturnus vulgaris) increase their intake of a toxic prey type when the nutritional content is artificially increased, and decrease their intake when nutritional enrichment is ceased. This clearly demonstrates that birds can detect the nutritional content of toxic prey by post-ingestive feedback, and use this information in their foraging decisions, raising new perspectives on the evolution of prey defences. Nutritional differences between individuals could result in equally toxic prey being unequally predated, and might explain why some species undergo ontogenetic shifts in defence strategies. Furthermore, the nutritional value of prey will likely have a significant impact on the evolutionary dynamics of mimicry systems. PMID:24598424

  14. Seed preferences by rodents in the agri-environment and implications for biological weed control.

    PubMed

    Fischer, Christina; Türke, Manfred

    2016-08-01

    Post-dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient-rich over nutrient-poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants. PMID:27547355

  15. Mismatched anti-predator behavioral responses in predator-naïve larval anurans.

    PubMed

    Albecker, Molly; Vance-Chalcraft, Heather D

    2015-01-01

    Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles. PMID:26664805

  16. Mismatched anti-predator behavioral responses in predator-naïve larval anurans

    PubMed Central

    Vance-Chalcraft, Heather D.

    2015-01-01

    Organisms are adept at altering behaviors to balance the tradeoff between foraging and predation risk in spatially and temporally shifting predator environments. In order to optimize this tradeoff, prey need to be able to display an appropriate response based on degree of predation risk. To be most beneficial in the earliest life stages in which many prey are vulnerable to predation, innate anti-predator responses should scale to match the risk imposed by predators until learned anti-predator responses can occur. We conducted an experiment that examined whether tadpoles with no previous exposure to predators (i.e., predator-naive) exhibit innate antipredator behavioral responses (e.g., via refuge use and spatial avoidance) that match the actual risk posed by each predator. Using 7 treatments (6 free-roaming, lethal predators plus no-predator control), we determined the predation rates of each predator on Lithobates sphenocephalus tadpoles. We recorded behavioral observations on an additional 7 nonlethal treatments (6 caged predators plus no-predator control). Tadpoles exhibited innate responses to fish predators, but not non-fish predators, even though two non-fish predators (newt and crayfish) consumed the most tadpoles. Due to a mismatch between innate response and predator consumption, tadpoles may be vulnerable to greater rates of predation at the earliest life stages before learning can occur. Thus, naïve tadpoles in nature may be at a high risk to predation in the presence of a novel predator until learned anti-predator responses provide additional defenses to the surviving tadpoles. PMID:26664805

  17. Can a Short Intensive Course Affect Entrepreneurial Ability, Knowledge and Intent, or Further Entrepreneurial Study? An Assessment of the SEED Programme, Dunedin, New Zealand

    ERIC Educational Resources Information Center

    Cornwall, Jon; Kirkwood, Jodyanne; Clark, Gavin J.; Silvey, Stephen; Appleby, Ruth D.; Wolkenhauer, Svea Mara; Panjabi, Jayashree; Gluyas, Eva; Brain, Chelsea; Abbott, Matthew

    2015-01-01

    The SEED (Student Enterprise Experience in Dunedin) programme was developed as a four-week, intensive entrepreneurial "boot camp" to provide a small group of participants with a highly experiential business course. Using pre-course and post-course surveys, the authors measured the entrepreneurial ability, knowledge and intentions of the…

  18. Genes affecting novel seed constituents in Limnanthes alba Benth: transcriptome analysis of developing embryos and a new genetic map of meadowfoam

    PubMed Central

    Cooper, Laurel D.; Kishore, Venkata K.; Knapp, Steven J.; Kling, Jennifer G.

    2015-01-01

    The seed oil of meadowfoam, a new crop in the Limnanthaceae family, is highly enriched in very long chain fatty acids that are desaturated at the Δ5 position. The unusual oil is desirable for cosmetics and innovative industrial applications and the seed meal remaining after oil extraction contains glucolimnanthin, a methoxylated benzylglucosinolate whose degradation products are herbicidal and anti-microbial. Here we describe EST analysis of the developing seed transcriptome that identified major genes involved in biosynthesis and assembly of the seed oil and in glucosinolate metabolic pathways. mRNAs encoding acyl-CoA Δ5 desaturase were notably abundant. The library was searched for simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). Fifty-four new SSR markers and eight candidate gene markers were developed and combined with previously developed SSRs to construct a new genetic map for Limnanthes alba. Mapped genes in the lipid biosynthetic pathway encode 3-ketoacyl-CoA synthase (KCS), Δ5 desaturase (Δ5DS), lysophosphatidylacyl-acyl transferase (LPAT), and acyl-CoA diacylglycerol acyl transferase (DGAT). Mapped genes in glucosinolate biosynthetic and degradation pathways encode CYP79A, myrosinase (TGG), and epithiospecifier modifier protein (ESM). The resources developed in this study will further the domestication and improvement of meadowfoam as an oilseed crop. PMID:26038713

  19. Identification of Chromosome Locations of Genes Affecting pre-Harvest Sprouting and Seed Dormancy using Chromosome Substitution Lines in Tetraploid Wheat (Triticum turgidum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy, the main factor contributing to pre-harvest sprouting (PHS) resistance, is a complex trait and strongly influenced by environmental growth conditions. In this study, three sets of single chromosome substitution lines, including 37 genotypes, in a durum wheat (Triticum turgidum var. du...

  20. Using Artificial Nests to Study Nest Predation in Birds

    ERIC Educational Resources Information Center

    Belthoff, James R.

    2005-01-01

    A simple and effective field exercise that demonstrates factors affecting predation on bird nests is described. With instructor guidance, students in high school biology or college-level biology, ecology, animal behavior, wildlife management or ornithology laboratory courses can collaborate to design field experiments related to nest depredation.

  1. Barriers to seed and seedling survival of once-common Hawaiian palms: the role of invasive rats and ungulates.

    PubMed

    Shiels, Aaron B; Drake, Donald R

    2015-01-01

    Mammalian herbivores can limit plant recruitment and affect forest composition. Loulu palms (Pritchardia spp.) once dominated many lowland ecosystems in Hawai'i, and non-native rats (Rattus spp.), ungulates (e.g. pigs Sus scrofa, goats Capra hircus) and humans have been proposed as major causes of their decline. In lowland wet forest, we experimentally determined the vulnerability of seeds and seedlings of two species of Pritchardia, P. maideniana and P. hillebrandii, by measuring their removal by introduced vertebrates; we also used motion-sensing cameras to identify the animals responsible for Pritchardia removal. We assessed potential seed dispersal of P. maideniana by spool-and-line tracking, and conducted captive-feeding trials with R. rattus and seeds and seedlings of both Pritchardia species. Seed removal from the forest floor occurred rapidly for both species: >50 % of Pritchardia seeds were removed from the vertebrate-accessible stations within 6 days and >80 % were removed within 22 days. Although rats and pigs were both common to the study area, motion-sensing cameras detected only rats (probably R. rattus) removing Pritchardia seeds from the forest floor. Captive-feeding trials and spool-and-line tracking revealed that vertebrate seed dispersal is rare; rats moved seeds up to 8 m upon collection and subsequently destroyed them (100 % mortality in 24-48 h in captivity). Surprisingly, seedlings did not suffer vertebrate damage in field trials, and although rats damaged seedlings in captivity, they rarely consumed them. Our findings are consistent with the hypothesis generated from palaeoecological studies, indicating that introduced rats may have assisted in the demise of native insular palm forests. These findings also imply that the seed stage of species in this Pacific genus is particularly vulnerable to rats; therefore, future conservation efforts involving Pritchardia should prioritize the reduction of rat predation on the plant recruitment stages

  2. Barriers to seed and seedling survival of once-common Hawaiian palms: the role of invasive rats and ungulates

    PubMed Central

    Shiels, Aaron B.; Drake, Donald R.

    2015-01-01

    Mammalian herbivores can limit plant recruitment and affect forest composition. Loulu palms (Pritchardia spp.) once dominated many lowland ecosystems in Hawai‘i, and non-native rats (Rattus spp.), ungulates (e.g. pigs Sus scrofa, goats Capra hircus) and humans have been proposed as major causes of their decline. In lowland wet forest, we experimentally determined the vulnerability of seeds and seedlings of two species of Pritchardia, P. maideniana and P. hillebrandii, by measuring their removal by introduced vertebrates; we also used motion-sensing cameras to identify the animals responsible for Pritchardia removal. We assessed potential seed dispersal of P. maideniana by spool-and-line tracking, and conducted captive-feeding trials with R. rattus and seeds and seedlings of both Pritchardia species. Seed removal from the forest floor occurred rapidly for both species: >50 % of Pritchardia seeds were removed from the vertebrate-accessible stations within 6 days and >80 % were removed within 22 days. Although rats and pigs were both common to the study area, motion-sensing cameras detected only rats (probably R. rattus) removing Pritchardia seeds from the forest floor. Captive-feeding trials and spool-and-line tracking revealed that vertebrate seed dispersal is rare; rats moved seeds up to 8 m upon collection and subsequently destroyed them (100 % mortality in 24–48 h in captivity). Surprisingly, seedlings did not suffer vertebrate damage in field trials, and although rats damaged seedlings in captivity, they rarely consumed them. Our findings are consistent with the hypothesis generated from palaeoecological studies, indicating that introduced rats may have assisted in the demise of native insular palm forests. These findings also imply that the seed stage of species in this Pacific genus is particularly vulnerable to rats; therefore, future conservation efforts involving Pritchardia should prioritize the reduction of rat predation on the plant recruitment

  3. Are lemmings prey or predators?

    NASA Astrophysics Data System (ADS)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  4. The Effects of Predator Arrival Timing on Adaptive Radiation (Invited)

    NASA Astrophysics Data System (ADS)

    Borden, J.; Knope, M. L.; Fukami, T.

    2009-12-01

    Much of Earth’s biodiversity is thought to have arisen by adaptive radiation, the rapid diversification of a single ancestral species to fill a wide-variety of ecological niches. Both theory and empirical evidence have long supported competition for limited resources as a primary driver of adaptive radiation. While predation has also been postulated to be an important selective force during radiation, empirical evidence is surprisingly scant and its role remains controversial. However, two recent empirical studies suggest that predation can promote divergence during adaptive radiation. Using an experimental laboratory microcosm system, we examined how predator arrival timing affects the rate and extent of diversification during adaptive radiation. We varied the introduction timing of a protozoan predator (Tetrahymena thermophila) into populations of the bacteria Pseudomonas flourescens, which is known for its ability to undergo rapid adaptive radiation in aqueous microcosms. While our results show that predator arrival timing may have a significant impact on the rate, but not extent, of diversification, these results are tenuous and should be interpreted with caution, as the protozoan predators died early in the majority of our treatments, hampering our ability for comparison across treatments. Additionally, the abundance of newly derived bacterial genotypes was markedly lower in all treatments than observed in previous experiments utilizing this microbial experimental evolution system. To address these shortcomings, we will be repeating the experiment in the near future to further explore the impact of predator arrival timing on adaptive radiation. Smooth Morph and small-Wrinkly Spreader Pseudomonas flourescens diversification in the 96 hour treatment. Day 10, diluted to 1e-5.

  5. Analysis of a predator-prey system with predator switching.

    PubMed

    Khan, Q J A; Balakrishnan, E; Wake, G C

    2004-01-01

    In this paper, we consider an interaction of prey and predator species where prey species have the ability of group defence. Thresholds, equilibria and stabilities are determined for the system of ordinary differential equations. Taking carrying capacity as a bifurcation parameter, it is shown that a Hopf bifurcation can occur implying that if the carrying capacity is made sufficiently large by enrichment of the environment, the model predicts the eventual extinction of the predator providing strong support for the so-called 'paradox of enrichment'. PMID:14670532

  6. Predator-prey interactions, resource depression and patch revisitation

    USGS Publications Warehouse

    Erwin, R.M.

    1989-01-01

    Generalist predators may be confronted by different types of prey in different patches: sedentary and conspicuous, cryptic (with or without refugia), conspicuous and nonsocial, or conspicuous and social. I argue that, where encounter rates with prey are of most importance, patch revisitation should be a profitable tactic where prey have short 'recovery' times (conspicuous, nonsocial prey), or where anti-predator response (e.g. shoaling) may increase conspicuousness. Predictions are made for how temporal changes in prey encounter rates should affect revisit schedules and feeding rates for the 4 different prey types.

  7. Variation in predator species abundance can cause variable selection pressure on warning signaling prey

    PubMed Central

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-01-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  8. Variation in predator species abundance can cause variable selection pressure on warning signaling prey.

    PubMed

    Valkonen, Janne K; Nokelainen, Ossi; Niskanen, Martti; Kilpimaa, Janne; Björklund, Mats; Mappes, Johanna

    2012-08-01

    Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' willingness to attack defended prey or by the broadness of the predators' signal generalization. If some of the predator species are capable of coping with the secondary defenses of their prey, selection can favor reduced prey signal conspicuousness via reduced detectability or recognition. In this study, we combine data collected during three large-scale field experiments to assess whether variation in avian predator species (red kite, black kite, common buzzard, short-toed eagle, and booted eagle) affects the predation pressure on warningly and non-warningly colored artificial snakes. Predation pressure varied among locations and interestingly, if common buzzards were abundant, there were disadvantages to snakes possessing warning signaling. Our results indicate that predator community can have important consequences on the evolution of warning signals. Predators that ignore the warning signal and defense can be the key for the maintenance of variation in warning signal architecture and maintenance of inconspicuous signaling. PMID:22957197

  9. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    PubMed

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate. PMID:26842566

  10. Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests.

    PubMed

    Espelta, Josep Maria; Cortés, Pilar; Molowny-Horas, Roberto; Sánchez-Humanes, Belén; Retana, Javier

    2008-03-01

    Temporally variable production of seed crops by perennial plants (masting) has been hypothesized to be a valuable mechanism in the reduction of seed predation by satiating and starving seed consumers. To achieve these benefits, coexisting species subjected to the same predator would benefit from a similar pattern of seeding fluctuation over time that could lead to a reduction in predation at the within-species level. We tested for the existence of an environmental factor enforcing synchrony in acorn production in two sympatric Mediterranean oaks (Quercus ilex and Q. humilis) and the consequences on within-species and between-species acorn predation, by monitoring 15 mixed forests (450 trees) over seven years. Acorn production in Q. ilex and Q. humilis was highly variable among years, with high population variability (CVp) values. The two species exhibited a very different pattern across years in their initial acorn crop size (sum of aborted, depredated, and sound acorns). Nevertheless, interannual differences in summer water stress modified the likelihood of abortion during acorn ripening and enforced within- and, particularly, between-species synchrony and population variability in acorn production. The increase in CVp from initial to mature acorn crop (after summer) accounted for 33% in Q. ilex, 59% in Q. humilis, and 60% in the two species together. Mean yearly acorn pre-dispersal predation by invertebrates was considerably higher in Q. humilis than in Q. ilex. Satiation and starvation of predators was recorded for the two oaks, and this effect was increased by the year-to-year variability in the size of the acorn crop of the two species combined. Moreover, at a longer time scale (over seven years), we observed a significant reduction in the mean proportion of acorns depredated for each oak and the variability in both species' acorn production combined. Therefore, our results demonstrate that similar patterns of seeding fluctuation over time in coexisting

  11. Brood size matching: a novel perspective on predator dilution.

    PubMed

    Jaatinen, Kim; Öst, Markus

    2013-02-01

    A primary benefit of grouping is diluting the individual risk of attack by predators. However, the fact that groups are formed not always by solitary adults but also by subgroups (e.g., families) has been overlooked. The subgroup-specific benefit of predator dilution depends on its relative contribution to total group size. Therefore, the willingness of a subgroup to merge with others should increase the less it contributes to total group size, but the conflicting preferences of partners may result in the preferential merger of similar-sized subgroups. Here, we evaluate how the proportional contribution of subgroups to diluting risk affects group formation. We generate predictions using a bidding game over parental care and test them using data on common eiders (Somateria mollissima), in which females with variable-sized broods may form brood-rearing coalitions. The predictions (1) that size-matched subgroups should have a higher propensity to merge, (2) that predation should increase group formation propensity, and (3) that increased bargaining power, as proxied by female body condition, should increase the time needed to establish partnerships were all supported. Partners do negotiate over their relative contributions to predator dilution, accepting or rejecting partnerships on the basis of this criterion. Our results show that consideration of the size of subgroups before merger is critical in understanding the process of group formation under the threat of predation. PMID:23348772

  12. Predator facilitation or interference: a game of vipers and owls.

    PubMed

    Embar, Keren; Raveh, Ashael; Hoffmann, Ishai; Kotler, Burt P

    2014-04-01

    In predator-prey foraging games, the prey's reaction to one type of predator may either facilitate or hinder the success of another predator. We ask, do different predator species affect each other's patch selection? If the predators facilitate each other, they should prefer to hunt in the same patch; if they interfere, they should prefer to hunt alone. We performed an experiment in a large outdoor vivarium where we presented barn owls (Tyto alba) with a choice of hunting greater Egyptian gerbils (Gerbillus pyramidum) in patches with or without Saharan horned vipers (Cerastes cerastes). Gerbils foraged on feeding trays set under bushes or in the open. We monitored owl location, activity, and hunting attempts, viper activity and ambush site location, and the foraging behavior of the gerbils in bush and open microhabitats. Owls directed more attacks towards patches with vipers, and vipers were more active in the presence of owls. Owls and vipers facilitated each other's hunting through their combined effect on gerbil behavior, especially on full moon nights when vipers are more active. Owls forced gerbils into the bushes where vipers preferred to ambush, while viper presence chased gerbils into the open where they were exposed to owls. Owls and vipers took advantage of their indirect positive effect on each other. In the foraging game context, they improve each other's patch quality and hunting success. PMID:24481981

  13. Hydrodynamic effects on a predator approaching a group of preys

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    A numerical approach to predict the hydrodynamics involving a predator approaching a group of 100 preys is presented. A collective behavioural model is adopted to predict the two-dimensional space-time evolution of the predator-preys system that is supposed to be immersed in a fluid. The preys manifest mutual repulsion, attraction and orientation, while the predator is idealized as an individual to be strongly repulsed. During the motion, the predator experiences a resistance induced by the encompassing fluid. Such effect is accounted for by computing the hydrodynamic force and by modifying the predator’s velocity given by the behavioural equations. A numerical campaign is carried out by varying the predator’s drag coefficient. Moreover, analyses characterized by progressively wider predator’s perception areas are performed, thus highlighting the role of the hydrodynamics over the behavioural interactions. In order to estimate the predator’s performance, an ad-hoc parameter is proposed. Moreover, findings in terms of trajectories and angular momentum of the group of preys are discussed. Present findings show that the sole collective behavioural equations are insufficient to predict the performance of a predator that is immersed in a fluid, since its motion is drastically affected by the resistance of the surrounding fluid.

  14. Predators help protect carbon stocks in blue carbon ecosystems

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Connolly, Rod M.; Ritchie, Euan G.; Lovelock, Catherine E.; Heithaus, Michael R.; Hays, Graeme C.; Fourqurean, James W.; Macreadie, Peter I.

    2015-12-01

    Predators continue to be harvested unsustainably throughout most of the Earth's ecosystems. Recent research demonstrates that the functional loss of predators could have far-reaching consequences on carbon cycling and, by implication, our ability to ameliorate climate change impacts. Yet the influence of predators on carbon accumulation and preservation in vegetated coastal habitats (that is, salt marshes, seagrass meadows and mangroves) is poorly understood, despite these being some of the Earth's most vulnerable and carbon-rich ecosystems. Here we discuss potential pathways by which trophic downgrading affects carbon capture, accumulation and preservation in vegetated coastal habitats. We identify an urgent need for further research on the influence of predators on carbon cycling in vegetated coastal habitats, and ultimately the role that these systems play in climate change mitigation. There is, however, sufficient evidence to suggest that intact predator populations are critical to maintaining or growing reserves of 'blue carbon' (carbon stored in coastal or marine ecosystems), and policy and management need to be improved to reflect these realities.

  15. Contrasting patterns of short-term indirect seed-seed interactions mediated by scatter-hoarding rodents.

    PubMed

    Xiao, Zhishu; Zhang, Zhibin

    2016-09-01

    It is well known that direct effects of seed predators or dispersers can have strong effects on seedling establishment. However, we have limited knowledge about the indirect species interactions between seeds of different species that are mediated by shared seed predators and/or dispersers and their consequences for plant demography and diversity. Because scatter-hoarding rodents as seed dispersers may leave some hoarded seeds uneaten, scatter hoarding may serve to increase seed survival and dispersal. Consequently, the presence of heterospecific seeds could alter whether the indirect interactions mediated by scatter-hoarding rodents have a net positive effect, creating apparent mutualism between seed species, or a net negative effect, creating apparent competition between seed species. We present a testable framework to measure short-term indirect effects between co-occurring plant species mediated by seed scatter-hoarding rodents. We tested this framework in a subtropical forest in south-west China using a replacement design and tracked the fate of individually tagged seeds in experimental patches. We manipulated the benefits to rodents by using low-tannin dormant chestnuts as palatable food and high-tannin non-dormant acorns as unpalatable food. We found that seed palatability changed the amount of scatter hoarding that occurred when seeds co-occurred either among or within patches. Consistent with our predictions, scatter-hoarding rodents created apparent mutualism through increasing seed removal and seed caching, and enhancing survival, of both plant species in mixed patches compared with monospecific patches. However, if we ignore scatter hoarding and treat all seed harvest as seed predation (and not dispersal), then apparent competition between palatable chestnuts and unpalatable acorns was also observed. This study is the first to demonstrate that foraging decisions by scatter-hoarding animals to scatter hoard seeds for later consumption (or loss) or

  16. Effects of the heterogeneous landscape on a predator-prey system

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee

    2010-01-01

    In order to understand how a heterogeneous landscape affects a predator-prey system, a spatially explicit lattice model consisting of predators, prey, grass, and landscape was constructed. The predators and preys randomly move on the lattice space and the grass grows in its neighboring site according to its growth probability. When predators and preys meet at the same site at the same time, a number of prey, equal to the number of predators are eaten. This rule was also applied to the relationship between the prey and grass. The predator (prey) could give birth to an offspring when it ate prey (grass), with a birth probability. When a predator or prey animal was initially introduced, or newly born, its health state was set at a given high value. This health state decreased by one with every time step. When the state of an animal decreased to less than zero, the animal died and was removed from the system. The heterogeneous landscape was characterized by parameter H, which controlled the heterogeneity according to the neutral model. The simulation results showed that H positively or negatively affected a predator’s survival, while its effect on prey and grass was less pronounced. The results can be understood by the disturbance of the balance between the prey and predator densities in the areas where the animals aggregated.

  17. Selective Predation of a Stalking Predator on Ungulate Prey

    PubMed Central

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly’s standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478

  18. Selective Predation of a Stalking Predator on Ungulate Prey.

    PubMed

    Heurich, Marco; Zeis, Klara; Küchenhoff, Helmut; Müller, Jörg; Belotti, Elisa; Bufka, Luděk; Woelfing, Benno

    2016-01-01

    Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates. PMID:27548478

  19. Seed dormancy in Mexican teosinte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy in wild Zea species may affect fitness and relate to ecological adaptation. The primary objective of this study was to characterize the variation in seed germination of the wild species of the genus Zea that currently grow in Mexico, and to relate this variation to their ecological zon...

  20. Crop protection by seed coating.

    PubMed

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  1. New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey

    NASA Astrophysics Data System (ADS)

    Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-12-01

    Optimal habitat selection is essential for species survival in ecosystems, and interspecific competition is a key ecological mechanism for many observed species association patterns. Specialized animal species are commonly affected by resource and interference competition with generalist and/or omnivorous competitors, so avoidance behavior could be expected. We hypothesize that specialist species may exploit broad range cues from such potential resource competitors (i.e., cues possibly common to various generalist and/or omnivorous predators) to avoid costly competition regarding food or reproduction, even in new species associations. We tested this hypothesis by studying short-term interactions between a native larval parasitoid and a native generalist omnivorous predator recently sharing the same invasive host/prey, the leaf miner Tuta absoluta. We observed a strong negative effect of kleptoparasitism (food resource stealing) instead of classical intraguild predation on immature parasitoids. There was no evidence that parasitoid females avoided the omnivorous predator when searching for oviposition sites, although we studied both long- and short-range known detection mechanisms. Therefore, we conclude that broad range cue avoidance may not exist in our biological system, probably because it would lead to too much oviposition site avoidance which would not be an efficient and, thus, beneficial strategy. If confirmed in other parasitoids or specialist predators, our findings may have implications for population dynamics, especially in the current context of increasing invasive species and the resulting creation of many new species associations.

  2. Methylation Affects Transposition and Splicing of a Large CACTA Transposon from a MYB Transcription Factor Regulating Anthocyanin Synthase Genes in Soybean Seed Coats

    PubMed Central

    Zabala, Gracia; Vodkin, Lila O.

    2014-01-01

    We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-rm is homozygous for a mutable allele (rm) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-rm line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13 kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-rm progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock's Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element. PMID:25369033

  3. Frugivore loss limits recruitment of large-seeded trees

    PubMed Central

    Wotton, Debra M.; Kelly, Dave

    2011-01-01

    Although global declines in frugivores may disrupt seed dispersal mutualisms and inhibit plant recruitment, quantifying the likely reduction in plant regeneration has been difficult and rarely attempted. We use a manipulative factorial experiment to quantify dependence of recruitment on dispersal (i.e. fruit pulp removal and movement of seed away from parental area) in two large-seeded New Zealand tree species. Complete dispersal failure would cause a 66 to 81 per cent reduction in recruitment to the 2-year-old seedling stage, and synergistic interactions with introduced mammalian seed and seedling predators increase the reduction to 92 to 94 per cent. Dispersal failure reduced regeneration through effects on seed predation, germination and (especially) seedling survival, including distance- and density-dependent (Janzen–Connell) effects. Dispersal of both species is currently largely dependent on a single frugivore, and many fruits today remain uneaten. Present-day levels of frugivore loss and mammal seed and seedling predators result in 57 to 84 per cent fewer seedlings after 2 years. Our study demonstrates the importance of seed dispersal for local plant population persistence, and validates concerns about the community consequences of frugivore declines. PMID:21450732

  4. Intraguild predation and native lady beetle decline.

    PubMed

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  5. Intraguild Predation and Native Lady Beetle Decline

    PubMed Central

    Gardiner, Mary M.; O'Neal, Matthew E.; Landis, Douglas A.

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  6. Edge-mediated patterns of seed removal in experimentally connected and fragmented landscapes.

    SciTech Connect

    Craig, Michael, T.; Orrock, John, L.; Brudvig, Lars, A.

    2011-09-07

    While biological reserves remain central to biodiversity conservation, the amount of area available for terrestrial reserves may be inadequate for many taxa. Biodiversity spillover - the promotion of diversity in matrix areas surrounding reserves - might help address this shortfall in reserve area. However, the mechanistic underpinning of spillover remains uninvestigated. Two fundamental processes - seed dispersal and establishment - might generate plant biodiversity spillover. Here, we investigate the role of establishment in promoting spillover by assessing post-dispersal seed predation, a key component of establishment, in the matrix of a replicated, large-scale habitat fragmentation experiment, where spillover is relevated around patches connected by landscape corridors. Our results show that matrix seed predation may constrain the distance of this spillover effect by reducing establishment: seed removal was least at the matrix edge and increased further into the matrix. We found some support for matrix seed predation underpinning previously reported landscape-level variation in spillover. Of the three species we investigated, two showed evidence for elevated seed predation in the matrix surrounding the unconnected patches around which the lowest levels of spillover occur. However, seed predation did not explain connectivity-enhanced spillover, suggesting that seed dispersal likely drives this pattern. Management activities that increase seed deposition in the matrix may have beneficial effects via spillover. Our work also illustrates that matrix-mediated gradients in seed predation may be widespread, but likely vary depending upon matrix composition and the ecological system under consideration. In fragmented landscapes, this gradient could impact the distribution, abundance, and spread of plant species.

  7. Species diversity and predation strategies in a multiple species predator-prey model

    NASA Astrophysics Data System (ADS)

    Mullan, Rory; Glass, David H.; McCartney, Mark

    2015-08-01

    A single predator, single prey ecological model, in which the behaviour of the populations relies upon two control parameters has been expanded to allow for multiple predators and prey to occupy the ecosystem. The diversity of the ecosystem that develops as the model runs is analysed by assessing how many predator or prey species survive. Predation strategies that dictate how the predators distribute their efforts across the prey are introduced in this multiple species model. The paper analyses various predation strategies and highlights their effect on the survival of the predators and prey species.

  8. Herbivory, Predation, and Biological Control.

    ERIC Educational Resources Information Center

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  9. OVIGENY IN SELECTED GENERALIST PREDATORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Ovigeny” refers to the process of egg production in adult insects. “Pro-ovigenic” adult insects emerge with a fixed complement of mature eggs; whereas, “synovigenic” species continuously produce and develop eggs throughout adulthood. Very little work has been done on ovigeny in insect predators. We...

  10. Ovigeny in selected generalist predators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Ovigeny” refers to the process of egg production in adult insects. “Pro-ovigenic” adult insects emerge with a fixed complement of mature eggs; whereas, “synovigenic” species continuously produce and develop eggs throughout adulthood. Very little work has been done on ovigeny in insect predators. We...

  11. Endemic predators, invasive prey and native diversity.

    PubMed

    Wanger, Thomas C; Wielgoss, Arno C; Motzke, Iris; Clough, Yann; Brook, Barry W; Sodhi, Navjot S; Tscharntke, Teja

    2011-03-01

    Interactions between native diversity and invasive species can be more complex than is currently understood. Invasive ant species often substantially reduce diversity in the native ants diversity that act as natural control agents for pest insects. In Indonesia (on the island of Sulawesi), the third largest cacao producer worldwide, we show that a predatory endemic toad (Ingerophrynus celebensis) controls invasive ant (Anoplolepis gracilipes) abundance, and positively affects native ant diversity. We call this the invasive-naivety effect (an opposite of enemy release), whereby alien species may not harbour anti-predatory defences against a novel native predator. A positive effect of the toads on native ants may facilitate their predation on insect vectors of cacao diseases. Hence, toads may increase crop yield, but further research is needed on this aspect. Ironically, amphibians are globally the most threatened vertebrate class and are strongly impacted by the conversion of rainforest to cacao plantations in Sulawesi. It is, therefore, crucial to manage cacao plantations to maintain these endemic toads, as they may provide critical ecosystem services, such as invasion resistance and preservation of native insect diversity. PMID:20826488

  12. Endemic predators, invasive prey and native diversity

    PubMed Central

    Wanger, Thomas C.; Wielgoss, Arno C.; Motzke, Iris; Clough, Yann; Brook, Barry W.; Sodhi, Navjot S.; Tscharntke, Teja

    2011-01-01

    Interactions between native diversity and invasive species can be more complex than is currently understood. Invasive ant species often substantially reduce diversity in the native ants diversity that act as natural control agents for pest insects. In Indonesia (on the island of Sulawesi), the third largest cacao producer worldwide, we show that a predatory endemic toad (Ingerophrynus celebensis) controls invasive ant (Anoplolepis gracilipes) abundance, and positively affects native ant diversity. We call this the invasive-naivety effect (an opposite of enemy release), whereby alien species may not harbour anti-predatory defences against a novel native predator. A positive effect of the toads on native ants may facilitate their predation on insect vectors of cacao diseases. Hence, toads may increase crop yield, but further research is needed on this aspect. Ironically, amphibians are globally the most threatened vertebrate class and are strongly impacted by the conversion of rainforest to cacao plantations in Sulawesi. It is, therefore, crucial to manage cacao plantations to maintain these endemic toads, as they may provide critical ecosystem services, such as invasion resistance and preservation of native insect diversity. PMID:20826488

  13. The effect of within-year variation in acorn crop size on seed harvesting by avian hoarders.

    PubMed

    Pesendorfer, Mario B; Koenig, Walter D

    2016-05-01

    Spatial and temporal variation in resource distribution affect the movement and foraging behavior of many animals. In the case of animal-dispersed trees, numerous studies have addressed masting-the synchronized variation in seed production between years-but the fitness consequences of spatial variation in seed production within a year are unclear. We investigated the effects of variable acorn production in a population of valley oaks (Quercus lobata) on the composition and behavior of the avian-disperser community. We found that western scrub-jays (Aphelocoma californica), high-quality dispersers that store seeds in the ground, were attracted to, and exhibited increased per capita dispersal rates from, trees with large acorn crops. In contrast, acorn woodpeckers (Melanerpes formicivorus), low-quality dispersers that store acorns in trees where they are unlikely to germinate, increased per capita hoarding rates but did not attend trees with large seed crops in higher numbers, suggesting that the two species responded to resources on different spatial scales. Antagonistic interactions within and between species increased with the number of birds attending a tree, resulting in a potential cost for foraging birds, but did not reduce dispersal rates. Using a simulation model, we estimated that trees with large initial crops experienced a greater proportion (77 %) of high-quality seed dispersal events than trees with small crops (62 %). Our findings provide support for a mechanistic link between seed production and foraging behavior of seed dispersers as predicted by the predator dispersal hypothesis for the functional consequences of variable seed production in hoarder-dispersed trees. PMID:26809620

  14. Incidental nest predation in freshwater turtles: inter- and intraspecific differences in vulnerability are explained by relative crypsis.

    PubMed

    Wirsing, Aaron J; Phillips, Julia R; Obbard, Martyn E; Murray, Dennis L

    2012-04-01

    There has long been interest in