Sample records for affects selenium bioavailability

  1. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    PubMed

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  2. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  3. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ethanol Consumption by Wistar Rat Dams Affects Selenium Bioavailability and Antioxidant Balance in Their Progeny

    PubMed Central

    Ojeda, María Luisa; Vázquez, Beatriz; Nogales, Fátima; Murillo, María Luisa; Carreras, Olimpia

    2009-01-01

    Ethanol consumption affects maternal nutrition, the mothers’ antioxidant balance and the future health of their progeny. Selenium (Se) is a trace element cofactor of the enzyme glutathione peroxidase (GPx). We will study the effect of ethanol on Se bioavailability in dams and in their progeny. We have used three experimental groups of dams: control, chronic ethanol and pair-fed; and three groups of pups. Se levels were measured by graphite-furnace atomic absorption spectrometry. Serum and hepatic GPx activity was determined by spectrometry. We have concluded that ethanol decreased Se retention in dams, affecting their tissue Se deposits and those of their offspring, while also compromising their progeny’s weight and oxidation balance. These effects of ethanol are caused by a reduction in Se intake and a direct alcohol-generated oxidation action. PMID:19742151

  5. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    USDA-ARS?s Scientific Manuscript database

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  6. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  7. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    PubMed Central

    Zhang, Jinsong; Taylor, Ethan W; Wan, Xiaochun; Peng, Dungeng

    2012-01-01

    Background Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles. Methods and results After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment. Conclusion The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods. PMID:22359458

  8. Micronutrient bioavailability: Dietary Reference Intakes and a future perspective1234

    PubMed Central

    2010-01-01

    This article provides a review of how the challenge of bioavailability was approached in establishing the Dietary Reference Intakes, with a special focus on folic acid, vitamin B-12, β-carotene, iron, selenium, and zinc, the targeted micronutrients for this workshop. In a future perspective, the necessity of having a clear working definition of bioavailability is emphasized. The bioavailability of micronutrients should be considered, with advantage, under subheadings determined by the broad factors that affect bioavailability. Special emphasis is given to giving greater and specific attention to factors involved in the maintenance of homeostasis. These factors, it is argued, are best considered separately from even a broad definition of bioavailability and have the potential to provide new insights into some micronutrient requirements. PMID:20200261

  9. Rumen microorganisms decrease bioavailability of inorganic selenium supplements

    USDA-ARS?s Scientific Manuscript database

    Despite the availaility of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study w...

  10. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jinsong; Wang Huali; Yu Hanqing

    2007-10-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes upmore » and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels.« less

  11. New scientific challenges - the possibilities of using selenium in poultry nutrition and impact on meat quality

    NASA Astrophysics Data System (ADS)

    Marković, R.; Glišić, M.; Bošković, M.; Baltić, M. Ž.

    2017-09-01

    Physiological stress is one of many concerns facing modern broiler production. In conditions when birds are exposed to stress, supplementation of selenium, which is a crucial glutathione peroxidase enzymatic cofactor, increases the antioxidant capacity of the animals and decreases the harmful effects of free radicals. Dietary selenium improves production performance and health of animals, and positively affects the immune system, the quality, selenium content and fatty acid composition of meat and eggs. There are several different forms of selenium, the most common dietary supplements being an inorganic form (sodium selenite) and anorganic form (selenomethionine). However, in recent years, new forms of selenium, such as a 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) and nanoselenium, which have more bioavailability, bioefficacy, and low toxicity have been designed. In this short comparative overview discusses the effects of inorganic, organic and nanoforms of selenium on production results, glutathione peroxidase activity, meat quality and level of toxicity in poultry.

  12. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  13. An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health.

    PubMed

    Khan, Kifayat Ullah; Zuberi, Amina; Fernandes, João Batista Kochenborger; Ullah, Imdad; Sarwar, Huda

    2017-12-01

    In the present review, the ongoing researches about selenium research in fish nutrition have been comprehensively discussed. Selenium research is getting popularity in fish nutrition as it is required for the normal growth and proper physiological and biochemical functions in fish. Its deficiency or surplus amounts create severe problems in fish. It is available as inorganic form, organic form, and nano form. In fish, most of the previous research is about the selenium requirements for fish by using only one selenium source mainly the inorganic one. Selenium shows maximum biological activity and bioavailability when it is supplied in proper form. However, to differentiate the more bioavailable and less toxic form of selenium, sufficient information is needed about the comparative bioavailability of different selenium forms in different fish species. In fish, important data about the new forms of selenoproteins is still scarce. Therefore, it is necessary to focus on the determination and elucidation of the new selenoproteins in fish through the utilization of recent approaches of molecular biology and proteomics. The adaptation of these new approaches will replace the old fashioned methodologies regarding the selenium research in fish nutrition. Moreover, the use of molecular biology and proteomics-based new approaches in combination with selenium research will help in optimizing the area of fish nutrition and will improve the feed intake, growth performance, and more importantly the flesh quality which has a promising importance in the consumer market.

  14. Bioavailable nanoparticles obtained in laser ablation of a selenium target in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmin, P G; Shafeev, Georgii A; Voronov, Valerii V

    The process of producing colloidal solutions of selenium nanoparticles in water using the laser ablation method is described. The prospects of using nanoparticles of elementary selenium as a nutrition source of this microelement are discussed. (nanoparticles)

  15. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    PubMed

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  16. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    PubMed

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  17. [Studies of bioavailability of different food sources of selenium in experiment].

    PubMed

    Egorova, E A; Gmoshinskiĭ, I V; Zorin, S I; Mazo, V K

    2006-01-01

    The selenium bioavailability in selenium enriched Spirulina (Arthrospira platensis), phycocyanin containing (Se-PC) protein isolate, separated from this micro algae and in sodium selenite was studied and compared in rats. The daily dose of selenium per one animal was 5 microgram in all experimental groups. The average selenium levels in blood serum and liver of animals that received sodium selenite during 14 days were the highest. The average selenium level in blood serum of animals fed with selenium enriched Spirulina platensis after 14 days of receiving was the same with the control group, but the average concentration of selenium in their liver was rather high and close to this parameter of sodium selenite animal group. The animals which were fed with Se-PC showed better results. Their average selenium level in blood serum was higher than in Spirulina group, but lower than in sodium selenite group. The average concentration of selenium in the liver of these animals was the same with sodium selenite animal group. As regards to animals that were fed with selenium enriched Spirulina, Se-PC and sodium selenite for 21 days, the average selenium levels ratio in their blood serum and liver was higher than in control group, but these results were not significantly different among each other. The concentrations of selenium in seminal glands in all groups of animals including control group both after 14 and 21 days feeding were close to each other.

  18. Effects of selenium biofortification on crop nutritional quality.

    PubMed

    Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.

  19. Selenium analysis in waters. Part 2: Speciation methods.

    PubMed

    LeBlanc, Kelly L; Kumkrong, Paramee; Mercier, Patrick H J; Mester, Zoltán

    2018-06-21

    In aquatic ecosystems, there is often no correlation between the total concentration of selenium present in the water column and the toxic effects observed in that environment. This is due, in part, to the variation in the bioavailability of different selenium species to organisms at the base of the aquatic food chain. The first part of this review (Kumkrong et al., 2018) discusses regulatory framework and standard methodologies for selenium analysis in waters. In this second article, we are reviewing the state of speciation analysis and importance of speciation data for decision makers in industry and regulators. We look in detail at fractionation methods for speciation, including the popular selective sequential hydride generation. We examine advantages and limitations of these methods, in terms of achievable detection limits and interferences from other matrix species, as well as the potential to over- or under-estimate operationally-defined fractions based on the various conversion steps involved in fractionation processes. Additionally, we discuss methods of discrete speciation (through separation methods), their importance in analyzing individual selenium species, difficulties associated with their implementation, as well as ways to overcome these difficulties. We also provide a brief overview of biological treatment methods for the remediation of selenium-contaminated waters. We discuss the importance of selenium speciation in the application of these methods and their potential to actually increase the bioavailability of selenium despite decreasing its total waterborne concentration. Copyright © 2018. Published by Elsevier B.V.

  20. Nano-selenium and its nanomedicine applications: a critical review.

    PubMed

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Peng, Qiuming; Baron, Mojmir; Melcova, Magdalena; Opatrilova, Radka; Zidkova, Jarmila; Bjørklund, Geir; Sochor, Jiri; Kizek, Rene

    2018-01-01

    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration.

  1. Selenium biofortification

    USDA-ARS?s Scientific Manuscript database

    Plant foods are the major dietary sources of selenium (Se) in most countries around the world, followed by meats and seafood. For this reason, it is vital to increase Se uptake by plants and to produce crops with higher Se concentrations and bioavailability in their edible tissues. One of the most p...

  2. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    PubMed

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  3. Selenium geochemistry in reclaimed phosphate mine soils and its relationship with plant bioavailability

    USDA-ARS?s Scientific Manuscript database

    Background and Aims Selenium contamination and accumulation in vegetation have resulted in Se toxicity in livestock and wildlife in reclaimed phosphate mine soils in Southeastern Idaho. Methods Plant and soil samples were collected from five study sites near phosphate mines. Soil physiochemical pr...

  4. Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans.

    PubMed

    Rohn, Isabelle; Marschall, Talke Anu; Kroepfl, Nina; Jensen, Kenneth Bendix; Aschner, Michael; Tuck, Simon; Kuehnelt, Doris; Schwerdtle, Tanja; Bornhorst, Julia

    2018-05-17

    The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and γ-glutamyl-MeSeCys (γ-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.

  5. Nano-selenium and its nanomedicine applications: a critical review

    PubMed Central

    Hosnedlova, Bozena; Kepinska, Marta; Skalickova, Sylvie; Fernandez, Carlos; Ruttkay-Nedecky, Branislav; Peng, Qiuming; Baron, Mojmir; Melcova, Magdalena; Opatrilova, Radka; Zidkova, Jarmila; Bjørklund, Geir; Sochor, Jiri; Kizek, Rene

    2018-01-01

    Traditional supplements of selenium generally have a low degree of absorption and increased toxicity. Therefore, it is imperative to develop innovative systems as transporters of selenium compounds, which would raise the bioavailability of this element and allow its controlled release in the organism. Nanoscale selenium has attracted a great interest as a food additive especially in individuals with selenium deficiency, but also as a therapeutic agent without significant side effects in medicine. This review is focused on the incorporation of nanotechnological applications, in particular exploring the possibilities of a more effective way of administration, especially in selenium-deficient organisms. In addition, this review summarizes the survey of knowledge on selenium nanoparticles, their biological effects in the organism, advantages, absorption mechanisms, and nanotechnological applications for peroral administration. PMID:29692609

  6. Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes.

    PubMed

    Weiller, Markus; Latta, Markus; Kresse, Matthias; Lucas, Rudolf; Wendel, Albrecht

    2004-09-01

    The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.

  7. Role of organic acids on the bioavailability of selenium in soil: A review.

    PubMed

    Dinh, Quang Toan; Li, Zhe; Tran, Thi Anh Thu; Wang, Dan; Liang, Dongli

    2017-10-01

    Organic Acids (OAs) are important components in the rhizosphere soil and influence Se bioavailability in soil. OAs have a bidirectional contrasting effect on Se bioavailability. Understanding the interaction of OAs with Se is essential to assessing Se bioavailability in soil and clarifying the role of OAs in controlling the behavior and fate of Se in soil. This review examines the mechanisms for the (im)mobilization of Se by OAs and discusses the practical implications of these mechanisms in relation to sequestration and bioavailability of Se in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selenium bioavailability from soy protein isolate and tofu in rats fed a torula yeast-based diet.

    PubMed

    Yan, Lin; Graef, George L; Reeves, Philip G; Johnson, LuAnn K

    2009-12-23

    Selenium (Se) is an essential nutrient, and soy is a major plant source of dietary protein to humans. The United States produces one-third of the world's soybeans, and the Se-rich Northern Plains produce a large share of the nation's soybeans. The present study used a rat model to determine the bioavailability of Se from a protein isolate and tofu (bean curd) prepared from a soybean cultivar we recently developed specifically for food grade markets. The soybean seeds contained 2.91 mg Se/kg. Male Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet containing 5 microg Se/kg; after 56 days, they were replenished of Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 microg Se/kg from soy protein isolate or tofu. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the responses of Se-dependent enzyme activities and tissue Se contents, comparing those responses for each soy product to those for SeMet using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in dose-dependent increases in glutathione peroxidase activities in blood and liver and thioredoxin reductase activity in liver, as well as dose-dependent increases in the Se contents of plasma, liver, muscle, and kidneys. These responses indicated an overall bioavailability of approximately 97% for Se from both the protein isolate and tofu, relative to SeMet. These results demonstrate that Se from this soybean cultivar is highly bioavailable in this model and that high-Se soybeans can be good dietary sources of Se.

  9. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    PubMed

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  10. Selenium nanoparticles as a nutritional supplement.

    PubMed

    Skalickova, Sylvie; Milosavljevic, Vedran; Cihalova, Kristyna; Horky, Pavel; Richtera, Lukas; Adam, Vojtech

    2017-01-01

    Selenium is an essential trace element in the diet, required for maintenance of health and growth; however, its toxicity could cause serious damage depending on dose and chemical form. Selenium nanoparticles (SeNPs) represent what we believe to be a novel prospect for nutritional supplementation because of their lower toxicity and ability to gradually release selenium after ingestion. In this review, we discuss various forms and types of SeNPs, as well as the way they are synthesized. We also discuss absorption and bioavailability of nanoparticles within the organism. SeNPs demonstrate anticancer and antimicrobial properties that may contribute to human health, not only as dietary supplements, but also as therapeutic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Correlation between mercury and selenium concentrations in Indian hair from Rondĵnia State, Amazon region, Brazil.

    PubMed

    Soares, Mônica Campos; Sarkis, Jorge Eduardo Souza; Müller, Regina Céli Sarkis; Brabo, Edilson Silva; Santos, Elizabete Oliveira

    2002-03-15

    Total mercury and selenium concentrations were determined in hair samples collected from Wari (Pacaás Novos) Indians living in Doutor Tanajura village, Gujará-Mirim city, Rondĵnia State. The mercury concentrations in some samples are much higher than the values determined in samples from individuals not exposed to mercury contamination, occupationally or environmentally. The selenium concentrations are in the normal range. A correlation was observed between the mercury and selenium concentration and the values of the molar ratio approach 1 at low Hg concentrations. This fact is related to the equimolar complex formed by [(Hg-Se)n]m-Seleprotein P, which can decrease the bioavailable mercury in the organism.

  12. Optimization of soluble organic selenium accumulation during fermentation of Flammulina velutipes mycelia.

    PubMed

    Ma, Yunfeng; Xiang, Fu; Xiang, Jun; Yu, Longjiang

    2012-01-01

    Selenium is an essential nutrient with diverse physiological functions, and soluble organic selenium (SOS) sources have a higher bioavailability than inorganic selenium sources. Based on the response surface methodology and central composite design, this study presents the optimal medium components for SOS accumulation in batch cultures of Flammulina velutipes, i.e. 30 g/L glucose, 11.2 mg/L sodium selenite, and 1.85 g/L NH4NO3. Furthermore, logistic function model feeding was found to be the optimal feeding strategy for SOS accumulation during Flammulina velutipes mycelia fermentation, where the maximum SOS accumulation reached (4.63 +/- 0.24) mg/L, which is consistent with the predicted value.

  13. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues.

    PubMed

    Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco

    2013-09-01

    Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters.

    PubMed

    LeBlanc, Kelly L; Wallschläger, Dirk

    2016-06-21

    Laboratory algal cultures exposed to selenate were shown to produce and release selenomethionine, selenomethionine oxide, and several other organic selenium metabolites. Released discrete organic selenium species accounted for 1.6-13.1% of the selenium remaining in the media after culture death, with 1.3-6.1% of the added selenate recovered as organic metabolites. Analysis of water from an industrially impacted river collected immediately after the death of massive annual algal blooms showed that no selenomethionine or selenomethionine oxide was present. However, other discrete organic selenium species, including a cyclic oxidation product of selenomethionine, were observed, indicating the previous presence of selenomethionine. Industrial biological treatment systems designed for remediation of selenium-contaminated waters were shown to increase both the concentration of organic selenium species in the effluent, relative to influent water, and the fraction of organic selenium to up to 8.7% of the total selenium in the effluent, from less than 1.1% in the influent. Production and emission of selenomethionine, selenomethionine oxide, and other discrete organic selenium species were observed. These findings are discussed in the context of potentially increased selenium bioavailability caused by microbial activity in aquatic environments and biological treatment systems, despite overall reductions in total selenium concentration.

  15. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  16. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.

  17. A selenium-deficient Caco-2 cell model for assessing differential incorporation of chemical or food selenium into glutathione peroxidase.

    PubMed

    Zeng, Huawei; Botnen, James H; Johnson, Luann K

    2008-01-01

    Assessing the ability of a selenium (Se) sample to induce cellular glutathione peroxidase (GPx) activity in Se-deficient animals is the most commonly used method to determine Se bioavailability. Our goal is to establish a Se-deficient cell culture model with differential incorporation of Se chemical forms into GPx, which may complement the in vivo studies. In the present study, we developed a Se-deficient Caco-2 cell model with a serum gradual reduction method. It is well recognized that selenomethionine (SeMet) is the major nutritional source of Se; therefore, SeMet, selenite, or methylselenocysteine (SeMSC) was added to cell culture media with different concentrations and treatment time points. We found that selenite and SeMSC induced GPx more rapidly than SeMet. However, SeMet was better retained as it is incorporated into proteins in place of methionine; compared with 8-, 24-, or 48-h treatment, 72-h Se treatment was a more sensitive time point to measure the potential of GPx induction in all tested concentrations. Based on induction of GPx activity, the cellular bioavailability of Se from an extract of selenobroccoli after a simulated gastrointestinal digestion was comparable with that of SeMSC and SeMet. These in vitro data are, for the first time, consistent with previous published data regarding selenite and SeMet bioavailability in animal models and Se chemical speciation studies with broccoli. Thus, Se-deficient Caco-2 cell model with differential incorporation of chemical or food forms of Se into GPx provides a new tool to study the cellular mechanisms of Se bioavailability.

  18. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil.

    PubMed

    Wang, Dan; Dinh, Quang Toan; Anh Thu, Tran Thi; Zhou, Fei; Yang, Wenxiao; Wang, Mengke; Song, Weiwei; Liang, Dongli

    2018-05-01

    To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p < 0.05), which accelerated the mineralization of organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect.

    PubMed

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.

  20. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect

    PubMed Central

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action. PMID:29263662

  1. Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis

    USGS Publications Warehouse

    Schlekat, C.E.; Dowdle, P.R.; Lee, B.-G.; Luoma, S.N.; Oremland, R.S.

    2000-01-01

    Elemental selenium, Se(0), is a prevalent chemical form in sediments, but little is known about its bioavailability. We evaluated the bioavailability of two forms of Se(0) by generating radioisotopic 75Se(0) through bacterial dissimilatory reduction of 75SeO32- by pure bacterial cultures (SES) and by an anaerobic sediment microbial consortium (SED). A third form was generated by reducing 75SeO32- with ascorbic acid (AA). Speciation determinations showed that AA and SES were >90% Se(0), but SED showed a mixture of Se(0), selenoanions, and a residual fraction. Pulse-chase techniques were used to measure assimilation efficiencies (AE) of these particulate Se forms by the bivalve Potamocorbula amurensis. Mean AE values were 3 ?? 2% for AA, 7 ?? 1% for SES, and 28 ?? 15% for SED, showing that the bioavailability of reduced, particle-associated Se is dependent upon its origin. To determine if oxidative microbial processes increased Se transfer, SES 75Se(0) was incubated with an aerobic sediment microbial consortium. After 113 d of incubation, 36% of SES Se(0) was oxidized to SeO32-. Assimilation of total particulate Se was unaffected however (mean AE = 5.5%). The mean AE from the diatom Phaeodactylum tricornutum was 58 ?? 8%, verifying the importance of Se associated with biogenic particles. Speciation and AE results from SED suggest that selenoanion reduction in wetlands and estuaries produces biologically available reduced selenium.Elemental selenium, Se(0), is a prevalent chemical form in sediments, but little is known about its bioavailability. We evaluated the bioavailability of two forms of Se(0) by generating radioisotopic 75Se(0) through bacterial dissimilatory reduction of 75SeO32- by pure bacterial cultures (SES) and by an anaerobic sediment microbial consortium (SED). A third form was generated by reducing 75SeO32 with ascorbic acid (AA). Speciation determinations showed that AA and SES were > 90% Se(0), but SED showed a mixture of Se(0), selenoanions, and a residual fraction. Pulse-chase techniques were used to measure assimilation efficiencies (AE) of these particulate Se forms by the bivalve Potamocorbula amurensis. Mean AE values were 3 ?? 2% for AA, 7 ?? 1% for SES, and 28 ?? 15% for SED, showing that the bioavailability of reduced, particle-associated Se is dependent upon its origin. To determine if oxidative microbial processes increased Se transfer, SES 75Se(0) was incubated with an aerobic sediment microbial consortium. After 113 d of incubation, 36% of SES Se(0) was oxidized to SeO32-. Assimilation of total particulate Se was unaffected however (mean AE = 5.5%). The mean AE from the diatom Phaeodactylum tricornutum was 58 ?? 8%, verifying the importance of Se associated with biogenic particles. Speciation and AE results from SED suggest that selenoanion reduction in wetlands and estuaries produces biologically available reduced selenium.

  2. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: variation within species and relevance to risk communication.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2013-07-01

    There is an emerging consensus that people consuming large amounts of fish with selenium:mercury ratios below 1 are at higher risk from mercury toxicity. As the relative amount of selenium increases compared to mercury, risk may be lowered, but it is unclear how much excess selenium is required. It would be useful if the selenium:mercury ratio was relatively consistent within a species, but this has not been the case in our studies of wild-caught fish. Since most people in developed countries and urban areas obtain their fish and other seafood commercially, we examined selenium:mercury molar ratios in commercial fish purchased in stores and fish markets in central New Jersey and Chicago. There was substantial interspecific and intraspecific variation in molar ratios. Across species the selenium:mercury molar ratio decreased with increasing mean mercury levels, but selenium variation also contributed to the ratio. Few samples had selenium:mercury molar ratios below 1, but there was a wide range in ratios, complicating the interpretation for use in risk management and communication. Before ratios can be used in risk management, more information is needed on mercury:selenium interactions and mutual bioavailability, and on the relationship between molar ratios and health outcomes. Further, people who are selenium deficient may be more at risk from mercury toxicity than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: Variation within species and relevance to risk communication

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2015-01-01

    There is an emerging consensus that people consuming large amounts of fish with selenium:mercury ratios below 1 may be at higher risk from mercury toxicity. As the relative amount of selenium increases compared to mercury, risk may be lowered, but it is unclear how much excess selenium is required. It would be useful if the selenium:mercury ratio was relatively consistent within a species, but this has not been the case in our studies of wild-caught fish. Since most people in developed countries and urban areas obtain their fish and other seafood commercially, we examined selenium:mercury molar ratios in commercial fish purchased in stores and fish markets in central New Jersey and Chicago. There was substantial interspecific and intraspecific variation in molar ratios. Across species the selenium:mercury molar ratio decreased with increasing mean mercury levels, but selenium variation also contributed to the ratio. Few samples had selenium:mercury molar ratios below 1, but there was a wide range in ratios, complicating the interpretation for use in risk management and communication. Before ratios can be used in risk management, more information is needed on mercury:selenium interactions and mutual bioavailability, and on the relationship between molar ratios and health outcomes. Further, people who are selenium deficient may be more at risk from mercury toxicity than others. PMID:23541437

  4. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food.

    PubMed

    Hart, D J; Fairweather-Tait, S J; Broadley, M R; Dickinson, S J; Foot, I; Knott, P; McGrath, S P; Mowat, H; Norman, K; Scott, P R; Stroud, J L; Tucker, M; White, P J; Zhao, F J; Hurst, R

    2011-06-15

    The retention and speciation of selenium in flour and bread was determined following experimental applications of selenium fertilisers to a high-yielding UK wheat crop. Flour and bread were produced using standard commercial practices. Total selenium was measured using inductively coupled plasma-mass spectrometry (ICP-MS) and the profile of selenium species in the flour and bread were determined using high performance liquid chromatography (HPLC) ICP-MS. The selenium concentration of flour ranged from 30ng/g in white flour and 35ng/g in wholemeal flour from untreated plots up to >1800ng/g in white and >2200ng/g in wholemeal flour processed from grain treated with selenium (as selenate) at the highest application rate of 100g/ha. The relationship between the amount of selenium applied to the crop and the amount of selenium in flour and bread was approximately linear, indicating minimal loss of Se during grain processing and bread production. On average, application of selenium at 10g/ha increased total selenium in white and wholemeal bread by 155 and 185ng/g, respectively, equivalent to 6.4 and 7.1μg selenium per average slice of white and wholemeal bread, respectively. Selenomethionine accounted for 65-87% of total extractable selenium species in Se-enriched flour and bread; selenocysteine, Se-methylselenocysteine selenite and selenate were also detected. Controlled agronomic biofortification of wheat crops for flour and bread production could provide an appropriate strategy to increase the intake of bioavailable selenium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  6. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio.

    PubMed

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp.

  7. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    PubMed Central

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. PMID:24204137

  8. Reduction of selenite by Azospirillum brasilense with the formation of selenium nanoparticles.

    PubMed

    Tugarova, Anna V; Vetchinkina, Elena P; Loshchinina, Ekaterina A; Burov, Andrei M; Nikitina, Valentina E; Kamnev, Alexander A

    2014-10-01

    The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.

  9. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  10. Lentic, lotic, and sulfate-dependent waterborne selenium screening guidelines for freshwater systems.

    PubMed

    DeForest, David K; Brix, Kevin V; Elphick, James R; Rickwood, Carrie J; deBruyn, Adrian M H; Tear, Lucinda M; Gilron, Guy; Hughes, Sarah A; Adams, William J

    2017-09-01

    There is consensus that fish are the most sensitive aquatic organisms to selenium (Se) and that Se concentrations in fish tissue are the most reliable indicators of potential toxicity. Differences in Se speciation, biological productivity, Se concentration, and parameters that affect Se bioavailability (e.g., sulfate) may influence the relationship between Se concentrations in water and fish tissue. It is desirable to identify environmentally protective waterborne Se guidelines that, if not exceeded, reduce the need to directly measure Se concentrations in fish tissue. Three factors that should currently be considered in developing waterborne Se screening guidelines are 1) differences between lotic and lentic sites, 2) the influence of exposure concentration on Se partitioning among compartments, and 3) the influence of sulfate on selenate bioavailability. Colocated data sets of Se concentrations in 1) water and particulates, 2) particulates and invertebrates, and 3) invertebrates and fish tissue were compiled; and a quantile regression approach was used to derive waterborne Se screening guidelines. Use of a regression-based approach for describing relationships in Se concentrations between compartments reduces uncertainty associated with selection of partitioning factors that are generally not constant over ranges of exposure concentrations. Waterborne Se screening guidelines of 6.5 and 3.0 μg/L for lotic and lentic water bodies were derived, and a sulfate-based waterborne Se guideline equation for selenate-dominated lotic waters was also developed. Environ Toxicol Chem 2017;36:2503-2513. © 2017 SETAC. © 2017 SETAC.

  11. Influence of estuarine processes on spatiotemporal variation in bioavailable selenium

    USGS Publications Warehouse

    Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick

    2013-01-01

    Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.

  12. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  13. Environmental impact and bioremediation of seleniferous soils and sediments.

    PubMed

    Wadgaonkar, Shrutika L; Nancharaiah, Yarlagadda V; Esposito, Giovanni; Lens, Piet N L

    2018-01-05

    Selenium concentrations in the soil environment are directly linked to its transfer in the food chain, eventually causing either deficiency or toxicity associated with several physiological dysfunctions in animals and humans. Selenium bioavailability depends on its speciation in the soil environment, which is mainly influenced by the prevailing pH, redox potential, and organic matter content of the soil. The selenium cycle in the environment is primarily mediated through chemical and biological selenium transformations. Interactions of selenium with microorganisms and plants in the soil environment have been studied in order to understand the underlying interplay of selenium conversions and to develop environmental technologies for efficient bioremediation of seleniferous soils. In situ approaches such as phytoremediation, soil amendment with organic matter and biovolatilization are promising for remediation of seleniferous soils. Ex situ remediation of contaminated soils by soil washing with benign leaching agents is widely considered for removing heavy metal pollutants. However, it has not been applied until now for remediation of seleniferous soils. Washing of seleniferous soils with benign leaching agents and further treatment of Se-bearing leachates in bioreactors through microbial reduction will be advantageous as it is aimed at removal as well as recovery of selenium for potential re-use for agricultural and industrial applications. This review summarizes the impact of selenium deficiency and toxicity on ecosystems in selenium deficient and seleniferous regions across the globe, and recent research in the field of bioremediation of seleniferous soils.

  14. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  15. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    NASA Astrophysics Data System (ADS)

    Gajdosechova, Zuzana; Lawan, Mohammed M.; Urgast, Dagmar S.; Raab, Andrea; Scheckel, Kirk G.; Lombi, Enzo; Kopittke, Peter M.; Loeschner, Katrin; Larsen, Erik H.; Woods, Glenn; Brownlow, Andrew; Read, Fiona L.; Feldmann, Jörg; Krupp, Eva M.

    2016-09-01

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role Se plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 μm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of the bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake.

  16. An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing.

    PubMed

    Mahn, Andrea; Reyes, Alejandro

    2012-12-01

    Broccoli offers many heath-promoting properties owing to its content of antioxidant and anticarcinogenic compounds. The concentration and bioavailability of polyphenols, glucosinolates, sulforaphane and selenium depend on plant biochemistry, cultivation strategy and type of processing. In this article, the main biochemical properties of broccoli are reviewed regarding their health-promoting effects. Additionally, the way these properties are affected by processing is discussed. Steaming and drying result in an apparent increment of sulforaphane content as well as antioxidant activity, most likely due to an increase of the extractability of antioxidants and sulforaphane. Freezing and boiling diminish polyphenols concentration, mainly due to volatilization and leaching into the cooking water. In view of these results, the optimization of broccoli processing in order to maximize the content of bioactive compounds should be possible. The effect of processing on selenium compounds has been poorly studied so far, and therefore this topic should be investigated in the future. Finally, the effect of operating conditions in different drying processes on the content of bioactive compounds in broccoli should be investigated in a greater depth.

  17. Chemical form of selenium affects its uptake, transport, and glutathione peroxidase activity in the human intestinal Caco-2 cell model.

    PubMed

    Zeng, Huawei; Jackson, Matthew I; Cheng, Wen-Hsing; Combs, Gerald F

    2011-11-01

    Determining the effect of selenium (Se) chemical form on uptake, transport, and glutathione peroxidase activity in human intestinal cells is critical to assess Se bioavailability at nutritional doses. In this study, we found that two sources of L-selenomethionine (SeMet) and Se-enriched yeast each increased intracellular Se content more effectively than selenite or methylselenocysteine (SeMSC) in the human intestinal Caco-2 cell model. Interestingly, SeMSC, SeMet, and digested Se-enriched yeast were transported at comparable efficacy from the apical to basolateral sides, each being about 3-fold that of selenite. In addition, these forms of Se, whether before or after traversing from apical side to basolateral side, did not change the potential to support glutathione peroxidase (GPx) activity. Although selenoprotein P has been postulated to be a key Se transport protein, its intracellular expression did not differ when selenite, SeMSC, SeMet, or digested Se-enriched yeast was added to serum-contained media. Taken together, our data show, for the first time, that the chemical form of Se at nutritional doses can affect the absorptive (apical to basolateral side) efficacy and retention of Se by intestinal cells; but that, these effects are not directly correlated to the potential to support GPx activity.

  18. Selenium.

    PubMed

    Barceloux, D G

    1999-01-01

    The 4 natural oxidation states of selenium are elemental selenium (0), selenide (-2), selenite (+4), and selenate (+6). Inorganic selenate and selenite predominate in water whereas organic selenium compounds (selenomethionine, selenocysteine) are the major selenium species in cereal and in vegetables. The principal applications of selenium include the manufacture of ceramics, glass, photoelectric cells, pigments, rectifiers, semiconductors, and steel as well as use in photography, pharmaceutical production, and rubber vulcanizing. High concentrations of selenium in surface and in ground water usually occur in farm areas where irrigation water drains from soils with high selenium content (Kesterson Reservoir, California) or in lakes receiving condenser cooling water from coal-fired electric power plants (Belews Lake, North Carolina). For the general population, the primary pathway of exposure to selenium is food, followed by water and air. Both selenite and selenate possess substantial bioavailability. However, plants preferentially absorb selenates and convert them to organic compounds. Aquatic organisms (e.g., bivalves) can accumulate and magnify selenium in the food chain. Selenium is an essential component of glutathione peroxidase, which is an important enzyme for processes that protect lipids in polyunsaturated membranes from oxidative degradation. Inadequate concentrations of selenium in the Chinese diet account, at least in part, for the illness called Keshan disease. Selenium deficiency occurs in the geographic areas where Balkan nephropathy appears, but there is no direct evidence that selenium deficiency contributes to the development of this chronic, progressive kidney disease. Several lines of scientific inquiry suggest that an increased risk of cancer occurs as a result of low concentrations of selenium in the diet; however, insufficient evidence exists at the present time to recommend the use of selenium supplements for the prevention of cancer. The toxicity of most forms of selenium is low and the toxicity depends on the chemical form of selenium. The acute ingestion of selenious acid is almost invariably fatal, preceded by stupor, hypotension, and respiratory depression. Chronic selenium poisoning has been reported in China where changes in the hair and nails resulted from excessive environmental exposures to selenium. Garlic odor on the breath is an indication of excessive selenium exposure as a result of the expiration of dimethyl selenide. The US National Toxicology Program lists selenium sulfide as an animal carcinogen, but there is no evidence that other selenium compounds are carcinogens.

  19. Biofortification of Cereals With Foliar Selenium and Iodine Could Reduce Hypothyroidism

    PubMed Central

    Lyons, Graham

    2018-01-01

    Concurrent selenium and iodine deficiencies are widespread, in both developing and developed countries. Salt iodisation is insufficient to ensure global iodine adequacy, with an estimated one-third of humanity at risk of hypothyroidism and associated iodine deficiency disorders (IDD). Agronomic biofortification of food crops, especially staples such as cereals, which are consumed widely, may be an effective component of a food system strategy to reduce selenium and iodine malnutrition. Iodine and selenium are needed in the optimum intake range for thyroid health, hence joint biofortification makes sense for areas deficient in both. Foliar application is recommended as the most effective, efficient, least wasteful method for selenium and iodine biofortification. Currently, selenium is easier to increase in grain, fruit, and storage roots by this method, being more phloem mobile than iodine. Nevertheless, strategic timing (around heading is usually best), use of surfactants and co-application with potassium nitrate can increase the effectiveness of foliar iodine biofortification. More research is needed on iodine transporters and iodine volatilisation in plants, bioavailability of iodine in biofortified plant products, and roles for nano selenium and iodine in biofortification. For adoption, farmers need an incentive such as access to a premium functional food market, a subsidy or increased grain yield resulting from possible synergies with co-applied fertilisers, enhancers, fungicides, and insecticides. Further research is needed to inform these aspects of foliar agronomic biofortification.

  20. Deficient selenium status of a healthy adult Spanish population.

    PubMed

    Millán Adame, E; Florea, D; Sáez Pérez, L; Molina López, J; López-González, B; Pérez de la Cruz, A; Planells del Pozo, E

    2012-01-01

    Selenium is an essential micronutrient for human health, being a cofactor for enzymes with antioxidant activity that protect the organism from oxidative damage. An inadequate intake of this mineral has been associated with the onset and progression of chronic diseases such as hypertension, diabetes, coronary diseases, asthma, and cancer. For this reason, knowledge of the plasma and erythrocyte selenium levels of a population makes a relevant contribution to assessment of its nutritional status. The objective of the present study was to determine the nutritional status of selenium and risk of selenium deficiency in a healthy adult population in Spain by examining food and nutrient intake and analyzing biochemical parameters related to selenium metabolism, including plasma and erythrocyte levels and selenium-dependent glutathione peroxidase (GPx) enzymatic activity. We studied 84 healthy adults (31 males and 53 females) from the province of Granada, determining their plasma and erythrocyte selenium concentrations and the association of these levels with the enzymatic activity of glutathione peroxidase (GPx) and with life style factors. We also gathered data on their food and nutrient intake and the results of biochemical analyses. Correlations were studied among all of these variables. The mean plasma selenium concentration was 76.6 ± 17.3 μg/L (87.3 ± 17.4 μg/L in males, 67.3 ± 10.7 μg/L in females), whereas the mean erythrocyte selenium concentration was 104.6 μg/L (107.9 ± 26.1 μg/L in males and 101.7 ± 21.7 μg/L in females). The nutritional status of selenium was defined by the plasma concentration required to reach maximum GPx activity, establishing 90 μg/L as reference value. According to this criterion, 50% of the men and 53% of the women were selenium deficient. Selenium is subjected to multiple regulation mechanisms. Erythrocyte selenium is a good marker of longer term selenium status, while plasma selenium appears to be a marker of short-term nutritional status. The present findings indicate a positive correlation between plasma selenium concentration and the practice of physical activity. Bioavailability studies are required to establish appropriate reference levels of this mineral for the Spanish population.

  1. Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation.

    PubMed

    Prateeksha; Singh, Braj R; Shoeb, M; Sharma, S; Naqvi, A H; Gupta, Vijai K; Singh, Brahma N

    2017-01-01

    Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro . Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery.

  2. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    PubMed

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens.

    PubMed

    Briens, Mickaël; Mercier, Yves; Rouffineau, Friedrich; Vacchina, Veronique; Geraert, Pierre-André

    2013-08-01

    Two experiments were conducted on broiler chickens to compare the effect of a new organic Se source, 2-hydroxy-4-methylselenobutanoic acid (HMSeBA; SO), with two practical Se additives, sodium selenite (SS) and Se yeast (SY). The relative bioavailability of the different Se sources was compared on muscle (pectoralis major) total Se, selenomethionine (SeMet) and selenocysteine (SeCys) concentrations and apparent digestibility of total Se (ADSe). In the first experiment, from day (d) 0 to d21, Se sources were tested at different supplied levels and compared with an unsupplemented diet (NC). No significant effects were observed on growth performance during the experimental period. However, the different Se sources and levels improved muscle Se concentration compared with the NC, with a significant source effect in the following order: SS < SY < SO (P<0·05). Seleno-amino acids speciation results for NC, SY and SO at 0·3 mg Se/kg feed indicated that muscle Se was only present as SeMet or SeCys, showing a full conversion of Se by the bird. The second experiment (d0-d24) compared SS, SY or SO at 0·3 mg Se/kg feed. The ADSe measurements carried out between d20 and d23 were 24, 46 and 49% for SS, SY and SO, respectively, with significant differences between the organic and mineral Se sources (P<0·05). These results confirmed the higher bioavailability of organic Se sources compared with the mineral source and demonstrated a significantly better efficiency of HMSeBA compared with SY for muscle Se enrichment.

  4. Bioavailability of seleno-compounds in the lactating rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.M.; Picciano, M.F.

    Previously the authors reported an increased selenium (Se) requirement for lactating rats of at least 0.2 ppm dietary Se if provided as selenite (SEL). In the present study bioavailability of selenomethionine (SEM), Se yeast (SEY) and SEL was assessed. A casein-based diet (0.025 ppm Se) was fed to 9 groups of 8 rats each during pregnancy to produce a marginal Se deficiency. During lactation each group was fed the same diet containing either 0.1, 0.25, or 0.5 ppm Se as SEL, SEM, or SEY. On day 18 of lactation dams and pups were sacrificed and tissue Se and glutathione peroxidasemore » activities (GPx) determined. Although food intake of the dams and growth of the pups did not vary, selenium and GPx activities were dependent upon quantity and form of Se consumed. Using slope-ratio analysis linear increases in blood, tissue and milk Se content the bioavailabilities were SEM>SEY>SEL. Maximal GPx depended on the form of dietary Se with SEM>SEY>SEL. Maximal GPx occurred at 0.25 ppm dietary Se as SEM and SEY, but did not reach this activity when fed at 0.5 ppm Se as SEL. These results indicate that regardless of form, the NRC requirement for growing rats of 0.1 ppm Se, is not adequate during lactation to maintain maximum tissue GSH-Px in nursing pups. Based on higher tissue Se in dams and GPx in nursing pups the bioavailability of dietary Se to the lactating rat is greater when fed as SEM and SEY than as SEL.« less

  5. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  6. Total selenium concentrations in canine and feline foods commercially available in New Zealand.

    PubMed

    Simcock, S E; Rutherford, S M; Wester, T J; Hendriks, W H

    2005-02-01

    To determine the total selenium concentrations in petfoods commercially available in New Zealand and to establish whether these meet the current minimum recommended requirements of selenium in foods for cats and dogs. Samples (n=89) from petfoods commercially available in New Zealand were analysed for total selenium concentration using a fluorometric method. Data, expressed on a dry matter (DM) basis, were analysed according to petfood type (dog or cat, and wet or dry), predominant flavour (chicken, seafood, chicken and seafood, beef, meat mix, other), manufacturer and country of manufacture. Fifty percent of petfoods purchased for this study were manufactured in Australia, and the remainder were produced in the United States of America (USA), New Zealand or Thailand. Mean total selenium concentrations were similar (0.61-0.80 mg/kg DM) in petfoods produced in Australia, New Zealand and the USA, but higher (mean 3.77 mg/kg DM; p<0.05) in petfoods produced in Thailand. Petfoods produced in Australia, New Zealand and the USA contained a variety of predominant flavours, whereas petfoods from Thailand contained only seafood flavour. Seafood-based flavours had the highest selenium concentrations in both cat and dog foods. Wet and dry dog foods had similar concentrations of selenium to dry cat foods, but wet cat foods had higher and more variable concentrations of selenium than these others (p<0.05). The mean selenium concentrations in cat and dog foods were 1.14 and 0.40 mg/kg DM, respectively, and there were no significant differences between manufacturers. Selenium concentrations in commercial petfoods sold in New Zealand appeared to meet recommended dietary requirements, although the range of concentrations was highly variable. Whether these recommendations are adequate for the maintenance of optimal health in cats and dogs has yet to be determined. Overt selenium deficiency disorders are unlikely in dogs and cats in New Zealand fed commercial petfoods unless the bioavailability of selenium in particular petfoods is low.

  7. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds

    USDA-ARS?s Scientific Manuscript database

    Common bean (Phaseolus vulgaris) is the most important legume crop. It represents a major source of micronutrients and has been targeted for essential trace mineral enhancement (i.e. biofortification). The aim of the study was to investigate whether it is possible to biofortify seeds with multi-micr...

  8. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota

    PubMed Central

    Kasaikina, Marina V.; Kravtsova, Marina A.; Lee, Byung Cheon; Seravalli, Javier; Peterson, Daniel A.; Walter, Jens; Legge, Ryan; Benson, Andrew K.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Colonization of the gastrointestinal tract and composition of the microbiota may be influenced by components of the diet, including trace elements. To understand how selenium regulates the intestinal microflora, we used high-throughput sequencing to examine the composition of gut microbiota of mice maintained on selenium-deficient, selenium-sufficient, and selenium-enriched diets. The microbiota diversity increased as a result of selenium in the diet. Specific phylotypes showed differential effects of selenium, even within a genus, implying that selenium had unique effects across microbial taxa. Conventionalized germ-free mice subjected to selenium diets gave similar results and showed an increased diversity of the bacterial population in animals fed with higher levels of selenium. Germ-free mice fed selenium diets modified their selenoproteome expression similar to control mice but showed higher levels and activity of glutathione peroxidase 1 and methionine-R-sulfoxide reductase 1 in the liver, suggesting partial sequestration of selenium by the gut microorganisms, limiting its availability for the host. These changes in the selenium status were independent of the levels of other trace elements. The data show that dietary selenium affects both composition of the intestinal microflora and colonization of the gastrointestinal tract, which, in turn, influence the host selenium status and selenoproteome expression.—Kasaikina, M. V., Kravtsova, M. A., Lee, B. C., Seravalli, J., Peterson, D. A., Walter, J., Legge, R., Benson, A. K., Hatfield, D. L., Gladyshev, V. N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. PMID:21493887

  9. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils.

    PubMed

    Li, Jun; Peng, Qin; Liang, Dongli; Liang, Sijie; Chen, Juan; Sun, Huan; Li, Shuqi; Lei, Penghui

    2016-02-01

    Aging refers to the processes by which the mobility and bioavailability of metals in soil decline with time. Although long-term aging is a key process that needs to be considered in risk assessment of metals, few investigations has been attempted to determine whether and how residence time influences the selenium (Se) fractions and bioavailability in soil. In this study, the fractions of Se in soils was evaluated, and bioavailability were assessed by measuring Se concentration in pak choi (Brassica chinensis L.). Results showed that the change of soil available Se in all tested soils divided into two phases: rapid decrease at the initial time (42 d) and slow decline thereafter. The second-order equation could describe the decrease processes of available Se in tested soils during the entire incubation time (R(2) > 0.99), while parabolic diffusion equation had less goodness of fit. Those results indicated that Se aging was controlled not only by diffusion process but also by other processes such as nucleation/precipitation, adsorption/desorption with soil component, occlusion by organic matter and reduction reaction. Soil available Se fractions tended to transform to more stable fractions during aging. The changes of Se concentration in pak choi were consistent with the variation in soil available Se content. In addition, 21 d could be reference for the time of Se aging reaching stabilization in krasnozems and fluvo-aquic soil, and 30 d for black soil. Results could provide theoretical basis to formulate environmental quality criterion and choose the equilibrium time before implementing a pot experiment in Se-spiked soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Selection of superior salt/boron tolerant Stanleya pinnata genotypes and quantification of their selenium phytoremediation abilities in drainage sediment.

    USDA-ARS?s Scientific Manuscript database

    The semi-metallic mineral Se, a naturally-occurring trace element, is primarily found as selenate originating from sedimentary and shale rock formations, e.g., in the western side of the San Joaquin Valley of central California (WSJV). Because selenate-Se is water soluble, bioavailable and biomagnif...

  11. Macro- and microscale investigation of selenium speciation in Blackfoot river, Idaho sediments.

    PubMed

    Oram, Libbie L; Strawn, Daniel G; Marcus, Matthew A; Fakra, Sirine C; Möller, Gregory

    2008-09-15

    The transport and bioavailability of selenium in the environment is controlled by its chemical speciation. However, knowledge of the biogeochemistry and speciation of Se in streambed sediment is limited. We investigated the speciation of Se in sediment cores from the Blackfoot River (BFR), Idaho using sequential extractions and synchrotron-based micro-X-ray fluorescence (micro-SXRF). We collected micro-SXRF oxidation state maps of Se in sediments, which had not been done on natural sediment samples. Selective extractions showed that most Se in the sediments is present as either (1) nonextractable Se or (2) base extractable Se. Results from micro-SXRF showed three defined species of Se were present in all four samples: Se(-II,O), Se(IV), and Se(VI). Se(-II,O) was the predominant species in samples from one location, and Se(IV) was the predominant species in samples from a second location. Results from both techniques were consistent, and suggested that the predominant species were Se(-II) species associated with recalcitrant organic matter, and Se(IV) species tightly bound to organic materials. This information can be used to predict the biogeochemical cycling and bioavailability of Se in streambed sediment environments.

  12. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats.

    PubMed

    Shi, Li-guang; Yang, Ru-jie; Yue, Wen-bin; Xun, Wen-juan; Zhang, Chun-xiang; Ren, You-she; Shi, Lei; Lei, Fu-lin

    2010-04-01

    The objective of this experiment is to study the effects of novel elemental nano-selenium in the diet on testicular ultrastructure, semen quality and GSH-Px activity in male goats. Forty-two 2-month-old bucks were offered a total mixed ration which had been supplemented with nano-Se (0.3mg/kg Se) or unsupplemented (the control group only received 0.06mg/kg Se-background), for a period of 12 weeks (from weaning to sexual maturity). Results showed that the testicular Se level, semen glutathione peroxidase and ATPase activity increased significantly in the nano-Se supplementation group compared with control (P<0.05). The semen quality (volume, density, motility and pH) was not affected by added Se in diets, however, the sperm abnormality rate of control bucks was significantly higher than Se supplemented bucks (P<0.05). The testes of 5 goats in each group were examined by transmission electron microscopy (TEM), and showed that in Se-deficient bucks the membrane was damaged, and showed the occurrence of abnormalities in the mitochondria of the midpiece of spermatozoa. In conclusion, selenium deficiency resulted in abnormal spermatozoal mitochondria, and supplementation with nano-Se enhanced the testis Se content, testicular and semen GSH-Px activity, protected the membrane system integrity and the tight arrayment of the midpiece of the mitochondria. Further studies are required to research the novel elemental nano-Se with characterization of bioavailability and toxicity in small ruminants. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  14. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy.

    PubMed

    Yang, Soo In; George, Graham N; Lawrence, John R; Kaminskyj, Susan G W; Dynes, James J; Lai, Barry; Pickering, Ingrid J

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se 0 ). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se 0 using the Se L III edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se 0 nanoparticles. The intimate association of Se 0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  15. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Soo In; George, Graham N.; Lawrence, John R.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to themore » same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.« less

  16. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate

    PubMed Central

    Kok, Dieuwertje E.G.; Kiemeney, Lambertus A.L.M.; Verhaegh, Gerald W.; Schalken, Jack A.; van Lin, Emile N.J.T.; Michiel Sedelaar, J.P.; Alfred Witjes, J.; Hulsbergen - van de Kaa, Christina A.; van't Veer, Pieter; Kampman, Ellen; Afman, Lydia A.

    2017-01-01

    In parallel with the inconsistency in observational studies and chemoprevention trials, the mechanisms by which selenium affects prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled trial to examine the effects of a short-term intervention with selenium on gene expression in non-malignant prostate tissue. Twenty-three men received 300 μg selenium per day in the form of selenized yeast (n=12) or a placebo (n=11) during 5 weeks. Prostate biopsies collected from the transition zone before and after intervention were analysed for 15 participants (n=8 selenium, n=7 placebo). Pathway analyses revealed that the intervention with selenium was associated with down-regulated expression of genes involved in cellular migration, invasion, remodeling and immune responses. Specifically, expression of well-established epithelial markers, such as E-cadherin and epithelial cell adhesion molecule EPCAM, was up-regulated, while the mesenchymal markers vimentin and fibronectin were down-regulated after intervention with selenium. This implies an inhibitory effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium was associated with down-regulated expression of genes involved in wound healing and inflammation; processes which are both related to EMT. In conclusion, our explorative data showed that selenium affected expression of genes implicated in EMT in the transition zone of the prostate. PMID:28076331

  17. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate.

    PubMed

    Kok, Dieuwertje E G; Kiemeney, Lambertus A L M; Verhaegh, Gerald W; Schalken, Jack A; van Lin, Emile N J T; Sedelaar, J P Michiel; Witjes, J Alfred; Hulsbergen-van de Kaa, Christina A; van 't Veer, Pieter; Kampman, Ellen; Afman, Lydia A

    2017-02-07

    In parallel with the inconsistency in observational studies and chemoprevention trials, the mechanisms by which selenium affects prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled trial to examine the effects of a short-term intervention with selenium on gene expression in non-malignant prostate tissue. Twenty-three men received 300 µg selenium per day in the form of selenized yeast (n=12) or a placebo (n=11) during 5 weeks. Prostate biopsies collected from the transition zone before and after intervention were analysed for 15 participants (n=8 selenium, n=7 placebo). Pathway analyses revealed that the intervention with selenium was associated with down-regulated expression of genes involved in cellular migration, invasion, remodeling and immune responses. Specifically, expression of well-established epithelial markers, such as E-cadherin and epithelial cell adhesion molecule EPCAM, was up-regulated, while the mesenchymal markers vimentin and fibronectin were down-regulated after intervention with selenium. This implies an inhibitory effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium was associated with down-regulated expression of genes involved in wound healing and inflammation; processes which are both related to EMT. In conclusion, our explorative data showed that selenium affected expression of genes implicated in EMT in the transition zone of the prostate.

  18. Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

    PubMed

    Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus

    2014-07-15

    A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  20. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China.

    PubMed

    Xu, Yuefeng; Li, Yonghua; Li, Hairong; Wang, Li; Liao, Xiaoyong; Wang, Jing; Kong, Chang

    2018-08-15

    Selenium (Se) is an essential trace element for humans. In order to investigate how soil Se is influenced by topography and soil properties, we selected Yongjia County, an area with mountainous topography, as a study area. This study used cultivated soil data to comprehensively analyze the effects of topography and soil properties on Se mobility and bioavailability and to identify the key factors influencing Se distribution in the environment. Factors considered in this study were elevation, slope, topographic wetness index, the coefficient of weathering and eluviation, pH, organic matter, and Fe 2 O 3 . The concentration of total soil Se (0.382±0.123mgkg -1 ) was far higher than the background value of soil in China, and 98% of the soil samples were classified as having moderate Se levels (>0.175mgkg -1 ), indicating Yongjia County is a Se-rich region in China. Phosphate extracted Se accounted for an average of 9% of the total Se and was significantly associated with soil total Se, Fe 2 O 3 , pH, and the coefficient of weathering and eluviation. Fe 2 O 3 primarily controlled Se adsorption, fixation, and availability in soil. Under the geo-environmental conditions in the study area, the total Se in the soil increased first and then decreased with increases in elevation, slope, and the topographic wetness index, and the phosphate extracted Se showed similar patterns except for the elevation. The findings showed that topographical attributes and soil physicochemical properties synthetically influenced the distribution and bioavailability of Se in soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus)

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.

    2002-01-01

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 μg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 μg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.

  2. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus).

    PubMed

    Hamilton, Steven J; Holley, Kathleen M; Buhl, Kevin J

    2002-05-27

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 microg/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 microg/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers.

  3. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic:50% organic) forms of dietary selenium.

    PubMed

    Matthews, James C; Zhang, Zhi; Patterson, Jennifer D; Bridges, Phillip J; Stromberg, Arnold J; Boling, J A

    2014-09-01

    Selenium (Se) is an important trace mineral that, due to deficiencies in the soil in many parts of the USA, must be supplemented directly to the diet of foraging cattle. Both organic and inorganic forms of dietary Se supplements are available and commonly used, and it is known that Se form affects tissue assimilation, bioavailability, and physiological responses. However, little is known about the effects of form of dietary Se supplements on gene expression profiles, which ostensibly account for Se form-dependent physiological processes. To determine if hepatic transcriptomes of growing beef (Angus-cross) heifers (0.5 kg gain/day) was altered by form of dietary supplemental Se, none (Control), or 3 mg Se/day as inorganic Se (ISe, sodium selenite), organic (OSe, Sel-Plex®), or a blend of ISe and OSe (1.5 mg:1.5 mg, Mix) Se was fed for 168 days, and the RNA expression profiles from biopsied liver tissues was compared by microarray analysis. The relative abundance of 139 RNA transcripts was affected by Se treatment, with 86 of these with complete gene annotations. Statistical and bioinformatic analysis of the annotated RNA transcripts revealed clear differences among the four Se treatment groups in their hepatic expression profiles, including (1) solely and commonly affected transcripts; (2) Control and OSe profiles being more similar than Mix and ISe treatments; (3) distinct OSe-, Mix-, and ISe-Se treatment-induced "phenotypes" that possessed both common and unique predicted physiological capacities; and (4) expression of three microRNAs were uniquely sensitive to OSe, ISe, or Mix treatments, including increased capacity for redox potential induced by OSe and Mix Se treatments resulting from decreased expression of MiR2300b messenger RNA. These findings indicate that the form of supplemental dietary Se consumed by cattle will affect the composition of liver transcriptomes resulting, presumably, in different physiological capacities.

  4. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata).

    PubMed

    Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J

    2015-12-01

    Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.

  5. Pulque, an alcoholic drink from rural Mexico, contains phytase. Its in vitro effects on corn tortilla.

    PubMed

    Tovar, Luis Raul; Olivos, Manuel; Gutierrez, Ma Eugenia

    2008-12-01

    Pulque is made by fermenting the agave sap or aguamiel of Agave atrovirens with a whole array of microorganisms present in the environment including several lactic acid bacteria and yeasts such as Saccharomyces cerevisiae. Ascorbic acid was determined in pulque and aguamiel, respectively. Phytase activity in lees, liquid and freeze-dried pulque was assayed by measuring the appearance of phosphate from phytate by a colorimetric method likewise phosphate from phytate present in fresh corn tortilla was measured after in vitro incubation with pulque. Iron, zinc, calcium, magnesium and selenium contents were measured in pulque and corn tortilla as well as in nixtamalized corn flour (NCF), the latter is used to make instant tortilla, since corn provides most of the energy as well as most of the phytate in the Mexican rural diet. Pulque showed phytase activity but much less ascorbic acid and iron than previously reported; additionally, phytase in pulque hydrolyzed most of phytate's corn tortilla. Lees, which is mostly made of pulque's microbiota, significantly accumulated iron and zinc but no selenium. NCF was fortified with iron by the manufacturers but poorly blended. There were significant differences on selenium content between tortillas samples, apparently some soils in central Mexico are selenium deficient. Moderate pulque intake appears to increase the bioavailability of iron and zinc bound by phytate in corn.

  6. Translational Redefinition of UGA Codons Is Regulated by Selenium Availability*

    PubMed Central

    Howard, Michael T.; Carlson, Bradley A.; Anderson, Christine B.; Hatfield, Dolph L.

    2013-01-01

    Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. PMID:23696641

  7. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna; Kot, Anna M

    2018-04-19

    This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.

  8. In vitro selenium accessibility in pet foods is affected by diet composition and type.

    PubMed

    van Zelst, Mariëlle; Hesta, Myriam; Alexander, Lucille G; Gray, Kerry; Bosch, Guido; Hendriks, Wouter H; Du Laing, Gijs; De Meulenaer, Bruno; Goethals, Klara; Janssens, Geert P J

    2015-06-28

    Se bioavailability in commercial pet foods has been shown to be highly variable. The aim of the present study was to identify dietary factors associated with in vitro accessibility of Se (Se Aiv) in pet foods. Se Aiv is defined as the percentage of Se from the diet that is potentially available for absorption after in vitro digestion. Sixty-two diets (dog, n 52; cat, n 10) were in vitro enzymatically digested: fifty-four of them were commercially available (kibble, n 20; pellet, n 8; canned, n 17; raw meat, n 6; steamed meat, n 3) and eight were unprocessed (kibble, n 4; canned, n 4) from the same batch as the corresponding processed diets. The present investigation examined if Se Aiv was affected by diet type, dietary protein, methionine, cysteine, lysine and Se content, DM, organic matter and crude protein (CP) digestibility. Se Aiv differed significantly among diet types (P< 0·001). Canned and steamed meat diets had a lower Se Aiv than pelleted and raw meat diets. Se Aiv correlated positively with CP digestibility in extruded diets (kibbles, n 19; r 0·540, P =0·017) and negatively in canned diets (n 16; r - 0·611, P =0·012). Moreover, the canning process (n 4) decreased Se Aiv (P =0·001), whereas extrusion (n 4) revealed no effect on Se Aiv (P =0·297). These differences in Se Aiv between diet types warrant quantification of diet type effects on in vivo Se bioavailability.

  9. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population.

    PubMed

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik; Debrabant, Birgit; Nybo, Mads; Cold, Søren; Hegedüs, Laszlo

    2015-06-01

    Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake. The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast or matching yeast-based placebo tablets (n=126). A total of 361 participants, equally distributed across treatment groups, completed the 5-year intervention period. Plasma samples were analyzed for selenium and serum samples for TSH, free triiodothyronine (FT3), and free thyroxine (FT4) at baseline, and after 6 months, and 5 years of supplementation. Plasma selenium concentrations increased significantly and dose-dependently in treatment groups receiving selenium (P<0.001). Serum TSH and FT4 concentrations decreased significantly and dose-dependently by 0.066 mIU/l (P=0.010) and 0.11 pmol/l (P=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared with placebo, by decreasing serum TSH and FT4 concentrations. Based on these findings, selenium supplementation is not warranted under conditions of marginal selenium deficiency. However, a role for selenium supplementation in the treatment of autoimmune thyroid diseases is still unresolved. © 2015 European Society of Endocrinology.

  10. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is following the sequence Zn > Pb > Cu > Cd, while the bioavailable fractions were considerably lower and their sequence was as follows: Cd > Cu > Pb > Zn. Higher proportions of mobile fractions of metals were detected in samples taken from soils with acidic pH. Acknowledgments: This paper is a result of a post-doctoral research made possible by the financial support of the Sectorial Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/159/1.5/S/133391 - "Doctoral and postdoctoral excellence programs for training highly qualified human resources for research in the fields of Life Sciences, Environment and Earth".

  11. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks.

    PubMed

    Zhao, Ling; Sun, Lv-Hui; Huang, Jia-Qiang; Briens, Mickael; Qi, De-Sheng; Xu, Shi-Wen; Lei, Xin Gen

    2017-05-01

    Background: A new organic selenium compound, 2-hydroxy-4-methylselenobutanoic acid (SeO), displayed a greater bioavailability than sodium selenite (SeNa) or seleno-yeast (SeY) in several species. Objective: This study sought to determine the regulation of the speciation of selenium, expression of selenogenome and selenocysteine biosynthesis and degradation-related genes, and production of selenoproteins by the 3 forms of selenium in the tissues of broiler chicks. Methods: Day-old male chicks ( n = 6 cages/diet, 6 chicks/cage) were fed a selenium-deficient, corn and soy-based diet [base diet (BD), 0.05 mg Se/kg] or the BD + SeNa, SeY, or SeO at 0.2 mg Se/kg for 6 wk. Plasma, livers, and pectoral and thigh muscles were collected at weeks 3 and 6 to assay for total selenium, selenomethionine, selenocysteine, redox status, and selected genes, proteins, and enzymes. Results: Although both SeY and SeO produced greater concentrations ( P < 0.05) of total selenium (20-172%) and of selenomethionine (≤15-fold) in the liver, pectoral muscle, and thigh than those of SeNa, SeO further raised ( P < 0.05) these concentrations by 13-37% and 43-87%, respectively, compared with SeY. Compared with the BD, only SeO enhanced ( P < 0.05) the mRNA of selenoprotein ( Seleno ) s and methionine sulfoxide reductase B1 ( Msrb1 ) in the liver and thigh (62-98%) and thioredoxin reductase (TXRND) activity in the pectoral and thigh muscles (20-37%) at week 3. Furthermore, SeO increased ( P < 0.05) the expression of glutathione peroxidase ( Gpx ) 3 , GPX4, SELENOP, and SELENOU relative to the SeNa group by 26-207%, and the expression of Selenop, O-phosphoseryl-transfer RNA (tRNA):selenocysteinyl-tRNA synthase , GPX4, and SELENOP relative to the SeY group by 23-55% in various tissues. Conclusions: Compared with SeNa or SeY, SeO demonstrated a unique ability to enrich selenomethionine and total selenium depositions, to induce the early expression of Selenos and Mrsb1 mRNA and TXRND activity, and to enhance the protein production of GPX4, SELENOP, and SELENOU in the tissues of chicks. © 2017 American Society for Nutrition.

  12. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    USGS Publications Warehouse

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.; Zawislanski, P.T.

    1999-01-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. We report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are needed to confirm this preliminary assessment. We have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields ??0.2??? precision on 80Se/76Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 ??g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.

  13. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.

    1999-09-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. The authors report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are neededmore » to confirm this preliminary assessment. The authors have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields {+-}0.2% precision on {sup 80}Se/{sup 76}Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 {micro}g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.« less

  14. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs.

    PubMed

    Calvo, Luis; Toldrá, Fidel; Rodríguez, Ana I; López-Bote, Clemente; Rey, Ana I

    2017-01-01

    This study evaluates the effect of organic (Se-enriched yeast; SeY) versus inorganic selenium (sodium selenite; SeS) supplementation and the different response of selenium source according to muscle pH on pork meat quality characteristics. Pigs ( n  = 30) were fed the Se-supplemented diets (0.3 mg/kg) for 65 days. Neither electric conductivity (EC) nor drip loss were affected by the selenium source. The SeY group had lower TBARS in muscle samples after day 7 of refrigerated storage and higher a * values on days 1 and 7 than the SeS group. The effect of dietary selenium source on some meat quality characteristics was affected by muscle pH. Hence, as the muscle pH increases, the drip loss decreases but this effect is more marked with the dietary organic Se enrichment. Muscle pH seems to modulate the action of selenium in pork, especially some meat characteristics such as drip loss.

  15. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se, especially in low phosphate regimes such as oligotrophic waters and late stage phytoplankton blooms.

  16. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats.

    PubMed

    Jia, X; Li, N; Chen, J

    2005-03-11

    The subchronic toxicity of Nano-Se was compared with selenite and high-selenium protein in rats. Groups of Sprague-Dawley rats (12 males and 12 females per group) were fed diets containing Nano-Se, selenite and high-selenium protein at concentrations of 0, 2, 3, 4 and 5 ppm Se, respectively, for 13 weeks. Clinical observations were made and body weight and food consumption were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry determination. Histopathological examination was performed on selected tissues. At the two higher doses (4 and 5 ppm Se), significant abnormal changes were found in body weight, hematology, clinical chemistry, relative organ weights and histopathology parameters. However, the toxicity was more pronounced in the selenite and high-selenium protein groups than the Nano-Se group. At the dose of 3 ppm Se, significant growth inhibition and degeneration of liver cells were found in the selenite and high-selenium protein groups. No changes attributable to administration of Nano-Se at the dose of 3 ppm Se were found. Taken together, the no-observed-adverse-effect level (NOAEL) of Nano-Se in male and female rats was considered to be 3 ppm Se, equivalent to 0.22 mg/kg bw/day for males and 0.33 mg/kg bw/day for females. On the other hand, the NOAELs of selenite and high-selenium protein in males and females were considered to be 2 ppm Se, equivalent to 0.14 mg/kg bw/day for males and 0.20 mg/kg bw/day for females. In addition, studies have shown that Nano-Se has a similar bioavailability in rat, and much less acute toxicity in mice compared with selenite. In conclusion, Nano-Se is less toxic than selenite and high-selenium protein in the 13-week rat study.

  17. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNear, Jr., David H.; Afton, Scott E.; Caruso, Joseph A.

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Semore » is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a 'background' of methylselenocysteine within the root with discrete spots of SeO{sub 3}{sup 2-}, Se{sup 0} and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(II) selenide species. Together with the formation of the root-bound mercury(II) selenide species, we also report on the formation of cinnabar (HgS) and Hg{sup 0} in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.« less

  18. In vivo formation of natural HgSe nanoparticles in the liver and ...

    EPA Pesticide Factsheets

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role SE plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 µm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake. We investigated in vivo formation of natural HgSe particles in a pod of stranded long-finned pilot whales (Globicephala melas), with age of the animal and the potency of the environmentally relevant dose of dietary MeHg to disrupt the Se-proteins synthesis. This has been previously investigated despite the substantial indications of the interaction between Hg and Se, and therefore we conducted a multi-method analytical approach on brain and liv

  19. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles.

    PubMed

    Gao, Fuping; Yuan, Qing; Gao, Liang; Cai, Pengju; Zhu, Huarui; Liu, Ru; Wang, Yaling; Wei, Yueteng; Huang, Guodong; Liang, Jian; Gao, Xueyun

    2014-10-01

    Although chemotherapeutic drugs are widely applied for clinic tumor treatment, severe toxicity restricts their therapeutic efficacy. In this study, we reported a new form of selenium, selenium nanoparticles (Nano Se) which have significant lower toxicity and acceptable bioavailability. We investigated Nano Se as chemotherapy preventive agent to protect against toxicities of anticancer drug irinotecan and synergistically enhance the anti-tumor treatment effect in vitro and in vivo. The underlying mechanisms were also investigated. The combination of Nano Se and irinotecan showed increased cytotoxic effect with HCT-8 tumor cells likely by p53 mediated apoptosis. Nano Se inhibited growth of HCT-8 tumor cells partially through caspases mediated apoptosis. In vivo experiment showed Nano Se at a dose of 4 mg/kg/day significantly alleviated adverse effects induced by irinotecan (60 mg/kg) treatment. Nano Se alone treatment did not induce any toxic manifestations. The combination of Nano Se and irinotecan dramatically inhibited tumor growth and significantly induced apoptosis of tumor cells in HCT-8 cells xenografted tumor. Tumor inhibition rate was about 17.2%, 48.6% and 62.1% for Nano Se, irinotecan and the combination of Nano Se and irinotecan, respectively. The beneficial effects of Nano Se for tumor therapy were mainly ascribed to selectively regulating Nrf2-ARE (antioxidant responsive elements) pathway in tumor tissues and normal tissues. Our results suggest Nano Se is a promising selenium species with potential application in cancer treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Roles and potential mechanisms of selenium in countering thyrotoxicity of DEHP.

    PubMed

    Zhang, Pei; Guan, Xie; Yang, Min; Zeng, Li; Liu, Changjiang

    2018-04-01

    Di-(2-ethylhexyl) phthalate (DEHP) as a ubiquitous environmental contaminant could disturb thyroid hormone (TH) homeostasis. Selenium as an essential trace element has protective effects on thyroids. To verify roles of selenium in countering thyrotoxicity of DEHP and elucidate potential mechanisms, Sprague-Dawley rats and Nthy-ori 3-1 cells were treated with DEHP or/and selenomethionine (SeMet). Results showed that selenium supplementation elevated plasma free thyroxine (FT4) that was decreased by DEHP, and free triiodothyronine (FT3) and thyroid stimulating hormone (TSH) levels were also partially recovered. DEHP-caused histopathologic changes were ameliorated after selenium supplementation, as indicated by recovered thyroid follicular epithelial cell numbers and cavity diameters. DEHP disrupted the redox equilibrium, causing depletions of SOD, GPx1, GPx3, and TxnRd, and accumulations of MDA. Nevertheless, selenium supplementation effectively improved the redox status. DEHP affected biosynthesis, biotransformation, biotransport, and metabolism of THs, as well as thyrotropin releasing hormone receptor (TRHr) levels. Plasma selenium, thyroid peroxidase (TPO), deiodinase 1 (Dio1), and transthyretin (TTR) were downregulated, while Dio3, Ugt1a1, Sult1e1, CYP2b1, CYP3a1, and TRHr were upregulated by DEHP. However, selenium supplementation led to elevations of selenium, Dio1 and TTR, and reductions of Ugt1a1, Sult1e1, CYP2b1, and TRHr. TPO, Dio3, and CYP3a1 were not significantly affected by selenium supplementation. Taken together, selenium could ameliorate DEHP-caused TH dyshomeostasis via modulations of the redox status, Dio1, TTR, TRHr, and hepatic enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Selenium deficiency and the effects of supplementation on preterm infants

    PubMed Central

    Freitas, Renata Germano B. O. N.; Nogueira, Roberto José N.; Antonio, Maria Ângela R. G. M.; Barros-Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: This study aimed to review the literature about blood concentrations of selenium associated with gestational age, feeding, supplementation and related clinical features in preterm infants. Data sources: Systematic review in the following databases: MEDLINE, PubMed, Google academics, SciELO. org, ScienceDirect (Elsevier) and CINAHL-Plus with Full Text (EBSCO). Articles published up to January 2013 with the keywords "selenium deficiency", "selenium supplementation", "neonates", "infants", "newborn" and "preterm infants" were selected. Data synthesis: The studies reported that low blood selenium levels are associated with increased risk of respiratory diseases. Preterm infants, especially with low birth weight, presented lower selenium levels. Selenium deficiency has also been associated with the use of oral infant formula, enteral and parenteral nutrition (with or without selenium addition). The optimal dose and length of selenium supplementation is not well-established, since they are based only on age group and selenium ingestion by breastfed children. Furthermore, the clinical status of the infant affected by conditions that may increase oxidative stress, and consequently, selenium requirements is not taken into account. Conclusions: Prematurity and low birth weight can contribute to low blood selenium in premature infants. Selenium supplementation seems to minimize or prevent clinical complications caused by prematurity. PMID:24676200

  2. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  3. Maternal-fetal transfer of selenium in the mouse.

    PubMed

    Burk, Raymond F; Olson, Gary E; Hill, Kristina E; Winfrey, Virginia P; Motley, Amy K; Kurokawa, Suguru

    2013-08-01

    Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.

  4. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa).

    PubMed

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-08-01

    Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. The high Se treatment (5 μg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Effects of Dietary Selenium and Vitamin E on Growth Performance, Meat Yield, and Selenium Content and Lipid Oxidation of Breast Meat of Broilers Reared Under Heat Stress.

    PubMed

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi

    2016-01-01

    This study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125, and 250 mg/kg), selenium (0, 0.5, and 1 mg/kg), or their different combinations on performance, meat yield, and selenium content and lipid oxidation of breast meat of broilers raised under either a thermoneutral (TN, 24 °C constant) or heat stress (HS, 24 to 37 °C cycling) condition. There was a reduction (P < 0.05) in body weight and feed intake and an increase (P < 0.05) in feed conversion ratio when broilers exposed to HS. In the overall period of the study (1 to 49 days), growth performance of TN broilers was not affected (P < 0.05) by vitamin E and selenium supplementation. However, under HS condition, broilers receiving 250 mg/kg vitamin E and 0.5 mg/kg selenium consumed more (P < 0.05) feed than that of broilers receiving 250 mg/kg vitamin E alone, but similar (P > 0.05) to that of broilers receiving 250 mg/kg vitamin E and 1 mg/kg selenium. The malondialdehyde (MDA) content of the breast meat was increased (P < 0.05), but its selenium content was decreased (P < 0.05) by exposure to HS. The breast meat selenium content was increased (P < 0.05) by selenium supplementation. The breast meat selenium content was decreased (P < 0.05) by supplementation of 250 mg/kg vitamin E to diet of TN birds. However, the breast meat selenium content was increased (P < 0.05) by supplementation of vitamin E under HS condition. The breast meat MDA content was not affected (P > 0.05) by dietary treatments under TN condition. However, the breast meat MDA content was decreased (P < 0.05) by both vitamin E and selenium supplementation under HS condition, and the lowest MDA content was observed in the breast meat of broilers receiving combination of 125 mg/kg vitamin E and 1 mg/kg selenium. The results showed that supplementation of selenium and vitamin E was capable of increasing the selenium content of the breast meat and could improve the lipid oxidation of the breast meat when broilers reared under HS condition.

  6. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.

    PubMed

    El-Ghazaly, M A; Fadel, N; Rashed, E; El-Batal, A; Kenawy, S A

    2017-02-01

    Selenium (Se) has been reported to possess anti-inflammatory properties, but its bioavailability and toxicity are considerable limiting factors. The present study aimed to investigate the possible anti-inflammatory and analgesic effects of selenium nanoparticles (Nano-Se) on inflammation induced in irradiated rats. Paw volume and nociceptive threshold were measured in carrageenan-induced paw edema and hyperalgesia model. Leukocytic count, tumor necrosis factor-α (TNF-α), prostaglandin E 2 (PGE 2 ), thiobarbituric acid reactive substances (TBAR), and total nitrate/nitrite (NOx) were estimated in the exudate collected from 6 day old air pouch model. Irradiated rats were exposed to 6 Gy gamma (γ)-irradiation. Nano-Se were administered orally in a dose of 2.55 mg/kg once before carrageenan injection in the first model and twice in the second model. The paw volume but not the nociceptive response produced by carrageenan in irradiated rats was higher than that induced in non-irradiated rats. Nano-Se were effective in reducing the paw volume in non-irradiated and irradiated rats but it did not alter the nociceptive threshold. The inflammation induced in irradiated rats increased all the estimated parameters in the exudate whereas; Nano-Se decreased their elevation in non-irradiated and irradiated rats. Nano-Se possess a potential anti-inflammatory activity on inflammation induced in irradiated rats.

  7. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed.

  8. Selenium in mainstream and sidestream smoke of cigarettes containing fly ash-grown tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Lisk, D.J.; Shane, B.S.

    The quantities of selenium, tar and nicotine present in mainstream (MS) and sidestream (SS) smoke of machine-smoked cigarettes was studied. The cigarettes were prepared from tobacco purposely cultured on fly ash-amended soil so as to increase its selenium concentration. Selenium concentration was found to be the same in the gaseous phase of both MS and SS smoke, but its concentration was significantly higher (p less than 0.05) in the particulate matter of the MS smoke. Tar was higher in MS smoke and nicotine in SS smoke. Factors affecting selenium concentrations in tobacco and its possible environmental significance are discussed.

  9. Maternal-fetal transfer of selenium in the mouse

    PubMed Central

    Burk, Raymond F.; Olson, Gary E.; Hill, Kristina E.; Winfrey, Virginia P.; Motley, Amy K.; Kurokawa, Suguru

    2013-01-01

    Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.—Burk, R. F., Olson, G. E., Hill, K. E., Winfrey, V. P., Motley, A. K., and Kurokawa, S. Maternal-fetal transfer of selenium in the mouse. PMID:23651543

  10. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    PubMed Central

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new insight into the impact of selenium on green algae, especially with regard to its toxicity and bioaccumulation. PMID:19445666

  11. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.

    PubMed

    Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L

    2015-04-01

    Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Acute selenium toxicosis in polo ponies.

    PubMed

    Desta, Belainesh; Maldonado, Gizela; Reid, Herman; Puschner, Birgit; Maxwell, James; Agasan, Alice; Humphreys, Leigh; Holt, Thomas

    2011-05-01

    Just prior to an international polo event, 21 horses from one team exhibited clinical signs of central nervous system disturbance, hyperexcitability, sweating, ataxia, tachycardia, dyspnea, pyrexia, and rapid death. The suspected cause of this peracute onset of illness and death included intentional contamination of feed or iatrogenic administration of performance-enhancing drugs resulting in a severe adverse reaction. Six horses were submitted to the Bronson Animal Disease Diagnostic Laboratory for necropsy and toxicological examination. The clinical signs and sudden death, the similarity to earlier work by the lead author of selenium toxicosis in calves, as well as published reports, prompted investigators to focus on selenium testing. Sixty-four hours following receipt, the laboratory detected toxic selenium concentrations in the tissues of these animals. Following further investigation of the case by regulatory officials, it was determined that all affected horses had received an intravenous injection of a compounded "vitamin/mineral" supplement just prior to the onset of signs. The compounded supplement contained toxic levels of selenium. The present report illustrates the in-depth laboratory investigation of the cause of acute death in 6 polo ponies due to selenium toxicosis. In addition to solving this high profile case, the toxic levels of selenium found in livers (6.13 ± 0.31 mg/kg wet weight), kidneys (6.25 ± 0.3 mg/kg wet weight), and sera (1.50 ± 0.11 µg/ml) of these affected animals may provide important diagnostic criteria for future interpretations of selenium concentrations in tissues of horses. © 2011 The Author(s)

  13. A procedure for developing ecosystem loading limits (TMDLs) for selenium in Wastersheds affected by gold mining in Northern Argentina

    Treesearch

    Dennis A. Lemly

    2001-01-01

    The Argentina Federal Secretary of Natural Resources oversees a wide array of mining operations conducted on public lands. Recently, selenium has emerged as a contaminant issue associated with several gold mines in the northern mountain ranges. The Secretary's Office contacted me and requested assistance interpreting selenium concentrations and possible impacts on...

  14. Uptake of trace elements and radionuclides from uranium mill tailings by four-wing saltbush (Atriplex canescens) and alkali sacaton (Sporobolus airoides). [Radium 226; Uranium; Molybdenum; Selenium; Vanadium; Astatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreesen, D.R.; Marple, M.L.

    1979-01-01

    A greenhouse experiment was performed to determine the uptake of trace elements and radionuclides from uranium mill tailings by native plant species. Four-wing saltbush and alkali sacaton were grown in alkaline tailings covered with soil and in soil alone as controls. The tailings material was highly enriched in Ra-226, Mo, U, Se, V, and As compared with three local soils. The shrub grown in tailings had elevated concentrations of Mo, Se, Ra-226, U, As, and Na compared with the controls. Alkali sacaton contained high concentrations of Mo, Se, Ra-226, and Ni when grown on tailings. Molybdenum and selenium concentrations inmore » plants grown in tailings are above levels reported to be toxic to grazing animals. These results indicate that the bioavailability of Mo and Se in alkaline environments makes these elements among the most hazardous contaminants present in uranium mill wastes.« less

  15. Selenium-Enriched Foods Are More Effective at Increasing Glutathione Peroxidase (GPx) Activity Compared with Selenomethionine: A Meta-Analysis

    PubMed Central

    Bermingham, Emma N.; Hesketh, John E.; Sinclair, Bruce R.; Koolaard, John P.; Roy, Nicole C.

    2014-01-01

    Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity. PMID:25268836

  16. Covalent Incorporation of Selenium into Oligonucleotides for X-ray Crystal Structure Determination via MAD: Proof of Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova, M.; Wilds, C.J.; Wawrzak, Z.

    2010-03-08

    Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U{sub Se}). The X-ray crystal structure of the duplex d(GCGTA)U{sub Se}d(ACGC){sub 2} was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 {angstrom}, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-{alpha}-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to themore » commonly used halogenated pyrimidines.« less

  17. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  18. A dietary assessment of selenium risk to aquatic birds on a coal mine affected stream in Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayland, M.; Casey, R.; Woodsworth, E.

    In this article, we present the results of a dietary-based assessment of the risk that selenium may pose to two aquatic bird species, the American Dipper (Cinclus mexicanus) and the Harlequin Duck (Histrionicus histrionicus), on one of the coal mine-affected streams, the Gregg River. The study consisted of (1) a literature-based toxicity assessment, (2) simulation of selenium exposure in the diets and eggs of the two species, and (3) a risk assessment that coupled information on toxicity and exposure. Diet and egg selenium concentrations associated with a 20% hatch failure rate were 6.4 and 17 {mu} g {center_dot} g{sup -1}more » dry wt, respectively. Simulated dietary selenium concentrations were about 2.0-2.5 {mu} g {center_dot} g{sup -1} higher on the Gregg River than on reference streams for both species. When simulated dietary concentrations were considered, hatch failure rates on the Gregg River were predicted to average 12% higher in American Dippers and 8% higher in Harlequin Ducks than at reference streams. Corresponding values were only 3% for both species when predicted egg concentrations were used. Elevated levels of selenium in insects in some of the reference streams were unexpected and raised a question as to whether aquatic birds have evolved a higher tolerance level for dietary selenium in these areas.« less

  19. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  20. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  1. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets.

    PubMed

    Bermingham, Emma N; Bassett, Shalome A; Young, Wayne; Roy, Nicole C; McNabb, Warren C; Cooney, Janine M; Brewster, Di T; Laing, William A; Barnett, Matthew P G

    2013-03-05

    Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health.

  2. Toxicity of selenium and other elements in food organisms to razorback sucker larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.; Weston, L. Ken; McDonald, Susan F.

    2002-01-01

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4×4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 μg/l, in reference food (brine shrimp) was 3.2 μg/g, at Horsethief was 1.6 μg/l in water and 6.0 μg/g in zooplankton, at Adobe Creek was 3.4 μg/l in water and 32 μg/g in zooplankton, and at Walter Walker was 13 μg/l in water and 52 μg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of ≥4.6 μg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  3. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets

    PubMed Central

    2013-01-01

    Background Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Methods Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health. PMID:23497688

  4. Toxicity of selenium and other elements in food organisms to razorback sucker larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2002-09-24

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4 x 4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 microg/l, in reference food (brine shrimp) was 3.2 microg/g, at Horsethief was 1.6 microg/l in water and 6.0 microg/g in zooplankton, at Adobe Creek was 3.4 microg/l in water and 32 microg/g in zooplankton, and at Walter Walker was 13 microg/l in water and 52 microg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of >or=4.6 microg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  5. Features of selenium metabolism in humans living under the conditions of North European Russia.

    PubMed

    Parshukova, Olga; Potolitsyna, Natalya; Shadrina, Vera; Chernykh, Aleksei; Bojko, Evgeny

    2014-08-01

    Selenium supplementation and its effects on Northerners have been little studied. The aim of our study was to assess the selenium levels of the inhabitants of North European Russia, the seasonal aspects of selenium supplementation, and the interrelationships between selenium levels and the levels of thyroid gland hormones. To study the particular features of selenium metabolism in Northerners over the course of 1 year, 19 healthy male Caucasian volunteers (18-21 years old) were recruited for the present study. The subjects were military guards in a Northern European region of Russia (Syktyvkar, Russia, 62°N latitude) who spent 6-10-h outdoors daily. The study was conducted over a 12-month period. Selenium levels, glutathione peroxidase (GP) activity, as well as total triiodothyronine (T3), total thyroxin (T4), free thyroxin, free triiodothyronine, and thyrotropin (TSH) levels, were determined in the blood serum. The study subjects showed low levels of plasma selenium throughout the year. We observed a noticeable decrease in plasma selenium levels during the period from May to August, with the lowest levels in July. Selenium levels in the military guards correlated with the levels of selenium-dependent GP enzyme activity throughout the year. Additionally, we demonstrated a significant correlation between selenium and pituitary-thyroid axis hormones (total T3, free T4, and TSH) in periods in which plasma selenium levels were lower than the established normal ranges. Over the course of 1 year, low levels of plasma selenium affect GP activity and thyroid hormone levels in humans living in North European Russia.

  6. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidasemore » (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage and impairs steroidogenesis. ► Nano-Se retained sperm quality against CIS-induced free radicals toxic stress.« less

  7. Influence of Selenium on the Production of T-2 Toxin by Fusarium poae.

    PubMed

    Cheng, Bolun; Zhang, Yan; Tong, Bei; Yin, Hong

    2017-07-01

    The objective of this study was to investigate the effects of selenium on the production of T-2 toxin by a Fusarium poae strain cultured in a synthetic medium containing different concentrations of selenium. The T-2 toxin contents in fermentative products were evaluated by a high performance liquid chromatography (HPLC). The results showed that the production of T-2 toxin was correlated with the concentration of selenium added to the medium. In all three treatments, the addition of 1 mg/L selenium to the medium resulted in a lower toxin yield than the control (0 mg/L); the yield of the toxin began to increase when selenium concentration was 10 mg/L, while it decreased again at 20 mg/L. In summary, T-2 toxin yield in the fermentative product was affected by the addition of selenium to the medium, and a selenium concentration of 20 mg/L produced the maximum inhibitory effect of T-2 toxin yield in the fermentative product of F. poae.

  8. The role of selenium in thyroid gland pathophysiology.

    PubMed

    Stuss, Michał; Michalska-Kasiczak, Marta; Sewerynek, Ewa

    2017-01-01

    It is now assumed that proper functioning of the thyroid gland (TG), beside iodine, requires also a number of elements, including selenium, iron, zinc, copper, and calcium. In many cases, only an adequate supply of one of these microelements (e.g. iodine) may reveal symptoms resulting from deficits of other microelements (e.g. iron or selenium). Selenium is accounted to the trace elements of key importance for homeostasis of the human system, in particular, for the proper functioning of the immune system and the TG. Results of epidemiological studies have demonstrated that selenium deficit may affect as many as one billion people in many countries all over the world. A proper sequence of particular supplementations is also worth emphasising for the significant correlations among the supplemented microelements. For example, it has been demonstrated that an excessive supplementation of selenium may enhance the effects of iodine deficit in endemic regions, while proper supplementation of selenium in studied animals may alleviate the consequences of iodine excess, preventing destructive-inflammatory lesions in the TG. This paper is a summary of the current knowledge on the role of selenium in the functionality of the TG.

  9. Commentary: selenium study on endangered razorback sucker is flawed

    USGS Publications Warehouse

    Hamilton, Steven J.

    2005-01-01

    The razorback sucker (Xyrauchen texanus) is listed as federally endangered throughout its range. A massive recovery effort by the Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin has focused its efforts in the upper Colorado River. The upper Colorado River basin also has two locations that have been identified by the National Irrigation Water Quality Program as having substantial selenium contamination. Selenium is toxic to fishes, affecting reproductive success. Thus, there is concern about potential effects of selenium on the endangered razorback sucker. Two sets of studies have investigated the effects of selenium on razorback suckers, but study results are conflicting. This commentary evaluates studies that claim selenium is not a problem for razorback sucker. We find that study bias was so pervasive that purported conclusions were unwarranted. Contaminated control water, older life stages of fish tested, lack of methodology for analysis of selenium in water, diet, or fish, use of rotifer food, low feeding rates, low growth rates of fish, and improper storage of site waters resulted in an apparent erroneous linkage of high selenium in whole-body residues with no adverse effects.

  10. Effects of selenium on mallard duck reproduction and immune function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, P.L.; Yuill, T.M.; Fairbrother, A.

    Selenium from irrigation drain water and coal-fired power stations is a significant environmental contaminant in some regions of the USA. The objectives were to examine whether selenium-exposed waterfowl had altered immune function, disease resistance, or reproduction. Pairs of adult mallards were exposed for 95-99 days on streams with sodium selenite-treated water at 10 and 30 ppb, or on untreated streams. Selenium biomagnified through the food chain to the ducks. Disease resistance was decreased in ducklings hatched on the streams and challenged with duck hepatitis virus 1 (DHV1) when 15-days old. Liver selenium concentrations for these ducklings on the 10 andmore » 30 ppb streams was 3.6 and 7.6 ppm dry weight, respectively. Mortality of ducklings purchased when 7-days old, exposed to selenium for 14 days, and challenged when 22-days old was not affected. However, their selenium exposure was lower (liver selenium 4.1 ppm dry weight for the 30 ppb stream). Five parameters of immune function were measured in adult ducks. Phagocytosis of killed Pasteurella multocida by blood heterophils and monocytes, and blood monocyte concentrations were higher in adult males following 84 days exposure to 30 ppb selenium. Their liver selenium concentrations were 11.1 ppm dry weight after 95-99 days exposure.« less

  11. Effect of chemical form of selenium on tissue glutathione peroxidase activity in developing rats

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Strength, Ralph; Johnson, Janet; White, Marguerite T.

    1991-01-01

    The hypothesis that the stage of development of rats may affect the availability of various forms of selenium for the activity of glutathione peroxidase (GSHPx) in the rat was experimentally investigated. One experiment evaluated the availability of selenium as selenite or selenomethionine for GSPHx activity during three developmental states in rats: fetus and 7-day old and 14-day old nursing pups. In all tissues studied, GSHPx activity was highest in the 14-day-old pups whose dams were in the selenomethionine group. Rat pups given intraperitoneal selenite had higher liver and kidney GSHPx activity than pups given the same amount of selenium as intraperitoneal selenomethionine. In a second experiment, all dams were fed the same basal diet and pups were weaned to diets containing one of two levels of selenium and one of three forms of selenium (selenite, selenomethionine, or selenocystine). The results also supported the hypothesis these dietary forms of selenium are differentially available for GSHPx activity.

  12. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  13. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  14. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  15. Trace elements and their distribution in protein fractions of camel milk in comparison to other commonly consumed milks.

    PubMed

    Al-Awadi, F M; Srikumar, T S

    2001-08-01

    Studies on camels' milk, whether with respect to concentration or bioavailability of trace elements from this milk, are limited and warrant further investigation. The object of this study was to analyse the concentration and distribution of zinc, copper, selenium, manganese and iron in camel milk compared to those in human milk, cows' milk and infant formula under similar experimental conditions. Camels' milk and cows' milk were collected from local farms, human milk samples were obtained from healthy donors in Kuwait and infant formula was purchased locally. Milk fractionation was performed by ultra-centrifugation and gelcolumn chromatography. The concentration of trace elements was analysed by atomic absorption spectrometry and that of protein was determined spectrophotometrically. The concentration of manganese and iron in camels' milk was remarkably higher (7-20-fold and 4-10-fold, respectively) than in human milk, cows' milk and infant formula. The zinc content of camels' milk was higher than that of human milk but slightly lower than in cows' milk and infant formula. The concentration of copper in camels' milk was similar to that of cows' milk but lower than in human milk and infant formula. The selenium content of camels' milk was comparable to those of other types of milk, Approximately 50-80% of zinc, copper and manganese in camels' milk were associated with the casein fraction, similar to that of cows' milk, The majority of selenium and iron in camels' milk was in association with the low molecular weight fraction, It is recommended that camels' milk be considered as a potential source of manganese, selenium and iron, perhaps not only for infants, but also for other groups suspected of mild deficiency of these elements. Further investigations are required to confirm this proposal.

  16. Selenium deposition kinetics of different selenium sources in muscle and feathers of broilers.

    PubMed

    Couloigner, Florian; Jlali, Maamer; Briens, Mickael; Rouffineau, Friedrich; Geraert, Pierre-André; Mercier, Yves

    2015-11-01

    The objective of this study was to determine selenium (Se) deposition kinetics in muscles and feathers of broilers in order to develop a rapid method to compare bioavailability of selenium sources. Different Se sources such as 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, SO), sodium selenite (SS) and seleno-yeast (SY) were compared for their kinetics on Se deposition in muscles and feathers in broiler chicks from 0 to 21 d of age. A total of 576 day-old broilers were divided into four treatments with 8 replicates of 18 birds per pen. The diets used in the experiment were a negative control (NC) not supplemented with Se and 3 diets supplemented with 0.2 mg Se/kg as SS, SY or SO. Total Se content in breast muscle and feathers were assessed on days 0, 7, 14 and 21. At 7 d of age, SO increased muscle Se content compared to D0 (P < 0.05), whereas with the other treatments, muscle Se concentration decreased (P < 0.05). After 21 days, organic Se sources maintained (SY) or increased (SO) (P < 0.05) breast muscle Se concentration compared to hatch value whereas inorganic source (SS) or non-supplemented group (NC) showed a significant decrease in tissue Se concentration (P < 0.05). At D21, Se contents of muscle and feathers were highly correlated (R(2) = 0.927; P < 0.0001). To conclude, these results indicate that efficiency of different Se sources can be discriminated through a 7 d using muscle Se content in broiler chickens. Muscle and feathers Se contents were highly correlated after 21 days. Also feather sampling at 21 days of age represents a reliable and non-invasive procedure for Se bioefficacy comparison. © 2015 Poultry Science Association Inc.

  17. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  18. Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα

    PubMed Central

    Zhong, Nianxin; Ward, Jerrold M.; Perella, Christine M.; Hoffmann, Victoria J.; Rogers, Keith; Combs, Gerald F.; Schweizer, Ulrich; Merlino, Glenn; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2013-01-01

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors. PMID:23460847

  19. Impaired reproduction of mallards fed an organic form of selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1989-01-01

    We fed mallards (Anas platyrhynchos) diets supplemented with 0-, 1-, 2-, 4-, 8-, or 16-ppm selenium in the form of selenomethionine. We fed another group of mallards a diet containing 16-ppm selenium as selenocystine. Females fed the control diet produced a mean of 8.1 ducklings that survived to 6 days of age, which was significantly greater than the 4.6 young produced by females fed 8-ppm selenium as selenomethionine and the zero surviving young of females fed 16-ppm selenium as selenomethionine. Selenocystine did not impair reproduction. Diets containing 8- and 16-ppm selenium as selenomethionine caused malformations in 6.8 and 67.9%, respectively, of unhatched eggs compared with 0.6% for controls. The most common malformations were of eyes, bill, legs, and feet. Selenium did not affect the onset or frequency of egg laying, egg size, shell thickness, fertility of eggs, or sex ratio of ducklings. Reduced survival and growth occurred in ducklings hatched from groups whose parents had received 8- or 16-ppm selenium as selenomethionine, even though all ducklings were fed a control diet. Concentrations of selenium in eggs and liver of adults could be predicted from dietary concentrations. We conclude that the dietary threshold of selenium as selenomethionine necessary to impair reproduction is between 4 and 8 ppm. It is difficult to identify 1 level of selenium in eggs that will be diagnostic of reproductive impairment in the field because different chemical forms of selenium appear to have different toxicities in eggs. However, when eggs from a wild population contain .gtoreq. 1-ppm selenium on a wet-weight basis, reproductive impairment may be possible and should be evaluated in that population. At 5-ppm selenium in eggs, reproductive impairment is much more likely to occur.

  20. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  1. Reproduction in mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Krynitsky, A.J.; Weller, D.M.G.

    1987-01-01

    Mallards (Anas platyrhynchos) were fed diets containing 1, 5, 10, 25 or 100 ppm selenium as sodium selenite, a diet containing 10 ppm selenium as seleno-DL-methionine or a control diet. There were no effects of 1, 5 or 10 ppm selenium as sodium selenite on either weight or survival of adults or on reproductive success, and there did not appear to be a dose-response relationship at these lower levels. The 100 ppm selenium diet killed 11 of 12 adults; one adult male fed 25 ppm selenium died. Selenium at 25 and 100 ppm caused weight loss in adults. Females fed 25 ppm selenium took longer to begin laying eggs and intervals between eggs were longer than in females in other treatment groups. Hatching success appeared to be reduced in birds fed 10 ppm selenium at selenomethionine, but the reduction was not statistically significant. The survival of ducklings and the mean number of 21-d-old ducklings produced per female were reduced in the 25 ppm selenium as sodium selenite group and the 10 ppm selenium as selenomethionine group. Egg weights were not affected by any selenium treatment, but 25 ppm selenium lowered the Ratcliffe Index. Duckling weights at hatching and at 21 d of age were reduced 28 and 36%, respectively, in birds fed 25 ppm selenium, as compared with controls. Body weights measured on day 21 were lower for ducklings fed 10 ppm selenium as selenomethionine than in some other groups. Selenium in concentrations of 10 and 25 ppm as sodium selenite caused mainly embryotoxic effects, whereas 10 ppm as selenomethionine was more teratogenic, causing hydrocephaly, bill defects, eye defects (microphthalmia and anophthalmia) and foot and toe defects, including ectrodactyly. Selenomethionine was much more readily taken up by mallards and passed into their eggs than was sodium selenite, and a greater proportion of the selenium in the eggs ended up in the white when selenomethionine was fed. Adult males accumulated more selenium than did females, probably because of the females' ability to eliminate selenium in their eggs.

  2. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of this dissertation were to synthesize selenium nanoparticles, characterize nanosized selenium coatings on various materials, test the effectiveness of selenium coated materials at inhibiting bacteria growth and biofilm formation and investigate the mechanisms of how selenium nanoparticles inhibit bacteria growth. The nanosized selenium coated materials showed significant and continuous inhibitions to bacteria growth by up to 92.5% without using any antibiotics. The work performed in this dissertation presents a novel platform technology based on nanosized selenium to inhibit bacterial infections on various materials, which demonstrates the strong potential applications of nanosized selenium as an antibacterial agent in hospital environments and healthcare settings.

  3. Bioavailability of Dissolved Organic Carbon and Nitrogen From Tropical Montane Rainforest Streams Across a Geologic age Gradient

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.

    2005-05-01

    Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.

  4. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  5. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  6. The Association between Hantavirus Infection and Selenium Deficiency in Mainland China

    PubMed Central

    Fang, Li-Qun; Goeijenbier, Marco; Zuo, Shu-Qing; Wang, Li-Ping; Liang, Song; Klein, Sabra L.; Li, Xin-Lou; Liu, Kun; Liang, Lu; Gong, Peng; Glass, Gregory E.; van Gorp, Eric; Richardus, Jan H.; Ma, Jia-Qi; Cao, Wu-Chun; de Vlas, Sake J.

    2015-01-01

    Hemorrhagic fever with renal syndrome (HFRS) caused by hantaviruses and transmitted by rodents is a significant public health problem in China, and occurs more frequently in selenium-deficient regions. To study the role of selenium concentration in HFRS incidence we used a multidisciplinary approach combining ecological analysis with preliminary experimental data. The incidence of HFRS in humans was about six times higher in severe selenium-deficient and double in moderate deficient areas compared to non-deficient areas. This association became statistically stronger after correction for other significant environment-related factors (low elevation, few grasslands, or an abundance of forests) and was independent of geographical scale by separate analyses for different climate regions. A case-control study of HFRS patients admitted to the hospital revealed increased activity and plasma levels of selenium binding proteins while selenium supplementation in vitro decreased viral replication in an endothelial cell model after infection with a low multiplicity of infection (MOI). Viral replication with a higher MOI was not affected by selenium supplementation. Our findings indicate that selenium deficiency may contribute to an increased prevalence of hantavirus infections in both humans and rodents. Future studies are needed to further examine the exact mechanism behind this observation before selenium supplementation in deficient areas could be implemented for HFRS prevention. PMID:25609306

  7. Assessment of selenium nutritional status of school-age children from rural areas of China in 2002 and 2012.

    PubMed

    Liu, X; Piao, J; Li, M; Zhang, Y; Yun, C; Yang, C; Yang, X

    2016-03-01

    To assess the selenium nutritional status of 3458 school-age children recruited from rural areas using the China Nutrition and Health Survey 2002 and 2012 (CNHS 2002 and CNHS 2012). The serum selenium concentration was determined by high-resolution inductively coupled plasma mass spectrometry. The prevalence of dietary selenium intake insufficiency was calculated according to the formula suggested by and the estimated average requirements of the new Chinese Dietary Reference Intakes. The percentage of low selenium was based on the cutoff values with a serum selenium concentration below the threshold limit of clinical importance in coronary and cardiovascular diseases (<45 μg/l) and in abnormal physiological functions (<60 μg/l). The overall median serum selenium concentration was 64.3 μg/l in the CNHS 2002 and 74.2 μg/l in the CNHS 2012. The median calculated dietary selenium intake was 26.7 μg/day in the CNHS 2002 and 33.2 μg/day in the CNHS 2012 together with a 61.1% and 52.8% dietary selenium intake insufficiency in the CNHS 2002 and in the CNHS 2012. In addition, the percentages of low selenium (<45 μg/l and <60 μg/l) were 25.1 and 43.8% in the CNHS 2002 but 9.4 and 25.6% in the CHNS 2012. The selenium nutritional status of school-age children was significantly improved in the CNHS 2012 versus the CNHS 2002. However, the health risk for selenium malnutrition in school-age children remains a potential problem affecting children's health.

  8. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    PubMed Central

    Haug, Anna; Eich-Greatorex, Susanne; Bernhoft, Aksel; Wold, Jens P; Hetland, Harald; Christophersen, Olav A; Sogn, Trine

    2007-01-01

    Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form) per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle). The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5), DPA (22:5) and DHA (22:6), thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form) may increase the concentration of very long-chain omega-3 fatty acids in muscle. PMID:17967172

  9. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  10. Preliminary assessment of sources, distribution, and mobility of selenium in the San Joaquin Valley, California

    USGS Publications Warehouse

    Gilliom, R.J.

    1989-01-01

    Selenium in tile drain water from parts of the western San Joaquin Valley, California, has adversely affected fish and waterfowl where drain water was impounded. Soils in these drained areas were derived from Coast Range marine sedimentary formations, were naturally saline and probably contained abundant soluble selenium. Decades of irrigation have redistributed the most soluble forms of selenium from the soil into groundwater and have caused the water table to rise 1 to 4 ft/year. Selenium in shallow groundwater has been further concentrated because of evapotranspiration. The rising water table has caused a large area of farmland to require artificial drainage of groundwater that contains high concentrations of selenium. The present areal distribution of selenium in shallow groundwater reflects the natural distribution of saline soils. The depth distribution of selenium in groundwater reflects the history of irrigation. The highest concentrations of selenium in groundwater (50 to more than 1,000 micrograms/L) are in a zone of variable thickness located between 20 and 150 ft below the water table. The toxic water in this zone was recharged during the first few decades of irrigation. The large volume of high selenium groundwater makes it desirable to leave this water where it is, rather than bring it to the land surface or allow it to move into parts of the aquifer that may be used for water supply. Selenium concentrations in the San Joaquin River depend on the magnitude of the selenium load from drain water and dilution by water with low concentrations of selenium from all other sources of streamflow. The San Joaquin Valley is a regional-scale example of how manipulation of the hydrologic system can cause water quality problems if naturally occurring toxic substances are mobilized. (USGS)

  11. Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products.

    PubMed

    Djujić, I S; Jozanov-Stankov, O N; Milovac, M; Janković, V; Djermanović, V

    2000-12-01

    Bioavailability and possible benefits of wheat intake naturally enriched with selenium and its products was tested. Wheat obtained by application of an original combination and procedure for foliar supplementation of plants with Se was characterized on the average by five times higher content of Se, the main form being L-(+)-selenomethionine (SeMet). Substitution of Se-deficient wheat by wheat naturally enriched with Se and its products contributed to the increase of daily intake on the average by 18 microg (12-35 microg) in volunteers, which is more than 50% of the average daily intake. Six weeks after the beginning of its application, increased daily intake of Se brought about the increase of its concentration in the plasma of the examined persons by 53%, in their erythrocytes by 37%, in their hair by 44%, and in their urine by 54%. This result was comparable to the effect obtained in the course of an 8-wk daily intake of supplements with 100 microg Se in the form of enriched bakery yeast. Analysis of glutathione peroxidase (GSH-Px) activity in blood, thiobarbituric acid reactive substances (TBARS) in plasma, lipid parameters (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides), and glucose in serum of volunteers showed that the increased Se intake induced increased GSH-Px activity in blood and decreased concentrations of TBARS, lipid parameters, and glucose in blood. Using only one crop (wheat enriched with Se), the existing deficiency of Se in our population can be alleviated. In this way, one-fourth of our population with lower Se intake than 21 microg/d will satisfy basal requirements, whereas one-half will become moderately deficient in Se instead of distinctly deficient in Se.

  12. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China.

    PubMed

    Qin, Hai-bo; Zhu, Jian-ming; Su, Hui

    2012-02-01

    A high degree of association between Selenium (Se) and organic matter has been demonstrated in natural environments, but Se fractions and speciation in organic matter is unclear. In this study, a method for quantifying organic matter associated with Se (OM-Se) was developed to investigate Se fractions in organic matter in Se-rich soils and weathered stone coal from Enshi, China, where Se poisoning of humans and livestock has been documented. Initially, Se was extracted using water and a phosphate buffer. Subsequently, OM-Se was extracted using NaOH, and then speciated into Se associated with fulvic acids (FA-Se) and humic acids (HA-Se). Both FA-Se and HA-Se were further speciated into the weakly bound and strongly bound fractions using a customized hydride generation reactor. The results show that FA-Se (1.91-479 mg kg(-1)) is the predominant form of Se in all Se-rich soils and the weathered stone coal samples, accounting for more than 62% of OM-Se (3.07-484 mg kg(-1)). Weakly bound FA-Se (1.33-450 mg kg(-1)) was prevalent in the total FA-Se, while weakly bound HA-Se (0.62-26.2 mg kg(-1)) was variable in the total HA-Se (1.15-32.5 mg kg(-1)). These data indicate that OM-Se could play a significant source and sink role in the biogeochemical cycling of Se in the supergene environment. Weakly bound FA-Se seems to act as a potential source for bioavailable Se, whereas strongly bound HA-Se is a possible OM-Se sink which is not readily transformed into bioavailable Se. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Selecting Lentil Accessions for Global Selenium Biofortification

    USDA-ARS?s Scientific Manuscript database

    Biofortification of lentil (Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 ...

  14. Selenium:Mercury Molar Ratios in Freshwater Fish from Tennessee: Individual, Species, and Geographical Variations have Implications for Management

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, C.; Donio, M.; Pittfield, T.

    2014-01-01

    Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy’s Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories. PMID:22456727

  15. Reproduction in eastern screech-owls fed selenium

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Hoffman, D.J.

    1996-01-01

    Raptors are occasionally exposed to excessive selenium from contaminated prey, but the effects of this exposure on reproduction are unknown. Therefore, we fed captive eastern screech-owls (Otus asio) diets containing 0, 4.4, or 13.2 ppm (wet wt) added selenium in the form of seleno-DL-methionine. Adult mass at sacrifice and reproductive success of birds receiving 13.2 ppm selenium were depressed (P < 0.05) relative to controls. Parents given 4.4 ppm selenium produced no malformed nestlings, but femur lengths of young were shorter (P = 0.015) than those of controls. Liver biochemistries indicative of oxidative stress were affected (P < 0.05) in 5-day-old nestlings from parents fed 4.4 ppm selenium and included a 19% increase in glutathione peroxidase activity, a 43% increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), and a 17% increase in lipid peroxidation. Based on reproductive effects relative to dietary exposure, sensitivity of eastern screech-owls to selenium was similar to that of black-crowned night-herons (Nycticorax nycticorax) but less than that of mallards (Anas platyrhynchos).

  16. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  17. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    PubMed

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2013-01-15

    A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Contamination of different portions of raw and boiled specimens of Norway lobster by mercury and selenium.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele

    2013-11-01

    The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.

  20. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  1. Role of Selenium from Different Sources in Prevention of Pulmonary Arterial Hypertension Syndrome in Broiler Chickens.

    PubMed

    Zamani Moghaddam, A K; Mehraei Hamzekolaei, M H; Khajali, F; Hassanpour, H

    2017-11-01

    Pulmonary arterial hypertension (PAH) syndrome in broilers is associated with hypoxia, which prevails at high altitude. Oxidative stress is the pathogenic mechanism underlying PAH. Because selenium is key element in the structure of antioxidant enzymes, we evaluated pulmonary hypertensive responses in broiler chickens fed with diets supplemented with organic or nano-selenium. One hundred forty-four broilers (starting at 5 days old) were fed with (i) control group: birds received a standard diet; (ii) nano-selenium group: birds were fed with basal diet supplemented with nano-selenium at 0.3 mg/kg; and (iii) organic selenium group: birds received basal diet supplemented with organic selenium at 0.3 mg/kg. We assessed growth performance, carcass characteristics, antioxidant variables, blood parameters, and small intestine morphology. Although Se supplementation did not affect growth performance, carcass traits, and organ weight (P > 0.05), the right to total ventricular weight ratio (RV:TV), malondialdehyde concentration in the liver, and heterophil to lymphocyte ratio were significantly lower in the nano-selenium group relative to the control (P < 0.05). Chickens that received nano-selenium also elicited significantly higher antibody titers after 24 h of an injection of sheep red blood cells (P < 0.05). Nano-selenium supplementation also significantly increased villus height, absorptive surface area, and lamina propria thickness relative to the control (P < 0.05) in different segments of the small intestine. In contrast, organic selenium supplement improved intestinal morphometry only in the jejunum. We conclude that dietary supplementation of 0.30 mg/kg nano-selenium could prevent right ventricular hypertrophy as reflected by reduced RV:TV, reduced levels of lipid peroxidation in the liver, and improved gut function.

  2. Plasma Selenium Biomarkers in Low Income Black and White Americans from the Southeastern United States

    PubMed Central

    Hargreaves, Margaret K.; Liu, Jianguo; Buchowski, Maciej S.; Patel, Kushal A.; Larson, Celia O.; Schlundt, David G.; Kenerson, Donna M.; Hill, Kristina E.; Burk, Raymond F.; Blot, William J.

    2014-01-01

    Biomarkers of selenium are necessary for assessing selenium status in humans, since soil variation hinders estimation of selenium intake from foods. In this study, we measured the concentration of plasma selenium, selenoprotein P (SEPP1), and glutathione peroxidase (GPX3) activity and their interindividual differences in 383 low-income blacks and whites selected from a stratified random sample of adults aged 40–79 years, who were participating in a long-term cohort study in the southeastern United States (US). We assessed the utility of these biomarkers to determine differences in selenium status and their association with demographic, socio-economic, dietary, and other indicators. Dietary selenium intake was assessed using a validated food frequency questionnaire designed for the cohort, matched with region-specific food selenium content, and compared with the US Recommended Dietary Allowances (RDA) set at 55 µg/day. We found that SEPP1, a sensitive biomarker of selenium nutritional status, was significantly lower among blacks than whites (mean 4.4±1.1 vs. 4.7±1.0 mg/L, p = 0.006), with blacks less than half as likely to have highest vs. lowest quartile SEPP1 concentration (Odds Ratio (OR) 0.4, 95% Confidence Interval (CI) 0.2–0.8). The trend in a similar direction was observed for plasma selenium among blacks and whites, (mean 115±15.1 vs. 118±17.7 µg/L, p = 0.08), while GPX3 activity did not differ between blacks and whites (136±33.3 vs. 132±33.5 U/L, p = 0.320). Levels of the three biomarkers were not correlated with estimated dietary selenium intake, except for SEPP1 among 10% of participants with the lowest selenium intake (≤57 µg/day). The findings suggest that SEPP1 may be an effective biomarker of selenium status and disease risk in adults and that low selenium status may disproportionately affect black and white cohort participants. PMID:24465457

  3. Metals and metalloids in Little Penguin (Eudyptula minor) prey, blood and faeces.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Kowalczyk, Nicole D; Scarpaci, Carol; Nugegoda, Dayanthi; Orbell, John D

    2017-04-01

    Piscivorous species like the Little Penguin (Eudyptula minor) are particularly at risk of being negatively impacted by pollution due to their heightened exposure through aquatic food chains. Therefore, determining the concentration of heavy metals in the fish prey of seabirds is an essential component of assessing such risk. In this study, we report on arsenic, cadmium, mercury, lead and selenium concentrations in three fish species, which are known to comprise a substantial part of the diet of Little Penguins at the urban colony of St Kilda, Melbourne, Australia. Metal concentrations in the fish sampled were generally within the expected limits, however, arsenic and mercury were higher than reported elsewhere. Anchovy (Engraulis australis) and sandy sprat (Hyperlophus vittatus) contained higher Hg concentrations than pilchard (Sardinops sagax), while sandy sprat and pilchard contained more selenium. We present these findings together with metal concentrations in Little Penguin blood and faeces, sampled within weeks of the fish collection. Mercury concentrations were highest in the blood, while faeces and fish prey species contained similar concentrations of arsenic and lead, suggesting faeces as a primary route of detoxification for these elements. We also investigated paired blood - faecal samples and found a correlation for selenium only. Preliminary data from stable isotope ratios in penguin blood indicate that changes in penguin blood mercury concentrations cannot be explained by trophic changes in their diet alone, suggesting a variation of bioavailable Hg within this semi-enclosed bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Single and Combined Impacts of Vitamin A and Selenium in Diet on Productive Performance, Egg Quality, and Some Blood Parameters of Laying Hens During Hot Season.

    PubMed

    Abd El-Hack, Mohamed E; Mahrose, Khalid; Askar, Ali A; Alagawany, Mahmoud; Arif, Muhammad; Saeed, Muhammad; Abbasi, Farzana; Soomro, Rab Nawaz; Siyal, Farman Ali; Chaudhry, Maria Tabassum

    2017-05-01

    A study was conducted using 162 Bovans laying hens to investigate the impacts of extra dietary vitamin A (0, 8000, 16,000 IU/kg), selenium (0, 0.25, 0.50 mg/kg), and their combinations on the performance, egg quality, and blood biological parameters of laying hens during summer months. Supplemental vitamin A up to 16,000 IU/kg diet significantly (P < 0.05) improved all productive traits studied except feed intake which increased with 8000 IU/kg diet compared with control. Feed intake and feed conversion of hens fed diet supplemented with selenium revealed high statistical (P = 0.001) differences. All egg quality criteria were not significantly (P < 0.05) affected by dietary vitamin A except albumin percentage and Haugh units, since Haugh unit score was gradually increased with increasing vitamin A level. Vitamin A-enriched groups showed significant (P < 0.05 and 0.01) decreases in plasma albumen, total lipids, and total cholesterol in respect to the unsupplemented groups. Compared with unsupplemented groups, total protein, albumin, total lipid, and total cholesterol were increased in selenium-enriched groups. There were no significant impacts of selenium treatments in layer diets on thyroid hormones and liver enzymes studied except alanine transferase (ALT) and thyroxin (T 4 ), as compared with the control group. Hematological parameters were not affected by vitamin A treatment except PCV% which decreased with vitamin A supplementation. Hemoglobin and lymphocytes were increased with increasing dietary selenium level. In conclusion, the combined supplementary concentrations of vitamin A (16,000 IU/kg) and selenium (0.25 mg/kg) might be needed for better production and health of laying hens reared under heat stress conditions.

  5. Vitamin E and organic selenium for broilers from 22 to 42 days old: performance and carcass traits.

    PubMed

    Albuquerque, Daniel M N; Lopes, João B; Ferraz, Maíra S; Ribeiro, Mabell N; Silva, Sandra R G; Costa, Elvânia M S; Lima, Daniela C P; Ferreira, Jefferson D M; Gomes, Pedro E B; Lopes, Jackelline C O

    2017-01-01

    This study was conducted to evaluate the effect of vitamin E and selenium on performance, viability, productive efficiency, and yields of carcass, major cuts, and organs of broilers from 22 to 42 days submitted to cyclic-heat stress. The experimental design was randomized blocks, in a 2 × 3 factorial arrangement with two levels of selenium (0.1 and 0.3 mg/kg) and three levels of vitamin E (300, 400, and 500 mg/kg), plus a control treatment. Animals were submitted to a natural condition of high cyclic temperature. Organic selenium levels of 0.1 and 0.3 mg/kg associated with 300, 400, and 500 mg/kg of vitamin E were tested. The level of vitamin E did not affect the performance or production efficiency of broilers in the period from 22 to 33 days and 22 to 42 days. However, the selenium inclusion level of 0.3 mg/kg improved the viability in both phases. The yields of carcass, major cuts, intestine, and heart were not influenced by the levels of selenium and vitamin E, whereas abdominal fat for the selenium level 0.1 mg/kg decreased linearly with the inclusion in vitamin E.

  6. Interplay between Selenium Levels, Selenoprotein Expression, and Replicative Senescence in WI-38 Human Fibroblasts*

    PubMed Central

    Legrain, Yona; Touat-Hamici, Zahia; Chavatte, Laurent

    2014-01-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:24425862

  7. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: Potential protection on mercury toxicity by selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant inter-specific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios. PMID:22664537

  8. Selenium and Selenium–Sulfur Chemistry for Rechargeable Lithium Batteries: Interplay of Cathode Structures, Electrolytes, and Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Gui-Liang; Liu, Jianzhao; Amine, Rachid

    2017-02-09

    In the search for a transformative new energy storage system, the rechargeable Li/sulfur battery is considered as one of the promising candidates due to its much higher energy density and lower cost than state-of-the-art lithium-ion batteries. However, the insulating nature of sulfur and the dissolution of intermediary polysulfides into the electrolyte significantly hinder its practical application. Very recently, selenium and selenium-sulfur systems have received considerable attention as cathode materials for rechargeable batteries owing to the high electronic conductivity (20 orders of magnitude higher than sulfur) and high volumetric capacity (3254 mAh/cm3 ) of selenium. In this perspective, we present anmore » overview of the implications of employing selenium and selenium-sulfur systems with different structures and compositions as electroactive materials for rechargeable lithium batteries. We also show how the cathode structures, electrolytes, and electrode-electrolyte interfaces affect the electrochemistry of Se and Se-S based cathodes. Furthermore, suggestions are provided on paths for future development of these cathodes.« less

  9. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  10. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism.

    PubMed

    Jablonska, Ewa; Reszka, Edyta; Gromadzinska, Jolanta; Wieczorek, Edyta; Krol, Magdalena B; Raimondi, Sara; Socha, Katarzyna; Borawska, Maria H; Wasowicz, Wojciech

    2016-12-13

    The aim of the study was to evaluate the effect of selenium supplementation on the expression of genes associated with glucose metabolism in humans, in order to explain the unclear relationship between selenium and the risk of diabetes. For gene expression analysis we used archival samples of cDNA from 76 non-diabetic subjects supplemented with selenium in the previous study. The supplementation period was six weeks and the daily dose of selenium was 200 µg (as selenium yeast). Blood for mRNA isolation was collected at four time points: before supplementation, after two and four weeks of supplementation, and after four weeks of washout. The analysis included 15 genes encoding selected proteins involved in insulin signaling and glucose metabolism. In addition, HbA1c and fasting plasma glucose were measured at three and four time points, respectively. Selenium supplementation was associated with a significantly decreased level of HbA1c but not fasting plasma glucose (FPG) and significant down-regulation of seven genes: INSR , ADIPOR1 , LDHA , PDHA , PDHB , MYC , and HIF1AN . These results suggest that selenium may affect glycemic control at different levels of regulation, linked to insulin signaling, glycolysis, and pyruvate metabolism. Further research is needed to investigate mechanisms of such transcriptional regulation and its potential implication in direct metabolic effects.

  11. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells.

    PubMed

    Kahya, Mehmet Cemal; Nazıroğlu, Mustafa; Çiğ, Bilal

    2014-08-01

    Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.

  12. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence.

    PubMed

    García-Arieta, Alfredo

    2014-12-18

    The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women1

    PubMed Central

    Mao, Jinyuan; Vanderlelie, Jessica J; Perkins, Anthony V; Redman, Christopher WG; Ahmadi, Kourosh R; Rayman, Margaret P

    2016-01-01

    Background: Low selenium status in pregnancy has been associated with a number of adverse conditions. In nonpregnant populations, the selenium status or response to supplementation has been associated with polymorphisms in dimethylglycine dehydrogenase (DMGDH), selenoprotein P (SEPP1) and the glutathione peroxidases [cytosolic glutathione peroxidase (GPx1) and phospholipid glutathione peroxidase (GPx4)]. Objective: We hypothesized that, in pregnant women, these candidate polymorphisms would be associated with selenium status in early pregnancy, its longitudinal change, and the interindividual response to selenium supplementation at 60 μg/d. Design: With the use of stored samples and data from the United Kingdom Selenium in Pregnancy Intervention (SPRINT) study in 227 pregnant women, we carried out genetic-association studies, testing for associations between selenium status, its longitudinal change, and response to supplementation and common genetic variation in DMGDH (rs921943), SEPP1 (rs3877899 and rs7579), GPx1 (rs1050450) and GPx4 (rs713041). Selenium status was represented by the concentration of whole-blood selenium at 12 and 35 wk of gestation, the concentration of toenail selenium at 16 wk of gestation, and plasma glutathione peroxidase (GPx3) activity at 12 and 35 wk of gestation. Results: Our results showed that DMGDH rs921943 was significantly associated with the whole-blood selenium concentration at 12 wk of gestation (P = 0.032), which explained ≤2.0% of the variance. This association was replicated with the use of toenail selenium (P = 0.043). In unsupplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in whole-blood selenium from 12 to 35 wk of gestation (P = 0.005), which explained 8% of the variance. In supplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in GPx3 activity from 12 to 35 wk of gestation (P = 0.01), which explained 5.3% of the variance. Selenium status was not associated with GPx1, GPx4, or SEPP1 rs7579. Conclusions: In agreement with previous studies, we show that the genetic variant rs921943 in DMGDH is significantly associated with selenium status in United Kingdom pregnant women. Notably, our study shows that women who carry the SEPP1 rs3877899 A allele are better able to maintain selenium status during pregnancy, and their GPx3 activity increases more with supplementation, which suggests better protection from low selenium status. The SPRINT study was registered at www.isrctn.com as ISRCTN37927591. PMID:26675765

  14. Hazard assessment of selenium and other trace elements in wild larval razorback sucker from the Green River, Utah

    USGS Publications Warehouse

    Hamilton, S.J.; Muth, R.T.; Waddell, B.; May, T.W.

    2000-01-01

    Contaminant investigations of the Green River in northeastern Utah have documented selenium contamination at sites receiving irrigation drainage. The Green River provides critical habitat for four endangered fishes including the largest extant riverine population of endangered razorback sucker. Although 2175 larval razorback suckers were collected from the river between 1992 and 1996, very few juveniles have been captured within recent decades. Selenium concentrations were measured in larval razorback suckers collected from five sites in the Green River (Cliff Creek, Stewart Lake Drain, Sportsman's Drain, Greasewood Corral, and Old Charlie Wash) to assess the potential for adverse effects on recruitment of larvae to the juvenile stage and the adult population. Larvae from all sites contained mean selenium concentrations ranging from 4.3 to 5.8 ??g/g. These values were at or above the proposed toxic threshold of 4 ??g/g for adverse biological effects in fish, which was derived from several laboratory and field studies with a wide range of fish species. At two sites, Cliff Creek and Stewart Lake Drain, selenium concentrations in larvae increased over time as fish grew, whereas selenium concentrations decreased as fish grew at Sportsman's Drain. Evaluation of a 279-larvae composite analyzed for 61 elements demonstrated that selenium and, to a lesser extent, vanadium were elevated to concentrations reported to be toxic to a wide range of fish species. Elevated selenium concentrations in larval razorback suckers from the five sites suggest that selenium contamination may be widespread in the Green River, and that survival and recruitment of larvae to the juvenile stage may be limited due to adverse biological effects. Selenium contamination may be adversely affecting the reproductive success and recruitment of endangered razorback sucker.

  15. The early research and development of ebselen.

    PubMed

    Parnham, Michael J; Sies, Helmut

    2013-11-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one; PZ-51, DR-3305), is an organoselenium compound with glutathione peroxidase (GPx)-like, thiol-dependent, hydroperoxide reducing activity. As an enzyme mimic for activity of the selenoenzyme GPx, this compound has proved to be highly useful in research on mechanisms in redox biology. Furthermore, the reactivity of ebselen with protein thiols has helped to identify novel, selective targets for inhibitory actions on several enzymes of importance in pharmacology and toxicology. Importantly, the selenium in ebselen is not released and thus is not bioavailable, ebselen metabolites being excreted in bile and urine. As a consequence, initial concerns about selenium toxicity, fortunately, were unfounded. Potential applications in medical settings have been explored, notably in brain ischemia and stroke. More recently, there has been a surge in interest as new medical applications have been taken into consideration. The first publication on the biochemical effects of ebselen appeared 30 years ago (Müller et al.), which prompted the authors to retrace the early development from their perspective. It is a fascinating example of fruitful interaction between research-oriented industry and academia. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival

    USGS Publications Warehouse

    Stanley, T.R.; Spann, J.W.; Smith, G.J.; Rosscoe, R.

    1994-01-01

    Arsenic (As) and selenium (Se) occur together in high concentrations in the environment and can accumulate in aquatic plants and invertebrates consumed by waterfowl. Ninety-nine pairs of breeding mallards (Anas platyrhynchos) were fed diets supplemented with As (sodium arsenate) at 0, 25, 100, or 400 ug/g, in combination with Se (seleno-DL-methionine) at 0 or 10 ug/g, in a replicated factorial experiment. Ducklings produced were placed on the same treatment combination as their parents. Arsenic accumulated in adult liver and egg, reduced adult weight gain and liver weight, delayed the onset of egg laying, decreased whole egg weight, and caused eggshell thinning. Arsenic did not affect hatching success and was not teratogenic. In ducklings, As accumulated in the liver and reduced body weight, growth, and liver weight. Arsenic did not increase duckling mortality, but it did decrease overall duckling production. Selenium accumulated in adult liver and egg, was teratogenic, and decreased hatching success. Selenium did not affect adult weight, liver weight, survival, onset of egg laying, egg fertility, egg weight, or eggshell thickness. In ducklings, Se accumulated in the liver and reduced body weight and growth, and increased liver weight. Selenium increased duckling mortality and decreased overall duckling production. Antagonistic interactions between As and Se occurred whereby As reduced Se accumulation in liver and egg, and alleviated the effects of Se on hatching success and embryo deformities. It was demonstrated that As and Se, in the chemical forms and at the dietary levels administered in this study, can adversely affect mallard reproduction and duckling growth and survival, and that As can alleviate toxic effects of Se.

  17. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Milliard, S.P.

    1988-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley, CA, were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones - the alluvial fan and basin trough. Selenium concentrations are significantly (α = 0.05) higher in the groundwater of the alluvial-fan zone than in that of the basin-trough zone. The concentrations of oxyanion trace elements were significantly correlated (α = 0.05) with groundwater salinity, but the correlations between selenium and salinity and between molybdenum and salinity were significantly different (α = 0.05) in the alluvial-fan geologic zone compared with those in the basin-trough geologic zone. The evidence suggests that the main factors affecting selenium concentrations in the shallow groundwater are the degree of groundwater salinity and the geologic source of the alluvial soil material.

  18. Development of a FI-HG-ICP-OES solid phase preconcentration system for inorganic selenium speciation in Argentinean beverages.

    PubMed

    Escudero, Luis A; Pacheco, Pablo H; Gasquez, José A; Salonia, José A

    2015-02-15

    A preconcentration system has been developed to determine inorganic selenium species. Selenium was retained by a column filled with polyvinyl chloride (PVC) with lanthanum hydroxide co-precipitation. Speciation was achieved by selective photoreduction previous Se preconcentration. The retention pH was optimized at 10.0. Two multivariate calibrations and a central composite design were employed for optimization of the system. Sample, reagents and acid flow rates are significant variables affecting the system. Employing HG-ICP-OES as detection, the optimized system reached a detection limit of 0.03μg/L, and an enhancement factor of 14875 (25 for preconcentration system, 595 for hydride generation). To verify the method' accuracy, two certified reference materials, BCR® 414 Plankton & IRMM-804 Rice Flour, were analysed. The system was applied to inorganic selenium speciation in several Argentinean beverages to estimate their selenium contribution to diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    PubMed

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  20. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  1. Bioreduction of Selenium Oxyanions via the Feammox Process

    NASA Astrophysics Data System (ADS)

    Sherman, A.; Jaffe, P. R.

    2017-12-01

    Selenium (Se) is an important environmental contaminant found in both agricultural and industrial wastewater. A novel bacterium, Acidimicrobiaceae bacterium A6 (hereon referred to as A6), has been shown to oxidize ammonium through the reduction of iron oxides (termed the Feammox process) and has also been shown to reduce trace metals and radionuclides. This research aims to establish whether the Feammox process can be used to reduce Se oxyanions in wastewater, and to determine the pathway by which this reduction occurs. A novel method of Se analysis using ion chromatography (Dionex Aquion IC system, AS18 separator and guard columns, 18mM KOH eluent, 45mA) has been developed, showing clear resolution of SeO32- and SeO42- peaks and detection limits in the ppb range. Batch incubations were run using pure A6 culture to tie the reduction of Se to the activity of this bacterium. Nontronite was used as the iron source to sustain A6 activity. Unlike other iron sources, such as ferrihydrite, nontronite does not sorb Se oxyanions, and thus selenium remains bioavailable as an electron acceptor for use during the Feammox process. Concentrations of 1ppm of SeO32- and SeO42- were used, below the toxic threshold for A6, and incubations were sampled destructively over the course of 8 days. Samples were analyzed using ion chromatography and UV-Vis spectroscopy to determine bacterial activity and chemical speciation. Initial results indicate that A6 may be able to reduce 300ppb of SeO32-in 3 days, however more work is needed to further explain this result.

  2. In vivo bioavailability of selenium in enriched Pleurotus ostreatus mushrooms.

    PubMed

    da Silva, Marliane C S; Naozuka, Juliana; Oliveira, Pedro V; Vanetti, Maria C D; Bazzolli, Denise M S; Costa, Neuza M B; Kasuya, Maria C M

    2010-02-01

    The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chromatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein profile of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 μg L(-1) Se) compared to other diets (2-5 μg L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability.

  3. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients.

    PubMed

    Andrews, Peter J D; Avenell, Alison; Noble, David W; Campbell, Marion K; Croal, Bernard L; Simpson, William G; Vale, Luke D; Battison, Claire G; Jenkinson, David J; Cook, Jonathan A

    2011-03-17

    To determine whether inclusion of glutamine, selenium, or both in a standard isonitrogenous, isocaloric preparation of parenteral nutrition influenced new infections and mortality among critically ill patients. Randomised, double blinded, factorial, controlled trial. Level 2 and 3 (or combined) critical care units in Scotland. All 22 units were invited, and 10 participated. 502 adults in intensive care units and high dependency units for ≥ 48 hours, with gastrointestinal failure and requiring parenteral nutrition. Parenteral glutamine (20.2 g/day) or selenium (500 μg/day), or both, for up to seven days. Primary outcomes were participants with new infections in the first 14 days and mortality. An intention to treat analysis and a prespecified analysis of patients who received ≥ 5 days of the trial intervention are presented. Secondary outcomes included critical care unit and acute hospital lengths of stay, days of antibiotic use, and modified SOFA (Sepsis-related Organ Failure Assessment) score. Selenium supplementation did not significantly affect patients developing a new infection (126/251 v 139/251, odds ratio 0.81 (95% CI 0.57 to 1.15)), except for those who had received ≥ 5 days of supplementation (odds ratio 0.53 (0.30 to 0.93)). There was no overall effect of glutamine on new infections (134/250 v 131/252, odds ratio 1.07 (0.75 to 1.53)), even if patients received ≥ 5 days of supplementation (odds ratio 0.99 (0.56 to 1.75)). Six month mortality was not significantly different for selenium (107/251 v 114/251, odds ratio 0.89 (0.62 to 1.29)) or glutamine (115/250 v 106/252, 1.18 (0.82 to 1.70)). Length of stay, days of antibiotic use, and modified SOFA score were not significantly affected by selenium or glutamine supplementation. The primary (intention to treat) analysis showed no effect on new infections or on mortality when parenteral nutrition was supplemented with glutamine or selenium. Patients who received parenteral nutrition supplemented with selenium for ≥ 5 days did show a reduction in new infections. This finding requires confirmation. Trial registration Current Controlled Trials ISRCTN87144826.

  4. Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation.

    PubMed

    Dickerson, E H; Sathyapalan, T; Knight, R; Maguiness, S M; Killick, S R; Robinson, J; Atkin, S L

    2011-12-01

    There is increasing concern that environmental chemicals have a direct effect on fertility. Heavy metals such as mercury have been shown to affect various organ systems in humans including nervous system and skin, however they could also act as endocrine disrupting chemicals adversely affecting fertility. Metals such as zinc and selenium are essential micronutrients with diverse functions that may be important for reproductive outcomes. We measured mercury, zinc and selenium levels in the hair, a reliable reflection of long term environmental exposure and dietary status, to correlate with the outcome of ovarian hyperstimulation for in vitro fertilisation (IVF) treatment. We analysed the hair of 30 subfertile women for mercury, zinc and selenium using inductively coupled mass spectrometry. Each woman underwent one cycle of IVF treatment. Correlation between the levels of these trace metals and treatment outcomes was investigated. Thirty women were recruited with mean (±SD) age of 32.7(4.4) years and BMI of 25.4(5.0)kg/m(2). Hair mercury concentration showed a negative correlation with oocyte yield (p < 0.05,βcoefficient 0.38) and follicle number (p = 0.03,β coefficient0.19) after ovarian stimulation. Zinc and selenium levels in hair correlated positively with oocyte yield after ovarian stimulation (p < 0.05,β coefficient0.15) and (p = 0.03,β coefficient0.21) respectively. Selenium levels in hair correlated significantly with follicle number following stimulation (p = 0.04, βcoefficient0.22). There was no correlation between mercury, zinc and selenium in hair and their corresponding serum levels. These data suggest that mercury had a deleterious effect whilst there was a positive effect for zinc and selenium in the ovarian response to gonadotrophin therapy for IVF. Hair analysis offers a novel method of investigating the impact of long-term exposure to endocrine disruptors and nutritional status on reproductive outcomes.

  5. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes.

    PubMed

    Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  6. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer.

    PubMed

    Hsueh, Yu-Mei; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Pu, Yeong-Shiau; Lin, Ying-Chin; Tsai, Cheng-Shiuan; Huang, Chao-Yuan

    2017-09-01

    This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Distribution and bioaccumulation of selenium in aquatic microcosms

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Little, Edward E.; La Point, Thomas W.

    1989-01-01

    Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved 75Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of 75Se over the range 80–180 mg SO4 liter−1. When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.

  8. GPX1 Pro198Leu polymorphism and GSTM1 deletion do not affect selenium and mercury status in mildly exposed Amazonian women in an urban population.

    PubMed

    Rocha, Ariana V; Rita Cardoso, Bárbara; Zavarize, Bruna; Almondes, Kaluce; Bordon, Isabella; Hare, Dominic J; Teixeira Favaro, Déborah Inês; Franciscato Cozzolino, Silvia Maria

    2016-11-15

    Mercury is potent toxicant element, but its toxicity can be reduced by forming a complex with selenium for safe excretion. Considering the impact of mercury exposure in the Amazon region and the possible interaction between these two elements, we aimed to assess the effects of Pro198Leu polymorphism to GPX1 and GSTM1 deletion, on mercury levels in a population from Porto Velho, an urban locality in the Brazilian Amazon region. Two hundred women from the capital city of Rondônia state were recruited for this study with 149 deemed suitable to participate. We assessed dietary intake using 24-hour recall. Selenium levels in plasma and erythrocytes were measured using hydride generation quartz tube atomic absorption spectroscopy and total hair mercury using cold vapor atomic absorption spectrometry. Oxidative stress parameters (GPx activity, oxygen radical absorbency capacity [ORAC] and malondialdehyde [MDA]) were also analyzed. All participants were genotyped for Pro198Leu polymorphism and GSTM1 deletion. We observed that this population presented high prevalence of selenium deficiency, and also low levels of mercury, likely due to food habits that did not include selenium-rich food sources or significant consumption of fish (mercury biomagnifiers) regularly. Univariate statistical analysis showed that Pro198Leu and GSTM1 genotypes did not affect selenium and mercury levels in this population. Pro198Leu polymorphism and GSTM1 deletion had no effect on mercury levels in mildly exposed people, suggesting these genetic variants impact mercury levels only in highly exposed populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of flushing of a high-selenium backwater channel in the Colorado River.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2004-02-01

    Concern has been raised that selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine if operation of a water control structure (opened in December 1996) that allowed the Colorado River to flow through a channel area at Walter Walker State Wildlife Area (WWSWA) would reduce selenium and other inorganic elements in water, sediment, aquatic invertebrates, and forage fish. Endangered Colorado pikeminnow were collected and muscle plug samples taken for selenium analysis. Selenium concentrations in filtered water were 21.0 microg/L in 1995, 23.5 microg/L in 1996, 2.1 microg/L in 1997, and 2.1 microg/L in 1998. Selenium concentrations in sediment cores and sediment traps were 8.5 microg/g in 1995, 8.2 microg/g in 1996, 4.8 microg/g in 1997, and 1.1 microg/g in 1998. Selenium concentrations in aquatic invertebrates were 27.4 microg/g in 1996, 15.5 microg/g in 1997, and 4.9 microg/g in 1998. Selenium concentrations in forage fish were 27.2 microg/g in 1996, 20.2 microg/g in 1997, and 8.6 microg/g in 1998. Selenium concentrations in muscle plugs of Colorado pikeminnow were 9.8 microg/g in 1995, 9.5 microg/g in 1996, 9.0 microg/g in 1997, and 10.3 microg/g in 1998. Although selenium concentrations in water, sediment, aquatic invertebrates, and forage fish decreased substantially after operation of the water control structure, a corresponding change in Colorado pikeminnow did not seem to occur. Selenium concentrations in muscle plugs decreased with increasing fish total length and weight, did not change between repeat sampling in the same year or recapture in subsequent years, and seemed to be most closely associated with the mean monthly river flow for the March-July period. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 51-81, 2004.

  10. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    EPA Science Inventory

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  11. Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.; Peltz, Lorri A.

    1999-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of land irrigated for agriculture, has been identified as being susceptible. Biological data were used to evaluate the reliability of the map. In 12 of DOl's 26 study areas, concentrations of selenium measured in bird eggs were elevated sufficiently to significantly reduce hatchability of the eggs. The GIS map identifies 9 of those 12 areas. Deformed bird embryos having classic symptoms of selenium toxicosis were found in four of the study areas, and the map identifies all four as susceptible to irrigation-induced selenium contamination.

  12. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Sohn, Mary; Anquandah, George A K; Pettine, Maurizio; Zboril, Radek

    2017-12-01

    This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    PubMed

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure.

    PubMed

    Shen, W; Chen, J; Yin, J; Wang, S-L

    2016-01-01

    Lead is a common environmental contaminant. Lead accumulation in the body is especially dangerous for pregnant women and newborns. Selenium is a trace element which may rectify the damaging effects of lead. Here we tested potential protective effects of selenium against gestational lead exposure. Pregnant SD rats were exposed to 200 mg/L of lead acetate (given with water), with or without sodium selenite supplementation (2-8 mg/kg/day via intragastric administration). Pregnant rats not exposed to lead or selenium served as control animals. The outcomes in pregnant rats were serum lead and selenium levels, reproductive hormone (follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol, progesterone) levels, and uterine and ovarian morphological changes. The outcomes in the offspring were sex differentiation, survival rates (day 21 after birth), weight (days 0-35 after birth), weight of reproductive organs, and puberty onset (foreskin separation or vaginal opening). Selenium supplementation dose-dependently decreased serum lead levels, rectified reproductive hormone levels, and attenuated reproductive morphological changes caused by lead exposure. Lead exposure did not affect sex differentiation, but significantly (p < 0.05 vs. control animals) decreased the offspring weight on days 0-28 and the weight of their reproductive organs. Furthermore, lead exposure delayed the onset of puberty. These pathological changes were dose-dependently rectified or attenuated by selenium supplementation. Gestational lead exposure causes damages to the reproductive system of pregnant rats, and negatively modulates growth and reproductive system development of the offspring. These adverse effects are rectified or attenuated by selenium supplementation.

  15. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  16. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  17. Colorectal Adenomas in Participants of the SELECT Randomized Trial of Selenium and Vitamin E for Prostate Cancer Prevention

    PubMed Central

    Lance, Peter; Alberts, David S.; Thompson, Patricia A.; Fales, Liane; Wang, Fang; Jose, Jerilyn San; Jacobs, Elizabeth T.; Goodman, Phyllis J.; Darke, Amy K.; Yee, Monica; Minasian, Lori; Thompson, Ian M.; Roe, Denise J.

    2017-01-01

    Selenium and vitamin E micronutrients have been advocated for the prevention of colorectal cancer. Colorectal adenoma occurrence was used as a surrogate for colorectal cancer in an ancillary study to the Selenium and Vitamin E Cancer Prevention Trial (SELECT) for prostate cancer prevention. The primary objective was to measure the effect of selenium (as selenomethionine) on colorectal adenomas occurrence, with the effect of vitamin E (as alpha tocopherol) supplementation on colorectal adenoma occurrence considered as a secondary objective. Participants who underwent lower endoscopy while in SELECT were identified from a subgroup of the 35,533 men randomized in the trial. Adenoma occurrence was ascertained from the endoscopy and pathology reports for these procedures. Relative risk (RR) estimates and 95% confidence intervals (CI) of adenoma occurrence were generated comparing those randomized to selenium versus placebo and to vitamin E versus placebo based on the full factorial design. Evaluable endoscopy information was obtained for 6,546 participants, of whom 2,286 had 1+ adenomas. Apart from 21 flexible sigmoidoscopies, all the procedures yielding adenomas were colonoscopies. Adenomas occurred in 34.2% and 35.7%, respectively, of participants whose intervention included or did not include selenium. Compared with placebo, the RR for adenoma occurrence in participants randomized to selenium was 0.96 (95% CI, 0.90–1.02; P = 0.194). Vitamin E did not affect adenoma occurrence compared to placebo (RR = 1.03, 95% CI, 0.96–1.10; P = 0.38). Neither selenium nor vitamin E supplementation can be recommended for colorectal adenoma prevention. PMID:27777235

  18. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids.

    PubMed

    Guisbiers, Grégory; Lara, Humberto H; Mendoza-Cruz, Ruben; Naranjo, Guillermo; Vincent, Brandy A; Peralta, Xomalin G; Nash, Kelly L

    2017-04-01

    Selenoproteins play an important role in the human body by accomplishing essential biological functions like oxido-reductions, antioxidant defense, thyroid hormone metabolism and immune response; therefore, the possibility to synthesize selenium nanoparticles free of any contaminants is exciting for future nano-medical applications. This paper reports the first synthesis of selenium nanoparticles by femtosecond pulsed laser ablation in de-ionized water. Those pure nanoparticles have been successfully used to inhibit the formation of Candida albicans biofilms. Advanced electron microscopy images showed that selenium nanoparticles easily adhere on the biofilm, then penetrate into the pathogen, and consequently damage the cell structure by substituting with sulfur. 50% inhibition of Candida albicans biofilm was obtained at only 25 ppm. Finally, the two physical parameters proved to affect strongly the viability of Candida albicans are the crystallinity and particle size. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Linking selenium sources to ecosystems: San Francisco Bay-Delta Model

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2004-01-01

    Marine sedimentary rocks of the Coast Ranges contribute selenium to soil, surface water, and ground water in the western San Joaquin Valley, California. Irrigation funnels selenium into a network of subsurface drains and canals. Proposals to build a master drain (i.e., San Luis Drain) to discharge into the San Francisco Bay-Delta Estuary remain as controversial today as they were in the 1950s, when drainage outside the San Joaquin Valley was first considered. An existing 85-mile portion of the San Luis Drain was closed in 1986 after fish mortality and deformities in ducks, grebes and coots were discovered at Kesterson National Wildlife Refuge, the temporary terminus of the drain. A 28-mile portion of the drain now conveys drainage from 100,000 acres into the San Joaquin River and eventually into the Bay-Delta. If the San Luis Drain is extended directly to the Bay-Delta, as is now being proposed as an alternative to sustain agriculture, it could receive drainage from an estimated one-million acres of farmland affected by rising water tables and increasing salinity. In addition to agricultural sources, oil refineries also discharge selenium to the Bay-Delta, although those discharges have declined in recent years. To understand the effects of changing selenium inputs, scientists have developed the Bay-Delta Selenium Model.

  20. Technical issues affecting the implementation of US environmental protection agency's proposed fish tissue-based aquatic criterion for selenium

    Treesearch

    A. Dennis Lemly; Joseph P. Skorupa

    2007-01-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the ‘‘what, where, and...

  1. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    PubMed

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, P<0.01), higher percentages of iAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, P<0.01) but lower percentages of monomethylarsonate (MMA) in serum (15.5 vs 18.8%, P<0.01) ans dimethylarsinate acid (DMA) in urine (65.1 vs 69.8%, P<0.01). Subjects with lower selenium concentrations in serum (<50 microg/l) had a stronger tendency to the risk of skin lesions than individual having higher selenium concentrations [odd ratio (OR), 7.3; 95% confidence interval (95% CI), 1.5-35.7; P=0.014]. This OR estimation was confirmed in those subjects having higher ratios of As/Se in urine and serum, with OR as high as 10.3 and 3.8 respectively. Lower serum selenium status (<50 microg/l) is significantly correlated to the arsenic-associated skin lesions in the arsenic exposed population. The accumulation of iAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  2. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    PubMed

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO 4 -extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis.

    PubMed

    Mal, Joyabrata; Veneman, Wouter J; Nancharaiah, Y V; van Hullebusch, Eric D; Peijnenburg, Willie J G M; Vijver, Martina G; Lens, Piet N L

    2017-02-01

    Microbial reduction of selenium (Se) oxyanions to elemental Se is a promising technology for bioremediation and treatment of Se wastewaters. But a fraction of biogenic nano-Selenium (nano-Se b ) formed in bioreactors remains suspended in the treated waters, thus entering the aquatic environment. The present study investigated the toxicity of nano-Se b formed by anaerobic granular sludge biofilms on zebrafish embryos in comparison with selenite and chemogenic nano-Se (nano-Se c ). The nano-Se b formed by granular sludge biofilms showed a LC 50 value of 1.77 mg/L, which was 3.2-fold less toxic to zebrafish embryos than selenite (LC 50  =   0.55 mg/L) and 10-fold less toxic than bovine serum albumin stabilized nano-Se c (LC 50  =   0.16 mg/L). Smaller (nano-Se cs ; particle diameter range: 25-80 nm) and larger (nano-Se cl ; particle diameter range: 50-250 nm) sized chemically synthesized nano-Se c particles showed comparable toxicity on zebrafish embryos. The lower toxicity of nano-Se b in comparison with nano-Se c was analyzed in terms of the stabilizing organic layer. The results confirmed that the organic layer extracted from the nano-Se b consisted of components of the extracellular polymeric substances (EPS) matrix, which govern the physiochemical stability and surface properties like ζ-potential of nano-Se b . Based on the data, it is contented that the presence of humic acid like substances of EPS on the surface of nano-Se b plays a major role in lowering the bioavailability (uptake) and toxicity of nano-Se b by decreasing the interactions between nanoparticles and embryos.

  4. Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters

    USGS Publications Warehouse

    Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.

    2001-01-01

    Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.

  5. Effect of Selenium Supplementation on Glycemic Control and Lipid Profiles in Patients with Diabetic Nephropathy.

    PubMed

    Bahmani, Fereshteh; Kia, Mahsa; Soleimani, Alireza; Asemi, Zatollah; Esmaillzadeh, Ahmad

    2016-08-01

    To our knowledge, data on the effects of selenium supplementation on glycemic control and lipid concentrations in patients with diabetic nephropathy (DN) are scarce. The current study was done to determine the effects of selenium supplementation on glycemic control and lipid concentrations in patients with DN. This was a randomized double-blind placebo-controlled clinical trial in which 60 patients with DN were randomly allocated into two groups to receive either 200 μg of selenium supplements (n = 30) or placebo (n = 30) daily for 12 weeks. Blood sampling was performed for the quantification of glycemic indicators and lipid profiles at the onset of the study and after 12 weeks of intervention. Selenium supplementation for 12 weeks resulted in a significant decrease in serum insulin levels (P = 0.01), homeostasis model of assessment-estimated insulin resistance (HOMA-IR) (P = 0.02), homeostasis model of assessment-estimated B cell function (HOMA-B) (P = 0.009) and a significant rise in plasma glutathione peroxidase (GPx) (P = 0.001) compared with the placebo. Taking selenium supplements had no significant effects on fasting plasma glucose (FPG), quantitative insulin sensitivity check index (QUICKI) and lipid profiles compared with the placebo. Overall, our study demonstrated that selenium supplementation for 12 weeks among patients with DN had beneficial effects on plasma GPx, serum insulin levels, HOMA-IR, and HOMA-B, while it did not affect FPG, QUICKI, and lipid profiles.

  6. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  7. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  8. Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice.

    PubMed

    Cao, Lei; Zhang, Li; Zeng, Huawei; Wu, Ryan Ty; Wu, Tung-Lung; Cheng, Wen-Hsing

    2017-10-01

    Background: The hierarchies of tissue selenium distribution and selenotranscriptomes are thought to critically affect healthspan and longevity. Objective: We determined selenium status and selenotranscriptomes in response to long-term dietary selenium deficiency and age in tissues of male and female mice. Methods: Weanling telomerase RNA component knockout C57BL/6 mice were fed a selenium-deficient (0.03 mg Se/kg) Torula yeast-based AIN-93G diet or a diet supplemented with sodium selenate (0.15 mg Se/kg) until age 18 or 24 mo. Plasma, hearts, kidneys, livers, and testes were collected to assay for selenotranscriptomes, selected selenoproteins, and tissue selenium concentrations. Data were analyzed with the use of 2-factor ANOVA (diet × age) in both sexes. Results: Dietary selenium deficiency decreased ( P ≤ 0.05) selenium concentrations (65-72%) and glutathione peroxidase (GPX) 3 (82-94%) and selenoprotein P (SELENOP) (17-41%) levels in the plasma of both sexes of mice and mRNA levels (9-68%) of 4, 4, and 12 selenoproteins in the heart, kidney, and liver of males, respectively, and 5, 16, and 14 selenoproteins, respectively, in females. Age increased selenium concentrations and SELENOP levels (27% and 30%, respectively; P ≤ 0.05) in the plasma of males only but decreased (12-46%; P < 0.05) mRNA levels of 1, 5, and 13 selenoproteins in the heart, kidney, and liver of males, respectively, and 6, 5, and 0 selenoproteins, respectively, in females. Among these mRNAs, selenoprotein H ( Selenoh ), selenoprotein M ( Selenom ), selenoprotein W ( Selenow ), methionine- R -sulfoxide reductase 1 ( MsrB1 ), Gpx1 , Gpx3 , thioredoxin reductase 1 ( Txnrd1 ), Txnrd2 , selenoprotein S ( Selenos ), selenoprotein F ( Selenof ), and selenoprotein O ( Selenoo ) responded in parallel to dietary selenium deficiency and age in ≥1 tissue or sex, or both. Dietary selenium deficiency upregulated (40-160%; P ≤ 0.05) iodothyronine deiodinase 2 ( Dio2 ) and selenoprotein N ( Selenon ) in the kidneys of males. Age upregulated (11-44%; P < 0.05) Selenon in the kidneys of males, selenoprotein K ( Selenok ) and selenoprotein I ( Selenoi ) in the kidneys of females, and Selenof and Selenok in the testes. Conclusions: These results illustrate tissue-specific sexual dimorphisms of selenium status and selenotranscriptomes because of dietary selenium deficiency and age. © 2017 American Society for Nutrition.

  9. An evaluation of the results of alluvial groundwater sampling from 1987--1990 at the Durango disposal site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    This evaluation was conducted to determine if surface discharges of contaminated water from a retention pond and seepage of tailings pore water from the disposal cell have affected ground I water quality in the alluvial deposits east and northeast of the Bodo Canyon disposal cell. The question of whether corrective remedial action is needed for the alluvial groundwater downgradient of the disposal cell is also addressed. Maximum observed concentrations of seven hazardous constituents equalled or exceeded proposed US Environmental Protection Agency (EPA) maximum concentration limits (MCLs) in the alluvial groundwater downgradient of the disposal cell. These constituents include chromium, lead,more » molybdenum, net gross alpha, radium-226 and -228, selenium, and uranium. Concentrations greater than MCLs for molybdenum, net gross alpha, and radium-226 and -228 may be naturally occurring in the alluvial groundwater. There is no statistical evidence that these hazardous constituents are groundwater contaminants with concentrations that exceed the MCLs in alluvial groundwater. However, the median selenium concentration in monitor well 608 exceeds the MCL. Therefore, selenium contamination in the alluvial groundwater in the area of monitor well 608 is possible. Selenium concentrations show no definite increasing or decreasing trend. Since groundwater contamination by selenium is possible in one monitor well, but concentrations are not increasing, corrective action is not warranted at this time. Alluvial groundwater quality will continue to be monitored quarterly and the discharge from the retention pond should be sampled after treatment to ascertain its potential affects on groundwater quality.« less

  10. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model.

    PubMed

    Hu, Ying; Cheng, Zhiqiang; Heller, Larry I; Krasnoff, Stuart B; Glahn, Raymond P; Welch, Ross M

    2006-11-29

    Four different colored beans (white, red, pinto, and black beans) were investigated for factors affecting iron bioavailability using an in vitro digestion/human Caco-2 cell model. Iron bioavailability from whole beans, dehulled beans, and their hulls was determined. The results show that white beans contained higher levels of bioavailable iron compared to red, pinto, and black beans. These differences in bioavailable iron were not due to bean-iron and bean-phytate concentrations. Flavonoids in the colored bean hulls were found to be contributing to the low bioavailability of iron in the non-white colored beans. White bean hulls contained no detectable flavonoids but did contain an unknown factor that may promote iron bioavailability. The flavonoids, kaempferol and astragalin (kaempferol-3-O-glucoside), were identified in red and pinto bean hulls via HPLC and MS. Some unidentified anthocyanins were also detected in the black bean hulls but not in the other colored bean hulls. Kaempferol, but not astragalin, was shown to inhibit iron bioavailability. Treating in vitro bean digests with 40, 100, 200, 300, 400, 500, and 1000 microM kaempferol significantly inhibited iron bioavailability (e.g., 15.5% at 40 microM and 62.8% at 1000 microM) in a concentration-dependent fashion. Thus, seed coat kaempferol was identified as a potent inhibitory factor affecting iron bioavailability in the red and pinto beans studied. Results comparing the inhibitory effects of kaempferol, quercitrin, and astragalin on iron bioavailability suggest that the 3',4'-dihydroxy group on the B-ring in flavonoids contributes to the lower iron bioavailability.

  11. Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review

    PubMed Central

    Winkel, Lenny H.E.; Vriens, Bas; Jones, Gerrad D.; Schneider, Leila S.; Pilon-Smits, Elizabeth; Bañuelos, Gary S.

    2015-01-01

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246

  12. Selenium cycling across soil-plant-atmosphere interfaces: a critical review.

    PubMed

    Winkel, Lenny H E; Vriens, Bas; Jones, Gerrad D; Schneider, Leila S; Pilon-Smits, Elizabeth; Bañuelos, Gary S

    2015-05-29

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.

  13. Tellurium Distribution and Speciation in Contaminated Soils from Abandoned Mine Tailings: Comparison with Selenium.

    PubMed

    Qin, Hai-Bo; Takeichi, Yasuo; Nitani, Hiroaki; Terada, Yasuko; Takahashi, Yoshio

    2017-06-06

    The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.

  14. Influence of HIV infection and the use of antiretroviral therapy on selenium and selenomethionine concentrations and antioxidant protection.

    PubMed

    Watanabe, Lígia Moriguchi; Barbosa Júnior, Fernando; Jordão, Alceu Afonso; Navarro, Anderson Marliere

    2016-01-01

    The aim of the present study was to evaluate whether HIV infection and antiretroviral therapy (ART) use are associated with oxidative stress, concentrations of selenium and selenomethionine, and antioxidant protection. Individuals were classified as HIV negatives: control group (CG; n = 40); HIV positives: group 1 (G1; taking ART for >5 y, n = 40) and group 2 (G2; taking ART for <5 y, n = 40). Plasma and erythrocyte selenium, selenomethionine, glutathione (GSH), glutathione peroxidase activity (GPX), and malondialdehyde (MDA) were evaluated. Selenium deficiency (plasma selenium 45 μg/L) was not observed in any of the participants, and plasma selenium in CG (69.4 μg/L) was lower than in G1 and G2 (88.4 and 72.5 μg/L, respectively). G1 and G2 showed higher concentrations of MDA and GPX and lower concentration of GSH than CG. Multiple linear regression analysis indicated an association of MDA, GPX, and GSH with HIV status. CG participants showed higher concentrations of selenomethionine than G1 and G2 individuals and we observed a significant negative correlation between the concentration of selenomethionine and the use of ART. Prolonged ART use seems to increase the selenium in plasma, but influences the reduction of selenomethionine. HIV infection was associated with increased oxidative stress and appears to affect in protective activity of GPX. Finally, more studies are required to further address the importance of selenium and selenometabolites in the pathogenesis of infection and metabolism of HIV-positive individuals in prolonged use of ART. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mercury and selenium concentrations in leatherback sea turtles (Dermochelys coriacea): population comparisons, implications for reproductive success, hazard quotients and directions for future research.

    PubMed

    Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette

    2013-10-01

    Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Selenium status in pregnancy influences children's cognitive function at 1.5 years of age.

    PubMed

    Skröder, Helena M; Hamadani, Jena D; Tofail, Fahmida; Persson, Lars Åke; Vahter, Marie E; Kippler, Maria J

    2015-10-01

    Selenium deficiency has been shown to affect the neurological development in animals, but human research in this area is scarce. We aimed to assess the impact of selenium status during pregnancy on child development at 1.5 years of age. This prospective cohort study was nested into a food and micronutrient supplementation trial (MINIMat) conducted in rural Bangladesh. Using inductively coupled plasma mass spectrometry, we measured selenium concentrations in erythrocyte fraction of blood collected from 750 mothers at gestational week 30, and calculated μg per g hemoglobin. A revised version of Bayley Scales of Infant Development was used to assess children's mental and psychomotor development. A Bangladeshi version of MacArthur's Communicative Development Inventory was used to assess language comprehension and expression. Linear regression analyses adjusted for multiple covariates were used to assess the associations. Maternal erythrocyte selenium concentrations varied considerably, from 0.19 to 0.87 μg/g hemoglobin (median 0.46 μg/g hemoglobin), and were associated with developmental measures. An increase in erythrocyte selenium by 0.50 μg/g hemoglobin was associated with an increase in children's language comprehension by 3.7 points (0.5 standard deviations; 95% confidence interval: 0.40, 7.1; p = 0.028). The same increase in erythrocyte selenium corresponded to an increase in the girls' psychomotor development by 12 points (0.9 standard deviation; 95% confidence interval: 4.3, 19; p = 0.002), but much less in boys. Low prenatal selenium status seems to be disadvantageous for children's psychomotor and language development. Further studies are needed to elucidate the underlying mechanisms of these effects. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Colorectal Adenomas in Participants of the SELECT Randomized Trial of Selenium and Vitamin E for Prostate Cancer Prevention.

    PubMed

    Lance, Peter; Alberts, David S; Thompson, Patricia A; Fales, Liane; Wang, Fang; San Jose, Jerilyn; Jacobs, Elizabeth T; Goodman, Phyllis J; Darke, Amy K; Yee, Monica; Minasian, Lori; Thompson, Ian M; Roe, Denise J

    2017-01-01

    Selenium and vitamin E micronutrients have been advocated for the prevention of colorectal cancer. Colorectal adenoma occurrence was used as a surrogate for colorectal cancer in an ancillary study to the Selenium and Vitamin E Cancer Prevention Trial (SELECT) for prostate cancer prevention. The primary objective was to measure the effect of selenium (as selenomethionine) on colorectal adenomas occurrence, with the effect of vitamin E (as α-tocopherol) supplementation on colorectal adenoma occurrence considered as a secondary objective. Participants who underwent lower endoscopy while in SELECT were identified from a subgroup of the 35,533 men randomized in the trial. Adenoma occurrence was ascertained from the endoscopy and pathology reports for these procedures. Relative Risk (RR) estimates and 95% confidence intervals (CI) of adenoma occurrence were generated comparing those randomized to selenium versus placebo and to vitamin E versus placebo based on the full factorial design. Evaluable endoscopy information was obtained for 6,546 participants, of whom 2,286 had 1+ adenomas. Apart from 21 flexible sigmoidoscopies, all the procedures yielding adenomas were colonoscopies. Adenomas occurred in 34.2% and 35.7%, respectively, of participants whose intervention included or did not include selenium. Compared with placebo, the RR for adenoma occurrence in participants randomized to selenium was 0.96 (95% CI, 0.90-1.02; P = 0.194). Vitamin E did not affect adenoma occurrence compared with placebo (RR = 1.03; 95% CI, 0.96-1.10; P = 0.38). Neither selenium nor vitamin E supplementation can be recommended for colorectal adenoma prevention. Cancer Prev Res; 10(1); 45-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for transport to streams and irrigation drains that are tributary to the Gunnison, Uncompahgre, and Colorado Rivers. Selenium concentrations in about 64\\x11percent of water samples collected from the lower Gunnison River and about 50 percent of samples from the Colorado River near the Colorado-Utah State line exceeded the U.S.\\x11Environmental Protection Agency criterion of 5\\x11micrograms per liter for protection of aquatic life. Almost all selenium concentrations in samples collected during the nonirrigation season from Mancos Shale areas exceeded the aquatic-life criterion. The maximum selenium concentrations in surface-water samples were 600\\x11micrograms per liter in the Uncompahgre Project area and 380\\x11micrograms per liter in the Grand Valley. Irrigation drainage from the Uncompahgre Project and the Grand Valley might account for as much as 75 percent of the selenium load in the Colorado River near the Colorado-Utah State line. The primary source areas of selenium were the eastern side of the Uncompahgre Project and the western one-half of the Grand Valley, where there is extensive irrigation on soils derived from Mancos Shale. The largest mean selenium loads from tributary drainages were 14.0 pounds per day from Loutsenhizer Arroyo in the Uncompahgre Project and 12.8 pounds per day from Reed Wash in the Grand Valley. Positive correlations between selenium loads and dissolved-solids loads could indicate that salinity-control projects designed to decrease dissolved-solids loads also could decrease selenium loads from the irrigated areas. Selenium concentrations in irrigation drainage in the Grand Valley were much higher than concentrations predicted by simple evaporative concentration of irrigation source water. Selenium probably is removed from pond water by chemical and biological processes and incorporated into bottom sediment. The maximum selenium concentration in bottom sediment was 47 micrograms per gram from a pond on the eastern side of the

  20. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    PubMed

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  1. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics

    PubMed Central

    Gao, Song; Hu, Ming

    2010-01-01

    Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones’ bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics’ bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo. PMID:20370701

  2. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    PubMed

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of dynamic change of egg selenium deposition after feeding sodium selenite or selenium-enriched yeast.

    PubMed

    Lu, J; Qu, L; Shen, M M; Hu, Y P; Guo, J; Dou, T C; Wang, K H

    2018-05-19

    The aim of this study was to compare the dynamic change of egg selenium (Se) deposition after sodium selenite (SS) or selenium-enriched yeast (SY) supplementation for 1, 3, 5, 7, 14, 21, 28, 56, and 84 d. A total of 576 32-wk-old Hy-Line Brown laying hens were randomly assigned to 3 groups (192 laying hens per group) with 6 replicates, and fed a basal diet (without Se supplementation) or basal diets with 0.3 mg/kg of Se from SS or 0.3 mg/kg of Se from SY, respectively. The results showed that the Se concentrations in the eggs from hens fed a SY-supplemented diet were significantly higher (P < 0.001) than those from hens fed a SS-supplemented diet or a basal diet after 3 d. And the Se concentrations in the eggs from hens fed a SS-supplemented diet were significantly higher (P < 0.001) than those from hens fed a basal diet after 14 d. There was a positive linear and quadratic correlation between Se concentrations in the eggs from hens fed a SY-supplemented diet (r2 = 0.782, P < 0.001; r2 = 0.837, P < 0.001) or SS-supplemented diet (r2 = 0.355, P < 0.001; r2 = 0.413, P < 0.001) and number of feeding days. The Se concentrations in the breasts from hens fed a SY-supplemented diet were 126.98% higher (P < 0.001) than those from hens fed a SS-supplemented diet, and were 299.44% higher (P < 0.001) than those from hens fed a basal diet after the 84-d feeding period. In conclusion, the dietary Se was gradually transferred into eggs with the extension of the experimental duration. The deposition rate of Se in the eggs from hens fed a SY-supplemented diet was much more rapid than that from hens fed a SS-supplemented diet, and the organic Se from SY had higher bioavailability as compared to inorganic Se from SS.

  4. Animal versus human oral drug bioavailability: Do they correlate?

    PubMed Central

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J.D.; Liu, Bo; Rostami Hodjegan, Amin

    2014-01-01

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction. PMID:23988844

  5. Integrating bioavailability approaches into waste rock evaluations

    USGS Publications Warehouse

    Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.

    2006-01-01

    The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

  6. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  7. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  8. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data

    USGS Publications Warehouse

    Mars, J.C.; Crowley, J.K.

    2003-01-01

    Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.

  9. Bioavailability of xenobiotics in the soil environment.

    PubMed

    Katayama, Arata; Bhula, Raj; Burns, G Richard; Carazo, Elizabeth; Felsot, Allan; Hamilton, Denis; Harris, Caroline; Kim, Yong-Hwa; Kleter, Gijs; Koedel, Werner; Linders, Jan; Peijnenburg, J G M Willie; Sabljic, Aleksandar; Stephenson, R Gerald; Racke, D Kenneth; Rubin, Baruch; Tanaka, Keiji; Unsworth, John; Wauchope, R Donald

    2010-01-01

    It is often presumed that all chemicals in soil are available to microorganisms, plant roots, and soil fauna via dermal exposure. Subsequent bioaccumulation through the food chain may then result in exposure to higher organisms. Using the presumption of total availability, national governments reduce environmental threshold levels of regulated chemicals by increasing guideline safety margins. However, evidence shows that chemical residues in the soil environment are not always bioavailable. Hence, actual chemical exposure levels of biota are much less than concentrations present in soil would suggest. Because "bioavailability" conveys meaning that combines implications of chemical sol persistency, efficacy, and toxicity, insights on the magnitude of a chemicals soil bioavailability is valuable. however, soil bioavailability of chemicals is a complex topic, and is affected by chemical properties, soil properties, species exposed, climate, and interaction processes. In this review, the state-of-art scientific basis for bioavailability is addressed. Key points covered include: definition, factors affecting bioavailability, equations governing key transport and distributive kinetics, and primary methods for estimating bioavailability. Primary transport mechanisms in living organisms, critical to an understanding of bioavailability, also presage the review. Transport of lipophilic chemicals occurs mainly by passive diffusion for all microorganisms, plants, and soil fauna. Therefore, the distribution of a chemical between organisms and soil (bioavailable proportion) follows partition equilibrium theory. However, a chemical's bioavailability does not always follow partition equilibrium theory because of other interactions with soil, such as soil sorption, hysteretic desorption, effects of surfactants in pore water, formation of "bound residue", etc. Bioassays for estimating chemical bioavailability have been introduced with several targeted endpoints: microbial degradation, uptake by higher plants and soil fauna, and toxicity to organisms. However, there bioassays are often time consuming and laborious. Thus, mild extraction methods have been employed to estimate bioavailability of chemicals. Mild methods include sequential extraction using alcohols, hexane/water, supercritical fluids (carbon dioxide), aqueous hydroxypropyl-beta-cyclodextrin extraction, polymeric TENAX beads extraction, and poly(dimethylsiloxane)-coated solid-phase microextraction. It should be noted that mild extraction methods may predict bioavailability at the moment when measurements are carried out, but not the changes in bioavailability that may occur over time. Simulation models are needed to estimate better bioavailability as a function of exposure time. In the past, models have progressed significantly by addressing each group of organisms separately: microbial degradation, plant uptake via evapotranspiration processes, and uptake of soil fauna in their habitat. This approach has been used primarily because of wide differences in the physiology and behaviors of such disparate organisms. However, improvement of models is badly needed, Particularly to describe uptake processes by plant and animals that impinge on bioavailability. Although models are required to describe all important factors that may affect chemical bioavailability to individual organisms over time (e.g., sorption/desorption to soil/sediment, volatilization, dissolution, aging, "bound residue" formation, biodegradation, etc.), these models should be simplified, when possible, to limit the number of parameters to the practical minimum. Although significant scientific progress has been made in understanding the complexities in specific methodologies dedicated to determining bioavailability, no method has yet emerged to characterized bioavailability across a wide range of chemicals, organisms, and soils/sediments. The primary aim in studying bioavailability is to define options for addressing bioremediation or environmental toxicity (risk assessment), and that is unlikely to change. Because of its importance in estimating research is needed to more comprehensively address the key environmental issue of "bioavailability of chemicals in soil/sediment."

  10. The effect of dietary vitamin E level on selenium status in rats.

    PubMed

    Fujihara, T; Orden, E A

    2014-10-01

    The effect of varying levels of dietary vitamin E on selenium status was determined using 40 Wistar rats with similar initial body weight. The rats were equally divided into four groups and fed the following dietary treatments (mg vitamin E/kg DM): 18 (control; C-diet), 0 (0E-diet), 9 (0.5E-diet) and 36 (2E-diet) for either 4-week (Phase 1) or 8-week (Phase 2) period. At the end of experiment, animals were slaughtered to measure vitamin E and selenium levels in the brain, liver, spleen, kidney, muscles and blood tissues. Dietary vitamin E levels did not affect feed and water intake and body weight. But whole-blood selenium concentration in rats fed 0E-diet was higher than in rats fed 2E-diet after 4 weeks. Selenium level in muscle, spleen and brain was also higher (p < 0.05) in rats fed the 0E-diet than in rats fed C-diet after 4 weeks of feeding. On the other hand, selenium level in the muscle was lower (p < 0.05) in rats fed 0.5E-diet than in those fed 0E-diet after 4 weeks of feeding, but not after 8 weeks of feeding. Increasing dietary vitamin E level directly influenced selenium content of the spleen and brain after 8 weeks of feeding 2E-diet. Moreover, the twofold increase in vitamin E intake resulted in a tendency to reduce whole-blood selenium level and total selenium in the liver and kidney after 4 and 8 weeks. The results showed that the increasing dietary vitamin E level resulted in a tendency to reduce Se contents in some vital organs of the body such as the liver and kidney, suggesting their close compensatory interrelationship. Therefore, dietary vitamin E level directly influenced selenium metabolism in the animal body. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  11. Clinical and Metabolic Response to Selenium Supplementation in Pregnant Women at Risk for Intrauterine Growth Restriction: Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Mesdaghinia, Elaheh; Rahavi, Azam; Bahmani, Fereshteh; Sharifi, Nasrin; Asemi, Zatollah

    2017-07-01

    Data on the effects of selenium supplementation on clinical signs and metabolic profiles in women at risk for intrauterine growth restriction (IUGR) are scarce. This study was designed to assess the effects of selenium supplementation on clinical signs and metabolic status in pregnant women at risk for IUGR. This randomized double-blind placebo-controlled clinical trial was performed among 60 women at risk for IUGR according to abnormal uterine artery Doppler waveform. Participants were randomly assigned to intake either 100 μg selenium supplements as tablet (n = 30) or placebo (n = 30) for 10 weeks between 17 and 27 weeks of gestation. After 10 weeks of selenium administration, a higher percentage of women in the selenium group had pulsatility index (PI) of <1.45) (P = 0.002) than of those in the placebo group. In addition, changes in plasma levels of total antioxidant capacity (TAC) (P < 0.001), glutathione (GSH) (P = 0.008), and high-sensitivity C-reactive protein (hs-CRP) (P = 0.004) in the selenium group were significant compared with the placebo group. Additionally, selenium supplementation significantly decreased serum insulin (P = 0.02), homeostasis model of assessment-estimated insulin resistance (HOMA-IR) (P = 0.02), and homeostatic model assessment for B-cell function (HOMA-B) (P = 0.02) and significantly increased quantitative insulin sensitivity check index (QUICKI) (P = 0.04) and HDL-C levels (P = 0.02) compared with the placebo. We did not find any significant effect of selenium administration on malondialdehyde (MDA), nitric oxide (NO), fasting plasma glucose (FPG), and other lipid profiles. Overall, selenium supplementation in pregnant women at risk for IUGR resulted in improved PI, TAC, GSH, hs-CRP, and markers of insulin metabolism and HDL-C levels, but it did not affect MDA, NO, FPG, and other lipid profiles.Clinical trial registration number http://www.irct.ir : IRCT201601045623N64.

  12. Age-related Cataract in a Randomized Trial of Selenium and Vitamin E in Men: The SELECT Eye Endpoints (SEE) Study

    PubMed Central

    Christen, William G.; Glynn, Robert J.; Gaziano, J. Michael; Darke, Amy K.; Crowley, John J.; Goodman, Phyllis J.; Lippman, Scott M.; Lad, Thomas E.; Bearden, James D.; Goodman, Gary E.; Minasian, Lori M.; Thompson, Ian M.; Blanke, Charles D.; Klein, Eric A.

    2014-01-01

    Importance Observational studies suggest a role for dietary nutrients such as vitamin E and selenium in cataract prevention. However, the results of randomized trials of vitamin E supplements and cataract have been disappointing, and are not yet available for selenium. Objective To test whether long-term supplementation with selenium and vitamin E affects the incidence of cataract in a large cohort of men. Design, Setting, and Participants The SELECT Eye Endpoints (SEE) study was an ancillary study of the SWOG-coordinated Selenium and Vitamin E Cancer Prevention Trial (SELECT), a randomized, placebo-controlled, four arm trial of selenium and vitamin E conducted among 35,533 men aged 50 years and older for African Americans and 55 and older for all other men, at 427 participating sites in the US, Canada, and Puerto Rico. A total of 11,267 SELECT participants from 128 SELECT sites participated in the SEE ancillary study. Intervention Individual supplements of selenium (200 µg/d from L-selenomethionine) and vitamin E (400 IU/d of all rac-α-tocopheryl acetate). Main Outcome Measures Incident cataract, defined as a lens opacity, age-related in origin, responsible for a reduction in best-corrected visual acuity to 20/30 or worse based on self-report confirmed by medical record review, and cataract extraction, defined as the surgical removal of an incident cataract. Results During a mean (SD) of 5.6 (1.2) years of treatment and follow-up, 389 cases of cataract were documented. There were 185 cataracts in the selenium group and 204 in the no selenium group (hazard ratio [HR], 0.91; 95 percent confidence interval [CI], 0.75 to 1.11; P=.37). For vitamin E, there were 197 cases in the treated group and 192 in the placebo group (HR, 1.02; CI, 0.84 to 1.25; P=.81). Similar results were observed for cataract extraction. Conclusions and Relevance These randomized trial data from a large cohort of apparently healthy men indicate that long-term daily supplementation with selenium and/or vitamin E is unlikely to have a large beneficial effect on age-related cataract. PMID:25232809

  13. Effect of intraperitoneal selenium administration on liver glycogen levels in rats subjected to acute forced swimming.

    PubMed

    Akil, Mustafa; Bicer, Mursel; Kilic, Mehmet; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    There are a few of studies examining how selenium, which is known to reduce oxidative damage in exercise, influences glucose metabolism and exhaustion in physical activity. The present study aims to examine how selenium administration affects liver glycogen levels in rats subjected to acute swimming exercise. The study included 32 Sprague-Dawley type male rats, which were equally allocated to four groups: Group 1, general control; Group 2; selenium-supplemented control (6 mg/kg/day sodium selenite); Group 3, swimming control; Group 4, selenium-supplemented swimming (6 mg/kg/day sodium selenite). Liver tissue samples collected from the animals at the end of the study were fixed in 95% ethyl alcohol. From the tissue samples buried into paraffin, 5-µm cross-sections were obtained using a microtome, put on a microscope slide, and stained with PAS. Stained preparations were assessed using a Nikon Eclipse E400 light microscope. All images obtained with the light microscope were transferred to a PC and evaluated using Clemex PE 3.5 image analysis software. The highest liver glycogen levels were found in groups 1 and 2 (p < 0.05). The levels in group 4 were lower than those in groups 1 and 2 but higher than the levels in group 3 (p < 0.05). The lowest liver glycogen levels were obtained in group 3 (p < 0.05). Results of the study indicate that liver glycogen levels that decrease in acute swimming exercise can be restored by selenium administration. It can be argued that physiological doses of selenium administration can contribute to performance.

  14. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System.

    PubMed

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Zhou, Wenjing

    2017-11-01

    A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg -1 ; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.

  15. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  16. Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants

    USGS Publications Warehouse

    Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S.

    1989-01-01

    Soybean (Glycine max) plants were grown in hydroponic solutions treated with high concentrations of either arsenic or selenium. Spectral reflectance changes in arsenic-dosed plants included a shift to shorter wavelengths in the long-wavelength edge of the chlorophyll absorption band centered at 680 nm (the red edge) and higher reflectance in the 550-650 nm region. These results are consistent with vegetation reflectance anomalies observed in previous greenhouse experiments and in airborne radiometer studies. The selenium-dosed plants contrast, exhibited a shift to longer wavelengths of the red edge and lower reflectance between 550 nm and 650 wh when compared with control plants. Morphological effects of arsenic uptake included lower overall biomass, stunted and discolored roots, and smaller leaves oriented more vertically than leaves of control plants. Selenium-dosed plants also displayed morphological changes, but root and leaf biomass were less affected than were those of arsenic-dosed plants when compared to control plants. ?? 1989.

  17. Increased probiotic yogurt or resistant starch intake does not affect isoflavone bioavailability in subjects consuming a high soy diet.

    PubMed

    Larkin, Theresa A; Price, William E; Astheimer, Lee B

    2007-10-01

    Probiotics and prebiotics that affect gut microflora balance and its associated enzyme activity may contribute to interindividual variation in isoflavone absorption after soy intake, possibly enhancing isoflavone bioavailability. This study examined the effects of the consumption of bioactive yogurt (a probiotic) or resistant starch (a known prebiotic) in combination with high soy intake on soy isoflavone bioavailability. Using a crossover design, chronic soy consumption was compared with soy plus probiotic yogurt or resistant starch in older male and postmenopausal females (n = 31). Isoflavone bioavailability was assessed at the beginning and end of each 5-wk dietary period by sampling plasma and urine after a standardized soy meal. Chronic soy intake did not significantly affect plasma or urinary isoflavones after the soy meal and there were no significant effects of probiotic or resistant starch treatment. However, there were trends for increased circulating plasma daidzein and genistein after the probiotic treatment and for increased plasma daidzein and genistein 24 h after soy intake with resistant starch treatment. Neither treatment induced or increased equol production, although there was a trend for increased plasma equol in "equol-positive" subjects (n = 12) after probiotic treatment. The weak or absence of effects of probiotic yogurt or resistant starch supplement to a chronic soy diet suggests that gut microflora were not modified in a manner that significantly affected isoflavone bioavailability or metabolism.

  18. GEMAS - Soil geochemistry and health implications

    NASA Astrophysics Data System (ADS)

    Ernstsen, Vibeke; Ladenberger, Anna; Wragg, Joanna; Gulan, Aleksandra

    2014-05-01

    The GEMAS Project resulted in a large coherent data set displaying baseline levels of elements in agricultural and grazing land soil, which has a wide variety of applications. Medical geology is an emerging new discipline providing a link between geoscience and medicine by interpreting natural geological factors in relation to human and animal health and their geographical distribution. Medical geology shows not only problems related to harmful health effects of natural geological materials and processes, but also deals with their beneficial aspects. Since the GEMAS project demonstrates the importance of geological factors in geochemical patterns in European soil, this data set can be used in improving our understanding of how the geological processes may affect human health in Europe. The main potential health problems are related to deficiency of nutrients in soil and toxic effects of potentially harmful elements. Deficiency in macro- (e.g., K, Fe, Mg, P) and micro-nutrients (e.g., Se, Zn, Cl) can be responsible for a reduction in crop productivity and certain health issues for livestock and humans. On the other hand, bioavailability of crucial elements depends on soil parameters, e.g., pH; namely, low pH in soil (in northern Europe) makes more micronutrients bioavailable, with the exception of Mo, P and Ca. Rocks underlying the soil layer have a major impact on soil composition, and soil parent material can be a main source of toxic metals, for instance, soil developed on black shale (e.g., Oslo region) shows potentially toxic levels of metals, such as As, Cd, U, Zn and Pb. High content of organic matter is another factor amplifying the toxic levels of metals in soil. Several important topics with health implications can be then addressed using the GEMAS data set, namely, soil properties and element bioavailability, arsenic toxicity, selenium deficiency, potential health effects of liming, uranium in European soil, influence of recent and historical volcanic activity on soil composition and its health consequences. References Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part A: Methodology and interpretation of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 528 pp. Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part B: General background information and further analysis of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 352 pp.

  19. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. [Bioavailability and factors influencing its rate].

    PubMed

    Vraníková, Barbora; Gajdziok, Jan

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  1. Effects of Different Amounts of Supplemental Selenium and Vitamin E on the Incidence of Retained Placenta, Selenium, Malondialdehyde, and Thyronines Status in Cows Treated with Prostaglandin F2α for the Induction of Parturition

    PubMed Central

    Jovanović, Ivan B.; Veličković, Miljan; Vuković, Dragan; Milanović, Svetlana; Valčić, Olivera; Gvozdić, Dragan

    2013-01-01

    The incidence of retained placenta (RP) in cows increases in cases of parturition induced by prostaglandin F2α. We analyzed the effects of different doses of supplemental selenium and vitamin E on the incidence of RP, blood selenium, plasma thyronines, and malondialdehyde concentration. Thirty-three clinically healthy, multiparous Holstein-Frisian cows were assigned to 3 groups and supplemented with a single intramuscular injection of sodium selenite (SS) and tocopherol acetate (TAc) between days 250 to 255 of gestation: control—unsupplemented; group A—10 mg SS + 400 mg TAc; group B—20 mg SS + 800 mg TAc. Parturition was induced using PGF2α not before day 275 of gestation. The RP incidence was reduced from 66.7% in the control to 38.2 and 30.8% in groups A and B, respectively. Blood selenium and glutathione peroxidase activity in treated groups were significantly higher compared to control, with no significant difference between groups A and B. Plasma malondialdehyde in group B was significantly lower than that in control and group A, while thyronines levels were not affected. Comparison of RP and non-RP cows, independently of supplement treatment, revealed higher blood selenium and glutathione peroxidase activity and lower MDA and thyroxine in non-RP animals, while triiodothyronine level did not differ. PMID:26464914

  2. Effects of selenium on ischaemia-reperfusion injury in a rat testis model.

    PubMed

    Kara, Ö; Sari, E; Akşit, H; Yay, A; Akşit, D; Dönmez, M I

    2016-12-01

    Selenium is shown to have beneficial effects on ischaemia-reperfusion (IR) injury. Our aim was to assess the effects of selenium on IR-induced testicular damage in terms of biochemical and histopathological evaluation. A total of 32 rats were randomised into four groups: control, IR, IR + selenium (IR + S) and S. Detorsion was applied after 3 h of torsion. Testicular tissue superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), total antioxidant capacity (TAC) and DNA fragmentation levels were determined. Testicular tissue samples were examined by histopathological examination and terminal deoxynucleotidyl transferase dUTP nick end-labelling staining. The control, IR and IR + S groups had higher SOD values compared with the S group; SOD levels of the control and IR + S groups were higher than those of the IR group (P < 0.05). Further, MDA levels of the IR group were higher than those in the other three groups (P < 0.05). The IR group revealed lower TAC levels than the three groups (P < 0.05 for all). GSH levels of the IR group were significantly lower than those in the other three groups (P < 0.05 for all). In contrast, GSH levels of the IR + S group increased compared with those of the S group. The IR group had more DNA fragmentation than the control and S groups (P < 0.05). It is concluded that selenium possibly reduces oxidative stress and apoptosis caused by testicular IR injury in rats. The testicular protective effect of selenium appears to be mediated through its anti-apoptotic and antioxidative effects. However, selenium does not affect DNA fragmentation. © 2016 Blackwell Verlag GmbH.

  3. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors.

    PubMed

    Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin

    2017-01-01

    Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1-1.5 mm in 2 ways: during the granules' preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13 C and 31 P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a "burst release" probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals' interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the "burst release" of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well.

  4. Fabrication and physicochemical characterization of porous composite microgranules with selenium oxyanions and risedronate sodium for potential applications in bone tumors

    PubMed Central

    Kolmas, Joanna; Pajor, Kamil; Pajchel, Lukasz; Przekora, Agata; Ginalska, Grażyna; Oledzka, Ewa; Sobczak, Marcin

    2017-01-01

    Nanocrystalline hydroxyapatite containing selenite ions (SeHA; 9.6 wt.% of selenium) was synthesized using wet method and subject to careful physicochemical analysis by powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, solid-state nuclear magnetic resonance, wavelength dispersive X-ray fluorescence, and inductively coupled plasma optical emission spectrometry. SeHA was then used to develop the selenium-containing hydroxyapatite/alginate (SeHA/ALG) composite granules. Risedronate sodium (RIS) was introduced to the obtained spherical microgranules of a size of about 1.1–1.5 mm in 2 ways: during the granules’ preparation (RIS solution added to a suspension of ALG and SeHA), and as a result of SeHA/ALG granules soaking in aqueous RIS solution. The analysis made using 13C and 31P cross-polarization magic angle spinning nuclear magnetic resonance confirmed the presence of RIS and its interaction with calcium ions. Then, the release of selenium (inductively coupled plasma optical emission spectrometry) and RIS (high-performance liquid chromatography) from microgranules was examined. Moreover, cytotoxicity of fabricated granules was assessed by MTT test. Selenium release was biphasic: the first stage was short and ascribed to a “burst release” probably from a hydrated surface layer of SeHA crystals, while the next stage was significantly longer and ascribed to a sustained release of selenium from the crystals’ interior. The study showed that the method of obtaining microgranules containing RIS significantly affects its release profile. Performed cytotoxicity test revealed that fabricated granules had high antitumor activity against osteosarcoma cells. However, because of the “burst release” of selenium during the first 10 h, the granules significantly reduced viability of normal osteoblasts as well. PMID:28848343

  5. Effect of sodium selenite on chosen anti- and pro-oxidative parameters in rats treated with lithium: A pilot study.

    PubMed

    Musik, Irena; Kocot, Joanna; Kiełczykowska, Małgorzata

    2015-06-01

    Selenium is an essential element of antioxidant properties. Lithium is widely used in medicine but its administration can cause numerous side effects including oxidative stress. The present study aimed at evaluating if sodium selenite could influence chosen anti- and pro-oxidant parameters in rats treated with lithium. The experiment was performed on four groups of Wistar rats: I (control) - treated with saline; II (Li) - treated with lithium (2.7 mgLi/kg b.w. as Li2CO3), III (Se) - treated with selenium (0.5 mgSe/kg b.w. as Na2SeO3), IV (Li+Se) - treated with Li2CO3 and Na2SeO3 together at the same doses as in group II and III, respectively. All treatments were performed by stomach tube for three weeks in form of water solutions. The following anti- and pro-oxidant parameters: total antioxidant status (TAS) value, catalase (CAT) activity, concentrations of ascorbic acid (AA) and malonyldialdehyde (MDA) in plasma as well as whole blood superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured. Selenium given alone markedly enhanced whole blood GPx and diminished plasma CAT vs. Lithium significantly decreased plasma CAT and slightly increased AA vs. Selenium co-administration restored these parameters to the values observed in control animals. Furthermore, selenium co-administration significantly increased GPx in Li-treated rats. All other parameters (TAS, SOD and MDA) were not affected by lithium and/or selenium. Further research seems to be warranted to decide if application of selenium as an adjuvant in lithium therapy is worth considering. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. The Hypolipidemic and Pleiotropic Effects of Rosuvastatin Are Not Enhanced by Its Association with Zinc and Selenium Supplementation in Coronary Artery Disease Patients: A Double Blind Randomized Controlled Study

    PubMed Central

    Sena-Evangelista, Karine Cavalcanti Maurício; Pedrosa, Lucia Fatima Campos; Paiva, Maria Sanali Moura Oliveira; Dias, Paula Cristina Silveira; Ferreira, Diana Quitéria Cabral; Cozzolino, Sílvia Maria Franciscato; Faulin, Tanize Espírito Santo; Abdalla, Dulcinéia Saes Parra

    2015-01-01

    Objective Statins treatment may modify the levels of zinc and selenium, minerals that can improve vascular function and reduce oxidative damage and inflammation in atherosclerotic patients. This study aimed to evaluate the effects of rosuvastatin, alone or associated with zinc and selenium supplementation, on lipid profile, antioxidant enzymes and mineral status in coronary artery disease patients. Material and Methods A double-blind randomized clinical trial was performed in which patients (n = 76) were treated with 10 mg rosuvastatin over 4 months associated or not with zinc (30 mg/d) and selenium (150 μg/d) supplementation. The following parameters were analyzed before and after the intervention: anthropometric measurements, lipid profile, high sensitivity C-reactive protein (hs-CRP), electronegative low density lipoprotein (LDL(-)) concentrations, activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), zinc and selenium concentrations in blood plasma and erythocytes. Significance was determined using an α of 5% (two-tailed). Results We found that rosuvastatin therapy was efficient in reducing total cholesterol, LDL-cholesterol, non-HDL cholesterol, triglycerides, and hs-CRP independently of mineral supplementation. Neither treatment was associated with significant changes in LDL(-). Similarly, the antioxidant enzymes GPx and SOD activity were unchanged by treatments. Neither treatment was associated with significant differences in concentrations of zinc or selenium in blood plasma and erythocytes of studied groups. Conclusion Rosuvastatin treatment did not affect zinc and selenium levels in coronary artery disease patients. The zinc and selenium supplementation at doses used in this study did not change lipid profile or SOD and GPx activity in patients receiving rosuvastatin. Further studies should be focused on testing alternative doses and supplements in different populations to contribute for a consensus on the ideal choice of antioxidants to be used as possible complementary therapies in atherosclerotic patients. Trial Registration ClinicalTrials.gov NCT01547377 PMID:25785441

  8. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    PubMed

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    PubMed

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw; Chia, Chih-Ta

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{submore » 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.« less

  12. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of tissues collection in weeks. The feeding trial included a supplementation period of 8 weeks (i.e. SP8) followed by an elimination period of 4 weeks (i.e. EP4). Six turtles from each turtle group (i.e. control, SeMet1 and SeMet2) were sacrifice at each collection time, from T1 to T12. At T0, four turtles were sacrificed.

  13. Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment.

    PubMed

    Evans, R D; Grochowina, N M; Basu, N; O'Connor, E M; Hickie, B E; Rouvinen-Watt, K; Evans, H E; Chan, H M

    2016-02-01

    Captive, juvenile, ranch-bred, male mink (Neovison vison) were fed diets containing various concentrations of methyl-mercury (MeHg) and selenium (Se) for a period of 13 weeks and then sacrificed to determine total Hg levels in fur, blood, brain, liver and kidneys and total Se concentrations in brain tissue. As MeHg concentrations in the diet increased, concentrations of total Hg in the tissues also increased with the highest level occurring in the fur > liver = kidney > brain > blood. Concentrations of Hg in the fur were correlated (r(2) > 0.97) with liver, kidney, blood and brain concentrations. The addition of Se to the mink diet did not appear to affect most tissue concentrations of total Hg nor did it affect the partitioning of Hg between the liver:blood, kidney:blood and brain:blood; however, partitioning of Hg between fur and blood was apparently affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Phosphorous bioavailability along a soil chronosequence

    NASA Astrophysics Data System (ADS)

    Roberts, K.; Vokhshoori, N. L.; Rosenthanl, A.; Turner, B. L.; Condron, L.; Paytan, A.

    2011-12-01

    In humid environments, as soils age nutrient loss through leaching and chemical trasformations affect the succession and composition of the biological communities. In particular phosphorus (P), often a limiting nutrient in terrestrial systems, tends to evolve into less bio-available forms over time, compounding loss through leaching. Thus P availability has the potential to strongly affect community productivity and structure. Low standing stock of P may not necessarily imply P limitation as the bio-available P pool is continuously recycled and re-utilized. Thus extensive recycling can reduce to varying extents the effect of P limitation. The bio-availability and recycling rates of P are difficult to measure; multiple sequential extraction processes have been developed to try to define and quantify the bio-availability of both inorganic and organic forms of P. In this preliminary study, we will present results of P concentrations in different soil fractions and oxygen isotopes in phosphate. These data together increase our understanding of P dynamics as soils age. The work is being done with a well characterized and dated chronosequence from the west coast of the South Island of New Zealand near the Haast River.

  15. Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice1[W][OA

    PubMed Central

    Zhao, Xue Qiang; Mitani, Namiki; Yamaji, Naoki; Shen, Ren Fang; Ma, Jian Feng

    2010-01-01

    Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite. PMID:20498338

  16. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  17. Selenium in Paleozoic stone coal (carbonaceous shale) as a significant source of environmental contamination in rural southern China

    NASA Astrophysics Data System (ADS)

    Belkin, H. E.; Luo, K.

    2012-04-01

    Selenium occurs in high concentrations (typically > 10 and up to 700 ppm) in organic-rich Paleozoic shales and cherts (called "stone coal" - shíméi), in southern China. Stone coals are black shales that formed in anoxic to euxinic environments and typically contain high concentrations of organic carbon, are enriched in various metals such as V, Mo, Pb, As, Cr, Ni, Se, etc., and are distinguished from "humic" coal in the Chinese literature. We have examined stone coal from Shaanxi, Hubei, and Guizhou Provinces, People's Republic of China and have focused our study on the mode of occurrence of Se and other elements (e.g. As, Pb, etc.) hazardous to human health. Scanning electron microscope, energy-dispersive analysis and electron microprobe wave-length dispersive spectroscopy were used to identify and determine the composition of host phases observed in the stone coals. Native selenium, Se-bearing pyrite and other sulfides are the hosts for Se, although we cannot preclude an organic or clay-mineral association. Stone coals are an important source of fuel (reserves over 1 billion tonnes), both domestically and in small industry, in some rural parts of southern China and present significant environmental problems for the indigenous population. The stone coals create three main environmental problems related to Se pollution. First, the residual soils formed on stone coal are enriched in Se and other metals contained in the stone coals and, depending on the speciation and bioavailability of the metals, may enrich crops and vegetation grown on them. Second, weathering and leaching of the stone coal contaminates the local ground water and/or surface waters with Se and other metals. Third, the local population uses the stone coal as a source of fuel, which releases the more volatile elements (Se and As) into the atmosphere in the homes. The ash will be extremely enriched with the balance of the heavy metal suite. Disposal of the ash on agricultural lands or near water supplies will contaminate both. Human and animal selenosis has been observed in economically and geographically isolated rural communities in areas underlain by stone coal. However, local Public Health officials have adequately dealt with these cases of local selenium poisoning. In Enshi, Hubei Province, Se-contaminated farmland has been replanted with tea and the Se-enriched tea has been marketed nationally.

  18. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower-Colorado River valley, Arizona, California, and Nevada

    USGS Publications Warehouse

    Radtke, D.B.; Kepner, W.G.; Effertz, R.J.

    1988-01-01

    The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)

  19. Optical, Thermal, and Mechanical Characterization of Ga2 Se3 -Added GLS Glass.

    PubMed

    Ravagli, Andrea; Craig, Christopher; Alzaidy, Ghada A; Bastock, Paul; Hewak, Daniel W

    2017-07-01

    Gallium lanthanum sulfide glass (GLS) has been widely studied in the last 40 years for middle-infrared applications. In this work, the results of the substitution of selenium for sulphur in GLS glass are described. The samples are prepared via melt-quench method in an argon-purged atmosphere. A wide range of compositional substitutions are studied to define the glass-forming region of the modified material. The complete substitution of Ga 2 S 3 by Ga 2 Se 3 is achieved by involving new higher quenching rate techniques compared to those containing only sulfides. The samples exhibiting glassy characteristics are further characterized. In particular, the optical and thermal properties of the sample are investigated in order to understand the role of selenium in the formation of the glass. The addition of selenium to GLS glass generally results in a lower glass transition temperature and an extended transmission window. Particularly, the IR edge is found to be extended from about 9 µm for GLS glass to about 15 µm for Se-added GLS glass defined by the 50% transmission point. Furthermore, the addition of selenium does not affect the UV edge dramatically. The role of selenium is hypothesized in the glass formation to explain these changes. © 2017 University of Southampton. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice.

    PubMed

    Van der Jeugd, Ann; Parra-Damas, Arnaldo; Baeta-Corral, Raquel; Soto-Faguás, Carlos M; Ahmed, Tariq; LaFerla, Frank M; Giménez-Llort, Lydia; D'Hooge, Rudi; Saura, Carlos A

    2018-04-24

    Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer's disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12-14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.

  1. Evaluation of ammonia as diluent for serum sample preparation and determination of selenium by graphite furnace atomic absorption spectrometry*1

    NASA Astrophysics Data System (ADS)

    Hernández-Caraballo, Edwin A.; Burguera, Marcela; Burguera, José L.

    2002-12-01

    A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH 4OH+0.05% w/v Triton X-100 ®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO 3) 2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1 -1 Se, corresponding to 30 μg l -1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l -1, with a mean value of 114±22 μg l -1.

  2. Selenium Distribution and Fractionation in a Managed Urban Watershed

    NASA Astrophysics Data System (ADS)

    Papelis, C.; Boettcher, T. M.; Harris-Burr, R. D.

    2006-12-01

    Metals, and metalloids, are common contaminants of concern in arid and semi-arid watersheds in the Southwestern U.S. Because of the dramatic population growth in this part of the U.S., the potential for contamination of urban watersheds has also increased over the last few decades. Streams in urban watersheds receive storm water, urban runoff, shallow groundwater, and treated wastewater. In addition, urban watersheds are often heavily managed to mitigate flood events and sediment-related impacts. Clearly, sediment transport can have a profound effect on the water quality of affected bodies of water, not only by affecting water clarity, but also by facilitating the transport of chemical constituents, as well as microbiological components. The Las Vegas Wash (Wash) is the lowest point in the Las Vegas Valley Watershed and receives storm water, urban runoff, and treated wastewater from the entire Las Vegas Valley. To minimize erosion, caused by the dramatic wastewater flow increase during the last few decades, several erosion control structures are being built. In addition, wetlands being constructed in the Wash area receive most of the water from the Wash. The construction of these ponds has the potential to alter the distribution of metals and metalloids in bodies of water used by wildlife. An element of particular concern is selenium, a metalloid commonly found at elevated concentrations in soils of the U.S. Southwest. To assess the potential adverse impact on water quality, sediment samples were collected along the Wash, upstream and downstream of erosion control structures, and around current and future constructed wetlands. The sediments were characterized by particle size distribution, specific surface area, mineralogical composition, organic carbon content, and scanning electron microscopy. The total selenium, as well as the percentages associated with exchangeable, organic, carbonate, and oxide sediment fractions were determined. The distribution of selenium as a function of sediment properties and the potential of selenium availability in this environment will be discussed.

  3. Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status.

    PubMed

    Wang, Y; Yang, H M; Cao, W; Li, Y B

    2017-09-01

    The effects of dietary supplementation of sodium selenite (SS) on the reproductive performance and the concentration of selenium, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined, and expression of glutathione peroxidase 4 (GPx4) and bone morphogenic protein 15 (BMP15) was evaluated. Paired pigeons (n = 864) were fed: T1 received no SS, while T2, T3, and T4 received 0.5, 1.0, and 1.5 mg of SS/kg of dry matter (DM), respectively. Treatments were performed in triplicate with 72 pairs in each replicate. The results showed that selenium supplementation significantly affected pigeon reproductive performance. Birds fed 1.0 mg of SS/kg displayed higher egg production (P > 0.05), higher birth rate, and lower dead sperm rate than the control group (P < 0.05). Selenium and biochemical analyses revealed a higher selenium concentration in the 1.5 mg of SS/kg group than in the control group (P < 0.05), while GSH-Px was higher in the 0.5 mg of SS/kg group than in the control group (P < 0.05). Neither the MDA nor the SOD content were affected significantly in liver, chest muscle, or leg muscle (P > 0.05); however, in plasma, MDA was lower in the control group (P < 0.05), while SOD was higher in the control group (P < 0.05). qRT-PCR results revealed up-regulation of GPx4 in hypothalamus, pituitary and testis tissues in supplemented groups (P < 0.05). However, expression in ovary differed; GPx4 mRNA levels were lower in the 1.5 mg of SS/kg and control groups than in the 1.0 or 0.5 mg of SS/kg groups (P < 0.05). Expression of BMP15 in the hypothalamus, pituitary, and testis tissues was unaffected (P > 0.05), while in ovary, BMP15 was down-regulated in the 1.5 mg of SS/kg group (P < 0.05). These results suggest pigeons supplemented with SS up-regulated GPx4, 1.0 mg of SS/kg exhibited superior reproductive performance, while 1.5 mg of SS/kg increased the selenium concentration, and 0.5 mg of SS/kg up-regulated GSH-Px activity. © 2017 Poultry Science Association Inc.

  4. Antioxidant Actions of Selenium in Orbital Fibroblasts: A Basis for the Effects of Selenium in Graves' Orbitopathy.

    PubMed

    Rotondo Dottore, Giovanna; Leo, Marenza; Casini, Giamberto; Latrofa, Francesco; Cestari, Luca; Sellari-Franceschini, Stefano; Nardi, Marco; Vitti, Paolo; Marcocci, Claudio; Marinò, Michele

    2017-02-01

    A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H 2 O 2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. H 2 O 2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H 2 O 2 -treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H 2 O 2 did not significantly affect HA release, but it was reduced by SeMCys. H 2 O 2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H 2 O 2 -induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.

  5. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies.

    PubMed

    Méplan, Catherine; Johnson, Ian T; Polley, Abigael C J; Cockell, Simon; Bradburn, David M; Commane, Daniel M; Arasaradnam, Ramesh P; Mulholland, Francis; Zupanic, Anze; Mathers, John C; Hesketh, John

    2016-08-01

    Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.-Méplan, C., Johnson, I. T., Polley, A. C. J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers, J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. © The Author(s).

  6. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    PubMed

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Selenium adsorption to aluminum-based water treatment residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR inmore » an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.« less

  8. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats.

    PubMed

    Hamza, Reham Z; Al-Harbi, Mohammad S

    2014-01-01

    Monosodium glutamate (MSG) has been recognized as flavor enhancer that adversely affects male reproductive systems. The present study was carried out to evaluate the potential protective role of vitamin E (vit E) or selenium against MSG induced oxidative stress and histopathological changes in testis tissues of rats. Mature male Wistar rats weighing 150-200 g BW were allocated to evenly twelve groups each group of ten animals, the first group was maintained as control group, the 2nd, 3rd and 4th groups were administered MSG in three different dose levels (low, medium and high) (6, 17.5 and 60 mg/kg BW), the 5th and 6th groups were given vit E in two doses (low and high) (150 and 200 mg/kg), the 7th and 8th groups were administered selenium in two doses (low and high) (0.25 and 1 mg/kg) daily via gavage for a period of 30 days. Meanwhile the 9th and 10th groups were given combinations of MSG (high dose) and vit E while, the 11th and 12th groups were given MSG (high dose) plus selenium in two recommended doses for each one. Monosodium glutamate caused an elevation in lipid peroxidation level parallel with significant decline in SOD, CAT as well as GPx activities in testis tissues. Administration of vit E or selenium to MSG-treated groups declined lipid peroxidation, increased SOD, CAT, GPx activities. Selenium or vit E significantly reduced MSG induced histopathological changes by the entire restoration of the histological structures and the testicular antioxidant status to great extent in treated rats. In conclusion, supplementation of selenium or vit E could ameliorate the MSG induced testicular toxicity to great extent and reduce the oxidative stress on testis tissues.

  9. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  10. A proteomic analysis of green and white sturgeon larvae exposed to heat stress and selenium

    PubMed Central

    Silvestre, Frédéric; Linares-Casenave, Javier; Doroshov, Serge I.; Kültz, Dietmar

    2012-01-01

    Temperature and selenium are two environmental parameters that potentially affect reproduction and stock recruitment of sturgeon in the San Francisco Bay / Delta Estuary. To identify proteins whose expression is modified by these environmental stressors, we performed a proteomic analysis on larval green and white sturgeons exposed to 18 or 26°C and micro-injected with Seleno-L-Methionine to reach 8 μg g-1 selenium body burden, with L-Methionine as a control. Selenium and high temperature induced mortalities and abnormal morphologies in both species, with a higher mortality in green sturgeon. Larval proteins were separated by two-dimensional gel electrophoresis and differential abundances were detected following spot quantitation and hierarchical cluster analysis. In green sturgeon, 34 of 551 protein spots detected on gels showed a variation in abundance whereas in white sturgeon only 9 of 580 protein spots were differentially expressed (P<0.01). Gel replicates were first grouped according to heat treatment. Fifteen of these spots were identified using MALDI TOF/TOF mass spectrometry. Proteins involved in protein folding, protein synthesis, protein degradation, ATP supply and structural proteins changed in abundance in response to heat and/or selenium. 40S ribosomal protein SA, FK506-binding protein 10, 65 kDa regulatory subunit A of protein phosphatase 2, protein disulfide isomerase, stress-induced-phosphoprotein 1, suppression of tumorigenicity 13 and collagen type II alpha 1, were differentially expressed in high temperature treatment only. Serine/arginine repetitive matrix protein 1, creatine kinase, serine peptidase inhibitor Kazal type 5 and HSP90 were sensitive to combined temperature and selenium exposure. Valosin-containing protein, a protein involved in aggresome formation and in protein quality control decreased more than 50% in response to selenium treatment. Potential use of such proteins as biomarkers of environmental stressors in larval sturgeons could indicate early warning signals preceding population decline. PMID:20435339

  11. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    PubMed

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  12. Vicia root-mirconucleus and sister chromatid exchange assays on the genotoxicity of selenium compounds.

    PubMed

    Yi, Huilan; Si, Liangyan

    2007-06-15

    Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0mg/L, induced a 1.9-3.9-fold increase in MN frequency and a 1.5-1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P<0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15-80% decrease in mitotic indices (MI), but at the lowest concentration (0.005mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.

  13. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine.

    PubMed

    Kippler, Maria; Bottai, Matteo; Georgiou, Vaggelis; Koutra, Katerina; Chalkiadaki, Georgia; Kampouri, Mariza; Kyriklaki, Andriani; Vafeiadi, Marina; Fthenou, Eleni; Vassilaki, Maria; Kogevinas, Manolis; Vahter, Marie; Chatzi, Leda

    2016-11-01

    The evidence regarding a potential link of low-to-moderate iodine deficiency, selenium status, and cadmium exposure during pregnancy with neurodevelopment is either contradicting or limited. We aimed to assess the prenatal impact of cadmium, selenium, and iodine on children's neurodevelopment at 4 years of age. The study included 575 mother-child pairs from the prospective "Rhea" cohort on Crete, Greece. Exposure to cadmium, selenium and iodine was assessed by concentrations in the mother's urine during pregnancy (median 13 weeks), measured by ICPMS. The McCarthy Scales of Children's Abilities was used to assess children's general cognitive score and seven different sub-scales. In multivariable-adjusted regression analysis, elevated urinary cadmium concentrations (≥0.8 µg/L) were inversely associated with children's general cognitive score [mean change: -6.1 points (95 % CI -12; -0.33) per doubling of urinary cadmium; corresponding to ~0.4 SD]. Stratifying by smoking status (p for interaction 0.014), the association was restricted to smokers. Urinary selenium was positively associated with children's general cognitive score [mean change: 2.2 points (95 % CI -0.38; 4.8) per doubling of urinary selenium; ~0.1 SD], although the association was not statistically significant. Urinary iodine (median 172 µg/L) was not associated with children's general cognitive score. In conclusion, elevated cadmium exposure in pregnancy of smoking women was inversely associated with the children's cognitive function at pre-school age. The results indicate that cadmium may adversely affect neurodevelopment at doses commonly found in smokers, or that there is an interaction with other toxicants in tobacco smoke. Additionally, possible residual confounding cannot be ruled out.

  14. Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium.

    PubMed

    Kiełczykowska, Małgorzata; Musik, Irena; Żelazowska, Renata; Lewandowska, Anna; Kurzepa, Jacek; Kocot, Joanna

    2016-10-01

    Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats' organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.

  15. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  16. Flavanol plasma bioavailability is affected by metabolic syndrome in rats.

    PubMed

    Margalef, Maria; Pons, Zara; Iglesias-Carres, Lisard; Bravo, Francisca Isabel; Muguerza, Begoña; Arola-Arnal, Anna

    2017-09-15

    Flavanols, which exert several health benefits, are metabolized after ingestion. Factors such as the host physiological condition could affect the metabolism and bioavailability of flavanols, influencing their bioactivities. This study aimed to qualitatively evaluate whether a pathological state influenced flavanol plasma bioavailability. Standard and cafeteria (CAF) diet fed rats, a robust model of metabolic syndrome (MeS), were administered 1000mg/kg of flavanol enriched grape seed polyphenol extract (GSPE). Flavanols and their metabolites were quantified by HPLC-MS/MS in plasma before and at 2, 4, 7, 24, and 48h after GSPE ingestion. Results showed that in CAF administered rats the maximum time of plasma flavanol concentration was delayed and these animals presented higher levels of plasma phase-II metabolites as well as altered microbial metabolites. In conclusion, this study demonstrated that MeS pathological state modified flavanol bioavailability, supporting the hypothesis that flavanol metabolism, and therefore flavanol functionality, depend on the organism's state of health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils.

    PubMed

    Šmídová, Klára; Kim, Sooyeon; Hofman, Jakub

    2017-07-01

    Bioaccumulation factors (BAFs) of organic pollutants to soil biota, often required by risk assessment, are mostly obtained in non-sterile laboratory-contaminated artificial soils. However, microbial degradation has been indicated by many authors to influence the fate of hydrophobic organic compounds (HOCs) in soils. A question arises if the microbial community of peat which is used for artificial soil preparation affects the measured values of BAFs. In this study the effect of soil microorganisms on bioavailability of HOCs was studied and a portion of each soil was sterilized by gamma irradiation. Results indicated that the sterilization process significantly affected the fate of polycyclic aromatic hydrocarbons (PAHs; phenanthrene and pyrene) and increased bioavailability of these compounds to earthworms with BAFs several times higher in the sterile soils compared to their non-sterile variants. This suggests that sterilization of soils can be used as the "worst-case scenario" for laboratory tests of toxicity or bioaccumulation of biodegradable HOCs such as PAHs. It represents a situation of limited microbial degradation resulting in higher bioavailable fractions to other organisms (e.g. invertebrates). This may be the case in soils where microbial communities face stresses caused by contamination or land management. The bioavailability of chlorinated HOCs (lindane, 4,4'-DDT and PCB 153) was not affected by sterilization, as their BAFs were similar in the sterile and non-sterile soils during the experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.

    One challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixedmore » amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 hour experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Moreover, Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p<0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. Finally, these findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination.« less

  19. Environmental impact of ongoing sources of metal contamination on remediated sediments

    DOE PAGES

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; ...

    2016-04-29

    One challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixedmore » amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 hour experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Moreover, Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p<0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. Finally, these findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination.« less

  20. Speciation of Se and DOC in soil solution and their relation to Se bioavailability.

    PubMed

    Weng, Liping; Vega, Flora Alonso; Supriatin, Supriatin; Bussink, Wim; Van Riemsdijk, Willem H

    2011-01-01

    A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass. The recently developed anion Donnan membrane technique was used to analyze chemical speciation of Se in the 0.01 M CaCl(2) extractions of grassland soils and fractionation of DOC (dissolved organic carbon). The results show that most of Se (67-86%) in the extractions (15 samples) are colloidal-sized Se. Only 13-34% of extractable Se are selenate, selenite and small organic Se (<1 nm). Colloidal Se is, most likely, Se bound to or incorporated in colloidal-sized organic matter. The dominant form of small Se compounds (selenate, selenite/small organic compounds) depends on soil. A total of 47-85% of DOC is colloidal-sized and 15-53% are small organic molecules (<1 nm). In combination with soluble S (sulfur) and/or P (phosphor), concentration of small DOC can explain most of the variability of Se content in grass. The results indicate that mineralization of organic Se is the most important factor that controls Se availability in soils. Competition with sulfate and phosphate needs to be taken into account. Further research is needed to verify if concentration of small DOC is a good indicator of mineralization of soil organic matter.

  1. Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair.

    PubMed

    Seppänen, K; Kantola, M; Laatikainen, R; Nyyssönen, K; Valkonen, V P; Kaarlöpp, V; Salonen, J T

    2000-06-01

    The purpose of this study was to evaluate the effect of four months of yeast-based selenium supplementation on selenium and mercury status in subjects with low serum selenium. The study was carried out in Rakvere, Estonia. Pubic hair mercury, serum selenium and blood selenium concentrations in 23 subjects (serum selenium < 90 micrograms/l) were investigated before and after selenium supplementation. Thirteen subjects were randomized into the selenium supplementation group and ten into the placebo group. The selenium supplementation group received daily 100 micrograms of selenomethionine. Selenium supplementation reduced pubic hair mercury level by 34% (p = 0.005) and elevated serum selenium by 73% and blood selenium by 59% in the supplemented group (p < 0.001 for both). The study indicates that mercury accumulation in pubic hair can be reduced by dietary supplementation with small daily amounts of organic selenium in a short range of time.

  2. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation.

    PubMed

    Steen, Arvid; Strøm, Turid; Bernhoft, Aksel

    2008-03-31

    Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 microg/g) than ewe pens that received inorganic selenium (mean 0.24 microg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 microg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 microg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation.

  3. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and in slaughter lamb meat compared to inorganic selenium supplementation

    PubMed Central

    Steen, Arvid; Strøm, Turid; Bernhoft, Aksel

    2008-01-01

    Background Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs. Methods Ewes on four organic farms were allocated five or six to 18 pens. The ewes were given either 20 mg/kg inorganic selenium as sodium selenite or organic selenium as selenized nonviable yeast supplementation for the two last months of pregnancy. Stipulated selenium concentrations in the rations were below 0.40 mg/kg dry matter. In addition 20 male lambs were given supplements from November until they were slaughtered in March. Silage, hay, concentrates, and individual ewe blood samples were taken before and after the mineral supplementation period, and blood samples were taken from the newborn lambs. Blood samples from ewes and lambs in the same pens were pooled. Muscle samples were taken from slaughter lambs in March. Selenium concentrations were determined by atomic absorption spectrometry with a hydride generator system. In the ANOVA model, selenium concentration was the continuous response variable, and selenium source and farm were the nominal effect variables. Two-sample t-test was used to compare selenium concentrations in muscle samples from the slaughtered lambs that received either organic or inorganic selenium supplements. Results In all ewe pens the whole blood selenium concentrations increased during the experimental period. In addition, ewe pens that received organic selenium had significantly higher whole blood selenium concentrations (mean 0.28 μg/g) than ewe pens that received inorganic selenium (mean 0.24 μg/g). Most prominent, however, was the difference in their lambs; whole blood mean selenium concentration in lambs from mothers that received organic selenium (mean 0.27 μg/g) was 30% higher than in lambs from mothers that received inorganic selenium (mean 0.21 μg/g). Slaughter lambs that received organic selenium had 50% higher meat selenium concentrations (mean 0.12 mg/kg wet weight) than lambs that received inorganic selenium (mean 0.08 mg/kg wet weight). Conclusion Organic selenium supplementation gave higher selenium concentration in ewe and newborn lamb blood and slaughter lamb meat than inorganic selenium supplementation. PMID:18377659

  4. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice.

    PubMed

    Zhang, Jinsong; Wang, Huali; Bao, Yongping; Zhang, Lide

    2004-05-28

    We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice.

  5. Identification and Characterization of Bacteria in a Selenium-Contaminated Hypersaline Evaporation Pond

    PubMed Central

    de Souza, M. P.; Amini, A.; Dojka, M. A.; Pickering, I. J.; Dawson, S. C.; Pace, N. R.; Terry, N.

    2001-01-01

    Solar evaporation ponds are commonly used to reduce the volume of seleniferous agricultural drainage water in the San Joaquin Valley, Calif. These hypersaline ponds pose an environmental health hazard because they are heavily contaminated with selenium (Se), mainly in the form of selenate. Se in the ponds may be removed by microbial Se volatilization, a bioremediation process whereby toxic, bioavailable selenate is converted to relatively nontoxic dimethylselenide gas. In order to identify microbes that may be used for Se bioremediation, a 16S ribosomal DNA phylogenetic analysis of an aerobic hypersaline pond in the San Joaquin Valley showed that a previously unaffiliated group of uncultured bacteria (belonging to the order Cytophagales) was dominant, followed by a group of cultured γ-Proteobacteria which was closely related to Halomonas species. Se K-edge X-ray absorption spectroscopy of selenate-treated bacterial isolates showed that they accumulated a mixture of predominantly selenate and a selenomethionine-like species, consistent with the idea that selenate was assimilated via the S assimilation pathway. One of these bacterial isolates (Halomonas-like strain MPD-51) was the best candidate for the bioremediation of hypersaline evaporation ponds contaminated with high Se concentrations because it tolerated 2 M selenate and 32.5% NaCl, grew rapidly in media containing selenate, and accumulated and volatilized Se at high rates (1.65 μg of Se g of protein−1 h−1), compared to other cultured bacterial isolates. PMID:11525968

  6. Mammary tumorigenesis causes bone loss and dietary selenium supplementation does not affect such bone loss in male MMTV-PyMT mice

    USDA-ARS?s Scientific Manuscript database

    Cancer progression is accompanied by wasting that eventually results in cachexia characterized by significant weight loss and multi-organ functional failures. Limited clinical trials indicate that bone is adversely affected by cancer-associated wasting. To determine the effects of breast cancer on...

  7. Aging and walnut-rich diet supplementation affects the expression of immediate-early genes in critical brain regions

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence indicates a direct link between age-associated changes in epigenetic mechanisms and onset of neurodegenerative diseases, and that these genomic modulations are directly affected by diet. Diets deficient in folate, choline and methionine, or the trace elements zinc and selenium, are...

  8. Understanding the paradox of selenium contamination in mercury mining areas: high soil content and low accumulation in rice.

    PubMed

    Zhang, Hua; Feng, Xinbin; Jiang, Chengxin; Li, Qiuhua; Liu, Yi; Gu, Chunhao; Shang, Lihai; Li, Ping; Lin, Yan; Larssen, Thorjørn

    2014-05-01

    Rice is an important source of Se for billions of people throughout the world. The Wanshan area can be categorized as a seleniferous region due to its high soil Se content, but the Se content in the rice in Wanshan is much lower than that from typical seleniferous regions with an equivalent soil Se level. To investigate why the Se bioaccumulation in Wanshan is low, we measured the soil Se speciation using a sequential partial dissolution technique. The results demonstrated that the bioavailable species only accounted for a small proportion of the total Se in the soils from Wanshan, a much lower quantity than that found in the seleniferous regions. The potential mechanisms may be associated with the existence of Hg contamination, which is likely related to the formation of an inert Hg-Se insoluble precipitate in soils in Wanshan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An overview of the nutritional value of beef and lamb meat from South America.

    PubMed

    Cabrera, M C; Saadoun, A

    2014-11-01

    The southern region of South America, a subtropical and temperate zone, is an important region for the production of beef and lamb meat, which is mainly produced in extensive pasture-based systems. Because of its content in highly valuable nutrients such as iron, zinc, selenium, fatty acids, and vitamins, meat is a unique and necessary food for the human diet in order to secure a long and healthy life, without nutritional deficiencies. Beef and lamb production systems based on temperate or tropical grasslands show interesting and, in some cases, a differential content in minerals, fatty acids and vitamins. This review deals with the distinctive aspects of the nutritional quality of beef and lamb meat produced in this region in terms of nutritional composition and the bioavailability of key nutrients related to its contribution for a healthy diet for all ages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Toxicity and bioaccumulation of waterborne and dietary selenium in juvenile bluegill (Lepomis macrochirus)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Buckler, Denny R.; Wiedmeyer, Raymond H.

    1993-01-01

    Juvenile bluegill (Lepomis macrochirus) were exposed to waterborne selenium as a 6:1 mixture of selenate to selenite (as Se) for 60 d and to dietary seleno-l-methionine for 90 d. Measured concentrations of total selenium in the waterborne exposure ranged from 0.16 to 2.8 mg/l, and concentrations of seleno-l-methionine in the test diet ranged from 2.3 to 25.0 mg/kg wet weight. Mortality, body weight, condition factor, swimming and feeding behavior, aggression, and selenium tissue residues were monitored during the tests. Increased mortality at measured concentrations of 0.64 mg Se/l and greater was the primary adverse effect of waterborne selenium on the juvenile bluegill. Bluegill exposed to 2.8 mg/l of waterborne Se for 30 d exhibited a significant reduction in condition factor (K), whereas dietary exposure of bluegill to 25 mg Se/kg for 30 d and 13 mg Se/kg or greater for 90 d elicited significant reductions in K. Mortality and swimming activity of bluegill were not affected in the dietary exposure. Net accumulation of Se from both water and diet was directly related to exposure concentration. Bioconcentration factors ranged from 5 to 7 for bluegill exposed to waterborne Se and from 0.5 to 1.0 for fish exposed to dietary Se. Results of these laboratory tests indicate that survival of bluegill may be impaired in natural waters with elevated Se concentrations.

  11. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours.

    PubMed

    Liu, Zijian; Fu, Xiang; Huang, Wei; Li, Chunxia; Wang, Xinyan; Huang, Bei

    2018-03-01

    Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Computational modeling of human oral bioavailability: what will be next?

    PubMed

    Cabrera-Pérez, Miguel Ángel; Pham-The, Hai

    2018-06-01

    The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.

  14. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  15. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    PubMed

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  16. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  17. Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences.

    PubMed

    Zhang, Hao; Yu, Dandan; Sun, Jing; Liu, Xianting; Jiang, Lu; Guo, Huiyuan; Ren, Fazheng

    2014-06-01

    Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.

  18. Biomonitoring of trace metal bioavailabilities to the barnacle Amphibalanus amphitrite along the Iranian coast of the Persian Gulf.

    PubMed

    Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S

    2014-10-01

    The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    USGS Publications Warehouse

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  20. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction.

    PubMed

    Sun, Mei; Liu, Guijian; Wu, Qianghua

    2013-11-01

    A new method was developed for the determination of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry detection after cloud point extraction. Effective separation of organic and inorganic selenium in selenium-enriched rice was achieved by sequentially extracting with water and cyclohexane. Under the optimised conditions, the limit of detection (LOD) was 0.08 μg L(-1), the relative standard deviation (RSD) was 2.1% (c=10.0 μg L(-1), n=11), and the enrichment factor for selenium was 82. Recoveries of inorganic selenium in the selenium-enriched rice samples were between 90.3% and 106.0%. The proposed method was successfully applied for the determination of organic and inorganic selenium as well as total selenium in selenium-enriched rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Production of Selenoprotein P (Sepp1) by Hepatocytes Is Central to Selenium Homeostasis*

    PubMed Central

    Hill, Kristina E.; Wu, Sen; Motley, Amy K.; Stevenson, Teri D.; Winfrey, Virginia P.; Capecchi, Mario R.; Atkins, John F.; Burk, Raymond F.

    2012-01-01

    Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1c/c/alb-cre+/− mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1c/c mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1c/c/alb-cre+/− mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions. PMID:23038251

  2. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Irrigation drainage studies of the Angostura Reclamation Unit and the Belle Fourche Reclamation Project, western South Dakota : results of 1994 sampling and comparisons with 1988 data

    USGS Publications Warehouse

    Sando, Steven K.; Williamson, Joyce E.; Dickerson, Kimberly K.; Wesolowski, Edwin A.

    2001-01-01

    The U.S. Department of the Interior started the National Irrigation Water Quality Program in 1985 to identify the nature and extent of irrigation-induced water-quality problems that might exist in the western U.S. The Angostura Reclamation Unit (ARU) and Belle Fourche Reclamation Project (BFRP) in western South Dakota were included as part of this program. The ARU and BFRP reconnaissance studies were initiated in 1988, during below-normal streamflow conditions in both study areas. Surface water, bottom sediment, and fish were resampled in 1994 at selected sites in both study areas during generally near-normal streamflow conditions to compare with 1988 study results. Concentrations of major ions in water for both the ARU and BFRP study areas are high relative to national baseline levels. Major-ion concentrations for both areas generally are lower for 1994 than for 1988, when low-flow conditions prevailed, but ionic proportions are similar between years. For ARU, dissolved-solids concentrations probably increase slightly downstream from Angostura Reservoir; however, the available data sets are insufficient to confidently discern effects of ARU operations on dissolved-solids loading. For BFRP, dissolved-solids concentrations are slightly higher at sites that are affected by irrigation drainage; again, however, the data are inconclusive to determine whether BFRP operations increase dissolved-solids loading. Most trace-element concentrations in water samples for both study areas are similar between 1988 and 1994, and do not show strong relations with discharge. ARU operations probably are not contributing discernible additional loads of trace elements to the Cheyenne River. For BFRP, concentrations of some trace elements are slightly higher at sites downstream from irrigation operations than at a site upstream from irrigation operations. BFRP operations might contribute to trace-element concentrations in the Belle Fourche River, but available data are insufficient to quantify increases. For both study areas, concentrations of several trace elements occasionally exceed National Irrigation Water Quality Program guidelines. Selenium routinely occurs in concentrations that could be problematic at sites upstream and downstream from both study areas. Elevated selenium concentrations at sites upstream from irrigation operations indicate that naturally occurring selenium concentrations are relatively high in and near the study areas. While ARU operations probably do not contribute discernible additional loads of selenium to the Cheyenne River, BFRP operations might contribute additional selenium loads to the Belle Fourche River. Concentrations of most trace elements in bottom sediment, except arsenic and selenium, are similar to typical concentrations for western U.S. soils for both study areas. Bottom-sediment arsenic and selenium (1988) concentrations in both study areas can reach levels that might be of concern; however, there is insufficient information to determine whether irrigation operations contribute to these elevated concentrations. Concentrations of most trace elements in fish in both study areas are less than values known to adversely affect fish or birds, although there are occasional exceedances of established criteria. However, selenium concentrations in fish samples routinely are within the National Irrigation Water Quality Program level of concern, and also commonly exceed the dietary guideline for avian consumers for both study areas. Selenium concentrations in fish samples generally are higher at sites downstream from irrigation operations. For BFRP, arsenic and mercury concentrations are elevated in fish samples from site B-18, which is influenced by mine tailings.

  4. The relationships between mercury and selenium in plankton and fish from a tropical food web.

    PubMed

    do A Kehrig, Helena; Seixas, Tércia G; Palermo, Elisabete A; Baêta, Aida P; Castelo-Branco, Christina W; Malm, Olaf; Moreira, Isabel

    2009-01-01

    Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70-290 microm) and mesoplankton (>or=290 microm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 microg g(-1) dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g(-1)) than in Micropogonias furnieri (2.9 and 15.3 nmol g(-1)), Bagre spp (1.3 and 3.4 nmol g(-1)) and Mugil liza (0.3 and 5.1 nmol g(-1)), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.

  5. Geochemistry of soils and shallow ground water, with emphasis on arsenic and selenium, in part of the Garrison Diversion Unit, North Dakota, 1985-87

    USGS Publications Warehouse

    Goolsby, D.A.; Severson, R.C.; Wilson, S.A.; Webber, Kurt

    1989-01-01

    The Garrison Diversion Unit is being constructed to transfer water from the Missouri River (Lake Sakakawea) to areas in east-central and southeastern North Dakota for expanded irrigation of agricultural lands. During initial investigations of irrigation return flows in 1969-76, the potential effects of toxic elements were considered, and the U.S. Bureau of Reclamation concluded these elements would have no adverse effects on streams receiving return flows. After the development of problems associated with selenium in irrigation return flows in the western San Joaquin Valley, Calif., in 1985, the U.S. Bureau of Reclamation initiated additional studies, including an investigation conducted in cooperation with the U.S. Geological Survey, to assist in collecting and evaluating trace-element data. Also, in 1986, with the passage of the Garrison Diversion Unit Reformulation Act, Congress mandated that soil surveys be conducted to determine if there are "*** soil characteristics which might result in toxic or hazardous irrigation return flows."In order to address this issue, an investigation was conducted during 1995-87 by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation to determine the occurrence and distribution of arsenic, selenium, and other trace elements in the soils of six potential irrigation areas along the Garrison Diversion Unit route and in the James River basin. A total of 165 soil samples were collected and analyzed for total concentrations of as many as 42 elements, including arsenic and selenium. In addition, 81 of the samples were analyzed for water-extractable concentrations of 14 elements, including arsenic and selenium, to aid in determining the extent to which they might be mobilized by the irrigation water. In a detailed phase of the investigation, 376 water samples were collected in one of the six potential irrigation areas, the west Oakes irrigation area. Most of these samples were analyzed for arsenic, selenium, and as many as 28 other elements.Results of the investigation indicate that soils in the potential irrigation areas contain small concentrations of arsenic, selenium, and other trace elements. The geometric mean concentrations of total arsenic and selenium were 4.15 and 0.13 milligrams per kilogram, respectively, which are considerably smaller than those measured in the western San Joaquin Valley, Calif., and soils from other areas in the western United States. Water-extractable concentrations of arsenic and selenium, determined on 1:5 soil to water extractions, generally were less than 10 percent of the total concentrations. The geometric mean water-extractable concentrations for both elements were 0.02 milligram per kilogram or less.The median and maximum concentrations of all constituents and properties indicative of irrigation drainage were tens to hundreds of times smaller in the Oakes test area drains than in western San Joaquin Valley drains. The maximum arsenic concentration in ground-water samples was 44 micrograms per liter, and the median concentration was 4 micrograms per liter. The maximum concentration in drain samples was 11 micrograms per liter, and the median concentration was 3 micrograms per liter.Only 22 percent of the water samples collected from wells in the Oakes test area contained detectable concentrations (1 microgram per liter or more) of selenium. However, selenium was detected in 63 percent of the samples collected from sites on drains. The greater incidence of detection of selenium in the drain samples is interpreted as an effect of the more oxidizing environment of the drains, which are about 8 feet below land surface near the top of the water table. The median selenium concentration in the drain samples, however, was only 1 microgram per liter, and the maximum concentration in 63 drain samples was 4 micrograms per liter. For comparison, the median selenium concentrations reported for drains in the western San Joaquin Valley, Calif., ranged from 84 to 320 micrograms per liter. Mater from two observation wells had the largest selenium concentrations (8 and 9 micrograms per liter) measured during the investigation. These were the only two samples that exceeded any of the water-quality regulations, standards, or criteria for selenium. Mercury and boron were the only other trace elements that exceeded standards and criteria. The median concentration of mercury was less than 0.1 microgram per liter, and the maximum concentration was 0.8 microgram per liter. The chronic freshwater-aquatic-life criterion for mercury (0.012 microgram per liter) is about 10 times less than the laboratory detection limit and is derived from bioconcentration factors based on methylmercury. Two boron samples exceeded the irrigation criteria of 750 micrograms per liter. Comparisons with criteria and standards indicate that the concentrations of trace elements determined in samples from wells and drains in the Oakes test area during this investigation should not adversely affect human and aquatic life or irrigated crops. The data collected indicate that the soils and ground water in the Garrison Diversion Unit contain small concentrations of trace elements, including arsenic and selenium. Based on a detailed study of soils and ground water in the west Oakes irrigation area, however, there is no evidence that expanded irrigation will mobilize these elements in concentrations large enough to adversely affect aquatic life in the James River ecosystem, based on current regulations, standards, and criteria. Data are not currently available to make definitive statements about selenium concentrations in ground water in Garrison Diversion Unit irrigation areas other than the west Oakes Irrigation area. Data available on total and water-extractable selenium concentrations in soils t however, indicate that concentrations in ground water would be similar to those determined in the west Oakes irrigation area. Plans have been developed to sample ground water in the additional areas.

  6. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute; Gochfeld, Michael

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues sincemore » selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers. • There were differences in metal levels among internal tissues. • Brain had the lowest levels of arsenic and cadmium. • Bird weight and arsenic, cadmium, and selenium levels in brain were negatively correlated. • Selenium:mercury molar ratio varied among tissues (21–141, suggesting protection)« less

  7. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  8. ALUMINUM BIOAVAILABILITY FROM DRINKING WATER IS VERY LOW AND IS NOT APPRECIABLY INFLUENCED BY STOMACH CONTENTS OR WATER HARDNESS. (R825357)

    EPA Science Inventory

    The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intra...

  9. Percutaneous absorption of selenium sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.; Skelly, E.M.; Weber, C.B.

    1986-01-01

    The purpose of this study was to determine selenium levels in the urine of Tinea patients before and after overnight application of a 2.5% selenium sulfide lotion. Selenium was measured by atomic absorption spectroscopy (AAS). Hydride generation and carbon rod atomization were studied. It was concluded from this study that selenium is absorbed through intact skin. Selenium is then excreted, at least partially, in urine, for at least a week following treatment. The data show that absorption and excretion of selenium vary on an individual basis. Selenium levels in urine following a single application of selenium sulfide lotion do notmore » indicate that toxic amounts of selenium are being absorbed. Repeated treatments with SeS/sub 2/ result in selenium concentrations in urine which are significantly higher than normal. Significant matrix effects are observed in the carbon rod atomization of urine samples for selenium determinations, even in the presence of a matrix modifier such as nickel. The method of standard additions is required to obtain accurate results in the direct determination of selenium in urine by carbon rod AAS.« less

  10. The Effects of Selenium Supplementation on Gene Expression Related to Insulin and Lipid in Infertile Polycystic Ovary Syndrome Women Candidate for In Vitro Fertilization: a Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Zadeh Modarres, Shahrzad; Heidar, Zahra; Foroozanfard, Fatemeh; Rahmati, Zahra; Aghadavod, Esmat; Asemi, Zatollah

    2018-06-01

    This study was conducted to evaluate the effects of selenium supplementation on gene expression related to insulin and lipid in infertile women with polycystic ovary syndrome (PCOS) candidate for in vitro fertilization (IVF). This randomized double-blind, placebo-controlled trial was conducted among 40 infertile women with PCOS candidate for IVF. Subjects were randomly allocated into two groups to intake either 200-μg selenium (n = 20) or placebo (n = 20) per day for 8 weeks. Gene expression levels related to insulin and lipid were quantified in lymphocytes of women with PCOS candidate for IVF with RT-PCR method. Results of RT-PCR demonstrated that after the 8-week intervention, compared with the placebo, selenium supplementation upregulated gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) (1.06 ± 0.15-fold increase vs. 0.94 ± 0.18-fold reduction, P = 0.02) and glucose transporter 1 (GLUT-1) (1.07 ± 0.20-fold increase vs. 0.87 ± 0.18-fold reduction, P = 0.003) in lymphocytes of women with PCOS candidate for IVF. In addition, compared with the placebo, selenium supplementation downregulated gene expression of low-density lipoprotein receptor (LDLR) (0.88 ± 0.17-fold reduction vs. 1.05 ± 0.22-fold increase, P = 0.01) in lymphocytes of women with PCOS candidate for IVF. We did not observe any significant effect of selenium supplementation on gene expression levels of lipoprotein(a) [LP(a)] in lymphocytes of women with PCOS candidate for IVF. Overall, selenium supplementation for 8 weeks in lymphocytes of women with infertile PCOS candidate for IVF significantly increased gene expression levels of PPAR-γ and GLUT-1 and significantly decreased gene expression levels of LDLR, but did not affect LP(a). http://www.irct.ir : IRCT201704245623N113.

  11. Metabolic response to selenium supplementation in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Jamilian, Mehri; Razavi, Maryamalsadat; Fakhrie Kashan, Zohreh; Ghandi, Yasser; Bagherian, Tayebeh; Asemi, Zatollah

    2015-06-01

    We are aware of no study examining the effects of selenium supplementation on metabolic profiles of patients with polycystic ovary syndrome (PCOS). This study was conducted to evaluate the effects of selenium supplementation on glucose homeostasis parameters and lipid concentrations in women with PCOS. This randomized, double-blind, placebo-controlled trial was conducted among 70 women diagnosed with PCOS and aged 18-40 years old. Participants were randomly divided into two groups to receive 200 μg per day selenium supplements (N = 35) or placebo (N = 35) for 8 weeks. Fasting blood samples were taken at baseline and after 8 weeks intervention to quantify glucose, insulin and lipid concentrations. After 8 weeks of intervention, subjects who received selenium supplements had significantly decreased serum insulin levels (-29·83 ± 47·29 vs +9·07 ± 77·12 pmol/l, P = 0·013), homeostasis model of assessment-insulin resistance (HOMA-IR) (-1·15 ± 1·81 vs +0·42 ± 3·09, P = 0·011), homeostatic model assessment-beta-cell function (HOMA-B) (-19·06 ± 30·95 vs +4·55 ± 47·99, P = 0·017) and increased quantitative insulin sensitivity check index (QUICKI) (+0·03 ± 0·04 vs +0·0009 ± 0·05, P = 0·032) compared with placebo. In addition, supplementation with selenium resulted in a significant reduction in serum triglycerides (-0·14 ± 0·55 vs +0·11 ± 0·30 mmol/l, P = 0·025) and VLDL-C concentrations (-0·03 ± 0·11 vs +0·02 ± 0·06 mmol/l, P = 0·025) compared with placebo. In conclusion, 200 microgram per day selenium supplementation for 8 weeks among PCOS women had beneficial effects on insulin metabolism parameters, triglycerides and VLDL-C levels; however, it did not affect FPG and other lipid profiles. © 2014 John Wiley & Sons Ltd.

  12. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity.

    PubMed

    Gonzales, Gerard Bryan; Smagghe, Guy; Grootaert, Charlotte; Zotti, Moises; Raes, Katleen; Van Camp, John

    2015-05-01

    Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.

  13. Impact of fetal and childhood mercury exposure on immune status in children.

    PubMed

    Hui, Lai Ling; Chan, Michael Ho Ming; Lam, Hugh Simon; Chan, Peggy Hiu Ying; Kwok, Ka Ming; Chan, Iris Hiu Shuen; Li, Albert Martin; Fok, Tai Fai

    2016-01-01

    Mercury exposure have been shown to affect immune status in animals as reflected by cytokine expression. It is unclear whether low levels of exposure during fetal and/or childhood periods could impact on immune status in humans. To test the hypothesis that fetal and childhood mercury exposure is associated with childhood cytokine profiles and to investigate whether childhood selenium levels interact with any of the associations found. Children were recruited from a previously established birth cohort between the ages of 6-9 years for assessment and measurement of blood mercury, selenium and cytokine profile (interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13 and TNF-alpha). Multivariable linear regression models were used to assess the adjusted association of cord blood mercury concentration and current mercury concentrations with levels of the cytokine levels. We tested whether the association with current mercury level varied by current selenium level and cord blood mercury level. IL-10 was negatively associated with current blood mercury concentration. The effect was greatest in cases with low cord blood mercury and low current selenium concentrations. None of the other cytokine levels were associated with either cord blood or current blood mercury concentrations, except that cord blood mercury was negatively associated with IL-6. Childhood mercury exposure was negatively associated with childhood IL-10 levels. It is postulated that while selenium is protective, low levels of fetal mercury exposure may increase the degree of this negative association during childhood. Further studies into the clinical significance of these findings are required. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.

    1993-01-01

    Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.

  15. Evaluation of selenium in dietary supplements using elemental speciation.

    PubMed

    Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2017-03-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. Published by Elsevier Ltd.

  16. Evaluation of selenium in dietary supplements using elemental speciation

    PubMed Central

    Kubachka, Kevin M.; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A.; Falconer, Travis M.; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2016-01-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common “seleno-amino acids” and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted. PMID:27719915

  17. Selenium metabolite levels in human urine after dosing selenium in different chemical forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasunuma, Ryoichi; Tsuda, Morizo; Ogawa, Tadao

    1993-11-01

    It has been well known that selenium in marine fish such as tuna and swordfish protects the toxicity of methylmercury in vivo. The protective potency might depend on the chemical forms of selenium in the meat of marine fish sebastes and sperm whale. Little has been revealed, however, on the chemical forms of selenium in the meat of these animals or the selenium metabolites in urine, because the amount of the element is very scarce. Urine is the major excretory route for selenium. The chemical forms of urinary selenium may reflect the metabolism of the element. We have developed methodologymore » for analysis of selenium-containing components in human urine. Using this method, we have observed the time courses of excretory levels of urinary selenium components after a single dose of selenium as selenious acid, selenomethionine, trimethylselenonium ion or tuna meat. 14 refs., 6 figs., 1 tab.« less

  18. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  19. Bioavailability of zinc, copper, and manganese from infant diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less

  20. Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    1998-01-01

    Adult mallards (Anas platyrhynchos) were fed a control diet or diets containing 10 ppm mercury as methylmercury chloride, 10 ppm selenium as seleno-DL-methionine, or 10 ppm mercury plus 10 ppm selenium. One of 12 adult males fed 10 ppm mercury died and 8 others suffered from paralysis of their legs by the time the study was terminated. However, when the diet contained 10 ppm selenium in addition to the 10 ppm mercury, none of 12 males became sick. In contrast to the protective effect of selenium against mercury poisoning in males, selenium plus mercury was worse than selenium or mercury alone for some measurements of reproductive success. Both selenium and mercury lowered duckling production through reductions in hatching success and survival of ducklings, but the combination of mercury plus selenium was worse than either mercury or selenium alone. Controls produced an average of 7.6 young per female, females fed 10 ppm selenium produced an average of 2.8 young, females fed 10 ppm mercury produced 1.1 young, and females fed both mercury and selenium produced 0.2 young. Teratogenic effects also were worse for the combined mercury plus selenium treatment; deformities were recorded in 6.1% of the embryos of controls, 16.4% for methylmercury chloride, 36.2% for selenomethionine, and 73.4% for the combination of methylmercury chloride and selenomethionine. The presence of methylmercury in the diet greatly enhanced the storage of selenium in tissues. The livers of males fed 10 ppm selenium contained a mean of 9.6 ppm selenium, whereas the livers of males fed 10 ppm selenium plus 10 ppm mercury contained a mean of 114 ppm selenium. However, selenium did not enhance the storage of mercury. The results show that mercury and selenium may be antagonistic to each other for adults and synergistic to young, even within the same experiment.

  1. [Selenium treatment in thyreopathies].

    PubMed

    Sotak, Štefan

    Selenium (latin Selenium) is a micronutrient embedded in several proteins. In adults, the thyroid is the organ with the highest amount of selenium per gram of tissue. Selenium levels in the body depend on the characteristics of the population and its diet and geographic area. In the thyroid, selenium is required for the antioxidant function and for the metabolism of thyroid hormones. The literature suggests that selenium supplementation of patients with Hashimotos thyroiditis is associated with a reduction in antithyroperoxidase antibody levels. Selenium supplementation also in mild Graves orbitopathy is associated with delayed progression of ocular disorders. As a consequence of this observation The European Group on Graves Orbitopathy recommend six months selenium preparates supportive therapy for patients with mild form of Graves orbitopathy.Key words: Graves-Basedows disease - Hashimotos thyroiditis - selenium - supplementation.

  2. Selenium content of foods purchased or produced in Ohio.

    PubMed

    Snook, J T; Kinsey, D; Palmquist, D L; DeLany, J P; Vivian, V M; Moxon, A L

    1987-06-01

    Approximately 450 samples of about 100 types of foods consumed by rural and urban Ohioans were analyzed for selenium. Meat, dairy products, eggs, and grain products produced in Ohio have considerably lower selenium content than corresponding products produced in high selenium areas, such as South Dakota. Retail Ohio foods with interregional distribution tended to be higher in selenium content than corresponding foods produced in Ohio. Best sources of selenium in Ohio foods commonly consumed were meat and pasta products. Poor sources of selenium were fruits, most vegetables, candies, sweeteners, and alcoholic and nonalcoholic beverages. Establishment of an accurate data base for selenium depends on knowledge of the interregional distribution of foods, the selenium content of foods at their production site, and the selenium content of foods with wide local distribution.

  3. Association of selenium status and blood glutathione concentrations in blacks and whites

    PubMed Central

    Richie, John P.; Muscat, Joshua E.; Ellison, Irina; Calcagnotto, Ana; Kleinman, Wayne; El-Bayoumy, Karam

    2011-01-01

    Selenium deficiency has been linked with increased cancer risk and, in some studies, selenium supplementation was protective against certain cancers. Previous studies suggest that selenium chemoprevention may involve reduced oxidative stress through enhanced glutathione (GSH). Our objectives were to examine the relationships between selenium and GSH in blood and modifying effects of race and sex in free living adults and individuals supplemented with selenium. Plasma selenium concentrations and free and bound GSH concentrations and γ-glutamyl cysteine ligase (GCL) activity in blood were measured in 336 healthy adults, (161 blacks, 175 whites). Plasma selenium and blood GSH were also measured in 36 healthy men from our previously conducted placebo-controlled trial of selenium-enriched yeast (247 μg/day for 9 months). In free-living adults, selenium concentrations were associated with increased blood GSH concentration and GCL activity (P<0.05). Further, selenium was significantly higher in whites than in blacks (P<0.01). After 9 months of supplementation, plasma selenium was increased 114% in whites and 50% in blacks (P<0.05) and blood GSH was increased 35% in whites (P<0.05) but was unchanged in blacks. These results indicate a direct association between selenium and GSH in blood of both free-living and selenium-supplemented individuals, with race being an important modifying factor. PMID:21462082

  4. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  5. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  6. The Association between Selenium and Lipid Levels: a Longitudinal Study in Rural Elderly Chinese

    PubMed Central

    Chen, Chen; Jin, Yinlong; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Liang, Chaoke; Ma, Feng; Su, Liqin; Liu, Jingyi; Bian, Jianchao; Li, Ping; Gao, Sujuan

    2014-01-01

    A protective effect of selenium on lipid levels has been reported in populations with relatively low selenium status. However, recent studies found that high selenium exposure may lead to adverse cardiometabolic effects, particularly in selenium-replete populations. We examined the associations of selenium status with changes in lipid levels in a 7-year follow up of an elderly Chinese cohort including participants from selenium-deplete areas. Study population consisted of 140 elderly Chinese aged 65 or older with nail selenium levels measured at baseline (2003-2005). Lipid concentrations were measured in fasting blood samples collected at baseline and the 7-year follow-up (2010-2012). Analysis of covariance (ANCOVA) models was used to determine the association between baseline selenium status and changes in lipid levels from baseline to follow-up adjusting for other covariates. Mean (±standard deviation) baseline selenium concentration was 0.41±0.2mg/kg. In prospective analysis, we found that individuals in the highest selenium quartile group showed 1.11 SD decrease on total-cholesterol (p<0.001), 0.41 SD increase on HDL-cholesterol (p<0.001) and 0.52 SD decrease on triglyceride after 7 years than those in the lowest selenium quartile group. The similar trends were seen with significant lipids changes in the 2th and 3th quartile groups. Selenium has modestly beneficial effects on blood lipid levels in a population with relatively low selenium status. Our result suggests adequate dietary selenium intake as a potential prevention strategy for lowering lipid levels in selenium deplete populations. PMID:25263027

  7. Selenium in blood, semen, seminal plasma and spermatozoa of stallions and its relationship to sperm quality.

    PubMed

    Bertelsmann, H; Keppler, S; Höltershinken, M; Bollwein, H; Behne, D; Alber, D; Bukalis, G; Kyriakopoulos, A; Sieme, H

    2010-01-01

    The essential trace element selenium is indispensable for male fertility in mammals. Until now, little data existed regarding the relationship between selenium and sperm quality in the stallion. Selenium, or selenium-dependent glutathione peroxidase activity, was determined in red blood cells, semen, seminal plasma and spermatozoa, and the percentages of spermatozoa with progressive motility (PMS), intact membranes (PMI), altered (positive) acrosomal status (PAS) and detectable DNA damage, determined by the sperm chromatin structure assay, were evaluated in 41 healthy stallions (three samples each). The pregnancy rate per oestrus cycle (PRC) served as an estimation of fertility. An adverse effect on stallion fertility caused by low dietary selenium intake was excluded, as all stallions had sufficient selenium levels in their blood. Interestingly, no significant correlations (P > 0.05) between the selenium level in blood and the selenium level in seminal plasma or spermatozoa were found, suggesting that the selenium level in blood is no indicator of an adequate selenium supply for spermatogenesis. The selenium level in spermatozoa (nmol billion(-1)) was correlated with PMI, PMS and PAS (r = 0.40, r = 0.31 and r = -0.42, respectively; P

  8. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken.

    PubMed

    Joshua, P Patric; Valli, C; Balakrishnan, V

    2016-03-01

    Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18(th) day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18(th) day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability.

  9. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken

    PubMed Central

    Joshua, P. Patric; Valli, C.; Balakrishnan, V.

    2016-01-01

    Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Materials and Methods: Nano form of zinc at 20, 40, 60 and 80 µg/egg, nano form of copper at 4, 8, 12 and 16 µg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 µg/egg were in ovo supplemented (18th day incubation, amniotic route) in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. Results: In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05) best feed efficiency for nano forms of zinc (2.16), copper (2.46) and selenium (2.51) were observed, when 40, 4 and 0.225 µg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 µg per egg which had significantly (p<0.05) highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Conclusion: Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18th day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability. PMID:27057113

  10. Selenium: a brief review and a case report of selenium responsive cardiomyopathy

    PubMed Central

    2013-01-01

    Background The authors review the role of selenium and highlight possible low selenium levels in soil that may result in deficient states in Saudi Arabia. Case presentation The authors report a case of selenium-responsive cardiomyopathy in a 15-month old Saudi Arabian boy. This case of selenium deficiency causing dilated cardiomyopathy is presented with failure to thrive, prolonged fever and respiratory distress. The investigations revealed selenium deficiency. Selenium supplementation along with anti-failure therapy [Furosimide, Captopril] was administered for 6 months. Following therapy the cardiac function, hair, skin and the general health of the patient improved significantly. Conclusion The patient with dilated cardiomyopathy of unknown etiology, not responding to usual medication may be deficient in selenium. Serum selenium measurements should be included in the diagnostic work-up to ensure early detection and treatment of the disease. The selenium level in the Saudi population needs be determined. Vulnerable populations have to undergo regular selenium measurements and supplementation if indicated. Dependence on processed foods suggests that the Saudi population fortify themselves with nutrient and micronutrient supplements in accordance to the RDA. PMID:23530936

  11. The usefulness of iron bioavailability as a target for breeding maize (Zea mays L.) with enhanced nutritional value

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency is the most widespread nutritional problem, affecting as many as half of the world’s population. Only a small fraction (2-15%) of iron from plant sources is typically bioavailable, that is, available for absorption and nutritionally useful for humans. This study evaluated iron conc...

  12. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  13. Mechanism of Selenium Loss in Copper Slag

    NASA Astrophysics Data System (ADS)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  14. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity ofmore » outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the constructed wetland treatment system are repositories for As, Hg, and Se and the bioavailability of these elements decreased after deposition, the pilot-scale constructed wetland treatment system contributed significantly to mitigation of risks to aquatic life from these elements.« less

  15. Analysis of Annual Changes in the Concentrations of Selected Macro- and Microelements, Thyroxine, and Testosterone in the Serum of Red Deer (Cervus elaphus) Stags.

    PubMed

    Kuba, J; Błaszczyk, B; Stankiewicz, T; Skuratko, A; Udała, J

    2015-12-01

    The aim of the study was to analyze seasonal changes in the concentrations of calcium, phosphorus, magnesium, and selenium as well as thyroxine and testosterone in adult red deer stags. The highest testosterone concentrations (mean 6.29±4.36 ng/ml) were observed from the end of August to November, confirming an increase in testicular secretory activity during the mating season. The changes in thyroxine concentration show circannual rhythms, most likely related to changes in the air temperature. The highest mean level of thyroxine was observed in spring (55.69±10.99 ng/ml). The concentration of selenium also reached the highest level during this season (0.107±0.027 μg/ml). In the case of the studied macroelements, the concentrations were stable from spring to summer but then decreased to the lowest mean values in autumn in both years of the experiment (Ca, 61.17±10.60; P, 47.08±9.59; Mg, 15.96±2.39 μg/ml). The dynamics of thyroxine secretion does not seem to affect directly the metabolism of calcium, phosphorus, and magnesium. In turn, sexual activity, manifested in the increase in secretion of testosterone, may affect changes in the concentration of calcium. Additionally, we cannot exclude a connection between changes in the concentrations of testosterone and selenium.

  16. Wooden Breast Myodegeneration of Pectoralis Major Muscle Over the Growth Period in Broilers.

    PubMed

    Sihvo, H-K; Lindén, J; Airas, N; Immonen, K; Valaja, J; Puolanne, E

    2017-01-01

    Wooden breast (WB) myopathy of broiler chickens is a myodegenerative disease of an unknown etiology and is macroscopically characterized by a hardened consistency of the pectoralis major muscle. Our aim was to describe the development and morphology of WB over the growth period in broilers. Additionally, the effect of restricted dietary selenium on the occurrence of WB was examined by allocating the birds in 2 dietary groups: restricted and conventional level of selenium. The experiment included 240 male broilers that were euthanized at ages of 10, 18, 24, 35, 38, or 42 days and evaluated for WB based on abnormal hardness of the pectoralis major muscle. The severity and the distribution of the lesion and presence of white striping were recorded. The first WB cases were seen at 18 days; 13/47 birds (28%) were affected and the majority exhibited a mild focal lesion. In subsequent age groups the WB prevalence varied between 48% and 73% and the lesion was usually diffuse and markedly firm. White striping often coexisted with WB. Histological evaluation performed on 111 cases revealed a significant association of myodegeneration and lymphocytic vasculitis with WB. Vasculitis and perivascular cell infiltration were restricted to the veins. Restricted dietary selenium did not affect the occurrence of WB ( P = .44). Our results indicate that WB starts focally and spreads to form a diffuse and more severe lesion.

  17. Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.

    PubMed

    De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro

    2012-09-01

    Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.

  18. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animalsmore » fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with methylmercury or mercury exposures, mercury-selenium ratios appear to be far more accurate and effective in identifying risk and protecting human and environmental health. This study also finds that methylmercury toxicity can be effectively treated by dietary selenium, preventing the death and progressive disabilities that otherwise occur in methylmercury-treated subjects. Remarkably, the positive response to selenium therapy was essentially equivalent regardless of whether or not toxic amounts of methylmercury were still administered. The findings of the Physiologically Oriented Integration of Nutrients and Toxins (POINT) models of the effects of mercury and selenium developed in this project are consistent with the hypothesis that mercury toxicity arises because of mercury-dependent inhibition of selenium availability in brain and endocrine tissues. This appears to occur through synergistic effects of mercury-dependent inhibition of selenium transport to these tissues and selective sequestration of the selenium present in the tissues. Compromised transport of selenium to the brain and endocrine tissues would be particularly hazardous to the developing fetus because the rapidly growing tissues of the child have no selenium reserves. Therefore, maternal consumption of foods with high mercury-selenium ratios is hazardous. In summation, methylmercury exposure is unlikely to cause harm in populations that eat selenium-rich diets but may cause harm among populations that consume certain foods that have methylmercury present in excess of selenium.« less

  19. Association between trace elements in the environment and stroke risk: The reasons for geographic and racial differences in stroke (REGARDS) study.

    PubMed

    Merrill, Peter D; Ampah, Steve B; He, Ka; Rembert, Nicole J; Brockman, John; Kleindorfer, Dawn; McClure, Leslie A

    2017-07-01

    The disparities in stroke mortality between blacks and whites, as well as the increased stroke mortality in the "stroke belt" have long been noted. The reasons for these disparities have yet to be fully explained. The association between trace element status and cardiovascular diseases, including stroke, has been suggested as a possible contributor to the disparities in stroke mortality but has not been fully explored. The purpose of this study is to investigate distributions of four trace elements (arsenic, mercury, magnesium, and selenium) in the environment in relation to stroke risk. The study population (N=27,770) is drawn from the Reasons for Geographic and Racial Disparities in Stroke (REGARDS) cohort. Environmental distribution of each trace element was determined using data from the United States Geological Survey (USGS) and was categorized in quartiles. A proportional hazards model, adjusted for demographic data and stroke risk factors, was used to examine the association of interest. The results showed that higher selenium levels in the environment were associated with increased stroke risk, and the hazard ratio for the 4th quartile compared to the 1st quartile was 1.33 (95% CI: 1.09, 1.62). However, there was no statistically significant relationship between environmental arsenic, mercury or magnesium and the risk of stroke. Because of dietary and non-dietary exposure as well as bioavailability, further research using biomarkers is warranted to examine the association between these trace elements and the risk of stroke. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Bioaccumulation of selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado.

    PubMed

    Herrmann, S J; Turner, J A; Carsella, J S; Lehmpuhl, D W; Nimmo, D R

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 10(3) at Green Mountain Falls and 1.5 × 10(4) at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring (R (2) = 0.84) and fall (R (2) = 0.95) and dissolved Se and total hardness in the spring and fall (R (2) = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorito, Jessica E.; Luxton, Todd P.; Eick, Matthew J.

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO4-extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analysesmore » indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils.« less

  2. Toxicity of organic and inorganic selenium to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1988-01-01

    The toxicity of selenomethionine and sodium selenite to mallard ducklings (Anas platyrhynchos) was measured by feeding each form from hatching to six weeks of age at dietary concentrations of 0, 10, 20, 40, and 80 ppm selenium. At 80 ppm selenium, sodium selenite caused 97.5% mortality by six weeks and selenomethionine caused 100% mortality. At 40 ppm, these two forms of selenium caused 25 and 12.5% mortality. No mortality occurred at 10 or 20 ppm. Diets containing 20, 40, or 80 ppm selenium in both forms caused decreases in food consumption and growth. The only statistically significant effect of 10 ppm selenium was with sodium selenite, which resulted in larger livers than controls. Selenomethionine was more readily stored in the liver than sodium selenite at levels above 10 ppm selenium in the diet. Based on comparisons of residues of selenium in livers of surviving and dead ducklings, concentrations in the liver were not diagnostic of death due to selenium poisoning. Because both forms of selenium resulted in severe reductions in food consumption, selenium-induced starvation may have been related to duckling mortality. It was not clear whether either form of selenium at 10 ppm in the diet resulted in a leveling off of selenium concentrations in the liver within six weeks.

  3. The ethanol metabolite acetaldehyde increases paracellular drug permeability in vitro and oral bioavailability in vivo.

    PubMed

    Fisher, Scott J; Swaan, Peter W; Eddington, Natalie D

    2010-01-01

    Alcohol consumption leads to the production of the highly reactive ethanol metabolite, acetaldehyde, which may affect intestinal tight junctions and increase paracellular permeability. We examined the effects of elevated acetaldehyde within the gastrointestinal tract on the permeability and bioavailability of hydrophilic markers and drug molecules of variable molecular weight and geometry. In vitro permeability was measured unidirectionally in Caco-2 and MDCKII cell models in the presence of acetaldehyde, ethanol, or disulfiram, an aldehyde dehydrogenase inhibitor, which causes acetaldehyde formation when coadministered with ethanol in vivo. Acetaldehyde significantly lowered transepithelial resistance in cell monolayers and increased permeability of the low-molecular-weight markers, mannitol and sucrose; however, permeability of high-molecular-weight markers, polyethylene glycol and inulin, was not affected. In vivo permeability was assessed in male Sprague-Dawley rats treated for 6 days with ethanol, disulfiram, or saline alone or in combination. Bioavailability of naproxen was not affected by any treatment, whereas that of paclitaxel was increased upon acetaldehyde exposure. Although disulfiram has been shown to inhibit multidrug resistance-1 P-glycoprotein (P-gp) in vitro, our data demonstrate that the known P-gp substrate paclitaxel is not affected by coadministration of disulfiram. In conclusion, we demonstrate that acetaldehyde significantly modulates tight junctions and paracellular permeability in vitro as well as the oral bioavailability of low-molecular-weight hydrophilic probes and therapeutic molecules in vivo even when these molecules are substrates for efflux transporters. These studies emphasize the significance of ethanol metabolism and drug interactions outside of the liver.

  4. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: a pharmacokinetic study.

    PubMed

    Martínez-Huélamo, Miriam; Tulipani, Sara; Estruch, Ramón; Escribano, Elvira; Illán, Montserrat; Corella, Dolores; Lamuela-Raventós, Rosa M

    2015-04-15

    Tomato sauce is the most commonly consumed processed tomato product worldwide, but very little is known about how the manufacturing process may affect the phenolic composition and bioavailability after consumption. In a prospective randomised, cross-over intervention study, we analysed the plasma and urinary levels of tomato phenolic compounds and their metabolites after acute consumption of raw tomatoes and tomato sauce, enriched or not with refined olive oil during production. Respectively, eleven and four phenolic metabolites were found in urine and plasma samples. The plasma concentration and urinary excretion of naringenin glucuronide were both significantly higher after the consumption of tomato sauce than raw tomatoes. The results suggest that the mechanical and thermal treatments during tomato sauce manufacture may help to deliver these potentially bioactive phenolics from the food matrix more effectively than the addition of an oil component, thus increasing their bioavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Selenium

    USGS Publications Warehouse

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There, waters draining from agricultural fields created wetlands with high concentrations of dissolved selenium in the water. The selenium was taken up by aquatic wildlife and caused massive numbers of embryonic deformities and deaths.Regulatory agencies have since worked to safeguard ecological and human health by creating environmental exposure guidelines based upon selenium concentrations in water and in fish tissue. Any attempt to regulate selenium concentrations requires a delicate balance because selenium occurs naturally and is also a vital nutrient for the health of wildlife, domestic stock, and humans. Selenium is commonly added as a vitamin to animal feed, and in some regions of the United States and the world, it is added as an amendment to soils for uptake by agricultural crops.The important role of selenium in economic products, energy supply, agriculture, and health will continue for well into the future. The challenge to society is to balance the benefits of selenium use with the environmental consequences of its extraction. Increased understanding of the elemental cycle of selenium in the earth may lead to new (or unconventional) sources of selenium, the discovery of new methods of extraction, and new technologies for minimizing the transfer of selenium from rock to biota, so to protect environmental and human health.

  6. Volatilization of selenium from astragalus plants irrigated with selenium-laden water. Open file report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, D.J.; Lujan, M.J.; Ary, T.S.

    1989-01-01

    Living plants of Astragalus bisulcatus and Atriplex canescens were irrigated with solutions containing selenium to investigate the plants' ability to selectively remove selenium from selenium-contaminated water. The plants were grown from seed in an indoor environment and harvested for analysis at the end of a typical 7-month growing season. Of the total selenium applied to soil in which the plants were grown, only about 1% was incorporated in plant tissues of Astragalus, but approximately 18% of applied selenium was dissipated into the air from the living plants. Atriplex plants did not absorb or dissipate detectable amounts of selenium.

  7. Selenium and its supplementation in cardiovascular disease--what do we know?

    PubMed

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-04-27

    The trace element selenium is of high importance for many of the body's regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

  8. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    PubMed Central

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-01-01

    The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery. PMID:25923656

  9. Mechanism of bio molecule stabilized selenium nanoparticles against oxidation process and Clostridium Botulinum.

    PubMed

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-02-01

    The bio molecules from plant leaf extract utilized in the preparation of selenium material at the nano scale. The selenium ion was reduced to selenium nanoparticles in the presence of molecule residue of the plant leaf extract. The bio molecule stabilized selenium nanoparticles were grown gradually in the reaction mixture. The selenium nanoparticles were characterized using atomic absorption spectroscopy, fourier transform inferred spectroscopy, X-ray diffraction, scanning electronic microscope and transmission electronic microscope. The selenium nanoparticles were synthesized successfully as the nano-crystalline pure hexagonal phase and the size range of 26-41 nm with spherical in shape. The activity and mechanism of nanoparticles suggested that the selenium nanoparticles are causes of leakage of reducing sugars and protein of pathogens membrane cell. The selenium nano are responsible for death and fully inhibited the microbial growth of pathogen. The bio molecule stabilized selenium nanoparticles were also investigated for the antioxidant agent. Selenium nanoparticles showed scavenging activity up to 94.48%. These results recommended that the advantages of using this method for synthesis of selenium nanoparticles with excellent antioxidant and antimicrobial mechanism and activity, which can be used as the antioxidant and antibiotic agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Potential Moderating Effects of Selenium on Mercury Uptake and Selenium:Mercury Molar Ratios in Fish From Oak Ridge and Savannah River Site - 12086

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna; Gochfeld, Michael; Donio, Mark

    2012-07-01

    Mercury contamination is an important remediation issue at the U.S. Department of Energy's (DOE) Oak Ridge Reservation and to a lesser extent at other DOE sites because of the hazard it presents, potential consequences to humans and eco-receptors, and completed pathways, to offsite receptors. Recent work has emphasized that selenium might ameliorate the toxicity of mercury, and we examine the selenium:mercury (Se:Hg) molar ratios in fish from Oak Ridge, and compare them to Se:Hg molar ratios in fish from the Savannah River. Selenium/mercury molar ratios varied considerably among and within fish species. There was considerable variation in the molar ratiosmore » for individual fish (as opposed to mean ratios by species) for freshwater fish from both sites. The inter-individual variation in molar ratios indicates that such that the molar ratios of mean Se and Hg concentrations may not be representative. Even for fish species with relatively low mercury levels, some individual fish have molar ratios less than unity, the value sometime thought to be protective. Selenium levels varied narrowly regardless of fish size, consistent with homeostatic regulation of this essential trace element. The data indicate that considerable attention will need to be directed toward variations and variances, as well as the mechanisms of the interaction of selenium and mercury, before risk assessment and risk management policies can use this information to manage mercury pollution and risk. Even so, if there are high levels of selenium in the fish from Poplar Creek on Oak Ridge, then the potential exists for some amelioration of adverse health effects, on the fish themselves, predators that eat them, and people who consume them. This work will aid DOE because it will allow managers and scientists to understand another aspect that affects fate and transport of mercury, as well as the potential effects of methylmercury in fish for human and ecological receptors. The variability within fish species, however, suggests that the relative Se:Hg molar ratios in fish are not stable enough to be used in risk assessment at this time. Nor is it known how much excess selenium is required to confer any degree of protectiveness. That is, in conducting risk assessments, it is not possible to determine the spread of ratios, which would be needed for probabilistic risk assessment. Significantly more fish samples per species are required to begin to generate data that would allow it use in risk assessment. Adding Se:Hg molar ratios seems to complicate risk assessment for the potential adverse effects of mercury exposure, and using mercury levels at this time remains the most viable option. (authors)« less

  11. Producing selenium-enriched eggs and meat to improve the selenium status of the general population.

    PubMed

    Fisinin, Vladimir I; Papazyan, Tigran T; Surai, Peter F

    2009-01-01

    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.

  12. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    PubMed Central

    Haug, Anna; Graham, Robin D.; Christophersen, Olav A.; Lyons, Graham H.

    2007-01-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations. PMID:18833333

  13. Relationship of dietary intake of fish and non-fish selenium to serum lipids in Japanese rural coastal community.

    PubMed

    Miyazaki, Yukiko; Koyama, Hiroshi; Nojiri, Masami; Suzuki, Shosuke

    2002-01-01

    Several studies have suggested that dietary selenium deficiency may be associated with an increased risk of coronary heart disease (CHD). In the present study, 55 men and 71 women were selected from participants in a health examination in a rural coastal community in Japan. The mean dietary selenium intake calculated from the simple food frequency questionnaire (SFFQ) was 127.5 micrograms/day. Fish was the major source of dietary selenium and it contributed to 68.7% of the daily total. HDL cholesterol was higher in the middle selenium intake group and in the high selenium intake group than in the low selenium intake group in all subjects and for males, and a significant difference was found between the middle selenium intake group and the low selenium intake group. The atherogenic index was significantly higher in the low selenium intake group than in the middle selenium intake group and in the high selenium intake group in males. GPx activity, total cholesterol and triacylglycerols did not show any significant differences among the three different selenium intake groups. Dietary intake of non-fish Se had a positive correlation with HDL cholesterol, and an inverse correlation with the atherogenic index in all subjects and for females. On the other hand, dietary intake of fish-Se had no relationship with any serum lipids. Non-fish Se is an important factor in selenium status for the prevention of CHD.

  14. Decreased IGF-I bioavailability after ethanol abuse in alcoholics: partial restitution after short-term abstinence.

    PubMed

    Röjdmark, S; Brismar, K

    2001-01-01

    IGF-I stimulates protein synthesis, lowers blood glucose, and affects cell differentiation. The main production site of IGF-I is the liver. One of its binding proteins, IGFBP-1, is also produced by the liver. It is well known that ethanol affects the function of the human liver. Long-term alcohol abuse may therefore not only cause considerable IGF-I and IGFBP-1 production changes, but also changes in IGF-I bioavailability, which at least in part is determined by the IGF-I/IGFBP-1 ratio. Not much is known about how the bioavailability of IGF-I is changed in alcohol abusers. Therefore, the objective of this investigation was to study that matter, and to elucidate how abstinence affects IGF-I bioavailability in man. Three study groups were formed: group N including normal non-addicted subjects, group E ethanol abusers without gross liver insufficiency, and group C alcohol abusers with liver cirrhosis and ascites. Serum concentrations of insulin, GH, IGF-1, and IGFBP-1 were determined in the morning in all participants, and the IGF-I/IGFBP-1 ratios were calculated. These values were compared in the three study groups. In group E comparison was also made between values recorded in the ethanol intoxicated and in the detoxicated states. Patients in group C had low IGF-I levels, high IGFBP-1 levels, and low IGF-I bioavailability as reflected by the IGF-I/IGFBP-1 ratios, which were several-fold reduced compared with subjects in group N (0.6+/-0.2 vs 10.2+/-2.3; p<0.001). Patients in group E had also a low IGF-I/IGFBP-1 ratio in the acute ethanol intoxicated state, which increased after detoxication (from 1.5+/-0.4 to 5.6+/-1.2; p<0.01). It is concluded that alcohol abuse lowers the hepatic production of IGF-I and increases the production of IGFBP-1. This results in a reduced IGF-I bioavailability. However, in patients with not yet clinically apparent liver damage the IGF-I bioavailability increases if the alcohol abuse is stopped. These findings could reflect an important, physiological adaptation, since hypoglycemia may be induced if the blood glucose-lowering power of IGF-I remains strong at a time of ethanol-induced inhibition of the hepatic gluconeogenesis. Chronic alcohol abuse, causing liver cirrhosis, also leads to markedly reduced IGF-I bioavailability, which appears to become permanent, since it prevails more than one week after stopping the alcohol abuse.

  15. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  16. Selenistasis: Epistatic Effects of Selenium on Cardiovascular Phenotype

    PubMed Central

    Joseph, Jacob; Loscalzo, Joseph

    2013-01-01

    Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease. PMID:23434902

  17. Selenium accumulation and metabolism in algae.

    PubMed

    Schiavon, Michela; Ertani, Andrea; Parrasia, Sofia; Vecchia, Francesca Dalla

    2017-08-01

    Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  19. Nanometer-sized alumina packed microcolumn solid-phase extraction combined with field-amplified sample stacking-capillary electrophoresis for the speciation analysis of inorganic selenium in environmental water samples.

    PubMed

    Duan, Jiankuan; Hu, Bin; He, Man

    2012-10-01

    In this paper, a new method of nanometer-sized alumina packed microcolumn SPE combined with field-amplified sample stacking (FASS)-CE-UV detection was developed for the speciation analysis of inorganic selenium in environmental water samples. Self-synthesized nanometer-sized alumina was packed in a microcolumn as the SPE adsorbent to retain Se(IV) and Se(VI) simultaneously at pH 6 and the retained inorganic selenium was eluted by concentrated ammonia. The eluent was used for FASS-CE-UV analysis after NH₃ evaporation. The factors affecting the preconcentration of both Se(IV) and Se(VI) by SPE and FASS were studied and the optimal CE separation conditions for Se(IV) and Se(VI) were obtained. Under the optimal conditions, the LODs of 57 ng L⁻¹ (Se(IV)) and 71 ng L⁻¹ (Se(VI)) were obtained, respectively. The developed method was validated by the analysis of a certified reference material of GBW(E)080395 environmental water and the determined value was in a good agreement with the certified value. It was also successfully applied to the speciation analysis of inorganic selenium in environmental water samples, including Yangtze River water, spring water, and tap water. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Vitamin D supplementation and serum levels of magnesium and selenium in type 2 diabetes mellitus patients: gender dimorphic changes.

    PubMed

    Al-Daghri, Nasser M; Alkharfy, Khalid M; Khan, Nasiruddin; Alfawaz, Hanan A; Al-Ajlan, Abdulrahman S; Yakout, Sobhy M; Alokail, Majed S

    2014-01-01

    The aim of our study was to evaluate the effects of vitamin D supplementation on circulating levels of magnesium and selenium in patients with type 2 diabetes mellitus (T2DM). A total of 126 adult Saudi patients (55 men and 71 women, mean age 53.6±10.7 years) with controlled T2DM were randomly recruited for the study. All subjects were given vitamin D3 tablets (2000 IU/day) for six months. Follow-up mean concentrations of serum 25-hydroxyvitamin D [25-(OH) vitamin D] significantly increased in both men (34.1±12.4 to 57.8±17.0 nmol/L) and women (35.7±13.5 to 60.1±18.5 nmol/L, p<0.001), while levels of parathyroid hormone (PTH) decreased significantly in both men (1.6±0.17 to 0.96±0.10 pmol/L, p=0.003) and women (1.6±0.17 to 1.0±0.14 pmol/L, p=0.02). In addition, there was a significant increase in serum levels of selenium and magnesium in men and women (p-values<0.001 and 0.04, respectively) after follow-up. In women, a significant correlation was observed between delta change (variables at six months-variable at baseline) of serum magnesium versus high-density lipoprotein (HDL)-cholesterol (r=0.36, p=0.006) and fasting glucose (r=-0.33, p=0.01). In men, there was a significant correlation between serum selenium and triglycerides (r=0.32, p=0.04). Vitamin D supplementation improves serum concentrations of magnesium and selenium in a gender-dependent manner, which in turn could affect several cardiometabolic parameters such as glucose and lipids.

  1. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep.

    PubMed

    Xun, Wenjuan; Shi, Liguang; Yue, Wenbin; Zhang, Chunxiang; Ren, Youshe; Liu, Qiang

    2012-12-01

    The aim of this study was to evaluate the effect of nano-selenium (NS) and yeast-selenium (YS) supplementation on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Six male ruminally cannulated sheep, average 43.32 ± 4.8 kg of BW, were used in a replicated 3 × 3 Latin square experiment. The treatments were control (without NS and YS), NS with 4 g nano-Se (provide 4 mg Se), and YS with 4 g Se-yeast (provide 4 mg Se) per kilogram of diet dry matter (DM), respectively. Experimental periods were 25 days with 15 days of adaptation and 10 days of sampling. Ruminal pH, ammonia N concentration, molar proportion of propionate, and ratio of acetate to propionate were decreased (P < 0.01), and total ruminal VFA concentration was increased with NS and YS supplementation (P < 0.01). In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis (P < 0.01) and crude protein (CP) of soybean meal (P < 0.01) were significantly improved by Se supplementation. Digestibilities of DM, organic matter, crude protein, ether extract, aNDF, and ADF in the total tract and urinary excretion of purine derivatives were also affected by feeding Se supplementation diets (P < 0.01). Ruminal fermentation was improved by feeding NS, and feed conversion efficiency was also increased compared with YS (P < 0.01). We concluded that nano-Se can be used as a preferentially available selenium source in ruminant nutrition.

  2. Chemical Kinetic and Molecular Genetic Study of Selenium Oxyanion Reduction by Enterobactor cloacae SLD1a-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma,J.; Kobayashi, D.; Yee, N.

    2007-01-01

    Microbial processes play an important role in the redox transformations of toxic selenium oxyanions. In this study, we employed chemical kinetic and molecular genetic techniques to investigate the mechanisms of Se(IV) and Se(VI) reduction by the facultative anaerobe Enterobacter cloacae SLD1a-1. The rates of microbial selenium oxyanion reduction were measured as a function of initial selenium oxyanion concentration (0-1.0 mM) and temperature (10-40 C), and mutagenesis studies were performed to identify the genes involved in the selenium oxyanion reduction pathway. The results indicate that Se(IV) reduction is significantly more rapid than the reduction of Se(VI). The kinetics of the reductionmore » reactions were successfully quantified using the Michaelis-Menten kinetic equation. Both the rates of Se(VI) and Se(IV) reduction displayed strong temperature-dependence with Ea values of 121 and 71.2 kJ/mol, respectively. X-ray absorption near-edge spectra collected for the precipitates formed by Se(VI) and Se(IV) reduction confirmed the formation of Se(0). A miniTn5 transposon mutant of E. cloacae SLD1a-1 was isolated that had lost the ability to reduce Se(VI) but was not affected in Se(IV) reduction activity. Nucleotide sequence analysis revealed the transposon was inserted within a tatC gene, which encodes for a central protein in the twin arginine translocation system. Complementation by the wild-type tatC sequence restored the ability of mutant strains to reduce Se(VI). The results suggest that Se(VI) reduction activity is dependent on enzyme export across the cytoplasmic membrane and that reduction of Se(VI) and Se(IV) are catalyzed by different enzymatic systems.« less

  3. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize.

    PubMed

    Mombo, Stéphane; Schreck, Eva; Dumat, Camille; Laplanche, Christophe; Pierart, Antoine; Longchamp, Mélanie; Besson, Philippe; Castrec-Rouelle, Maryse

    2016-06-01

    Selenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (Se(IV) and Se(VI)) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L(-1) of selenium (Se(IV), Se(VI), Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility.

  4. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skröder, Helena; Hawkesworth, Sophie; Kippler, Maria

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water wasmore » assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young children in rural Bangladesh. Better selenium status appears to be protective. However, it is important to follow up these children to assess potential long-term consequences of these findings. - Highlights: • Bangladesh has high levels of arsenic and cadmium in drinking water and food • We assessed toxic exposure, kidney and cardiovascular function in Bangladeshi children • Cadmium appeared to decrease estimated glomerular filtration rate in girls • These effects were somewhat alleviated by selenium.« less

  5. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey.

    PubMed

    Emmanuelle, Barron; Virginie, Migeot; Fabienne, Séby; Isabelle, Ingrand; Martine, Potin-Gautier; Bernard, Legube; Sylvie, Rabouan

    2012-04-01

    Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration. We measured the individual selenium level of people exposed to selenium concentration in drinking water greater than the maximum recommended limit which is 10 μg/L. We carried out a prospective cohort study on 80 adults (40 exposed subjects i.e. living in the involved area and 40 non-exposed ones i.e. living elsewhere) in western France. We used three different approaches: (1) direct measurement of ingested selenium by the duplicate portion method, (2) dietary reconstitution with a food frequency questionnaire (FFQ) and (3) evaluation of the individual selenium status by measuring the selenium content in toenail clippings. Analyses were performed by inductively coupled plasma-mass spectrometry. The association between toenail selenium concentration and area of residence was analyzed using linear regression with repeated measurements. We estimated selenium intake from FFQ at 64±14 μg/day for exposed subjects as opposed to 52±14 μg/day for the non-exposed ones. On the basis of 305 duplicate diet samples, average intake was estimated at 64±26 μg/day for exposed subjects. Area of residence (p=0.0030) and smoking (p=0.0054) were independently associated with toenail selenium concentration. Whatever method used for estimating selenium intake, the selenium level in this studied area with high selenium concentrated drinking water is much lower than in seleniferous areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Recycling of high purity selenium from CIGS solar cell waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition tomore » the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.« less

  7. Selenium requirement of shrimp Penaeus chinensis

    NASA Astrophysics Data System (ADS)

    Tian, Yuchuan; Liu, Fayi

    1993-09-01

    Penaeus chinensis were reared in fibreglass tanks for the study of their selenium requirements. The shrimp were fed semipurified diets containing graded levels of selenium, and weight gains, activities of glutatione peroxidase (GSH-Px) and selenium contents in muscle and hepatopancreas were determined. Weight gain and GSH-Px activity were the highest when the shrimp were fed diet containing 20 mg/kg selenium. Good linear correlation was found between GSH-Px activities and selenium contents in the diets, and the number of healthy shrimp. The experiment showed that 20 mg/kg selenium in the diet is optimal for the shrimp and that GSH-Px activity can be an important biochemical index of the selenium nutrition status of the animal.

  8. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  9. Is hepatic oxidative stress a main driver of dietary selenium toxicity in white sturgeon (Acipenser transmontanus)?

    PubMed

    Zee, Jenna; Patterson, Sarah; Wiseman, Steve; Hecker, Markus

    2016-11-01

    Most species of sturgeon have experienced significant population declines and poor recruitment over the past decades, leading many, including white sturgeon (Acipenser transmontanus), to be listed as endangered. Reasons for these declines are not yet fully understood but benthic lifestyle, longevity, and delayed sexual maturation likely render sturgeon particularly susceptible to factors such as habitat alteration and contaminant exposures. One contaminant of particular concern to white sturgeon is selenium (Se), especially in its more bioavailable form selenomethionine (SeMet), as it is known to efficiently bioaccumulate in prey items of this species. Studies have shown white sturgeon to be among the most sensitive species of fish to dietary SeMet as well as other pollutants such as metals, dioxin-like chemicals and endocrine disrupters. One of the primary hypothesized mechanisms of toxicity of SeMet in fish is oxidative stress; however, little is know about the specific mode by which SeMet affects the health of white sturgeon. Therefore, the aim of this study was to characterize oxidative stress and associated antioxidant responses as a molecular event of toxicity, and to link it with the pathological effects observed previously. Specifically, three-year-old white sturgeon were exposed for 72 days via their diet to 1.4, 5.6, 22.4 or 104.4µg Se per g feed (dm). Doses were chosen to range over a necessary Se intake level, current environmentally relevant intakes and an intake representing predicted increases of Se release. Lipid hydroperoxides, which are end products of lipid oxidation, were quantified as a marker of oxidative stress. Changes in gene expression of glutathione peroxidase (GPx), superoxide dismutase, catalase, glutathione S-transferase, apoptosis inducing factor and caspase 3 were quantified as markers of the response to oxidative stress. Concentrations of lipid hydroperoxides were highly variable within dose groups and no dose response was observed. GPx expression was significantly increased in the low dose group indicating an induced antioxidant response. Expression of other genes were not significantly induced or suppressed. Overall, there was very little evidence of oxidative stress, and therefore, in contrast to previous reports on other species of teleost fishes, oxidative stress is not believed to be a main driver of toxicity in white sturgeon exposed to SeMet. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs12

    PubMed Central

    Sunde, Roger A; Li, Jin-Long; Taylor, Rachel M

    2016-01-01

    To gain insights into nutrient biomarkers and setting of dietary nutrient requirements, selenium biomarker levels and requirements in response to multiple graded levels of dietary selenium were compared between day-old turkeys and chickens versus weanling rats and mice and 2-d-old lambs supplemented with sodium selenite. In rodents, there was no significant effect of dietary selenium on growth, indicating that the minimum selenium requirement was <0.007 μg Se/g diet. In contrast, there was a significant effect in turkeys, chicks, and lambs, which showed selenium requirements for growth of 0.05, 0.025, and 0.05 μg Se/g diet, respectively. Liver glutathione peroxidase (GPX) 1 activity fell in all species to <4% of selenium-adequate levels, plasma GPX3 activity fell to <3% in all species except for mice, and liver GPX4 activity fell to <10% in avians but only to ∼50% of selenium-adequate levels in rodents. Selenium-response curves for these biomarkers reached well-defined plateaus with increasing selenium supplementation in all species, collectively indicating minimum selenium requirements of 0.06–0.10 μg Se/g for rats, mice, and lambs but 0.10–0.13 μg Se/g for chicks and 0.23–0.33 μg Se/g for turkeys. In contrast, increasing dietary selenium did not result in well-defined plateaus for erythrocyte GPX1 activity and liver selenium in most species. Selenium-response curves for GPX1 mRNA for rodents and avians had well-defined plateaus and similar breakpoints. GPX4 mRNA was not significantly regulated by dietary selenium in rodents, but GPX4 mRNA in avians decreased in selenium deficiency to ∼35% of selenium-adequate plateau levels. Notably, no selenoprotein activities or mRNA were effective biomarkers for supernutritional selenium status. Robust biomarkers, such as liver GPX1 and plasma GPX3 activity for selenium, should be specific for the nutrient, fall dramatically in deficiency, and reach well-defined plateaus. Differences in biomarker-response curves may help researchers better understand nutrient metabolism and targeting of tissues in deficiency, thus to better characterize requirements. PMID:28140330

  11. Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs.

    PubMed

    Sunde, Roger A; Li, Jin-Long; Taylor, Rachel M

    2016-11-01

    To gain insights into nutrient biomarkers and setting of dietary nutrient requirements, selenium biomarker levels and requirements in response to multiple graded levels of dietary selenium were compared between day-old turkeys and chickens versus weanling rats and mice and 2-d-old lambs supplemented with sodium selenite. In rodents, there was no significant effect of dietary selenium on growth, indicating that the minimum selenium requirement was <0.007 μg Se/g diet. In contrast, there was a significant effect in turkeys, chicks, and lambs, which showed selenium requirements for growth of 0.05, 0.025, and 0.05 μg Se/g diet, respectively. Liver glutathione peroxidase (GPX) 1 activity fell in all species to <4% of selenium-adequate levels, plasma GPX3 activity fell to <3% in all species except for mice, and liver GPX4 activity fell to <10% in avians but only to ∼50% of selenium-adequate levels in rodents. Selenium-response curves for these biomarkers reached well-defined plateaus with increasing selenium supplementation in all species, collectively indicating minimum selenium requirements of 0.06-0.10 μg Se/g for rats, mice, and lambs but 0.10-0.13 μg Se/g for chicks and 0.23-0.33 μg Se/g for turkeys. In contrast, increasing dietary selenium did not result in well-defined plateaus for erythrocyte GPX1 activity and liver selenium in most species. Selenium-response curves for GPX1 mRNA for rodents and avians had well-defined plateaus and similar breakpoints. GPX4 mRNA was not significantly regulated by dietary selenium in rodents, but GPX4 mRNA in avians decreased in selenium deficiency to ∼35% of selenium-adequate plateau levels. Notably, no selenoprotein activities or mRNA were effective biomarkers for supernutritional selenium status. Robust biomarkers, such as liver GPX1 and plasma GPX3 activity for selenium, should be specific for the nutrient, fall dramatically in deficiency, and reach well-defined plateaus. Differences in biomarker-response curves may help researchers better understand nutrient metabolism and targeting of tissues in deficiency, thus to better characterize requirements. © 2016 American Society for Nutrition.

  12. Levels, distribution and bioavailability of transuranic elements released in the Palomares accident (Spain).

    PubMed

    Jiménez-Ramos, M C; Vioque, I; García-Tenorio, R; García León, M

    2008-11-01

    The current levels and distribution of the remaining transuranic contamination present in the terrestrial area affected by the nuclear Palomares accident have been evaluated through the determination of the Pu-isotopes and (241)Am concentrations in soils collected 35 years after the accident. In addition, after confirming that most of the contamination is present in particulate form, some bioavailability laboratory-based experiments, based on the use of single extractants, were performed as an essential step in order to study the behaviour of the Pu contamination in the soils from the affected areas.

  13. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration. 

  14. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thavarajah, D.; Vandenberg, A.; George, G.N.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentilsmore » is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.« less

  15. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    PubMed

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  16. Both Selenium Deficiency and Modest Selenium Supplementation Lead to Myocardial Fibrosis in Mice via Effects on Redox-Methylation Balance

    PubMed Central

    Metes-Kosik, Nicole; Luptak, Ivan; DiBello, Patricia M.; Handy, Diane E.; Tang, Shiow-Shih; Zhi, Hui; Qin, Fuzhong; Jacobsen, Donald W.; Loscalzo, Joseph; Joseph, Jacob

    2013-01-01

    Scope Selenium has complex effects in vivo on multiple homeostatic mechanisms such as redox balance, methylation balance, and epigenesis, via its interaction with the methionine-homocysteine cycle. In this study, we examined the hypothesis that selenium status would modulate both redox and methylation balance and thereby modulate myocardial structure and function. Methods and Results We examined the effects of selenium deficient (<0.025 mg/kg), control (0.15 mg/kg), and selenium supplemented (0.5 mg/kg) diets on myocardial histology, biochemistry and function in adult C57/BL6 mice. Selenium deficiency led to reactive myocardial fibrosis and systolic dysfunction accompanied by increased myocardial oxidant stress. Selenium supplementation significantly reduced methylation potential, DNA methyltransferase activity and DNA methylation. In mice fed the supplemented diet, inspite of lower oxidant stress, myocardial matrix gene expression was significantly altered resulting in reactive myocardial fibrosis and diastolic dysfunction in the absence of myocardial hypertrophy. Conclusions Our results indicate that both selenium deficiency and modest selenium supplementation leads to a similar phenotype of abnormal myocardial matrix remodeling and dysfunction in the normal heart. The crucial role selenium plays in maintaining the balance between redox and methylation pathways needs to be taken into account while optimizing selenium status for prevention and treatment of heart failure. PMID:23097236

  17. Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenized yeast to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; LeCaptain, L.J.

    1996-01-01

    The toxicity of four chemical forms of selenium (seleno-L-methionine, seleno-DL-methionine, selenized yeast, and high selenium wheat) was compared in day-old mallard ducklings (Anas platyrhynchos). In the first experiment, in which the basal diet was 75% wheat, survival after 2 weeks was lower for ducklings fed 30 ?g/g selenium as seleno-L-methionine (36%) than for ducklings fed 30 ?g/g selenium as seleno-DL-methionine (100%) or 30 ?g/g selenium from high selenium yeast (88%). In a second experiment, in which the basal diet was a commercial duck feed, survival after 2 weeks was 100% in ducklings fed 30 ?g/g selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. The greater toxicity of the L form of selenomethionine was probably related to the palatability or nutritional nature of the wheat-based diet used in experiment 1, but the exact reason for the difference between the DL and L forms is unknown. Biologically incorporated selenium, derived from high selenium wheat was no more toxic than selenium derived from the two purified forms of selenomethionine, and the selenium in selenized yeast was not as toxic as that in the two forms of selenomethionine.

  18. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants

    PubMed Central

    Van Hoewyk, Doug

    2013-01-01

    Background Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. Scope This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. Conclusions Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium. PMID:23904445

  19. Health risk assessment of environmental selenium: Emerging evidence and challenges

    PubMed Central

    Vinceti, Marco; Filippini, Tommaso; Cilloni, Silvia; Bargellini, Annalisa; Vergoni, Anna Valeria; Tsatsakis, Aristides; Ferrante, Margherita

    2017-01-01

    New data have been accumulated in the scientific literature in recent years which allow a more adequate risk assessment of selenium with reference to human health. This new evidence comes from environmental studies, carried out in populations characterized by abnormally high or low selenium intakes, and from high-quality and large randomized controlled trials with selenium recently carried out in the US and in other countries. These trials have consistently shown no beneficial effect on cancer and cardiovascular risk, and have yielded indications of unexpected toxic effects of selenium exposure. Overall, these studies indicate that the minimal amount of environmental selenium which is source of risk to human health is much lower than anticipated on the basis of older studies, since toxic effects were shown at levels of intake as low as around 260 µg/day for organic selenium and around 16 µg/day for inorganic selenium. Conversely, populations with average selenium intake of less than 13–19 µg/day appear to be at risk of a severe cardiomyopathy, Keshan disease. Overall, there is the need to reconsider the selenium standards for dietary intake, drinking water, outdoor and indoor air levels, taking into account the recently discovered adverse health effects of low-dose selenium overexposure, and carefully assessing the significance of selenium-induced proteomic changes. PMID:28339083

  20. Health risk assessment of environmental selenium: Emerging evidence and challenges (Review).

    PubMed

    Vinceti, Marco; Filippini, Tommaso; Cilloni, Silvia; Bargellini, Annalisa; Vergoni, Anna Valeria; Tsatsakis, Aristides; Ferrante, Margherita

    2017-05-01

    New data have been accumulated in the scientific literature in recent years which allow a more adequate risk assessment of selenium with reference to human health. This new evidence comes from environmental studies, carried out in populations characterized by abnormally high or low selenium intakes, and from high-quality and large randomized controlled trials with selenium recently carried out in the US and in other countries. These trials have consistently shown no beneficial effect on cancer and cardiovascular risk, and have yielded indications of unexpected toxic effects of selenium exposure. Overall, these studies indicate that the minimal amount of environmental selenium which is source of risk to human health is much lower than anticipated on the basis of older studies, since toxic effects were shown at levels of intake as low as around 260 µg/day for organic selenium and around 16 µg/day for inorganic selenium. Conversely, populations with average selenium intake of less than 13-19 µg/day appear to be at risk of a severe cardiomyopathy, Keshan disease. Overall, there is the need to reconsider the selenium standards for dietary intake, drinking water, outdoor and indoor air levels, taking into account the recently discovered adverse health effects of low-dose selenium overexposure, and carefully assessing the significance of selenium-induced proteomic changes.

  1. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.

    PubMed

    Stoiber, Tasha; Croteau, Marie-Noële; Römer, Isabella; Tejamaya, Mila; Lead, Jamie R; Luoma, Samuel N

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  2. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    USGS Publications Warehouse

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  3. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].

    PubMed

    Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu

    2004-03-01

    To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.

  4. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999.

    PubMed

    May, T W; Walther, M J; Petty, J D; Fairchild, J F; Lucero, J; Delvaux, M; Manring, J; Armbruster, M; Hartman, D

    2001-11-01

    The Republican River Basin of Colorado, Nebraska, and Kansas lies in a valley which contains Pierre Shale as part of its geological substrata. Selenium is an indigenous constituent in the shale and is readily leached into surrounding groundwater. The Basin is heavily irrigated through the pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water, sediment, benthic invertebrates, and/or fish were collected from 46 sites in the Basin and were analyzed for selenium to determine the potential for food-chain bioaccumulation, dietary toxicity, and reproductive effects of selenium in biota. Resulting selenium concentrations were compared to published guidelines or biological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 microg L(-1), which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3-5 microg L(-1), constituting a moderate hazard. Selenium concentrations in sediment indicated little to no hazard for selenium accumulation from sediments into the benthic food chain. Ninety-five percent of benthic invertebrates collected exhibited selenium concentrations exceeding 3 microg g(-1), a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 microg g(-1) selenium, indicating a high potential for toxicity and reproductive effects. However, examination of weight profiles of various species of collected individual fish suggested successful recruitment in spite of selenium concentrations that exceeded published biological effects thresholds for health and reproductive success. This finding suggested that universal application of published guidelines for selenium may be inappropriate or at least may need refinement for systems similar to the Republican River Basin. Additional research is needed to determine the true impact of selenium on fish and wildlife resources in the Basin.

  5. Long-Term Effect of Crop Rotation and Fertilisation on Bioavailability and Fractionation of Copper in Soil on the Loess Plateau in Northwest China

    PubMed Central

    Zang, Yifei; Wei, Xiaorong; Hao, Mingde

    2015-01-01

    The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil. PMID:26694965

  6. Long-Term Effect of Crop Rotation and Fertilisation on Bioavailability and Fractionation of Copper in Soil on the Loess Plateau in Northwest China.

    PubMed

    Zang, Yifei; Wei, Xiaorong; Hao, Mingde

    2015-01-01

    The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil.

  7. How do different extracorporeal circulation systems affect metoprolol bioavailability in coronary artery bypass surgery patients.

    PubMed

    Kokki, Hannu; Maaroos, Martin; Ellam, Sten; Halonen, Jari; Ojanperä, Ilkka; Ranta, Merja; Ranta, Veli-Pekka; Tolonen, Aleksandra; Lindberg, Oscar; Viitala, Matias; Hartikainen, Juha

    2018-06-01

    Cardiac surgery and conventional extracorporeal circulation (CECC) impair the bioavailability of drugs administered by mouth. It is not known whether miniaturized ECC (MECC) or off-pump surgery (OPCAB) affect the bioavailability in similar manner. We evaluated the metoprolol bioavailability in patients undergoing CABG surgery with CECC, MECC, or having OPCAB. Thirty patients, ten in each group, aged 44-79 years, scheduled for CABG surgery were administered 50 mg metoprolol by mouth on the preoperative day at 8-10 a.m. and 8 p.m., 2 h before surgery, and thereafter daily at 8 a.m. and 8 p.m. Blood samples were collected up to 12 h after the morning dose on the preoperative day and on first and third postoperative days. Metoprolol concentration in plasma was analyzed using liquid chromatography-mass spectrometry. The absorption of metoprolol was markedly reduced on the first postoperative day in all three groups, but recovered to the preoperative level on the third postoperative day. The geometric means (90% confidence interval) of AUC 0-12 on the first and third postoperative days versus the preoperative day were 44 (26-74)% and 109 (86-139)% in the CECC-group, 28 (16-50)% and 79 (59-105)% in the MECC-group, and 26 (12-56)% and 96 (77-119)% in the OPCAB-group, respectively. Two patients in the CECC-group and two in the MECC-group developed atrial fibrillation (AF). The bioavailability and the drug concentrations of metoprolol in patients developing AF did not differ from those who remained in sinus rhythm. The bioavailability of metoprolol by mouth was markedly reduced in the early phase after CABG with no difference between the CECC-, MECC-, and OPCAB-groups.

  8. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of land irrigated for agriculture, has been identified as being susceptible. Biological data were used to evaluate the reliability of the map. In 12 of DOI's 26 study areas, concentrations of selenium measured in bird eggs were elevated sufficiently to significantly reduce hatchability of the eggs. The GIS map identifies 9 of those 12 areas. Deformed bird embryos having classic symptoms of selenium toxicosis were found in four of the study areas, and the map identifies all four as susceptible to irrigation-induced selenium contamination. The report describes the geography, geology, and ground-water resources of the Dutch Flats area in Scotts Bluff and Sioux Counties, Nebr. The area comprises about 60 square miles and consists predominantly of relatively flat-lying terraces. Farming is the principal occupation in the area. The farm lands are irrigated largely from surface water; ground water is used only as a supplementary supply during drought periods. The climate in the area is semiarid, and the mean annual precipitation is about 16 inches. The rocks exposed in the Dutch Flats area are of Tertiary sad Quaternary age. A map showing the areas of outcrop of the rock formations is included in the report. Sufficient unconfined ground water for irrigation supplies is contained in the deposits of the .third terrace, and wells that yield 1,000 to 2,000 gallons a minute probably could be developed. The depth to water in the area ranges from a few feet to about 80 feet sad averages about 30 feet. The depth to water varies throughout the year; it is least in the late summer when the recharge from irrigation is greatest, sad it is greatest in the early spring before irrigation is begun. A map showing the depth to water in September 1949 is included in the report. The ground-water reservoir is recharged by seepage from irrigation canals and laterals, by seepage from irrigation water applied to the farms, and, to a much lesser extent, by precipitation. In the area b

  9. Selenium nanoparticles: potential in cancer gene and drug delivery.

    PubMed

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  10. Mitochondrial Protein Profile in Mice with Low or Excessive Selenium Diets

    PubMed Central

    Hu, Lianmei; Wang, Congcong; Zhang, Qin; Yan, Hao; Li, Ying; Pan, Jiaqiang; Tang, Zhaoxin

    2016-01-01

    Dietary selenium putatively prevents oxidative damage, whereas excessive selenium may lead to animal disorder. In this study, we investigated the effects of low and excessive levels of dietary selenium on oxidative stress and mitochondrial proteins in mouse liver. Six to eight week old mice were fed a diet with low, excessive, or moderate (control) levels of selenium (sodium selenite). The selenium concentration and oxidative stress-related parameters in hepatic mitochondria were evaluated. Two-dimensional electrophoresis and mass spectrometry were applied to identify the differentially-expressed proteins associated with dietary selenium. The selenium content of the livers in mice with the low selenium diet was significantly lower than that of the control, while that of mice fed excessive levels was significantly higher. In both groups oxidative stress in hepatic mitochondria was found; accompanied by lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) levels and higher malondialdehyde (MDA) content, compared with the control group. Furthermore, ten proteins in the hepatic mitochondria of the selenium-low or -excessive groups with more than two-fold differences in abundance compared with the control group were identified. The differentially-expressed proteins in hepatic mitochondria may be associated with dietary (low or excessive) selenium-induced oxidative stress. PMID:27428959

  11. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  12. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinouski, M.; Kehr, S.; Finney, L.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less

  13. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study.

    PubMed

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-04-01

    Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Overall, mean (± SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P < 0.001). Compared with the highest baseline selenium tertile, low and middle tertiles were positively associated with a change in maternal plasma or breast-milk selenium from 2 or 6 to 24 wk postpartum (both P < 0.001). With the use of linear regression, we showed that LNS that contained selenium and ARV were not associated with changes in maternal plasma and breast-milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P < 0.001) regardless of the study arm. Selenite supplementation of HIV-infected Malawian women was not associated with a change in their plasma or breast-milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women.

  14. Characterization and Quantitation of Triterpenoid Saponins in Raw and Sprouted Chenopodium berlandieri spp. (Huauzontle) Grains Subjected to Germination with or without Selenium Stress Conditions.

    PubMed

    Lazo-Vélez, Marco A; Guajardo-Flores, Daniel; Mata-Ramírez, Daniel; Gutiérrez-Uribe, Janet A; Serna-Saldivar, Sergio O

    2016-01-01

    Pseudocereal Chenopodium berlandieri spp. (huauzontle) was evaluated to determine saponin composition. Saponins were evaluated in raw and germinated grains subjected to chemical stress induced by sodium selenite. Analysis by liquid chromatography coupled with ELSD detector revealed the presence of 12 saponins, identified according to compounds previously assayed in Chenopodium quinoa. Saponins found at the highest concentrations in raw grains were derived from oleanolic and phytolaccagenic acids. Total saponin concentration significantly decreased in germinated compared to raw grains due to the significant loss of 90.1% and 95.7% of the phytolaccagenic acid without and with chemical selenium stress, respectively. The most abundant saponin in germinated sprouts decreased during normal germination. Interestingly, the concentration of this particular saponin significantly increased during the Se-induced stress germination. Chemical stress with selenium salts proved to change the saponin composition in geminated Chenopodium berlandieri spp. grains, therefore affecting their potential use as ingredient in the food industry. © 2015 Institute of Food Technologists®

  15. Selenium in Cattle: A Review.

    PubMed

    Mehdi, Youcef; Dufrasne, Isabelle

    2016-04-23

    This review article examines the role of selenium (Se) and the effects of Se supplementation especially in the bovine species. Selenium is an important trace element in cattle. Some of its roles include the participation in the antioxidant defense the cattle farms. The nutritional requirements of Se in cattle are estimated at 100 μg/kg DM (dry matter) for beef cattle and at 300 μg/kg DM for dairy cows. The rations high in fermentable carbohydrates, nitrates, sulfates, calcium or hydrogen cyanide negatively influence the organism's use of the selenium contained in the diet. The Se supplementation may reduce the incidence of metritis and ovarian cysts during the postpartum period. The increase in fertility when adding Se is attributed to the reduction of the embryonic death during the first month of gestation. A use of organic Se in feed would provide a better transfer of Se in calves relative to mineral Se supplementation. The addition of Se yeasts in the foodstuffs of cows significantly increases the Se content and the percentage of polyunsaturated fatty acids (PUFA) in milk compared to the addition of sodium selenite. The enzyme 5-iodothyronine deiodinase is a seleno-dependent selenoprotein. It is one of the last proteins to be affected in the event of Se deficiency. This delay in response could explain the fact that several studies did not show the effect of Se supplementation on growth and weight gain of calves. Enrichment of Se in the diet did not significantly affect the slaughter weight and carcass yield of bulls. The impact and results of Se supplementation in cattle depend on physiological stage, Se status of animals, type and content of Se and types of Se administration. Further studies in Se supplementation should investigate the speciation of Se in food and yeasts, as well as understanding their metabolism and absorption. This constitute a path to exploit in order to explain certain different effects of Se.

  16. Electrode materials for rechargeable batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  17. Selenium Supplementation Affects Insulin Resistance and Serum hs-CRP in Patients with Type 2 Diabetes and Coronary Heart Disease.

    PubMed

    Farrokhian, A; Bahmani, F; Taghizadeh, M; Mirhashemi, S M; Aarabi, M H; Raygan, F; Aghadavod, E; Asemi, Z

    2016-04-01

    To our knowledge, this study is the first indicating the effects of selenium supplementation on metabolic status of patients with type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD). This study was conducted to evaluate the effects of selenium supplementation on metabolic profiles, biomarkers of inflammation, and oxidative stress of patients with T2DM and CHD. This randomized, double-blind, placebo-controlled trial was performed among 60 patients with T2DM and CHD aged 40-85 years. Participants were randomly divided into 2 groups. Group A received 200 μg selenium supplements (n=30) and group B received placebo per day (n=30) for 8 weeks. Fasting blood samples were taken at the beginning of the study and after 8-week intervention to quantify metabolic profiles. After 8 weeks, compared with the placebo, selenium supplementation resulted in a significant decrease in serum insulin levels (- 2.2±4.6 vs. + 3.6±8.4 μIU/ml, p=0.001), homeostasis model of assessment-insulin resistance (HOMA-IR) (- 0.7±1.3 vs. + 0.9±2.4, p=0.004), homeostatic model assessment-beta cell function (HOMA-B) (- 7.5±17.2 vs. + 15.1±34.5, p=0.002) and a significant increase in quantitative insulin sensitivity check index (QUICKI) (+0.01±0.03 vs. - 0.01±0.03, p=0.02). In addition, patients who received selenium supplements had a significant reduction in serum high-sensitivity C-reactive protein (hs-CRP) (- 1 372.3±2 318.8 vs. - 99.8±1 453.6 ng/ml, p=0.01) and a significant rise in plasma total antioxidant capacity (TAC) concentrations (+ 301.3±400.6 vs. - 127.2±428.0 mmol/l, p<0.001) compared with the placebo. A 200 μg/day selenium supplementation among patients with T2DM and CHD resulted in a significant decrease in insulin, HOMA-IR, HOMA-B, serum hs-CRP, and a significant increase in QUICKI score and TAC concentrations. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Quantifying the Spatial and Seasonal Hydrodynamics of Subsurface Soil Salinity and Selenium Mobilization in the Pariette Watershed, Uintah Basin, UT

    NASA Astrophysics Data System (ADS)

    Amakor, X. N.; Jacobson, A. R.; Cardon, G. E.; Grossl, P. R.

    2011-12-01

    A recent water quality report recognized concentrations of salts and selenium above total maximum daily loads (TMDLs) in the Pariette Wetlands located in the Uintah Basin, Utah. Since the wetlands are located in the Pacific Migratory Flyway and frequented by numerous water fowl, the elevated levels of total dissolved solids and Se are of concern. To determine whether it possible to manage the mobilization of salts and associated contaminants through the watershed soils into the Pariette Wetlands, knowledge of the spatio-temporal dynamics and distribution of these contaminants is required. Thus, the objective of this study is to characterize the spatio-temporal mobilization of salts and total selenium in the Pariette Draw watershed. Intensive soil information is being collected along the streams feeding the wetlands from fields representing the dominant land-uses in the watershed (irrigated agricultural fields, fallow salt-crusted fields, oil and natural gas extraction fields) using both the noninvasive electromagnetic induction (EMI) sensing technique (EM38DD) and the invasive time-domain reflectometry (TDR). At each site, ground truth samples were collected from optimally determined points generated using the ESAP-RSSD program based on the bulk soil electrical conductivity survey information. Stable soil properties affecting the measurement of salinity (e.g., clay content, organic matter content, cation exchange capacity, bulk density) were also characterized at these points. Parameters affected by fluctuations in soil moisture content (e.g., pH, electrical conductivity of saturation paste extract (ECe), dissolved organic carbon (DOC), and total selenium in the dissolved saturation extract) are being measured repeatedly over a minimum of 1 year. Based on regression models of collocated EMI, TDR and ECe measurements, the dense survey data are transformed into ECe. Geostatistical kriging methods are applied to the transformed ECe and volumetric water content to reveal the complex spatio-temporal patterns of salinity, water content, and total selenium (based on the association between ECe and total Se) across portions of the watershed. Temporal changes are being compared using the paired t-test. Here we present the spatio-temporal correlations among the properties and over the sampling times for the 2011 summer and fall seasons with an initial evaluation of the underlying processes contributing to the elevated contaminant loads at the wetlands. Additional measurements will be made in 2012 to capture the effects of early spring snowmelt and runoff.

  19. Effect of forms of selenium on the accumulation of selenium, sulfur, and forms of nitrogen and phosphorus in forage cowpea (Vigna sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Singh, N.

    1979-05-01

    The effects of forms of selenium on the accumulation of sulfur, selenium, and forms of nitrogen and phosphorus in cowpea (Vigna sinensis) were studied in pots in the greenhouse at Haryana Agricultural University, Hissar, India. The soil used was sandy, and forms of selenium added were Na/sub 2/SeO/sub 4/ 10H/sub 2/O, Na/sub 2/SeO/sub 3/ 5H/sub 2/O, H/sub 2/SeO/sub 3/, and elemental selenium at the rate of 0, 1, 2.5 and 5 ppM. Dry matter yield and sulfur content decreased with increased selenium application. This inhibition in plants, attributable to applied selenium, was in the order SeO/sub 4/ > H/sub 2/SeO/submore » 3/ > SeO/sub 3/ > elemental selenium. Plant selenium increased with increasing application of all forms of selenium. The highest plant selenium (11.58 ppM) was in the plants treated with SeO/sub 4/, followed by the plants treated with H/sub 2/SeO/sub 3/, SeO/sub 3/, and elemental selenium. The total plant phosphorus increased with increased selenium application in any form, but maximum phosphorus occurred in SeO/sub 3/-treated plants. The inorganic phosphorus increased similarly, the largest amount occurring in SeO/sub 4/-treated plants. Organic phosphorus decreased with selenium application; minimum concentration was recorded in SeO/sub 4/-treated plants. Soluble nitrogen decreased, relative to the control, with applications of 2.5 and 5 ppM selenium. This decrease was minimal for elemental selenium and maximum for SeO/sub 4/. Soluble nitrogen, in the case of SeO/sub 3/ was higher than for H/sub 2/SeO/sub 3/. Total plant nitrogen and protein also decreased. Amino N, amide N, and ammoniacal and nitrate N increased, compared to the control. The largest amount of all these forms was noted in SeO/sub 4/-treated plants. Overall, among the forms of selenium normally reported in soils, the SeO/sub 4/ form showed the highest inhibition, whereas SeO/sub 3/ showed less than both SeO/sub 4/ and H/sub 2/SeO/sub 3/.« less

  20. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  1. Milk does not affect the bioavailability of cocoa powder flavonoid in healthy human.

    PubMed

    Roura, Elena; Andrés-Lacueva, Cristina; Estruch, Ramon; Mata-Bilbao, M Lourdes; Izquierdo-Pulido, Maria; Waterhouse, Andrew L; Lamuela-Raventós, Rosa M

    2007-01-01

    The beneficial effects of cocoa polyphenols depend on the amount consumed, their bioavailability and the biological activities of the formed conjugates. The food matrix is one the factors than can affect their bioavailability, but previous studies have concluded rather contradictory results about the effect of milk on the bioavailability of polyphenols. The objective was to evaluate the possible interaction of milk on the absorption of (-)-epicatechin ((-)-Ec) from cocoa powder in healthy humans. 21 volunteers received three interventions in a randomized crossover design with a 1-week interval (250 ml of whole milk (M-c) (control), 40 g of cocoa powder dissolved in 250 ml of whole milk (CC-M), and 40 g of cocoa powder dissolved with 250 ml of water (CC-W)). Quantification of (-)-Ec in plasma was determined by LC-MS/MS analysis prior to a solid-phase extraction procedure. 2 h after the intake of the two cocoa beverages, (-)-Ec-glucuronide was the only (-)-Ec metabolite detected, showing a mean (SD) plasma concentration of 330.44 nmol/l (156.1) and 273.7 nmol/l (138.42) for CC-W and CC-M, respectively (p = 0.076). Cocoa powder dissolved in milk as one of the most common ways of cocoa powder consumption seems to have a negative effect on the absorption of polyphenols; however, statistical analyses have shown that milk does not impair the bioavailability of polyphenols and thus their potential beneficial effect in chronic and degenerative disease prevention. (c) 2007 S. Karger AG, Basel

  2. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study.

    PubMed

    Galan-Chilet, Inmaculada; Tellez-Plaza, Maria; Guallar, Eliseo; De Marco, Griselda; Lopez-Izquierdo, Raul; Gonzalez-Manzano, Isabel; Carmen Tormos, M; Martin-Nuñez, Gracia M; Rojo-Martinez, Gemma; Saez, Guillermo T; Martín-Escudero, Juan C; Redon, Josep; Javier Chaves, F

    2014-09-01

    The role of selenium exposure in preventing chronic disease is controversial, especially in selenium-repleted populations. At high concentrations, selenium exposure may increase oxidative stress. Studies evaluating the interaction of genetic variation in genes involved in oxidative stress pathways and selenium are scarce. We evaluated the cross-sectional association of plasma selenium concentrations with oxidative stress levels, measured as oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8-oxo-7,8-dihydroguanine (8-oxo-dG) in urine, and the interacting role of genetic variation in oxidative stress candidate genes, in a representative sample of 1445 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.76 µg/L. In fully adjusted models the geometric mean ratios for oxidative stress biomarker levels comparing the highest to the lowest quintiles of plasma selenium levels were 0.61 (0.50-0.76) for GSSG/GSH, 0.89 (0.79-1.00) for MDA, and 1.06 (0.96-1.18) for 8-oxo-dG. We observed nonlinear dose-responses of selenium exposure and oxidative stress biomarkers, with plasma selenium concentrations above ~110 μg/L being positively associated with 8-oxo-dG, but inversely associated with GSSG/GSH and MDA. In addition, we identified potential risk genotypes associated with increased levels of oxidative stress markers with high selenium levels. Our findings support that high selenium levels increase oxidative stress in some biological processes. More studies are needed to disentangle the complexity of selenium biology and the relevance of potential gene-selenium interactions in relation to health outcomes in human populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Kurek, Eliza

    2017-02-25

    Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV) to organic derivatives (e.g., selenomethionine). Selenium introduced (20-30 mg Se 4+ ∙L -1 ) to the experimental media in the form of sodium(IV) selenite (Na₂SeO₃) salt caused a significant increase in selenium content in the biomass of C. utilis ,irrespective of the concentration. The highest amount of selenium (1841 μg∙g d.w. -1 ) was obtained after a 48-h culture in media containing 30 mg Se 4+ ∙L -1 . The highest content of selenomethionine (238.8 μg∙g d.w. -1 ) was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se 4+ ∙L -1 . Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L -1 . The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans.

  4. Impact of the Nationwide Intravenous Selenium Product Shortage on the Development of Selenium Deficiency in Infants Dependent on Long-Term Parenteral Nutrition.

    PubMed

    Chen, Connie H; Harris, Mary Beth; Partipilo, M Luisa; Welch, Kathleen B; Teitelbaum, Daniel H; Blackmer, Allison B

    2016-08-01

    For patients dependent on parenteral nutrition (PN), selenium must be supplemented intravenously. A nationwide intravenous selenium shortage began in April 2011. The impact of this shortage on PN-dependent infants was evaluated by examining the provision of selenium, development of biochemical deficiency, and costs associated with the shortage. This single-center, retrospective study included PN-dependent infants aged ≤1 year who weighed ≤30 kg, received PN for ≥1 month, and had ≥1 serum selenium measurement. The primary outcome was the incidence of biochemical selenium deficiency. Secondary outcomes included severity of biochemical deficiency, clinical manifestations, costs, and relationship between serum selenium levels and selenium dose. The average selenium dose decreased 2-fold during the shortage (2.1 ± 1.2 µg/kg/d; range, 0.2-4.6 µg/kg/d) versus the nonshortage period (3.8 ± 1 µg/kg/d; range, 2.4-6 µg/kg/d; P < .001). A linear relationship between serum selenium concentration and selenium dose was observed (r(2) = 0.42), with a dose of 6 µg/kg/d expected to result in normal serum levels in most cases. Similar proportions of patients developed biochemical deficiency in both groups: shortage period, 59.1%; nonshortage, 66.7%; P = .13. The severity of biochemical deficiency was similar between groups. A significant increase in incremental cost during the shortage was observed. This is the first study examining the impact of the intravenous selenium shortage on PN-dependent infants. Both groups exhibited similarly high incidences of biochemical selenium deficiency, suggesting higher empiric doses may benefit this population. However, ongoing shortages limit the ability to provide supplementation. © 2015 American Society for Parenteral and Enteral Nutrition.

  5. Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance.

    PubMed

    Metes-Kosik, Nicole; Luptak, Ivan; Dibello, Patricia M; Handy, Diane E; Tang, Shiow-Shih; Zhi, Hui; Qin, Fuzhong; Jacobsen, Donald W; Loscalzo, Joseph; Joseph, Jacob

    2012-12-01

    Selenium has complex effects in vivo on multiple homeostatic mechanisms such as redox balance, methylation balance, and epigenesis, via its interaction with the methionine-homocysteine cycle. In this study, we examined the hypothesis that selenium status would modulate both redox and methylation balance and thereby modulate myocardial structure and function. We examined the effects of selenium-deficient (<0.025 mg/kg), control (0.15 mg/kg), and selenium-supplemented (0.5 mg/kg) diets on myocardial histology, biochemistry and function in adult C57/BL6 mice. Selenium deficiency led to reactive myocardial fibrosis and systolic dysfunction accompanied by increased myocardial oxidant stress. Selenium supplementation significantly reduced methylation potential, DNA methyltransferase activity and DNA methylation. In mice fed the supplemented diet, inspite of lower oxidant stress, myocardial matrix gene expression was significantly altered resulting in reactive myocardial fibrosis and diastolic dysfunction in the absence of myocardial hypertrophy. Our results indicate that both selenium deficiency and modest selenium supplementation leads to a similar phenotype of abnormal myocardial matrix remodeling and dysfunction in the normal heart. The crucial role selenium plays in maintaining the balance between redox and methylation pathways needs to be taken into account while optimizing selenium status for prevention and treatment of heart failure. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms.

    PubMed

    Dolgova, N V; Hackett, M J; MacDonald, T C; Nehzati, S; James, A K; Krone, P H; George, G N; Pickering, I J

    2016-03-01

    Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported. A possible contributing factor may be that different chemical forms of selenium were used in different studies. Using larval stage zebrafish (Danio rerio) as a model organism, we report a comparison of the toxicities and tissue selenium distributions of four different chemical forms of selenium. We find that the organic forms of selenium tested (Se-methyl-l-selenocysteine and l-selenomethionine) show considerably more toxicity than inorganic forms (selenite and selenate), and that this appears to be correlated with the level of bioaccumulation. Despite differences in concentrations, the tissue specific pattern of selenium accumulation was similar for the chemical forms tested; selenium was found to be highly concentrated in pigment (melanin) containing tissues especially for the organic selenium treatments, with lower concentrations in eye lens, yolk sac and heart. These results suggest that pigmented tissues might serve as a storage reservoir for selenium.

  8. Selenium in diet

    MedlinePlus

    ... Meats produced from animals that ate grains or plants found in selenium-rich soil have higher levels of selenium. Brewer's yeast, wheat germ, and enriched breads are also good sources of selenium.

  9. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica.

    PubMed

    Modrzejewska-Sikorska, Anna; Konował, Emilia; Klapiszewski, Łukasz; Nowaczyk, Grzegorz; Jurga, Stefan; Jesionowski, Teofil; Milczarek, Grzegorz

    2017-10-01

    We report a novel room-temperature synthesis of selenium nanoparticles, which for the first time uses lignosulfonate as a stabilizer. Various lignosulfonates obtained both from hardwood and softwood were tested. Selenium oxide was used as the precursor of zero-valent selenium. Three different reducers were tested - sodium borohydride, hydrazine and ascorbic acid - and the latter proved most effective in terms of the particle size and stability of the final colloid. The lignosulfonate-stabilized selenium nanoparticles had a negative zeta potential, dependent on pH, which for some lignosulfonates reached -50mV, indicating the excellent stability of the colloid. When spherical silica particles were introduced to the synthesis mixture, selenium nanoparticles were deposited on their surface. Additionally, star-like structures consisting of sharp selenium needles with silica cores were observed. After drying, the selenium-functionalized silica had a grey metallic hue. The method reported here is simple and cost-effective, and can be used for the preparation of large quantities of selenium colloids or the surface modification of other materials with selenium. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Re-exposure of mallards to selenium after chronic exposure

    USGS Publications Warehouse

    Heinz, G.H.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed a control diet or a diet containing 15 ppm selenium as seleno-D,L-methionine for 21 weeks. After this initial exposure, the mallards were fed untreated food for 12 weeks, then were re-exposed to selenium at 100 ppm for five weeks. During re-exposure to 100 ppm selenium, the birds that had previously been exposed to 15 ppm selenium and those that had not previously been exposed did not differ in percentage of mortality (14.7 and 14.3%), weight loss in survivors (39.3 and 41.20%), selenium concentrations in the livers of survivors (35 and 53 ppm, wet weight), or selenium concentrations in the livers of birds that died (35 and 40 ppm, respectively). When the data from the birds that had previously been exposed to 15 ppm selenium were combined with the data from the birds that had not previously been exposed, selenium concentrations in the livers of birds that had died on the 100-ppm selenium treatment (38 ppm) did not differ from the concentrations in the livers of birds that had survived (43 ppm).

  11. [The selenium haemostasis during experimental anaphylaxis reaction in rats treated with reduced glutathione and selenium enriched spirulina].

    PubMed

    Golubkina, N A; Mazo, V K; Gmoshinskiĭ, I V; Zorin, S N; Tambiev, A Kh; Kirikova, N N

    2000-01-01

    The main events caused by anaphilaxis in selenium haemostasis in rats include significant increase of selenium excretion with urine (6.36 +/- 1.18 nM Se/18 h., n = 10, compared with 1.72 +/- 0.38 nM Se/18 h., n = 10) and decrease of selenium plasma/selenium erythrocytes ratio from 0.939 to 0.791. Reduced glutathione (G-SH) administration led to 1.5-fold decrease of plasma selenium level and 1.3-fold increase of selenium concentration in intestinal walls of sensitized rats (r = -0.720, P < 0.001). Chromatographic separation of plasma proteins showed that intragastric intubation of G-SH to sensibilized rats significantly decreased the protein P content and did not influence the concentration of Se-GSHPx, thus indicating the local selenium acceptor role of G-SH. G-SH administration did not influence the intestinal permeability in sensitised rats while use of complex additive: G-SH and selenium enriched spirulina--normalized the latter parameter and the ratio of protein P/Se-GSHPx in plasma.

  12. Accumulation and metabolism of selenium by yeast cells.

    PubMed

    Kieliszek, Marek; Błażejak, Stanisław; Gientka, Iwona; Bzducha-Wróbel, Anna

    2015-07-01

    This paper examines the process of selenium bioaccumulation and selenium metabolism in yeast cells. Yeast cells can bind elements in ionic from the environment and permanently integrate them into their cellular structure. Up to now, Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica yeasts have been used primarily in biotechnological studies to evaluate binding of minerals. Yeast cells are able to bind selenium in the form of both organic and inorganic compounds. The process of bioaccumulation of selenium by microorganisms occurs through two mechanisms: extracellular binding by ligands of membrane assembly and intracellular accumulation associated with the transport of ions across the cytoplasmic membrane into the cell interior. During intracellular metabolism of selenium, oxidation, reduction, methylation, and selenoprotein synthesis processes are involved, as exemplified by detoxification processes that allow yeasts to survive under culture conditions involving the elevated selenium concentrations which were observed. Selenium yeasts represent probably the best absorbed form of this element. In turn, in terms of wide application, the inclusion of yeast with accumulated selenium may aid in lessening selenium deficiency in a diet.

  13. Reproduction of mallards following overwinter exposure to selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Forty pairs of mallards (Anas platyrhynchos) were fed 15 ppm selenium as selenomethionine for about 21 weeks during winter. Twenty pairs served as controls. At the end of 21 weeks, which coincided with the onset of the reproductive season, selenium treatment was ended. Four birds died while on selenium treatment. Treated females lost weight, and their egg-laying was delayed. Hatching success of some of the first eggs laid by selenium-treated females was lower than that of controls, and a few of these early eggs contained deformed embryos, but, after a period of about two weeks off the selenium-treated diet, reproductive success returned to a level comparable with that of controls. The return to normal reproductive success was the result of a corresponding decrease in selenium concentrations in eggs once selenium treatment ended.

  14. [Assessment of efficiency of use of the developed supplement containing selenium on laboratory animals].

    PubMed

    Bazhenova, B A; Aslaliev, A D; Danilov, M B; Badmaeva, T M; Vtorushina, I A

    2015-01-01

    The article presents the results of a study of the effectiveness of wheat flour containing selenium in organic form. The organic form of trace element was achieved by transformation of selenium in selenium-methionine (Se-Met) at germination of wheat grains, moistened with a solution of sodium selenite. To determine the effectiveness of selenium- containing supplements experimental investigations were carried out on Long white rats with initial body weight 50 ± 2 g. The duration of the experiment was 30 days. The research model included four groups of animals: control group--animals were fed a complete vivarium diet; group 1--a model of selenium deficiency, which was achieved by feeding selenium-deficient food (grain growh in the Chita region of the Trans-Baikal Territory Zabaikalsky Krai); group 2--animals were administered selenium supplement in the form of enriched flour (0.025 µg Se per 50 g body weight of the animal) on the background of selenium-deficient diet; group 3--animals were treated with a high dose of selenium in the form of a solution of sodium selenite intragastrically through a tube (0.15 µg Se per 50 g body weight). Selenium-containing additive on the background of selenium-deficient diet had a positive impact on the appearance and behavior of animals, the body weight gain per head after 10 days in group 2 amounted to 47.9 g that was 4 fold larger than in rats of group 1. The study of selenium content showed that in the blood, liver, lungs and heart of rats treated with the additive on the background of selenium-deficient diet (group 2), selenium level did not differ from those in the control group and was within physiological norms. The experiment showed that selenium deficiency and rich in selenium rich diet has a significantly different effect on the studied parameters of oxidative-antioxidative status. The activity of blood glutathione peroxidase in animals of group 2 (did not differ from that in group 3) was almost 2 fold higher than in blood of control animals and was seven fold higher than that in blood of animals kept on selenium deficient diet (35.57 ± 3.36 µmol/g per 1 min) A similar dependence was established when studying the activity of glutathione reductase. It has been revealed thatthe oxidative-antioxidative status of animals from experimental groups 1 and 3 was lower than from control group and group 2. Thus, blood antioxidant activity in animals receiving diet with selenium deficiency and high dose of this trace element, was less than in the control group by 43.1 and 25.4%, respectively. Liver MDA level in animals kept on a diet with selenium deficiency exceeded the value of this indicator in the group 2 more than 1.5 fold (110.5 ± 10.70 vs. 72.5 ± 4.30 nmol/mg). When using selenium-containing supplement, this parameter decreased to the control level. In blood plasma of the animals of group 2 total antioxidant activity increased by about five times as compared with the indicators of animals kept on selenium-deficient diet, and was 25% higher than in control. Thus, the introduction of a selenium supplements in the deficient diet contributes to the development of endogenous antioxidants that suppress lipid oxidation. High biological effectiveness of supplements containing organic form of selenium has been proved.

  15. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Republican River Basin: 1997-1999

    USGS Publications Warehouse

    May, T.W.; Walther, M.J.; Petty, J.D.; Fairchild, J.F.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.; Hartman, D.

    2001-01-01

    The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 μg L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 μg L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 μg g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 μg g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin.

  16. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  17. Technical issues affecting the implementation of US Environmental Protection Agency's proposed fish tissue-based aquatic criterion for selenium.

    PubMed

    Lemly, A Dennis; Skorupa, Joseph P

    2007-10-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the "what, where, and when" is essential with the new tissue-based approach in order to ensure proper acquisition of data that apply to the criterion. Dischargers will need to understand selenium transport, cycling, and bioaccumulation in order to effectively monitor for the criterion and, if necessary, develop site-specific standards. This paper discusses 11 key issues that affect the implementation of a tissue-based criterion, ranging from the selection of fish species to the importance of hydrological units in the sampling design. It also outlines a strategy that incorporates both water column and tissue-based approaches. A national generic safety-net water criterion could be combined with a fish tissue-based criterion for site-specific implementation. For the majority of waters nationwide, National Pollution Discharge Elimination System permitting and other activities associated with the Clean Water Act could continue without the increased expense of sampling and interpreting biological materials. Dischargers would do biotic sampling intermittently (not a routine monitoring burden) on fish tissue relative to the fish tissue criterion. Only when the fish tissue criterion is exceeded would a full site-specific analysis including development of intermedia translation factors be necessary.

  18. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    PubMed Central

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  19. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.

    PubMed

    Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J

    2016-10-01

    Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016. © 2015 Wiley Periodicals, Inc.

  20. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    USDA-ARS?s Scientific Manuscript database

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  1. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.

    PubMed

    Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D

    2009-06-10

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification and dietary supplements.

  2. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210.

    PubMed

    Cui, Yin-Hua; Li, Ling-Li; Zhou, Nan-Qing; Liu, Jing-Hua; Huang, Qing; Wang, Hui-Juan; Tian, Jie; Yu, Han-Qing

    2016-12-01

    Nano-selenium has a great potential to be used in chemical, biological, medical and environmental fields. Biological methods for nano-selenium synthesis have attracted wide interests, because they can be operated at ambient temperature and pressure without complicated equipments. In this work, a protozoa, Tetrahymena thermophila (T. thermophila) SB210, was used to in vivo synthesize nano-selenium. The biosynthesized nano-selenium was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. The synthesized amorphous spherical selenium nanoparticles had diameters of 50-500nm with the coexistence of irregular nano-selenium. The expressions of glutathione (GSH) synthesis related gene glutathione synthase, cysteine-rich protein metallothionein related gene metallothionein-1 and [2Fe-2S] cluster-binding protein related gene were up-regulated in the nano-selenium producing group. Also, the subsequent GSH detection and in vitro synthesis experimental results suggest the three proteins were likely to be involved in the nano-selenium synthesis process. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  4. Selenium in fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutenmann, W.H.; Bache, C.A.; Youngs, W.D.

    1976-03-05

    Selenium, at concentrations exceeding 200 parts per million (ppM) (dry weight), has been found in white sweet clover voluntarily growing on beds of fly ash in central New York State. Guinea pigs fed such clover concentrated selenium in their tissues. The contents of the honey stomachs of bees foraging on this seleniferous clover contained negligible selenium. Mature vegetables cultured on 10 percent (by weight) fly ash-amended soil absorbed up to 1 ppM of selenium. Fly ashes from 21 states contained total selenium contents ranging from 1.2 to 16.5 ppM. Cabbage grown on soil containing 10 percent (by weight) of thesemore » fly ashes absorbed selenium (up to 3.7 ppM) in direct proportion (correlation coefficient r = .89) to the selenium concentration in the respective fly ash. Water, aquatic weeds, algae, dragonfly nymphs, polliwogs, and tissues of bullheads and muskrats from a fly ash-contaminated pond contained concentrations of selenium markedly elevated over those of controls.« less

  5. Tissue distribution of selenium and effect of season and age on selenium content in roe deer from northwestern Poland.

    PubMed

    Pilarczyk, Bogumiła; Tomza-Marciniak, Agnieszka; Pilarczyk, Renata; Hendzel, Diana; Błaszczyk, Barbara; Bąkowska, Małgorzata

    2011-06-01

    The aim of the study was to compare selenium concentrations in different organs of roe deer from northwestern Poland. Samples of liver, kidneys, heart and lungs, collected from 74 roe deer shot during the hunting seasons of 2008-2009 in northwestern Poland, were studied. Selenium concentration in the organs was determined spectrofluorimetrically. Mean selenium concentration was 0.06 µg/g w.w. in the liver, 0.41 µg/g w.w. in the kidneys and 0.05 µg/g w.w. in the heart and lungs. Season had a significant effect on selenium concentration in the liver, kidneys, lungs and heart. In all the organs, the highest selenium concentration was found in spring and the lowest in autumn and winter. All animals studied were deficient in selenium. The low selenium concentration in the liver or heart can disturb their function, and in the future, it may be a factor contributing to the population decline of roe deer in the northwestern part of Poland.

  6. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    PubMed Central

    Nicastro, Holly L.; Dunn, Barbara K.

    2013-01-01

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention. PMID:23552052

  7. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study123

    PubMed Central

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-01-01

    Background: Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. Objective: We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. Design: HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Results: Overall, mean (±SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P < 0.001). Compared with the highest baseline selenium tertile, low and middle tertiles were positively associated with a change in maternal plasma or breast-milk selenium from 2 or 6 to 24 wk postpartum (both P < 0.001). With the use of linear regression, we showed that LNS that contained selenium and ARV were not associated with changes in maternal plasma and breast-milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P < 0.001) regardless of the study arm. Conclusions: Selenite supplementation of HIV-infected Malawian women was not associated with a change in their plasma or breast-milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women. This trial was registered at clinicaltrials.gov as NCT00164736. PMID:24500152

  8. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures that aim to increase the bioavailability of pollutants are used in technologies which remove or destroy the solubilized contaminants. These procedures can increase mass transfer from the absorbed phase by means of sieving in order to decrease the diffusion processes (soil washing), by increasing the temperature (low temperature thermal desorption), or through the addition of chemical additives, such as chelating agents (Phytoextraction Elektrokinetic remediation). Concluding remarks Bioavailability should be a key component of the exposure evaluation in order to develop the conceptual model and to select the technology, in particular when: • only some chemical forms of contaminants are a source of risk for the site; • default assumptions regarding bioavailability are not suitable because of the site's specific characteristics; • the final destination of the site will not be modified at least in the near future.

  9. Selenium Supranutrition: Are the Potential Benefits of Chemoprevention Outweighed by the Promotion of Diabetes and Insulin Resistance?

    PubMed Central

    Rocourt, Caroline R. B.; Cheng, Wen-Hsing

    2013-01-01

    Selenium was considered a toxin until 1957, when this mineral was shown to be essential in the prevention of necrotic liver damage in rats. The hypothesis of selenium chemoprevention is principally formulated by the observations that cancer incidence is inversely associated with selenium status. However, recent clinical and epidemiological studies demonstrate a role for some selenoproteins in exacerbating or promoting other disease states, specifically type 2 diabetes, although other data support a role of selenium in stimulating insulin sensitivity. Therefore, it is clear that our understanding in the role of selenium in glucose metabolism and chemoprevention is inadequate and incomplete. Research exploring the role of selenium in individual healthcare is of upmost importance and possibly will help explain how selenium is a double-edged sword in the pathologies of chronic diseases. PMID:23603996

  10. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P).

    PubMed

    Ekoue, Dede N; Zaichick, Sofia; Valyi-Nagy, Klara; Picklo, Matthew; Lacher, Craig; Hoskins, Kent; Warso, Michael A; Bonini, Marcelo G; Diamond, Alan M

    2017-01-01

    Selenium supplementation of the diets of rodents has consistently been shown to suppress mammary carcinogenesis and some, albeit not all, human epidemiological studies have indicated an inverse association between selenium and breast cancer risk. In order to better understand the role selenium plays in breast cancer, 30 samples of tumor tissue were obtained from women with breast cancer and analyzed for selenium concentration, the levels of several selenium-containing proteins and the levels of the MnSOD anti-oxidant protein. Polymorphisms within the genes for these same proteins were determined from DNA isolated from the tissue samples. There was a wide range of selenium in these tissues, ranging from 24 to 854ng/gm. The selenium levels in the tissues were correlated to the genotype of the SELENOP selenium carrier protein, but not to other proteins whose levels have been reported to be responsive to selenium availability, including GPX1, SELENOF and SBP1. There was an association between a polymorphism in the gene for MnSOD and the levels of the encoded protein. These studies were the first to examine the relationship between selenium levels, genotypes and protein levels in human tissues. Furthermore, the obtained data provide evidence for the need to obtain data about the effects of selenium in breast cancer by examining samples from that particular tissue type. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. [Is plasma selenium correlated to transthyretin levels in critically ill patients?

    PubMed

    Freitas, Renata G B O N; Nogueira, Roberto Jose Negrão; Cozzolino, Silvia Maria Franciscato; Vasques, Ana Carolina Junqueira; Ferreira, Matthew Thomas; Hessel, Gabriel

    2017-06-05

    Selenium is an essential trace element, but critically ill patients using total parenteral nutrition (PN) do not receive selenium because this mineral is not commonly offered. Threfore, the eval uation of plasma selenium levels is very important for treating or preventing this deficiency. Recent studies have shown that transthyretin may reflect the selenium intake and could be considered a biomarker. However, this issue is still little explored in the literature. This study aims to investigate the correlation of transthyretin with the plasma selenium of critically ill patients receiving PN. This was a prospective cohort study with 44 patients using PN without selenium. Blood samples were carried out in 3 stages: initial, 7th and 14th day of PN. In order to evaluate the clinical condition and the inflammatory process, albumin, C-reactive protein (CRP), transthyretin, creatinine and HDL cholesterol levels were observed. To assess the selenium status, plasma selenium and glutathione peroxidase (GPx) in whole blood were measured. Descriptive analyses were performed and the ANOVA, Mann-Whitney and Spearman's coefficient tests were conducted; we assumed a significance level of 5%. A positive correlation of selenium with the GPx levels (r = 0.46; p = 0.03) was identified. During two weeks, there was a positive correlation of transthyretin with plasma selenium (r = 0.71; p = 0.05) regardless of the CRP values. Transthyretin may have reflected plasma selenium, mainly because the correlation was verified after the acute phase.

  12. Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment.

    PubMed

    Zhang, Liang; Li, Daping; Gao, Ping

    2012-12-01

    Nano-selenium/protein is a kind of lower toxic supplement to human. Many microorganisms can reduce selenite/selenate to intracellular or extracellular selenium nanoparticles. This study examined the influence of dissolved oxygen on the expulsion of extracellular selenium/protein produced in Saccharomyces cerevisiae. More of the added selenite was reduced to extracellular selenium nanoparticles by yeast cells only under oxygen-limited condition than under aerobic or anaerobic condition. For the first time, we evidenced that selenium/protein nanoparticles synthesized in vivo were transported out of the cells by vesicle-like structures under microaerophilic environment. The characterizations of the extracellular spherical selenium/protein nanoparticles were also examined by SEM, TEM, EDX and FTIR.

  13. Selenium Recycling in the United States in 2004

    USGS Publications Warehouse

    George, Micheal W.; Wagner, Lorie A.

    2009-01-01

    The vast majority of selenium consumption in the United States is in dissipative uses, such as alloys, animal feeds, fertilizers, glass decolorizer, and pigments. The nondissipative use as a photoreceptor for xerographic copiers is declining. As a result of a lack of a substantial supply of selenium-containing scrap, there are no longer selenium recycling facilities in the United States. Selenium-containing materials collected for recycling, primarily selenium-containing photocopier drums, are exported for processing in other countries. Of the estimated 350 metric tons (t) of selenium products that went to the U.S. market in 2004, an estimated 300 t went to dissipative uses. An estimated 4 t was recovered from old scrap and exported for recycling.

  14. Selenium species in selenium fortified dietary supplements.

    PubMed

    Niedzielski, Przemyslaw; Rudnicka, Monika; Wachelka, Marcin; Kozak, Lidia; Rzany, Magda; Wozniak, Magdalena; Kaskow, Zaneta

    2016-01-01

    This article presents a study of dietary supplements available on the Polish market. The supplements comprised a large group of products with selenium content declared by the producer. The study involved determination of dissolution time under different conditions and solubility as well as content and speciation of selenium. The total content was determined as well as organic selenium and the inorganic forms Se(IV) and Se(VI). The organic selenium content was calculated as the difference between total Se and inorganic Se. The values obtained were compared with producers' declarations. The work is the first such study of selenium supplements available on the market of an EU Member State. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation.

    PubMed

    Radenkovic, Filip; Holland, Olivia; Vanderlelie, Jessica J; Perkins, Anthony V

    2017-12-15

    Auranofin is a thiol-reactive gold (I)-containing compound with potential asa chemotherapeutic. Auranofin has the capacity to selectively inhibit endogenous antioxidant enzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx), resulting in oxidative stress and the initiation of a pro-apoptotic cascade. The effect of Auranofin exposure on TrxR and GPx, and the potential for cellular protection through selenium supplementation was examined in the non-cancerous human cell line Swan-71. Auranofin exposure resulted in a concentration dependent differential inhibition of selenoprotein antioxidants. Significant inhibition of TrxR was observed at 20nM Auranofin with inhibition of GPx from 10µM. Significant increases in reactive oxygen species (ROS) were associated with antioxidant inhibition at Auranofin concentrations of 100nM (TrxR inhibition) and 10µM (TrxR and GPx inhibition), respectively. Evaluation of mitochondrial respiration demonstrated significant reductions in routine and maximal respiration at both 100nM and 10μM Auranofin. Auranofin treatment at concentrations of 10μM and higher concentrations resulted in a ∼68% decrease in cellular viability and was associated with elevations in pro-apoptotic markers cytochrome c flux control factor (FCFc) at concentration of 100nM and mitochondrial Bax at 10μM. The supplementation of selenium (100nM) prior to treatment had a generalized protective affect through the restoration of antioxidant activity with a significant increase in TrxR and GPx activity, a significant reduction in ROS and associated improvement in mitochondrial respiration and cellular viability (10µM ∼48% increase). Selenium supplementation reduced the FCFc at low doses of Auranofin (<10μM) however no effect was noted on either FCFc or Bax at concentrations above 10μM. The inhibition of antioxidant systems in non-cancerous cells by Auranofin is strongly dose dependent, and this inhibition can be altered by selenium exposure. Therefore, Auranofin dose and the selenium status of patients are important considerations in the therapeutic use of Auranofin as an agent of chemosensitization. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Defining the Optimal Selenium Dose for Prostate Cancer Risk Reduction: Insights from the U-Shaped Relationship Between Selenium Status, DNA Damage, and Apoptosis

    USDA-ARS?s Scientific Manuscript database

    Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to ...

  17. Selenium and Human Health: Witnessing a Copernican Revolution?

    PubMed

    Jablonska, Ewa; Vinceti, Marco

    2015-01-01

    In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.

  18. Is selenium supplementation in autoimmune thyroid diseases justified?

    PubMed

    Winther, Kristian H; Bonnema, Steen J; Hegedüs, Laszlo

    2017-10-01

    This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. Epidemiological data suggest an increased prevalence of autoimmune thyroid diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves' disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism, and might benefit patients with mild Graves' orbitopathy. The use of selenium supplementation as adjuvant therapy to standard thyroid medication may be widespread, but a growing body of evidence yields equivocal results. The available evidence from trials does not support routine selenium supplementation in the standard treatment of patients with autoimmune thyroiditis or Graves' disease. However, correction of moderate to severe selenium deficiency may offer benefits in preventing, as well as treating, these disorders. Molecular mechanisms have been proposed, but further studies are needed.

  19. Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer

    PubMed Central

    ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT

    2008-01-01

    Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127

  20. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  1. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  2. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  3. Reproductive status of western mosquitofish inhabiting selenium- contaminated waters in the Grassland Water District, Merced County, California

    USGS Publications Warehouse

    Saiki, M.K.; Martin, B.A.; May, T.W.

    2004-01-01

    This study was implemented to determine if western mosquitofish (Gambusia affinis) populations in the Grassland Water District suffer from impaired reproduction because of seleniferous inflows of agricultural drainwater from the Grassland Bypass Project. During June to July 2001, laboratory trials with pregnant female fish collected from two seleniferous treatment sites exposed to selenium-laden drainwater and two nonseleniferous reference sites yielded fry that averaged >96% survival at birth. In addition, none of the newborn fry exhibited evidence of teratogenesis, a typical consequence of selenium toxicity. Chemical analysis of postpartum female fish and their newborn fry indicated that mosquitofish from seleniferous sites accumulated relatively high body burdens of selenium (3.96 to 17.5 μg selenium/g in postpartum female fish and 5.35 to 29.2 μg selenium/g in their fry), whereas those from nonseleniferous sites contained lower body burdens (0.40 to 2.72 μg selenium/g in postpartum female fish and 0.61 to 4.68 μg selenium/g in their fry). Collectively, these results strongly suggest that mosquitofish inhabiting selenium-contaminated waters are not experiencing adverse reproductive effects at current levels of selenium exposure.

  4. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate.

    PubMed

    Larsen, Erik H; Lobinski, Ryszard; Burger-Meÿer, Karin; Hansen, Marianne; Ruzik, Rafal; Mazurowska, Lena; Rasmussen, Peter Have; Sloth, Jens J; Scholten, Olga; Kik, Chris

    2006-07-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 microg g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of gamma-glutamyl-Se-methyl-selenocysteine and gamma-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry.

  5. [Selenium supplementation trials for cancer prevention and the subsequent risk of type 2 diabetes mellitus: selenium and vitamin E cancer prevention trial and after].

    PubMed

    Koyama, Hiroshi; Mutakin; Abdulah, Rizky; Yamazaki, Chiho; Kameo, Satomi

    2013-01-01

    The essential trace element selenium has long been considered to exhibit cancer-preventive, antidiabetic and insulin-mimetic properties. However, recent epidemiological studies have indicated that supranutritional selenium intake and high plasma selenium levels are not necessarily preventive against cancer, and are possible risk factors for developing type 2 diabetes mellitus. The results of the SELECT, Selenium and Vitamin E Cancer Prevention Trial, in which it is hypothesized that the supplementations with selenium and/or vitamin E decrease the prostate cancer incidence among healthy men in the U.S., showed that the supplementation did not prevent the development of prostate cancer and that the incidence of newly diagnosed type 2 diabetes mellitus increased among the selenium-supplemented participants. The Nutritional Prevention of Cancer (NPC) trial showed a decreased risk of prostate cancer among participants taking 200 μg of selenium daily for 7.7 years. However, the results of the NPC trial also showed an increased risk of type 2 diabetes mellitus in the participants with plasma selenium levels in the top tertile at the start of the study. Recently, the association of serum selenium with adipocytokines, such as TNF-α, VCAM-1, leptin, FABP-4, and MCP-1, has been observed. Selenoprotein P has been reported to associated with adiponectin, which suggests new roles of selenoprotein P in cellular energy metabolism, possibly leading to the increased risk of type 2 diabetes mellitus and also the development of cancer. Further studies are required to elucidate the relationship between selenium and adipocytokines and the role of selenoprotein P in the development of type 2 diabetes mellitus and cancer at high levels of selenium.

  6. Effect of Short-Term Fasting on Systemic Cytochrome P450-Mediated Drug Metabolism in Healthy Subjects: A Randomized, Controlled, Crossover Study Using a Cocktail Approach.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; van Schaik, Ron H N; Romijn, Johannes A; Mathôt, Ron A A

    2017-10-01

    Short-term fasting can alter drug exposure but it is unknown whether this is an effect of altered oral bioavailability and/or systemic clearance. Therefore, the aim of our study was to assess the effect of short-term fasting on oral bioavailability and systemic clearance of different drugs. In a randomized, controlled, crossover trial, 12 healthy subjects received a single administration of a cytochrome P450 (CYP) probe cocktail, consisting of caffeine (CYP1A2), metoprolol (CYP2D6), midazolam (CYP3A4), omeprazole (CYP2C19) and warfarin (CYP2C9), on four occasions: an oral (1) and intravenous (2) administration after an overnight fast (control) and an oral (3) and intravenous (4) administration after 36 h of fasting. Pharmacokinetic parameters of the probe drugs were analyzed using the nonlinear mixed-effects modeling software NONMEM. Short-term fasting increased systemic caffeine clearance by 17% (p = 0.04) and metoprolol clearance by 13% (p < 0.01), whereas S-warfarin clearance decreased by 19% (p < 0.01). Fasting did not affect bioavailability. The study demonstrates that short-term fasting alters CYP-mediated drug metabolism in a non-uniform pattern without affecting oral bioavailability.

  7. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  8. Kinetic consequences of introducing a proximal selenocysteine ligand into cytochrome P450cam.

    PubMed

    Vandemeulebroucke, An; Aldag, Caroline; Stiebritz, Martin T; Reiher, Markus; Hilvert, Donald

    2015-11-10

    The structural, electronic, and catalytic properties of cytochrome P450cam are subtly altered when the cysteine that coordinates to the heme iron is replaced with a selenocysteine. To map the effects of the sulfur-to-selenium substitution on the individual steps of the catalytic cycle, we conducted a comparative kinetic analysis of the selenoenzyme and its cysteine counterpart. Our results show that the more electron-donating selenolate ligand has only negligible effects on substrate, product, and oxygen binding, electron transfer, catalytic turnover, and coupling efficiency. Off-pathway reduction of oxygen to give superoxide is the only step significantly affected by the mutation. Incorporation of selenium accelerates this uncoupling reaction approximately 50-fold compared to sulfur, but because the second electron transfer step is much faster, the impact on overall catalytic turnover is minimal. Density functional theory calculations with pure and hybrid functionals suggest that superoxide formation is governed by a delicate interplay of spin distribution, spin state, and structural effects. In light of the remarkably similar electronic structures and energies calculated for the sulfur- and selenium-containing enzymes, the ability of the heavier atom to enhance the rate of spin crossover may account for the experimental observations. Because the selenoenzyme closely mimics wild-type P450cam, even at the level of individual steps in the reaction cycle, selenium represents a unique mechanistic probe for analyzing the role of the proximal ligand and spin crossovers in P450 chemistry.

  9. Selenium-enriched Saccharomyces cerevisiae improves growth, antioxidant status and selenoprotein gene expression in Arbor Acres broilers.

    PubMed

    Chen, F; Zhu, L; Qiu, H; Qin, S

    2017-04-01

    One hundred and fifty 7-day-old Arbor Acres broilers were randomly assigned into five groups: group 1 served as a control that was fed a basal diet without selenium (Se) supplementation; groups 2, 3 and 4 were fed the basal diet supplemented with 0.15, 0.5 and 1.5 mg Se as Se-enriched Saccharomyces cerevisiae (SSC) per kg of diet; and group 5 was fed the basal diet supplemented with 0.15 mg per kg of Se as sodium selenite (SS). Growth performance, glutathione peroxidase (GP X ) and superoxide dismutase (SOD) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content in plasma and liver, and cellular glutathione peroxidase (GP X -1) and phospholipid hydroperoxide glutathione peroxidase (GP X -4) mRNA levels in liver were determined. Compared with group 1, groups 2-4 exhibited higher body weights (p < 0.05), lower feed/gain ratios, and higher GP X activities in plasma (p < 0.05) and GP X and SOD activities and GP X -1 and GP X -4 mRNA levels in liver (p < 0.05). Compared with group 5, group 2 exhibited higher GP X activity in plasma on day 21 (p < 0.05). Compared with group 2 and 5, group 3 exhibited lower MDA content in plasma on day 7 (p < 0.05), higher GP X activity in plasma, SOD activity and GP X -1 mRNA levels in liver on day 14 and 21 (p < 0.05), and higher GP X -4 mRNA levels on day 14 (p < 0.05). Compared with group 4, group 3 exhibited lower MDA contents in plasma on day 14 (p < 0.05) and in liver on day 21 (p < 0.05), higher T-AOC in plasma and higher GP X -1 mRNA levels on day 14 and 21 (p < 0.05), and higher SOD activity in plasma and higher SOD and GP X activities in liver on day 21 (p < 0.05). Thus, SSC improves growth and antioxidant status of broilers; the short-term bioavailability of SS was faster than that of SSC, but the long-term bioavailability of SSC was greater than SS. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  10. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  12. Biological alkylation and colloid formation of selenium in methanogenic UASB reactors.

    PubMed

    Lenz, Markus; Smit, Martijn; Binder, Patrick; van Aelst, Adriaan C; Lens, Piet N L

    2008-01-01

    Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.

  13. Increased plasma selenium is associated with better outcomes in children with systemic inflammation.

    PubMed

    Leite, Heitor Pons; Nogueira, Paulo Cesar Koch; Iglesias, Simone Brasil de Oliveira; de Oliveira, Susyane Vieira; Sarni, Roseli Oselka Saccardo

    2015-03-01

    The aim of this study was to assess the effects of changes in plasma selenium on the outcome of critically ill children. Plasma selenium was prospectively measured in 99 children with acute systemic inflammation. The exposure variables were selenium level on admission and on day 5 of stay in the intensive care unit (ICU) and the difference in selenium concentrations between day 5 post-admission and the ICU admission (delta selenium). Selenium was given only as part of enteral diets. Age, malnutrition, red cell glutathione peroxidase-1 activity, serum C-reactive protein, Pediatric Index of Mortality 2, and Pediatric Logistic Organ Dysfunction scores were analyzed as covariates. The outcome variables were ventilator-free days, ICU-free days, and 28-d mortality. Plasma selenium concentrations increased from admission (median 23.4 μg/L, interquartile range 12.0-30.8) to day 5 (median 25.1 μg/L, interquartile range 16.0-39.0; P = 0.018). After adjustment for confounding factors, a delta selenium increase of 10 μg/L was associated with reductions in ventilator days (1.3 d; 95% confidence interval [CI], 0.2-2.3; P = 0.017) and ICU days (1.4 d; 95% CI, 0.5-2.3; P < 0.01). Delta selenium >0 was associated with decreased 28-d mortality on a univariate model (odds ratio, 0.67; 95% CI, 0.46-0.97; P = 0.036). The mean daily selenium intake (6.82 μg; range 0-48.66 μg) was correlated with the increase in selenium concentrations on day 5. An increase in plasma selenium is independently associated with shorter times of ventilation and ICU stay in children with systemic inflammation. These findings raise the hypothesis that selenium supplementation could be beneficial in children with critical illnesses. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  15. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  16. Overwinter survival of mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed diets supplemented with 0, 10, 20, 40, or 80 g/g selenium in the form of selenomethionine. Mortality in each of these treatments was 0, 10, 25, 95, and 100%, respectively, during a 16-week exposure that started in November. After one week of treatment, body weights were significantly depressed by the 20, 40, and 80-ug/g selenium treatments, but not by 10 :g/g selenium. Four weeks after being returned to an untreated diet, the body weight of birds fed 20 ug/g selenium had increased to the point of being statistically inseparable from the weight of controls. Signs of selenium poisoning in the dead included severe emaciation, mottling of the liver, empty gizzard, and the presence of a yellowish fluid around some organs. Concentrations of selenium in blood were related to dietary treatments, but mortality was not clearly related to a threshold concentration of selenium in blood.

  17. Potential reproduction and response of selenium and zinc mineral supplementation on quality of goat samosir semen

    NASA Astrophysics Data System (ADS)

    Siswoyo, P.; Tafsin, M.; Handarini, R.

    2018-02-01

    The present study was conducted to investigate the effect of suppllementattion of selenium and zinc on semen quality and growth of samosir goat. The experimental design used latin square design (4x4). The treatment supplementation mineral on multi nutrient block (MNB) composed of without sipplementation (p0), +10ppm selenium (p1), +10ppm zinc (p2), +10ppm selenium and +10ppm zinc (p3). The result showed that supplementation mineral selenium and zinc increased significantly (p<0.05) average daily growth, feed consumtion, and lower feed convertion ratio. Semen quality of goat were supplemented by selenium and zinc influenced motility, viability, volume concentration, and responding hypo osmotic swelling (HOS). Combination supplementation selenium and zinc significanly had higher semen quality than ither treatment. It is concluded that supplementation selenium and zinc improve growth and semen quality of samosir goat.

  18. Organic selenium supplementation increases mercury excretion and decreases oxidative damage in long-term mercury-exposed residents from Wanshan, China.

    PubMed

    Li, Yu-Feng; Dong, Zeqin; Chen, Chunying; Li, Bai; Gao, Yuxi; Qu, Liya; Wang, Tianchen; Fu, Xin; Zhao, Yuliang; Chai, Zhifang

    2012-10-16

    Due to a long history of extensive mercury mining and smelting activities, local residents in Wanshan, China, are suffering from elevated mercury exposure. The objective of the present study was to study the effects of oral supplementation with selenium-enriched yeast in these long-term mercury-exposed populations. One hundred and three volunteers from Wanshan area were recruited and 53 of them were supplemented with 100 μg of organic selenium daily as selenium-enriched yeast while 50 of them were supplemented with the nonselenium-enriched yeast for 3 months. The effects of selenium supplementation on urinary mercury, selenium, and oxidative stress-related biomarkers including malondialdehyde and 8-hydroxy-2-deoxyguanosine were assessed. This 3-month selenium supplementation trial indicated that organic selenium supplementation could increase mercury excretion and decrease urinary malondialdehyde and 8-hydroxy-2-deoxyguanosine levels in local residents.

  19. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  20. Cigarette smoking-nutritional implications.

    PubMed

    Preston, A M

    1991-01-01

    Although the effects of cigarette smoking on a variety of diseases, from cancer through emphysema and cardiovascular illness are well documented, direct effects on the levels of macro- and micronutrients in the body are reported less frequently. In fact, imbalances in these nutrients may have a role in many of the pathological conditions attributed to smoking. Tobacco smoke contains numerous compounds emitted as gases and condensed tar particles, many of them being oxidants and prooxidants, capable of producing free radicals thus enhancing lipid peroxidation in biological membranes. Vitamin E, vitamin C, B-carotene and selenium are involved in the overall cellular anti-oxidant defense against deleterious effects of reactive oxygen species. Smoking has been shown to lower the level of vitamin C and B-carotene in plasma. Cadmium, naturally found in tobacco, decreases the bioavailability of selenium and acts antagonistically to zinc, a cofactor for the antioxidant enzyme, superoxide dismutase. Vitamin E, the principle lipid-soluble antioxidant, may be at suboptimal levels in tissues of smokers. In addition, tobacco constituents have been shown to reduce levels of several vitamins of the B-complex. Nutritional status in smokers may be further compromised by an inadequate diet. Data from the Second National Health and Nutrition Examination Survey indicates that smokers are less likely to consume fruits and vegetables, particularly those high in vitamin C and carotenes. Cessation of smoking is the obvious solution to ending cigarette-related problems. In the world as it is, however, the medical community should be responsible for making recommendations to lower the risk in smokers to tobacco related diseases. Nutritionists could have a role in this process. There exists a lively debate as to where levels of nutrients should be set. Additional vitamin C has already been recommended for smokers. Should other antioxidants also be increased? Arguments for the against are considered.

  1. Mercury and other Mining-Related Contaminants in Ospreys along the Upper Clark Fork River, MT

    NASA Astrophysics Data System (ADS)

    Langner, H.; Domenech, R.; Greene, E.; Staats, M. F.

    2010-12-01

    Osprey (Pandion haliaetus) are widely recognized as bio-indicators of the health of aquatic ecosystems. Until the time of fledging, nestlings feed exclusively on fish caught within a few kilometers of the nest. Therefore, tissues of these young birds may reflect the level of contamination of local fish and more generally, the contamination status of the aquatic ecosystem they inhabit. Nests can often be accessed with a boom truck and obtaining small blood samples from the flightless chicks is fairly noninvasive. Ospreys are nesting along the Upper Clark Fork River, Montana, which is heavily contaminated with wastes left from a century of copper and precious metals mining. We have been monitoring the levels of priority pollutants (arsenic, cadmium, lead, copper, zinc, mercury and selenium) in Osprey chicks along a 250 km section of the river for four years. Objectives are to establish current contaminant status, pinpoint pollution hotspots, and assess the success of restoration efforts. Our results suggest that of highest concern may be the bioaccumulation of mercury with blood levels of up to 0.7 mg/L in the growing chicks. These concentrations are expected to increase many fold upon fledging as feather growth stops, which acts as the major sink for mercury. Interestingly, we found mercury levels increased in downstream direction, in contrast to concentrations of other pollutants. Reasons may be the different origin of mercury versus other contaminants and the distribution of wetlands where mercury can be transformed into highly bioavailable methylmercury. Blood levels of selenium are also elevated throughout the Upper Clark Fork River drainage. We discuss the implications for restoration and remediation of the Clark Fork River.

  2. Biomagnification of mercury and selenium in two lakes in southern Norway.

    PubMed

    Økelsrud, Asle; Lydersen, Espen; Fjeld, Eirik

    2016-10-01

    We have investigated bioaccumulation and trophic transfer of both mercury (Hg) and selenium (Se) in two lakes in southern Norway to reveal a suggested mitigating effect of Se on Hg biota accumulation. The study included analysis of total Se (Se), total Hg (Hg), and methyl-mercury (MeHg) in water, littoral and pelagic invertebrates and perch (Perca fluviatilis), together with stable isotope analysis (δ(15)N and δ(13)C) in biota. Mean dissolved Se ranged from 22 to 59ngL(-1), while Hg and MeHg in lake water ranged from 1 to 3ngL(-1) and 0.01 to 0.06ngL(-1). Biota Se and Hg concentrations (dry weight) ranged from 0.41mgSekg(-1) and 0.06mgHgkg(-1) in primary littoral invertebrates and up to 2.9mg Sekg(-1) and 3.6mgHgkg(-1) in perch. Both Hg and Se biomagnified in the food web, with a trophic magnification factor (TMF) of 4.64 for Hg and 1.29 for Se. The reported positive transfer of Se in the food web, despite the low measured dissolved Se, suggest that a major proportion of the Se in these lakes are both highly bioavailable and bioaccumulative. However, we did not find support for a Se-facilitated inhibition in the accumulation of Hg in perch, as Se and Hg concentrations in perch muscle correlated positively and Se did not explain any variations in Hg after we controlled for the effects of other important covariates. We postulate that this may be a result of insufficient concentrations of dissolved Se and subsequently in biota in our studied lakes for an efficient Hg sequestration up the food web. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Selenium nanoparticles prevents lead acetate-induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR-224.

    PubMed

    Atteia, Hebatallah Husseini; Arafa, Manar Hamed; Prabahar, Kousalya

    2018-03-01

    Selenium nanoparticles (Se-NPs) are customizable drug delivery vehicles that show good bioavailability, higher efficacy and lower toxicity than ordinary Se. Pre-treatment of male rats with these NPs has been recently shown to exert a protective effect against chromium-induced thyroid dysfunction. This study, therefore, aimed to investigate and characterize the potential protective mechanism of Se-NPs against lead (Pb) acetate-induced thyrotoxicity. We found that prophylactic and concurrent treatment of Pb acetate-exposed rats with Nano-Se (0.5 mg/kg, i.p) for 15 wk significantly alleviated the decrease in free triiodothyronine (fT3) and free thyroxine (fT4) levels as well as fT3/fT4 ratio% and the increase in thyroid stimulating hormone (TSH) levels to approach control values. This was accompanied by a reduction in the accumulation of Pb in serum and thyroid tissues as well as maintenance of thyroidal pro-oxidant/antioxidant balance and iodothyronine deiodinase type 1 (ID1), an essential enzyme for metabolizing of T4 into active T3, gene expression. Surprisingly, miR-224, a direct complementary target of ID1 mRNA, expression in the thyroid tissues was significantly down-regulated in Nano-Se-pre- and co-treated Pb acetate intoxicated animals. Such changes in miR-224 expression were negatively correlated with the changes in ID1 gene expression and serum fT3 level. These results suggest that Se-NPs can rescue from Pb-induced impairment of thyroid function through the maintenance of selenoproteins and down-regulation of miR-224. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice.

    PubMed

    Bhattacharjee, Arin; Basu, Abhishek; Biswas, Jaydip; Bhattacharya, Sudin

    2015-07-01

    Chemotherapy is an integral part of modern day treatment regimen but anticancer drugs fail to demarcate between cancerous and normal cells thereby causing severe form of systemic toxicity. Among which pulmonary toxicity is a dreadful complication developed in cancer patients upon cyclophosphamide (CP) therapy. Oxidative stress, fibrosis, and apoptosis are the major patho-mechanisms involved in CP-induced pulmonary toxicity. In the present study, we have synthesized Nano-Se, nanotechnology-based new form of elemental selenium which has significantly lower toxicity and acceptable bioavailability. In order to meet the need of effective drugs against CP-induced adverse effects, nano selenium (Nano-Se) was tested for its possible protective efficacy on CP-induced pulmonary toxicity and bone marrow toxicity. CP intoxication resulted in structural and functional lung impairment which was revealed by massive histopathological changes. Lung injury was associated with oxidative stress/lipid peroxidation as evident by increased in reactive oxygen species, nitric oxide level, and malondialdehyde (MDA) formation with decreased in level of antioxidants such as reduced glutathione, glutathione-S-transferase, glutathione peroxidase, superoxide dismutase, and catalase. Furthermore, CP at a dose of 25 mg/kg b.w. increased pulmonary DNA damage ('comet tail') and triggered DNA fragmentation and apoptosis in mouse bone marrow cells. On the other hand, Nano-Se at a dose of 2 mg Se/kg b.w., significantly inhibited CP-induced DNA damage in bronchoalveolar lavage cells, and decreased the apoptosis and percentage of DNA fragmentation in bone marrow cells and also antagonized the reduction of the activities of antioxidant enzymes and the increase level of MDA. Thus, our results suggest that Nano-Se in pre- and co-administration may serve as a promising preventive strategy against CP-induced pulmonary toxicity.

  5. Microbial oxidation and solubilization of precipitated elemental selenium in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losi, M.E.; Frankenberger, W.T. Jr.

    1998-07-01

    Oxidation of elemental selenium (Se{sup 0}) leads to increased solubilization and enhanced bioavailability. In this work, laboratory microcosm experiments were conducted to study oxidation of Se{sup 0} in soil and liquid cultures. Major objectives were to examine the oxidation rates of four San Joaquin Valley, California soils, and to assess the contribution of biological vs. chemical processes. For these experiments, red, crystalline Se{sup 0} was prepared by both chemical and biological synthesis, and its presence was confirmed by synchrotron-based x-ray absorption spectroscopy. The amount of Se{sup 0} oxidized over 125 d was from 1 to 10% of Se{sup 0} inmore » soils spiked to 250 mg Se{sup 0} kg{sup {minus}1} and approximately half that in soils spiked to 100 mg Se{sup 0} kg{sup {minus}1}. First order rate constants for oxidation of Se{sup 0} were from 0.05 to 0.32 yr{sup {minus}1} and 0.04 to 0.39 yr{sup {minus}1} at 250 and 100 mg Se{sup 0} kg{sup {minus}1} soil, respectively. The amount of Se{sup 0} oxidized was generally correlated with prior exposure of the soil to Se. Products included either selenite (SeO{sub 3}{sup 2{minus}}), or both (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}). Biotic processes were shown to be of major importance. Both heterotrophic and autotrophic oxidation were observed, and an inorganic C source (NaHCO{sub 3}) was favored relative to glucose. This study demonstrates that Se{sup 0} oxidation in soils is largely biotic in nature, occurs at relatively slow rates and yields both SeO{sub 3}{sup 2{minus}} and SeO{sub 4}{sup 2{minus}}.« less

  6. Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer

    DTIC Science & Technology

    2010-05-01

    TITLE: Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer PRINCIPAL INVESTIGATOR...May 2009 - 30 Apr 2010 4. TITLE AND SUBTITLE Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer...telomerase as a potential target of AR signaling suppression by selenium . We found that combination of selenium and bicalutamide produced a robust down

  7. Synthesis and evaluation of 1,4-naphthoquinone ether derivatives as SmTGR inhibitors and new anti-schistosomal drugs.

    PubMed

    Johann, Laure; Belorgey, Didier; Huang, Hsin-Hung; Day, Latasha; Chessé, Matthieu; Becker, Katja; Williams, David L; Davioud-Charvet, Elisabeth

    2015-08-01

    Investigations regarding the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives revealed 3-phenoxymethyl menadiones as a novel anti-schistosomal chemical series. These newly synthesized compounds (1-7) and their difluoromethylmenadione counterparts (8, 9) were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR), which has been identified as a potential target for anti-schistosomal drugs. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. glutathione reductase (hGR) and selenium-dependent human thioredoxin reductase (hTrxR), to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively compared to hGR and hTrxR enzymes, in particular those bearing an α-fluorophenol methyl ether moiety, which improves anti-schistosomal action. Furthermore, the (substituted phenoxy)methyl menadione derivative (7) displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox cycling of SmTGR, and potent anti-schistosomal action in worms cultured ex vivo. In contrast, the difluoromethylmenadione analog 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in worms cultured ex vivo. Despite ex vivo activity, none of the compounds tested was active in vivo, suggesting that the limited bioavailability may compromise compound activity. Therefore, future studies will be directed toward improving pharmacokinetic properties and bioavailability. © 2015 FEBS.

  8. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    PubMed Central

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; <65 μg/L, 65–85 μg/L, and >85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration group a mortality of 14.0% in the non-treated group, and 6.0% in the actively treated group could be demonstrated; thus, there was an absolute risk reduction of 8.0%. In the group with a serum concentration of >85 μg/L, a cardiovascular mortality of 17.5% in the non-treated group, and 13.0% in the actively treated group was observed. No significant risk reduction by supplementation could thus be found in this group. Conclusions In this evaluation of healthy elderly Swedish municipality members, two important results could be reported. Firstly, a low mean serum selenium concentration, 67 μg/L, was found among the participants, and the cardiovascular mortality was higher in the subgroup with the lower selenium concentrations <65 μg/L in comparison with those having a selenium concentration >85 μg/L. Secondly, supplementation was cardio-protective in those with a low selenium concentration, ≤85 at inclusion. In those with serum selenium>85 μg/L and no apparent deficiency, there was no effect of supplementation. This is a small study, but it presents interesting data, and more research on the impact of lower selenium intake than recommended is therefore warranted. Trial Registration Clinicaltrials.gov NCT01443780 PMID:27367855

  9. Effects of selenium on short-term control of hyperthyroidism due to Graves' disease treated with methimazole: results of a randomized clinical trial.

    PubMed

    Leo, M; Bartalena, L; Rotondo Dottore, G; Piantanida, E; Premoli, P; Ionni, I; Di Cera, M; Masiello, E; Sassi, L; Tanda, M L; Latrofa, F; Vitti, P; Marcocci, C; Marinò, M

    2017-03-01

    In spite of previous conflicting results, an adjuvant role of selenium in the treatment of Graves' disease (GD) hyperthyroidism has been proposed. To address this issue, a randomized clinical trial was carried out aimed at investigating whether selenium is beneficial on the short-term control of GD hyperthyroidism treated with methimazole (MMI). Thirty newly diagnosed hyperthyroid GD patients were randomly assigned to treatment with: (i) MMI or (ii) MMI plus selenium. Primary outcomes were: control of hyperthyroidism and clinical and biochemical manifestations of hyperthyroidism [heart rate, cholesterol, sex hormone-binding globulin (SHBG), hyperthyroidism symptoms] at 90 days. Baseline features of the two groups did not differ. Serum selenium at baseline was similar in the two groups and within the recommended range to define selenium sufficiency. Selenium increased with treatment in the MMI-selenium group and became significantly higher than in the MMI group. Serum malondialdehyde, a marker of oxidative stress, was similar in the two groups and decreased significantly with treatment, with no difference between groups. Administration of MMI was followed by a reduction of FT 3 and FT 4 , with no difference between groups. Heart rate, SHBG and symptoms of hyperthyroidism decreased, whereas total cholesterol increased in both groups with no difference between groups. Our study, carried out in a selenium-sufficient cohort of GD patients, failed to show an adjuvant role of selenium in the short-term control of hyperthyroidism. However, selenium might be beneficial in patients from selenium-deficient areas, as well as in the long-term outcome of antithyroid treatment.

  10. Selenium concentrations in the razorback sucker (Xyrauchen texanus): Substitution of non-lethal muscle plugs for muscle tissue in contaminant assessment

    USGS Publications Warehouse

    Waddell, B.; May, T.

    1995-01-01

    A single muscle plug was collected from each of 25 live razorback suckers inhabiting the Colorado River basin and analyzed for selenium by instrumental neutron activation. Eight fish from Ashley Creek and three from Razorback Bar exhibited selenium concentrations exceeding 8 μg/g, a level associated with reproductive failure in fish. Concentrations of selenium in eggs and milt were significantly correlated with selenium concentrations in muscle plugs and together indicate a possible explanation for the decline of this species in the Colorado River basin. Muscle plugs (<50mg) and muscle tissue (20 g) were collected from dorsal, anterior, and posterior areas of common carp, flannelmouth sucker, and an archived razorback sucker and analyzed for selenium. Concentrations of selenium in muscle plugs were significantly correlated with selenium concentrations in muscle tissue from the same location and fish (r=0.97). Coefficients of variation for selenium concentrations in each fish were <6.5% for muscle tissue, but ranged from 1.5 to 32.4% for muscle plugs. Increased variation in muscle plugs was attributed to lower selenium concentrations found in the anterior muscle plugs of flannelmouth suckers. Mean selenium concentrations in muscle plugs and tissue from dorsal and posterior areas and muscle tissue from the anterior area were not significantly different. The non-lethal collection of a muscle plug from dorsal and posterior areas of the razorback sucker and other fish species may provide an accurate assessment of selenium concentrations that exist in adjacent muscle tissue.

  11. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Metabolism of selenite to selenosugar and trimethylselenonium in vivo: tissue dependency and requirement for S-Adenosylmethionine-dependent methylation

    USDA-ARS?s Scientific Manuscript database

    Dietary selenium (Se) is subject to post-absorptive transformation to species having both anti-cancer activity and pro-diabetogenic potential; and its transformation is affected by availability of cofactors, substrates and/or inhibitors of methylation. Impaired S-adenosylmethionine (SAM)-dependent t...

  13. Chemical equilibrium and reaction modeling of arsenic and selenium in soils

    USDA-ARS?s Scientific Manuscript database

    The chemical processes and soil factors that affect the concentrations of As and Se in soil solution were discussed. Both elements occur in two redox states differing in toxicity and reactivity. Methylation and volatilization reactions occur in soils and can act as detoxification pathways. Precip...

  14. Plasma Selenium Concentrations Are Sufficient and Associated with Protease Inhibitor Use in Treated HIV-Infected Adults123

    PubMed Central

    Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A

    2015-01-01

    Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: <20–600). Median plasma selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P < 0.01 within group), but the change did not differ between groups (+13.1 vs. +5.3 μg/L; P = 0.14 between groups). Conclusions: Plasma selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use and higher selenium may have implications for ART allocation, especially in resource-limited countries. Also, it appears that statin therapy may increase selenium concentrations; however, larger studies are necessary to confirm this finding. This trial was registered at clinicaltrials.gov as NCT01218802. PMID:26269240

  15. Food Stabilizing Antioxidants Increase Nutrient Bioavailability in the in Vitro Model.

    PubMed

    Mika, Magdalena; Wikiera, Agnieszka; Antończyk, Anna; Grabacka, Maja

    2017-01-01

    We investigated whether antioxidants may enhance bioavailability of lipids and carbohydrates and therefore increase the risk of obesity development. We tested how supplementation with antioxidants (0.01% butylated hydroxytoluene [BHT], α-tocopherol, and green tea catechins) of a diet containing butter and wheat bread affects bioavailability of fats and carbohydrates. The absorption of the in vitro digested diet was estimated in the intestinal epithelia model of the Caco-2 cells cultured in Transwell chambers. In the case of the antioxidant-supplemented diets, we observed increased bioavailability of glucose, cholesterol, and lipids, as well as elevated secretion of the main chylomicron protein apoB-48 to the basal compartment. Importantly, we did not detect any rise in the concentrations of lipid peroxidation products (malondialdehyde, MDA) in the control samples prepared without antioxidants. Addition of antioxidants (in particular BHT) to the diet increases bioavailability of lipids and carbohydrates, which consequently may increase the risk of obesity development. The dose of antioxidants is a factor of fundamental importance, particularly for catechins: low doses increase absorption of lipids, whereas high doses exert the opposite effect.

  16. Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry.

    PubMed

    Vinceti, Marco; Maraldi, Tullia; Bergomi, Margherita; Malagoli, Carlotta

    2009-01-01

    The latest developments of epidemiologic and biochemical research suggest that current upper limits of intake for dietary selenium and for overall selenium exposure may be inadequate to protect human health. In particular, recent experimental and observational prospective studies indicate a diabetogenic effect of selenium at unexpectedly low levels of intake. Experimental evidence from laboratory studies and veterinary medicine appears to confirm previous epidemiologic observations that selenium overexposure is associated with an increased risk of amyotrophic lateral sclerosis, and a recent large trial indicated no beneficial effect in preventing prostate cancer. Moreover, the pro-oxidant properties of selenium species and the observation that the selenium-containing enzymes glutathione peroxidases are induced by oxidative stress imply that the increase in enzymatic activity induced by this metalloid may represent at least in part a compensatory response. Taken together, the data indicate that the upper safe limit of organic and inorganic selenium intake in humans may be lower than has been thought and that low-dose chronic overexposure to selenium may be considerably more widespread than supposed.

  17. Forecasting Selenium Discharges to the San Francisco Bay-Delta Estuary: Ecological Effects of A Proposed San Luis Drain Extension

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2006-01-01

    Selenium discharges to the San Francisco Bay-Delta Estuary (Bay-Delta) could change significantly if federal and state agencies (1) approve an extension of the San Luis Drain to convey agricultural drainage from the western San Joaquin Valley to the North Bay (Suisun Bay, Carquinez Strait, and San Pablo Bay); (2) allow changes in flow patterns of the lower San Joaquin River and Bay-Delta while using an existing portion of the San Luis Drain to convey agricultural drainage to a tributary of the San Joaquin River; or (3) revise selenium criteria for the protection of aquatic life or issue criteria for the protection of wildlife. Understanding the biotransfer of selenium is essential to evaluating effects of selenium on Bay-Delta ecosystems. Confusion about selenium threats to fish and wildlife stem from (1) monitoring programs that do not address specific protocols necessary for an element that bioaccumulates; and (2) failure to consider the full complexity of the processes that result in selenium toxicity. Past studies show that predators are more at risk from selenium contamination than their prey, making it difficult to use traditional methods to predict risk from environmental concentrations alone. This report presents an approach to conceptualize and model the fate and effects of selenium under various load scenarios from the San Joaquin Valley. For each potential load, progressive forecasts show resulting (1) water-column concentration; (2) speciation; (3) transformation to particulate form; (4) particulate concentration; (5) bioaccumulation by invertebrates; (6) trophic transfer to predators; and (7) effects on those predators. Enough is known to establish a first-order understanding of relevant conditions, biological response, and ecological risks should selenium be discharged directly into the North Bay through a conveyance such as a proposed extension of the San Luis Drain. The approach presented here, the Bay-Delta selenium model, determines the mass, fate, and effects of selenium released to the Bay-Delta through use of (1) historical land-use, drainage, alluvial-fill, and runoff databases; (2) existing knowledge concerning biogeochemical reactions and physiological parameters of selenium (e.g., speciation, partitioning between dissolved and particulate forms, and bivalve assimilation efficiency); and (3) site-specific data mainly from 1986 to 1996 for clams and bottom-feeding fish and birds. Selenium load scenarios consider effluents from North Bay oil refineries and discharges of agricultural drainage from the San Joaquin Valley to enable calculation of (a) a composite freshwater endmember selenium concentration at the head of the estuary; and (b) a selenium concentration at a selected seawater location (Carquinez Strait) as a foundation for modeling. Analysis of selenium effects also takes into account the mode of conveyance for agricultural drainage (i.e., the San Luis Drain or San Joaquin River); and flows of the Sacramento River and San Joaquin River on a seasonal or monthly basis. Load scenarios for San Joaquin Valley mirror predictions made since 1955 of a worsening salt (and by inference, selenium) build-up exacerbated by an arid climate and massive irrigation. The reservoir of selenium in the San Joaquin Valley is sufficient to provide loading at an annual rate of approximately 42,500 pounds of selenium to a Bay-Delta disposal point for 63 to 304 years at the lower range of projections presented here, even if influx of selenium from the California Coast Ranges could be curtailed. Disposal of wastewaters on an annual basis outside of the San Joaquin Valley may slow the degradation of valley resources, but drainage alone cannot alleviate the salt and selenium build-up in the San Joaquin Valley, at least within a century. Load scenarios also show the different proportions of selenium loading to the Bay-Delta. Oil refinery loads from 1986 to 1992 ranged from 8.5 to 20 pounds of selenium per day;

  18. Selenium

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Selenium is a naturally occurring element that is present in some soils. Unlike mercury and lead, which also are natural environmental components, selenium is an essential nutrient in living systems. The amount of dietary selenium required by animals depends upon many factors, including the availability of certain other metals such as zinc and copper, as well as vitamin E and other nutrients. Muscle damage results if dietary selenium is deficient, but dietary excess can be toxic.

  19. Selenium deficiency in cattle associated with Heinz bodies and anemia.

    PubMed

    Morris, J G; Cripe, W S; Chapman, H L; Walker, D F; Armstrong, J B; Alexander, J D; Miranda, R; Sanchez, A; Sanchez, B; Blair-West, J R

    1984-02-03

    Cattle grazing St. Augustine grass growing on peaty muck soils in the Florida Everglades developed anemia associated with the presence of Heinz bodies and suboptimal concentrations of selenium in blood. Selenium supplementation corrected the anemia, prevented Heinz body formation, increased the body weight of cows and calves, and elevated blood selenium. This may be the first recorded example of widespread anemia in a population due to selenium deficiency.

  20. Avoidance of selenium-treated food by mallards

    USGS Publications Warehouse

    Heinz, G.H.; Sanderson, C.J.

    1990-01-01

    Adult, male mallards (Anas platyrhynchos) were given a choice between a control diet and a diet containing 5, 10 or 20 ppm selenium as selenomethionine dissolved in water and mixed into the diet. At 10 and 20 ppm, selenium-treated diets were avoided. Avoidance appeared to be caused by a conditioned response, probably to illness caused by the selenium and not to an aversion to the taste of the selenium.

  1. Selenium and selenocysteine: roles in cancer, health and development

    PubMed Central

    Hatfield, Dolph L.; Tsuji, Petra A.; Carlson, Bradley A.; Gladyshev, Vadim N.

    2014-01-01

    The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid 1990s, selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace elucidating its many roles in health, development, and cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions. PMID:24485058

  2. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  3. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna.

    PubMed

    Yamashita, Yumiko; Yamashita, Michiaki

    2010-06-11

    A novel selenium-containing compound having a selenium atom in the imidazole ring, 2-selenyl-N(alpha),N(alpha),N(alpha)-trimethyl-L-histidine, 3-(2-hydroseleno-1H-imidazol-5-yl)-2-(trimethylammonio)propanoate, was identified from the blood and other tissues of the bluefin tuna, Thunnus orientalis. The selenium-containing compound was purified from the tuna blood in several chromatographic steps. High resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the exact mass of the [M+H](+) ion of the compound was 533.0562 and the molecular formula was C(18)H(29)N(6)O(4)Se(2). Its gross structure was assigned as the oxidized dimeric form of an ergothioneine selenium analog in which the sulfur of ergothioneine is replaced by selenium. Therefore, we named this novel selenium-containing compound "selenoneine." By speciation analysis of organic selenium compounds using liquid chromatography inductively coupled plasma mass spectrometry, selenoneine was found widely distributed in various tissues of the tuna, with the highest concentration in blood; mackerel blood contained similar levels. Selenoneine was measurable at 2-4 orders of magnitude lower concentration in a limited set of tissues from squid, tilapia, pig, and chicken. Quantitatively, selenoneine is the predominant form of organic selenium in tuna tissues.

  4. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    PubMed

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  5. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability.

    PubMed

    Kim, Dong Shik; Kim, Dong Wuk; Kim, Kyeong Soo; Choi, Jong Seo; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Jin, Sung Giu; Choi, Han-Gon

    2016-11-01

    The aim of this study was to assess the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on the physicochemical characterization and oral bioavailability of a novel l-sulpiride-loaded quaternary microcapsule (QMC). The effect of carriers on drug solubility was investigated. Among the carriers tested, polyvinyl pyrrolidone (PVP), sodium lauryl sulphate (SLS) and TPGS were selected as polymer, surfactant and absorption enhancer, respectively, due to their high drug solubility. Using the solvent evaporation method, numerous QMCs with different ratios of l-sulpiride, PVP, SLS and TPGS were prepared, and their physicochemical properties, solubility and release were evaluated. In addition, the influence of TPGS concentration on the oral bioavailability of various drug doses was evaluated. All QMCs converted the crystalline drug to the amorphous form and remarkably improved the solubility, release and oral bioavailability of the drug. Furthermore, the TPGS concentration in the QMCs hardly affected the crystallinity, particle size and release, but considerably increased the solubility and oral bioavailability of the drug. In particular, as the dose of administered drug was increased, TPGS provided a greater improvement in oral drug bioavailability. Thus, TPGS played an important role in improving the oral bioavailability of l-sulpiride. Moreover, the QMC with a drug/PVP/SLS/TPGS weight ratio of 5:12:1 :20 with approximately 3.3-fold improved oral bioavailability would be recommended as a commercial pharmaceutical product for oral administration of l-sulpiride. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of Processed Onions on the Plasma Concentration of Quercetin in Rats and Humans.

    PubMed

    Kashino, Yasuaki; Murota, Kaeko; Matsuda, Namiko; Tomotake, Muneaki; Hamano, Takuya; Mukai, Rie; Terao, Junji

    2015-11-01

    Onion is a major dietary source of the bioactive flavonoid, quercetin. Quercetin aglycone (QA) is exclusively distributed in the onion peel, although quercetin-4'-β-O-glucoside (Q4'G) is present in both the peel and the bulb, and quercetin-3,4'-β-O-diglucoside (Q3,4'diG) is present only the bulb. The bioavailability of flavonoids from fruits and vegetables is frequently affected by the manufacturing process and related conditions. The present study aimed to estimate the effect of food processing on the bioavailability of onion QA and its glucosides, Q4'G and Q3,4'diG, provided through the consumption of onion products. Rats were fed onion peel and onion bulb products-mixed meal or pure QA/Q4'G+Q3,4'diG-mixed meal at 5 mg QA equivalent/kg body weight. A comparison of the blood plasma concentrations strongly suggested that quercetin glucosides (Q4'G and Q3,4'diG) are superior or at least equal to QA in their bioavailability, when each purified compound is mixed with the meal. The intake of a peel powder-containing meal provided a significantly higher increase of plasma quercetin concentration than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals at each period tested. A human ingestion study confirmed the superiority of onion peel powder to onion peel extract. The difference of log P for QA between peel powder and peel extract indicated that a food matrix improves the bioavailability of QA in onion peel products. These results demonstrated that the bioavailability of quercetin provided by not the onion bulb but the onion peel is significantly affected by food processing. Onion is a popular source of antioxidative flavonoid quercetin and its vascular function attracts considerable attention in relation to anti-atherosclerotic effect. The present study estimated the effect of food processing on the bioavailability of onion quercetin aglycone and its glucosides provided through the consumption of onion products. The intake of a peel powder-containing meal showed a significantly higher bioavailability than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals. Hence, food processing of onion peel may enhance the health impact of onion quercetin by elevating its bioavailability. © 2015 Institute of Food Technologists®

  7. Selenium and Preeclampsia: a Systematic Review and Meta-analysis.

    PubMed

    Xu, Min; Guo, Dan; Gu, Hao; Zhang, Li; Lv, Shuyan

    2016-06-01

    Conflicting results exist between selenium concentration and preeclampsia. The role of selenium in the development of preeclampsia is unclear. We conducted a meta-analysis to compare the blood selenium level in patients with preeclampsia and healthy pregnant women, and to determine the effectiveness of selenium supplementation in preventing preeclampsia. We searched PubMed, ScienceDirect, the Cochrane Library, and relevant references for English language literature up to November 25, 2014. Mean difference from observational studies and relative risk from randomized controlled trials were meta-analyzed by a random-effect model. Thirteen observational studies with 1515 participants and 3 randomized controlled trials with 439 participants were included in the meta-analysis. Using a random-effect model, a statistically significant difference in blood selenium concentration of -6.47 μg/l (95 % confidence interval (CI) -11.24 to -1.7, p = 0.008) was seen after comparing the mean difference of observational studies. In randomized controlled trials, using a random-effect model, the relative risk for preeclampsia was 0.28 (0.09 to 0.84) for selenium supplementation (p = 0.02). Evidence from observational studies indicates an inverse association of blood selenium level and the risk of preeclampsia. Supplementation with selenium significantly reduces the incidence of preeclampsia. However, more prospective clinical trials are required to assess the association between selenium supplementation and preeclampsia and to determine the dose, beginning time, and duration of selenium supplementation.

  8. Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters

    USGS Publications Warehouse

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.

  9. Search for relevant indications for selenium supplementation in thyroid diseases.

    PubMed

    Wojciechowska-Durczynska, Katarzyna; Lewinski, Andrzej

    2017-08-01

    Selenium plays a significant role in the thyroid function and its deficiency is considered by some authors to be a cause of thyroid disorders. The potential therapeutic influence of selenium supplementation in thyroid disease was investigated in several studies and some results were encouraging, however results were inconsistent and did not allow conclusion to be drawn. For that reason, we have performed a review study on relevance of selenium supplementation in thyroid disease. Till now, there is no strong evidence that selenium supplementation leads to clinical improvement in the course of autoimmune thyroiditis, nodular goitre or thyroid cancer. On the other hand, there is some evidence that selenium is effective in the treatment of orbitopathy; thus, the European Group on Graves' Orbitopathy (EUGOGO) recommends selenium administration in mild active orbitopathy.

  10. Selenium as an essential micronutrient: roles in cell cycle and apoptosis.

    PubMed

    Zeng, Huawei

    2009-03-23

    Selenium is an essential trace element for humans and animals, and selenium deficiency is associated with several disease conditions such as immune impairment. In addition, selenium intakes that are greater than the recommended daily allowance (RDA) appear to protect against certain types of cancers. In humans and animals, cell proliferation and death must be regulated to maintain tissue homeostasis, and it has been well documented that numerous human diseases are directly related to the control of cell cycle progression and apoptosis. Thus, the elucidation of the mechanisms by which selenium regulates the cell cycle and apoptosis can lead to a better understanding of the nature of selenium's essentiality and its role in disease prevention. This article reviews the status of knowledge concerning the effect of selenium on cell cycle and apoptosis.

  11. Selenium exposure and depressive symptoms: the Coronary Artery Risk Development in Young Adults Trace Element Study

    PubMed Central

    Colangelo, Laura A; He, Ka; Whooley, Mary A; Daviglus, Martha L.; Morris, Steven; Liu, Kiang

    2014-01-01

    Selenium is an essential trace element important to neurotransmission, but toxic at high levels. Some studies suggest beneficial effects on mood. We assessed the association of selenium exposure with presence of depressive symptoms. Selenium exposure was measured in toenail samples collected in 1987 from 3,735 US participants (age 20–32 years) and depressive symptoms assessed in 1990, 1995, 2000, 2005, and 2010 using the Center for Epidemiologic Studies Depression Scale (CES-D). Binary and polytomous logistic regression models were used to assess the relation of log2(selenium) and selenium quintiles with presence of depressive symptoms (CES-D score ≥ 27 or on antidepressant medication). Relative to selenium quintile 1, the adjusted odds ratio (OR) for having depressive symptoms in 1990 for quintile 5 was 1.59 (95% CI: 1.01, 2.51) and a unit increase in log2(selenium), which represents a doubling of the selenium level, was associated with an OR=2.03 (95% CI: 1.12, 3.70). When examining 1, 2 or 3+ exams vs no exams with symptoms, the OR for quintile 5 was 1.73 (1.04, 2.89) for 3+ exams and for one exam and two exams, there were no associations. In a generalized estimating equations longitudinal model, a doubling of the selenium level was associated with a 56% higher odds of having depressive symptoms at an exam. Contrary to previously reported findings related to mood, higher level of selenium exposure was associated with presence of elevated depressive symptoms. More research is needed to elucidate the role of selenium in depressive disorders. PMID:24560993

  12. A gene-environment interaction analysis of plasma selenium with prevalent and incident diabetes: The Hortega study.

    PubMed

    Galan-Chilet, Inmaculada; Grau-Perez, Maria; De Marco, Griselda; Guallar, Eliseo; Martin-Escudero, Juan Carlos; Dominguez-Lucas, Alejandro; Gonzalez-Manzano, Isabel; Lopez-Izquierdo, Raul; Briongos-Figuero, Laisa Socorro; Redon, Josep; Chaves, Felipe Javier; Tellez-Plaza, Maria

    2017-08-01

    Selenium and single-nucleotide-polymorphisms in selenoprotein genes have been associated to diabetes. However, the interaction of selenium with genetic variation in diabetes and oxidative stress-related genes has not been evaluated as a potential determinant of diabetes risk. We evaluated the cross-sectional and prospective associations of plasma selenium concentrations with type 2 diabetes, and the interaction of selenium concentrations with genetic variation in candidate polymorphisms, in a representative sample of 1452 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.2µg/L. 120 participants had diabetes at baseline. Among diabetes-free participants who were not lost during the follow-up (N=1234), 75 developed diabetes over time. The multivariable adjusted odds ratios (95% confidence interval) for diabetes prevalence comparing the second and third to the first tertiles of plasma selenium levels were 1.80 (1.03, 3.14) and 1.97 (1.14, 3.41), respectively. The corresponding hazard ratios (95% CI) for diabetes incidence were 1.76 (0.96, 3.22) and 1.80 (0.98, 3.31), respectively. In addition, we observed significant interactions between selenium and polymorphisms in PPARGC1A, and in genes encoding mitochondrial proteins, such as BCS1L and SDHA, and suggestive interactions of selenium with other genes related to selenoproteins and redox metabolism. Plasma selenium was positively associated with prevalent and incident diabetes. While the statistical interactions of selenium with polymorphisms involved in regulation of redox and insulin signaling pathways provide biological plausibility to the positive associations of selenium with diabetes, further research is needed to elucidate the causal pathways underlying these associations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Effect of Selenium Supplementation on Recurrent Hyperthyroidism Caused by Graves' Disease: A Prospective Pilot Study.

    PubMed

    Wang, L; Wang, B; Chen, S R; Hou, X; Wang, X F; Zhao, S H; Song, J Q; Wang, Y G

    2016-09-01

    The effect of selenium supplementation on recurrent hyperthyroidism caused by Graves' disease is unclear. Our study aimed to assess the efficacy of selenium supplementation therapy on recurrent Graves' disease. Forty-one patients with recurrent Graves' disease were enrolled in this study. All patients received the routine treatment using methimazole (MMI), while patients allocated to the selenium group received additional selenium therapy for 6 months. The influence of selenium supplementation on the concentrations of thyroid stimulating hormone (TSH), anti-TSH-receptor antibodies (TRAb), free thyroxine (FT4), and free triiodothyronine (FT3) were assessed. The remission rate was also compared between 2 groups. There was no obvious difference in the demographic data and the levels of serum FT4, FT3, TSH, and TRAb between the 2 groups at baseline. Both FT4 and FT3 decreased more at 2 months in the selenium group than the controls, while the TSH level increased more in patients receiving selenium supplementation (p<0.05). The TRAb level was significantly lower in patients receiving selenium supplementation (2.4 IU/l vs. 5.6 IU/l, p=0.04). The percentages of patients with normal TRAb level at 6 months was also significantly higher in the selenium group (19.0 vs. 0%, p=0.016). Kaplan-Meier survival curve showed patients receiving selenium supplementation had a significantly higher rate of remission than controls (Log-rank test p=0.008). In conclusion, selenium supplementation can enhance the effect of antithyroid drugs in patients with recurrent Graves' disease. Randomized trials with large number of participants are needed to validate the finding above. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice

    PubMed Central

    Meng, Y Gloria; Hoyte, Kwame; Lutman, Jeff; Lu, Yanmei; Iyer, Suhasini; DeForge, Laura E; Theil, Frank-Peter; Fielder, Paul J; Prabhu, Saileta

    2012-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid β monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice. Our results indicated that the SC bioavailability of mIgG2a was affected by mFcRn-binding affinity. Variant I253A.H435A, which did not bind to mFcRn at either pH 6.0 or pH 7.4, had the lowest bioavailability (41.8%). Variant N434Y, which had the greatest increase in binding affinity at both pH 6.0 and pH 7.4, had comparable bioavailability to the WT antibody (86.1% vs. 76.3%), whereas Variant N434H, which had modestly increased binding affinity at pH 6.0 to mFcRn and affinity comparable to the WT antibody at pH 7.4, had the highest bioavailability (94.7%). A semi-mechanism-based pharmacokinetic model, which described well the observed data with the WT antibody and variant I253A.H435A, is consistent with the hypothesis that the decreased bioavailability of variant I253A.H435A was due to loss of the FcRn-mediated protection from catabolism at the absorption site. Together, these data demonstrate that FcRn plays an important role in SC bioavailability of therapeutic IgG antibodies. PMID:22327433

  15. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in theenvironment; however, waterfowl were reproducing at the two ponds. Three tributary streams of Mc Elmo Creek that drain irrigated areas of the Montezuma Valley south of the creek were sampled in 1994. Mud Creek probably is the largest source of selenium to Mc Elmo Creek. Most biota samples from Mud Creek had elevated selenium concentrations when compared to guidelines for dietary items and freshwater fish. Selenium concentrations in water samples collected in the Mancos River Basin upstream from Navajo Wash, which includes the Mancos Project, ranged from less than 1 to 10 micrograms per liter. Mud Creek contributed about 74 percent of the selenium load to the upper Mancos River in March 1994.Selenium concentrations were much higher in Navajo Wash; a sample collected in March had 97 micrograms per liter of selenium. Bottom-sediment samples from two ponds in the Mancos Projectexceeded the concentration of concern of 4 micrograms per gram. The highest selenium concentrations in biota samples from streams in the Mancos River Basin were for samples from Navajo Wash. Mostconcentrations in biota in the upper Mancos River Basin were less than guidelines. Mean selenium concentrations in eggs from aquatic birds collected at three ponds in the Mancos Project slightly exceed the guideline associated with reduced hatchability.Five bird livers had a mean selenium concentration of 32.6 micrograms per gram dry weight, whichslightly exceeded the mean concentration of 30 micrograms per gram dry weight that is associated with reproductive impairment. Two of the pondshad a high selenium hazard rating; however, mallard reproduction was observed in 1994 at one of the ponds that had a high selenium-hazard rating.

  16. Multicenter, Phase 3 Trial Comparing Selenium Supplementation With Observation in Gynecologic Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muecke, Ralph; Schomburg, Lutz; Glatzel, Michael

    Purpose: We assessed whether adjuvant supplementation with selenium improves the selenium status and reduces side effects of patients treated by radiotherapy (RT) for cervical and uterine cancer. Methods and Materials: Whole-blood selenium concentrations were measured in patients with cervical cancer (n = 11) and uterine cancer (n = 70) after surgical treatment, during RT, at the end of RT, and 6 weeks after RT. Patients with initial selenium concentrations of less than 84{mu}g/L were randomized before RT either to receive 500 {mu}g of selenium (in the form of sodium selenite [selenase (registered) , biosyn Arzneimittel GmbH, Fellbach, Germany]) by mouthmore » on the days of RT and 300 {mu}g of selenium on the days without RT or to receive no supplement during RT. The primary endpoint of this multicenter Phase 3 study was to assess the efficiency of selenium supplementation during RT; the secondary endpoint was to decrease radiation-induced diarrhea and other RT-dependent side effects. Results: A total of 81 patients were randomized. We enrolled 39 in the selenium group (SG) and 42 in the control group (CG). Selenium levels did not differ between the SG and CG upon study initiation but were significantly higher in the SG at the end of RT. The actuarial incidence of diarrhea of Grade 2 or higher according to Common Toxicity Criteria (version 2) in the SG was 20.5% compared with 44.5% in the CG (p = 0.04). Other blood parameters, Eastern Cooperative Oncology Group performance status, and self-reported quality of life were not different between the groups. Conclusions: Selenium supplementation during RT is effective in improving blood selenium status in selenium-deficient cervical and uterine cancer patients and reduces the number of episodes and severity of RT-induced diarrhea.« less

  17. Optimal serum selenium concentrations are associated with lower depressive symptoms and negative mood among young adults.

    PubMed

    Conner, Tamlin S; Richardson, Aimee C; Miller, Jody C

    2015-01-01

    There is evidence that low, and possibly high, selenium status is associated with depressed mood. More evidence is needed to determine whether this pattern occurs in young adults with a wide range of serum concentrations of selenium. The aim of this study was to determine if serum selenium concentration is associated with depressive symptoms and daily mood states in young adults. A total of 978 young adults (aged 17-25 y) completed the Center for Epidemiological Studies-Depression scale and reported their negative and positive mood daily for 13 d using an Internet diary. Serum selenium concentration was determined by inductively coupled plasma mass spectrometry. ANCOVA and regression models tested the linear and curvilinear associations between decile of serum selenium concentration and mood outcomes, controlling for age, gender, ethnicity, BMI, and weekly alcohol intake. Smoking and childhood socioeconomic status were further controlled in a subset of participants. The mean ± SD serum selenium concentration was 82 ± 18 μg/L and ranged from 49 to 450 μg/L. Participants with the lowest serum selenium concentration (62 ± 4 μg/L; decile 1) and, to a lesser extent, those with the highest serum selenium concentration (110 ± 38 μg/L; decile 10) had significantly greater adjusted depressive symptoms than did participants with midrange serum selenium concentrations (82 ± 1 to 85 ± 1 μg/L; deciles 6 and 7). Depressive symptomatology was lowest at a selenium concentration of ∼85 μg/L. Patterns for negative mood were similar but more U-shaped. Positive mood showed an inverse U-shaped association with selenium, but this pattern was less consistent than depressive symptoms or negative mood. In young adults, an optimal range of serum selenium between ∼82 and 85 μg/L was associated with reduced risk of depressive symptomatology. This range approximates the values at which glutathione peroxidase is maximal, suggesting that future research should investigate antioxidant pathways linking selenium to mood. This trial was registered with the Australian New Zealand Clinical Trials Registry as ACTRN12613000773730. © 2015 American Society for Nutrition.

  18. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  19. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins

    PubMed Central

    Zoidis, Evangelos; Seremelis, Isidoros; Kontopoulos, Nikolaos

    2018-01-01

    Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins’ genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken. PMID:29758013

  20. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

Top