Science.gov

Sample records for affects selenium bioavailability

  1. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    PubMed

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  2. Selenium in soybeans: bioavailability and form

    SciTech Connect

    Mason, A.C.

    1984-01-01

    Experiments are presented which evaluate the bioavailability of different forms of selenium from intrinsically and extrinsically labeled isolated soy protein and soy flour. The bioavailability of selenium from soy and egg is compared and some characteristics of selenium are described as it exists in soybeans. The metabolism of selenium was measured by whole-body and tissue radioactivity retention and selenium excretion. Selenium-75 was well absorbed from an isolated soy protein diet by rats. Selenium-75 from isolated soy protein labeled intrinsically and extrinsically with /sup 75/Se selenate was better absorbed than from protein labeled extrinsically with /sup 75/Se selenite or /sup 75/Se selenomethionine. Bioavailability of selenium from soy flour and egg was measured by whole-body and tissue radioactivity retention and glutathione peroxidase (GSH-Px) activity regeneration. Selenium-75 from soy flour intrinsically labeled with selenite was better absorbed than /sup 75/Se from flour intrinsically labeled with selenate. GSH-Px levels in the liver, kidney, platelets and heart fell when rats were fed a selenium deficient diet, but were not significantly raised on 0.0825 ppm Se repletion diets.

  3. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.

  4. Methods of Selenium Supplementation: Bioavailability and Determination of Selenium Compounds.

    PubMed

    Bodnar, Malgorzata; Szczyglowska, Marzena; Konieczka, Piotr; Namiesnik, Jacek

    2016-01-01

    Selenium, a "dual-surface" element, maintains a very thin line between a level of necessity and harmfulness. Because of this, a deficiency or excess of this element in an organism is dangerous and causes health-related problems, both physically and mentally. The main source of selenium is a balanced diet, with a proper selection of meat and plant products. Meanwhile, the proper assimilation of selenium into these products depends on their bioavailability, bioaccessibility, and/or bioactivity of a given selenium compound. From the time when it was discovered that selenium and its compounds have a significant influence on metabolic processes and in many countries throughout the world, a low quantity of selenium was found in different parts of the environment, pressure was put upon an effective and fast method of supplementing the environment with the help of selenium. This work describes supplementation methods applied with the use of selenium, as well as new ideas for increasing the level of this element in various organisms. Based on the fact that selenium appears in the environment at trace levels, the determination of total amount of selenium or selenium speciation in a given sample demands the selection of appropriate measurement methods. These methods are most often comprised of a sample preparation technique and/or a separation technique as well as a detection system. The work presents information on the subject of analytical methods used for determining selenium and its compounds as well as examples in literature of their application.

  5. In vitro bioavailability of total selenium and selenium species from seafood.

    PubMed

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Romarís-Hortas, Vanessa; Domínguez-González, Raquel; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío; Bermejo-Barrera, Pilar

    2013-08-15

    In vitro bioavailability of total selenium and selenium species from different raw seafood has been assessed by using a simulated gastric and intestinal digestion/dialysis method. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to assess total selenium contents after a microwave assisted acid digestion, and also to quantify total selenium in the dialyzable and non-dialyzable fractions. Selenium speciation in the dialyzates was assessed by high performance liquid chromatography (HPLC) coupled with ICP-MS detection. Major Se species (selenium methionine and oxidized selenium methionine) from dialyzate were identified and characterized by HPLC coupled to mass spectrometry (HPLC-MS). Selenocystine was detected at low concentrations while Se-(Methyl)selenocysteine and inorganic selenium species (selenite and selenate) were not detected in the dialyzate. Low bioavailability percentages for total selenium (6.69±3.39 and 5.45±2.44% for fish and mollusk samples, respectively) were obtained. Similar bioavailability percentages was achieved for total selenium as a sum of selenium species (selenocystine plus oxidized selenium methionine and selenium methionine, mainly). HPLC-MS data confirmed SeMet oxidation during the in vitro procedure.

  6. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite.

    PubMed

    Wang, Yu-Dong; Wang, Xu; Wong, Yum-Shing

    2013-12-01

    To fulfill the natural human needs of selenium, selenium biofortification has been carried out in rice (Oryza sativa) in recent years. Despite some improvements have been made, the increase of selenium content in rice was still limited and a large amount of fertilisers are often required, which may cause environmental pullution. In this study, we further improved the selenium biofortification of rice by using less selenium fertilisers (10.5 g selenium/hectare) whereas, largely increasing selenium content in rice grains (up to 51 times vs. control). Furthermore, selenium speciation analysis, in vitro gastrointestinal digestion and antioxidant assays were performed to evaluate the selenium bioaccessibility and bioavailability in selenium-enriched rice grains. The major selenium species found were readily absorbable selenomethionine. Meanwhile, the selenium-enriched rice grains have significantly higher antioxidant bioactivities. In conclusion, this selenium-enriched rice has enormous potential for selenium supplementation in humans.

  7. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats.

    PubMed

    Yan, Lin; Johnson, LuAnn K

    2011-06-08

    This study determined the bioavailability of selenium (Se) from yellow peas and oats harvested from the high-Se soil of South Dakota, United States. The Se concentrations were 13.5 ± 0.2 and 2.5 ± 0.1 mg/kg (dry weight) for peas and oats, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1 μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 μg Se/kg from peas or oats, respectively. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for yellow peas and oats to those for l-selenomethionine (SeMet; used as a reference) by using a slope-ratio method. Dietary supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in Se concentrations of plasma, liver, gastrocnemius muscle, and kidneys. The overall bioavailability was approximately 88% for Se from yellow peas and 92% from oats, compared to SeMet. It was concluded that Se from naturally produced high-Se yellow peas or oats is highly bioavailable in this model and that these high-Se foods may be a good dietary source of Se.

  8. Rumen microorganisms decrease bioavailability of inorganic selenium supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the availaility of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study w...

  9. Effect of alcohol consumption selenium bioavailability in rats

    SciTech Connect

    Cho, H.K.

    1986-01-01

    This study was done to determine the effects of alcohol consumption on selenium bioavailability in initially Se-depleted rats. Weanling male rats were fed a Se deficient basal diet for 4 weeks and then for the subsequent 4 weeks were supplemented at 0.031 mg Se/Kg or at 0.085 mg Se/Kg of diet in the form of high Se yeast. During the Se repletion period alcohol replaced medium chain triglycerides in the diet at three levels: 0%, 10% and 20% of calories. Dietary Se level significantly affected urinary Se, fecal Se, Se absorption, Se balance whole blood Se, whole blood glutathione peroxidase activity, liver Se concentration, and total liver Se content. Alcohol consumption significantly increased liver Se concentrations and total liver Se in rats fed the adequate Se diet. In rates fed the low Se diet, this pattern was not shown. There was a significant interaction between alcohol and Se level in terms of liver Se concentration and total liver Se. In the first week of Se repletion, fecal Se. Se absorption and Se balance were significantly higher in the 10% alcohol group fed the low Se repletion diet compared to rats given 0% and 20% alcohol in the same Se group. In the final week Se repletion the parameters of Se balance were not affected by alcohol consumption. Alcohol consumption did not influence whole blood Se and whole blood glutathione peroxidase activity; however alcohol consumption significantly reduced growth rate at both Se levels.

  10. Dietary factors affecting polyphenol bioavailability.

    PubMed

    Bohn, Torsten

    2014-07-01

    While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.

  11. Selenium bioavailability of infant milk diets

    SciTech Connect

    Raghib, H.; Chan, W.Y.; Rennert, O.M.

    1986-03-01

    The effects of age, types of milk diet and chemical forms of SE on its bioavailability were studied using suckling rats as a model. Human milk, bovine milk and infant formula (regular Similac) extrinsically labeled with either (/sup 75/Se) selenite or (/sup 75/Se) selenomethionine were fed by gastric intubation to 8, 10, 15 and 20 (or 30)-day-old rats. Retention of /sup 75/Se in gut free carcass and liver was measured 3 hours after feeding. At any given age the corresponding absorption of /sup 75/Se from the 3 diets was similar except at 15 days of age when significantly more (/sup 75/Se) selenomethionine was absorbed from human milk (83%) than from bovine milk or formula (72%). Much higher amount of (/sup 75/Se) selenomethionine was absorbed by any age group from the 3 milk diets compared to (/sup 75/Se) selenite. An age related change in both (/sup 75/Se) selenite and (/sup 75/Se) selenomethionine absorption was noticed in all 3 diets. Gut free carcass (/sup 75/Se) selenite absorption was 32% in 8-d-old rats and increased to 46% in 20-d-old rats. The corresponding liver /sup 75/Se retention was 7.5 and 19.5%. On the other hand, (/sup 75/Se) selenomethionine retention by the gut free carcass decreased with age from an average of 83% in 8-d-old rats to 72% in 20-d-old rats. The corresponding /sup 75/Se incorporation into the liver increased from 15.5% in 8-d-old rats to 21.9% in 20-d-old rats. It is concluded that twice as much /sup 75/Se) selenite and an age related change in /sup 75/Se absorption was noticed between the 2 chemical forms of Se and between human milk and the other 2 milk diets.

  12. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  13. Influence of estuarine processes on spatiotemporal variation in bioavailable selenium

    USGS Publications Warehouse

    Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick

    2013-01-01

    Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.

  14. Selenium.

    PubMed

    Barceloux, D G

    1999-01-01

    The 4 natural oxidation states of selenium are elemental selenium (0), selenide (-2), selenite (+4), and selenate (+6). Inorganic selenate and selenite predominate in water whereas organic selenium compounds (selenomethionine, selenocysteine) are the major selenium species in cereal and in vegetables. The principal applications of selenium include the manufacture of ceramics, glass, photoelectric cells, pigments, rectifiers, semiconductors, and steel as well as use in photography, pharmaceutical production, and rubber vulcanizing. High concentrations of selenium in surface and in ground water usually occur in farm areas where irrigation water drains from soils with high selenium content (Kesterson Reservoir, California) or in lakes receiving condenser cooling water from coal-fired electric power plants (Belews Lake, North Carolina). For the general population, the primary pathway of exposure to selenium is food, followed by water and air. Both selenite and selenate possess substantial bioavailability. However, plants preferentially absorb selenates and convert them to organic compounds. Aquatic organisms (e.g., bivalves) can accumulate and magnify selenium in the food chain. Selenium is an essential component of glutathione peroxidase, which is an important enzyme for processes that protect lipids in polyunsaturated membranes from oxidative degradation. Inadequate concentrations of selenium in the Chinese diet account, at least in part, for the illness called Keshan disease. Selenium deficiency occurs in the geographic areas where Balkan nephropathy appears, but there is no direct evidence that selenium deficiency contributes to the development of this chronic, progressive kidney disease. Several lines of scientific inquiry suggest that an increased risk of cancer occurs as a result of low concentrations of selenium in the diet; however, insufficient evidence exists at the present time to recommend the use of selenium supplements for the prevention of cancer. The

  15. Effect of alcohol consumption on selenium (Se) bioavailability in rats

    SciTech Connect

    Cho, H.K.; Snook, J.T.; Yang, F.L.

    1986-03-01

    This study was done to determine the effects of alcohol ingestion on Se bioavailability in initially Se-depleted rats. Weanling male rats were fed a Se deficient (0.012 mg/kg) basal diet for 4 weeks and then for the subsequent 4 weeks were supplemented at 0.031 mg Se/kg or at 0.085 mg Se/kg of diet in the form of high Se yeast. During the Se repletion period alcohol replaced medium chain triglycerides in the diet at 3 levels: 0%, 10%, and 20% of calories. Dietary Se level significantly (P < .0001) affected urinary Se, fecal Se, Se absorption, Se balance, whole blood Se, whole blood glutathione peroxidase activity, and liver Se. In rats fed the higher Se diet total liver Se increased 50% when 20% rather than 0% alcohol was given. In rats fed the lower Se diet total liver Se decreased 12% as dietary alcohol increased from 0 to 20%. There was a significant (P < .0015) interaction between alcohol and Se level. All the other parameters for Se bioavailability were not affected by alcohol consumption. However, alcohol consumption significantly reduced growth rate at both Se levels.

  16. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge.

    PubMed

    Jain, Rohan; Seder-Colomina, Marina; Jordan, Norbert; Dessi, Paolo; Cosmidis, Julie; van Hullebusch, Eric D; Weiss, Stephan; Farges, François; Lens, Piet N L

    2015-09-15

    Selenite containing wastewaters can be treated in activated sludge systems, where the total selenium is removed from the wastewater by the formation of elemental selenium nanoparticles, which are trapped in the biomass. No studies have been carried out so far on the characterization of selenium fed activated sludge flocs, which is important for the development of this novel selenium removal process. This study showed that more than 94% of the trapped selenium in activated sludge flocs is in the form of elemental selenium, both as amorphous/monoclinic selenium nanospheres and trigonal selenium nanorods. The entrapment of the elemental selenium nanoparticles in the selenium fed activated sludge flocs leads to faster settling rates, higher hydrophilicity and poorer dewaterability compared to the control activated sludge (i.e., not fed with selenite). The selenium fed activated sludge showed a less negative surface charge density as compared to the control activated sludge. The presence of trapped elemental selenium nanoparticles further affected the spatial distribution of Al and Mg in the activated sludge flocs. This study demonstrated that the formation and subsequent trapping of elemental selenium nanoparticles in the activated sludge flocs affects their physicochemical properties.

  17. [Acute toxicity and bioavailability of nano red elemental selenium].

    PubMed

    Gao, X; Zhang, J; Zhang, L

    2000-01-30

    The reaction ratio of nano red elemental selenium (nanose) with GSH in vitro was one-tenth of that of sodium selenite. Mice were fed with nanose and sodium selenite separately at 50 micrograms/kg BW for 30 days. Both selenium forms could significantly increased Se concentration of blood, liver and activity of blood GSH-Px. Acute toxicity experiment of mice implied that the acute toxicity of nanose was nearly one-seventh of that of sodium selenite. The LD50 for nanose se was 112.98 mg kg BW, and the LD50 for sodium selenite was Se 15.72 mg/kg BW. The acute toxicity of nanose was low for mice.

  18. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles.

    PubMed

    Wu, Shanshan; Sun, Kang; Wang, Xin; Wang, Dongxu; Wan, Xiaochun; Zhang, Jinsong

    2013-07-31

    The current results show that epigallocatechin-3-gallate (EGCG), in the form of phenolic anions at pH 8.0, can effectively disperse selenium nanoparticles. However, at gastric juice pH (1.0), the EGCG-dispersed selenium nanoparticles (referred to as E-Se) extensively aggregated, so that nano features largely disappeared. This demonstrates that deprotonated phenolic anions of EGCG play an important role in maintaining E-Se stability and suggests that E-Se would suffer from reduced oral bioavailability. To validate this conjecture, size-equivalent E-Se and bovine serum albumin (BSA)-dispersed selenium nanoparticles (B-Se), whose physicochemical properties were not altered at pH 1.0, were orally administered to selenium-deficient mice. In comparison to B-Se, the bioavailabilities of E-Se as indicated with hepatic and renal glutathione peroxidase activity and hepatic selenium levels were significantly (p < 0.01) reduced by 39, 32, and 31%, respectively. Therefore, the present study reveals that size-equivalent selenium nanoparticles prepared by different dispersers do not necessarily guarantee equivalent oral bioavailability.

  19. Mercury and Selenium in a Mining-Affected Watershed of the Rocky Mountain Northwest

    NASA Astrophysics Data System (ADS)

    Langner, H.

    2011-12-01

    The moderating effect of selenium on mercury toxicity is well established, although mechanisms and environmental implications of this interaction are still a field of intensive research. The Upper Clark Fork River Basin in northwestern Montana offers a suitable field site to test some of the emerging models, as a history of intensive metals mining created sub-watersheds with variable combinations of mercury and selenium sources. To address various levels of the food web, we analyzed a preliminary set of sediments, fish tissues and osprey (Pandion haliaetus) blood samples from various locations throughout the watershed. Sediment mercury concentrations vary between 0.02 and over 10 mg/kg, and selenium in sediments ranges from undetectable to 5 mg/kg in the most contaminated reaches. Mercury levels in fish range from 0.03 to 1.5 mg/kg (wet wt) and are highly dependent on the geographic location, in addition to fish species and size. Mercury concentrations in blood of nestling osprey chicks vary between 97 and 730 μg/L, with the majority of the variability explained by geographic location. Total mercury concentration in sediment can explain some of the variability in fish and ospreys; however, mercury accumulation in these organisms is also affected by factors such as the environmental methylation potential and possibly the sequestration of mercury in selenium compounds that are not prone to biomagnification in the food web. This hypothesis is supported by the geographic distribution of selenium and mercury levels in osprey blood: Relatively high selenium concentrations (~2000 μg/L) are associated with the lowest blood mercury levels, despite relatively high mercury levels in the local sediments (~1 mg/kg). In reaches with the lowest selenium concentrations in osprey blood (430 μg/L), the blood mercury levels are relatively high, despite very low sediment mercury levels. Analysis of this data points toward the role of bioavailable selenium in modifying the fate of

  20. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  1. Bioavailable nanoparticles obtained in laser ablation of a selenium target in water

    SciTech Connect

    Kuzmin, P G; Shafeev, Georgii A; Voronov, Valerii V; Raspopov, R V; Arianova, E A; Trushina, E N; Gmoshinskii, I V; Khotimchenko, S A

    2012-11-30

    The process of producing colloidal solutions of selenium nanoparticles in water using the laser ablation method is described. The prospects of using nanoparticles of elementary selenium as a nutrition source of this microelement are discussed. (nanoparticles)

  2. Imaging translocation and transformation of bioavailable selenium by Stanleya pinnata with X-ray microscopy.

    PubMed

    Amos, Wren; Webb, Samuel; Liu, Yijin; Andrews, Joy C; LeDuc, Danika L

    2012-09-01

    Selenium hyperaccumulator Stanleya pinnata, Colorado ecotype, was supplied with water-soluble and biologically available selenate or selenite. Selenium distribution and tissue speciation were established using X-ray microscopy (micro-X-ray fluorescence and transmission X-ray microscopy) in two dimensions and three dimensions. The results indicate that S. pinnata tolerates, accumulates, and volatilizes significant concentrations of selenium when the inorganic form supplied is selenite and may possess novel metabolic capacity to differentiate, metabolize, and detoxify selenite concentrations surpassing field concentrations. The results also indicate that S. pinnata is a feasible candidate to detoxify selenium-polluted soil sites, especially locations with topsoil polluted with soluble and biologically available selenite.

  3. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    SciTech Connect

    Zhang Jinsong Wang Huali; Yu Hanqing

    2007-10-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes up and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels.

  4. Factors affecting the selenium intake of people in Transbaikalian Russia.

    PubMed

    Aro, A; Kumpulainen, J; Alfthan, G; Voshchenko, A V; Ivanov, V N

    1994-03-01

    The selenium concentration in foods grown and consumed and in plasma, red blood cells, and toenails of people living in the district of Chita in the transbaikalian part of Russia were studied in August 1991. Preliminary results from the area have suggested low selenium intakes and the possible occurrence of cardiomyopathy (Keshan disease) in the population. A low selenium concentration in foods grown locally was found: mean selenium concentration in wheat grains was 1, 5, and 28 micrograms/kg, respectively, in three villages studied, that of oats was between 3-6 micrograms/kg, and of cow's milk 10-27 micrograms/kg dry matter. The selenium concentration of bread was considerably higher, between 87-337 micrograms/kg dry wt, presumably because wheat imported from the US had been used for baking. Occasional samples of pork, beef, and mutton contained between 32-218 micrograms selenium/kg dry wt. Low selenium concentrations were observed in samples of soil and river water. The mean plasma selenium concentration of 52 persons was 1.02 mumol/L, including 33 children and 19 adult subjects. The selenium concentrations in red blood cells and toenails were 1.95 mumol/L and 0.61 mg/kg, respectively. No symptoms of heart disease caused by selenium deficiency were observed. It is concluded that the selenium status of people was fairly good thanks to the contribution to dietary intake of imported wheat with a high selenium content. As the selenium concentration was very low in foods grown in the area, the selenium intake of the population will be reduced to a very low level if only locally produced foods are consumed.

  5. The Effect of Zinc and Selenium Supplementation Mode on Their Bioavailability in the Rat Prostate. Should Administration Be Joint or Separate?

    PubMed Central

    Daragó, Adam; Sapota, Andrzej; Nasiadek, Marzenna; Klimczak, Michał; Kilanowicz, Anna

    2016-01-01

    It is thought that zinc and selenium deficiency may play a significant role in the etiology of prostate cancer. Although joint zinc and selenium supplementation is frequently applied in the prevention of prostate diseases, the bioavailability of these elements in the prostate after co-administration is still unknown. The study examines the effect of subchronic supplementation of zinc gluconate and selenium compounds (sodium selenite or selenomethionine), administered together or separately, on their bioavailability in the prostate, as well as the induction of metallothionein-like proteins (MTs) bound to zinc in the prostate and liver. Zinc concentration in the dorso-lateral lobe of the prostate was significantly elevated already after the first month of supplementation of zinc alone. In the supplementation period, the MTs level increased together with zinc concentration. In contrast, the ventral lobe of the prostate did not demonstrate significantly higher levels of zinc until after three months of supplementation, despite the MTs induction noted after one-month supplementation. Increased selenium levels in the dorsolateral lobe were observed throughout the administration and post-administration periods, regardless of the selenium compound used or whether zinc was co-administered. The results of our studies suggested for the first time that these elements should not be administered jointly in supplementation. PMID:27782038

  6. Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats.

    PubMed

    Wen, H Y; Davis, R L; Shi, B; Chen, J J; Chen, L; Boylan, M; Spallholz, J E

    1997-01-01

    The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.

  7. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  8. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc.

    PubMed

    Molina, Ramon M; Schaider, Laurel A; Donaghey, Thomas C; Shine, James P; Brain, Joseph D

    2013-11-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive (65)Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite > sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design.

  9. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    PubMed Central

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive 65Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite ≫ sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. PMID:23933126

  10. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  11. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.

    PubMed

    Nakamaru, Yasuo M; Altansuvd, Javkhlantuya

    2014-09-01

    Studies on the sorption behaviors of selenium (Se) and antimony (Sb) are reviewed. Both Se and Sb chemical speciation can be controlled by pH and redox potential, and both of them are likely to be sorbed onto oxy-hydroxides of aluminum, iron or manganese in soils. For agricultural soils especially, there are important physico-chemical and biological differences between non-flooded and wetland soils. Se forms Se(VI), Se(IV), Se(0), Se(-II), and organic Se species at soil pH and redox conditions. Under non-flooded conditions Se solubility is governed by an adsorption mechanism onto metal oxy-hydroxides rather than by precipitation and dissolution reactions; however, for the conditions of wetland soils, it can be expected that Se(0) and organic matter-bound Se play an important role. For Sb, in the soil environment, the dominant Sb forms are Sb(III) and Sb(V). Under aerobic soil conditions, Sb(III) is likely to be oxidized to Sb(V), and the dominant sorbed Sb species should be Sb(V). Under reducing conditions Sb mobility should be lower than under oxidizing conditions due to the lower mobility of Sb(III); however, reduction of Fe and Mn oxides could lead to dissolution of Fe and Mn-bound Sb. This indicates that the risk of Sb contamination to the food chain could be increased in wetland systems.

  12. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  13. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage.

  14. Food microstructure affects the bioavailability of several nutrients.

    PubMed

    Parada, J; Aguilera, J M

    2007-03-01

    There is an increased interest in the role that some nutrients may play in preventing or ameliorating the effect of major diseases (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). In this respect, the bioavailability or the proportion of an ingested nutrient that is made available (that is, delivered to the bloodstream) for its intended mode of action is more relevant than the total amount present in the original food. Disruption of the natural matrix or the microstructure created during processing may influence the release, transformation, and subsequent absorption of some nutrients in the digestive tract. Alternatively, extracts of bioactive molecules (for example, nutraceuticals) and beneficial microorganisms may be protected during their transit in the digestive system to the absorption sites by encapsulation in designed matrices. This review summarizes relevant in vivo and in vitro methods used to assess the bioavailability of some nutrients (mostly phytochemicals), types of microstructural changes imparted by processing and during food ingestion that are relevant in matrix-nutrient interactions, and their effect on the bioavailability of selected nutrients.

  15. Choice feeding of selenium-deficient laying hens affects diet selection, selenium intake and body weight.

    PubMed

    Zuberbuehler, Christine A; Messikommer, Ruth E; Wenk, Caspar

    2002-11-01

    Inadequate selenium (Se) supply often in combination with low vitamin E status causes deficiency symptoms in many species. It is likely that a vague discomfort or sickness is perceived before clear deficiency signs become apparent. We investigated whether Se-deficient hens reduce their Se deficit by selecting a diet containing more selenium when offered two diets with different Se concentrations. A Low-Se diet (0.07 mg Se/kg) was supplemented with Se-enriched yeast (Sel-Plex 50) to produce Medium-Se (0.20 mg Se/kg) and High-Se (1.50 mg Se/kg) diets. Each of two consecutive study parts (I and II) with the same hens and treatments began with a 6-wk baseline period (Medium-Se diet), subsequently followed a 9-wk depletion period (Low-Se diet or Medium-Se diet), then a 6-wk choice feeding period in which two diets with different Se concentrations (Low-Se and Medium-Se, Medium-Se and High-Se, or Low-Se and High-Se) were offered. A control group received the Medium-Se diet throughout the study. Daily Se intake, calculated from daily feed intake, followed similar patterns in both parts of the study, but Se-deficient hens preferred (P < 0.05) the High-Se diet to the Low-Se diet during the first 3 wk of choice feeding only in part I. We conclude that young Se-deficient laying hens reduce their Se deficit if they have a choice between a Low-Se and a High-Se diet by preferentially selecting the High-Se diet, possibly based on learned place preference and/or learned taste aversion to the Low-Se diet, presumably in response to discomfort due to Se-deficiency.

  16. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence.

    PubMed

    García-Arieta, Alfredo

    2014-12-18

    The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously.

  17. Selenium supplementation does not affect testicular selenium status or semen quality in North American men.

    PubMed

    Hawkes, Wayne Chris; Alkan, Zeynep; Wong, Kenneth

    2009-01-01

    Selenium (Se) is essential for sperm function and male fertility, but high Se intake has been associated with impaired semen quality. We reported previously a decrease in sperm motility in men fed high-Se foods, but we could not rule out the influence of other environmental and dietary factors. We now report on a randomized, controlled study on the potential adverse effects of Se supplementation on semen quality in 42 free-living men administered Se (300 microg/d) as high-Se yeast for 48 weeks. Semen analysis was performed 4 times before treatment began, then twice each week during treatment at 6, 12, 24, 36, and 48 weeks, and then after treatment at 72 and 96 weeks. Blood samples were collected 3 times before treatment and at each subsequent visit. Se concentration increased 61% in blood plasma and 49% in seminal plasma. However, Se supplementation had no effect on sperm Se, serum androgen concentrations, or sperm count, motility, progressive velocity, or morphology. We observed progressive decreases in serum luteinizing hormone, semen volume, and sperm Se in both the high-Se and placebo groups. Moreover, sperm straight-line velocity and percent normal morphology increased in Se-treated and placebo-treated participants. The lack of an increase in sperm Se suggests that testicular Se stores were unaffected, even though the participants' dietary Se intake was tripled and their total body Se approximately doubled by supplementation. These results are consistent with animal studies showing the Se status of testes to be unresponsive to dietary Se intake.

  18. Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT).

    PubMed

    Peng, Qin; Wang, Mengke; Cui, Zewei; Huang, Jie; Chen, Changer; Guo, Lu; Liang, Dongli

    2017-03-21

    Uptake of selenium (Se) by plants largely depend on the availability of Se in soil. Soils and plants were sampled four times within 8 weeks of plant growth in pot experiments using four plant species. Sequential extraction and diffusive gradients in thin-films (DGT) method were employed to measure Se concentrations in potted soils in selenite- or selenate-amended soils. Results showed that DGT-measured Se concentrations (CDGT-Se) were generally several folds higher for selenate than selenite amended soils, which were obviously affected by the plant species and the duration of their growth. For example, the folds in soil planted with mustard were 1.49-3.47 and those in soils planted with purple cabbage and broccoli, which grew for 3 and 4 weeks after sowing, were 1.06-2.14 and only 0.15-0.62 after 6 weeks of growth. The selenate-amended soil planted with wheat showed an extremely high CDGT-Se compared with selenite-amended soil, except the last harvest. Furthermore, minimal changes in CDGT-Se and soluble Se(IV) were found in selenite-amended soils during plant growth, whereas significant changes were observed in selenate-amended soils (p < 0.05). Additionally, Se distribution in various fractions of soil remarkably changed; the soils planted with purple cabbage and broccoli showed the most obvious change followed by wheat and mustard. Soluble Se(VI) and exchangeable Se(VI) were likely the major sources of CDGT-Se in selenate-amended soils, and soluble Se(IV) was the possible source of CDGT-Se in selenite-amended soils. In selenate-amended soils, soluble Se(VI) and exchangeable Se(VI) were significantly correlated with Se concentrations in purple cabbage, broccoli, and mustard; in wheat, Se concentration was significantly correlated only with soluble Se(VI) but not with exchangeable Se. CDGT-Se eventually became positively correlated with Se concentrations accumulated by different plants, indicating that DGT is a feasible method in predicting plant uptake of

  19. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    PubMed

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD.

  20. A dietary assessment of selenium risk to aquatic birds on a coal mine affected stream in Alberta, Canada

    SciTech Connect

    Wayland, M.; Casey, R.; Woodsworth, E.

    2007-07-15

    In this article, we present the results of a dietary-based assessment of the risk that selenium may pose to two aquatic bird species, the American Dipper (Cinclus mexicanus) and the Harlequin Duck (Histrionicus histrionicus), on one of the coal mine-affected streams, the Gregg River. The study consisted of (1) a literature-based toxicity assessment, (2) simulation of selenium exposure in the diets and eggs of the two species, and (3) a risk assessment that coupled information on toxicity and exposure. Diet and egg selenium concentrations associated with a 20% hatch failure rate were 6.4 and 17 {mu} g {center_dot} g{sup -1} dry wt, respectively. Simulated dietary selenium concentrations were about 2.0-2.5 {mu} g {center_dot} g{sup -1} higher on the Gregg River than on reference streams for both species. When simulated dietary concentrations were considered, hatch failure rates on the Gregg River were predicted to average 12% higher in American Dippers and 8% higher in Harlequin Ducks than at reference streams. Corresponding values were only 3% for both species when predicted egg concentrations were used. Elevated levels of selenium in insects in some of the reference streams were unexpected and raised a question as to whether aquatic birds have evolved a higher tolerance level for dietary selenium in these areas.

  1. Anatomical, physiological and experimental factors affecting the bioavailability of sc administered large biotherapeutics

    PubMed Central

    Fathallah, Anas M.; Balu-Iyer, Sathy V.

    2014-01-01

    Subcutaneous route of administration is highly desirable for protein therapeutics. It improves patient compliance and quality of life1,2, while reducing healthcare cost2. Recent evidence also suggests that sc administration of protein therapeutics can increase tolerability to some treatments such as intravenous immunoglobulin therapy (IVIG) by administering it subcutaneously (subcutaneous immunoglobulin therapy SCIG), which will reduce fluctuation in plasma drug concentration3. Furthermore, sc administration may reduce the risk of systemic infections associated with iv infusion1,2. This route, however, has its challenges especially for large multi-domain proteins. Poor bioavailability and poor scalability from preclinical models are often cited. This commentary will discuss barriers to sc absorption as well as physiological and experimental factors that could affect pharmacokinetics of subcutaneously administered large protein therapeutics in preclinical models. A mechanistic pharmacokinetic model is proposed as a potential tool to address the issue of scalability of sc pharmacokinetic from preclinical models to humans PMID:25411114

  2. Processes affecting the distribution of selenium in shallow groundwater of agricultural areas, western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Fujii, R.

    1988-01-01

    A study was undertaken to evaluate the processes affecting the chemistry of shallow groundwater associated with agricultural drainage systems in the western San Joaquin Valley, California. The study was prompted by a need for an understanding of selenium mobility in areas having high selenium concentrations in shallow groundwater. Groundwater samples were collected along transects in three artificially drained fields where the age of the drainage system varied (15, 6, and 1.5 years). Selenium concentrations in the drain water also varied (430, 58, and 3700 μg/L, respectively). Isotopic enrichment and chemical composition of the groundwater samples indicate that saline- and selenium-enriched water has evolved as a result of evaporation or transpiration of groundwater. This evaporated, isotopically enriched water is being displaced by more recent, less saline irrigation water percolating through the root zone. This displacement seems to be a process whereby sodium chloride and sodium sulfate water is being replaced by more dilute calcium sulfate and calcium bicarbonate water.

  3. Processes affecting the distribution of selenium in shallow ground water of agricultural areas, western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Fujii, Roger

    1987-01-01

    A study was undertaken to evaluate the processes affecting the chemistry of shallow groundwater associated with agricultural drainage systems in the western San Joaquin Valley, California. The study was prompted by a need for an understanding of selenium mobility in areas having high selenium concentrations in shallow groundwater. Groundwater samples were collected along transects in three artificially drained fields where the age of the drainage system varied (15, 6, and 1.5 years). Selenium concentrations in the drainage water also varied (430, 58, and 3700 mg/L, respectively). Isotopic enrichment and chemical composition of the groundwater samples indicate that saline- and selenium- enriched water has evolved as a result of evaporation of groundwater. This evaporated, isotopically enriched water is being displaced by more recent, less saline irrigation water percolating through the root zone. This placement seems to be a process in which sodium chloride and sodium sulfate water is being replaced by more dilute calcium sulfate and calcium bicarbonate water. (Author 's abstract)

  4. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  5. In vitro selenium accessibility in pet foods is affected by diet composition and type.

    PubMed

    van Zelst, Mariëlle; Hesta, Myriam; Alexander, Lucille G; Gray, Kerry; Bosch, Guido; Hendriks, Wouter H; Du Laing, Gijs; De Meulenaer, Bruno; Goethals, Klara; Janssens, Geert P J

    2015-06-28

    Se bioavailability in commercial pet foods has been shown to be highly variable. The aim of the present study was to identify dietary factors associated with in vitro accessibility of Se (Se Aiv) in pet foods. Se Aiv is defined as the percentage of Se from the diet that is potentially available for absorption after in vitro digestion. Sixty-two diets (dog, n 52; cat, n 10) were in vitro enzymatically digested: fifty-four of them were commercially available (kibble, n 20; pellet, n 8; canned, n 17; raw meat, n 6; steamed meat, n 3) and eight were unprocessed (kibble, n 4; canned, n 4) from the same batch as the corresponding processed diets. The present investigation examined if Se Aiv was affected by diet type, dietary protein, methionine, cysteine, lysine and Se content, DM, organic matter and crude protein (CP) digestibility. Se Aiv differed significantly among diet types (P< 0·001). Canned and steamed meat diets had a lower Se Aiv than pelleted and raw meat diets. Se Aiv correlated positively with CP digestibility in extruded diets (kibbles, n 19; r 0·540, P =0·017) and negatively in canned diets (n 16; r - 0·611, P =0·012). Moreover, the canning process (n 4) decreased Se Aiv (P =0·001), whereas extrusion (n 4) revealed no effect on Se Aiv (P =0·297). These differences in Se Aiv between diet types warrant quantification of diet type effects on in vivo Se bioavailability.

  6. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos.

    PubMed

    Rainbow, Philip S; Hildrew, Alan G; Smith, Brian D; Geatches, Tim; Luoma, Samuel N

    2012-07-01

    It has been proposed that bioaccumulated concentrations of toxic metals in tolerant biomonitors be used as indicators of metal bioavailability that could be calibrated against the ecological response to metals of sensitive biotic assemblages. Our hypothesis was that metal concentrations in caddisfly larvae Hydropsyche siltalai and Plectrocnemia conspersa, as tolerant biomonitors, indicate metal bioavailability in contaminated streams, and can be calibrated against metal-specific ecological responses of mayflies. Bioaccumulated concentrations of Cu, As, Zn and Pb in H. siltalai from SW English streams were related to the mayfly assemblage. Mayflies were always sparse where bioavailabilities were high and were abundant and diverse where bioavailabilities of all metals were low, a pattern particularly evident when the combined abundance of heptageniid and ephemerellid mayflies was the response variable. The results offer promise that bioaccumulated concentrations of metals in tolerant biomonitors can be used to diagnose ecological impacts on stream benthos from metal stressors.

  7. Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant.

    PubMed

    Covino, Stefano; Svobodová, Katerina; Cvancarová, Monika; D'Annibale, Alessandro; Petruccioli, Maurizio; Federici, Federico; Kresinová, Zdena; Galli, Emanuela; Cajthaml, Tomás

    2010-05-01

    The objective of the study was to investigate the impact of chopped wheat straw (CWS), ground corn cobs (GCC) and commercial pellets (CP), as inoculum carriers, on both growth and polycyclic aromatic hydrocarbons (PAH) degradation performances of Dichomitus squalens, Pleurotus ostreatus and Coprinus comatus. A historically-contaminated soil (HCS) and creosote-treated shavings (CTS) from the Sobeslav wood preservation plant, characterized by different relative abundances of the PAH bioavailable fractions, were used to assess the contaminated matrix effect and its interaction with both carrier and fungal strain. In HCS, best results were obtained with CP-immobilized P. ostreatus, which was able to deplete benzo[a]anthracene, chrysene, benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and benzo[a]pyrene (BaP) by 69.1%, 29.7%, 39.7%, 32.8% and 85.2%, respectively. Only few high-molecular mass PAHs such as BbF, BkF and BaP were degraded beyond their respective bioavailable fractions and this effect was confined to a limited number of inoculants. In CTS, only phenanthrene degradation exceeded its respective bioavailability from 1.42 to 1.86-fold. Regardless of both inoculum carrier and fungal species, degradation was positively and significantly (P<0.001) correlated with bioavailability in fungal microcosms on HCS and CTS and such correlation was very similar in the two matrices (R(adj)(2) equal to 0.60 and 0.59, respectively). The ability of white-rot fungi to degrade certain PAHs beyond their bioavailability was experimentally proven by this study. Although CTS and HCS considerably differed in their physico-chemical properties, PAH contents and contaminant aging, the relationship between degradation and bioavailability was not significantly affected by the type of matrix.

  8. Selenium in San Francisco Bay - 30 Years of Surprises

    NASA Astrophysics Data System (ADS)

    Cutter, G. A.

    2015-12-01

    The trace element selenium exists in multiple oxidation states (VI, IV, 0, -II) and chemical forms within an oxidation state, and this chemical speciation affects its bio-availability and geochemical cycling. The interactions between the physical circulation and riverine inputs, changing ecosystem components, and industrial inputs to the San Francisco Bay have had profound and surprising influences on the biogeochemical behavior of selenium in this estuary. In the mid-1980s dissolved selenium was relatively elevated and enriched in selenite (SeIV) in the mid-estuary, occurrences that were quantitatively linked to inputs from oil refinery effluents. Suspended particulate selenium concentrations were at a level considered problematic for filter feeding clams with high assimilation efficiencies. By 1999 oil refineries had implemented selenium removal processes that dramatically dropped the concentrations of total dissolved selenium and selenite by over 65% in the estuarine water column. Surprisingly, the concentrations of selenium in suspended particles did not drop as dramatically. We suspect that changes in the ecosystem, including the abundance of certain phytoplankton species and changes in benthic grazing affect the abundance of selenium in suspended particles. These and other changes within the San Francisco Bay system have been simulated in numerical models that reveal other surprising aspects of selenium cycling in this estuary. Data and models will be discussed in this presentation, and implications for other trace elements presented.

  9. Solubility constraints affecting the migration of selenium through the cementitious backfill of a geological disposal facility.

    PubMed

    Felipe-Sotelo, M; Hinchliff, J; Evans, N D M; Read, D

    2016-03-15

    This work presents the study of the solubility of selenium under cementitious conditions and its diffusion, as SeO3(2-), through monolithic cement samples. The solubility studies were carried out under alkaline conditions similar to those anticipated in the near-field of a cement-based repository for low- and intermediate-level radioactive waste. Experiments were conducted in NaOH solution, 95%-saturated Ca(OH)2, water equilibrated with a potential backfill material (Nirex reference vault backfill, NRVB) and in solutions containing cellulose degradation products, with and without reducing agents. The highest selenium concentrations were found in NaOH solution. In the calcium-containing solutions, analysis of the precipitates suggests that the solubility controlling phase is Ca2SeO3(OH)2·2H2O, which appears as euhedral rhombic crystals. The presence of cellulose degradation products caused an increase in selenium concentration, possibly due to competitive complexation, thereby, limiting the amount of calcium available for precipitation. Iron coupons had a minor effect on selenium solubility in contrast to Na2S2O4, suggesting that effective reduction of Se(IV) occurs only at Eh values below -300mV. Radial through-diffusion experiments on NRVB and in a fly ash cement showed no evidence of selenium breakthrough after one year. However, autoradiography of the exposed surfaces indicated that some migration had occurred and that selenium was more mobile in the higher porosity backfill than in the fly ash cement.

  10. Dietary Selenium (Se) and Copper (Cu) Interact to Affect Homocysteine Metabolism in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whethe...

  11. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed.

  12. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues.

    PubMed

    Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco

    2013-09-01

    Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms.

  13. Investigation of stillbirths, perinatal mortality and weakness in beef calves with low-selenium whole blood concentrations.

    PubMed

    Davis, Anthony J; Myburgh, Jan G

    2016-07-15

    In this on-farm investigation, we report on stillbirths, weakness and perinatal mortality seen in calves on a commercial beef farm in the Roossenekal area, Mpumalanga province, South Africa. Post-mortem examination of these calves and histopathological examination of organ and tissue samples did not indicate an infectious aetiology. Affected calves had marginal to deficient whole blood selenium concentrations. Whole blood samples collected from adult cattle on this farm and five neighbouring farms were deficient in selenium. The potential contributions of other minerals to the symptoms seen are a subject of ongoing investigation, but selenium deficiency was marked in this herd and required urgent correction. Methods to correct the deficiency included the use of injectable products, and an oral selenium supplement chelated to methionine. Selenium availability to plants is primarily determined by the selenium content of the parent bedrock, the presence of other minerals and the pH of the soil. The apparent sudden onset of this problem implicates a soil factor as being responsible for reducing selenium's bioavailability in this area. Selenium deficiency can have a significant impact on human health. HIV and/or AIDS, various forms of cancer and several specific clinical syndromes are associated with selenium deficiency in humans, and the impact on human health in this area also requires further investigation.

  14. Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: an isotope dilution study.

    PubMed

    Van Moorleghem, Christoff; De Schutter, Nynke; Smolders, Erik; Merckx, Roel

    2013-06-01

    Phosphorus (P) starved algae have a capacity to rapidly take up P when resupplied to P. This study was set-up to measure to what extent P starvation enhances the potential of algae to utilize organic P forms. The initial (<0.5 h) PO4 uptake rates of cells of Pseudokirchneriella subcapitata increased up to 18-fold with increasing starvation. Algae from different levels of P starvation were subsequently exposed to different model organic P forms and carrier-free (33)PO4. Uptake (1h) of P from organic P-increased up to 5-fold with increasing P starvation. The bioavailability of organic P, relative to PO4, was calculated from uptake of (31)P and (33)P isotopes assuming no isotopic exchange with organic P-forms. This relative bioavailability ranged from 0 to 57% and remained generally unaffected by the extent of P-starvation. This result was found for cells that were either or not treated by a wash method to remove extracellular phosphatases. Short-term P uptake rate sharply increases with decreasing internal P content of the algal cells but the bioavailability of organic P, relative to PO4, is not enhanced. Such finding suggests that P-starvation enhances PO4 uptake capacity and organic P hydrolysis capacity to about the same extent.

  15. Selenium Sulfide

    MedlinePlus

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  16. Technical issues affecting the implementation of US Environmental Protection Agency's proposed fish tissue-based aquatic criterion for selenium.

    PubMed

    Lemly, A Dennis; Skorupa, Joseph P

    2007-10-01

    The US Environmental Protection Agency is developing a national water quality criterion for selenium that is based on concentrations of the element in fish tissue. Although this approach offers advantages over the current water-based regulations, it also presents new challenges with respect to implementation. A comprehensive protocol that answers the "what, where, and when" is essential with the new tissue-based approach in order to ensure proper acquisition of data that apply to the criterion. Dischargers will need to understand selenium transport, cycling, and bioaccumulation in order to effectively monitor for the criterion and, if necessary, develop site-specific standards. This paper discusses 11 key issues that affect the implementation of a tissue-based criterion, ranging from the selection of fish species to the importance of hydrological units in the sampling design. It also outlines a strategy that incorporates both water column and tissue-based approaches. A national generic safety-net water criterion could be combined with a fish tissue-based criterion for site-specific implementation. For the majority of waters nationwide, National Pollution Discharge Elimination System permitting and other activities associated with the Clean Water Act could continue without the increased expense of sampling and interpreting biological materials. Dischargers would do biotic sampling intermittently (not a routine monitoring burden) on fish tissue relative to the fish tissue criterion. Only when the fish tissue criterion is exceeded would a full site-specific analysis including development of intermedia translation factors be necessary.

  17. The poor bioavailability of elemental iron in corn masa flour is not affected by disodium EDTA.

    PubMed

    Walter, Tomas; Pizarro, Fernando; Boy, Erick; Abrams, Steven A

    2004-02-01

    The most sustainable way to eradicate iron deficiency is through food fortification. Elemental iron powders are commonly utilized as fortificants due to their low cost and few sensory problems. However, their bioavailability is unknown. Our goals were to measure the bioavailability of elemental iron in Mexican style corn masa flour tortillas and to evaluate the effects of Na(2)EDTA. We used a stable isotope of H(2)-reduced iron powder, with and without Na(2)EDTA in tortillas prepared with corn masa flour. Two groups of 5- to 7-y-old children (n = 12/group) were fed tortillas to which was added 3 mg/100 g of H(2)-reduced (58)Fe with a mean particle size of 15 micro m. In one group, Na(2)EDTA was incorporated at a ratio of 1:2 mol/mol. The next day, (57)Fe ascorbate was given as a reference dose. After 14 d, blood samples were analyzed for isotopic enrichment. When normalized to 40% absorption of the reference dose, the geometric mean (+/-range 1 SD) bioavailability of reduced iron in tortilla was 3.8% (2.7-5.3). The addition of Na(2)EDTA, tended to increase it (P = 0.18) to 5.1% (2.8-9.2). This observed low absorption was compounded by the use of iron isotopes with smaller particle size (mean diameter 15 micro m) than typical of commercial elemental iron powder (<45 micro m). We conclude that H(2)-reduced iron powder is an ineffective fortificant in corn tortillas.

  18. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  19. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice.

    PubMed

    Tsuji, Petra A; Carlson, Bradley A; Anderson, Christine B; Seifried, Harold E; Hatfield, Dolph L; Howard, Michael T

    2015-08-06

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake.

  20. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol.

    PubMed

    Cerny, Katheryn L; Anderson, Les; Burris, Walter R; Rhoads, Michelle; Matthews, James C; Bridges, Phillip J

    2016-03-15

    In areas where soils are deficient in selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Selenium status affects fertility, and the form of Se supplemented to cows affects tissue-specific gene expression profiles. The objective of this study was to determine whether the form of Se consumed by cows would affect follicular growth and the production of steroids. Thirty-three Angus-cross cows that had ad libitum access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX) for 180 days were used. After 170 days of supplementation, all cows were injected with 25-mg PGF2α to induce regression of the CL and then monitored for behavioral estrus (Day 0). From Day 4 to Day 8 after estrus, follicular growth was determined by transrectal ultrasonography. On Day 6, cows were injected with PGF2α (20 then 15 mg, 8-12 hours apart) to induce regression of the developing CL and differentiation of the dominant follicle of the first follicular wave into a preovulatory follicle. On Day 8, 36 hours after PGF2α (20 mg), the contents of the preovulatory follicle were aspirated by ultrasound-guided follicular puncture. Blood collected on Days 6 and 8 and follicular fluid collected on Day 8 was analyzed for concentrations of progesterone and estradiol. Form of Se supplemented to cows affected (P = 0.04) the systemic concentration of progesterone on Day 6, but not on Day 8. Form of Se did not affect the systemic concentration of estradiol on Day 6 or Day 8. Form of Se tended to affect (P = 0.07) the concentration of progesterone, but not that of estradiol, in the follicular fluid. Form of Se did not affect diameter of the dominant ovarian follicle on Days 4 to 6, but tended to affect (P = 0.08) the diameter of the preovulatory follicle on Day 8. Our results suggest that form of Se fed to cows affects the production of progesterone but not that

  1. Selenium and human health.

    PubMed

    Rayman, Margaret P

    2012-03-31

    Selenium is incorporated into selenoproteins that have a wide range of pleiotropic effects, ranging from antioxidant and anti-inflammatory effects to the production of active thyroid hormone. In the past 10 years, the discovery of disease-associated polymorphisms in selenoprotein genes has drawn attention to the relevance of selenoproteins to health. Low selenium status has been associated with increased risk of mortality, poor immune function, and cognitive decline. Higher selenium status or selenium supplementation has antiviral effects, is essential for successful male and female reproduction, and reduces the risk of autoimmune thyroid disease. Prospective studies have generally shown some benefit of higher selenium status on the risk of prostate, lung, colorectal, and bladder cancers, but findings from trials have been mixed, which probably emphasises the fact that supplementation will confer benefit only if intake of a nutrient is inadequate. Supplementation of people who already have adequate intake with additional selenium might increase their risk of type-2 diabetes. The crucial factor that needs to be emphasised with regard to the health effects of selenium is the inextricable U-shaped link with status; whereas additional selenium intake may benefit people with low status, those with adequate-to-high status might be affected adversely and should not take selenium supplements.

  2. GPX1 Pro198Leu polymorphism and GSTM1 deletion do not affect selenium and mercury status in mildly exposed Amazonian women in an urban population.

    PubMed

    Rocha, Ariana V; Rita Cardoso, Bárbara; Zavarize, Bruna; Almondes, Kaluce; Bordon, Isabella; Hare, Dominic J; Teixeira Favaro, Déborah Inês; Franciscato Cozzolino, Silvia Maria

    2016-11-15

    Mercury is potent toxicant element, but its toxicity can be reduced by forming a complex with selenium for safe excretion. Considering the impact of mercury exposure in the Amazon region and the possible interaction between these two elements, we aimed to assess the effects of Pro198Leu polymorphism to GPX1 and GSTM1 deletion, on mercury levels in a population from Porto Velho, an urban locality in the Brazilian Amazon region. Two hundred women from the capital city of Rondônia state were recruited for this study with 149 deemed suitable to participate. We assessed dietary intake using 24-hour recall. Selenium levels in plasma and erythrocytes were measured using hydride generation quartz tube atomic absorption spectroscopy and total hair mercury using cold vapor atomic absorption spectrometry. Oxidative stress parameters (GPx activity, oxygen radical absorbency capacity [ORAC] and malondialdehyde [MDA]) were also analyzed. All participants were genotyped for Pro198Leu polymorphism and GSTM1 deletion. We observed that this population presented high prevalence of selenium deficiency, and also low levels of mercury, likely due to food habits that did not include selenium-rich food sources or significant consumption of fish (mercury biomagnifiers) regularly. Univariate statistical analysis showed that Pro198Leu and GSTM1 genotypes did not affect selenium and mercury levels in this population. Pro198Leu polymorphism and GSTM1 deletion had no effect on mercury levels in mildly exposed people, suggesting these genetic variants impact mercury levels only in highly exposed populations.

  3. Analysis of bioavailable Ge in agricultural and mining-affected-soils in Freiberg area (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Heilmeier, Hermann

    2014-05-01

    Germanium (Ge) concentrations in different soil fraction were investigated using a sequential selective dissolution analysis and a rhizosphere-based single-step extraction method for the identification of Ge-bearing soil fractions and prediction of bioavailability of Ge in soil to plants. About 50 soil samples were collected from various soil depths (horizons A and B) and study sites with different types of land use (dry and moist grassland, arable land, mine dumps) in Freiberg area (Saxony, Germany). Ge has been extracted in six soil fractions: mobile fraction, organic matter and sulfides, Mn- and Fe-oxides (amorphous and crystalline), and kaolinite and phytoliths, and residual fraction. The rhizosphere-based method included a 7-day-long extraction sequence with various organic acids like citric acid, malic acid and acetic acid. For the residue the aforementioned sequential extraction has been applied. The Ge-content of the samples have been measured with ICP-MS using rhodium internal standard and two different soil standards. Total Ge concentrations were found to be in the range of 1.6 to 5.5 ppm with highest concentrations on the tailing site in the mining area of Altenberg. The mean Ge concentration in agriculturally used soils was 2.6 ± 0.67 ppm, whereas the maximum values reach 2.9 ± 0.64 ppm and 3.2 ± 0.67 ppm in Himmelsfürst and in a grassland by the Mulde river, respectively. With respect to the fractions, the vast majority of Ge is contained in the last three fractions, indicating that the bioavailable Ge is typically low in the samples. On the other hand at the soil horizons A at the aforementioned two sites characterised by high total Ge, together with that of Reiche Zeche mine dump have also the highest concentrations of Ge in the first three fractions, reaching levels of 1.74 and 0.98 ppm which account for approximately 40% of the total Ge content. Ge concentrations of soil samples extracted with 0.01 or 0.1 M citric acid and malic acid were

  4. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?

    PubMed

    Rainbow, P S; Kriefman, S; Smith, B D; Luoma, S N

    2011-03-15

    Many estuaries of southwest England were heavily contaminated with toxic metals associated with the mining of copper and other metals, particularly between 1850 and 1900. The question remains whether the passage of time has brought remediation to these estuaries. In 2003 and 2006 we revisited sites in 5 metal-contaminated estuaries sampled in the 1970s and 1980s - Restronguet Creek, Gannel, West Looe, East Looe and Tavy. We evaluate changes in metal contamination in sediments and in metal bioavailabilities in sediments and water to local organisms employed as biomonitors. We find that the decline in contamination in these estuaries is complex. Differences in bioavailable contamination in the water column were detectable, as were significant detectable changes in at least some estuaries in bioavailable metal contamination originating from sediments. However, in the 100 years since mining activities declined, bioavailable contamination has not declined to the regional baseline in any estuary affected by the mine wastes. The greatest decline in contamination occurred in the one instance (East Looe) where a previous industrial source of (Ag) contamination was considered. We used the macroalgae Fucus vesiculosus and Ascophyllum nodosum as biomonitors of dissolved metal bioavailabilities and the deposit feeders Nereis diversicolor and Scrobicularia plana as biomonitors of bioavailable metal in sediments. We found no systematic decrease in the atypically high Ag, Cu, Pb and Zn concentrations in the estuarine sediments over a 26 year period. Accumulated metal (Ag, As, Cu, Pb, and Zn) concentrations in the deposit feeders are similarly still atypically high in at least one estuary for each metal, and there is no consistent evidence for general decreases in sediment metal bioavailabilities over time. We conclude that the legacy of mining in sheltered estuaries of southwest England is the ongoing presence of sediments rich in metals bioavailable to deposit feeders, while

  5. Factors affecting mercury and selenium levels in New Jersey flatfish: low risk to human consumers.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Shukla, Sheila; Gochfeld, Michael

    2009-01-01

    Some fish contain high levels of mercury (Hg), which could pose a risk to fish eaters themselves or their children. In making decisions about fish consumption, people must decide whether to eat fish, how much to eat, what species to eat, and what size fish to eat, as well as suitable (or unsuitable) locations, among other factors. Yet to make sound decisions, people need to know the levels of Hg in fish as a function of species, size, and location of capture. Levels of Hg and selenium (Se) were examined in three species of flatfish (fluke or summer flounder [Paralichthys dentatus], winter flounder [Pseudopleuronectes americanus], and windowpane [Scophthalmus aquosus]) from New Jersey as a function of species, fish size, season, and location. Flatfish were postulated to have low levels of Hg because they are low on the food chain and are bottom feeders, and data were generated to provide individuals with information on a species that might be safe to eat regularly. Although there were interspecific differences in Hg levels in the 3 species, total Hg levels averaged 0.18, 0.14, and 0.06 ppm (microg/g, wet weigh) in windowpane, fluke, and winter flounder, and selenium levels averaged 0.36, 0.35, and 0.25 ppm, respectively. For windowpane, 15% had Hg levels above 0.3 ppm, but no individual fish had Hg levels over 0.5 ppm. There were no significant seasonal differences in Hg levels, although Se was significantly higher in fluke in summer compared to spring. There were few geographical differences among New Jersey locations. Correlations between Hg and Se levels were low. Data, based on 464 fish samples, indicate that Hg levels are below various advisory levels and pose little risk to typical New Jersey fish consumers. A 70-kg person eating 1 meal (8 oz or 227 g) per week would not exceed the U.S. Environmental Protection Agency reference dose of 0.1 microg/kg body weight/d of methylmercury (MeHg). However, high-end fish eaters consuming several such meals per week may

  6. Factors Affecting Mercury and Selenium Levels-in New Jersey Flatfish: Low Risk to Human Consumers

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Shukla, Sheila; Gochfeld, Michael

    2014-01-01

    Some fish contain high levels of mercury (Hg), which could pose a risk to fish eaters themselves or their children. In making decisions about fish consumption, people must decide whether to eat fish, how much to eat, what species to eat, and what size fish to eat, as well as suitable (or unsuitable) locations, among other factors. Yet to make sound decisions, people need to know the levels of Hg in fish as a function of species, size, and location of capture. Levels of Hg and selenium (Se) were examined in three species of flatfish (fluke or summer flounder [Paralichthys dentatus], winter flounder [Pseudopleuronectes americanus], and windowpane [Scophthalmus aquosus]) from New Jersey as a function of species, fish size, season, and location. Flatfish were postulated to have low levels of Hg because they are low on the food chain and are bottom feeders, and data were generated to provide individuals with information on a species that might be safe to eat regularly. Although there were interspecific differences in Hg levels in the 3 species, total Hg levels averaged 0.18, 0.14, and 0.06 ppm (μg/g, wet weigh) in windowpane, fluke, and winter flounder, and selenium levels averaged 0.36, 0.35, and 0.25 ppm, respectively. For windowpane, 15% had Hg levels above 0.3 ppm, but no individual fish had Hg levels over 0.5 ppm. There were no significant seasonal differences in Hg levels, although Se was significantly higher in fluke in summer compared to spring. There were few geographical differences among New Jersey locations. Correlations between Hg and Se levels were low. Data, based on 464 fish samples, indicate that Hg levels are below various advisory levels and pose little risk to typical New Jersey fish consumers. A 70-kg person eating 1 meal (8 oz or 227 g) per week would not exceed the U.S. Environmental Protection Agency reference dose of 0.1 μg/kg body weight/d of methylmercury (MeHg). However, high-end fish eaters consuming several such meals per week may exceed

  7. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats.

    PubMed

    Berthelsen, Ragna; Holm, René; Jacobsen, Jette; Kristensen, Jakob; Abrahamsson, Bertil; Müllertz, Anette

    2015-04-06

    Selection of excipients for drug formulations requires both intellectual and experimental considerations as many of the used excipients are affected by physiological factors, e.g., they may be digested by pancreatic enzymes in the gastrointestinal tract. In the present paper we have looked systematically into the differences between Kolliphor ELP, EL, and RH40 and how they affect the bioavailability of fenofibrate, through pharmacokinetic studies in rats and in vitro lipolysis studies. The study design was made as simple as possible to avoid confounding factors, for which reason the tested formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2-25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0-24h values. For the Kolliphor RH40 formulations, an apparent fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0-24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles. In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better choice for solubilizing fenofibrate in order to increase the absorption upon oral administration. Due to drug dependent effects of the different types of Kolliphor, more studies are recommended in order to understand which type of Kolliphor is best suited for a given drug.

  8. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  9. Surface applied water treatment residuals affect bioavailable phosphorus losses in Florida sands.

    PubMed

    Oladeji, Olawale O; O'Connor, George A; Brinton, Scott R

    2008-09-01

    Water treatment residuals (WTR) can reduce runoff P loss and surface co-application of P-sources and WTR is a practical way of land applying the residuals. In a rainfall simulation study, we evaluated the effects of surface co-applied P-sources and an Al-WTR on runoff and leacheate bioavailable P (BAP) losses from a Florida sand. Four P-sources, namely poultry manure, Boca Raton biosolids (high water-soluble P), Pompano biosolids (moderate water-soluble P), and triple super phosphate (TSP) were surface applied at 56 and 224 kg P ha(-1) (by weight) to represent low and high soil P loads typical of P- and N-based amendments rates. The treatments further received surface applied WTR at 0 or 10 g WTR kg(-1) soil. BAP loss masses were greater in leachate (16.4-536 mg) than in runoff (0.91-46 mg), but were reduced in runoff and leachate by surface applied WTR. Masses of total BAP lost in the presence of surface applied WTR were less than approximately 75% of BAP losses in the absence of WTR. Total BAP losses from each of the organic sources applied at N-based rates were not greater than P loss from TSP applied at a P-based rate. The BAP loss at the N-based rate of moderate water-soluble P-source (Pompano biosolids) was not greater than BAP losses at the P-based rates of other organic sources tested. The hazards of excess P from applying organic P-sources at N-based rates are not greater than observed at P-based rates of mineral fertilizer. Results suggest that management of the environmental P hazards associated with N-based rates of organic materials in Florida sands is possible by either applying P-sources with WTR or using a moderate water-soluble P-source.

  10. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants.

    PubMed

    Matijevic, Lana; Romic, Davor; Romic, Marija

    2014-10-01

    Processes that control the mobility, transformation and toxicity of metals in soil are of special importance in the root-developing zone. For this reason, there is a considerable interest in understanding trace elements (TEs) behavior in soil, emphasising the processes by which plants take them up. Increased root-zone salinity can affect plant TEs uptake and accumulation in plant tissue. Furthermore, copper (Cu) complexation by soil organic matter (SOM) is an effective mechanism of Cu retention in soils, controlling thus its bioavailability. Therefore, a greenhouse pot experiment was conducted to study the effects of soil Cu contamination in a saline environment on faba bean (Vicia faba L.) element uptake. Treatment with NaCl salinity was applied (control, 50 mM NaCl and 100 mM NaCl) on faba bean plants grown in a control and in a soil spiked with Cu (250 and 500 mg kg(-1)). Low and high SOM content trial variants were studied. Cu accumulation occurred in faba bean leaf, pod and seed. Cu contamination affected plant element concentrations in leaves (Na, Ca, Mg, Mn), pod (Zn, Mn) and seed (Mn, Mo, Zn). Root-zone salinity also affected faba bean element concentrations. Furthermore, Cu contamination-salinity and salinity-SOM interactions were significant for pod Cu concentration, suggesting that Cu phytoavailability could be affected by these interactions. Future research will be focused on the mechanisms of Cu translocation in plant and adaptation aspects of abiotic stress.

  11. Soil Redox Chemistry Limitation of Selenium Concentration in Carex Species Sedges

    SciTech Connect

    Bruce J. Mincher; John Mionczynski; Patrick A. Hnilicka

    2007-09-01

    The trace element selenium (Se) is required in the production of enzymes that protect mammalian cells from oxidative damage due to the byproducts of aerobic respiration. Its deficiency in livestock results in the nutritional muscular dystrophy called white muscle disease. This especially affects juveniles in the preweaning period. Symptoms have also been reported in wild herbivores on low-Se forage, and their appearance may be episodic, suggesting temporal variations in Se uptake by plants. Here, we report variations in selenium concentrations in Carex spp. sedges used as forage by bighorn sheep (Ovis canadensis) on summer range in the Wyoming, Wind River Mountains, and correlate those variations with soil conditions that affect the bioavailability of selenium. Variations in available Se are explained based upon the known oxidation/reduction chemistry of the element. It is concluded that water-saturated, alpine soils provide conditions suitable for the reduction of Se to the unavailable, elemental form, limiting its concentration in forage plants.

  12. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.

  13. Effects of selenium biofortification on crop nutritional quality.

    PubMed

    Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.

  14. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.

    PubMed

    Chen, Yi; Geurts, Marc; Sjollema, Sascha B; Kramer, Nynke I; Hermens, Joop L M; Droge, Steven T J

    2014-03-01

    Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants.

  15. Reproduction in mallards fed selenium

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Krynitsky, A.J.; Weller, D.M.G.

    1987-01-01

    Mallards (Anas platyrhynchos) were fed diets containing 1, 5, 10, 25 or 100 ppm selenium as sodium selenite, a diet containing 10 ppm selenium as seleno-DL-methionine or a control diet. There were no effects of 1, 5 or 10 ppm selenium as sodium selenite on either weight or survival of adults or on reproductive success, and there did not appear to be a dose-response relationship at these lower levels. The 100 ppm selenium diet killed 11 of 12 adults; one adult male fed 25 ppm selenium died. Selenium at 25 and 100 ppm caused weight loss in adults. Females fed 25 ppm selenium took longer to begin laying eggs and intervals between eggs were longer than in females in other treatment groups. Hatching success appeared to be reduced in birds fed 10 ppm selenium at selenomethionine, but the reduction was not statistically significant. The survival of ducklings and the mean number of 21-d-old ducklings produced per female were reduced in the 25 ppm selenium as sodium selenite group and the 10 ppm selenium as selenomethionine group. Egg weights were not affected by any selenium treatment, but 25 ppm selenium lowered the Ratcliffe Index. Duckling weights at hatching and at 21 d of age were reduced 28 and 36%, respectively, in birds fed 25 ppm selenium, as compared with controls. Body weights measured on day 21 were lower for ducklings fed 10 ppm selenium as selenomethionine than in some other groups. Selenium in concentrations of 10 and 25 ppm as sodium selenite caused mainly embryotoxic effects, whereas 10 ppm as selenomethionine was more teratogenic, causing hydrocephaly, bill defects, eye defects (microphthalmia and anophthalmia) and foot and toe defects, including ectrodactyly. Selenomethionine was much more readily taken up by mallards and passed into their eggs than was sodium selenite, and a greater proportion of the selenium in the eggs ended up in the white when selenomethionine was fed. Adult males accumulated more selenium than did females, probably because of the

  16. Selenium transformation in coal mine spoils

    SciTech Connect

    Atalay, A.; Koll, K.J.

    1990-09-01

    The objective of this part of the study is to investigate the oxidation-reduction (redox) environment that favor the release of selenium from coal mine spoils. It is anticipated that the study will help answer critical questions as to the form, solubility, and mobility of selenium from the spoil site to the surrounding environment. This investigation will evaluate the conditions which favor the speciation of selenium from coal mine spoils as affected by changes in the oxidation states of selenium.

  17. Aging Negatively Affects Estrogens-Mediated Effects on Nitric Oxide Bioavailability by Shifting ERα/ERβ Balance in Female Mice

    PubMed Central

    Novensà, Laura; Novella, Susana; Medina, Pascual; Segarra, Gloria; Castillo, Nadia; Heras, Magda; Hermenegildo, Carlos; Dantas, Ana Paula

    2011-01-01

    Aims Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2) during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO) production in a mouse model of accelerated senescence (SAM). Methods and Results Although we found no differences on NO production in females SAM prone (SAMP, aged) compared to SAM resistant (SAMR, young), by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3), in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O2-). Interestingly, E2 treatment decreased O2− production in young females, while increased O2− in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα) and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. Conclusions Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O2−. These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5′flanking region of ERα gene. PMID:21966501

  18. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae.

    PubMed

    Suhajda, A; Hegóczki, J; Janzsó, B; Pais, I; Vereczkey, G

    2000-04-01

    Selenium (Se) is an essential micronutrient for human and animal organisms. Organic selenium complexes and selenium-containing amino acids are considered the most bioavailable. Under appropriate conditions yeasts are capable of accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. It has been found that introduction of water-soluble selenium salt as a component of the culture medium for yeasts produced by conventional batch processing results in a substantial amount of selenium being absorbed by the yeast. Using a culture medium supplemented with 30 microg/mL sodium-selenite added during the exponential growth phase results in selenium-accumulation in the range of 1200-1400 microg/g dried baker's yeast (Saccharomyces cerevisiae) measured by ICP-AES method. In our previous studies it was shown that higher amounts of sodium-selenite in the culture medium have a strong inhibitory effect on the growth of this yeast. As a consequence of variations in cultivation conditions we obtained selenium yeast with different inorganic selenium content. The most important parameters influencing incorporated forms of selenium are pH value and dissolved oxygen level in the culture medium, and depending on these the selenium consumption rate of the yeast. A 0.40-0.50 mg/g h-1 specific selenium consumption rate was found to be appropriate to obtain selenium-enriched bakers' yeast of a high quality. Under suitable conditions the undesirable inorganic selenium content of the yeast could be suppressed to as low as 5-6% at the expense, however, of approximately a 20% decrease in the final biomass.

  19. Selenium Supplementation Affects Insulin Resistance and Serum hs-CRP in Patients with Type 2 Diabetes and Coronary Heart Disease.

    PubMed

    Farrokhian, A; Bahmani, F; Taghizadeh, M; Mirhashemi, S M; Aarabi, M H; Raygan, F; Aghadavod, E; Asemi, Z

    2016-04-01

    To our knowledge, this study is the first indicating the effects of selenium supplementation on metabolic status of patients with type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD). This study was conducted to evaluate the effects of selenium supplementation on metabolic profiles, biomarkers of inflammation, and oxidative stress of patients with T2DM and CHD. This randomized, double-blind, placebo-controlled trial was performed among 60 patients with T2DM and CHD aged 40-85 years. Participants were randomly divided into 2 groups. Group A received 200 μg selenium supplements (n=30) and group B received placebo per day (n=30) for 8 weeks. Fasting blood samples were taken at the beginning of the study and after 8-week intervention to quantify metabolic profiles. After 8 weeks, compared with the placebo, selenium supplementation resulted in a significant decrease in serum insulin levels (- 2.2±4.6 vs. + 3.6±8.4 μIU/ml, p=0.001), homeostasis model of assessment-insulin resistance (HOMA-IR) (- 0.7±1.3 vs. + 0.9±2.4, p=0.004), homeostatic model assessment-beta cell function (HOMA-B) (- 7.5±17.2 vs. + 15.1±34.5, p=0.002) and a significant increase in quantitative insulin sensitivity check index (QUICKI) (+0.01±0.03 vs. - 0.01±0.03, p=0.02). In addition, patients who received selenium supplements had a significant reduction in serum high-sensitivity C-reactive protein (hs-CRP) (- 1 372.3±2 318.8 vs. - 99.8±1 453.6 ng/ml, p=0.01) and a significant rise in plasma total antioxidant capacity (TAC) concentrations (+ 301.3±400.6 vs. - 127.2±428.0 mmol/l, p<0.001) compared with the placebo. A 200 μg/day selenium supplementation among patients with T2DM and CHD resulted in a significant decrease in insulin, HOMA-IR, HOMA-B, serum hs-CRP, and a significant increase in QUICKI score and TAC concentrations.

  20. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon.

    PubMed

    Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I

    2016-08-01

    In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments.

  1. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    USGS Publications Warehouse

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  2. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer.

    PubMed

    He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe

    2013-12-15

    The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program.

  3. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Hursky, Olesya; Pietrock, Michael

    2015-02-17

    In environmental studies, parasites are often seen as a product of enhanced host susceptibility due to exposure to one or several stressors, whereas potential consequences of infections on host responses are often overlooked. Therefore, the present study focused on effects of parasitism on bioaccumulation of selenium (Se) in rainbow trout (Oncorhynchus mykiss). Joint effects of biological (parasite) and chemical (Se) stressors on biomarkers of oxidative stress (glutathione-S-transferase (GST), superoxide dismutase (SOD)), and fish health (condition factor (K), hepatosomatic index (HSI), gross energy) were also examined. Fish of the control group received uncontaminated food, while test fish, either experimentally infected with the nematode Raphidascaris acus or not, were exposed to dietary selenomethionine (Se-Met) at an environmentally relevant dose over 7 weeks. Selenium bioaccumulation by the parasite was low relative to its host, and parasitized trout showed slowed Se accumulation in the muscle as compared to uninfected fish. Furthermore, GST and SOD activities of trout exposed to both Se-Met and parasites were generally significantly lower than in fish exposed to Se-Met alone. Gross energy concentrations, but not K or HSI, were reduced in fish exposed to both Se-Met and R. acus. Together the experiment strongly calls for consideration of parasites when interpreting effects of pollutants on aquatic organisms in field investigations.

  4. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on

  5. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment.

  6. Selenium elimination in pigs after an outbreak of selenium toxicosis.

    PubMed

    Davidson-York, D; Galey, F D; Blanchard, P; Gardner, I A

    1999-07-01

    In May 1996, 150 grower pigs in 5 California counties were exposed to selenium-contaminated feed distributed by a single feed company. Feed samples from 20 herds had a mean selenium concentration of 121.7 ppm dry weight (range, 22.1-531 ppm). In San Luis Obispo County, 52 pigs in 24 herds were exposed to the feed, and 8 pigs died with signs of paralysis. Bilateral symmetrical poliomyelomalacia involving the ventral horns of the cervical and lumbar intumescence was evident on histologic examination of spinal cord from affected pigs. Of 44 surviving exposed pigs, 33 (75%) exhibited signs of selenosis, including anorexia, alopecia, and hoof lesions. Thirty-nine of 44 pigs (88.6%) had elevated (>1 ppm) blood selenium concentrations. Surviving exposed pigs were changed to a standard commercial ration containing approximately 0.5 ppm (dry weight) selenium. Blood selenium concentrations were determined weekly for 46 days following removal of the contaminated feed and were compared with values of 20 control pigs fed a standard commercial ration. Mean (+/-SD) blood selenium concentrations of exposed pigs were 3.2 +/- 2.6 ppm at the initial sampling and 0.4 +/- 0.1 ppm after 46 days. Mean blood selenium concentrations of < or = 0.3 ppm for control pigs at all samplings were significantly lower (P < 0.001) than concentrations for exposed pigs. Muscle and liver samples of 22 of the 44 exposed pigs were collected at slaughter approximately 72 days after withdrawal of the selenium-contaminated feed. Muscle samples had a mean selenium concentration of 0.36 ppm (wet weight). Liver samples had a mean selenium concentration of 1.26 ppm (wet weight). One liver sample had a selenium value in the toxic range for pigs (3.3 ppm wet weight; reference range, 0.4-1.2 ppm). A 1-compartment pharmacokinetic model of selenium elimination in exposed pigs was generated, and the geometric mean blood selenium elimination half-life was estimated to be 12 days. The 60-day withdrawal time recommended

  7. Forms of selenium affect its transport, uptake and glutathione peroxidase activity in the Caco-2 cell model.

    PubMed

    Wang, Yanbo; Fu, Linglin

    2012-10-01

    The experiment was designed to investigate the effect of selenium (Se) chemical forms (sodium selenite, selenium nanoparticle [nano-Se] and selenomethionine) on the transport, uptake and glutathione peroxidase (GSH-Px) activity in the Caco-2 cell model. The transport and uptake of different forms of Se (0.1 μmol l(-1)) across the Caco-2 cell monolayer were carried out in two directions (apical [AP] to basolateral [BL] and BL to AP) for 2 h, respectively, and the apparent permeability coefficient (P(app)), transport efficiency and uptake efficiency were all calculated. In the present study, the transport and uptake of three forms of Se were time-dependent both in AP to BL and BL to AP directions. By the end of 2 h, the transport efficiencies of selenomethionine and nano-Se were higher than that of sodium selenite (P<0.05). The highest uptake efficiency (P<0.05) was observed in cells treated with nano-Se and significant difference (P<0.05) was also observed between the cells incubated with sodium selenite and selenomethionine. As for the P(app), sodium selenite (P<0.05) had the lowest values compared with that of selenomethionine and nano-Se, in both AP-BL and BL-AP. However, no significant differences were observed in GSH-Px activities. These results indicated that the efficiency of Se in the Caco-2 cells varied with its chemical forms, which might be associated with the differences in Se transport and uptake.

  8. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  9. Tolerance of the preruminant calf for selenium in milk replacer

    SciTech Connect

    Jenkins, K.J.; Hidiroglou, M.

    1986-07-01

    Calves were fed skim milk powder-based milk replacer containing either .2, 1, 3, 5, or 10 ppm selenium (added as sodium selenate) in the dry matter from 3 to 45 d of age to estimate the lowest amount of dietary selenium that would reduce calf performance and feed utilization. Only at the highest selenium (10 ppm) did calves show reduced average daily gain and feed efficiency and lower blood packed cell volume. Apparent digestibility of dry matter, nitrogen, and lipid, and plasma creatine phosphokinase activity were not affected by any of the selenium intakes. In general, selenium in blood, bile, duodenal mucosa, liver, kidney, and muscle reflected selenium intakes with liver and kidney reaching the highest selenium concentrations. Postmortem examinations of calves revealed no gross abnormalities for any of the selenium treatments. The preruminant calf is very tolerant of high inorganic selenium concentrations in skim milk powder-based milk replacer.

  10. Selenium sulfide

    Integrated Risk Information System (IRIS)

    Selenium sulfide ; CASRN 7446 - 34 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  11. Selenium transformation in coal mine spoils. Quarterly report

    SciTech Connect

    Atalay, A.; Koll, K.J.

    1990-09-01

    The objective of this part of the study is to investigate the oxidation-reduction (redox) environment that favor the release of selenium from coal mine spoils. It is anticipated that the study will help answer critical questions as to the form, solubility, and mobility of selenium from the spoil site to the surrounding environment. This investigation will evaluate the conditions which favor the speciation of selenium from coal mine spoils as affected by changes in the oxidation states of selenium.

  12. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    , lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  13. Redox regulation of protein tyrosine phosphatase 1B by manipulation of dietary selenium affects the triglyceride concentration in rat liver.

    PubMed

    Mueller, Andreas S; Klomann, Sandra D; Wolf, Nicole M; Schneider, Sandra; Schmidt, Rupert; Spielmann, Julia; Stangl, Gabriele; Eder, Klaus; Pallauf, Josef

    2008-12-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counter-regulation of insulin signaling and in the stimulation of fatty acid synthesis. Selenium (Se), via the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), is involved in the removal of H(2)O(2) and organic peroxides, which are critical compounds in the modulation of PTP1B activity via glutathionylation. Our study with growing rats investigated how the manipulation of dietary Se concentration influences the regulation of PTP1B and lipogenic effects mediated by PTP1B. Weanling albino rats were divided into 3 groups of 10. The negative control group (NC) was fed a Se-deficient diet for 8 wk. Rats in groups Se75 and Se150 received diets supplemented with 75 or 150 microg Se/kg. Se supplementation of the rats strongly influenced expression and activity of the selenoenzymes cytosolic GPx, plasma GPx, phospholipidhydroperoxide GPx, and cytosolic TrxR, and liver PTP1B. Liver PTP1B activity was significantly higher in groups Se75 and Se150 than in the NC group and this was attributed to a lowered inhibition of the enzyme by glutathionylation. The increased liver PTP1B activity in groups Se75 and Se150 resulted in 1.1- and 1.4-fold higher liver triglyceride concentrations than in the NC rats. The upregulation of the sterol regulatory element binding protein-1c and of fatty acid synthase, 2 PTP1B targets, provided a possible explanation for the lipogenic effect of PTP1B due to the manipulation of dietary Se. We therefore conclude that redox-regulated proteins, such as PTP1B, represent important interfaces between dietary antioxidants such as Se and the regulation of metabolic processes.

  14. Genetic variability for iron and zinc as well as antinutrients affecting bioavailability in black gram (Vigna mungo (L.) Hepper).

    PubMed

    Singh, Jagdish; Kanaujia, Rajani; Srivastava, A K; Dixit, G P; Singh, N P

    2017-03-01

    The mineral content of pulses is generally high, but the bioavailability is poor due to the presence of phytate and polyphenols which inhibits Fe absorption. In the present study, the genetic variability and heritability for seed Fe and Zn content was studied. The effect of genotypes was significant for all the quality traits indicating presence of enough variability among the blackgram genotypes for the traits. The Fe content in 26 blackgram genotypes ranged from 71.02 to 100.20 ppm, whereas Zn content ranged from 18.93 to 60.58 ppm. Maximum Fe as well as Zn was recorded in genotype SHEKHAR 2 (100.2 and 60.58 ppm respectively). The Phytic acid and polyphenol content among genotypes varied significantly and it ranged from 0.06-0.37% to 5.88-9.03 mg/g, respectively. High phytic acid content was recorded in black gram genotypes COBG 653, Nodai Urd, NP 03 and PKG U 03, whereas high polyphenol content was recorded in PU 31, IPU 99-200, PDU 1 and YAKUBPUR 2. Blackgram genotype COBG 653 had high phytic acid but low polyphenol content. The genotype × year interaction was significant for all the traits under study which indicates differential reaction to the expression of quality characters over years. Fe content in blackgram genotypes showed significant positive phenotypic correlation with Zn content while at genotypic level in addition to Zn, it showed positive correlation with phytic acid and polyphenol content as well. This indicates that although the traits are genotypically correlated, the expression is masked by the environmental influence. This is further exhibited from low heritability estimates for phytic acid and polyphenol content among the genotypes.

  15. Selenium accumulation and selenium-salt co-tolerance in five grass species. [Festuca arundinaceae; Agropyron deserorum; Buchloe dactyloides; Agrostis stolonifera; Cynodon dactylon

    SciTech Connect

    Wu, L.; Huang, Z.; Burau, R.G.

    1987-04-01

    Five grass species including Tall fescue (Festuca arundinaceae Schred), Crested wheatgrass (Agropyron deserorum Fisch), Buffalo grass (Buchlor dactyloides (Nutt.) Engelm.), Seaside bentgrass (Agrostis stolonifera L.) and Bermuda grass (Cynodon dactylon (L.) Pers., Syn.) were examined for selenium and salt tolerance and selenium accumulation under solution culture conditions. Distinct differences in both selenium and salt tolerance were detected among the five species, but no direct association between selenium and salt resistance was found. Tall fescue displayed considerable tolerance under 1 ppm selenium and 100 mM salt treatment. Combined selenium and salt treatment revealed that selenium uptake was increased by the incorporation of salt in the culture solution. However, salt uptake was not significantly affected by the presence of selenium in the culture solution. At moderate toxic levels of selenium, the species with greater tolerance accumulated less selenium than did the less tolerant species.

  16. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    PubMed Central

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  17. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    PubMed

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L(-1) resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  18. Interaction between mercury (Hg), arsenic (As) and selenium (Se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and sellfish intake.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Celis de la Rosa, Alfredo de Jesús; Acosta-Vargas, Baudilio; Méndez-Rodríguez, Lía Celina; Zenteno-Savín, Tania

    2014-08-01

    Breast milk is regarded as an ideal source of nutrients for the growth and development of neonates, but it can also be a potential source of pollutants. Mothers can be exposed to different contaminants as a result of their lifestyle and environmental pollution. Mercury (Hg) and arsenic (As) could adversely affect the development of fetal and neonatal nervous system. Some fish and shellfish are rich in selenium (Se), an essential trace element that forms part of several enzymes related to the detoxification process, including glutathione S-transferase (GST). The goal of this study was to determine the interaction between Hg, As and Se and analyze its effect on the activity of GST in breast milk. Milk samples were collected from women between day 7 and 10 postpartum. The GST activity was determined spectrophotometrically; total Hg, As and Se concentrations were measured by atomic absorption spectrometry. To explain the possible association of Hg, As and Se concentrations with GST activity in breast milk, generalized linear models were constructed. The model explained 44% of the GST activity measured in breast milk. The GLM suggests that GST activity was positively correlated with Hg, As and Se concentrations. The activity of the enzyme was also explained by the frequency of consumption of marine fish and shellfish in the diet of the breastfeeding women.

  19. Hair sampling location in harbor seals (Phoca vitulina) affects selenium and mercury concentrations: implications for study design of trace element determination in pinnipeds.

    PubMed

    McHuron, Elizabeth A; Harvey, James T; Castellini, J Margaret; O'Hara, Todd M

    2012-11-01

    Hair is used to determine trace elements exposure and status of pinnipeds because it is an excretory route for many elements and can be collected non-lethally. Despite increased use, there have been few studies on how sampling designs and procedures (e.g., hair type, collection site) affect results. The objective of this study was to determine whether concentrations of an essential (selenium; Se) and non-essential element (mercury; Hg) differed between hair samples collected from two body locations on harbor seals (Phoca vitulina). Concentrations of Se and total Hg (THg) differed between mid-dorsal midline and neck samples, and although the absolute differences were relatively small (Δ(absolute) Se = 0.69 μg g(-1), Δ(absolute) THg = 2.86 μg g(-1)), the relative differences were large (Δ(relative) Se = 49%, Δ(relative) THg = 17%). These differences highlight the need to standardize the collection site for trace element determination in pinnipeds.

  20. Selenium species in selenium fortified dietary supplements.

    PubMed

    Niedzielski, Przemyslaw; Rudnicka, Monika; Wachelka, Marcin; Kozak, Lidia; Rzany, Magda; Wozniak, Magdalena; Kaskow, Zaneta

    2016-01-01

    This article presents a study of dietary supplements available on the Polish market. The supplements comprised a large group of products with selenium content declared by the producer. The study involved determination of dissolution time under different conditions and solubility as well as content and speciation of selenium. The total content was determined as well as organic selenium and the inorganic forms Se(IV) and Se(VI). The organic selenium content was calculated as the difference between total Se and inorganic Se. The values obtained were compared with producers' declarations. The work is the first such study of selenium supplements available on the market of an EU Member State.

  1. Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystal

    SciTech Connect

    Shin, Yongsoon; Blackwood, Jade M.; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2007-08-01

    Selenium nanoparticles of 10-20 nm in diameter have been prepared using cellulose nanocrystal (CNXL) as a reducing and structure-directing agent under hydrothermal conditions. Na2SeO3 was reduced to form elemental selenium nanoparticles under hydrothermal conditions. During the hydrothermal process (120-160 oC), CNXL rods were mainly maintained and selenium nanoparticles were interfacially bound to CNXL surface. The reaction temperature affects the sizes of interfacially bound selenium nanoparticles. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and transmission electron microscope (TEM) were employed to characterize interfacially bound selenium nanoparticles on CNXL surface.

  2. Selenium deficiency and the effects of supplementation on preterm infants

    PubMed Central

    Freitas, Renata Germano B. O. N.; Nogueira, Roberto José N.; Antonio, Maria Ângela R. G. M.; Barros-Filho, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: This study aimed to review the literature about blood concentrations of selenium associated with gestational age, feeding, supplementation and related clinical features in preterm infants. Data sources: Systematic review in the following databases: MEDLINE, PubMed, Google academics, SciELO. org, ScienceDirect (Elsevier) and CINAHL-Plus with Full Text (EBSCO). Articles published up to January 2013 with the keywords "selenium deficiency", "selenium supplementation", "neonates", "infants", "newborn" and "preterm infants" were selected. Data synthesis: The studies reported that low blood selenium levels are associated with increased risk of respiratory diseases. Preterm infants, especially with low birth weight, presented lower selenium levels. Selenium deficiency has also been associated with the use of oral infant formula, enteral and parenteral nutrition (with or without selenium addition). The optimal dose and length of selenium supplementation is not well-established, since they are based only on age group and selenium ingestion by breastfed children. Furthermore, the clinical status of the infant affected by conditions that may increase oxidative stress, and consequently, selenium requirements is not taken into account. Conclusions: Prematurity and low birth weight can contribute to low blood selenium in premature infants. Selenium supplementation seems to minimize or prevent clinical complications caused by prematurity. PMID:24676200

  3. Arsenic and selenium in microbial metabolism

    USGS Publications Warehouse

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  4. Mapping mine wastes and analyzing areas affected by selenium-rich water runoff in southeast Idaho using AVIRIS imagery and digital elevation data

    USGS Publications Warehouse

    Mars, J.C.; Crowley, J.K.

    2003-01-01

    Remotely sensed hyperspectral and digital elevation data from southeastern Idaho are combined in a new method to assess mine waste contamination. Waste rock from phosphorite mining in the area contains selenium, cadmium, vanadium, and other metals. Toxic concentrations of selenium have been found in plants and soils near some mine waste dumps. Eighteen mine waste dumps and five vegetation cover types in the southeast Idaho phosphate district were mapped by using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) imagery and field data. The interaction of surface water runoff with mine waste was assessed by registering the AVIRIS results to digital elevation data, enabling determinations of (1) mine dump morphologies, (2) catchment watershed areas above each mine dump, (3) flow directions from the dumps, (4) stream gradients, and (5) the extent of downstream wetlands available for selenium absorption. Watersheds with the most severe selenium contamination, such as the South Maybe Canyon watershed, are associated with mine dumps that have large catchment watershed areas, high stream gradients, a paucity of downstream wetlands, and dump forms that tend to obstruct stream flow. Watersheds associated with low concentrations of dissolved selenium, such as Angus Creek, have mine dumps with small catchment watershed areas, low stream gradients, abundant wetlands vegetation, and less obstructing dump morphologies. ?? 2002 Elsevier Science Inc. All rights reserved.

  5. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  6. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  7. Selenoprotein Gene Expression in Thyroid and Pituitary of Young Pigs Is Not Affected by Dietary Selenium Deficiency or Excess1–3

    PubMed Central

    Zhou, Ji-Chang; Zhao, Hua; Li, Jun-Gang; Xia, Xin-Jie; Wang, Kang-Ning; Zhang, Ya-Jun; Liu, Yan; Zhao, Ying; Lei, Xin Gen

    2009-01-01

    Expression and function of selenoproteins in endocrine tissues remain unclear, largely due to limited sample availability. Pigs have a greater metabolic similarity and tissue size than rodents as a model of humans for that purpose. We conducted 2 experiments: 1) we cloned 5 novel porcine selenoprotein genes; and 2) we compared the effects of dietary selenium (Se) on mRNA levels of 12 selenoproteins, activities of 4 antioxidant enzymes, and Se concentrations in testis, thyroid, and pituitary with those in liver of pigs. In Experiment 1, porcine Gpx2, Sephs2, Sep15, Sepn1, and Sepp1 were cloned and demonstrated 84–94% of coding sequence homology to human genes. In Experiment 2, weanling male pigs (n = 30) were fed a Se-deficient (0.02 mg Se/kg) diet added with 0, 0.3, or 3.0 mg Se/kg as Se-enriched yeast for 8 wk. Although dietary Se resulted in dose-dependent increases (P < 0.05) in Se concentrations and GPX activities in all 4 tissues, it did not affect the mRNA levels of any selenoprotein gene in thyroid or pituitary. Testis mRNA levels of Txnrd1 and Sep15 were decreased (P < 0.05) by increasing dietary Se from 0.3 to 3.0 mg/kg. Comparatively, expressions of Gpx2, Gpx4, Dio3, and Sep15 were high in pituitary and Dio1, Sepp1, Sephs2, and Gpx1 were high in liver. In conclusion, the mRNA abundances of the 12 selenoprotein genes in thyroid and pituitary of young pigs were resistant to dietary Se deficiency or excess. PMID:19357213

  8. Prolonged Dietary Selenium Deficiency or Excess Does Not Globally Affect Selenoprotein Gene Expression and/or Protein Production in Various Tissues of Pigs123

    PubMed Central

    Liu, Yan; Zhao, Hua; Zhang, Qiaoshan; Tang, Jiayong; Li, Ke; Xia, Xin-Jie; Wang, Kang-Ning; Li, Kui; Lei, Xin Gen

    2012-01-01

    We previously determined the effects of dietary selenium (Se) deficiency or excess on mRNA abundance of 12 selenoprotein genes in pig tissues. In this study, we determined the effect of dietary Se on mRNA levels of the remaining porcine selenoprotein genes along with protein production of 4 selenoproteins (Gpx1, Sepp1, Selh, and Sels) and body glucose homeostasis. Weanling male pigs (n = 24) were fed a Se-deficient (<0.02 mg Se/kg), basal diet supplemented with 0, 0.3, or 3.0 mg Se/kg as Se-enriched yeast (Angel Yeast) for 16 wk. Although mRNA abundance of the 13 selenoproteins in 10 tissues responded to dietary Se in 3 patterns, there was no common regulation for any given gene across all tissues or for any given tissue across all genes. Dietary Se affected (P < 0.05) 2, 3, 3, 5, 6, 7, 7, and 8 selenoprotein genes in muscle, hypothalamus, liver, kidney, heart, spleen, thyroid, and pituitary, respectively. Protein abundance of Gpx1, Sepp1, Selh, and Sels in 6 tissues was regulated (P < 0.05) by dietary Se concentrations in 3 ways. Compared with those fed 0.3 mg Se/kg, pigs fed 3.0 mg Se/kg became hyperinsulinemic (P < 0.05) and had lower (P < 0.05) tissue levels of serine/threonine protein kinase. In conclusion, dietary Se exerted no global regulation of gene transcripts or protein levels of individual selenoproteins across porcine tissues. Pigs may be a good model for studying mechanisms related to the potential prodiabetic risk of high-Se intake in humans. PMID:22739382

  9. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  10. [Selenium deficiency in pregnancy?].

    PubMed

    Lechner, W; Jenewein, I; Ritzberger, G; Sölder, E; Waitz-Penz, A; Schirmer, M; Abfalter, E

    1990-07-15

    Selenium content was investigated by atomic absorbtion spectroscopy in 32 normal pregnant women in the 38th-42, week of pregnancy. In congruence with other investigations from middle and northern Europe, selenium deficiency was stated in all of the patients.

  11. Selenium in diet

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002414.htm Selenium in diet To use the sharing features on this page, please enable JavaScript. Selenium is an essential trace mineral. This means your ...

  12. Selenium: Poison and Preventive.

    ERIC Educational Resources Information Center

    Marmion Howe, Sister

    1978-01-01

    Selenium is an essential nutrient to the human body, but it can reach toxic levels causing a disease called selenosis. This article discusses selenium, its geographical distribution, toxicity, nutritional role, and carcinogenicity. (MA)

  13. Selenium: Element of Contrasts

    ERIC Educational Resources Information Center

    Goldsmith, Robert H.; And Others

    1978-01-01

    Reports on recent findings concerning the impact of selenium on human and animal health. In its various oxidation states, different concentrations of selenium may be helpful or detrimental to human health. (CP)

  14. Selenium in bovine spermatozoa.

    PubMed

    Niemi, S M; Kuzan, F B; Senger, P L

    1981-05-01

    This study investigated the association of selenium with ejaculated bovine spermatozoa. Over 75% of the radioactive spermatozoa. Over 75% of the radioactive selenium-75 was released after 30 min of incubation in 2 X 10(-3) dithiothreitol. Of the selenium-75 released by dithiothreitol, 85% was associated with spermatozoal protein. Protein containing selenium-75 was found predominantly in a single band after polyacrylamide gel electrophoresis. Molecular weight was approximately 21,500 daltons.

  15. Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes.

    PubMed

    Meyer, A M; Reed, J J; Neville, T L; Thorson, J F; Maddock-Carlin, K R; Taylor, J B; Reynolds, L P; Redmer, D A; Luther, J S; Hammer, C J; Vonnahme, K A; Caton, J S

    2011-05-01

    cell count and total somatic cells were greater (P ≤ 0.05) in milk from CON than RES. A cubic effect of day (P ≥ 0.01) was observed for milk yield (g and mL). Butterfat, solids-not-fat, lactose, milk urea N, and Se concentration responded quadratically (P ≤ 0.01) to day. Protein (%), total butterfat, and total Se, and somatic cells (cells/mL and cells/d) decreased linearly (P < 0.01) with day. Results indicate that gestational nutrition affects colostrum and milk yield and nutrient content, even when lactational nutrient requirements are met.

  16. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  17. Selenium cytotoxicity in cancer.

    PubMed

    Wallenberg, Marita; Misra, Sougat; Björnstedt, Mikael

    2014-05-01

    Selenium is an essential trace element with growth-modulating properties. Decades of research clearly demonstrate that selenium compounds inhibit the growth of malignant cells in diverse experimental model systems. However, the growth-modulating and cytotoxic mechanisms are diverse and far from clear. Lately, a remarkable tumour selective cytotoxicity of selenium compounds has been shown, indicating the potential of selenium in the treatment of cancer. Of particular interest are the redox-active selenium compounds exhibiting cytotoxic potential to tumour cells. These selenium compounds elicit complex patterns of pharmacodynamics and pharmacokinetics, leading to cell death pathways that differ among compounds. Modern oncology often focuses on targeted ligand-based therapeutic strategies that are specific to their molecular targets. These drugs are initially efficient, but the tumour cells often rapidly develop resistance against these drugs. In contrast, certain redox-active selenium compounds induce complex cascades of pro-death signalling at pharmacological concentrations with superior tumour specificity. The target molecules are often the ones that are important for the survival of cancer cells and often implicated in drug resistance. Therefore, the chemotherapeutic applications of selenium offer great possibilities of multi-target attacks on tumour cells. This MiniReview focuses on the tumour-specific cytotoxic effects of selenium, with special emphasis on cascades of cellular events induced by the major groups of pharmacologically active selenium compounds. Furthermore, the great pharmacological potential of selenium in the treatment of resistant cancers is discussed.

  18. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food.

    PubMed

    Hart, D J; Fairweather-Tait, S J; Broadley, M R; Dickinson, S J; Foot, I; Knott, P; McGrath, S P; Mowat, H; Norman, K; Scott, P R; Stroud, J L; Tucker, M; White, P J; Zhao, F J; Hurst, R

    2011-06-15

    The retention and speciation of selenium in flour and bread was determined following experimental applications of selenium fertilisers to a high-yielding UK wheat crop. Flour and bread were produced using standard commercial practices. Total selenium was measured using inductively coupled plasma-mass spectrometry (ICP-MS) and the profile of selenium species in the flour and bread were determined using high performance liquid chromatography (HPLC) ICP-MS. The selenium concentration of flour ranged from 30ng/g in white flour and 35ng/g in wholemeal flour from untreated plots up to >1800ng/g in white and >2200ng/g in wholemeal flour processed from grain treated with selenium (as selenate) at the highest application rate of 100g/ha. The relationship between the amount of selenium applied to the crop and the amount of selenium in flour and bread was approximately linear, indicating minimal loss of Se during grain processing and bread production. On average, application of selenium at 10g/ha increased total selenium in white and wholemeal bread by 155 and 185ng/g, respectively, equivalent to 6.4 and 7.1μg selenium per average slice of white and wholemeal bread, respectively. Selenomethionine accounted for 65-87% of total extractable selenium species in Se-enriched flour and bread; selenocysteine, Se-methylselenocysteine selenite and selenate were also detected. Controlled agronomic biofortification of wheat crops for flour and bread production could provide an appropriate strategy to increase the intake of bioavailable selenium.

  19. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is

  20. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  1. Selenium status in food grains of northern districts of India.

    PubMed

    Yadav, Sanjiv K; Singh, Ishwar; Sharma, Anita; Singh, Devender

    2008-09-01

    The selenium status in the food grains of the agricultural lands of northern parts of India was estimated by using the HG-AAS technique. The areas where lesser rains were received or less irrigation water was available in northern Indian states viz. Rajasthan and southern parts of the Haryana had higher selenium levels in food grains. Punjab, Himachal Pradesh and northern parts of the Haryana states had normal levels of selenium in their food grains, except for slightly lower selenium levels in a few areas that were affected by floods along the river Yamuna.

  2. Selenium status in soils of northern districts of India.

    PubMed

    Yadav, Sanjiv K; Singh, Ishwar; Singh, Devender; Han, Sang-Do

    2005-04-01

    The HG-AAS technique was used to estimate the soil selenium status of the agricultural lands of northern parts of India. The drier lands where lesser rains were received or where less irrigation water was available in Rajasthan and southern parts of the Haryana states had above normal soil selenium levels. These soils were also found to be alkaline. Punjab, Himachal Pradesh and northern parts of the Haryana states had normal levels of selenium in their soils, except with slightly lower selenium levels in a few areas that were affected by floods along the river Yamuna. The results were also confirmed using the ICP-OES technique.

  3. Biomonitoring Equivalents for selenium.

    PubMed

    Hays, Sean M; Macey, Kristin; Nong, Andy; Aylward, Lesa L

    2014-10-01

    Selenium is an essential nutrient for human health with a narrow range between essentiality and toxicity. Selenium is incorporated into several proteins that perform important functions in the body. With insufficient selenium intake, the most notable effect is Keshan disease, an endemic cardiomyopathy in children. Conversely, excessive selenium intake can result in selenosis, manifested as brittle nails and hair and gastro-intestinal disorders. As such, guidance values have been established to protect against both insufficient and excessive selenium exposures. Dietary Reference Intakes (DRIs) have been established as standard reference values for nutritional adequacy in North America. To protect against selenosis resulting from exposure to excessive amounts of selenium, several government and non-governmental agencies have established a range of guidance values. Exposure to selenium is primarily through the diet, but monitoring selenium intake is difficult. Biomonitoring is a useful means of assessing and monitoring selenium status for both insufficient and excessive exposures. However, to be able to interpret selenium biomonitoring data, levels associated with both DRIs and toxicity guidance values are required. Biomonitoring Equivalents (BEs) were developed for selenium in whole blood, plasma and urine. The BEs associated with assuring adequate selenium intake (Estimated Average Requirements - EAR) are 100, 80 and 10μg/L in whole blood, plasma and urine, respectively. The BEs associated with protection against selenosis range from 400 to 480μg/L in whole blood, 180-230μg/L in plasma, and 90-110μg/L in urine. These BE values can be used by both regulatory agencies and public health officials to interpret selenium biomonitoring data in a health risk context.

  4. Hazard assessment of selenium to endangered razorback suckers (Xyrauchen texanus)

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.

    2002-01-01

    A hazard assessment was conducted based on information derived from two reproduction studies conducted with endangered razorback suckers (Xyrauchen texanus) at three sites near Grand Junction, CO, USA. Selenium contamination of the upper and lower Colorado River basin has been documented in water, sediment, and biota in studies by US Department of the Interior agencies and academia. Concern has been raised that this selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The reproduction studies with razorback suckers revealed that adults readily accumulated selenium in various tissues including eggs, and that 4.6 ??g/g of selenium in food organisms caused increased mortality of larvae. The selenium hazard assessment protocol resulted in a moderate hazard at the Horsethief site and high hazards at the Adobe Creek and North Pond sites. The selenium hazard assessment was considered conservative because an on-site toxicity test with razorback sucker larvae using 4.6 ??g/g selenium in zooplankton caused nearly complete mortality, in spite of the moderate hazard at Horsethief. Using the margin of uncertainty ratio also suggested a high hazard for effects on razorback suckers from selenium exposure. Both assessment approaches suggested that selenium in the upper Colorado River basin adversely affects the reproductive success of razorback suckers. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Lentils (Lens culinaris L.) as a source of dietary selenium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chapter discusses the nutritional value of lentils, with a focus on factors affecting lentils as a source of dietary selenium. It addresses the chemical nature of lentil-selenium, pointing out that more than 90% is present in organic compounds which are generally well absorbed by humans. The se...

  6. Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters.

    PubMed

    LeBlanc, Kelly L; Wallschläger, Dirk

    2016-06-21

    Laboratory algal cultures exposed to selenate were shown to produce and release selenomethionine, selenomethionine oxide, and several other organic selenium metabolites. Released discrete organic selenium species accounted for 1.6-13.1% of the selenium remaining in the media after culture death, with 1.3-6.1% of the added selenate recovered as organic metabolites. Analysis of water from an industrially impacted river collected immediately after the death of massive annual algal blooms showed that no selenomethionine or selenomethionine oxide was present. However, other discrete organic selenium species, including a cyclic oxidation product of selenomethionine, were observed, indicating the previous presence of selenomethionine. Industrial biological treatment systems designed for remediation of selenium-contaminated waters were shown to increase both the concentration of organic selenium species in the effluent, relative to influent water, and the fraction of organic selenium to up to 8.7% of the total selenium in the effluent, from less than 1.1% in the influent. Production and emission of selenomethionine, selenomethionine oxide, and other discrete organic selenium species were observed. These findings are discussed in the context of potentially increased selenium bioavailability caused by microbial activity in aquatic environments and biological treatment systems, despite overall reductions in total selenium concentration.

  7. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  8. Role of oceans as biogenic sources of selenium

    NASA Astrophysics Data System (ADS)

    Amouroux, David; Liss, Peter S.; Tessier, Emmanuel; Hamren-Larsson, Marie; Donard, Olivier F. X.

    2001-07-01

    The pathways leading to the volatilisation and atmospheric transfer of selenium from oceanic environments are poorly understood. They may however affect the global distribution of selenium and its impact on marine and terrestrial ecosystems. In this paper we describe the results of experiments which provide a reasonable estimate of the global selenium budget. Gaseous selenium compounds were determined in the North Atlantic Ocean during a Spring bloom of phytoplankton species which are known to be a large source of atmospheric sulphur. The results demonstrate that significant concentrations of gaseous selenium species occur in surface ocean waters, and their production is closely linked to the gaseous sulphur species turnover. Selective uptake and biotransformation of dissolved selenium in seawater by phytoplankton is a major pathway for the production of gaseous selenium compounds in marine environments and their emission to the atmosphere. It is therefore suggested that such a major selenium source supplies the terrestrial environment with selenium that can be used as an essential nutrient for animal and human life.

  9. [Bioavailability and factors influencing its rate].

    PubMed

    Vraníková, Barbora; Gajdziok, Jan

    2015-01-01

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  10. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  11. Animal versus human oral drug bioavailability: do they correlate?

    PubMed

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J D; Liu, Bo; Rostami Hodjegan, Amin

    2014-06-16

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction.

  12. Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium.

    PubMed

    Pedrero, Zoyne; Madrid, Yolanda; Cámara, Carmen

    2006-03-22

    An in vitro gastrointestinal method was employed to predict the potential bioavailability of selenium and its species from radish, belonging to the Brassicaceae family, grown in hydroponics media in the presence of inorganic selenium, such as Na2SeO3 and Na2SeO4. A low transformation of Se into organic forms was observed in radish plants grown in Se(VI)-enriched culture media. On the contrary, in those plants exposed to selenite, >95% of the total selenium was found as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (SeMetSeCys). The concentrations of these species in fresh samples remained almost unaltered after a simulated gastrointestinal digestion. Therefore, a high selenium content of Se-methylselenocysteine (65%), previously reported as a cancer chemopreventive species, remained in the potentially bioabsorbable fraction. As these plants usually undergo a short development cycle, these results suggest that radish enriched in selenite could be a good choice as an organoselenium supplement for the human diet and animal feed.

  13. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure

    PubMed Central

    Bourgeois, Jeffrey S.; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  14. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  15. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical ...

  16. Bioavailability of metals in soils and sedimentes affected by old mining actitvities. The study case of the Portman bay (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Maria Jose; Agudo, Ines; Banegas, Ascension; Garcia-Lorenzo, Maria Luz; Gonzalez-Ciudad, Eva; Perez-Espinosa, Victor; Martinez-Lopez, Salvadora; Martinez, Lucia; Perz-Sirvent, Carmen

    2010-05-01

    A study on metal (Zn, Pb, Cd, Cu and As) mobilization and analysis of the health risk represented by ingestion from contaminated sediments in Portman Bay (SE Spain) was carried out. This zone has suffered a great impact from mining activity, since million tons of mine tailings were dumped into the bay for a long period, giving as a result the filling of the bay with them. The long-term deposition of metals in soils and sediments can lead to their accumulation and transport, while their toxicity depends on the mobility and bioavailability of a significant fraction of the metals. The ingestion of contaminated soil particles by grazing animals or young children may well represent a special exposure pathway for Pb, Cd and other hazardous metals. The aim of this study was to determine the bioaccessibility of Zn, Pb, Cd, Cu and As ,and the extent to which bioaccessibility is influenced by mineralogy in materials from this mining site as an indicator of the potential risk that metals pose to both environmental and human health. General analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out to characterize the samples. The mineralogical composition was studied by X-ray diffraction (XRD), using a Philips PW3040 diffractometer with Cu-Kα. To determine the total metal content, the samples were digested in a Milestone ETHOS PLUS microwave, Zn, Pb, Cu and Cd contents were determined by electrothermal atomization atomic absorption spectrometry, while As was analysed by HG- AFS using an automated continuous flow hydride generation spectrometer. To assess bioaccessibility, the gastric solution was prepared according to the Standard Operating Procedure (SOP) developed by the Solubility/Bioavailability Research Consortium (SBRC). The mineralogical composition, corresponds to materials which have suffered a supergenic oxidation process which has been influenced by the presence of sea water

  17. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    NASA Astrophysics Data System (ADS)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    Bioavailability research presents an essential tool, in modern phytoremediation and phytomining technologies, allowing the estimation of plant available fractions of elements in soils. However, up to date, sufficient interdisciplinary knowledge on the biogeochemically impacted behavior of specific target elements, in particular Ge and REEs in mining affected soils and their uptake into strategically used plants is lacking. This presented work is focused on a correlation study between the concentrations of selected heavy metals, Ge and REEs in soils formed on the top of the dump-field of Davidschacht and the corresponding their concentrations in 12 vascular plant species. The mine-dump of Davidschacht, situated in the Freiberg (Saxony, Germany) municipality area was chosen as the study area, which has been considered to be a high contaminated enclave, due to the mining history of the region. In total 12 sampling sites with differing composition of plant species were selected. At each sampling site soil samples from a soil depth of 0 - 10 cm and samples of plant material (shoots) were taken. The soil samples were analysed for total concentration of elements, pH (H2O) and consequently analysed by 4-step sequential extraction (SE) to determine fractions of elements that are mobile (fraction 1), acid soluble (pH 5) (fraction 2), bound to organic and oxidizable matter (fraction 3) and bound to amorphic oxides (fraction 4). The plant material was decomposed by hydrofluoric acid in order to extract the elements. Concentrations of elements in soil extracts and digestion solutions were analysed by ICP-MS. For all species bioconcentration factor (BCF) was calculated of the total concentration of elements in order to investigate the bioaccumulation potential. Arsenic (As), cadmium (Cd) and lead (Pb) were chosen as the representative heavy metals. Within the REEs neodymium (Nd) and cerium (Ce) were selected as representatives for all REEs, since Nd and Ce correlated significant

  18. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics

    PubMed Central

    Gao, Song; Hu, Ming

    2010-01-01

    Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones’ bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics’ bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo. PMID:20370701

  19. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    SciTech Connect

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  20. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    SciTech Connect

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  1. Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil.

    PubMed

    Hu, Bin; Liang, Dongli; Liu, Juanjuan; Lei, Lingming; Yu, Dasong

    2014-12-01

    This study aims to explore the effects of the distribution, transformation and bioavailability of different fractions of copper (Cu) and selenium (Se) in co-contaminated soils on soil enzymes, providing references for the phytoremediation of contaminated areas and agriculture environmental protection. Pot experiments and laboratory analysis were used to investigate the transformation and bioavailability of additional Cu and Se for pakchoi (Brassica chinensis) in co-contaminated soil. In the uncontaminated soil, Cu mainly existed in residual form, whereas Se was present in residual form and in elemental and organic-sulfide matter-bound form. In the contaminated soil, Cu mainly bound to Fe-Mn oxidates, whereas Se was in exchangeable and carbonates forms. After a month of pakchoi growth, Cu tended to transfer into organic matter-bound fractions, whereas Se tended to bound to Fe-Mn oxidates. The IR (reduced partition index) value of Cu decreased as the concentrations of Cu and Se gradually increased, whereas the IR value of Se decreased as the concentration of Se increased. The IR value before pakchoi planting and after it was harvested was not affected by the concentration of exogenous Cu. Soil urease and nitrate reductase activities were inhibited by Cu and Se pollution either individually or combined in different degrees, following the order nitrate reductase>urease. The significant correlation between the IR value and soil enzyme activities suggests that this value could be used to evaluate the bioavailability of heavy metals in soil. Path analysis showed that the variations in exchangeable Cu and organic-sulfide matter-bound and elemental Se had direct effects on the activities of the two enzymes, suggesting their high bioavailability. Therefore, the IR value and the transformation of metals in soil could be used as indicators in evaluating the bioavailability of heavy metals.

  2. Selenium and immune responses

    SciTech Connect

    Kiremidjian-Schumacher, L.; Stotzky, G.

    1987-04-01

    Selenium (Se) affects all components of the immune system, i.e., the development and expression of nonspecific, humoral, and cell-mediated responses. In general, a deficiency in Se appears to result in immunosuppression, whereas supplementation with low doses of Se appears to result in augmentation and/or restoration of immunologic functions. A deficiency of Se has been shown to inhibit (1) resistance to microbial and viral infections, (2) neutrophil function, (3) antibody production, (4) proliferation of T and B lymphocytes in response to mitogens, and (5) cytodestruction by T lymphocytes and NK cells. Supplementation with Se has been shown to stimulate (1) the function of neutrophils, (2) production of antibodies, (3) proliferation of T and B lymphocytes in response to mitogens, (4) production of lymphokines, (5) NK cell-mediated cytodestruction, (6) delayed-type hypersensitivity reactions and allograft rejection, and (7) the ability of a host to reject transplanted malignant tumors. The mechanism(s) whereby Se affects the immune system is speculative. The effects of Se on the function of glutathione peroxidase and on the cellular levels of reduced glutathione and H/sub 2/Se, as well as the ability of Se to interact with cell membranes, probably represent only a few of many regulatory mechanisms. The manipulation of cellular levels of Se may be significant for the maintenance of general health and for the control of immunodeficiency disorders and the chemoprevention of cancer.

  3. Mineral Commodity Profiles: Selenium

    USGS Publications Warehouse

    Butterman, W.C.; Brown, R.D.

    2004-01-01

    Overview -- Selenium, which is one of the chalcogen elements in group 16 (or 6A) of the periodic table, is a semiconductor that is chemically similar to sulfur for which it substitutes in many minerals and synthetic compounds. It is a byproduct of copper refining and, to a much lesser extent, lead refining. It is used in many applications, the major ones being a decolorizer for glass, a metallurgical additive to free-machining varieties of ferrous and nonferrous alloys, a constituent in cadmium sulfoselenide pigments, a photoreceptor in xerographic copiers, and a semiconductor in electrical rectifiers and photocells. Refined selenium amounting to more than 1,800 metric tons (t) was produced by 14 countries in 2000. Japan, Canada, the United States, and Belgium, which were the four largest producers, accounted for nearly 85 percent of world production. An estimated 250 t of the world total is secondary selenium, which is recovered from scrapped xerographic copier drums and selenium rectifiers; the selenium in nearly all other uses is dissipated (not recoverable as waste or scrap). The present selenium reserve bases for the United States and the world (including the United States), which are associated with copper deposits, are expected to be able to satisfy demand for selenium for several decades without difficulty.

  4. Why Nature Chose Selenium.

    PubMed

    Reich, Hans J; Hondal, Robert J

    2016-04-15

    The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.

  5. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

    PubMed Central

    Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753

  6. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.

    PubMed

    Chen, Yizhen; Tuo, Jue; Huang, Huizhi; Liu, Dan; You, Xiuhua; Mai, Jialuo; Song, Jiaqi; Xie, Yanqi; Wu, Chuanbin; Hu, Haiyan

    2015-06-20

    The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions.

  7. Selenium in Cattle: A Review.

    PubMed

    Mehdi, Youcef; Dufrasne, Isabelle

    2016-04-23

    This review article examines the role of selenium (Se) and the effects of Se supplementation especially in the bovine species. Selenium is an important trace element in cattle. Some of its roles include the participation in the antioxidant defense the cattle farms. The nutritional requirements of Se in cattle are estimated at 100 μg/kg DM (dry matter) for beef cattle and at 300 μg/kg DM for dairy cows. The rations high in fermentable carbohydrates, nitrates, sulfates, calcium or hydrogen cyanide negatively influence the organism's use of the selenium contained in the diet. The Se supplementation may reduce the incidence of metritis and ovarian cysts during the postpartum period. The increase in fertility when adding Se is attributed to the reduction of the embryonic death during the first month of gestation. A use of organic Se in feed would provide a better transfer of Se in calves relative to mineral Se supplementation. The addition of Se yeasts in the foodstuffs of cows significantly increases the Se content and the percentage of polyunsaturated fatty acids (PUFA) in milk compared to the addition of sodium selenite. The enzyme 5-iodothyronine deiodinase is a seleno-dependent selenoprotein. It is one of the last proteins to be affected in the event of Se deficiency. This delay in response could explain the fact that several studies did not show the effect of Se supplementation on growth and weight gain of calves. Enrichment of Se in the diet did not significantly affect the slaughter weight and carcass yield of bulls. The impact and results of Se supplementation in cattle depend on physiological stage, Se status of animals, type and content of Se and types of Se administration. Further studies in Se supplementation should investigate the speciation of Se in food and yeasts, as well as understanding their metabolism and absorption. This constitute a path to exploit in order to explain certain different effects of Se.

  8. Deficient and excess dietary selenium levels affect growth performance, blood cells apoptosis and liver HSP70 expression in juvenile yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Hu, Jun-Ru; Huang, Yan-Hua; Wang, Guo-Xia; Wu, Ying-Xia; Xian, Jian-An; Wang, An-Li; Cao, Jun-Ming

    2016-02-01

    We investigated the effects of deficient and excess dietary selenium (Se) on growth, blood cells apoptosis and liver heat shock protein 70 (HSP70) expression in juvenile yellow catfish (Pelteobagrus fulvidraco). After 8 weeks, yellow catfish (initial weight: 2.12 ± 0.01 g) fed isonitrogenous and isolipid diets containing <0.05 (deficient dietary Se) or 6.5 (excess dietary Se) mg Se/kg displayed a significantly lower weight gain ratio (WGR) than those fed a diet containing 0.23 (normal dietary Se) mg Se/kg. As dietary Se levels increased, liver Se concentration, glutathione peroxidase activity and the hepatosomatic index increased significantly. Plasma glucose concentration was highest in the normal treatment compared with the excess dietary Se treatment. Both deficient and excess dietary Se lead to increased reactive oxygen species (ROS) production and apoptosis ratio in blood cells, whereas only excess dietary Se increased their cytoplasmic free-Ca(2+) (CF-Ca(2+)) concentration. Excess dietary Se also resulted in the highest level of HSP70 expression, thereby possibly providing a protective mechanism against oxidative stress. These results indicate that both deficient and excess dietary Se restrained the growth of juvenile yellow catfish and caused oxidative stress. The overproduction of ROS may act as a signal molecule mediate apoptosis when dietary Se deficiency. Both ROS and CF-Ca(2+) were recorded when dietary Se excess, suggesting that Ca(2+) may be activated by Se and play a major role during Se-induced oxidative stress and cell apoptosis.

  9. Selenium: finding the delicate balance

    SciTech Connect

    McBride, J.

    1987-01-01

    A deficiency of selenium can lead to the degeneration of heart muscle in children. Yet, an excess of selenium can produce a garlicky breath, and extreme levels can cause a loss of nails and hair. People get adequate selenium in their diets in North America, but there are areas around the world where the people exist on foods containing little or no selenium. A person is said to be in balance when the daily intake of selenium equals the amount excreted. However, the need for the mineral varies depending on the population, as well as the sex, studied. For example, Chinese men living in a selenium-deficient area need only 10 micrograms a day to maintain their body stores of selenium, whereas US men need 80 micrograms. In addition, there is a difference in how the body treats different forms and sources of selenium. The body absorbs the mineral better from plant sources than from animal sources, in many instances.

  10. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective

    PubMed Central

    Brown, Gordon E.; Foster, Andrea L.; Ostergren, John D.

    1999-01-01

    There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms. PMID:10097048

  11. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata).

    PubMed

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014-2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm(-3) (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm(-3) (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm(-3) nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm(-3), (4) I + Se + 1.0 mg SA⋅dm(-3) and (5) I + Se + 10.0 mg SA⋅dm(-3). The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves.

  12. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    PubMed Central

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  13. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    EPA Science Inventory

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  14. EFFECTS OF DIFFERENT FORMS OF ORGANIC CARBON ON THE PARTITIONING AND BIOAVAILABILITY OF NONPHENYL

    EPA Science Inventory

    Oxygenated nonpolar organic contaminants (NOCs) are underrepresented in studies of the partitioning and bioavailability of NOCs, including nonylphenol. In this investigation, we evaluated the toxicity, partitioning, and bioavailability of nonylphenol as affected by different form...

  15. Commentary: selenium study on endangered razorback sucker is flawed

    USGS Publications Warehouse

    Hamilton, Steven J.

    2005-01-01

    The razorback sucker (Xyrauchen texanus) is listed as federally endangered throughout its range. A massive recovery effort by the Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin has focused its efforts in the upper Colorado River. The upper Colorado River basin also has two locations that have been identified by the National Irrigation Water Quality Program as having substantial selenium contamination. Selenium is toxic to fishes, affecting reproductive success. Thus, there is concern about potential effects of selenium on the endangered razorback sucker. Two sets of studies have investigated the effects of selenium on razorback suckers, but study results are conflicting. This commentary evaluates studies that claim selenium is not a problem for razorback sucker. We find that study bias was so pervasive that purported conclusions were unwarranted. Contaminated control water, older life stages of fish tested, lack of methodology for analysis of selenium in water, diet, or fish, use of rotifer food, low feeding rates, low growth rates of fish, and improper storage of site waters resulted in an apparent erroneous linkage of high selenium in whole-body residues with no adverse effects.

  16. Commentary: selenium study on endangered razorback sucker is flawed.

    PubMed

    Hamilton, Steven J

    2005-07-01

    The razorback sucker (Xyrauchen texanus) is listed as federally endangered throughout its range. A massive recovery effort by the Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin has focused its efforts in the upper Colorado River. The upper Colorado River basin also has two locations that have been identified by the National Irrigation Water Quality Program as having substantial selenium contamination. Selenium is toxic to fishes, affecting reproductive success. Thus, there is concern about potential effects of selenium on the endangered razorback sucker. Two sets of studies have investigated the effects of selenium on razorback suckers, but study results are conflicting. This commentary evaluates studies that claim selenium is not a problem for razorback sucker. We find that study bias was so pervasive that purported conclusions were unwarranted. Contaminated control water, older life stages of fish tested, lack of methodology for analysis of selenium in water, diet, or fish, use of rotifer food, low feeding rates, low growth rates of fish, and improper storage of site waters resulted in an apparent erroneous linkage of high selenium in whole-body residues with no adverse effects.

  17. Selenium for preventing cancer

    PubMed Central

    Vinceti, Marco; Dennert, Gabriele; Crespi, Catherine M; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice PA; Horneber, Markus; D'Amico, Roberto; Del Giovane, Cinzia

    2015-01-01

    Background This review is an update of the first Cochrane publication on selenium for preventing cancer (Dennert 2011). Selenium is a metalloid with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for: an aetiological relation between selenium exposure and cancer risk in humans? andthe efficacy of selenium supplementation for cancer prevention in humans? Search methods We conducted electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2013, Issue 1), MEDLINE (Ovid, 1966 to February 2013 week 1), EMBASE (1980 to 2013 week 6), CancerLit (February 2004) and CCMed (February 2011). As MEDLINE now includes the journals indexed in CancerLit, no further searches were conducted in this database after 2004. Selection criteria We included prospective observational studies (cohort studies including sub-cohort controlled studies and nested case-control studies) and randomised controlled trials (RCTs) with healthy adult participants (18 years of age and older). Data collection and analysis For observational studies, we conducted random effects meta-analyses when five or more studies were retrieved for a specific outcome. For RCTs, we performed random effects meta-analyses when two or more studies were available. The risk of bias in observational studies was assessed using forms adapted from the Newcastle-Ottawa Quality Assessment Scale for cohort and case-control studies; the criteria specified in the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the risk of bias in RCTs. Main results We included 55 prospective observational studies (including more than 1,100,000 participants) and eight RCTs (with a total of 44,743 participants). For the observational studies, we found lower cancer incidence (summary odds ratio (OR) 0

  18. JV Task - 116 Selenium's Role in the Seafood Safety Issue

    SciTech Connect

    Nicholas Ralston; Laura Raymond

    2009-03-30

    Continuing studies under these three funded projects - (JV Task 77 The Health Implications of the Mercury-Selenium Interaction, JV Task 96 Investigating the Importance of the Mercury-Selenium Interaction, and JV Task 116 Selenium's Role in the Seafood Safety Issue) - were performed to determine the effects of different levels of dietary mercury and selenium on the growth and development of test animals, and related tissue analyses, to understand the protective benefits of dietary selenium in reference to low-level exposure to mercury. Maternal exposure to methylmercury from seafood has been found to cause neurodevelopmental harm in children. However, significant nutritional benefits will be lost if fish consumption is needlessly avoided. The results of these studies support the hypothesis that intracellular Se itself is the physiologically important biomolecule and that the harm of mercury toxicity arises when Hg abundance becomes great enough to bind a significant portion of intracellular Se in vulnerable tissues such as the brain. Formation of HgSe limits bioavailability of Se for synthesis of Se-dependent enzymes, particularly in brain tissues. When production of these enzymes is impaired, the loss of their numerous essential functions results in the signs and symptoms of Hg toxicity. The finding that one mole of Se protects against many moles of Hg indicates that its beneficial effect is not due to sequestration of mercury as HgSe but rather due to the biological activity of the Se. Therefore, the selenium content of seafoods must be considered along with their methylmercury contents in evaluating the effect of dietary exposure to mercury.

  19. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  20. Biological effects of a nano red elemental selenium.

    PubMed

    Zhang, J S; Gao, X Y; Zhang, L D; Bao, Y P

    2001-01-01

    A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

  1. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  2. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds.

  3. Integrating bioavailability approaches into waste rock evaluations

    USGS Publications Warehouse

    Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.

    2006-01-01

    The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

  4. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: Variation within species and relevance to risk communication

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2015-01-01

    There is an emerging consensus that people consuming large amounts of fish with selenium:mercury ratios below 1 may be at higher risk from mercury toxicity. As the relative amount of selenium increases compared to mercury, risk may be lowered, but it is unclear how much excess selenium is required. It would be useful if the selenium:mercury ratio was relatively consistent within a species, but this has not been the case in our studies of wild-caught fish. Since most people in developed countries and urban areas obtain their fish and other seafood commercially, we examined selenium:mercury molar ratios in commercial fish purchased in stores and fish markets in central New Jersey and Chicago. There was substantial interspecific and intraspecific variation in molar ratios. Across species the selenium:mercury molar ratio decreased with increasing mean mercury levels, but selenium variation also contributed to the ratio. Few samples had selenium:mercury molar ratios below 1, but there was a wide range in ratios, complicating the interpretation for use in risk management and communication. Before ratios can be used in risk management, more information is needed on mercury:selenium interactions and mutual bioavailability, and on the relationship between molar ratios and health outcomes. Further, people who are selenium deficient may be more at risk from mercury toxicity than others. PMID:23541437

  5. Selenium metabolism in cancer cells: the combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems.

    PubMed

    Weekley, Claire M; Aitken, Jade B; Finney, Lydia; Vogt, Stefan; Witting, Paul K; Harris, Hugh H

    2013-05-21

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed.

  6. Biomarkers of selenium status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential trace element selenium (Se) has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potentia...

  7. Selenium and Compounds

    Integrated Risk Information System (IRIS)

    Selenium and Compounds ; CASRN 7782 - 49 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  8. Selenium Treatment Technologies

    EPA Science Inventory

    Selenium (Se) is a metalloid that is a dietary requirement in small quantities, but toxic at higher quantities. It also is known to bioaccumulate. In oxic environments, it exists as selenate (+6) and selenite (+4), both of which are soluble. Selenite will sorb more strongly to...

  9. Geologic and Anthropogenic Controls on Selenium and Nitrate Loading to Southern California Streams

    NASA Astrophysics Data System (ADS)

    Hibbs, B. J.; Ellis, A. S.

    2009-12-01

    concentrations of nitrate in leachate, possibly from accumulation from atmospheric fallout. Leachate from non-weathered Miocene rock generally had low nitrate concentrations and low selenium. Miocene shales are exposed in vast areas of Southern California. We are undertaking regional studies to determine if other Southern California Watersheds are affected by elevated nitrate and selenium concentrations, and where selenium may threaten habitat.

  10. Effect of chemical form of selenium on tissue glutathione peroxidase activity in developing rats

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Strength, Ralph; Johnson, Janet; White, Marguerite T.

    1991-01-01

    The hypothesis that the stage of development of rats may affect the availability of various forms of selenium for the activity of glutathione peroxidase (GSHPx) in the rat was experimentally investigated. One experiment evaluated the availability of selenium as selenite or selenomethionine for GSPHx activity during three developmental states in rats: fetus and 7-day old and 14-day old nursing pups. In all tissues studied, GSHPx activity was highest in the 14-day-old pups whose dams were in the selenomethionine group. Rat pups given intraperitoneal selenite had higher liver and kidney GSHPx activity than pups given the same amount of selenium as intraperitoneal selenomethionine. In a second experiment, all dams were fed the same basal diet and pups were weaned to diets containing one of two levels of selenium and one of three forms of selenium (selenite, selenomethionine, or selenocystine). The results also supported the hypothesis these dietary forms of selenium are differentially available for GSHPx activity.

  11. Acute selenium toxicosis in sheep

    SciTech Connect

    Blodgett, D.J.

    1983-01-01

    The toxicity, toxicokinetics, and progressive pathological changes produced by sodium selenite in sheep following parenteral administration were evaluated. In the intramuscular study, the LD/sub 50/ for sodium selenite was 0.7 mg selenium/kg body weight. In the continuous intravenous infusion study, a gradient of tissue selenium/kg body weight with a standard error of 0.035 over a 192 hour observation period. The most evident clinical signs were dyspnea and depression . At necropsy, the most consistent lesions were edematous lungs and pale mottled hearts. Highest tissue selenium concentrations in declining order were found in the liver, kidney, and heart. Four sheep injected intravenously with 0.7 mg selenium/kg body weight survived the 192 hour post-injection observation period. Semilogarithmic plots of blood selenium concentration versus time were triphasic. The ..cap alpha.. and ..gamma.. rate constants of sheep administered a single dose of selenium intravenously were significantly greater than those obtained when sheep were injected intramuscularly with 0.7 mg selenium concentrations was attained with 4, 8, and 12 hour infusions at steady state concentrations of 2500, 3000, and 3500 ppb selenium in the blood. The heart was the target organ of acute selenium toxicosis. A dose-response relationship was observed in the heart with degeneration evident in all hearts and necrosis present in the 2 hearts with the highest concentrations of selenium.

  12. Selenium in mainstream and sidestream smoke of cigarettes containing fly ash-grown tobacco

    SciTech Connect

    Gutenmann, W.H.; Lisk, D.J.; Shane, B.S.; Hoffmann, D.; Adams, J.D.

    1987-01-01

    The quantities of selenium, tar and nicotine present in mainstream (MS) and sidestream (SS) smoke of machine-smoked cigarettes was studied. The cigarettes were prepared from tobacco purposely cultured on fly ash-amended soil so as to increase its selenium concentration. Selenium concentration was found to be the same in the gaseous phase of both MS and SS smoke, but its concentration was significantly higher (p less than 0.05) in the particulate matter of the MS smoke. Tar was higher in MS smoke and nicotine in SS smoke. Factors affecting selenium concentrations in tobacco and its possible environmental significance are discussed.

  13. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  14. Selenium incorporation using recombinant techniques.

    PubMed

    Walden, Helen

    2010-04-01

    Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  15. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  16. Arsenic Bioavailability, Bioaccessibility, And Speciation

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines. Often bioavailability is concerned with human health aspects such as the case of urban children interacting with contaminated soil. The still utilized approach to base risk assessment on total meta...

  17. Reproduction in eastern screech-owls fed selenium

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Hoffman, D.J.

    1996-01-01

    Raptors are occasionally exposed to excessive selenium from contaminated prey, but the effects of this exposure on reproduction are unknown. Therefore, we fed captive eastern screech-owls (Otus asio) diets containing 0, 4.4, or 13.2 ppm (wet wt) added selenium in the form of seleno-DL-methionine. Adult mass at sacrifice and reproductive success of birds receiving 13.2 ppm selenium were depressed (P < 0.05) relative to controls. Parents given 4.4 ppm selenium produced no malformed nestlings, but femur lengths of young were shorter (P = 0.015) than those of controls. Liver biochemistries indicative of oxidative stress were affected (P < 0.05) in 5-day-old nestlings from parents fed 4.4 ppm selenium and included a 19% increase in glutathione peroxidase activity, a 43% increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), and a 17% increase in lipid peroxidation. Based on reproductive effects relative to dietary exposure, sensitivity of eastern screech-owls to selenium was similar to that of black-crowned night-herons (Nycticorax nycticorax) but less than that of mallards (Anas platyrhynchos).

  18. Selenium incorporation using recombinant techniques

    SciTech Connect

    Walden, Helen

    2010-04-01

    An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  19. Metabolism of manganese, iron, copper, and selenium in calves

    SciTech Connect

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism. (ERB)

  20. Acute Selenium Toxicity Associated With a Dietary Supplement

    PubMed Central

    MacFarquhar, Jennifer K.; Broussard, Danielle L.; Melstrom, Paul; Hutchinson, Richard; Wolkin, Amy; Martin, Colleen; Burk, Raymond F.; Dunn, John R.; Green, Alice L.; Hammond, Roberta; Schaffner, William; Jones, Timothy F.

    2011-01-01

    Background Selenium is an element necessary for normal cellular function, but it can have toxic effects at high doses. We investigated an outbreak of acute selenium poisoning. Methods A case was defined as the onset of symptoms of selenium toxicity in a person within 2 weeks after ingesting a dietary supplement manufactured by “Company A,” purchased after January 1, 2008. We conducted case finding, administered initial and 90-day follow-up questionnaires to affected persons, and obtained laboratory data where available. Results The source of the outbreak was identified as a liquid dietary supplement that contained 200 times the labeled concentration of selenium. Of 201 cases identified in 10 states, 1 person was hospitalized. The median estimated dose of selenium consumed was 41 749 μg/d (recommended dietary allowance is 55 μg/d). Frequently reported symptoms included diarrhea (78%), fatigue (75%), hair loss (72%), joint pain (70%), nail discoloration or brittleness (61%), and nausea (58%). Symptoms persisting 90 days or longer included fingernail discoloration and loss (52%), fatigue (35%), and hair loss (29%). The mean initial serum selenium concentration of 8 patients was 751 μg/L (reference range, ≤125 μg/L). The mean initial urine selenium concentration of 7 patients was 166 μg/24 h (reference range, ≤55 μg/24 h). Conclusions Toxic concentrations of selenium in a liquid dietary supplement resulted in a widespread outbreak. Had the manufacturers been held to standards used in the pharmaceutical industry, it may have been prevented. PMID:20142570

  1. Thermodynamically Correct Bioavailability Estimations

    DTIC Science & Technology

    1992-04-30

    6448 I 1. SWPPUMENTA* NOTIS lIa. OISTUAMJTiOAVAILAIILTY STATIMENT 121 OT REbT ostwosCo z I Approved for public release; distribution unlimited... research is to develop thermodynamically correct bioavailability estimations using chromatographic stationary phases as a model of the "interphase

  2. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: potential protection on mercury toxicity by selenium.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2012-08-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant interspecific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios.

  3. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  4. Selenium in mammalian spermiogenesis.

    PubMed

    Flohé, Leopold

    2007-10-01

    The role of selenium in male fertility is reviewed with special emphasis on selenoprotein P and phospholipid hydroperoxide glutathione peroxidase (GPx4) in spermiogenesis. Inverse genetics reveal that selenoprotein P is required for selenium supply to the testis. GPx4 is abundantly synthesized in spermatids. As a moonlighting protein it is transformed in the later stages of spermiogenesis from an active selenoperoxidase into a structural protein that becomes a constituent of the mitochondrial sheath of spermatozoa. The transformation is paralleled by loss of glutathione. Mechanistically, the process is an alternate substrate inactivation of GPx4 resulting from reactions of its selenenic form with thiols of GPx4 itself and other proteins. Circumstantial evidence and ongoing experimental genetics indicate that the mitochondrially expressed form of the GPx4 gene is the most relevant one in spermiogenesis, with the nuclear form being dispensable for fertility and the role of cytosolic GPx4 remaining unclear. Clinical data reveal a strong association of low sperm GPx4 with infertility. Thus, impaired GPx4 biosynthesis, due to selenium deficiency or to genetic defects in gpx4 itself or in proteins involved in Se distribution and selenoprotein biosynthesis, causes male infertility, but can also be an epiphenomenon due to any perturbation of testicular function.

  5. Selenium, Folate, and Colon Cancer

    PubMed Central

    Connelly-Frost, Alexandra; Poole, Charles; Satia, Jessie A.; Kupper, Lawrence L.; Millikan, Robert C.; Sandler, Robert S.

    2009-01-01

    Background Selenium is an essential trace element which has been implicated in cancer risk; however, study results have been inconsistent with regard to colon cancer. Our objectives were to 1) investigate the association between selenium and colon cancer 2) evaluate possible effect measure modifiers and 3) evaluate potential biases associated with the use of post-diagnostic serum selenium measures Methods The North Carolina Colon Cancer Study is a large population-based, case-control study of colon cancer in North Carolina between 1996 and 2000 (n=1,691). Nurses interviewed patients about diet and lifestyle and drew blood specimens which were used to measure serum selenium. Results Individuals who had both high serum selenium (>140 mcg/L) and high reported folate (>354 mcg/day), had a reduced relative risk of colon cancer (OR=0.5, 95% CI=0.4,0.8). The risk of colon cancer for those with high selenium and low folate was approximately equal to the risk among those with low selenium and low folate (OR=1.1, 95% CI=0.7,1.5) as was the risk for those with low selenium and high folate (OR=0.9, 95% CI=0.7–1.2). We did not find evidence of bias due to weight loss, stage at diagnosis, or time from diagnosis to selenium measurement. Conclusion High levels of serum selenium and reported folate jointly were associated with a substantially reduced risk of colon cancer. Folate status should be taken into account when evaluating the relation between selenium and colon cancer in future studies. Importantly, weight loss, stage at diagnosis, or time from diagnosis to blood draw did not appear to produce strong bias in our study. PMID:19235033

  6. Selenium dynamics in Farmington Bay wetlands, Great Salt Lake, Salt Lake City, Utah, USA.

    NASA Astrophysics Data System (ADS)

    Dicataldo, G.; Hayes, D. F.; Miller, T. G.; Chaudhuri, S.

    2006-12-01

    The dynamics of Selenium (Se) and other water quality parameters in the Farmington Bay wetlands were presented. This is the first time that the fate and transport of selenium is being studied in Farmington Bay wetlands. The significant salinity gradient between wetland impoundments and the hypersaline condition of the Great Salt Lake (GSL) make these wetlands systems unique. Selenium has been observed for the first time to cycle diurnally. A 100% increase of total selenium was measured during a 24-hour study in October 2005 at site #5320 at nighttime (i.e., 1.99 micrograms/L at 3:00 a.m. MST) compared to daytime (i.e., 0.99 micrograms/L at 2:00 p.m. MST). Particulate selenium also increased at the same site during nighttime and decreased during daylight. No significant daily changes were measured in dissolved selenium concentrations between day and night. Total suspended solids (TSS) measured during the same time period increased to a maximum concentration of 107 mg/L (at 4:21 a.m. MST) during nighttime and dramatically decreased after sunrise (i.e., 18.8 mg/L at 8:21 a.m. MST). Particulate generation at night could be linked to total and particulate selenium increase during this time period. Later studies in May 2006 have shown that total organic carbon (TOC) increased about 3.5-folds (i.e., from 2.9 mg/L to 12.9 mg/L) during nighttime (with high peak at 4:00 a.m. MST) and decreased dramatically at sunrise (about 6:30 a.m. MST) in May 2006. Seasonal selenium speciation showed for the first time that the predominant species reaching the Farmington Bay are elemental selenium and selenide species (organic and inorganic) (Se(0) + Se(-2)). This is a significant finding toward a better understand of the bioavailability of selenium to birds and aquatic life in Farmington Bay. The selenium concentration as water parcels moved through the system showed to be reduced up to 186%. Also, average monthly loads of selenium to Farmington Bay from Ambassador Duck Club wetlands

  7. Effects of Dietary Selenium and Vitamin E on Growth Performance, Meat Yield, and Selenium Content and Lipid Oxidation of Breast Meat of Broilers Reared Under Heat Stress.

    PubMed

    Habibian, Mahmood; Ghazi, Shahab; Moeini, Mohammad Mehdi

    2016-01-01

    This study was conducted using 360 broiler chickens to evaluate the effects of dietary vitamin E (0, 125, and 250 mg/kg), selenium (0, 0.5, and 1 mg/kg), or their different combinations on performance, meat yield, and selenium content and lipid oxidation of breast meat of broilers raised under either a thermoneutral (TN, 24 °C constant) or heat stress (HS, 24 to 37 °C cycling) condition. There was a reduction (P < 0.05) in body weight and feed intake and an increase (P < 0.05) in feed conversion ratio when broilers exposed to HS. In the overall period of the study (1 to 49 days), growth performance of TN broilers was not affected (P < 0.05) by vitamin E and selenium supplementation. However, under HS condition, broilers receiving 250 mg/kg vitamin E and 0.5 mg/kg selenium consumed more (P < 0.05) feed than that of broilers receiving 250 mg/kg vitamin E alone, but similar (P > 0.05) to that of broilers receiving 250 mg/kg vitamin E and 1 mg/kg selenium. The malondialdehyde (MDA) content of the breast meat was increased (P < 0.05), but its selenium content was decreased (P < 0.05) by exposure to HS. The breast meat selenium content was increased (P < 0.05) by selenium supplementation. The breast meat selenium content was decreased (P < 0.05) by supplementation of 250 mg/kg vitamin E to diet of TN birds. However, the breast meat selenium content was increased (P < 0.05) by supplementation of vitamin E under HS condition. The breast meat MDA content was not affected (P > 0.05) by dietary treatments under TN condition. However, the breast meat MDA content was decreased (P < 0.05) by both vitamin E and selenium supplementation under HS condition, and the lowest MDA content was observed in the breast meat of broilers receiving combination of 125 mg/kg vitamin E and 1 mg/kg selenium. The results showed that supplementation of selenium and vitamin E was capable of increasing the selenium content of the breast meat and could improve the lipid

  8. Selenium accumulation in lettuce germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  9. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  10. Modeling food web structure and selenium biomagnification in Lake Macquarie, New South Wales, Australia, using stable carbon and nitrogen isotopes.

    PubMed

    Schneider, Larissa; Maher, William A; Potts, Jaimie; Taylor, Anne M; Batley, Graeme E; Krikowa, Frank; Chariton, Anthony A; Gruber, Bernd

    2015-03-01

    As a consequence of coal-fired power station operations, elevated selenium concentrations have been reported in the sediments and biota of Lake Macquarie (New South Wales, Australia). In the present study, an ecosystem-scale model has been applied to determine how selenium in a seagrass food web is processed from sediments and water through diet to predators, using stable isotopes (δ(13) C and δ(15) N) to establish the trophic position of organisms. Trophic position, habitat, and feeding zone were examined as possible factors influencing selenium bioaccumulation. Selenium concentrations ranged from 0.2 μg/g dry weight in macroalgae species to 12.9 μg/g in the carnivorous fish Gerres subfasciatus. A mean magnification factor of 1.39 per trophic level showed that selenium is biomagnifying in the seagrass food web. Habitat and feeding zone influenced selenium concentrations in invertebrates, whereas feeding zone was the only significant factor influencing selenium concentrations in fish. The sediment-water partitioning coefficient (Kd ) of 4180 showed that partitioning of selenium entering the lake to particulate organic material (POM) is occurring, and consequently availability to food webs from POM is high. Trophic transfer factors (invertebrate = 1.9; fish = 1.2) were similar to those reported for other water bodies, showing that input source is not the main determinant of the magnitude of selenium bioaccumulation in a food web, but rather the initial partitioning of selenium into bioavailable POM. Environ Toxicol Chem 2015;34:608-617. © 2014 SETAC.

  11. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of

  12. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles.

    PubMed

    Gao, Fuping; Yuan, Qing; Gao, Liang; Cai, Pengju; Zhu, Huarui; Liu, Ru; Wang, Yaling; Wei, Yueteng; Huang, Guodong; Liang, Jian; Gao, Xueyun

    2014-10-01

    Although chemotherapeutic drugs are widely applied for clinic tumor treatment, severe toxicity restricts their therapeutic efficacy. In this study, we reported a new form of selenium, selenium nanoparticles (Nano Se) which have significant lower toxicity and acceptable bioavailability. We investigated Nano Se as chemotherapy preventive agent to protect against toxicities of anticancer drug irinotecan and synergistically enhance the anti-tumor treatment effect in vitro and in vivo. The underlying mechanisms were also investigated. The combination of Nano Se and irinotecan showed increased cytotoxic effect with HCT-8 tumor cells likely by p53 mediated apoptosis. Nano Se inhibited growth of HCT-8 tumor cells partially through caspases mediated apoptosis. In vivo experiment showed Nano Se at a dose of 4 mg/kg/day significantly alleviated adverse effects induced by irinotecan (60 mg/kg) treatment. Nano Se alone treatment did not induce any toxic manifestations. The combination of Nano Se and irinotecan dramatically inhibited tumor growth and significantly induced apoptosis of tumor cells in HCT-8 cells xenografted tumor. Tumor inhibition rate was about 17.2%, 48.6% and 62.1% for Nano Se, irinotecan and the combination of Nano Se and irinotecan, respectively. The beneficial effects of Nano Se for tumor therapy were mainly ascribed to selectively regulating Nrf2-ARE (antioxidant responsive elements) pathway in tumor tissues and normal tissues. Our results suggest Nano Se is a promising selenium species with potential application in cancer treatment.

  13. Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon.

    PubMed

    Kipp, Anna; Banning, Antje; van Schothorst, Evert M; Méplan, Catherine; Schomburg, Lutz; Evelo, Chris; Coort, Susan; Gaj, Stan; Keijer, Jaap; Hesketh, John; Brigelius-Flohé, Regina

    2009-12-01

    Selenium is an essential micronutrient. Its recommended daily allowance is not attained by a significant proportion of the population in many countries and its intake has been suggested to affect colorectal carcinogenesis. Therefore, microarrays were used to determine how both selenoprotein and global gene expression patterns in the mouse colon were affected by marginal selenium deficiency comparable to variations in human dietary intakes. Two groups of 12 mice each were fed a selenium-deficient (0.086 mg Se/kg) or a selenium-adequate (0.15 mg Se/kg) diet. After 6 wk, plasma selenium level, liver, and colon glutathione peroxidase (GPx) activity in the deficient group was 12, 34, and 50%, respectively, of that of the adequate group. Differential gene expression was analysed with mouse 44K whole genome microarrays. Pathway analysis by GenMAPP identified the protein biosynthesis pathway as most significantly affected, followed by inflammation, Delta-Notch and Wnt pathways. Selected gene expression changes were confirmed by quantitative real-time PCR. GPx1 and the selenoproteins W, H, and M, responded significantly to selenium intake making them candidates as biomarkers for selenium status. Thus, feeding a marginal selenium-deficient diet resulted in distinct changes in global gene expression in the mouse colon. Modulation of cancer-related pathways may contribute to the higher susceptibility to colon carcinogenesis in low selenium status.

  14. The effect of selenium on reproduction of black-tailed deer (Odocoileus hemionus columbianus) in Shasta County California

    SciTech Connect

    Flueck, W.T.

    1989-01-01

    This study was to determine if nutritional inadequacy of selenium may be responsible for a declining reproductive rate of a migratory herd of black-tailed deer. Selenium is an essential trace mineral for mammalian herbivores. Deficiency affects primarily neonates resulting in increased mortality rates. Shasta County, California is indigenously low in selenium due to soil characteristics. Local livestock enterprises have experienced reproductive problems, which were responsive to selenium treatment. The low recruitment rate in the deer herd suggested a physiological link between low selenium status and reproductive problems, and an experimental trial was initiated. Free ranging adult females were supplemented with selenium rumen pellets and marked with radio transmitters. From 1985 to 1987, the selenium dose was doubled as compared to 1984. It was established that evaluation of selenium status by determining whole blood selenium levels adequately describes the major bioactive form of selenium, glutathione peroxidase. To evaluate the experimental trial, the pre-weaning survival rate of progeny of supplemented females was compared with the rate in the untreated herd.

  15. Factors influencing micronutrient bioavailability in biofortified crops.

    PubMed

    Bechoff, Aurélie; Dhuique-Mayer, Claudie

    2017-02-01

    Dietary and human factors have been found to be the major factors influencing the bioavailability of micronutrients, such as provitamin A carotenoid (pVAC), iron, and zinc, in biofortified crops. Dietary factors are related to food matrix structure and composition. Processing can improve pVAC bioavailability by disrupting the food matrix but can also result in carotenoid losses. By degrading antinutrients, such as phytate, processing can also enhance mineral bioavailability. In in vivo interventions, biofortified crops have been shown to be overall efficacious in reducing micronutrient deficiency, with bioconversion factors varying between 2.3:1 and 10.4:1 for trans-β-carotene and amounts of iron and zinc absorbed varying between 0.7 and 1.1 mg/day and 1.1 and 2.1 mg/day, respectively. Micronutrient bioavailability was dependent on the crop type and the presence of fat for pVACs and on antinutrients for minerals. In addition to dietary factors, human factors, such as inflammation and disease, can affect micronutrient status. Understanding the interactions between micronutrients is also essential, for example, the synergic effect of iron and pVACs or the competitive effect of iron and zinc. Future efficacy trials should consider human status and genetic polymorphisms linked to interindividual variations.

  16. Contamination of different portions of raw and boiled specimens of Norway lobster by mercury and selenium.

    PubMed

    Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele

    2013-11-01

    The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.

  17. Epigenetic effects of selenium and their implications for health.

    PubMed

    Speckmann, Bodo; Grune, Tilman

    2015-01-01

    Alterations of epigenetic marks are linked to normal development and cellular differentiation as well as to the progression of common chronic diseases. The plasticity of these marks provides potential for disease therapies and prevention strategies. Macro- and micro-nutrients have been shown to modulate disease risk in part via effects on the epigenome. The essential micronutrient selenium affects human health outcomes, e.g., cancers, cardiovascular and autoimmune diseases, via selenoproteins and through a range of biologically active dietary selenocompounds and metabolism products thereof. This review provides an assessment of the current literature regarding epigenetic effects of dietary and synthetic selenocompounds, which include the modulation of marks and editors of epigenetic information and interference with one-carbon metabolism, which provides the methyl donor for DNA methylation. The relevance of a selenium-epigenome interaction for human health is discussed, and we also indicate where future studies will be helpful to gain a deeper understanding of epigenetic effects elicited by selenium.

  18. [Selenium correction of male subfertility].

    PubMed

    Nikolaev, A A; Lutskiĭ, D L; Lozhkina, L V; Bochanovskiĭ, V A; Goncharova, L A

    1999-01-01

    To study the effect of selenium in subfertile men, three groups of men were studied. Group 1--31 subfertile men living in healthy environment, group 2--25 subfertile men exposed for a long time to low doses of gas containing hydrogen sulfide, group 3--control 43 fertile men. Men of groups 1 and 2 received 3 courses of selenium (3.5 microg/kg/day for 30 days). Before the treatment and after each course ejaculate fertility was assessed by spermogram, enzyme activity of alpha-amylase (EC 3.2.1.1) and lactate dehydrogenase (EC 1.1.1.27), concentrations of prostatic acid phosphatase, sperm-specific inhibitor tripsin and prostate-specific antigen. Selenium proved effective, the response being higher in group 2 than in group 1. The causes of this difference are discussed. It is thought possible to use selenium for correction of some subfertility forms in men.

  19. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  20. Bioavailability of zinc, copper, and manganese from infant diets

    SciTech Connect

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.

  1. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  2. Cyclic peptide oral bioavailability: Lessons from the past.

    PubMed

    Wang, Conan K; Craik, David J

    2016-11-01

    Achieving high oral bioavailability for drugs is a key design objective in drug development. It is not surprising then that with the growing expectation of peptides as future drugs, there has also been an increasing interest in developing oral peptide therapeutics. Brought to the fore are questions such as what makes peptides orally bioavailable and how this can be achieved; questions which have inspired research into the area for decades. Early research in the area focused on linear peptides with more recent literature focusing on cyclic peptides, motivated in part by cyclic peptides like cyclosporine A that have demonstrated drug-like oral bioavailability. In this review, we take a look at research on the oral bioavailability of peptides, focusing on factors that affect passive permeability. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 901-909, 2016.

  3. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1993-04-20

    Methods are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

  4. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1993-01-01

    Methods for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

  5. Selenium availability in Texas: possible clinical significance

    SciTech Connect

    Cech, I.; Holguin, A.; Sokolow, H.; Smith, V.

    1984-11-01

    In light of recent reports that have indicated that selenium is an essential micronutrient and possible natural cancer inhibitor, data on the geographic distributions of selenium in Texas were gathered and compared with the distribution of age-adjusted cancer mortality rates. We considered concentrations of selenium measured in ground and surface water to be indicators of its presence in rocks, soil, and locally grown crops. Texas water sources were found to be poor in selenium, except for the Panhandle and the West Texas regions, where soil consists of erosion products from the selenium-rich Rocky Mountains. In general, lower cancer mortality was observed for the selenium-rich regions of Texas compared with cancer mortality for the selenium poor regions. Even though the risks from cancer-provoking factors also differed geographically, the observed pattern was sufficiently suggestive to warrant further attention to selenium. 13 references, 4 figures, 2 tables.

  6. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats.

    PubMed

    Shi, Li-guang; Yang, Ru-jie; Yue, Wen-bin; Xun, Wen-juan; Zhang, Chun-xiang; Ren, You-she; Shi, Lei; Lei, Fu-lin

    2010-04-01

    The objective of this experiment is to study the effects of novel elemental nano-selenium in the diet on testicular ultrastructure, semen quality and GSH-Px activity in male goats. Forty-two 2-month-old bucks were offered a total mixed ration which had been supplemented with nano-Se (0.3mg/kg Se) or unsupplemented (the control group only received 0.06mg/kg Se-background), for a period of 12 weeks (from weaning to sexual maturity). Results showed that the testicular Se level, semen glutathione peroxidase and ATPase activity increased significantly in the nano-Se supplementation group compared with control (P<0.05). The semen quality (volume, density, motility and pH) was not affected by added Se in diets, however, the sperm abnormality rate of control bucks was significantly higher than Se supplemented bucks (P<0.05). The testes of 5 goats in each group were examined by transmission electron microscopy (TEM), and showed that in Se-deficient bucks the membrane was damaged, and showed the occurrence of abnormalities in the mitochondria of the midpiece of spermatozoa. In conclusion, selenium deficiency resulted in abnormal spermatozoal mitochondria, and supplementation with nano-Se enhanced the testis Se content, testicular and semen GSH-Px activity, protected the membrane system integrity and the tight arrayment of the midpiece of the mitochondria. Further studies are required to research the novel elemental nano-Se with characterization of bioavailability and toxicity in small ruminants.

  7. Selenium deposition kinetics of different selenium sources in muscle and feathers of broilers.

    PubMed

    Couloigner, Florian; Jlali, Maamer; Briens, Mickael; Rouffineau, Friedrich; Geraert, Pierre-André; Mercier, Yves

    2015-11-01

    The objective of this study was to determine selenium (Se) deposition kinetics in muscles and feathers of broilers in order to develop a rapid method to compare bioavailability of selenium sources. Different Se sources such as 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, SO), sodium selenite (SS) and seleno-yeast (SY) were compared for their kinetics on Se deposition in muscles and feathers in broiler chicks from 0 to 21 d of age. A total of 576 day-old broilers were divided into four treatments with 8 replicates of 18 birds per pen. The diets used in the experiment were a negative control (NC) not supplemented with Se and 3 diets supplemented with 0.2 mg Se/kg as SS, SY or SO. Total Se content in breast muscle and feathers were assessed on days 0, 7, 14 and 21. At 7 d of age, SO increased muscle Se content compared to D0 (P < 0.05), whereas with the other treatments, muscle Se concentration decreased (P < 0.05). After 21 days, organic Se sources maintained (SY) or increased (SO) (P < 0.05) breast muscle Se concentration compared to hatch value whereas inorganic source (SS) or non-supplemented group (NC) showed a significant decrease in tissue Se concentration (P < 0.05). At D21, Se contents of muscle and feathers were highly correlated (R(2) = 0.927; P < 0.0001). To conclude, these results indicate that efficiency of different Se sources can be discriminated through a 7 d using muscle Se content in broiler chickens. Muscle and feathers Se contents were highly correlated after 21 days. Also feather sampling at 21 days of age represents a reliable and non-invasive procedure for Se bioefficacy comparison.

  8. [Selenium deficiency and infertility. Andrologic aspects].

    PubMed

    Szöllosi, János; Závaczki, Zoltán; Pál, Attila

    2008-09-14

    Absolute selenium deficiency in human is very rare, although suboptimal daily selenium intake may lead to an unrecognized relative deficiency. Among the many consequences ascribed to decreased selenium level, the effect on male fertility is summarised by the authors. Implications from biochemical, animal experimental and human research are discussed.

  9. 21 CFR 573.920 - Selenium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Selenium. 573.920 Section 573.920 Food and Drugs... Listing § 573.920 Selenium. (a) Public Law 103-354 enacted October 13, 1994 (the 1994 Act), states that... Act; unless the Commissioner of Food and Drugs makes a determination that: (1) Selenium additives...

  10. 21 CFR 573.920 - Selenium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Selenium. 573.920 Section 573.920 Food and Drugs... Listing § 573.920 Selenium. (a) Public Law 103-354 enacted October 13, 1994 (the 1994 Act), states that... Act; unless the Commissioner of Food and Drugs makes a determination that: (1) Selenium additives...

  11. 21 CFR 573.920 - Selenium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Selenium. 573.920 Section 573.920 Food and Drugs... Listing § 573.920 Selenium. (a) Public Law 103-354 enacted October 13, 1994 (the 1994 Act), states that... Act; unless the Commissioner of Food and Drugs makes a determination that: (1) Selenium additives...

  12. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  13. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  14. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-07-22

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  15. GIS-assisted regression analysis to identify sources of selenium in streams

    USGS Publications Warehouse

    See, Randolph B.; Naftz, David L.; Qualls, Charles L.

    1992-01-01

    Using a geographic information system, a regression model has been developed to identify and to assess potential sources of selenium in the Kendrick Reclamation Project Area, Wyoming. A variety of spatially distributed factors was examined to determine which factors are most likely to affect selenium discharge in tributaries to the North Platte River. Areas of Upper Cretaceous Cody Shale and Quaternary alluvial deposits and irrigated land, length of irrigation canals, and boundaries of hydrologic subbasins of the major tributaries to the North Platte River were digitized and stored in a geographic information system. Selenium concentrations in samples of soil, plant material, ground water, and surface water were determined and evaluated. The location of all sampling sites was digitized and stored in the geographic information system, together with the selenium concentrations in samples. A regression model was developed using stepwise multiple regression of median selenium discharges on the physical and chemical characteristics of hydrologic subbasins. Results indicate that the intensity of irrigation in a hydrologic subbasin, as determined by area of irrigated land and length of irrigation delivery canals, accounts for the largest variation in median selenium discharges among subbasins. Tributaries draining hydrologic subbasins with greater intensity of irrigation result in greater selenium discharges to the North Platte River than do tributaries draining subbasins with lesser intensity of irrigation.

  16. Bioavailability: implications for science/cleanup policy

    SciTech Connect

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  17. Zinc bioavailability in the chick

    SciTech Connect

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic /sup 65/Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%.

  18. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  19. Selenium metabolite levels in human urine after dosing selenium in different chemical forms

    SciTech Connect

    Hasunuma, Ryoichi; Tsuda, Morizo; Ogawa, Tadao; Kawanishi, Yasuhiro

    1993-11-01

    It has been well known that selenium in marine fish such as tuna and swordfish protects the toxicity of methylmercury in vivo. The protective potency might depend on the chemical forms of selenium in the meat of marine fish sebastes and sperm whale. Little has been revealed, however, on the chemical forms of selenium in the meat of these animals or the selenium metabolites in urine, because the amount of the element is very scarce. Urine is the major excretory route for selenium. The chemical forms of urinary selenium may reflect the metabolism of the element. We have developed methodology for analysis of selenium-containing components in human urine. Using this method, we have observed the time courses of excretory levels of urinary selenium components after a single dose of selenium as selenious acid, selenomethionine, trimethylselenonium ion or tuna meat. 14 refs., 6 figs., 1 tab.

  20. Selenium status in Greenland Inuit.

    PubMed

    Hansen, Jens C; Deutch, Bente; Pedersen, Henning Sloth

    2004-09-20

    In Greenland, the human intake of selenium has always been relatively high and is closely connected to intake of the traditional food of marine origin. Analyses of historic and present day human and animal hair samples have indicated that the selenium level in the marine environment has been constant over time, while the levels in humans have declined corresponding to a decrease in intake of traditional food. The Inuit population in Greenland is in dietary transition where western-style food will increasingly dominate. As a consequence, the ample supply of selenium may not be sustained in the future. We report here the selenium status in three Greenlandic population groups, Ittoqqortoormiit and Tasiilaq on the east coast and Uummannaq on the west coast. Mean whole blood concentrations ranged from 178 microg/l in Tasiilaq men to 488 microg/l in Uummannaq men. Plasma concentrations ranged from 79 microg/l in Tasiilaq women to 113 microg/l in Uummannaq men. With increasing Se concentrations in whole blood, the plasma concentrations increased but tended to stabilise a level approximately 140 microg/l. Selenium blood levels were highly significantly correlated with long chain marine fatty acids. Dietary survey and food composition data from the west coast showed that whale skin, muktuk, is the main source of Se followed by birds, seal meat and organs, and fish. Terrestrial animals contributed only insignificantly to the selenium intake. In West Greenland, daily Se intake (235 microg/day) was estimated by dietary survey; it corresponded well with a calculated intake (220 microg/day) based on the mean blood concentration.

  1. Serum selenium assay following serum ferritin assay

    SciTech Connect

    Stevens, R.G.; Morris, J.S.; Hann, H.L.; Pulsipher, B.; Stahlhut, M.W.

    1986-08-01

    Stored serum samples can be an important research resource into the etiology of cancer. These sera cannot be replaced and should therefore be used to best advantage. In previous epidemiologic studies, only single serum constituents have been assayed in individual serum samples. For example, serum ferritin has been examined in samples stored for as long as 10 years at -20C for a possible relation with general mortality (1) and cancer death (2). Ferritin is the tissue iron-storage protein and is therefore subject to denaturation. Serum selenium has also been examined in relation to cancer risk in a prospective manner by using stored frozen serum samples (3, 4). The interactions of a variety of serum factors in relation to cancer risk would be a desirable research goal, except that the amounts of serum typically available in frozen serum banks are less than 1 ml. It was the purpose of this investigation to determine if a radioimmunoassay for ferritin affected a subsequent neutron activation assay for selenium on the same 0.1 ml serum sample.

  2. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  3. Sulfur, selenium and tellurium pseudopeptides: synthesis and biological evaluation.

    PubMed

    Shaaban, Saad; Sasse, Florenz; Burkholz, Torsten; Jacob, Claus

    2014-07-15

    A new series of sulfur, selenium and tellurium peptidomimetic compounds was prepared employing the Passerini and Ugi isocyanide based multicomponent reactions (IMCRs). These reactions were clearly superior to conventional methods traditionally used for organoselenium and organotellurium synthesis, such as classical nucleophilic substitution and coupling methods. From the biological point of view, these compounds are of considerable interest because of suspected anticancer and antimicrobial activities. While the sulfur and selenium containing compounds generally did not show either anticancer or antimicrobial activities, their tellurium based counterparts frequently exhibited antimicrobial activity and were also cytotoxic. Some of the compounds synthesized even showed selective activity against certain cancer cells in cell culture. These compounds induced a cell cycle delay in the G0/G1 phase. At closer inspection, the ER and the actin cytoskeleton appeared to be the primary cellular targets of these tellurium compounds, in line with some of our previous studies. As most of these peptidomimetic compounds also comply with Lipinski's Rule of Five, they promise good bioavailability, which needs to be studied as part of future investigations.

  4. Effects of selenium on 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis and DNA adduct formation

    SciTech Connect

    Ip, C.; Daniel, F.B.

    1985-01-01

    The purpose of the present investigation was to determine the effects of dietary selenium deficiency or excess on 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary neoplasia in rats and to delineate whether selenium-mediated modification of mammary carcinogenesis was associated with changes in carcinogen:DNA adduct formation and activities of liver microsomal enzymes that are involved in xenobiotic metabolism. Female Sprague-Dawley rats were divided into three groups from weaning and were maintained on one of three synthetic diets designated as follows: selenium deficient (less than 0.02 ppm); selenium adequate (0.2 ppm); or selenium excess (2.5 ppm). For the DMBA binding and DNA adduct studies, rats were given a dose of (/sup 3/H)DMBA p.o. after 1 month on their respective diets. Results from the liver and the mammary gland indicated that neither selenium deficiency nor excess had any significant effect on the binding levels, which were calculated on the basis of total radioactivity isolated with the purified DNA. Furthermore, it was found that dietary selenium intake did not seem to affect quantitatively or qualitatively the formation of DMBA:DNA adducts in the liver. Similarly, in a parallel group of rats that did not receive DMBA, the activities of aniline hydroxylase, aminopyrine N-demethylase, and cytochrome c reductase were not significantly altered by dietary selenium levels. Concurrent with the above experiments, the effect of dietary selenium intake on carcinogenesis was also monitored. Results of this experiment indicated that selenium deficiency enhanced mammary carcinogenesis only when this nutritional condition was maintained in the postinitiation phase. Likewise, an excess of selenium intake inhibited neoplastic development only when this regimen was continued after DMBA administration.

  5. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    PubMed

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2016-02-22

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p < 0.05) between the two groups. In response to nano-Se supplementation, the expression of 8 proteins was higher, and 5 proteins were lower in nano-Se supplemented group compared to control group. The functions of the differentially expressed proteins indicate that the high dose of selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well.

  6. Vitamin D bioavailability: state of the art.

    PubMed

    Borel, P; Caillaud, D; Cano, N J

    2015-01-01

    There has been renewed interest in vitamin D since numerous recent studies have suggested that besides its well-established roles in bone metabolism and immunity, vitamin D status is inversely associated with the incidence of several diseases, e.g., cancers, cardio-vascular diseases, and neurodegenerative diseases. Surprisingly, there is very little data on factors that affect absorption of this fat-soluble vitamin, although it is acknowledged that dietary vitamin D could help to fight against the subdeficient vitamin D status that is common in several populations. This review describes the state of the art concerning the fate of vitamin D in the human upper gastrointestinal tract and on the factors assumed to affect its absorption efficiency. The main conclusions are: (i) ergocalciferol (vitamin D2), the form mostly used in supplements and fortified foods, is apparently absorbed with similar efficiency to cholecalciferol (vitamin D3, the main dietary form), (ii) 25-hydroxyvitamin D (25OHD), the metabolite produced in the liver, and which can be found in foods, is better absorbed than the nonhydroxy vitamin D forms cholecalciferol and ergocalciferol, (iii) the amount of fat with which vitamin D is ingested does not seem to significantly modify the bioavailability of vitamin D3, (iv) the food matrix has apparently little effect on vitamin D bioavailability, (v) sucrose polyesters (Olestra) and tetrahydrolipstatin (orlistat) probably diminish vitamin D absorption, and (vi) there is apparently no effect of aging on vitamin D absorption efficiency. We also find that there is insufficient, or even no data on the following factors suspected of affecting vitamin D bioavailability: (i) effect of type and amount of dietary fiber, (ii) effect of vitamin D status, and (iii) effect of genetic variation in proteins involved in its intestinal absorption. In conclusion, further studies are needed to improve our knowledge of factors affecting vitamin D absorption efficiency

  7. Influence of dietary selenium on the mutagenic activity of perfusate and bile from rat liver, perfused with 1,1-dimethylhydrazine.

    PubMed

    Beije, B; Onfelt, A; Olsson, U

    1984-04-01

    The mutagenic effect of 1,1-dimethylhydrazine (UDMH) was studied in the liver perfusion/cell culture system. Male Wistar rats, fed a selenium-deficient diet with or without selenium supplementation in the drinking water, were used as liver donors. UDMH caused an increased mutation frequency in Chinese hamster V79 cells exposed in the perfusate. The effect was statistically significant with both selenium-deficient and selenium-supplemented livers. With selenium-deficient livers, a significant mutagenic effect was also obtained when V79 cells were treated with bile collected after the administration of UDMH. Bile flow and bile acid excretion were not affected by UDMH treatment of selenium-deficient or selenium-supplemented livers. There was a tendency towards reduced C-oxygenation of N,N-dimethylaniline in microsomes from selenium-deficient livers perfused with UDMH. The lactate/pyruvate ratio in the perfusate was increased by UDMH, the effect being more pronounced with selenium-deficient than selenium-supplemented livers.

  8. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    SciTech Connect

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  9. Biomarkers of Selenium Status

    PubMed Central

    Combs, Gerald F.

    2015-01-01

    The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites. PMID:25835046

  10. Selenium and endocrine systems.

    PubMed

    Beckett, Geoffrey J; Arthur, John R

    2005-03-01

    The trace element selenium (Se) is capable of exerting multiple actions on endocrine systems by modifying the expression of at least 30 selenoproteins, many of which have clearly defined functions. Well-characterized selenoenzymes are the families of glutathione peroxidases (GPXs), thioredoxin reductases (TRs) and iodothyronine deiodinases (Ds). These selenoenzymes are capable of modifying cell function by acting as antioxidants and modifying redox status and thyroid hormone metabolism. Se is also involved in cell growth, apoptosis and modifying the action of cell signalling systems and transcription factors. During thyroid hormone synthesis GPX1, GPX3 and TR1 are up-regulated, providing the thyrocytes with considerable protection from peroxidative damage. Thyroidal D1 in rats and both D1 and D2 in humans are also up-regulated to increase the production of bioactive 3,5,3'-tri-iodothyronine (T3). In the basal state, GPX3 is secreted into the follicular lumen where it may down-regulate thyroid hormone synthesis by decreasing hydrogen peroxide concentrations. The deiodinases are present in most tissues and provide a mechanism whereby individual tissues may control their exposure to T3. Se is also able to modify the immune response in patients with autoimmune thyroiditis. Low sperm production and poor sperm quality are consistent features of Se-deficient animals. The pivotal link between Se, sperm quality and male fertility is GPX4 since the enzyme is essential to allow the production of the correct architecture of the midpiece of spermatozoa. Se also has insulin-mimetic properties, an effect that is probably brought about by stimulating the tyrosine kinases involved in the insulin signalling cascade. Furthermore, in the diabetic rat, Se not only restores glycaemic control but it also prevents or alleviates the adverse effects that diabetes has on cardiac, renal and platelet function.

  11. Radioprotection by metals: Selenium

    NASA Astrophysics Data System (ADS)

    Weiss, J. F.; Srinivasan, V.; Kumar, K. S.; Landauer, M. R.

    The need exists for compounds that will protect individuals from high-dose acute radiation exposure in space and for agents that might be less protective but less toxic and longer acting. Metals and metal derivatives provide a small degree of radioprotection (dose reduction factor <= 1.2 for animal survival after whole-body irradiation). Emphasis is placed here on the radioprotective potential of selenium (Se). Both the inorganic salt, sodium selenite, and the organic Se compound, selenomethionine, enhance the survival of irradiated mice (60Co, 0.2 Gy/min) when injected IP either before (-24 hr and -1 hr) or shortly after (+15 min) radiation exposure. When administered at equitoxic doses (one-fourth LD10; selenomethionine = 4.0 mg/kg Se, sodium selenite = 0.8 mg/kg Se), both drugs enhanced the 30-day survival of mice irradiated at 9 Gy. Survival after 10-Gy exposure was significantly increased only after selenomethionine treatment. An advantage of selenomethionine is lower lethal and behavioral toxicity (locomotor activity depression) compared to sodium selenite, when they are administered at equivalent doses of Se. Sodium selenite administered in combination with WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, enhances the radioprotective effect and reduces the lethal toxicity, but not the behavioral toxicity, of WR-2721. Other studies on radioprotection and protection against chemical carcinogens by different forms of Se are reviewed. As additional animal data and results from human chemoprevention trials become available, consideration also can be given to prolonged administration of Se compounds for protection against long-term radiation effects in space.

  12. Covalent Incorporation of Selenium into Oligonucleotides for X-ray Crystal Structure Determination via MAD: Proof of Principle

    SciTech Connect

    Teplova, M.; Wilds, C.J.; Wawrzak, Z.; Tereshko, V.; Du, Q.; Carrasco, N.; Huang, Z.; Egli, M.

    2010-03-08

    Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U{sub Se}). The X-ray crystal structure of the duplex d(GCGTA)U{sub Se}d(ACGC){sub 2} was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 {angstrom}, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-{alpha}-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to the commonly used halogenated pyrimidines.

  13. Potential for bioavailability to limit degradation of herbicides in unsaturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that biodegradation of organic compounds in soils can be limited by bioavailability if sorption reduces the pool of material available in solution. Bioavailability can also affect herbicidal function, reported herein in the complex processes of activation and degradation of t...

  14. Selenium mediated reduction of the toxicity expression of cigarette smoke condensate in Photobacterium phosphoreum

    SciTech Connect

    Yates, I.E.; Chortyk, O.T.; Lanier, J.L.

    1986-02-01

    Recently, attention has focused on the potential protective activity of selenium against heavy metal toxicity, cancer and other health disorders. Currently, cigarette smoke affects the health of more people than any other environmental pollutant. Producing cigarettes fortified with selenium has been proposed as a possible method to develop a safer tobacco product. Consequently, it would be informative to determine if the presence of selenium in cigarette smoke leads to increased or decreased toxicity. Luminescent assays have been developed for a wide variety of applications ranging from measuring enzyme activities to monitoring water purity. The purpose of this study was to evaluate the effect of selenium on the toxicity of cigarette smoke condensate using in vivo bacterial bioluminescence assays.

  15. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction

    USGS Publications Warehouse

    Johnson, T.M.; Herbel, M.J.; Bullen, T.D.; Zawislanski, P.T.

    1999-01-01

    Selenium stable isotope ratio measurements should serve as indicators of sources and biogeochemical transformations of Se. We report measurements of Se isotope fractionation during selenate reduction, selenite sorption, oxidation of reduced Se in soils, and Se volatilization by algae and soil samples. These results, combined with previous work with Se isotopes, indicate that reduction of soluble oxyanions is the dominant cause of Se isotope fractionation. Accordingly, Se isotope ratios should be useful as indicators of oxyanion reduction, which can transform mobile species to forms that are less mobile and less bioavailable. Additional investigations of Se isotope fractionation are needed to confirm this preliminary assessment. We have developed a new method for measurement of natural Se isotope ratio variation which requires less than 500 ng Se per analysis and yields ??0.2??? precision on 80Se/76Se. A double isotope spike technique corrects for isotopic fractionation during sample preparation and mass spectrometry. The small minimum sample size is important, as Se concentrations are often below 1 ppm in solids and 1 ??g/L in fluids. The Se purification process is rapid and compatible with various sample matrices, including acidic rock or sediment digests.

  16. Determination of selenium in urine by hydride generation atomic absorption spectrometry.

    PubMed

    Navarro, M; Lopez, H; Lopez, M C; Perez, V

    1996-01-01

    A procedure has been developed for determination of total selenium in urine by hydride generation atomic absorption spectrometry. Mineralization was performed with a nitric acid-perchloric acid mixture on a thermostated digestion block. The method was validated by comparison with the method involving mineralization in a microwave acid digestion bomb containing nitric acid and small amounts of vanadium pentoxide. Se(VI) was reduced to Se(IV) by dissolution in 7N HCl. Sample recoveries, precision studies, and analyses of a certified reference material demonstrated the reliability and accuracy of this technique. Urine samples had selenium concentrations ranging from 4.6 to 50.3 micrograms/L. These values correspond to an average of 54.9 micrograms per person per day total ingested and bioavailable Se in the daily diet.

  17. Metabolic interrelationships between arsenic and selenium

    PubMed Central

    Levander, Orville A.

    1977-01-01

    In 1938, Moxon discovered that arsenic protected against selenium toxicity. Since that time it has been shown that this protective effect of arsenic against selenium poisoning can be demonstrated in many different animal species under a wide variety of conditions. Antagonistic effects between arsenic and selenium have also been noted in teratologic experiments. Early metabolic studies showed that arsenic inhibited the expiration of volatile selenium compounds by rats injected with acutely toxic doses of both elements. This was puzzling since pulmonary excretion had long been regarded as a means by which animals could rid themselves of excess selenium. However, later work demonstrated that arsenic increased the biliary excretion of selenium. Not only did arsenic stimulate the excretion of selenium in the bile, but selenium also stimulated the excretion of arsenic in the bile. This increased biliary excretion of selenium caused by arsenic provides a reasonable rationale for the ability of arsenic to counteract the toxicity of selenium, although the chemical mechanism by which arsenic does this is not certain. The most satisfactory explanation is that these two elements react in the liver to form a detoxication conjugate which is then excreted into the bile. This is consistent with the fact that both arsenic and selenium each increase the biliary excretion of the other. Several other metabolic interactions between arsenic and selenium have been demonstrated in vitro, but their physiological significance is not clear. Although arsenic decreased selenium toxicity under most conditions, there is a pronounced synergistic toxicity between arsenic and two methylated selenium metabolites, trimethylselenonium ion or dimethyl selenide. The ecological consequences of these synergisms are largely unexplored, although it is likely that selenium methylation occurs in the environment. All attempts to promote or prevent selenium deficiency diseases in animals by feeding arsenic have

  18. Determination of the selenium requirement in kittens.

    PubMed

    Wedekind, K J; Howard, K A; Backus, R C; Yu, S; Morris, J G; Rogers, Q R

    2003-10-01

    The purpose of this study was to determine the selenium (Se) requirement in kittens. Thirty-six specific-pathogen-free kittens (9.8 weeks old) were utilized in a randomized complete block design to determine the Se requirement in cats with gender and weight used as blocking criteria. Kittens were fed a low Se (0.02 mg/kg Se) torula yeast-based diet for 5 weeks (pre-test) after which an amino acid-based diet (0.027 mg Se/kg diet) was fed for 8 weeks (experimental period). Six levels of Se (0, 0.05, 0.075, 0.10, 0.20 and 0.30 mg Se/kg diet) as Na2SeO3 were added to the diet and were used to construct a response curve. Response variables included Se concentrations and Se-dependent glutathione peroxidase activities (GSHpx) in plasma and red blood cells (RBC) as well as plasma total T3 (TT3) and total T4 (TT4). No significant changes in food intake, weight gain or clinical signs of Se deficiency were noted. Estimates of the kitten's Se requirement (i.e. breakpoints) were determined for RBC and plasma GSHpx (0.12 and 0.15 mg Se/kg diet, respectively), but no definitive breakpoint was determined for plasma Se. Plasma TT3 increased linearly, whereas plasma TT4 and the ratio of TT4 : TT3 decreased in a quadratic fashion to dietary Se concentration. The requirement estimate determined in this study (0.15 mg Se/kg) for kittens is in close agreement with other species. As pet foods for cats contain a high proportion of animal protein with a Se bioavailability of 30%, it is recommended that commercial diets for cats contain 0.5 mg Se/kg DM.

  19. A reliable solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry method for the assay of selenomethionine and selenomethylselenocysteine in aqueous extracts: difference between selenized and not-enriched selenium potatoes.

    PubMed

    Gionfriddo, Emanuela; Naccarato, Attilio; Sindona, Giovanni; Tagarelli, Antonio

    2012-10-17

    A new analytical approach is exploited in the assay of selenium speciation in selenized and not selenium enriched potatoes based on the widely available solid-phase microextraction (SPME) coupled to-GC-triple quadrupole mass spectrometry (SPME-GC-QqQ MS) method. The assay of selenomethionine (SeMet) and selenomethylselenocysteine (SeMeSeCys) in potatoes here reported provides clues to the effectiveness of SPME technique combined with gas chromatography-tandem mass spectrometry, which could be of general use. For the exploitation of the GC method, the selected analytes were converted into their N(O,S)-alkoxycarbonyl alkyl esters derivatives by direct treatment with alkyl chloroformate in aqueous extracts. The performance of five SPME fibers and three chloroformates were tested in univariate mode and the best results were obtained using the divinylbenzene/carboxen/polydimethylsiloxane fiber and propylchloroformate. The variables affecting the efficiency of SPME analysis were optimized by the multivariate approach of design of experiment (DoE) and, in particular, a central composite design (CCD) was applied. Tandem mass spectrometry in selected reaction monitoring (SRM) has allowed the elimination of matrix interferences, providing reconstructed chromatograms with well-resolved peaks and the achievement of very satisfactory detection and quantification limits. Both precision and recovery of the proposed protocol tested at concentration of 8 and 40 μg kg(-1) (dry matter), offered values ranging from 82.3 to 116.3% and from 8.5 to 13.1% for recovery and precision, respectively. The application of the method to commercial samples of selenized and not selenium enriched potatoes proved that the Se fertilization increases significantly the concentration of these bioavailable selenoamino acids.

  20. Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation

    PubMed Central

    Prateeksha; Singh, Braj R.; Shoeb, M.; Sharma, S.; Naqvi, A. H.; Gupta, Vijai K.; Singh, Brahma N.

    2017-01-01

    Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro. Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery. PMID:28386534

  1. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium.

    PubMed

    Aborode, Fatai Adigun; Raab, Andrea; Foster, Simon; Lombi, Enzo; Maher, William; Krupp, Eva M; Feldmann, Joerg

    2015-07-01

    Three month old Thunbergia alata were exposed for 13 days to 10 μM selenite to determine the biotransformation of selenite in their roots. Selenium in formic acid extracts (80 ± 3%) was present as selenopeptides with Se-S bonds and selenium-PC complexes (selenocysteinyl-2-3-dihydroxypropionyl-glutathione, seleno-phytochelatin2, seleno-di-glutathione). An analytical method using HPLC-ICPMS to detect and quantify elemental selenium in roots of T. alata plants using sodium sulfite to quantitatively transform elemental selenium to selenosulfate was also developed. Elemental selenium was determined as 18 ± 4% of the total selenium in the roots which was equivalent to the selenium not extracted using formic acid extraction. The results are in an agreement with the XAS measurements of the exposed roots which showed no occurrence of selenite or selenate but a mixture of selenocysteine and elemental selenium.

  2. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    SciTech Connect

    Thavarajah, D.; Vandenberg, A.; George, G.N.; Pickering, I.J.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentils is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.

  3. Chemical form of selenium in naturally selenium-rich lentils (Lens culinaris L.) from Saskatchewan.

    PubMed

    Thavarajah, Dil; Vandenberg, Albert; George, Graham N; Pickering, Ingrid J

    2007-09-05

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86-95%) in these field-grown lentils is present as organic selenium modeled as selenomethionine with a small component (5-14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.

  4. Daily dietary selenium intake and hair selenium content in a high selenium area of Enshi, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium is essential to humans and is widely distributed within the human body. Its content in blood, urine, hair and nails are important indicators to evaluate Se level in the human body. In China (Shadi, Enschi city), human selenosis of residents is reported to occur in high numbers. In this stud...

  5. Toxicokinetics of selenium in the slider turtle, Trachemys scripta.

    PubMed

    Dyc, Christelle; Far, Johann; Gandar, Frédéric; Poulipoulis, Anastassios; Greco, Anais; Eppe, Gauthier; Das, Krishna

    2016-05-01

    Selenium (Se) is an essential element that can be harmful for wildlife. However, its toxicity in poikilothermic amniotes, including turtles, remains poorly investigated. The present study aims at identifying selenium toxicokinetics and toxicity in juvenile slider turtles (age: 7 months), Trachemys scripta, dietary exposed to selenium, as selenomethionine SeMet, for eight weeks. Non-destructive tissues (i.e. carapace, scutes, skin and blood) were further tested for their suitability to predict selenium levels in target tissues (i.e. kidney, liver and muscle) for conservation perspective. 130 juvenile yellow-bellied slider turtles were assigned in three groups of 42 individuals each (i.e. control, SeMet1 and SeMet2). These groups were subjected to a feeding trial including an eight-week supplementation period SP 8 and a following 4-week elimination period EP 4 . During the SP8, turtles fed on diet containing 1.1 ± 0.04, 22.1 ± 1.0 and 45.0 ± 2.0 µg g(-1) of selenium (control, SeMet1 and SeMet2, respectively). During the EP4, turtles fed on non-supplemented diet. At different time during the trial, six individuals per group were sacrificed and tissues collected (i.e. carapace, scutes, skin, blood, liver, kidney, muscle) for analyses. During the SP8 (Fig. 1), both SeMet1 and SeMet2 turtles efficiently accumulated selenium from a SeMet dietary source. The more selenium was concentrated in the food, the more it was in the turtle body but the less it was removed from their tissues. Moreover, SeMet was found to be the more abundant selenium species in turtles' tissues. Body condition (i.e. growth in mass and size, feeding behaviour and activity) and survival of the SeMet1 and SeMet2 turtles seemed to be unaffected by the selenium exposure. There were clear evidences that reptilian species are differently affected by and sensitive to selenium exposure but the lack of any adverse effects was quite unexpected. Fig. 1 Design of the feeding trial. T, Time of

  6. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application.

    PubMed

    Riding, Matthew J; Doick, Kieron J; Martin, Francis L; Jones, Kevin C; Semple, Kirk T

    2013-10-15

    Risk assessment and remediation of contaminated land is inherently dependent on the contaminants present and their availability for interaction with soil biota. An ever-growing body of evidence suggests that current regulatory procedures over-estimate the 'true' fraction available to biota. Thus, a procedure that predicts the 'bioavailable fraction' would be useful for predicting 'actual' exposure limits and provide a more relevant basis for risk assessment. The aim of this paper is to address several important questions: "How should bioavailability be defined?" "What factors affect bioavailability measurement?" "To what extent have existing protocols measured bioavailability?" "What is actually measured by chemical techniques purported to determine bioavailability?" We offer two definitions (namely 'bioavailability' and 'bioaccessibility') and review commonly employed chemical extraction techniques to measure putative bioavailability. Relative advantages and disadvantages of the techniques are highlighted to elucidate underlying factors for the wide range of conclusions observed in the literature. Although the concept of bioavailability is implicit to contaminated land risk assessment and remediation, explicit reference to and use of adjustment factors is rare amongst regulatory bodies and remediators. Use of chemical determinants for bioavailability, applicable within current legislation and due consideration to inherent variability, are proposed and barriers to their implementation discussed.

  7. Recovering selenium from copper refinery slimes

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Olli; Lindroos, Leo; Yllö, Erkki

    1989-07-01

    The selenium contained within copper refinery slimes may be recovered advantageously by roasting at about 600°C. While roasting in air is inefficient, roasting in a sulfating atmosphere enables practically complete selenium recovery. Based on laboratory tests, a new selenium recovery process was adopted at Outokumpu Copper Refinery. In this process, sulfation is achieved by feeding sulfur dioxide and oxygen into the roasting furnace.

  8. Molybdenum accumulation, tolerance and molybdenum-selenium-sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species.

    PubMed

    DeTar, Rachael Ann; Alford, Élan R; Pilon-Smits, Elizabeth A H

    2015-07-01

    Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate.

  9. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments

    SciTech Connect

    Cuypers, C.; Grotenhuis, T.; Joziasse, J.; Rulkens, W.

    2000-05-15

    Persulfate oxidation was validated as a method to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. It was demonstrated for 14 field contaminated soils and sediments that residual PAH concentrations after a short (3 h) persulfate oxidation correspond well to residual PAH concentrations after 21 days of biodegradation. Persulfate oxidation of samples that had first been subjected to biodegradation yielded only limited additional PAH oxidation. This implies that oxidation and biodegradation removed approximately the same PAH fraction. Persulfate oxidation thus provides a good and rapid method for the prediction of PAH bioavailability. Thermogravimetric analysis of oxidized and untreated samples showed that persulfate oxidation primarily affected expanded organic matter. The results indicate that this expanded organic matter contained mainly readily bioavailable PAHs.

  10. Low selenium environment and Vitamin E in human serum relative to the Kaschin-Beck's disease

    SciTech Connect

    Hou, S.; Zhu, Z.

    1982-04-30

    In China, endemic regions of Kaschin-Beck's disease, Keshan disease, and animal white muscle disease basically overlap, mainly the transitional area between the moist Southeast and the arid Northwest. Tests conducted by the authors reveal that the selenium content of major soils of the regions affected by the diseases is 0.088 to 0.360 ppM, that of the grains below 20 to 30 ppB. Of the inhabitants, 94 percent have serum selenium content below 0.031 ..mu..g/l and the selenium content of the hair of inhabitants is 100 to 200 ppB. From July 1979 to June 1980, the authors treated 41 cases of Kaschin-Beck's disease with sodium selenite-V/sub E/ and 36 of them recovered from the disease. Based upon these data, the authors believe that environmental selenium deficiency of these regions is perhaps the cause of the low level selenium nutrition of the inhabitants. The low level selenium nutrition in turn leads to a reduction of certain enzymic activity to cause the Kaschin-Beck's disease, as well as the Keshan disease and the animal white muscle disease.

  11. Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au-Se adduct.

    PubMed

    Jackson-Rosario, Sarah; Cowart, Darin; Myers, Andrew; Tarrien, Rebecca; Levine, Rodney L; Scott, Robert A; Self, William Thomas

    2009-05-01

    Clostridium difficile is a nosocomial pathogen whose incidence and importance are on the rise. Previous work in our laboratory characterized the central role of selenoenzyme-dependent Stickland reactions in C. difficile metabolism. In this work we have identified, using mass spectrometry, a stable complex formed upon reaction of auranofin (a gold-containing drug) with selenide in vitro. X-ray absorption spectroscopy supports the structure that we proposed on the basis of mass-spectrometric data. Auranofin potently inhibits the growth of C. difficile but does not similarly affect other clostridia that do not utilize selenoproteins to obtain energy. Moreover, auranofin inhibits the incorporation of radioisotope selenium ((75)Se) in selenoproteins in both Escherichia coli, the prokaryotic model for selenoprotein synthesis, and C. difficile without impacting total protein synthesis. Auranofin blocks the uptake of selenium and results in the accumulation of the auranofin-selenide adduct in the culture medium. Addition of selenium in the form of selenite or L-selenocysteine to the growth medium significantly reduces the inhibitory action of auranofin on the growth of C. difficile. On the basis of these results, we propose that formation of this complex and the subsequent deficiency in available selenium for selenoprotein synthesis is the mechanism by which auranofin inhibits C. difficile growth. This study demonstrates that targeting selenium metabolism provides a new avenue for antimicrobial development against C. difficile and other selenium-dependent pathogens.

  12. Removal of selenium from contaminated waters

    SciTech Connect

    Gleason, K.J.; Yu, Jianhan; Wright, J.D.

    1995-12-01

    Selenium, an essential nutrient in minute quantities, is known to be toxic and is a suspected carcinogen at higher concentrations. The toxicity and teratogenicity of selenium to waterfowl present difficulties in disposing of selenium contaminated waters. Included in the U.S. EPA`s list of priority pollutants, selenium is presently the primary water treatment challenge for many West Coast petroleum refineries. Depending on the type of crude oil processed, selenium can be found in refinery process waters at levels up to 5 mg/L with flowrates approaching 1000 gallons per minute. Agricultural drainage waters emanating from irrigated farm lands in the seleniferous areas of the western United States are another major source of selenium contaminated waters. Because of the high mobility of some selenium compounds, they are easily leached from these soils by irrigation water. Within central California alone, there is a current need for the treatment of about 2 million gallons per day of selenium contaminated agricultural drainage water in concentrations approaching 0.5 mg/L. This paper will present an improved process for the removal of selenium from contaminated waters.

  13. Selenium status of idiopathic infertile Nigerian males.

    PubMed

    Akinloye, Oluyemi; Arowojolu, A O; Shittu, O B; Adejuwon, C A; Osotimehin, Babatunde

    2005-04-01

    Selenium concentration in the sera and seminal plasma of 60 infertile males (40 oligospermia and 20 azoospermia) and 40 males with proven evidence of fertility (normospermia; control group) were estimated using atomic absorption spectrophotometry. Results were correlated with spermatogram and hormonal levels in order to determine their relationship and significance in male infertility. The mean serum concentrations of selenium was found to be significantly increased in oligospermic compared to azoospermic subjects and controls (p < 0.01), whereas the seminal plasma level was significantly higher in azoospermic compared to oligospermic subjects and controls (p < 0.001). Thus, the ratio of serum selenium to seminal plasma selenium was 1: 1 in controls, 4: 1 in oligospermia, and 1: 2 in azoospermic subject.A significant inverse correlation was observed between serum selenium level and sperm count (p < 0.01). Similarly, seminal plasma selenium correlated with spermatozoa motility, viability, and morphology. Serum selenium level shows positive correlation with the serum testosterone level (p < 0.01). In conclusion, there appears to be a physiological balance in the distribution of selenium in serum and seminal plasma compartment of control males. A disturbance in this balance has a significant influence on spermatogenesis. Selenium appears to have a positive influence on Leydig cells, thus influencing the secretion of testosterone.

  14. Protocol for aquatic hazard assessment of selenium

    SciTech Connect

    Lemly, A.D.

    1995-05-24

    A procedure is described for conducting an aquatic hazard assessment of selenium. Hazard is characterized in terms of the potential for food-chain bioaccumulation and reproductive impairment in fish and aquatic birds, which are the most sensitive biological responses for estimating ecosystem-level impacts of selenium contamination. Five degrees of hazard are possible depemding on the expected environmental concentrations of selenium, exposure of fish and aquatic birds to toxic concentrations, and resultant potential for reproductive impairment. An example is given to illustrate how the protocol is applied to selenium data from a typical contaminant monitoring program.

  15. Increased hair selenium concentration in hyperlipidemic patients

    PubMed Central

    Fülöp, Péter; Seres, Ildikó; Jenei, Zoltán; Juhász, Imre; Paragh, György

    2013-01-01

    Selenium is an essential trace element with potential anti-atherogenic and antioxidant effects. Experimental data suggest that selenium might be beneficial in the prevention of atherosclerosis and its complications, whereas human epidemiological studies have yielded conflicting results. Data on hair selenium status in hyperlipidemic patients are still lacking. Therefore, we analysed selenium concentrations by X-ray fluorescence in the hair of 81 statin-naïve patients with newly diagnosed Fredrickson-type IIa and IIb hyperlipoproteinemia and compared their data with 43 healthy volunteers. We also assessed the frequency of other classical risk factors of atherosclerosis. Hair selenium levels were found to be significantly higher in hyperlipidemic patients compared with volunteers with normal lipid levels. Also, a significantly increased number of traditional atherosclerosis risk factors were observed in hyperlipidemic patients with hair selenium concentrations above the median in contrast to those with below. Our results suggest that high hair selenium status might be associated with adverse blood lipid profile together with an increased number of traditional risk factors in a selenium-deplete population. These findings warrant further investigations to study the impact of selenium supplementation on the incidence of cardiovascular events. PMID:23402643

  16. Kinetic determination of selenium in biological material

    SciTech Connect

    Efremenko, O.A.; Krasnyuk, I.I.; Kudrin, A.N.; Rudenko, B.A.

    1986-05-10

    A very promising method for selenium determination is a kinetic analytical procedure that combines the simplicity and availability of physical instrumentation with a low analyte detection limit. This paper reports a modification of the method to enable the determination of selenium in rat blood and involves decomposing the sample with a mixture of nitric and perchloric acids, separation of the selenium (IV) from other decomposition products, and quantitatively determining selenium by the described kinetic method using the indicator reaction of iron (II) edetate oxidation by sodium nitrate.

  17. Selenium in ruminant nutrition: a review.

    PubMed

    Ammerman, C B; Miller, S M

    1975-10-01

    The early interest in selenium related primarily to its toxicity, but since 1957 the element has been recognized as a dietary essential. The dietary requirement for selenium by most species is about .1 ppm. Deficiencies of selenium in cattle and sheep have been confirmed under natural grazing conditions in many countries of the world. Overt signs of inadequacy such as white muscle disease (nutritional muscular dystrophy) occur primarily in young calves or lambs born to selenium deficient dams. Infertility has increased in ewes grazing pastures low in selenium. In general, signs of deficiency have not occurred in older animals such as finishing beef cattle and lactating dairy cows. Subclinical deficiencies of selenium are not determined easily, however, and thus an inadequacy of the element may be limiting maximum animal performance under certain circumstances of drylot feeding. The current nutritional status of ruminant animals in many geographical areas and involving various feeding programs with this element has not been established. The recent widespread deficiency problems with nonruminants suggest that such an assessment should be made. Concentration of selenium in tissue, particularly in the liver, has been used in establishing selenium status of the animal. With lambs glutathione peroxidase activity in certain tissues may be a more accurate indicator of selenium adequacy than is selenium content of the tissue. Supplemental sodium selenite and sodium selenate by either oral administration or parenteral injection have prevented clinical signs of selenium deficiency and animal losses in both ruminant and nonruminant animals. Heavy pellets containing elemental selenium for placement in the rumen have proved effective. In general, organic forms of selenium are absorbed more readily by animals than are inorganic compounds. The dietary requirements for selenium and its metabolism are influenced by many nutrient interrelationships, including its interactions with

  18. Selenium. Nutritional, toxicologic, and clinical aspects.

    PubMed Central

    Fan, A. M.; Kizer, K. W.

    1990-01-01

    Despite the recent findings of environmental contamination, selenium toxicosis in humans is exceedingly rare in the United States, with the few known cases resulting from industrial accidents and an episode involving the ingestion of superpotent selenium supplements. Chronic selenosis is essentially unheard of in this country because of the typical diversity of the American diet. Nonetheless, because of the growing public interest in selenium as a dietary supplement and the occurrence of environmental selenium contamination, medical practitioners should be familiar with the nutritional, toxicologic, and clinical aspects of this trace element. PMID:2219873

  19. Revised reference values for selenium intake.

    PubMed

    Kipp, A P; Strohm, D; Brigelius-Flohé, R; Schomburg, L; Bechthold, A; Leschik-Bonnet, E; Heseker, H

    2015-10-01

    The German, Austrian and Swiss nutrition societies are the joint editors of the 'reference values for nutrient intake'. They have revised the reference values for the intake of selenium and published them in February 2015. The saturation of selenoprotein P (SePP) in plasma is used as a criterion for the derivation of reference values for selenium intake in adults. For persons from selenium-deficient regions (China) SePP saturation was achieved with a daily intake of 49μg of selenium. When using the reference body weights the D-A-CH reference values are based upon, the resulting estimated value for selenium intake is 70μg/day for men and 60μg/day for women. The estimated value for selenium intake for children and adolescents is extrapolated using the estimated value for adults in relation to body weight. For infants aged 0 to under 4 months the estimated value of 10μg/day was derived from the basis of selenium intake via breast milk. For infants aged 4 to under 12 months this estimated value was used and taking into account the differences regarding body weight an estimated value of 15μg/day was derived. For lactating women compared to non-lactating women a higher reference value of 75μg/day is indicated due to the release of selenium with breast milk. The additional selenium requirement for pregnant women is negligible, so that no increased reference value is indicated.

  20. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.

    PubMed

    Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L

    2015-04-01

    Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants.

  1. Chemical form of selenium differentially influences DNA repair pathways following exposure to lead nitrate.

    PubMed

    McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A

    2015-01-01

    Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents.

  2. BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW

    EPA Science Inventory

    Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...

  3. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    PubMed

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential.

  4. Producing selenium-enriched eggs and meat to improve the selenium status of the general population.

    PubMed

    Fisinin, Vladimir I; Papazyan, Tigran T; Surai, Peter F

    2009-01-01

    The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hens' diet at levels that provide 0.3-0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering approximately 50% (30-35 microg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.

  5. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food.

    PubMed

    Haug, Anna; Graham, Robin D; Christophersen, Olav A; Lyons, Graham H

    2007-12-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations.

  6. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    PubMed Central

    Haug, Anna; Graham, Robin D.; Christophersen, Olav A.; Lyons, Graham H.

    2007-01-01

    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations. PMID:18833333

  7. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum.

    PubMed

    McNear, David H; Afton, Scott E; Caruso, Joseph A

    2012-03-01

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Se is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a "background" of methylselenocysteine within the root with discrete spots of SeO(3)(2-), Se(0) and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(ii) selenide species. Together with the formation of the root-bound mercury(ii) selenide species, we also report on the formation of cinnabar (HgS) and Hg(0) in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.

  8. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum

    SciTech Connect

    McNear, Jr., David H.; Afton, Scott E.; Caruso, Joseph A.

    2012-12-10

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Se is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a 'background' of methylselenocysteine within the root with discrete spots of SeO{sub 3}{sup 2-}, Se{sup 0} and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(II) selenide species. Together with the formation of the root-bound mercury(II) selenide species, we also report on the formation of cinnabar (HgS) and Hg{sup 0} in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.

  9. Review of selenium thermodynamic data

    NASA Astrophysics Data System (ADS)

    Cowan, C. E.

    1988-02-01

    This report assesses the accuracy and completeness of available thermodynamic data on selenium. A review of experimental methods from published literature on selenium thermodynamic data focused on chemical reactions responsible for the formation of both aqueous complexes and solid phases of selenate, selenite, and selenide. The reviewer selected best data values, based on the methods used for estimating thermodynamic data. After inclusion of these values into the MINTEQ model, a validation study evaluated model performance for selenite and selenide solid phases. Lack of selenate data precluded model validation for this compound. The review furnished data on 22 aqueous complexes of selenite, 15 of selenide, and 17 of selenate, as well as 21 solid phases of selenite, 20 of selenide and 8 of selenate. These data proved inadequate to represent the formation of species in the solid phase. The validation study gave inconclusive predictions of selenite and selenide solubility and could not be used to assess the accuracy or completeness of the thermodynamic data.

  10. Selenium adsorption to aluminum-based water treatment residuals

    SciTech Connect

    Ippolito, James A.; Scheckel, Kirk G.; Barbarick, Ken A.

    2009-09-02

    Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected across the pH range studied. Selenate adsorbed on to WTR, reference mineral phases, and amorphous aluminum hydroxide occurred as outer sphere complexes (relatively loosely bound), while selenite adsorption was identified as inner-sphere complexation (relatively tightly bound). Selenite sorption to WTR in an anoxic environment reduced Se(IV) to Se(0), and oxidation of Se(0) or Se(IV) appeared irreversible once sorbed to WTR. Al-based WTR could play a favorable role in sequestering excess Se in affected water sources.

  11. Drug Bioavailability Data: (Un)Available.

    ERIC Educational Resources Information Center

    Capomacchia, Anthony C.; And Others

    1979-01-01

    The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)

  12. Evolution of selenium utilization traits

    PubMed Central

    Romero, Héctor; Zhang, Yan; Gladyshev, Vadim N; Salinas, Gustavo

    2005-01-01

    Background The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor. Results We analyzed completely sequenced genomes for occurrence of the selA, B, C, D and ybbB genes. We found that selB and selC are gene signatures for the Sec-decoding trait. However, selD is also present in organisms that do not utilize Sec, and shows association with either selA, B, C and/or ybbB. Thus, selD defines the overall selenium utilization. A global species map of Sec-decoding and 2-selenouridine synthesis traits is provided based on the presence/absence pattern of selenium-utilization genes. The phylogenies of these genes were inferred and compared to organismal phylogenies, which identified horizontal gene transfer (HGT) events involving both traits. Conclusion These results provide evidence for the ancient origin of these traits, their independent maintenance, and a highly dynamic evolutionary process that can be explained as the result of speciation, differential gene loss and HGT. The latter demonstrated that the loss of these traits is not irreversible as previously thought. PMID:16086848

  13. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  14. Selenium and prostate cancer prevention: insights from the selenium and vitamin E cancer prevention trial (SELECT).

    PubMed

    Nicastro, Holly L; Dunn, Barbara K

    2013-04-03

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention.

  15. Selenium Distribution and Fractionation in a Managed Urban Watershed

    NASA Astrophysics Data System (ADS)

    Papelis, C.; Boettcher, T. M.; Harris-Burr, R. D.

    2006-12-01

    Metals, and metalloids, are common contaminants of concern in arid and semi-arid watersheds in the Southwestern U.S. Because of the dramatic population growth in this part of the U.S., the potential for contamination of urban watersheds has also increased over the last few decades. Streams in urban watersheds receive storm water, urban runoff, shallow groundwater, and treated wastewater. In addition, urban watersheds are often heavily managed to mitigate flood events and sediment-related impacts. Clearly, sediment transport can have a profound effect on the water quality of affected bodies of water, not only by affecting water clarity, but also by facilitating the transport of chemical constituents, as well as microbiological components. The Las Vegas Wash (Wash) is the lowest point in the Las Vegas Valley Watershed and receives storm water, urban runoff, and treated wastewater from the entire Las Vegas Valley. To minimize erosion, caused by the dramatic wastewater flow increase during the last few decades, several erosion control structures are being built. In addition, wetlands being constructed in the Wash area receive most of the water from the Wash. The construction of these ponds has the potential to alter the distribution of metals and metalloids in bodies of water used by wildlife. An element of particular concern is selenium, a metalloid commonly found at elevated concentrations in soils of the U.S. Southwest. To assess the potential adverse impact on water quality, sediment samples were collected along the Wash, upstream and downstream of erosion control structures, and around current and future constructed wetlands. The sediments were characterized by particle size distribution, specific surface area, mineralogical composition, organic carbon content, and scanning electron microscopy. The total selenium, as well as the percentages associated with exchangeable, organic, carbonate, and oxide sediment fractions were determined. The distribution of selenium

  16. Bioavailability of the Polyphenols: Status and Controversies

    PubMed Central

    D’Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  17. 21 CFR 573.920 - Selenium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Selenium. 573.920 Section 573.920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Act; unless the Commissioner of Food and Drugs makes a determination that: (1) Selenium additives...

  18. Changing selenium nutritional status of Chinese residents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    China has been designated as one of 40 countries deficient in selenium (Se) according to the World Health Organization. Selenium concentrations in hair are commonly used to evaluate the Se level of the human body. Moreover, hair Se concentrations are significantly correlated with Se concentrations ...

  19. [Screening and identification of a photosynthetic bacterium reducing selenite to red elemental selenium].

    PubMed

    Wang, Dong-liang; Xiao, Min; Qian, Wei; Han, Bo

    2007-02-01

    Selenium is essential element for humans and animals but is very toxic at higher concentrations. In four inorganic states of selenate [SeO4 2- ( VI)], selenite [SeO3 2- (IV)], elemental selenium [Se (0)] and selenide [Se2- (- II )], selenite is well known to be more soluble and higher toxic than other three forms. Many microorganisms have the capacity to reduce selenite to red elemental selenium, which provide the potential to cope with the detoxification of pollution and to use the biological availability of red elemental selenium. Strain S3 that was more resistant to sodium selenite was selected from 20 photosynthetic bacteria preserved in laboratory. The red granule produced by S3 was identified as elemental selenium ( Se) by transmission electron microscopy and Electron-Dispersive X-ray (EDX) analysis. The granule diameter of the red elemental selenium was 5nm - 200nm, similar as the Nano-Se that has bioavailability. Morphology, physiology and photosynthetic pigments analysis results showed that strain S3 was essentially consistent with Rhodobacter azotoformans . The 16S rDNA sequence analysis (GenBank accession number DQ402051) suggested that strain S3 was clustered together with R. azotoformans in phylogenetic tree, with the sequence identity of 99% . Based on all the results of taxonomy, strain S3 was identified as R. azotoformans S3. The effects of selenite on growth kinetics and the ability to resistant selenite of strain S3 were investigated. In contrast to Rhodospirillum rubrum which was reported not to reduce selenite until the end of exponential growth, strain S3 transformed selenite (1.25mmol/L) at the beginning of the growth, suggesting that strain S3 and Rs. rubrum may employ different strategies to reduce selenite. Strain S3 can grow in the presence of up to 125mmol/L sodium selenite, which is much higher than those which could be resisted to by other bacteria such as Escherichia coli ( < 20mmol/L) and Ralstonia metallidurans CH34 ( < 6mmol/L) . It

  20. Areas Susceptible to Irrigation-Induced Selenium Contamination of Water and Biota in the Western United States

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.; Peltz, Lorri A.

    1999-01-01

    The U.S. Department of the Interior (DOI) studied contamination induced by irrigation drainage in 26 areas of the Western United States during 1986-95. Comprehensive compilation, synthesis, and evaluation of the data resulting from these studies were initiated by DOI in 1992. Soils and ground water in irrigated areas of the West can contain high concentrations of selenium because of (1) residual selenium from the soil's parent rock beneath irrigated land; (2) selenium derived from rocks in mountains upland from irrigated land by erosion and transport along local drainages, and (3) selenium brought into the area in surface water imported for irrigation. Application of irrigation water to seleniferous soils can dissolve and mobilize selenium and create hydraulic gradients that cause the discharge of seleniferous ground water into irrigation drains. Given a source of selenium, the magnitude of selenium contamination in drainage-affected aquatic ecosystems is strongly related to the aridity of the area and the presence of terminal lakes and ponds. Marine sedimentary rocks and deposits of Late Cretaceous or Tertiary age are generally seleniferous in the Western United States. Depending on their origin and history, some Tertiary continental sedimentary deposits also are seleniferous. Irrigation of areas associated with these rocks and deposits can result in concentrations of selenium in water that exceed criteria for the protection of freshwater aquatic life. Geologic and climatic data for the Western United States were evaluated and incorporated into a geographic information system (GIS) to produce a map identifying areas susceptible to irrigation-induced selenium contamination. Land is considered susceptible where a geologic source of selenium is in or near the area and where the evaporation rate is more than 2.5 times the precipitation rate. In the Western United States, about 160,000 square miles of land, which includes about 4,100 square miles (2.6 million acres) of

  1. Selenium-Enriched Foods Are More Effective at Increasing Glutathione Peroxidase (GPx) Activity Compared with Selenomethionine: A Meta-Analysis

    PubMed Central

    Bermingham, Emma N.; Hesketh, John E.; Sinclair, Bruce R.; Koolaard, John P.; Roy, Nicole C.

    2014-01-01

    Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity. PMID:25268836

  2. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells.

    PubMed

    Kahya, Mehmet Cemal; Nazıroğlu, Mustafa; Çiğ, Bilal

    2014-08-01

    Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.

  3. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism.

    PubMed

    Jablonska, Ewa; Reszka, Edyta; Gromadzinska, Jolanta; Wieczorek, Edyta; Krol, Magdalena B; Raimondi, Sara; Socha, Katarzyna; Borawska, Maria H; Wasowicz, Wojciech

    2016-12-13

    The aim of the study was to evaluate the effect of selenium supplementation on the expression of genes associated with glucose metabolism in humans, in order to explain the unclear relationship between selenium and the risk of diabetes. For gene expression analysis we used archival samples of cDNA from 76 non-diabetic subjects supplemented with selenium in the previous study. The supplementation period was six weeks and the daily dose of selenium was 200 µg (as selenium yeast). Blood for mRNA isolation was collected at four time points: before supplementation, after two and four weeks of supplementation, and after four weeks of washout. The analysis included 15 genes encoding selected proteins involved in insulin signaling and glucose metabolism. In addition, HbA1c and fasting plasma glucose were measured at three and four time points, respectively. Selenium supplementation was associated with a significantly decreased level of HbA1c but not fasting plasma glucose (FPG) and significant down-regulation of seven genes: INSR, ADIPOR1, LDHA, PDHA, PDHB, MYC, and HIF1AN. These results suggest that selenium may affect glycemic control at different levels of regulation, linked to insulin signaling, glycolysis, and pyruvate metabolism. Further research is needed to investigate mechanisms of such transcriptional regulation and its potential implication in direct metabolic effects.

  4. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism

    PubMed Central

    Jablonska, Ewa; Reszka, Edyta; Gromadzinska, Jolanta; Wieczorek, Edyta; Krol, Magdalena B.; Raimondi, Sara; Socha, Katarzyna; Borawska, Maria H.; Wasowicz, Wojciech

    2016-01-01

    The aim of the study was to evaluate the effect of selenium supplementation on the expression of genes associated with glucose metabolism in humans, in order to explain the unclear relationship between selenium and the risk of diabetes. For gene expression analysis we used archival samples of cDNA from 76 non-diabetic subjects supplemented with selenium in the previous study. The supplementation period was six weeks and the daily dose of selenium was 200 µg (as selenium yeast). Blood for mRNA isolation was collected at four time points: before supplementation, after two and four weeks of supplementation, and after four weeks of washout. The analysis included 15 genes encoding selected proteins involved in insulin signaling and glucose metabolism. In addition, HbA1c and fasting plasma glucose were measured at three and four time points, respectively. Selenium supplementation was associated with a significantly decreased level of HbA1c but not fasting plasma glucose (FPG) and significant down-regulation of seven genes: INSR, ADIPOR1, LDHA, PDHA, PDHB, MYC, and HIF1AN. These results suggest that selenium may affect glycemic control at different levels of regulation, linked to insulin signaling, glycolysis, and pyruvate metabolism. Further research is needed to investigate mechanisms of such transcriptional regulation and its potential implication in direct metabolic effects. PMID:27983572

  5. A Review of Mercury Bioavailability in Humans and Fish.

    PubMed

    Bradley, Mark A; Barst, Benjamin D; Basu, Niladri

    2017-02-10

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%-100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field.

  6. A Review of Mercury Bioavailability in Humans and Fish

    PubMed Central

    Bradley, Mark A.; Barst, Benjamin D.; Basu, Niladri

    2017-01-01

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%–100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field. PMID:28208586

  7. Selenium toxicosis in three California sea lions (Zalophus californianus).

    PubMed

    Edwards, W C; Whitenack, D L; Alexander, J W; Solangi, M A

    1989-12-01

    Selenium poisoning occurs worldwide in nearly all domestic animals. Acute selenium poisoning is associated with feeding high levels or injecting excessive amounts of selenium and is usually fatal. The acute poisoning may cause gastrointestinal disturbance, muscle weakness, depression of the central nervous system, prostration and death (1-2). Chronic selenium poisoning in cattle, sheep and horses may result from the consumption of seleniferous plants over an extended period of time. Chronic selenium results in ataxia, incoordination, partial blindness, paralysis, loss of hair or wool, abnormal hoof growth and possibly abnormal changes in behavior (1). There is little information regarding the clinical signs and pathology of selenium toxicosis in marine mammals. Likewise, there is little information regarding normal tissue levels or toxicologically significant levels of selenium in these species. The results of these investigations in sea lions, based on clinical signs, pathologic findings and tissue levels of selenium, suggest subacute or chronic selenium poisoning was most likely from dietary fish high in selenium.

  8. Evaluation of selenium in dietary supplements using elemental speciation.

    PubMed

    Kubachka, Kevin M; Hanley, Traci; Mantha, Madhavi; Wilson, Robert A; Falconer, Travis M; Kassa, Zena; Oliveira, Aline; Landero, Julio; Caruso, Joseph

    2017-03-01

    Selenium-enriched dietary supplements containing various selenium compounds are readily available to consumers. To ensure proper selenium intake and consumer confidence, these dietary supplements must be safe and have accurate label claims. Varying properties among selenium species requires information beyond total selenium concentration to fully evaluate health risk/benefits A LC-ICP-MS method was developed and multiple extraction methods were implemented for targeted analysis of common "seleno-amino acids" and related oxidation products, selenate, selenite, and other species relatable to the quality and/or accuracy of the labeled selenium ingredients. Ultimately, a heated water extraction was applied to recover selenium species from non-selenized yeast supplements in capsule, tablet, and liquid forms. For selenized yeast supplements, inorganic selenium was monitored as a means of assessing selenium yeast quality. A variety of commercially available selenium supplements were evaluated and discrepancies between labeled ingredients and detected species were noted.

  9. Selenium: a brief review and a case report of selenium responsive cardiomyopathy

    PubMed Central

    2013-01-01

    Background The authors review the role of selenium and highlight possible low selenium levels in soil that may result in deficient states in Saudi Arabia. Case presentation The authors report a case of selenium-responsive cardiomyopathy in a 15-month old Saudi Arabian boy. This case of selenium deficiency causing dilated cardiomyopathy is presented with failure to thrive, prolonged fever and respiratory distress. The investigations revealed selenium deficiency. Selenium supplementation along with anti-failure therapy [Furosimide, Captopril] was administered for 6 months. Following therapy the cardiac function, hair, skin and the general health of the patient improved significantly. Conclusion The patient with dilated cardiomyopathy of unknown etiology, not responding to usual medication may be deficient in selenium. Serum selenium measurements should be included in the diagnostic work-up to ensure early detection and treatment of the disease. The selenium level in the Saudi population needs be determined. Vulnerable populations have to undergo regular selenium measurements and supplementation if indicated. Dependence on processed foods suggests that the Saudi population fortify themselves with nutrient and micronutrient supplements in accordance to the RDA. PMID:23530936

  10. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms.

    PubMed

    Dolgova, N V; Hackett, M J; MacDonald, T C; Nehzati, S; James, A K; Krone, P H; George, G N; Pickering, I J

    2016-03-01

    Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported. A possible contributing factor may be that different chemical forms of selenium were used in different studies. Using larval stage zebrafish (Danio rerio) as a model organism, we report a comparison of the toxicities and tissue selenium distributions of four different chemical forms of selenium. We find that the organic forms of selenium tested (Se-methyl-l-selenocysteine and l-selenomethionine) show considerably more toxicity than inorganic forms (selenite and selenate), and that this appears to be correlated with the level of bioaccumulation. Despite differences in concentrations, the tissue specific pattern of selenium accumulation was similar for the chemical forms tested; selenium was found to be highly concentrated in pigment (melanin) containing tissues especially for the organic selenium treatments, with lower concentrations in eye lens, yolk sac and heart. These results suggest that pigmented tissues might serve as a storage reservoir for selenium.

  11. Epigenetic effects of selenium and their implications for health

    PubMed Central

    Speckmann, Bodo; Grune, Tilman

    2015-01-01

    Alterations of epigenetic marks are linked to normal development and cellular differentiation as well as to the progression of common chronic diseases. The plasticity of these marks provides potential for disease therapies and prevention strategies. Macro- and micro-nutrients have been shown to modulate disease risk in part via effects on the epigenome. The essential micronutrient selenium affects human health outcomes, e.g., cancers, cardiovascular and autoimmune diseases, via selenoproteins and through a range of biologically active dietary selenocompounds and metabolism products thereof. This review provides an assessment of the current literature regarding epigenetic effects of dietary and synthetic selenocompounds, which include the modulation of marks and editors of epigenetic information and interference with one-carbon metabolism, which provides the methyl donor for DNA methylation. The relevance of a selenium-epigenome interaction for human health is discussed, and we also indicate where future studies will be helpful to gain a deeper understanding of epigenetic effects elicited by selenium. PMID:25647085

  12. Evaluation of flushing of a high-selenium backwater channel in the Colorado River.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A; Weston, L Ken; McDonald, Susan F

    2004-02-01

    Concern has been raised that selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine if operation of a water control structure (opened in December 1996) that allowed the Colorado River to flow through a channel area at Walter Walker State Wildlife Area (WWSWA) would reduce selenium and other inorganic elements in water, sediment, aquatic invertebrates, and forage fish. Endangered Colorado pikeminnow were collected and muscle plug samples taken for selenium analysis. Selenium concentrations in filtered water were 21.0 microg/L in 1995, 23.5 microg/L in 1996, 2.1 microg/L in 1997, and 2.1 microg/L in 1998. Selenium concentrations in sediment cores and sediment traps were 8.5 microg/g in 1995, 8.2 microg/g in 1996, 4.8 microg/g in 1997, and 1.1 microg/g in 1998. Selenium concentrations in aquatic invertebrates were 27.4 microg/g in 1996, 15.5 microg/g in 1997, and 4.9 microg/g in 1998. Selenium concentrations in forage fish were 27.2 microg/g in 1996, 20.2 microg/g in 1997, and 8.6 microg/g in 1998. Selenium concentrations in muscle plugs of Colorado pikeminnow were 9.8 microg/g in 1995, 9.5 microg/g in 1996, 9.0 microg/g in 1997, and 10.3 microg/g in 1998. Although selenium concentrations in water, sediment, aquatic invertebrates, and forage fish decreased substantially after operation of the water control structure, a corresponding change in Colorado pikeminnow did not seem to occur. Selenium concentrations in muscle plugs decreased with increasing fish total length and weight, did not change between repeat sampling in the same year or recapture in subsequent years, and seemed to be most closely associated with the mean monthly river flow for the March-July period.

  13. Relationship of selenium concentrations in blood of calves to blood selenium of the dam and supplemental selenium

    SciTech Connect

    Kincaid, R.L.; Hodgson, A.S. )

    1989-01-01

    Selenium status of dam, injected Se, and dietary Ca on calf blood Se concentrations were determined in two trials. Blood was collected from heifer calf and dam pairs at parturition. Half of the calves were injected intramuscularly with .0825 mg Se/kg body weight at birth while the other half received no Se injection. The concentration of Se in the blood of the dam had a significant effect on blood Se of calves at wk 0, 1, and 3, whereas injected Se did not significantly affect blood Se concentrations in the calf until wk 10. In a separate trial, whole blood and plasma Se were significantly correlated at birth in calves, but plasma Se was only about one-third the concentration of whole blood. The concentration of dietary Ca in the calf starter did not significantly affect blood Se, but a quadratic relationship was suggested. Plasma Zn in calves was elevated at birth and then declined with age whereas plasma inorganic P increased with age. Early postnatal concentrations of Se in blood of calves are largely a function of the dam; thus, in areas of low Se intakes, Se supplements for the dam are important.

  14. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review.

    PubMed

    Doucha, Jirí; Lívanský, Karel; Kotrbácek, Václav; Zachleder, Vilém

    2009-07-01

    Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70-100 g Chlorella dry mass l(-1)) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.

  15. Accumulation of selenium and lack of severe effects on productivity of American dippers (Cinclus mexicanus) and spotted sandpipers (Actitis macularia).

    PubMed

    Harding, Lee E; Graham, Mark; Paton, Dale

    2005-04-01

    Selenium has been found at elevated concentrations in water, sediments, and aquatic biota in the Elk River (British Columbia, Canada) and some of its tributaries downstream of several coal mines. Selenium water concentrations in those areas exceed Canadian and British Columbia guidelines and are above levels at which adverse effects to fish and waterfowl could occur. We compared selenium concentrations in the eggs of two riverine waterbirds, American dippers and spotted sandpipers, with measures of productivity: the number of eggs laid, egg hatchability, and nestling survival. In American dippers, the mean egg selenium concentration from the exposed areas, 1.10 +/- SE 0.059 microg/g wet weight, was indistinguishable from the reference areas, 0.96 +/- SE 0.059 microg/g wet weight. For spotted sandpipers, the mean egg selenium concentration in the exposed areas, 2.2 +/- 0.5 microg/g wet weight, was significantly higher than in the reference areas, 1.2 +/- 0.14 microg/g wet weight, but less than reported thresholds for waterfowl and other shorebirds. There were no significant differences in egg hatchability between dippers in reference and exposed areas, but reduced hatchability was apparent for sandpipers in exposed locations. Despite the slightly reduced hatchability in sandpipers, overall productivity was higher than regional norms for both species; thus, selenium did not affect the number of young recruited to local populations. We did not observe teratogenic effects in either species, although none was expected at these concentrations. Despite moderately high selenium concentrations in the water, mean egg selenium concentrations were less than predicted from uptake models. We hypothesise that the relatively low uptake of selenium into the eggs of the two waterbirds in this study is likely due to their lotic environment's low biological transformation and uptake rates.

  16. Selenium in oncology: from chemistry to clinics.

    PubMed

    Micke, Oliver; Schomburg, Lutz; Buentzel, Jens; Kisters, Klaus; Muecke, Ralph

    2009-10-12

    The essential trace element selenium, which is a crucial cofactor in the most important endogenous antioxidative systems of the human body, is attracting more and more the attention of both laypersons and expert groups. The interest of oncologists mainly focuses in the following clinical aspects: radioprotection of normal tissues, radiosensitizing in malignant tumors, antiedematous effect, prognostic impact of selenium, and effects in primary and secondary cancer prevention. Selenium is a constituent of the small group of selenocysteine-containing selenoproteins and elicits important structural and enzymatic functions. Selenium deficiency has been linked to increased infection risk and adverse mood states. It has been shown to possess cancer-preventive and cytoprotective activities in both animal models and humans. It is well established that Se has a key role in redox regulation and antioxidant function, and hence in membrane integrity, energy metabolism and protection against DNA damage. Recent clinical trials have shown the importance of selenium in clinical oncology. Our own clinical study involving 48 patients suggest that selenium has a positive effect on radiation-associated secondary lymphedema in patients with limb edemas, as well as in the head and neck region, including endolaryngeal edema. Another randomized phase III study of our group was performed to examine the cytoprotective properties of selenium in radiation oncology. The aim was to evaluate whether sodium selenite is able to compensate a preexisting selenium deficiency and to prevent radiation induced diarrhea in adjuvant radiotherapy for pelvic gynecologic malignancies. Through this study, the significant benefits of sodium selenite supplementation with regards to selenium deficiency and radiotherapy induced diarrhea in patients with cervical and uterine cancer has been shown for the first time in a prospective randomized trial. Survival data imply that supplementation with selenium does not

  17. Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis

    USGS Publications Warehouse

    Schlekat, C.E.; Dowdle, P.R.; Lee, B.-G.; Luoma, S.N.; Oremland, R.S.

    2000-01-01

    Elemental selenium, Se(0), is a prevalent chemical form in sediments, but little is known about its bioavailability. We evaluated the bioavailability of two forms of Se(0) by generating radioisotopic 75Se(0) through bacterial dissimilatory reduction of 75SeO32- by pure bacterial cultures (SES) and by an anaerobic sediment microbial consortium (SED). A third form was generated by reducing 75SeO32- with ascorbic acid (AA). Speciation determinations showed that AA and SES were >90% Se(0), but SED showed a mixture of Se(0), selenoanions, and a residual fraction. Pulse-chase techniques were used to measure assimilation efficiencies (AE) of these particulate Se forms by the bivalve Potamocorbula amurensis. Mean AE values were 3 ?? 2% for AA, 7 ?? 1% for SES, and 28 ?? 15% for SED, showing that the bioavailability of reduced, particle-associated Se is dependent upon its origin. To determine if oxidative microbial processes increased Se transfer, SES 75Se(0) was incubated with an aerobic sediment microbial consortium. After 113 d of incubation, 36% of SES Se(0) was oxidized to SeO32-. Assimilation of total particulate Se was unaffected however (mean AE = 5.5%). The mean AE from the diatom Phaeodactylum tricornutum was 58 ?? 8%, verifying the importance of Se associated with biogenic particles. Speciation and AE results from SED suggest that selenoanion reduction in wetlands and estuaries produces biologically available reduced selenium.Elemental selenium, Se(0), is a prevalent chemical form in sediments, but little is known about its bioavailability. We evaluated the bioavailability of two forms of Se(0) by generating radioisotopic 75Se(0) through bacterial dissimilatory reduction of 75SeO32- by pure bacterial cultures (SES) and by an anaerobic sediment microbial consortium (SED). A third form was generated by reducing 75SeO32 with ascorbic acid (AA). Speciation determinations showed that AA and SES were > 90% Se(0), but SED showed a mixture of Se(0), selenoanions, and a

  18. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  19. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  20. Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds.

    PubMed

    Finley, John W; Sigrid-Keck, Anna; Robbins, Rebecca J; Hintze, Korry J

    2005-05-01

    Multiple components of broccoli, such as sulforaphane (Sf) and phenolic acids, may inhibit cancer. Additionally, broccoli can accumulate selenium (Se), and Se has been demonstrated to reduce the risk of cancer. Studies were conducted to determine whether enhancement of broccoli with Se would produce a plant with superior health benefits. Although increasing the concentration of Se in broccoli from <1.0 to >800 microg/g resulted in inhibition of colon cancer in rats, it also decreased the Sf content by >80% and inhibited production of most phenolic acids. The inclusion of Se-enriched broccoli in the diet of rats induced the activity of the selenoprotein thioredoxin reductase beyond the maximum activity induced by Se alone. These results emphasize the complex interactions of bioactive chemicals in a food; attempts to maximize one component may affect accumulation of another, and consumption of high amounts of multiple bioactive compounds may result in unexpected metabolic interactions within the body.

  1. Selenium in human male reproductive organs.

    PubMed

    Oldereid, N B; Thomassen, Y; Purvis, K

    1998-08-01

    The objective of the study was to obtain information on the concentration and distribution of selenium throughout the human male reproductive tract. Material was removed at autopsy from 41 men who had died suddenly and unexpectedly. Semen samples were also provided from 184 men attending an andrology clinic for fertility investigation and from 32 healthy volunteers. Significant positive correlations in the selenium concentration were demonstrated between the different reproductive organs, the testis having the highest concentrations. No correlation was found between the concentration of selenium in the genital organs and liver, kidney or blood, suggesting that its uptake and/or biochemical activity in the reproductive organs may be controlled by similar mechanisms not shared by the other organs. No significant age-dependent changes could be detected in tissue selenium concentrations. In a group of men under fertility investigation, a significant positive correlation was obtained between seminal plasma concentrations of selenium and concentrations of spermatozoa in the same ejaculate. A significant positive correlation between concentrations of zinc and selenium in the same ejaculates indicated that selenium may arise largely from the prostate gland.

  2. Decreased selenium levels in acute myocardial infarction

    SciTech Connect

    Kok, F.J.; Hofman, A.; Witteman, J.C.M.; de Bruijn, A.M.; Kruyssen, D.H.C.M.; de Bruin, M.; Valkenburg, H.A. )

    1989-02-24

    To study the association between selenium status and the risk of myocardial infarction, the authors compared plasma, erythrocyte, and toenail selenium levels and the activity of erythrocyte glutathione peroxidase among 84 patients with acute myocardial infarction and 84 population controls. Mean concentrations of all selenium measurements were lower in cases than controls. The differences were statistically significant, except for the plasma selenium level. A positive trend in the risk of acute myocardial infarction from high to low toenail selenium levels was observed, which persisted after adjustment for other risk factors for myocardial infarction. In contrast, erythrocyte glutathione peroxidase activity was significantly higher in cases than controls. Because toenail selenium level reflects blood levels up to one year before sampling, these findings suggest that a low selenium status was present before the infarction and, thus, may be of etiologic relevance. The higher glutathione peroxidase activity in the cases may be interpreted as a defense against increased oxidant stress either preceding or following the acute event.

  3. In Situ Immobilization of Selenium in Sediment

    SciTech Connect

    Moore, Robert C.; Stewart, Thomas Austin

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is very little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.

  4. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  5. Toxicity of selenium and other elements in food organisms to razorback sucker larvae

    USGS Publications Warehouse

    Hamilton, Steven J.; Holley, Kathy M.; Buhl, Kevin J.; Bullard, Fern A.; Weston, L. Ken; McDonald, Susan F.

    2002-01-01

    Elevated selenium concentrations documented in water, sediment, and biota in irrigation drain water studies by U.S. Department of the Interior agencies and academia have raised concerns that selenium may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine the effects on endangered razorback sucker (Xyrauchen texanus) larvae from exposure to selenium and other trace elements in water and zooplankton collected from sites adjacent to the Colorado River near Grand Junction, CO. A 30-day study was initiated with 5-day-old larvae exposed in a 4×4 factor experiment with four food and four water treatments, and the biological endpoints measured were survival, growth, development, and whole-body residues of selenium. Mean selenium concentration in reference water (24-Road) was <0.7 μg/l, in reference food (brine shrimp) was 3.2 μg/g, at Horsethief was 1.6 μg/l in water and 6.0 μg/g in zooplankton, at Adobe Creek was 3.4 μg/l in water and 32 μg/g in zooplankton, and at Walter Walker was 13 μg/l in water and 52 μg/g in zooplankton. Although there were differences in concentrations of inorganic elements in water and biota among the three sites, selenium was apparently the only element elevated to concentrations of concern. Effects on survival were more prominent from dietary exposure compared to waterborne exposure. Selenium concentrations of ≥4.6 μg/g in food organisms adversely affected the survival of razorback sucker larvae. The onset of mortality in larvae exposed to food and water from Walter Walker seemed delayed compared to mortality in larvae exposed to food and water from Horsethief, which has been observed in two other studies. Elevated arsenic in one food source seemed to interact with selenium to reduce the toxic effects of selenium.

  6. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Hassler, C. S.; Schoemann, V.

    2009-10-01

    Iron (Fe) is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber) to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile) organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  7. Selenium accumulation and loss in mallard eggs

    SciTech Connect

    Heinz, G.H. )

    1993-04-01

    Five female mallards (Anas platyhynchos) that had just started egg laying were first fed a diet containing 15 ppm selenium in the form of selenomethionine for 20 d and then an untreated diet for 20 d. Selenium levels in eggs peaked (to about 13-20 ppm) in about two weeks on the treated diet and leveled off at a low level (< 5 ppm) after about 10 d back on the untreated diet. Selenium levels in egg whites responded faster than levels in yolks to the females' consumption of treated and untreated diets.

  8. Renal changes in selenium-exposed fish

    SciTech Connect

    Sorensen, E.M.; Harlan, C.W.; Bell, J.S.

    1982-06-01

    A group of green sunfish was collected from a selenium-rich lake and compared with a similar group collected from a control lake upstream in the same drainage system in east Texas. Since the level of selenium in kidneys of these fish was relatively high (averaging 11 ppm on a fresh weight basis), histopathological and ultrastructural data were collected. Kidneys from fish from the selenium-rich lake showed proliferative glomerulonephritis and hematuria as well as vacuolation and necrosis of cells of the convoluted tubules.

  9. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices.

    PubMed

    Wang, Qi; Mejía Jaramillo, Alejandra; Pavon, Juan J; Webster, Thomas J

    2016-10-01

    Bacterial infections are commonly found on various poly(ether ether ketone) (PEEK) medical devices (such as orthopedic instruments, spinal fusion devices, and segments in dialysis equipment), and thus, there is a significant need for introducing antibacterial properties to such materials. The objective of this in vitro study was to introduce antibacterial properties to PEEK medical devices by coating them with nanosized selenium. In this study, red selenium (an elemental form of selenium) nanoparticles were coated on PEEK medical devices through a quick precipitation method. Furthermore, with heat treatment at 100°C for 6 days, red selenium nanoparticles were transferred into gray selenium nanorods on the PEEK surfaces. Bacteria test results showed that both red and gray selenium-coated PEEK medical devices significantly inhibited the growth of Pseudomonas aeruginosa compared with uncoated PEEK after either 1, 2, or 3 days. Red selenium nanoparticle-coated PEEK showed less bacteria growth on its surface than gray selenium nanorod-coated PEEK after 3 days. This study demonstrated that red, and to a lesser extent gray, nanosized selenium could be used as potential antibacterial coatings to prevent bacteria function on PEEK medical devices. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1352-1358, 2016.

  10. Selenium content of game meat

    SciTech Connect

    Medeiros, L.C.; Belden, R.P. Univ. of Wyoming, Laramie )

    1991-03-11

    Selenium (Se) content of elk, deer, bison and beef were measured and compared. Samples were obtained from animals grazed on soil known to contain high, but variable amounts of Se. Beef were feedlot grazed and elk, deer, and bison were from captive or semi-captive herds. Selenium content was determined by graphite furnace after high pressure wet microwave digestion of samples. Deer and bison contained more Se than elk or beef. On a dry weight basis, deer contained more Se than bison. Game species contained more Se than beef. Within samples from male elk and deer and elk and bison of both genders, there were interactions between specie and muscle effects. Muscle and gender did not significantly influence Se content. The animals from which these samples were taken were supplemented with feeds grown on high Se containing soils, which was reflected in all values. Se values were twofold higher than those previously reported for meat. Those consuming large quantities of game from areas with high Se soil may need to monitor Se intake to avoid consuming excessive quantities.

  11. Linking selenium sources to ecosystems: San Francisco Bay-Delta Model

    USGS Publications Warehouse

    Presser, Theresa S.; Luoma, Samuel N.

    2004-01-01

    Marine sedimentary rocks of the Coast Ranges contribute selenium to soil, surface water, and ground water in the western San Joaquin Valley, California. Irrigation funnels selenium into a network of subsurface drains and canals. Proposals to build a master drain (i.e., San Luis Drain) to discharge into the San Francisco Bay-Delta Estuary remain as controversial today as they were in the 1950s, when drainage outside the San Joaquin Valley was first considered. An existing 85-mile portion of the San Luis Drain was closed in 1986 after fish mortality and deformities in ducks, grebes and coots were discovered at Kesterson National Wildlife Refuge, the temporary terminus of the drain. A 28-mile portion of the drain now conveys drainage from 100,000 acres into the San Joaquin River and eventually into the Bay-Delta. If the San Luis Drain is extended directly to the Bay-Delta, as is now being proposed as an alternative to sustain agriculture, it could receive drainage from an estimated one-million acres of farmland affected by rising water tables and increasing salinity. In addition to agricultural sources, oil refineries also discharge selenium to the Bay-Delta, although those discharges have declined in recent years. To understand the effects of changing selenium inputs, scientists have developed the Bay-Delta Selenium Model.

  12. Antiproliferative effects of selenium compounds in colon cancer cells: comparison of different cytotoxicity assays.

    PubMed

    Schröterová, Ladislava; Králová, Vera; Vorácová, Adéla; Hasková, Pavlína; Rudolf, Emil; Cervinka, Miroslav

    2009-10-01

    A number of cytotoxicity assays are currently available, each of them using specific approach to detect different aspects of cell viability, such as cell integrity, proliferation and metabolic functions. In this study we compared the potential of five commonly employed cytotoxicity assays (WST-1, XTT, MTT, Brilliant blue and Neutral red assay) to detect antiproliferative effects of three selenium compounds, sodium selenite, seleno-L-methionine (SeMet) and Se-(Methyl)selenocysteine (SeMCys) on three colorectal cancer cell lines in vitro. Cells were exposed to the selected selenium compounds in the concentration range of 0-256 microM during 48 h. WST-1 and XTT failed to detect cytotoxic effect, with the exception of the highest concentration of selenium compounds tested. Conversely, the metabolic activity of selenium treated cells measured by WST-1 and XTT significantly increased in comparison to untreated controls. MTT, Neutral red and Brilliant blue assays were more sensitive and yielded mutually comparable results, with significant decrease of measured parameters in a concentration-dependent manner. To a smaller extent, the results were affected by the different chemical nature of the selenium compounds tested as well as by the biological properties of individual cell lines.

  13. Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program.

    PubMed

    Lyons, Graham H; Stangoulis, James C R; Graham, Robin D

    2004-06-01

    Biofortification of staple food crops with micronutrients by either breeding for higher uptake efficiency or fertilization can be an effective strategy to address widespread dietary deficiency in human populations. Selenium and iodine deficiencies affect a large proportion of the population in countries targeted for biofortification of staple crops with Zn, Fe, and vitamin A, and inclusion of Se and I would be likely to enhance the success of these programs. Interactions between Se and I in the thyroid gland are well established. Moreover, Se appears to have a normalizing effect on certain nutrients in the body. For example, it increases the concentration of Zn and Fe at key sites such as erythrocytes when these elements are deficient, and reduces potentially harmful high Fe concentration in the liver during infection. An important mechanism in Se/Zn interaction is selenoenzyme regulation of Zn delivery from metallothionein to Zn enzymes. More research is needed to determine whether sufficient genetic variability exists within staple crops to enable selection for Se and I uptake efficiency. In addition, bioavailability trials with animals and humans are needed, using varying dietary concentrations of Se, I, Zn, Fe, and vitamin A to elucidate important interactions in order to optimize delivery in biofortification programs.

  14. Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium, an essential mineral, plays important roles in optimizing human health. Chitosan is an effective, naturally oriented material for synthesizing nanoparticles with polyanions and exhibit preferable properties such as biocompatibility, biodegradation and resistance to certain enzymes. We have...

  15. Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus).

    PubMed

    Huang, Susie Shih-Yin; Hung, Silas S O; Chan, Hing Man

    2014-11-01

    Selenium (Se) has been shown to antagonize mercury (Hg) toxicity. We have previously demonstrated that orally intubated selenomethionine (SeMet) and methylmercury (MeHg) reduced tissue Se accumulation, as well as blood and kidney Hg concentrations in juvenile white sturgeon (Acipenser transmontanus). However, the form of Se accumulated is not known. In this study, three organoseleniums: selenocysteine (Sec), Se-methyl-selenocysteine (MSeCys), and SeMet and two inorganic Se species: selenate and selenite were determined and quantified in the blood at different post-intubation periods (12, 24, 48h) and in the muscle, liver, and kidneys at 48h in white sturgeon orally intubated with a single dose of control (carrier), SeMet (500μg Se/kg body weight; BW), MeHg (850μg Hg/kg BW), and both (Se+Hg; at 500μg Se/kg and 850μg Hg/kg BW). When only SeMet was intubated, the accumulative/unmodified pathway took precedent in the blood, white muscle, liver, and kidneys. In the presence of MeHg, however, active metabolic transformation and de novo synthesis of biologically active Se forms are seen in the liver and kidneys, as indicated by a gradual increase in blood Sec:SeMet ratios and Se metabolites. In the white muscle, mobilization of endogenous Se storage by MeHg is supported by the absence of tissue SeMet and detectable levels of blood SeMet. In contrast, co-intubation with SeMet increased muscle SeMet. The high levels of unknown Se metabolites and detectable levels of selenite in the kidney reflect its role as the major excretory organ for Se. Selenium metabolism is highly regulated in the kidneys, as Se speciation was not affected by MeHg or by its co-intubation with SeMet. In the Se+Hg group, the proportion of SeMet in the liver has decreased to nearly 1/8th of that of the SeMet only group, resulting in a more similar selenocompound distribution profile to that of the MeHg only group. This is likely due to the increased need for Se metabolites necessary for Me

  16. Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo

    PubMed Central

    Takahashi, Kazuaki; Suzuki, Noriyuki; Ogra, Yasumitsu

    2017-01-01

    Selenium (Se) shows biologically ambivalent characteristics in animals. It is an essential element but becomes severely toxic when the amount ingested exceeds the adequate intake level. Its biological, nutritional, and toxicological effects are strongly dependent on its chemical form. In this study, we evaluated the toxicity and bioavailability of nine naturally occurring Se compounds, or the so-called bioselenocompounds, in vivo and in vitro. Selenite and selenocystine showed higher toxicity than the other bioselenocompounds in vitro. In an in vitro membrane permeability study using Caco-2 cells, selenomethionine and Se-methylselenocysteine were more efficiently transported than the other bioselenocompounds. The effect of bioselenocompounds on nutritional availability was quantitatively determined from the recovery of serum selenoproteins in Se-deficient rats by speciation analysis. In contrast to the in vitro study, there were no significant differences in the assimilation of Se into serum selenoproteins among the bioselenocompounds, including selenoamino acids, selenosugar, and inorganic Se species, such as selenite, selenate, and selenocyanate, except trimethylselenonium ion. These results indicate that animals can equally assimilate both inorganic and organic naturally occurring selenocompounds except trimethylselenonium ion, which is the urinary metabolite of excess Se. We confirmed that the bioselenocompounds except trimethylselenonium ion had equivalent nutritional availabilities. PMID:28245633

  17. Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?

    PubMed

    Estevam, Ethiene Castellucci; Griffin, Sharoon; Nasim, Muhammad Jawad; Denezhkin, Polina; Schneider, Ramona; Lilischkis, Rainer; Dominguez-Alvarez, Enrique; Witek, Karolina; Latacz, Gniewomir; Keck, Cornelia; Schäfer, Karl-Herbert; Kieć-Kononowicz, Katarzyna; Handzlik, Jadwiga; Jacob, Claus

    2017-02-15

    Various bacteria, including diverse Staphylococci, reduce selenite to yield red selenium particles with diameters in the high nanometer to low micrometer range. Formation and accumulation of such particles in bacteria often results in cell death, triggered by a loss of thiols and formation of disruptive deposits inside the cell. Hence certain pathogenic bacteria are rather sensitive to the presence of selenite, whilst other organisms, such as small nematodes, do not employ this kind of nanotechnology, yet become affected by micromolar concentrations of such naturally generated materials. Selenium particles extracted from cultures of Staphylococcus carnosus and apparently stabilized by their natural protein coating, for instance, show considerable activity against the nematode Steinernema feltiae, Escherichia coli and Saccaromyces cerevisiae. Such natural nano- and micro-particles are also more active than mechanically generated selenium particles and may be applied as antimicrobial materials in Medicine and Agriculture.

  18. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids.

    PubMed

    Guisbiers, Grégory; Lara, Humberto H; Mendoza-Cruz, Ruben; Naranjo, Guillermo; Vincent, Brandy A; Peralta, Xomalin G; Nash, Kelly L

    2016-10-25

    Selenoproteins play an important role in the human body by accomplishing essential biological functions like oxido-reductions, antioxidant defense, thyroid hormone metabolism and immune response; therefore, the possibility to synthesize selenium nanoparticles free of any contaminants is exciting for future nano-medical applications. This paper reports the first synthesis of selenium nanoparticles by femtosecond pulsed laser ablation in de-ionized water. Those pure nanoparticles have been successfully used to inhibit the formation of Candida albicans biofilms. Advanced electron microscopy images showed that selenium nanoparticles easily adhere on the biofilm, then penetrate into the pathogen, and consequently damage the cell structure by substituting with sulfur. 50% inhibition of Candida albicans biofilm was obtained at only 25 ppm. Finally, the two physical parameters proved to affect strongly the viability of Candida albicans are the crystallinity and particle size.

  19. Serum selenium and liposoluble vitamins in Japanese Black cows that had stillborn calves

    PubMed Central

    UEMATSU, Mizuho; KITAHARA, Go; SAMESHIMA, Hiroshi; OSAWA, Takeshi

    2016-01-01

    Stillbirth and dystocia are major factors that negatively affect beef production. We sought to clarify serum selenium and liposoluble vitamin levels in Japanese Black cows that gave birth to stillborn calves (stillbirth cows). Blood samples were collected from 103 stillbirth cows and 95 cows that gave birth to healthy calves (control cows). Serum levels of selenium (45.8 ± 16.0 ng/ml) and vitamin A (73.0 ± 24.8 IU/dl) in stillbirth cows were lower (P<0.05) than those in control cows (52.2 ± 8.9 ng/ml and 93.3 ± 14.8 IU/dl, respectively). Our findings suggest that appropriate serum selenium and vitamin A levels are important for calving cows. PMID:27181084

  20. Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants

    USGS Publications Warehouse

    Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S.

    1989-01-01

    Soybean (Glycine max) plants were grown in hydroponic solutions treated with high concentrations of either arsenic or selenium. Spectral reflectance changes in arsenic-dosed plants included a shift to shorter wavelengths in the long-wavelength edge of the chlorophyll absorption band centered at 680 nm (the red edge) and higher reflectance in the 550-650 nm region. These results are consistent with vegetation reflectance anomalies observed in previous greenhouse experiments and in airborne radiometer studies. The selenium-dosed plants contrast, exhibited a shift to longer wavelengths of the red edge and lower reflectance between 550 nm and 650 wh when compared with control plants. Morphological effects of arsenic uptake included lower overall biomass, stunted and discolored roots, and smaller leaves oriented more vertically than leaves of control plants. Selenium-dosed plants also displayed morphological changes, but root and leaf biomass were less affected than were those of arsenic-dosed plants when compared to control plants. ?? 1989.

  1. Bioavailability enhancement studies of amoxicillin with Nigella

    PubMed Central

    Ali, Babar; Amin, Saima; Ahmad, Javed; Ali, Abuzer; Ali, Mohd; Mir, Showkat R.

    2012-01-01

    Background & objectives: Nigella sativa Linn. is extensively used in the Indian diasporas as spice, which may interact with co-administered drugs and affect their intestinal availability. The purpose of this study was to investigate the effect of Nigella on bioavailability of amoxicillin in animal model. Methods: Everted rat intestinal sacs were used for in vitro experiment to study the transfer of amoxicillin across the gut. Amoxicillin (6 mg/ml) was co-infused with 3 and 6 mg of methanol and hexane extract of Nigella seeds separately. The amount of amoxicillin that traversed the gut was followed spectrophotometrically at 273 nm. For in vivo studies Wistar albino rats were used. Amoxicillin (25 mg/kg, po) was co-administered with hexane extract of Nigella seeds (25 mg/kg, po). The amount of amoxicillin in rat plasma was determined by UPLC-MS/MS method. Results: The in vitro studies both with methanol and hexane extracts of Nigella increased the permeation of amoxicillin significantly (P<0.001) as compared to control. Permeation was also found to be significantly higher for the hexane extract (P<0.001) in comparison to methanol extract at the same dose levels. In vivo experiments revealed that Cmax of amoxicillin in rat plasma when administered orally alone and in combination with hexane extract increased correspondingly from 4138.251 ± 156.93 to 5995.045 ± 196.28 ng/ml while as AUC0→t increased from 8890.40 ± 143.33 to 13483.46 ± 152.45 ng/ml.h. Interpretation & conclusions: Nigella enhanced amoxicillin availability in both in vivo and in vitro studies. As the increase in bioavailability is attributed, in part, to enhanced diffusivity across intestine, our study indicated that Nigella increased intestinal absorption of amoxicillin. PMID:22664507

  2. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  3. Arsenic-Selenium And Mercury-Selenium Bonds in Biology

    SciTech Connect

    Gailer, Jurgen; /Calgary U.

    2007-07-10

    When rabbits are simultaneous injected with arsenite and selenite or mercuric chloride and selenite, compounds with As-Se and Hg-Se bonds are formed in the bloodstream. The combined application of liquid chromatography-inductively coupled plasma atomic emission spectrometry (ICP-AES) and X-ray absorption spectroscopy (XAS) has revealed the molecular structure of these toxicologically important compounds and provided insight into their mechanism of formation. The glutathione-driven formation of these compounds in the bloodstream fundamentally links the metabolism of the environmental pollutants mercuric mercury and arsenite with that of the essential ultratrace element selenium, which establishes a feasible mechanism by which the chronic low-level exposure of various human populations to these toxic metals and metalloid compounds is linked to human diseases, including cancer and neurodegenerative diseases.

  4. Studies on selenium in top athletes.

    PubMed

    Drâgan, I; Ploeşteanu, E; Cristea, E; Mohora, M; Dinu, V; Troescu, V S

    1988-01-01

    The authors performed a controlled trial in 18 top athletes (9 weight lifters and 9 rowers, girls) in order to make evident some chronic and acute effects (antioxidant) of selenium. Nonprotein--SH (essential glutathione), lipid peroxides (MDA-malondialdehyde), glucose-6-phosphate dehydrogenases (G-6-PDH) and fructose-1,6-diphosphate aldolase in serum, have been recorded initially on basal conditions, after 3 weeks of treatment (100 micrograms/day selenium or placebo) and again after 3 weeks of treatment, also on basal conditions, when crossing over the groups (between a free interval of 10 days). In another trial we registered these parameters on basal conditions and after two hours of hard training accompanied by a per oral administration of 150 micrograms selenium (respectively placebo). The results show significant changes under selenium treatment of the peroxides, G-6-PDH and light changes, not significant of the nonprotein--SH, changes which could suggest an antioxidant effect of this element.

  5. Review of selenium and prostate cancer prevention.

    PubMed

    Yang, Lei; Pascal, Mouracade; Wu, Xiao-Hou

    2013-01-01

    Prostate cancer is the most common malignancy in men in the United States. Surgery or radiation are sometimes unsatisfactory treatments because of the complications such as incontinence or erectile dysfunction. Selenium was found to be effective to prevent prostate cancer in the Nutritional Prevention of Cancer Trial (NPC), which motivated two other clinical trials: the Selenium and Vitamin E Cancer Prevention Trial (SELECT) and a Phase III trial of selenium to prevent prostate cancer in men with high-grade prostatic intraepithelial neoplasia. However, these two trials failed to confirm the results of the NPC trial and indicated that the selenium may not be preventive of prostate cancer. In this article we review the three clinical trials and discuss some different points which might be potential factors underlying variation in results obtained.

  6. Biofortification and phytoremediation of selenium in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofortification is an agricultural process that increases the uptake and accumulation of specific nutrients, e.g. selenium (Se), in agricultural food products through plant breeding, genetic engineering, and manipulation of agronomic practices. The development and uses of biofortified agricultural ...

  7. Zinc bioavailability in pork loin

    SciTech Connect

    Hortin, A.E.; Bechtel, P.J. Baker, D.H. )

    1991-03-15

    Pork loins were uniformly trimmed and divided into three groups: raw, roasted and braised. Following cooking, the loins were freeze dried and then ground to a fine granular consistency. Zinc levels of 51, 60 and 63 mg/kg dry matter (DM) were contained in the raw, roasted and braised products, respectively. The chick bioavailability (BV) assay employed a Zn-deficient soy isolate basal diet that was supplemented with 0, 5 or 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O to produce a standard straight-line response in tibia Zn as a function of supplemental Zn intake. Experimental Zn sources were also added to the basal diet to provide 10 mg Zn/kg. Standard curve methodology indicated that Zn BV was unaffected by cooking. Roasted pork lion had a Zn BV of 184% relative to ZnSO{sub 4}{center dot}H{sub 2}O. Addition of 0.40% L-cysteine to the diet containing 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O increased Zn BV to 175%. Results with histidine as a Zn-enhancing factor were variable. It is apparent that pork loin is an excellent source of bioavailable Zn, and SH-containing compounds such as cysteine and glutathione that are present in meat may contribute to enhanced gut absorption of meat-source Zn.

  8. Zinc, copper and selenium in reproduction.

    PubMed

    Bedwal, R S; Bahuguna, A

    1994-07-15

    Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, stillbirths, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via

  9. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  10. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1994-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  11. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1995-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  12. Whole blood selenium concentrations in endurance horses.

    PubMed

    Haggett, Emily; Magdesian, K Gary; Maas, John; Puschner, Birgit; Higgins, Jamie; Fiack, Ciara

    2010-11-01

    Exercise causes an increase in the production of reactive oxygen species, which can result in oxidant/antioxidant disequilibrium. Deficiency of antioxidants can further alter this balance in favor of pro-oxidation. Selenium (Se) is one of many antioxidant catalysts, as a component of the glutathione peroxidase enzymes. Soils and forages vary widely in Se concentration and a deficient diet can lead to sub-clinical or clinical deficiency in horses. Endurance horses are prone to oxidative stress during long periods of aerobic exercise and their performance could be affected by Se status. This study investigated the blood Se concentration in a group of endurance horses (n=56) residing and competing in California, a state containing several regions that tend to produce Se-deficient forages. The rate of Se deficiency in this group of horses was low, with only one horse being slightly below the reference range. Higher blood Se concentrations were not associated with improved performance in terms of ride time. There was no significant difference in Se concentration between horses that completed the ride and those that were disqualified, although blood Se concentrations were significantly higher in horses that received oral Se supplementation. An increase in blood Se concentration was observed following exercise and this warrants further study.

  13. Mercury-selenium interactions in the environment

    SciTech Connect

    Saroff, L.; Lipfert, W.; Moskowitz, P.D.

    1996-02-01

    The Clean Air Act Amendments of 1990 require the U.S. Environmental Protection Agency (EPA) to consider the need to control emissions of trace elements and compounds emitted from coal combustion, including coal-fired power plants. Concern has been expressed about emissions of mercury and arsenic, for example, since health effects may be associated with exposure to some of these compounds. By and large, effects of trace element emissions have been considered individually, without regard for possible interactions. To the extent that the relevant environmental pathways and health endpoints differ, this mode of analysis is appropriate. For example, arsenic is considered a carcinogen and mercury affects the brain. However, there may be compelling reasons to consider emissions of mercury (Hg) and selenium (Se) together: (1) Both Se and Hg are emitted from power plants primarily as vapors. (2) Hg and Se are both found in fish, which is the primary pathway for Hg health effects. (3) Se has been shown to suppress Hg methylation in aqueous systems, which is a necessary step for Hg health effects at current environmental concentrations. (4) Se is a trace element that is essential for health but that can also be toxic at high concentrations; it can thus have both beneficial and adverse health effects, depending on the dosage. This paper reviews some of the salient characteristics and interactions of the Hg-Se system, to consider the hypothesis that the effects of emissions of these compounds should be considered jointly.

  14. Effect of selenium deficiency on gene transcription

    SciTech Connect

    Christensen, M.J.; Burgener, K.W. )

    1991-03-11

    To investigate the general effects of dietary selenium (Se) deficiency on gene transcription, weanling male Sprague-Dawley rats were fed a basal Se-deficient Torula yeast-based diet or the same diet supplemented with 0.5 ppm Se as sodium selenite for 40 days. At that time three rats in each dietary group were sacrificed. Livers were excised and divided into two portions for isolation of nuclei and for assay of cytosolic Se-glutathione peroxidase (Se-GPX) activity. Se-GPX activity was 279 {plus minus} 4 (mean {plus minus} SEM) mUnits/mg protein in Se-adequate livers, and 10 {plus minus} 2 mUnits/mg protein in Se-deficient livers. One aliquot of nuclei from each dietary group was used in a run-on transcription assay, employing {alpha}-{sup 32}P-UTP to label nascent transcripts. Equal quantities of radioactivity from these nuclei were hybridized with cDNA probes bound to nitrocellulose. Message bound to each probe was quantitated by laser densitometry of autoradiographs, and by scintillation counting of dot blotted nitrocellulose. Transcription of most genes tested, including Se-GPX, was not significantly affected by dietary Se intake. However, the amount of hybridization to a murine oncogene probe (v-fos) was increased in Se deficiency.

  15. Anticipated soil selenium concentrations at Kesterson Reservoir

    SciTech Connect

    Benson, S.M.; Tokunaga, T.K.; Zawislanski, P.

    1992-10-01

    Temporal trends from soil monitoring data collected at Kesterson Reservoir have been reviewed to shed light on anticipated concentrations of total and water-extractable selenium in surface and subsurface soils. Based on these data, a mass balance model for selenium has been developed and employed to evaluate the rate of leaching, remobilization and volatilization that has occurred since the Reservoir was dried out in 1987. Results from a series of calibration runs were then extrapolated 25 years in the future to forecast the evolution and redistribution of selenium within the soil profile. Projected water-extractable selenium concentrations within the 0.15 to 1 m depth interval were then used to drive a food-chain based risk-assessment model described in a separate report (CH2M Hill, 1992). Inventories of water-extractable selenium in the root zone increased in 4 of the 5 scenarios investigated. However, predicted values for the average concentration of water-extractable selenium in the root zone fall within the range of values observed at Kesterson today. Consequences of these projected increases on wildlife residing in and around Kesterson are addressed in CH2M Hill (1992).

  16. Removal of trapped charge in selenium detectors

    NASA Astrophysics Data System (ADS)

    Lee, Denny; Maidment, Andrew D. A.

    2010-04-01

    Flat panel selenium detectors (1) have been commercially available since 1998 (2). The MTF of these detectors can approach the theoretical SINC function for the pixel size (3). Detectors can be designed with selenium thickness suitable for absorption of the range of x-ray energy for the modality (4, 5). For higher energy x rays, the thickness of the selenium layer can be increased without greatly degrading the spatial resolution. The non-spreading nature of the signal allows the detector to detect very weak x-ray signal in the vicinity of strong signal. Selenium detectors can therefore be designed to produce very high dynamic range images when needed. However, as a photo-conducting material, selenium also comes with some less than ideal properties. For example, charge trapping, long settling time for with bias electric field, and interface charge injection (6). These adverse properties must be included in detector design for optimal performance in each application. This paper describes a novel method for interfacial charge removal using lateral conductivity of selenium.

  17. Selenium in Gluten-free Products.

    PubMed

    Rybicka, Iga; Krawczyk, Magdalena; Stanisz, Ewa; Gliszczyńska-Świgło, Anna

    2015-06-01

    The nutritional value of gluten-free products is the subject of interest for food technologists and nutritionists, as the only effective treatment for celiac disease is a lifelong gluten-free diet. As selenium deficiencies in celiac disease are observed, the aim of the study was to determine the selenium content in 27 grain gluten-free products available on the European Union (EU) market. Moreover, selenium content in products based on popular gluten-free cereals like corn, rice, and buckwheat and in relatively new or less popular products based on oat, amaranth, teff, and quinoa was compared. Selenium content in the tested products ranged from 0.9 to 24.5 μg/100 g. The average content of selenium in products based on popular gluten-free cereals was 2.8 μg/100 g and in products based on oat, amaranth, teff, and quinoa was 10.8 μg/100 g. It indicates that products based on less popular grains, especially on oat, should be more frequently chosen as a source of selenium by people on gluten-free diet than traditionally consumed gluten-free grains.

  18. Dietary Selenium and Human Health

    PubMed Central

    Schomburg, Lutz

    2016-01-01

    Next year (2017), the micronutrient Selenium (Se) is celebrating its birthday—i.e., 200 years after first being identified by the Swedish chemist Jöns Jakob Berzelius. Despite its impressive age, research into the functions of this essential trace element is very alive and reaching out for new horizons. This special issue presents some recent fascinating, exciting, and promising developments in Se research in the form of eight original contributions and seven review articles. Collectively, aspects of Se supply, biochemical, physiological, and chemotherapeutic effects, and geobiological interactions are covered by leading scientists in the areas of nutritional, basic, and clinical research. It is obvious from the contributions that the bicentennial anniversary will celebrate a micronutrient still in its infancy with respect to being understood in terms of its biomedical importance. PMID:28042811

  19. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  20. Updates on clinical studies of selenium supplementation in radiotherapy.

    PubMed

    Puspitasari, Irma M; Abdulah, Rizky; Yamazaki, Chiho; Kameo, Satomi; Nakano, Takashi; Koyama, Hiroshi

    2014-05-29

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200-500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation.

  1. Natural selenium-rich feeds manage selenium deficiency in Oregon sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A natural selenium-rich feed product (SePR) was developed by the USDA, ARS, U.S. Sheep Experiment Station for the purposes of enhancing the long-term selenium status of grazing livestock. In cooperation with Intermountain Farmers Association (Salt Lake City, UT), a bulk amount of SePR was manufactur...

  2. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    SciTech Connect

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  3. Bioavailability and biodistribution of nanodelivered lutein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  4. Selenium:mercury molar ratios in freshwater fish from Tennessee: individual, species, and geographical variations have implications for management.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Jeitner, C; Donio, M; Pittfield, T

    2012-06-01

    Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy's Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories.

  5. Selenium:Mercury Molar Ratios in Freshwater Fish from Tennessee: Individual, Species, and Geographical Variations have Implications for Management

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, C.; Donio, M.; Pittfield, T.

    2014-01-01

    Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy’s Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories. PMID:22456727

  6. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio.

    PubMed

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp.

  7. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  8. Intestinal transport as a potential determinant of drug bioavailability.

    PubMed

    Nauli, Andromeda M; Nauli, Surya M

    2013-08-01

    Orally administered drugs are generally absorbed by the small intestine and transported either to the lymphatic system or to the hepatic portal system. In general, lipid soluble drugs and vitamins are transported by the small intestine to the lymphatics, and water-soluble drugs are transported to the hepatic portal system. By avoiding the early hepatic first pass effect, the lymphatic transport system may increase drug bioavailability. In addition to its transport systems, the small intestine may affect drug bioavailability through drug uptake, intestinal first pass effect, recruitment of drugs by chylomicrons, formation and secretion of chylomicrons, and enterohepatic circulation. All of these factors should be considered when formulating orally administered lipophilic drugs. Our data also suggest that Caco-2 cells may serve as a valuable in vitro model to study the intestinal transport of orally administered drugs.

  9. Accumulation and bioavailability of dietary carotenoids in vegetable crops.

    PubMed

    Kopsell, Dean A; Kopsell, David E

    2006-10-01

    Carotenoids are lipid-soluble pigments found in many vegetable crops that are reported to have the health benefits of cancer and eye disease reduction when consumed in the diet. Research shows that environmental and genetic factors can significantly influence carotenoid concentrations in vegetable crops, and that changing cultural management strategies could be advantageous, resulting in increased vegetable carotenoid concentrations. Improvements in vegetable carotenoid levels have been achieved using traditional breeding methods and molecular transformations to stimulate biosynthetic pathways. Postharvest and processing activities can alter carotenoid chemistry, and ultimately affect bioavailability. Bioavailability data emphasize the importance of carotenoid enhancement in vegetable crops and the need to characterize potential changes in carotenoid composition during cultivation, storage and processing before consumer purchase.

  10. Electrochemical behavior of chemically synthesized selenium thin film.

    PubMed

    Patil, A M; Kumbhar, V S; Chodankar, N R; Lokhande, A C; Lokhande, C D

    2016-05-01

    The facile and low cost simple chemical bath deposition (CBD) method is employed to synthesize red colored selenium thin films. These selenium films are characterized for structural, morphological, topographical and wettability studies. The X-ray diffraction (XRD) pattern showed the crystalline nature of selenium thin film with hexagonal crystal structure. The scanning electron microscopy (SEM) study displays selenium nanoparticles ranging from 20 to 475 nm. A specific surface area of 30.5 m(2) g(-1) is observed for selenium nanoparticles. The selenium nanoparticles hold mesopores in the range of 1.39 nm, taking benefits of the good physicochemical stability and excellent porosity. Subsequently, the electrochemical properties of selenium thin films are deliberated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The selenium thin film shows specific capacitance (Cs) of 21.98 F g(-1) with 91% electrochemical stability.

  11. Vitamin E, Selenium Don't Cut Colon Cancer Risk

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162669.html Vitamin E, Selenium Don't Cut Colon Cancer Risk: ... 2016 WEDNESDAY, Dec. 21, 2016 (HealthDay News) -- Taking vitamin E and selenium does not appear to reduce ...

  12. Enhancing bioavailability through thermal processing.

    PubMed

    Keen, Justin M; McGinity, James W; Williams, Robert O

    2013-06-25

    Formulation intervention, through the application of processing technologies, is a requirement for enabling therapy for the vast majority of drugs. Without these enabling technologies, poorly soluble drugs may not achieve therapeutic concentrations in the blood or tissue of interest. Conversely, freely soluble and/or rapidly cleared drugs may require frequent dosing resulting in highly cyclic tissue concentrations. During the last several years, thermal processing techniques, such as melt mixing, spray congealing, sintering, and hot-melt extrusion, have evolved rapidly and several new technologies, specifically dry powder coating, injection molding, and KinetiSol(®) dispersing, have been adapted to the pharmaceutical arena. An examination of the contemporary literature is reported in this review to summarize the variety and utility of thermal processing technologies employed for solubility enhancement and controlled release. In particular, the impact of these processing technologies on bioavailability, considered in terms of both rate and extent, has been reviewed.

  13. Mercury and selenium in fish of Fountain Creek, Colorado (USA): possible sources and implications.

    PubMed

    Nimmo, D R; Herrmann, S J; Carsella, J S; McGarvy, C M; Foutz, H P; Herrmann-Hoesing, L M; Gregorich, J M; Turner, J A; Vanden Heuvel, B D

    2016-01-01

    Fountain Creek in Colorado USA is a major tributary that confluences with the Arkansas River at Pueblo, Colorado, the result being the tributary's influence on Arkansas River water quality affecting down-stream users. In a previous study, we found that bryophytes (aquatic plants) accumulated selenium in Fountain Creek watershed and this finding prompted us to investigate the extent of the metalloid in the whole-body tissues of fish. One hundred 11 fish (six species) were collected and analyzed for Se by inductively-coupled plasma emission mass spectrometry. Analysis of all analytical data also showed mercury in all of the fish whole bodies and selected tissues. There was a general increase in selenium but a decrease in mercury in fish with downstream travel-distance. The highest whole-body selenium was in Pueblo, Colorado (3393 µg/kg, dry weight; 906 µg/kg, wet weight); the highest mercury in fish was in the Monument Creek tributary north of Colorado Springs, Colorado (71 µg/kg, dry weight; 19 µg/kg, wet weight). In four tissues of 11 female fish captured, selenium was highest in the livers at eight sites but highest in the ovaries at three sites. Mercury was highest in the epaxial muscle at all sites. Selenium availability could be due to the watershed lithology and land uses; however, mercury could be carried by atmospheric deposition from coal-fired power plants and historic mining activities. Selenium in fish tissues and water samples were compared to U.S. national water quality criteria.

  14. A proteomic analysis of green and white sturgeon larvae exposed to heat stress and selenium.

    PubMed

    Silvestre, Frédéric; Linares-Casenave, Javier; Doroshov, Serge I; Kültz, Dietmar

    2010-07-15

    Temperature and selenium are two environmental parameters that potentially affect reproduction and stock recruitment of sturgeon in the San Francisco Bay/Delta Estuary. To identify proteins whose expression is modified by these environmental stressors, we performed a proteomic analysis on larval green and white sturgeons exposed to 18 or 26 degrees C and micro-injected with Seleno-L-Methionine to reach 8microgg(-)(1) selenium body burden, with L-Methionine as a control. Selenium and high temperature induced mortalities and abnormal morphologies in both species, with a higher mortality in green sturgeon. Larval proteins were separated by two-dimensional gel electrophoresis and differential abundances were detected following spot quantitation and hierarchical cluster analysis. In green sturgeon, 34 of 551 protein spots detected on gels showed a variation in abundance whereas in white sturgeon only 9 of 580 protein spots were differentially expressed (P<0.01). Gel replicates were first grouped according to heat treatment. Fifteen of these spots were identified using MALDI TOF/TOF mass spectrometry. Proteins involved in protein folding, protein synthesis, protein degradation, ATP supply and structural proteins changed in abundance in response to heat and/or selenium. 40S ribosomal protein SA, FK506-binding protein 10, 65kDa regulatory subunit A of protein phosphatase 2, protein disulfide isomerase, stress-induced-phosphoprotein 1, suppression of tumorigenicity 13 and collagen type II alpha 1, were differentially expressed in high temperature treatment only. Serine/arginine repetitive matrix protein 1, creatine kinase, serine peptidase inhibitor Kazal type 5 and HSP90 were sensitive to combined temperature and selenium exposure. Valosin-containing protein, a protein involved in aggresome formation and in protein quality control decreased more than 50% in response to selenium treatment. Potential use of such proteins as biomarkers of environmental stressors in larval

  15. Effect of Selenium Supplementation on Glycemic Control and Lipid Profiles in Patients with Diabetic Nephropathy.

    PubMed

    Bahmani, Fereshteh; Kia, Mahsa; Soleimani, Alireza; Asemi, Zatollah; Esmaillzadeh, Ahmad

    2016-08-01

    To our knowledge, data on the effects of selenium supplementation on glycemic control and lipid concentrations in patients with diabetic nephropathy (DN) are scarce. The current study was done to determine the effects of selenium supplementation on glycemic control and lipid concentrations in patients with DN. This was a randomized double-blind placebo-controlled clinical trial in which 60 patients with DN were randomly allocated into two groups to receive either 200 μg of selenium supplements (n = 30) or placebo (n = 30) daily for 12 weeks. Blood sampling was performed for the quantification of glycemic indicators and lipid profiles at the onset of the study and after 12 weeks of intervention. Selenium supplementation for 12 weeks resulted in a significant decrease in serum insulin levels (P = 0.01), homeostasis model of assessment-estimated insulin resistance (HOMA-IR) (P = 0.02), homeostasis model of assessment-estimated B cell function (HOMA-B) (P = 0.009) and a significant rise in plasma glutathione peroxidase (GPx) (P = 0.001) compared with the placebo. Taking selenium supplements had no significant effects on fasting plasma glucose (FPG), quantitative insulin sensitivity check index (QUICKI) and lipid profiles compared with the placebo. Overall, our study demonstrated that selenium supplementation for 12 weeks among patients with DN had beneficial effects on plasma GPx, serum insulin levels, HOMA-IR, and HOMA-B, while it did not affect FPG, QUICKI, and lipid profiles.

  16. Effects of selenium on ischaemia-reperfusion injury in a rat testis model.

    PubMed

    Kara, Ö; Sari, E; Akşit, H; Yay, A; Akşit, D; Dönmez, M I

    2016-12-01

    Selenium is shown to have beneficial effects on ischaemia-reperfusion (IR) injury. Our aim was to assess the effects of selenium on IR-induced testicular damage in terms of biochemical and histopathological evaluation. A total of 32 rats were randomised into four groups: control, IR, IR + selenium (IR + S) and S. Detorsion was applied after 3 h of torsion. Testicular tissue superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), total antioxidant capacity (TAC) and DNA fragmentation levels were determined. Testicular tissue samples were examined by histopathological examination and terminal deoxynucleotidyl transferase dUTP nick end-labelling staining. The control, IR and IR + S groups had higher SOD values compared with the S group; SOD levels of the control and IR + S groups were higher than those of the IR group (P < 0.05). Further, MDA levels of the IR group were higher than those in the other three groups (P < 0.05). The IR group revealed lower TAC levels than the three groups (P < 0.05 for all). GSH levels of the IR group were significantly lower than those in the other three groups (P < 0.05 for all). In contrast, GSH levels of the IR + S group increased compared with those of the S group. The IR group had more DNA fragmentation than the control and S groups (P < 0.05). It is concluded that selenium possibly reduces oxidative stress and apoptosis caused by testicular IR injury in rats. The testicular protective effect of selenium appears to be mediated through its anti-apoptotic and antioxidative effects. However, selenium does not affect DNA fragmentation.

  17. Molecular targets of selenium in prostate cancer prevention (Review).

    PubMed

    Abdulah, Rizky; Kobayashi, Kenji; Yamazaki, Chiho; Koyama, Hiroshi

    2011-08-01

    Prostate cancer is one of the leading causes of cancer-related deaths among males. Although use of the micro-nutrient selenium in prostate cancer clinical trials is limited, the outcomes indicate that selenium is a promising treatment. Furthermore, selenium inhibits prostate cancer through multiple mechanisms, and it is beneficial in controlling the development of this disease. This review highlights the latest epidemiological and biomolecular research on selenium in prostate cancer, as well as its prospects for future clinical use.

  18. Avoidance of selenium-treated food by mallards

    USGS Publications Warehouse

    Heinz, G.H.; Sanderson, C.J.

    1990-01-01

    Adult, male mallards (Anas platyrhynchos) were given a choice between a control diet and a diet containing 5, 10 or 20 ppm selenium as selenomethionine dissolved in water and mixed into the diet. At 10 and 20 ppm, selenium-treated diets were avoided. Avoidance appeared to be caused by a conditioned response, probably to illness caused by the selenium and not to an aversion to the taste of the selenium.

  19. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    PubMed

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  20. Selenium deficiency, reversible cardiomyopathy and short-term intravenous feeding.

    PubMed Central

    Levy, J. B.; Jones, H. W.; Gordon, A. C.

    1994-01-01

    We report the case of a patient with Crohn's disease receiving short-term postoperative parenteral nutrition supplemented with trace elements who nevertheless became selenium deficient with evidence of a cardiomyopathy. This was fully reversible with oral selenium supplementation. Current parenteral feeding regimes may not contain enough selenium for malnourished patients. PMID:8183763

  1. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2100 Selenium, vitamin... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl...

  2. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2100 Selenium, vitamin... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl...

  3. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2100 Selenium, vitamin... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl...

  4. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2100 Selenium, vitamin... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl...

  5. 21 CFR 520.2100 - Selenium, vitamin E capsules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium, vitamin E capsules. 520.2100 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2100 Selenium, vitamin... to 1 milligram of selenium) and 56.2 milligrams of vitamin E (68 I.U.) (as d-alpha tocopheryl...

  6. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  7. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  8. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  9. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  10. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  11. Toxicity of organic and inorganic selenium to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Gold, L.G.

    1988-01-01

    The toxicity of selenomethionine and sodium selenite to mallard ducklings (Anas platyrhynchos) was measured by feeding each form from hatching to six weeks of age at dietary concentrations of 0, 10, 20, 40, and 80 ppm selenium. At 80 ppm selenium, sodium selenite caused 97.5% mortality by six weeks and selenomethionine caused 100% mortality. At 40 ppm, these two forms of selenium caused 25 and 12.5% mortality. No mortality occurred at 10 or 20 ppm. Diets containing 20, 40, or 80 ppm selenium in both forms caused decreases in food consumption and growth. The only statistically significant effect of 10 ppm selenium was with sodium selenite, which resulted in larger livers than controls. Selenomethionine was more readily stored in the liver than sodium selenite at levels above 10 ppm selenium in the diet. Based on comparisons of residues of selenium in livers of surviving and dead ducklings, concentrations in the liver were not diagnostic of death due to selenium poisoning. Because both forms of selenium resulted in severe reductions in food consumption, selenium-induced starvation may have been related to duckling mortality. It was not clear whether either form of selenium at 10 ppm in the diet resulted in a leveling off of selenium concentrations in the liver within six weeks.

  12. Potential Moderating Effects of Selenium on Mercury Uptake and Selenium:Mercury Molar Ratios in Fish From Oak Ridge and Savannah River Site - 12086

    SciTech Connect

    Burger, Joanna; Gochfeld, Michael; Donio, Mark; Jeitner, Christian; Pittfield, Taryn

    2012-07-01

    Mercury contamination is an important remediation issue at the U.S. Department of Energy's (DOE) Oak Ridge Reservation and to a lesser extent at other DOE sites because of the hazard it presents, potential consequences to humans and eco-receptors, and completed pathways, to offsite receptors. Recent work has emphasized that selenium might ameliorate the toxicity of mercury, and we examine the selenium:mercury (Se:Hg) molar ratios in fish from Oak Ridge, and compare them to Se:Hg molar ratios in fish from the Savannah River. Selenium/mercury molar ratios varied considerably among and within fish species. There was considerable variation in the molar ratios for individual fish (as opposed to mean ratios by species) for freshwater fish from both sites. The inter-individual variation in molar ratios indicates that such that the molar ratios of mean Se and Hg concentrations may not be representative. Even for fish species with relatively low mercury levels, some individual fish have molar ratios less than unity, the value sometime thought to be protective. Selenium levels varied narrowly regardless of fish size, consistent with homeostatic regulation of this essential trace element. The data indicate that considerable attention will need to be directed toward variations and variances, as well as the mechanisms of the interaction of selenium and mercury, before risk assessment and risk management policies can use this information to manage mercury pollution and risk. Even so, if there are high levels of selenium in the fish from Poplar Creek on Oak Ridge, then the potential exists for some amelioration of adverse health effects, on the fish themselves, predators that eat them, and people who consume them. This work will aid DOE because it will allow managers and scientists to understand another aspect that affects fate and transport of mercury, as well as the potential effects of methylmercury in fish for human and ecological receptors. The variability within fish

  13. Dual functional selenium-substituted hydroxyapatite

    PubMed Central

    Wang, Yanhua; Ma, Jun; Zhou, Lei; Chen, Jin; Liu, Yonghui; Qiu, Zhiye; Zhang, Shengmin

    2012-01-01

    Hydroxyapatite (HA) doped with trace elements has attracted much attention recently owing to its excellent biological functions. Herein, we use a facile co-precipitation method to incorporate selenium into HA by adding sodium selenite during synthesis. The obtained selenium-substituted HA products are needle-like nanoparticles which have  size and crystallinity that are similar to those of the pure HA nanoparticles (HANs) when the selenium content is low. HANs are found to have the ability to induce the apoptosis of osteosarcoma cells, and the anti-tumour effects are enhanced after incorporation of selenium. Meanwhile, the nanoparticles can also support the growth of bone marrow stem cells. Furthermore, the flow cytometric results indicate that the apoptosis induction of osteosarcoma cells is caused by the increased reactive oxygen species and decreased mitochondrial membrane potential. These results show that the selenium-substituted HANs are potentially promising bone graft materials in osteosarcoma treatment due to their dual functions of supporting normal cell growth and inducing tumour cell apoptosis. PMID:23741613

  14. Serum selenium levels and prostate cancer risk

    PubMed Central

    Cui, Zhigang; Liu, Dezhong; Liu, Chun; Liu, Gang

    2017-01-01

    Abstract Some observational studies have shown that elevated serum selenium levels are associated with reduced prostate cancer risk; however, not all published studies support these results. A literature search of PubMed, Embase, Medline, and the Cochrane Library up until September 2016 identified 17 studies suitable for further investigation. A meta-analysis was conducted on these studies to investigate the association between serum selenium levels and subsequent prostate cancer risk. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the overall OR of prostate cancer for the highest versus the lowest levels of serum selenium. We found a pooled OR (95% CI) of 0.76 (0.64, 0.91; P < 0.05). In subgroup analysis, an inverse association between serum selenium levels and prostate cancer risk was found in each of case–control studies, current and former smokers, high-grade cancer cases, advanced cancer cases, and different populations. Such correlations were not found for subgroups containing each of cohort studies, nonsmokers, low-grade cancer cases, and early stage cancer cases. In conclusion, our study suggests an inverse relationship between serum selenium levels and prostate cancer risk. However, further cohort studies and randomized control trials based on non-Western populations are required. PMID:28151881

  15. [Pharmaconutrition with parenteral selenium in sepsis].

    PubMed

    Langlois, P L; de Oliveira Figliolino, L F; Hardy, G; Manzanares, W

    2014-04-01

    Critical illness is characterized by oxidative stress which leads to multiple organ failure, and sepsis-related organ dysfunction remains the most common cause of death in the intensive care unit. Over the last 2 decades, different antioxidant therapies have been developed to improve outcomes in septic patients. According to recent evidence, selenium therapy should be considered the cornerstone of the antioxidant strategies. Selenium given as selenious acid or sodium selenite should be considered as a drug or pharmaconutrient with prooxidant and cytotoxic effects when a loading dose in intravenous bolus form is administered, particularly in the early stage of severe sepsis/septic shock. To date, several phase ii trials have demonstrated that selenium therapy may be able to decrease mortality, improve organ dysfunction and reduce infections in critically ill septic patients. The effect of selenium therapy in sepsis syndrome must be confirmed by large, well designed phase iii clinical trials. The purpose of this review is to discuss current evidence on selenium pharmaconutrition in sepsis syndrome.

  16. Assessment of selenium effects in lotic ecosystems.

    PubMed

    Hamilton, S J; Palace, V P

    2001-11-01

    The selenium literature has grown substantially in recent years to encompass new information in a variety of areas. Correspondingly, several different approaches to establishing a new water quality criterion for selenium have been proposed since establishment of the national water quality criterion in 1987. Diverging viewpoints and interpretations of the selenium literature have lead to opposing perspectives on issues such as establishing a national criterion based on a sediment-based model, using hydrologic units to set criteria for stream reaches, and applying lentic-derived effects to lotic environments. This Commentary presents information on the lotic verse lentic controversy. Recently, an article was published that concluded that no adverse effects were occurring in a cutthroat trout population in a coldwater river with elevated selenium concentrations (C. J. Kennedy, L. E. McDonald, R. Loveridge, and M. M. Strosher, 2000, Arch. Environ. Contam. Toxicol. 39, 46-52). This article has added to the controversy rather than provided further insight into selenium toxicology. Information, or rather missing information, in the article has been critically reviewed and problems in the interpretations are discussed.

  17. Assessment of selenium effects in lotic ecosystems

    USGS Publications Warehouse

    Hamilton, Steven J.; Palace, Vince

    2001-01-01

    The selenium literature has grown substantially in recent years to encompass new information in a variety of areas. Correspondingly, several different approaches to establishing a new water quality criterion for selenium have been proposed since establishment of the national water quality criterion in 1987. Diverging viewpoints and interpretations of the selenium literature have lead to opposing perspectives on issues such as establishing a national criterion based on a sediment-based model, using hydrologic units to set criteria for stream reaches, and applying lentic-derived effects to lotic environments. This Commentary presents information on the lotic verse lentic controversy. Recently, an article was published that concluded that no adverse effects were occurring in a cutthroat trout population in a coldwater river with elevated selenium concentrations (C. J. Kennedy, L. E. McDonald, R. Loveridge, and M. M. Strosher, 2000, Arch. Environ. Contam. Toxicol. 39, 46–52). This article has added to the controversy rather than provided further insight into selenium toxicology. Information, or rather missing information, in the article has been critically reviewed and problems in the interpretations are discussed.

  18. Selenium in Camel – A Review

    PubMed Central

    Faye, Bernard; Seboussi, Rabiha

    2009-01-01

    Requirements for trace minerals in camels, particularly selenium, are not well-known. Selenium supplementation using a pharmaceutical form or commercial mineral mixture is common practice in camels to address the cardiomyopathy often attributed to selenium deficiency. This supplementation is often empirical and based on estimated needs for cattle. Nowadays the use of selenium in animal foodstuffs is commonplace and further investigation of its metabolism (ingestion, dynamic of storage-destocking, excretion) in camels is warranted. The present review aimed to synthesize all the experimental research (comparative selenium status in cow and camel, response to different levels of supplementation at different physiological stages, excretion maternal transfer, experimental toxicosis) and field observations (deficiency, supplementation practices) undertaken in camels. The results underline the particularity of the unique metabolic profile of the camel and lead to practical recommendations for supplementation in camels, highlighting its relative sensitivity to excess Se intake at lower levels than in cattle. The maximal tolerable dose is 8 mg and the recommended doses range from 2 to 4 mg. PMID:22253966

  19. Strategies to Overcome Heparins’ Low Oral Bioavailability

    PubMed Central

    Neves, Ana Rita; Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena

    2016-01-01

    Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin. PMID:27367704

  20. Toxicology of selenium in a freshwater reservoir: implications for environmental hazard evaluation and safety.

    PubMed

    Lemly, A D

    1985-12-01

    A study was conducted to document patterns of accumulation and toxicity of selenium to organisms in a power plant cooling reservoir in North Carolina. Selenium entered the reservoir by way of effluent from the coal ash disposal basin, which contained 100-200 micrograms Se/liter. Concentrations of selenium in the lake water averaged 10 micrograms/liter, but were accumulated from 519 times (periphyton) to 3975 times (visceral tissue, largemouth bass) in the biota. The pattern and degree of accumulation was essentially complete within 2 years after the initial operation of the power plant, and persisted throughout the remainder of the study: fishes greater than insects greater than annelids greater than molluscs greater than crustaceans greater than plankton greater than periphyton. The plantonic and detrital food pathways exposed fishes to potential dietary concentrations of selenium that were some 770 and 519-1395 times the waterborne exposure, respectively. Of the 20 species of fish originally present in the reservoir, 16 were entirely eliminated, 2 were rendered sterile but persisted as adults, 1 was eliminated but managed to recolonize from a relatively uncontaminated headwater area as sterile adults, and 1 was unaffected. Two nonnative fish species were accidentally introduced and established reproducing populations. Abundance and diversity of biota other than fishes was not affected. Relative to control habitats, the contaminated reservoir had concentrations of waterborne selenium that were 20-30 times background levels; the flora and fauna contained about 10-15 times background. The results show that selenium can accumulate and be biologically magnified to toxic levels in a reservoir even though waterborne concentrations are in the low microgram per liter range. This study also provides data which indicate that current toxicological information is neither accurate when used to predict the relative sensitivity of individual fish species to selenium, nor is it

  1. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  2. Is hepatic oxidative stress a main driver of dietary selenium toxicity in white sturgeon (Acipenser transmontanus)?

    PubMed

    Zee, Jenna; Patterson, Sarah; Wiseman, Steve; Hecker, Markus

    2016-11-01

    Most species of sturgeon have experienced significant population declines and poor recruitment over the past decades, leading many, including white sturgeon (Acipenser transmontanus), to be listed as endangered. Reasons for these declines are not yet fully understood but benthic lifestyle, longevity, and delayed sexual maturation likely render sturgeon particularly susceptible to factors such as habitat alteration and contaminant exposures. One contaminant of particular concern to white sturgeon is selenium (Se), especially in its more bioavailable form selenomethionine (SeMet), as it is known to efficiently bioaccumulate in prey items of this species. Studies have shown white sturgeon to be among the most sensitive species of fish to dietary SeMet as well as other pollutants such as metals, dioxin-like chemicals and endocrine disrupters. One of the primary hypothesized mechanisms of toxicity of SeMet in fish is oxidative stress; however, little is know about the specific mode by which SeMet affects the health of white sturgeon. Therefore, the aim of this study was to characterize oxidative stress and associated antioxidant responses as a molecular event of toxicity, and to link it with the pathological effects observed previously. Specifically, three-year-old white sturgeon were exposed for 72 days via their diet to 1.4, 5.6, 22.4 or 104.4µg Se per g feed (dm). Doses were chosen to range over a necessary Se intake level, current environmentally relevant intakes and an intake representing predicted increases of Se release. Lipid hydroperoxides, which are end products of lipid oxidation, were quantified as a marker of oxidative stress. Changes in gene expression of glutathione peroxidase (GPx), superoxide dismutase, catalase, glutathione S-transferase, apoptosis inducing factor and caspase 3 were quantified as markers of the response to oxidative stress. Concentrations of lipid hydroperoxides were highly variable within dose groups and no dose response was observed

  3. Effects of marginal selenium deficiency and winter protein supplementation on growth, reproduction and selenium status of beef cattle.

    PubMed

    Spears, J W; Harvey, R W; Segerson, E C

    1986-08-01

    Seventy-two Hereford X Simmental cows, averaging 498 kg in body weight and 5.2 yr of age, were used in a 2-yr study to ascertain if selenium (Se)-vitamin E (E) injections and winter protein supplementation would affect growth, reproduction and health of beef cattle maintained year-round on feedstuffs marginally deficient in Se (.03 to .05 mg/kg). Cows received either no injection or a mixture of 30 mg Se (as sodium selenite) and 408 IU E injected subcutaneously beginning 3 to 4 mo prepartum and at 60-d intervals throughout the 2-yr period. Calves born to Se-E treated cows were injected with 5.5 mg Se and 75 IU E/100 kg body weight at 60-d intervals beginning at 1 mo of age. Calves were born between December 30 and February 20 and cows were bred between March 20 and May 20. Cattle grazed pasture (.05 mg Se/kg) that consisted of orchardgrass, bluegrass and white clover during the fall, spring and summer. During winter (December 15 to May 2), cattle were fed corn silage (.03 mg Se/kg) supplemented with either: no protein supplement (control), soybean meal or a urea-corn mixture. Cows and calves receiving Se-E had higher (P less than .01) whole blood glutathione peroxidase (GSH-Px) activity and plasma Se concentrations than controls. Selenium-E injections reduced (P less than .05) calf death losses from 15.3% to 4.2% and slightly increased (P less than .10) adjusted calf weaning weights. Hemoglobin concentrations were higher (P less than .05) in Se-E-injected supplemented calves at 1 mo of age but not at 5 or 7 mo of age.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Bioavailability of ranitidine in healthy Mexican volunteers: effect of food.

    PubMed

    Juárez-Olguín, H; Flores, J; Pérez, G; Hernández, G; Flores, C; Guillé, A; Camacho, A; Toledo, A; Carrasco, M; Lares, I

    2002-01-01

    Is well known that food can affect the bioavailability of several drugs, its impact is major for those drugs that have to act near of drug absorption. Documentation about alterations of ranitidine bioavailability by effect of food is poor. The purpose of this work was to evaluate the effect of food over the bioavailability of ranitidine. Twenty healthy Mexican volunteers were included for the study. The study was made in two stages, in the first one the volunteers had 12 hour fast and took a 300 mg of oral dose of ranitidine (without food, WOF) and blood samples were drawn. Two weeks later, the volunteers took a normal diet just before ranitidine intake (with food, WF). The area under the curve (AUC) was 30% greater in WOF, Cmax was 921.5 ng/ml (WF) vs. 1685.2 (WOF), and t1/2 was 2.70 +/- 1.38 (WF) h vs 3.66 +/- 1.34 (WOF). The AUC, Cmax and t1/2 were statistically different. It is evident that there are differences in the drug disposition due to the presence of food, then, it is possible that the efficacy of ranitidine as inhibitor of gastric secretion being limited by food.

  5. Hologram QSAR model for the prediction of human oral bioavailability.

    PubMed

    Moda, Tiago L; Montanari, Carlos A; Andricopulo, Adriano D

    2007-12-15

    A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

  6. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs.

    PubMed

    Calvo, Luis; Toldrá, Fidel; Rodríguez, Ana I; López-Bote, Clemente; Rey, Ana I

    2017-01-01

    This study evaluates the effect of organic (Se-enriched yeast; SeY) versus inorganic selenium (sodium selenite; SeS) supplementation and the different response of selenium source according to muscle pH on pork meat quality characteristics. Pigs (n = 30) were fed the Se-supplemented diets (0.3 mg/kg) for 65 days. Neither electric conductivity (EC) nor drip loss were affected by the selenium source. The SeY group had lower TBARS in muscle samples after day 7 of refrigerated storage and higher a* values on days 1 and 7 than the SeS group. The effect of dietary selenium source on some meat quality characteristics was affected by muscle pH. Hence, as the muscle pH increases, the drip loss decreases but this effect is more marked with the dietary organic Se enrichment. Muscle pH seems to modulate the action of selenium in pork, especially some meat characteristics such as drip loss.

  7. Improved selenium recovery from tissue with modified sample decomposition

    USGS Publications Warehouse

    Brumbaugh, W. G.; Walther, M.J.

    1991-01-01

    The present paper describes a simple modification of a recently reported decomposition method for determination of selenium in biological tissue by hydride generation atomic absorption. The modified method yielded slightly higher selenium recoveries (3-4%) for selected reference tissues and fish tissue spiked with selenomethionine. Radiotracer experiments indicated that the addition of a small volume of hydrochloric acid to the wet digestate mixture reduced slight losses of selenium as the sample initially went to dryness before ashing. With the modified method, selenium spiked as selenomethionine behaved more like the selenium in reference tissues than did the inorganic spike forms when this digestion modification was used.

  8. Investigation of electrical noise in selenium-immersed thermistor bolometers

    NASA Technical Reports Server (NTRS)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  9. Selenium and selenocysteine: roles in cancer, health, and development.

    PubMed

    Hatfield, Dolph L; Tsuji, Petra A; Carlson, Bradley A; Gladyshev, Vadim N

    2014-03-01

    The many biological and biomedical effects of selenium are relatively unknown outside the selenium field. This fascinating element, initially described as a toxin, was subsequently shown to be essential for health and development. By the mid-1990s selenium emerged as one of the most promising cancer chemopreventive agents, but subsequent human clinical trials yielded contradictory results. However, basic research on selenium continued to move at a rapid pace, elucidating its many roles in health, development, and in cancer prevention and promotion. Dietary selenium acts principally through selenoproteins, most of which are oxidoreductases involved in diverse cellular functions.

  10. Sorption and speciation of selenium in boreal forest soil.

    PubMed

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka

    2016-11-01

    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, Kd, for both species. Both SeO3(2-) and SeO4(2-) proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the Kd values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The Kd values for these minerals were 18, 14, 8 and 7

  11. Temporal variations in dissolved selenium in Lake Kinneret (Israel)

    USGS Publications Warehouse

    Nishri, A.; Brenner, I.B.; Hall, G.E.M.; Taylor, H.E.

    1999-01-01

    Selenium is an essential micronutrient for the growth of the dinoflagellate Peridinium gatunense that dominates the spring algal bloom in Lake Kinneret (LK). The relationship between the levels of dissolved selenium species and the occurance of algal blooms in this lake was studied. During algal blooms of P. gatunense in spring and of the blue-green Aphanizomenon ovalisporum in fall (in 1994) the concentration of epilimnetic dissolved organic Se (Se(org)) increased whereas that of selenite (SeIV) decreased, to levels below the limit of detection: 5 ng/l. The disappearance of SeIV during these blooms is attributed to algal uptake and it is suggested that the growth of both algae may have depended on Se(org) regeneration. A budget performed for selenate (SeVI) suggests that this species is also consumed by algae but to a lesser extent than SeIV (in 1994 ~40% of the epilimnetic load). During the stratification period the hypolimnion of Lake Kinneret becomes anoxic, with high levels of dissolved sulfide. The affects of this environment on the distribution of Se oxy-anions, selenite (SeIV) and selenate(SeVI), were also studied. At the onset of thermal stratification (March) about 35% of the lake inventory of both Se oxidized species are entrapped in the hypolimnion. During stages of oxygen depletion and H2S accumulation, SeIV is completely and SeVI partially removed from this layer. The removal is attributed to reduction followed by formation of particulate reduced products, such as elemental selenium Se(o). The ratio between SeVI to total dissolved selenium (SE(T)) in water sources to the lake is ~0.84, about twice the corresponding ratio in the lake (~0.44, during holomixis). In the lake about 75% of annual SeVI inflow from external sources undergoes reduction to selenide (Se-II) and Se(o) through epilimnetic algal assimilation and hypolimnetic anoxic reduction, respectively. It is suggested that the latter oxidation of the dissolved organic selenide released from

  12. Spectrochemical method for the determination of selenium

    USGS Publications Warehouse

    Waring, C.L.; Worthing, H.W.; Hazel, K.V.

    1958-01-01

    Selenium can be determined in pyrite, chalcocite, and marcasite by a simple and rapid spectrochemical method that requires no complicated arrangement of spectrographic equipment or chemical pretreatment of samples. Advantage is taken of the new short wave length radiation plates (Eastman) and the addition of copper oxide to enhance the selenium lines 2039.85 and 2062.78 A. The possibility exists of determining many other elements on the same exposure of the sample. The method is applicable in the range of 0.0015 to 2% selenium. Tests indicate an average difference from the chemical results of 0.07% in the few per cent range, 0.03% in the 0.1 to 1.0% range, 0.005% in the 0.01 to 0.1% range, and 0.00075% in the 0.001 to 0.01% range. The relative accuracy over the entire range is to about 7% of the concentration.

  13. [The importance of selenium in Hashimoto's disease].

    PubMed

    Zagrodzki, Paweł; Kryczyk, Jadwiga

    2014-09-12

    The aim of this study was to present the current state of knowledge on the role of selenium in the treatment of Hashimoto's disease. In recent years, the number of cases of autoimmune Hashimoto's thyroiditis - a chronic disease that usually leads to hypothyroidism - has increased. Most patients have elevated levels of anti-TPO antibodies. The presence of these antibodies has an effect on subsequent thyroid damage. So far we have not developed an effective, standard therapy of this disease. However, more attention is being paid to the relationship between supplementation of selenium deficiency and inhibition of production of anti-TPO antibodies in patients with Hashimoto's thyroiditis. Therefore, selenium supplementation may be an effective option in the treatment of this disease.

  14. 21 CFR 320.38 - Retention of bioavailability samples.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Retention of bioavailability samples. 320.38... (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Procedures for Determining the Bioavailability or Bioequivalence of Drug Products § 320.38 Retention of bioavailability...

  15. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for

  16. Bioavailability of cefuroxime axetil formulations.

    PubMed

    Donn, K H; James, N C; Powell, J R

    1994-06-01

    Cefuroxime axetil tablets have proved effective for the treatment of a variety of community-acquired infections. A suspension formulation has been developed for use in children. Two studies have been conducted to determine if the cefuroxime axetil formulations are bioequivalent. In the initial randomized, two-period crossover study, 24 healthy men received 250-mg doses of suspension and tablet formulations of cefuroxime axetil every 12 h after eating for seven doses. Each treatment period was separated by 4 days. Comparisons of serum and urine pharmacokinetic parameters indicated that the suspension and tablet formulations of cefuroxime axetil are not bioequivalent. Following the initial bioequivalency study, 0.1 % sodium lauryl sulfate (SLS) was added to the suspension to assure the homogeneity of the granules during the manufacturing process. In the subsequent randomized, three-period crossover study, 24 healthy men received single 250-mg doses of three cefuroxime axetil formulations: suspension without SLS, suspension with SLS, and tablet. Again each treatment period was separated by 4 days. Pharmacokinetic analyses demonstrated that while the suspension with SLS and suspension without SLS are bioequivalent, bioequivalence between the suspension with SLS and the tablet was not observed. Thus, the addition of the SLS surfactant to the suspension did not alter the bioavailability of the formulation.

  17. Towards bioavailability-based soil criteria: past, present and future perspectives.

    PubMed

    Naidu, Ravi; Channey, Rufus; McConnell, Stuart; Johnston, Niall; Semple, Kirk T; McGrath, Steve; Dries, Victor; Nathanail, Paul; Harmsen, Joop; Pruszinski, Andrew; MacMillan, Janet; Palanisami, Thavamani

    2015-06-01

    Bioavailability has been used as a key indicator in chemical risk assessment yet poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar, and the decisions are based on threshold contaminant concentration. The uncertainty in the definition and measurement of bioavailability had limited its application to environment risk assessment and remediation. Last ten years have seen major developments in bioavailability research and acceptance. The use of bioavailability in the decision making process as one of the key variables has led to a gradual shift towards a more sophisticated risk-based approach. Now a days, many decision makers and regulatory organisations 'more readily accept' this concept. Bioavailability should be the underlying basis for risk assessment and setting remediation goals of those contaminated sites that pose risk to environmental and human health. This paper summarises the potential application of contaminant bioavailability and bioaccessibility to the assessment of sites affected by different contaminants, and the potential for this to be the underlying basis for sustainable risk assessment and remediation in Europe, North America and Australia over the coming decade.

  18. Bioavailability enhancement by addition of surfactant and surfactant-like compounds

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    The bioavailability and microbial degradation of contaminant compounds (e.g., toluene and naphthalene) were enhanced by adding synthetic surfactants, biosurfactants, and nutrients with surfactant like properties. In addition to enhanced contaminant degradation, these surfactant compounds have the potential to change the availability of natural organic matter (NOM), and thus may affect overall site bioremediation. Two bacterial bioreporter strains that are induced by toluene or naphthalene were used to directly measure contaminant bioavailability. A cell-free biosurfactant product, Tween-80, and an oleophilic fertilizer were added to aqueous suspensions and soil slurries containing toluene or naphthalene. The addition of these surfactant compounds at or below the critical micelle concentration (CMC) enhanced bioavailability as measured by increased levels of bioluminescence. Bioluminescence data were coupled with gas chromatographic analyses. The addition of Tween-80 increased not only the bioavailability of the contaminants but also, in a separate assay, the bioavailability of recalcitrant NOM. The enhanced NOM bioavailability was inferred from measurements of biomass by optical density increases and plate counts. Thus, adding surfactant compounds for enhanced contaminant degradation has the potential to introduce additional competition for nutrients and microbial metabolism, a significant area of concern for in situ site remediation.

  19. Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters

    USGS Publications Warehouse

    Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.

    2001-01-01

    Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.

  20. Impact of excipient interactions on drug bioavailability from solid dosage forms.

    PubMed

    Panakanti, Ravikiran; Narang, Ajit S

    2012-10-01

    Excipients are generally pharmacologically inert, but can interact with drugs in the dosage form and the physiological factors at the site of absorption to affect the bioavailability of a drug product. A general mechanistic understanding of the basis of these interactions is essential to design robust drug products. This paper focuses on drug-excipient interactions in solid dosage forms that impact drug bioavailability, the drug substance and drug product properties affected by excipients, and the impact of excipients on physiologic processes. The extent to which drug bioavailability is affected by these interactions would vary on a case-by-case basis depending upon factors such as the potency and dose of the drug, therapeutic window, site of absorption, rate limiting factor in drug absorption (e.g., permeability or solubility limited), or whether drug metabolism, efflux, complexation, or degradation at the site of absorption play a role in determining its bioavailability. Nonetheless, a mechanistic understanding of drug-excipient interactions and their impact on drug release and absorption can help develop formulations that exhibit optimum drug bioavailability.

  1. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials.

  2. Selenium and Thyroid Disease: From Pathophysiology to Treatment

    PubMed Central

    Ventura, Mara; Carrilho, Francisco

    2017-01-01

    Introduction. Selenium is a micronutrient embedded in several proteins. In adults, the thyroid is the organ with the highest amount of selenium per gram of tissue. Selenium levels in the body depend on the characteristics of the population and its diet, geographic area, and soil composition. In the thyroid, selenium is required for the antioxidant function and for the metabolism of thyroid hormones. Methods. We performed a review of the literature on selenium's role in thyroid function using PubMed/MEDLINE. Results. Regarding thyroid pathology, selenium intake has been particularly associated with autoimmune disorders. The literature suggests that selenium supplementation of patients with autoimmune thyroiditis is associated with a reduction in antithyroperoxidase antibody levels, improved thyroid ultrasound features, and improved quality of life. Selenium supplementation in Graves' orbitopathy is associated with an improvement of quality of life and eye involvement, as well as delayed progression of ocular disorders. The organic form of selenium seems to be the preferable formulation for supplementation or treatment. Conclusion. Maintaining a physiological concentration of selenium is a prerequisite to prevent thyroid disease and preserve overall health. Supplementation with the organic form is more effective, and patients with autoimmune thyroiditis seem to have benefits in immunological mechanisms. Selenium supplementation proved to be clinically beneficial in patients with mild to moderate Graves' orbitopathy. PMID:28255299

  3. Monitoring bioavailable phosphorus in lotic systems: a polyphasic approach based on cyanobacteria.

    PubMed

    Muñoz-Martín, M Ángeles; Martínez-Rosell, Aitor; Perona, Elvira; Fernández-Piñas, Francisca; Mateo, Pilar

    2014-03-15

    Conventional assays to measure phosphorus in freshwater systems are sometimes not sufficient to quantify the actual bioavailable P for aquatic biota since some inorganic or organic P species may not be detected by chemical methods, and their bioavailability can be affected by a range of environmental factors. This situation could lead regulatory agencies to be unable to detect imminent ecosystem-degrading phenomena such as cyanobacterial blooms. It could also be an obstacle in studying the ecophysiological requirements of freshwater communities. P bioavailability in five rivers located in central Spain was analysed by a polyphasic approach (combinations of different marker types) based on cyanobacteria. This approach included a parallel study with the use of a self-luminescent P-cyanobacterial bioreporter based on a phosphatase alkaline promoter, determination of in situ alkaline phosphatase activities from cyanobacteria found at sampling sites, and the characterisation of cyanobacterial morphological features related to P bioavailability (hairs, polyphosphate granules and calyptras). An inverse relationship was found between values of bioavailable P, measured by the bioreporter and phosphatase activities. Cyanobacteria from sampling sites with low bioavailable P showed high phosphatase activity and vice versa, although some differences in values of this activity were observed in different cyanobacteria found at the same place, in relation to different growth strategies. Morphological characteristics associated with P limitation or P enrichment also varied between sampling locations. Cyanobacteria collected from sampling sites with reduced P bioavailability, measured by bioreporter and phosphatase activity, had a lower abundance of polyphosphate granules; those cyanobacteria capable of developing hairs or calyptras showed a greater abundance of these structures. Conversely, polyphosphate granules in cyanobacteria increased as P bioavailability increased as measured

  4. [The role of selenium in endocrine system diseases].

    PubMed

    Balázs, Csaba; Rácz, Károly

    2013-10-13

    Oxygen derived free radicals, generated by a number of cellular reactions, include superoxide anion, hydrogen peroxide and hydroxyl radicals. They exert their cytotoxic effects mainly via peroxidation of the cell membrane resulting in the loss of membrane integrity. The essential trace element, selenium exerts complex effects on the endocrine systems, partly due to its antioxidant capacity. Well-characterized selenoproteins include iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases involved in thyroid hormone metabolism and protection from oxidative damage. The value of selenium supplementation in autoimmune thyroid disorders has been investigated and most studies confirmed the beneficial effect of selenium supplementation in Hashimoto's and Graves's diseases. Recently, selenium proved to be effective in mild inflammatory orbitopathy. There are a number of reports about the effect of selenium in diabetes mellitus, but the data are controversial as both insulin-like and diabetes-inducing effects of selenium have been described. Selenium was successfully used in both female and male infertility of autoimmune origin.

  5. Reproduction of mallards following overwinter exposure to selenium

    USGS Publications Warehouse

    Heinz, G.H.; Fitzgerald, M.A.

    1993-01-01

    Forty pairs of mallards (Anas platyrhynchos) were fed 15 ppm selenium as selenomethionine for about 21 weeks during winter. Twenty pairs served as controls. At the end of 21 weeks, which coincided with the onset of the reproductive season, selenium treatment was ended. Four birds died while on selenium treatment. Treated females lost weight, and their egg-laying was delayed. Hatching success of some of the first eggs laid by selenium-treated females was lower than that of controls, and a few of these early eggs contained deformed embryos, but, after a period of about two weeks off the selenium-treated diet, reproductive success returned to a level comparable with that of controls. The return to normal reproductive success was the result of a corresponding decrease in selenium concentrations in eggs once selenium treatment ended.

  6. Selenium supplementation in radiotherapy patients: do we need to measure selenium levels in serum or blood regularly prior radiotherapy?

    PubMed

    Muecke, Ralph; Micke, Oliver; Schomburg, Lutz; Kisters, Klaus; Buentzel, Jens; Huebner, Jutta; Kriz, Jan

    2014-12-16

    Considering the review by Puspitasari and colleagues, an additional discussion of the endpoints of the Se supplementation studies described would be helpful. In our view, selenium can safely be given to selenium-deficient cancer patients prior to and during radiotherapy. Therefore, in order to help the radiation oncologist in decision making, we strongly advocate to determine the selenium status prior to and during a potential adjuvant selenium supplementation, e.g. when trying to ease the side-effects of radiation treatment or in the aftercare situation when the selenium status may become insufficient.

  7. Toxicity and bioaccumulation of waterborne and dietary selenium in juvenile bluegill (Lepomis macrochirus)

    USGS Publications Warehouse

    Cleveland, Laverne; Little, Edward E.; Buckler, Denny R.; Wiedmeyer, Raymond H.

    1993-01-01

    Juvenile bluegill (Lepomis macrochirus) were exposed to waterborne selenium as a 6:1 mixture of selenate to selenite (as Se) for 60 d and to dietary seleno-l-methionine for 90 d. Measured concentrations of total selenium in the waterborne exposure ranged from 0.16 to 2.8 mg/l, and concentrations of seleno-l-methionine in the test diet ranged from 2.3 to 25.0 mg/kg wet weight. Mortality, body weight, condition factor, swimming and feeding behavior, aggression, and selenium tissue residues were monitored during the tests. Increased mortality at measured concentrations of 0.64 mg Se/l and greater was the primary adverse effect of waterborne selenium on the juvenile bluegill. Bluegill exposed to 2.8 mg/l of waterborne Se for 30 d exhibited a significant reduction in condition factor (K), whereas dietary exposure of bluegill to 25 mg Se/kg for 30 d and 13 mg Se/kg or greater for 90 d elicited significant reductions in K. Mortality and swimming activity of bluegill were not affected in the dietary exposure. Net accumulation of Se from both water and diet was directly related to exposure concentration. Bioconcentration factors ranged from 5 to 7 for bluegill exposed to waterborne Se and from 0.5 to 1.0 for fish exposed to dietary Se. Results of these laboratory tests indicate that survival of bluegill may be impaired in natural waters with elevated Se concentrations.

  8. Influences of fiber, methionine and form of selenium on selenium hindgut targeting and tissue accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased selenium (Se) status has beneficial outcomes, including decreased colorectal cancer risk, yet obesity may interfere with Se metabolism. Commensal bacteria can influence colon carcinogenesis and Se influences the microbiome, including production of volatile fatty acids by these microbes. We...

  9. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.

  10. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.

    PubMed

    El-Ghazaly, M A; Fadel, N; Rashed, E; El-Batal, A; Kenawy, S A

    2017-02-01

    Selenium (Se) has been reported to possess anti-inflammatory properties, but its bioavailability and toxicity are considerable limiting factors. The present study aimed to investigate the possible anti-inflammatory and analgesic effects of selenium nanoparticles (Nano-Se) on inflammation induced in irradiated rats. Paw volume and nociceptive threshold were measured in carrageenan-induced paw edema and hyperalgesia model. Leukocytic count, tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBAR), and total nitrate/nitrite (NOx) were estimated in the exudate collected from 6 day old air pouch model. Irradiated rats were exposed to 6 Gy gamma (γ)-irradiation. Nano-Se were administered orally in a dose of 2.55 mg/kg once before carrageenan injection in the first model and twice in the second model. The paw volume but not the nociceptive response produced by carrageenan in irradiated rats was higher than that induced in non-irradiated rats. Nano-Se were effective in reducing the paw volume in non-irradiated and irradiated rats but it did not alter the nociceptive threshold. The inflammation induced in irradiated rats increased all the estimated parameters in the exudate whereas; Nano-Se decreased their elevation in non-irradiated and irradiated rats. Nano-Se possess a potential anti-inflammatory activity on inflammation induced in irradiated rats.

  11. Micro-spectroscopic investigation of selenium-bearing minerals from the Western US Phosphate Resource Area

    PubMed Central

    Ryser, Amy L; Strawn, Daniel G; Marcus, Matthew A; Johnson-Maynard, Jodi L; Gunter, Mickey E; Möller, Gregory

    2005-01-01

    Mining activities in the US Western Phosphate Resource Area (WPRA) have released Se into the environment. Selenium has several different oxidation states and species, each having varying degrees of solubility, reactivity, and bioavailability. In this study we are investigating the speciation of Se in mine-waste rocks. Selenium speciation was determined using bulk and micro-x-ray absorption spectroscopy (XAS), as well as micro-x-ray fluorescence mapping. Rocks used for bulk-XAS were ground into fine powders. Shale used for micro-XAS was broken along depositional planes to expose unweathered surfaces. The near edge region of the XAS spectra (XANES) for the bulk rock samples revealed multiple oxidation states, with peaks indicative of Se(-II), Se(IV), and Se(+VI) species. Micro-XANES analysis of the shale indicated that three unique Se-bearing species were present. Using the XANES data together with ab initio fitting of the extended x-ray absorption fine structure region of the micro-XAS data (micro-EXAFS) the three Se-bearing species were identified as dzharkenite, a di-selenide carbon compound, and Se-substituted pyrite. Results from this research will allow for a better understanding of the biogeochemical cycling of Se in the WPRA.

  12. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    SciTech Connect

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  13. Selenium or no selenium--that is the question in tumor patients: a new controversy.

    PubMed

    Muecke, Ralph; Schomburg, Lutz; Buentzel, Jens; Kisters, Klaus; Micke, Oliver

    2010-06-01

    The essential trace element selenium, which is a crucial cofactor in the most important endogenous antioxidative systems of the human body, is attracting more attention from both laypersons and expert groups. The interest of oncologists mainly focuses on the following clinical aspects: protection of normal tissues, sensitizing in malignant tumors, antiedematous effect, prognostic impact of selenium, and effects in primary and secondary cancer prevention. Selenium is a constituent of the small group of selenocysteine-containing selenoproteins and elicits important structural and enzymatic functions. Selenium deficiency has been linked to increased infection risk and adverse mood states. It has been shown to possess cancer-preventive and cytoprotective activities in both animal models and humans. It is well established that it has a key role in redox regulation and antioxidant function, and hence in membrane integrity, energy metabolism, and protection against DNA damage. Recent clinical trials have shown the importance of selenium in clinical oncology. In 2009, a significant benefit of sodium selenite supplementation-with no protection of tumor cells, which is often suspected by oncologists- was shown in a prospective randomized trial in gynecologic cancer patients undergoing radiation therapy. More recently, concerns arose from 2 large clinical prevention trials (NPC, SELECT) that selenium may increase the risk of developing type 2 diabetes. Despite obvious flaws in both studies and good counterarguments, controversy remains on the possible advantages and risks of selenium in cancer prevention. However, in the light of the recent clinical trials the potential benefits of selenium supplementation in tumor patients are becoming obvious, even though further research is needed.

  14. The Outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology.

    PubMed

    Hatfield, Dolph L; Gladyshev, Vadim N

    2009-02-01

    The recently completed Selenium and Vitamin E Cancer Prevention Trial (SELECT) was one of the largest human cancer prevention trials ever undertaken. Its purpose was to assess the role of selenium and vitamin E in prostate cancer prevention, but SELECT found no decline in prostate cancer. Comparison of this study to other clinical trials involving selenium and to the results of animal studies suggests that the source of the selenium supplement, L-selenomethionine, and the relatively high initial levels of selenium in the enrolled men may have contributed to this outcome. Further analysis of the clinical and animal data highlights the need for mechanistic studies to better understand selenium biology in order to target dietary selenium to appropriate subsets of the human population: those individuals most likely to benefit from this micronutrient.

  15. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses.

    PubMed

    Tang, Wenli; Dang, Fei; Evans, Douglas; Zhong, Huan; Xiao, Lin

    2017-02-01

    Selenium (Se) has recently been demonstrated to reduce inorganic mercury (IHg) accumulation in rice plants, while its mechanism is far from clear. Here, we aimed at exploring the potential effects of Se application routes (soil or foliar application with Se), speciation (selenite and selenate), and doses on IHg-Se antagonistic interactions in soil-rice systems. Results of our pot experiments indicated that soil application but not foliar application could evidently reduce tissue IHg concentrations (root: 0-48%, straw: 15-58%, and brown rice: 26-74%), although both application routes resulted in comparable Se accumulation in aboveground tissues. Meanwhile, IHg distribution in root generally increased with amended Se doses in soil, suggesting antagonistic interactions between IHg and Se in root. These results provided initial evidence that IHg-Se interactions in the rhizosphere (i.e., soil or rice root), instead of those in the aboveground tissues, could probably be more responsible for the reduced IHg bioaccumulation following Se application. Furthermore, Se dose rather than Se speciation was found to be more important in controlling IHg accumulation in rice. Our findings regarding the importance of IHg-Se interactions in the rhizosphere, together with the systematic investigation of key factors affecting IHg-Se antagonism and IHg bioaccumulation, advance our understanding of Hg dynamics in soil-rice systems.

  16. The Relationship between Selenium and T3 in Selenium Supplemented and Nonsupplemented Ewes and Their Lambs

    PubMed Central

    Hefnawy, Abd Elghany; Youssef, Seham; Aguilera, P. Villalobos; Rodríguez, C. Valverde; Pérez, J. L. Tórtora

    2014-01-01

    Twenty pregnant ewes were selected and classified into two groups. The first group received subcutaneous selenium supplementation (0.1 mg of sodium selenite/kg BW) at the 8th and 5th weeks before birth and 1st week after birth while the other was control group without selenium injection. Maternal plasma and serum samples were collected weekly from the 8th week before birth until the 8th week after birth and milk samples were taken from ewes weekly, while plasma and serum samples were collected at 48 hours, 1st, 2nd, 3rd, 5th, and 8th weeks after birth from the newborn lambs. Results demonstrated significant positive relationship between maternal plasma selenium and serum T3 in supplemented and control ewes (r = 0.69 to 0.72, P < 0.05). There was significant (P < 0.001) increase in T3 in supplemented ewes and their lambs until the 8th week after birth. There was positive relationship between milk, selenium concentration, and serum T3 in the newborn lambs of the supplemented group (r = 0.84, P < 0.01), while the relationship was negative in the control one (r = −0.89, P < 0.01). Muscular and thyroid pathological changes were independent of selenium supplementation. Selenium supplementation was important for maintaining T3 in ewes and newborn lambs until the 8th week after birth. PMID:24660087

  17. Selenium proteins in ovine tissues: III. Distribution of selenium and glutathione peroxidases in tissue cytosols.

    PubMed

    Black, R S; Tripp, M J; Whanger, P D; Weswig, P H

    1978-01-01

    Three 6 week-old lambs were injected with carrier-free selenium-75 as sodium selenite initially and again after 6 days. One lamb received no further injections whereas the other two received injections of either vitamin E or unlabeled Na2SeO3 when the first selenium-75 injection was given. Selected tissues were removed at autopsy 10 days after the first injection. The cytosol from homogenates of these tissues was subjected to gel chromatography, and the elution profiles determined for radioactivity, protein content, and glutathione peroxidase activity using either hydrogen peroxide or cumene hydroperoxide as substrates. The selenium-75 was found to be distributed mainly between 2 different MW peaks. The larger MW seleno-peak (90,000) possessed both glutathione:hydrogen peroxide oxidoreductase, and glutathione:cumene hydroperoxide oxidoreductase activities, but the smaller MW seleno-peak (about 10,000) possessed no glutathione peroxidase activity. A peak of about 60,000 daltons containing only glutathione:cumene hydroperoxide oxidoreductase activity and no selenium-75 was found primarily in the liver and kidney. Vitamin E had no effect on the elution profiles. Selenium status of the animal had only a minor effect on the selenium-75 distribution in the cytosol, but had a marked effect on the absolute amount of the label taken up by tissues.

  18. Paternal selenium deficiency but not supplementation during preconception alters mammary gland development and 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in female rat offspring.

    PubMed

    Guido, Luiza N; Fontelles, Camile C; Rosim, Mariana P; Pires, Vanessa C; Cozzolino, Silvia M F; Castro, Inar A; Bolaños-Jiménez, Francisco; Barbisan, Luis F; Ong, Thomas P

    2016-10-15

    Breast cancer is a global public health problem and accumulating evidence indicates early-life exposures as relevant factors in the disease risk determination. Recent studies have shown that paternal nutrition can influence offspring health including breast cancer risk. Selenium is a micronutrient with essential role in central aspects of embryogenesis, male fertility and cancer and that has been extensively studied as a chemopreventive agent in several breast cancer experimental models. Thus, we designed an animal study to evaluate whether paternal selenium deficiency or supplementation during preconception could affect the female offspring mammary gland development and breast cancer susceptibility. Male Sprague-Dawley rats were fed AIN93-G diet containing 0.15 ppm (control diet), 0.05 ppm (deficient diet) or 1 ppm (supplemented diet) of selenium for 9 weeks and mated with control female rats. Mammary carcinogenesis was induced with 7,12-dimethylbenz[a]anthracene (DMBA) in their female offspring. Paternal selenium deficiency increased the number of terminal end buds, epithelial elongation and cell proliferation in the mammary gland of the female rat offspring and these effects were associated with higher susceptibility to DMBA-induced mammary tumors (increased incidence and higher grade tumors). On the other hand, paternal selenium supplementation did not influence any of these parameters. These results highlight the importance of father's nutrition including selenium status as a relevant factor affecting daughter's breast cancer risk and paternal preconception as a potential developmental stage to start disease preventive strategies.

  19. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site.

    PubMed

    Van Dyke, James U; Hopkins, William A; Jackson, Brian P

    2013-11-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ((1)(5)N and (13)C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ(15)N and Se concentration. Instead, selenium concentrations decreased with increasing δ(13)C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position.

  20. Selenium, glutathione peroxidase and other selenoproteins

    SciTech Connect

    Wilhelmsen, E.C.

    1983-01-01

    Selenium, as essential trace element, has long been associated with protein. The essentiality of selenium is partially understood as glutathione peroxidase contains an essential selenocysteine. Glutathione peroxidase has been purified from many tissues including rat liver. An estimated molecular weight of 105,000 was obtained for glutathione peroxidase by comparison to standards. A subunit size of 26,000 was obtained by SDS-gel electrophoresis. Glutathione peroxidase is not the only selenoprotein in the rat. In seven rat tissues examined, there were many different subunit sizes and change groups representing between 9 and 23 selenoproteins. Selenocysteine in glutathione peroxidase accounts for ca. 36% of the selenium in the rat. The mode of synthesis of glutathione peroxidase and the other selenoproteins is not understood. Glutathione peroxidase is strongly and reversibly inhibited by mercaptocarboxylic acids and other mercaptans, including some used as slow-acting drugs for the symtomatic treatment of rheumatoid arthritis. The mechanism and chemistry of this inhibition is discussed. This inhibition may provide a link between selenium and arthritis.

  1. Status of selenium in cancer prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An abundance of data indicate that selenium (Se) can be antitumorigenic. Those data, mostly from controlled studies using animal tumor models and some from clinical studies in free-living people, indicate that treatment with Se in the absence of nutritional Se-deficiency, can reduce cancer risk. T...

  2. Mercury and selenium content of Taiwanese seafood.

    PubMed

    Fang, G C; Nam, D H; Basu, N

    2011-01-01

    Fish consumption is avid in Taiwan (and other Asian nations), but little is known about the mercury and selenium content in local seafood. This paper reports on total mercury, methylmercury and selenium levels from 14 commonly consumed seafood items obtained from Taichung, Taiwan. Mean total mercury concentrations varied nearly 100-fold across species. Fifty per cent of the marlins sampled and 35% of the sharks exceeded the 0.3 µg g(-1) US Environmental Protection Agency (USEPA) guideline. Methylmercury comprised a majority of the total mercury in all species. In all species studied there was a molar excess of selenium over mercury. The rank order of mean selenium-mercury molar ratios was red tilapia (166.8) > abura (87.9) > river prawn (82.4) > whiteleg shrimp (64.2) > butterfish (44.6) > milkfish (37.0) > tuna (15.6) > grouper (13.9) > ayu (13.4) > coral hind (13.0) > weever (11.8) > saury (9.0) > shark (7.8) > marlin (4.2).

  3. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  4. Chapter 6: Selenium Toxicity to Aquatic Organisms

    EPA Science Inventory

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  5. Effects of tocopherol and selenium supplementation on vitamin A evaluated by response surface analysis

    SciTech Connect

    Stoecker, B.J.; Seaborn, C.D.; Kiangura, R.K.; Hermann, J.R. )

    1991-03-15

    Sixty-six weanling male rats were fed torula-yeast based diets and deprived of selenium, vitamin A and tocopherol for five weeks. Subsequently a two-factor central composite response surface experimental design was used to determine Se and tocopherol supplementation for nine groups. Selenium, as sodium selenate, was added to the diets at concentrations between 0 and 1.0 ppm. Rats were dosed with 0.2 to 50 mg/day of dl-alpha-tocopherol. All animals were fed 100 ug beta-carotene daily. Body, liver, and spleen weights were not significantly affecteds ofdietary treatments. Dietary Se affected heart weight. Hepatic vitamin A decreased linearly with increasing tocopherol supplements. In the combinations used, tocopherol decreased total vitamin A in liver and kidney but did not interact significantly with Se.

  6. Selenium-vitamin E combination and melatonin modulates diabetes-induced blood oxidative damage and fetal outcomes in pregnant rats.

    PubMed

    Guney, Mehmet; Erdemoglu, Evrim; Mungan, Tamer

    2011-11-01

    Oxidative stress is considered to be the main cause of diabetic complications. In the current study, we investigated the effect of selenium-vitamin E combination and melatonin on lipid peroxidation (LPO) and scavenging enzyme activity in the blood of streptozocin (STZ)-induced diabetic pregnant rats. Forty female Wistar rats were randomly divided into five groups. The first and second groups were used as the non-pregnant control and pregnant control groups, respectively. The third group was the pregnant diabetic group. Vitamin E plus selenium and melatonin were administered to the diabetic pregnant rats consisting fourth and fifth groups, respectively. Diabetes was induced on day 0 of the study by STZ. Blood samples were taken from all animals on the 20th day of pregnancy. LPO level was higher in diabetic pregnant rats than in control, although superoxide dismutase, catalase, and glutathione peroxidase activities were lower in diabetic pregnant animals than in control. LPO levels were lower both in the two treatment groups than in the diabetic pregnant rats, whereas selenium-vitamin E combination and melatonin caused a significant increase in the activities of these antioxidant enzymes (p<0.01). In conclusion, vitamin E plus selenium seems to be a more potent antioxidant compared to melatonin in diabetic pregnant rats. Melatonin did not significantly affect the elevated glucose concentration of diabetic pregnant treated with melatonin group. Vitamin E plus selenium may play a role in preventing diabetes-related diseases of pregnant subjects.

  7. Effects of selenium treatment on 6-n-propyl-2-thiouracil-induced impairment of long-term potentiation.

    PubMed

    Bitiktaş, Soner; Tan, Burak; Batakçı, Melek; Kavraal, Şehrazat; Dursun, Nurcan; Süer, Cem

    2016-08-01

    The goal of this study was to evaluate whether sodium selenite could afford protection against the effects of hypothyroidism on long-term potentiation (LTP), which is thought to be the cellular basis for learning and memory. Hypothyroidism was induced in young-adult rats by the administration of 6-n-propyl-2-thiouracil (PTU) in tap water for 21 days. Half of these hypothyroid and euthroid rats were given 10ppM selenium with their drinking water. Field potentials were recorded from the dentate gyrus in response to stimulation of the medial perforant pathway in vivo. PTU treatment resulted in a significant reduction in both free T3 and free T4 levels, whereas selenium administration to PTU-treated rats restored only the levels of free T3 to their control values. Thyroid hormone levels were not affected by selenium in euthyroid rats. PTU-treated rats exhibited an attenuation of population spike (PS) - LTP, but a comparable potentiation of excitatory postsynaptic potential (EPSP) was found among these rats. The administration of selenium to PTU-treated rats was partially able to attenuate impairment of LTP, but not of potentiation during the LTP induction protocol in hypothyroid rats. Interestingly, the hypothyroid rats that were supplemented with selenium had a lower EPSP potentiation during induction protocol than the control rats. The present study suggests a possible importance of T3 in Se-induced rescue of impaired PS-LTP in hypothyroidism.

  8. Selenium, selenoproteins and human health: a review.

    PubMed

    Brown, K M; Arthur, J R

    2001-04-01

    Selenium is of fundamental importance to human health. It is an essential component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defence systems, and immune function. The decline in blood selenium concentration in the UK and other European Union countries has therefore several potential public health implications, particularly in relation to the chronic disease prevalence of the Western world such as cancer and cardiovascular disease. Ten years have elapsed since recommended dietary intakes of selenium were introduced on the basis of blood glutathione peroxidase activity. Since then 30 new selenoproteins have been identified, of which 15 have been purified to allow characterisation of their biological function. The long term health implications in relation to declining selenium intakes have not yet been thoroughly examined, yet the implicit importance of selenium to human health is recognised universally. Selenium is incorporated as selenocysteine at the active site of a wide range of selenoproteins. The four glutathione peroxidase enzymes (classical GPx1, gastrointestinal GPx2, plasma GPx3, phospholipid hydroperoxide GPx4)) which represent a major class of functionally important selenoproteins, were the first to be characterised. Thioredoxin reductase (TR) is a recently identified seleno-cysteine containing enzyme which catalyzes the NADPH dependent reduction of thioredoxin and therefore plays a regulatory role in its metabolic activity. Approximately 60% of Se in plasma is incorporated in selenoprotein P which contains 10 Se atoms per molecule as selenocysteine, and may serve as a transport protein for Se. However, selenoprotein-P is also expressed in many tissues which suggests that although it may facilitate whole body Se distribution, this may not be its sole function. A second major class of selenoproteins are the iodothyronine deiodinase enzymes which catalyse the 5'5-mono-deiodination of the prohormone thyroxine (T4

  9. Selenium and the thyroid gland: more good news for clinicians.

    PubMed

    Drutel, Anne; Archambeaud, Françoise; Caron, Philippe

    2013-02-01

    The thyroid is the organ with the highest selenium content per gram of tissue because it expresses specific selenoproteins. Since the discovery of myxoedematous cretinism and thyroid destruction following selenium repletion in iodine- and selenium-deficient children, data on links between thyroid metabolism and selenium have multiplied. Although very minor amounts of selenium appear sufficient for adequate activity of deiodinases, thus limiting the impact of its potential deficiency on synthesis of thyroid hormones, selenium status appears to have an impact on the development of thyroid pathologies. The value of selenium supplementation in autoimmune thyroid disorders has been emphasized. Most authors attribute the effect of supplementation on the immune system to the regulation of the production of reactive oxygen species and their metabolites. In patients with Hashimoto's disease and in pregnant women with anti-TPO antibodies, selenium supplementation decreases anti-thyroid antibody levels and improves the ultrasound structure of the thyroid gland. Although clinical applications still need to be defined for Hashimoto's disease, they are very interesting for pregnant women given that supplementation significantly decreases the percentage of postpartum thyroiditis and definitive hypothyroidism. In Graves' disease, selenium supplementation results in euthyroidism being achieved more rapidly and appears to have a beneficial effect on mild inflammatory orbitopathy. A risk of diabetes has been reported following long-term selenium supplementation, but few data are available on the side effects associated with such supplementation and further studies are required.

  10. Review - Selenium - Its metabolism and relation to exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Akil, Mustafa; Bicer, Mursel

    2016-09-01

    Selenium (Se), which is commonly found in nature, is one of the essential trace elements necessary for the normal development of human and animal organisms. Selenium was first defined in 1818 by the Swedish chemist Berzelius in sulfuric acid residues. At the end of 1960s, the role of selenium in human health began to attract attention and human diseases that resembled animal diseases responding to selenium was started to be investigated. Selenium, which is highly important for human health, is necessary for a variety of metabolic processes, including thyroid hormone metabolism, protection against oxidative stress and immunity functions. Selenium is a molecule that activates glutathione peroxidase, and thus, it is involved in the antioxidant mechanisms that prevent oxidant damage. Exhaustive physical exercise is known to cause oxidant damage, probably by promoting free radical production in many tissues, including muscle, liver, heart and lungs in animals. The increase in oxidative stress during exercise and recognition of selenium's stimulation of antioxidant activity inevitably suggest a relation between selenium and exercise. The present review aims to provide information on selenium metabolism and the relation between selenium and exercise.

  11. Chemical status of selenium in evaporation basins for disposal of agricultural drainage.

    PubMed

    Gao, S; Tanji, K K; Dahlgren, R A; Ryu, J; Herbel, M J; Higashi, R M

    2007-09-01

    Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.

  12. Bioavailability enhancers of herbal origin: An overview

    PubMed Central

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  13. Bioavailability enhancers of herbal origin: an overview.

    PubMed

    Kesarwani, Kritika; Gupta, Rajiv; Mukerjee, Alok

    2013-04-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds.

  14. Kale carotenoids are unaffected by, whereas biomass production, elemental concentrations, and selenium accumulation respond to, changes in selenium fertility.

    PubMed

    Lefsrud, Mark G; Kopsell, Dean A; Kopsell, David E; Randle, William M

    2006-03-08

    Selenium (Se) is a micronutrient in mammalian nutrition and is accumulated in kale (Brassica oleracea L. var. acephala), which has high levels of lutein and beta-carotene. Selenium, lutein, and beta-carotene have important human health benefits and possess strong antioxidant properties. The objectives of this study were to determine the influence of different Se [as sodium selenate (Na(2)SeO(4)) and sodium selenite (Na(2)SeO(3))] fertility levels on (1) biomass accumulation, (2) the accumulation patterns of carotenoid pigments, and (3) elemental accumulation in the leaves of kale. Winterbor kale was greenhouse-grown using nutrient solution culture with Se treatment concentrations of 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 mg Se/L as Na(2)SeO(4) and 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mg Se/L as Na(2)SeO(3). Increases in either selenate (SeO(4)(-)(2)) or selenite (SeO(3)(-)(2)) resulted in decreases in kale leaf tissue biomass. Neither of the Se treatments had an effect on the accumulation of lutein or beta-carotene in leaf tissues. Increasing SeO(4)(-)(2) significantly increased the accumulation of kale leaf Se; however, leaf tissue Se did not significantly change over the SeO(3)(-)(2) treatments. Increases in SeO(4)(-)(2) affected the leaf tissue concentrations of P, K, Ca, Mg, S, B, Cu, Mn, and Mo, whereas SeO(3)(-)(2) only affected B and S. Growing kale in the presence of SeO(4)(-)(2) would result in the accumulation of high levels of tissue Se without affecting carotenoid concentrations.

  15. Selenium in Reservoir Sediment from the Republican River Basin

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  16. Sulphur interferes with selenium accumulation in Tartary buckwheat plants.

    PubMed

    Golob, Aleksandra; Gadžo, Drena; Stibilj, Vekoslava; Djikić, Mirha; Gavrić, Teofil; Kreft, Ivan; Germ, Mateja

    2016-11-01

    Tartary buckwheat (Fagopyrum tataricum Gaertn.) and common buckwheat (Fagopyrum esculentum Moench.) plants grown in the field were treated foliarly with 126 μM solutions of selenate and/or sulphate in order to study the effect of sulphur (S) on selenium (Se) concentration in plants. In both species, the concentration of Se in all plant parts was similar in control and S treated plants. In Tartary buckwheat the concentration of Se was higher in S and Se treated plants than in plants treated with Se alone. S was shown to enhance Se accumulation in Tartary buckwheat. It was also shown that it is possible to produce grain and herb of Tartary and common buckwheat containing appropriate amounts of Se for food without affecting the yield of the plants.

  17. Bioavailability of Polyphenol Liposomes: A Challenge Ahead

    PubMed Central

    Mignet, Nathalie; Seguin, Johanne; Chabot, Guy G.

    2013-01-01

    Dietary polyphenols, including flavonoids, have long been recognized as a source of important molecules involved in the prevention of several diseases, including cancer. However, because of their poor bioavailability, polyphenols remain difficult to be employed clinically. Over the past few years, a renewed interest has been devoted to the use of liposomes as carriers aimed at increasing the bioavailability and, hence, the therapeutic benefits of polyphenols. In this paper, we review the causes of the poor bioavailability of polyphenols and concentrate on their liposomal formulations, which offer a means of improving their pharmacokinetics and pharmacodynamics. The problems linked to their development and their potential therapeutic advantages are reviewed. Future directions for liposomal polyphenol development are suggested. PMID:24300518

  18. Pharmacokinetics and bioavailability of drotaverine in humans.

    PubMed

    Bolaji, O O; Onyeji, C O; Ogundaini, A O; Olugbade, T A; Ogunbona, F A

    1996-01-01

    The pharmacokinetics and bioavailability of drotaverine was studied in 10 healthy volunteers after administration of single 80 mg oral and intravenous doses of the HCl salt of the drug, in a crossover fashion. Plasma and urine samples were analyzed for the unchanged drug by HPLC. The pharmacokinetic parameters, such as elimination half-life, plasma clearance, renal clearance and apparent volume of distribution, were not influenced by the route of drug administration. The drug was mainly eliminated by non-renal routes since renal clearance accounted for only 0.31 +/- 0.13% of the total plasma clearance. The absolute bioavailability was variable and ranged from 24.5-91% with a mean of 58.2 +/- 18.2% (mean +/- SD). It is suggested that the high variation in the bioavailability of drotaverine HCl after oral administration may result in significant interindividual differences in therapeutic response.

  19. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  20. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  1. Selenium Recycling in the United States in 2004

    USGS Publications Warehouse

    George, Micheal W.; Wagner, Lorie A.

    2009-01-01

    The vast majority of selenium consumption in the United States is in dissipative uses, such as alloys, animal feeds, fertilizers, glass decolorizer, and pigments. The nondissipative use as a photoreceptor for xerographic copiers is declining. As a result of a lack of a substantial supply of selenium-containing scrap, there are no longer selenium recycling facilities in the United States. Selenium-containing materials collected for recycling, primarily selenium-containing photocopier drums, are exported for processing in other countries. Of the estimated 350 metric tons (t) of selenium products that went to the U.S. market in 2004, an estimated 300 t went to dissipative uses. An estimated 4 t was recovered from old scrap and exported for recycling.

  2. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement.

    PubMed

    Stuurman, Frederik E; Nuijen, Bastiaan; Beijnen, Jos H; Schellens, Jan H M

    2013-06-01

    The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are

  3. Electrochemical cell utilizing selenium as an electrode-reactant

    SciTech Connect

    Virkar, A.V.; Miller, G.R.; Rasmussen, J.R.

    1990-01-23

    This patent describes an electrochemical cell. It comprises: an anolyte containing substantially a molten alkali metal; a solid beta-alumina electrolyte possessing mobile alkali metal ions of the same alkali metal as is present in the anolyte; and a catholyte comprising a mixture of molten selenium and molten sulfur in a molar ration of about 3:1 to about 30:1 selenium to sulfur, wherein at least a portion of the selenium and sulfur is present in elemental form.

  4. Synthesis and characterization of single crystalline selenium nanowire arrays

    SciTech Connect

    Zhang, X.Y. . E-mail: apzhxy@polyu.edu.hk; Xu, L.H.; Dai, J.Y.; Cai, Y.; Wang, N.

    2006-09-14

    Ordered selenium nanowire arrays with diameters about 40 nm have been fabricated by electrodeposition using anodic porous alumina templates. As determined by X-ray diffraction, Raman spectra, electron diffraction and high-resolution transmission electron microscopy, selenium nanowires have uniform diameters, which are fully controllable. Single crystalline trigonal selenium nanowires have been obtained after postannealing at 180 deg. C. These nanowires are perfect with a c-axis growth orientation. The optical absorption spectra reveal two types of electron transition activity.

  5. 21 CFR 522.2100 - Selenium and vitamin E.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Selenium and vitamin E. 522.2100 Section 522.2100... Selenium and vitamin E. (a)(1) Specifications. Each milliliter of emulsion contains 5.48 milligrams (mg) sodium selenite (equivalent to 2.5 mg selenium) and 50 mg of vitamin E (68 I.U.) (as d-alpha...

  6. [Studies on the assimilation of inorganic selenium by yeast].

    PubMed

    Xie, L; Ouyang, Z; Xie, X

    1990-02-01

    In the process of assimilation of inorganic selenium by yeast to the organic-selenium, some rules on the relation of the kinds of culture medium, concentration of sodium selenite and methionine to the total selenium and selenomethionine content in the yeast formed have been found; and a new, accurate procedure--modified acid hydrolysis-ion exchange chromatography for determining the content of seleno-amino acid in biological materials has been established.

  7. Erythrocyte selenium and breast cancer risk: brief reports

    SciTech Connect

    Meyer, F.; Verreault, R.

    1987-05-01

    Animal experiments and ecologic studies suggest that low dietary selenium intake is associated with an increased risk of some types of cancer. However, studies assessing the relation of indicators of selenium intake in subjects to site-specific cancer incidence are few. This paper reports the results of a case-control study of erythrocyte selenium in relation to breast carcinoma in premenopausal women. 1 figure, 1 table.

  8. Selenium Poisoning of Wildlife and Western Agriculture: Cause and Effect

    SciTech Connect

    Korte, N.E.

    2000-02-01

    This project examined the hypothesis that selenium contamination is not the principal cause of the decline of endemic fish species in the Upper Colorado Basin. Activities employed to test this hypothesis included a reconnaissance of locations altered by recent road construction, a re-interpretation of available literature regarding selenium toxicity, and the interpretation of unpublished data obtained from the Upper Colorado Basin Fish Recovery Program. The project demonstrates that most of the evidence implicating selenium is circumstantial.

  9. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  10. Radiolabeled iron in soybeans: intrinsic labeling and bioavailability of iron to rats from defatted flour

    SciTech Connect

    Weaver, C.M.; Schmitt, H.A.; Stuart, M.A.; Mason, A.C.; Meyer, N.R.; Elliott, J.G.

    1984-06-01

    Soybeans can be efficiently labeled with radiolabeled iron by supplying the iron via a nutrient culture medium as an iron salt or as a chelate. By using dual labeled iron and EDTA, it was determined that none of the chelator was transported to the shoots with the iron. Therefore, the use of chelated iron as the iron source in the nutrient medium should not affect assessments of bioavailability of iron from plants. Bioavailability (determined from whole-body retention curves of /sup 59/Fe in rats) of iron from defatted soy flour was relatively high and addition of vitamin C did not significantly enhance absorption of iron from defatted soy flour.

  11. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival

    USGS Publications Warehouse

    Stanley, T.R.; Spann, J.W.; Smith, G.J.; Rosscoe, R.

    1994-01-01

    Arsenic (As) and selenium (Se) occur together in high concentrations in the environment and can accumulate in aquatic plants and invertebrates consumed by waterfowl. Ninety-nine pairs of breeding mallards (Anas platyrhynchos) were fed diets supplemented with As (sodium arsenate) at 0, 25, 100, or 400 ug/g, in combination with Se (seleno-DL-methionine) at 0 or 10 ug/g, in a replicated factorial experiment. Ducklings produced were placed on the same treatment combination as their parents. Arsenic accumulated in adult liver and egg, reduced adult weight gain and liver weight, delayed the onset of egg laying, decreased whole egg weight, and caused eggshell thinning. Arsenic did not affect hatching success and was not teratogenic. In ducklings, As accumulated in the liver and reduced body weight, growth, and liver weight. Arsenic did not increase duckling mortality, but it did decrease overall duckling production. Selenium accumulated in adult liver and egg, was teratogenic, and decreased hatching success. Selenium did not affect adult weight, liver weight, survival, onset of egg laying, egg fertility, egg weight, or eggshell thickness. In ducklings, Se accumulated in the liver and reduced body weight and growth, and increased liver weight. Selenium increased duckling mortality and decreased overall duckling production. Antagonistic interactions between As and Se occurred whereby As reduced Se accumulation in liver and egg, and alleviated the effects of Se on hatching success and embryo deformities. It was demonstrated that As and Se, in the chemical forms and at the dietary levels administered in this study, can adversely affect mallard reproduction and duckling growth and survival, and that As can alleviate toxic effects of Se.

  12. Review of selenium toxicity in the aquatic food chain.

    PubMed

    Hamilton, Steven J

    2004-06-29

    In many environmental contaminant situations selenium has become the primary element of concern because of its bioaccumulative nature in food webs. Initial concerns about selenium were related to fish kills at Belews Lake, NC, Martin Lake, TX, and Kesterson Reservoir, CA, and to bird deformities at Kesterson Reservoir. Additional concerns were identified under the National Irrigation Water Quality Program at Salton Sea, CA, Kendrick, WY, Stewart Lake, UT, and Grand Valley and Uncompahgre Valley, CO. Recent studies have raised concerns about selenium impacts on aquatic resources in Southeastern Idaho and British Columbia. The growing discomfort among the scientific community with a waterborne criterion has lead the US Environment Protection Agency to consider a tissue-based criterion for selenium. Some aquatic ecosystems have been slow to recover from selenium contamination episodes. In recent years, non-governmental researchers have been proposing relatively high selenium thresholds in diet and tissue relative to those proposed by governmental researchers. This difference in opinions is due in part to the selection of datasets and caveats in selecting scientific literature. In spite of the growing selenium literature, there are needs for additional research on neglected organisms. This review also discusses the interaction of selenium with other elements, inconsistent effects of selenium on survival and growth of fish, and differences in depuration rates and sensitivity among species.

  13. Conceptual Model for Selenium Cycling in the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Conover, M. R.; Wurtsbaugh, W. A.; Adams, J.

    2006-12-01

    The conceptual model for Selenium cycling in the Great Salt Lake was developed to guide investigations in support of determining an open water selenium standard for the Great Salt Lake. The motivation to determine this particular selenium standard derives from public concern for a plan to allow disposal of reverse osmosis (RO) concentrate in the GSL, which would contain elevated concentrations of major and trace elements, including selenium. The development of an open water standard for selenium requires a working knowledge of the biological significance of existing selenium concentrations in the Great Salt Lake, as well as a working understanding of the likely changes of these concentrations over time given existing and proposed loads to the system. This working knowledge" is being represented in a conceptual model that accounts for selenium in various stocks" in the system (e.g. water, sediment, biota) and the flow" of selenium between stocks (e.g., precipitation and settling, volatilization, bioconcentration). It illustrates the critical pathway of selenium in the Great Salt Lake from water, to microorganisms, to brine shrimp and brine flies, to birds, and to their eggs. It also addresses the complexity of the GSL system: a) Spatially diverse, being comprised by four distinct bays and two layers, with major differences in salinity among their waters. b) Temporally dynamic, due to seasonal and inter-annual variations in runoff. The conceptual model is presently descriptive, but will serve as the basis for a semi-quantitative model that will be fed by data accumulated during subsequent investigations.

  14. Re-exposure of mallards to selenium after chronic exposure

    USGS Publications Warehouse

    Heinz, G.H.

    1993-01-01

    Adult male mallards (Anas platyrhynchos) were fed a control diet or a diet containing 15 ppm selenium as seleno-D,L-methionine for 21 weeks. After this initial exposure, the mallards were fed untreated food for 12 weeks, then were re-exposed to selenium at 100 ppm for five weeks. During re-exposure to 100 ppm selenium, the birds that had previously been exposed to 15 ppm selenium and those that had not previously been exposed did not differ in percentage of mortality (14.7 and 14.3%), weight loss in survivors (39.3 and 41.20%), selenium concentrations in the livers of survivors (35 and 53 ppm, wet weight), or selenium concentrations in the livers of birds that died (35 and 40 ppm, respectively). When the data from the birds that had previously been exposed to 15 ppm selenium were combined with the data from the birds that had not previously been exposed, selenium concentrations in the livers of birds that had died on the 100-ppm selenium treatment (38 ppm) did not differ from the concentrations in the livers of birds that had survived (43 ppm).

  15. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  16. Selenium nanomaterials: applications in electronics, catalysis and sensors.

    PubMed

    Chaudhary, Savita; Mehta, S K

    2014-02-01

    This review provides insights into the synthesis, functionalization, and applications of selenium nanoparticles in electronics, optics, catalysis and sensors. The variation of physicochemical properties such as particle size, surface area, and shape of the selenium nanoparticles and the effect of experimental conditions has also been discussed. An overview has also been provided on the fundamental electrical and optical properties of selenium nanomaterials as well as their utilization in different research fields. The work presents an insight on selenium nanoparticles with interesting properties and their future applications.

  17. [Selenium toxicity in domestic animals].

    PubMed

    Mihajlović, M

    1992-01-01

    The earliest written report of selenium poisoning is thought to be the description by Marco Polo of a necrotic hoof disease of horses that occurred in China in 13. century. However recognition of Se as toxic principle come in the early 1930s. Severity of Se poisoning depends on chemical forms of the element, species of animals and routes of administration. The soluble Se salts (Na2SeO3 and Na2SeO4) appear to be among the more toxic compounds; the Se inherent in grains and selenoamino acids (selenomethionine and selenocystine) appear to have relative moderate toxicity; the poorly soluble forms (e.g., elemental Se, Na2Se, SeS2 and diphenyl selenide) are among the least toxic of the Se compounds. In general, toxicity of Se compounds are substantially less when they are administered orally than when they are given parenterally. Rosenfeld and Beath described three clinical types of Se intoxication: acute selenosis, subacute selenosis (i.e., blind staggers type), and chronic selenosis (i.e., alkali disease type). Acute poisoning occurs when high Se content plants are consumed in large quantities within short period. Accidental acute poisoning occurs as consequence of errors in formulation of a Se supplemented diet. The most characteristic sign of acute selenosis is garlic breath due to the pulmonary excretion of volatile Se metabolites. Other signs include lethargy, excessive salivation, vomiting, dyspnea, muscle tremors and respiratory distress. Pathological findings are: congestion of the liver and kidney, fatty degeneration and focal necrosis of the liver, endocarditis and myocarditis. Subacute selenosis ("blind staggers") occurs as a consequence of exposure to large doses of Se over a longer period of time and manifests with neurological signs (e.g., blindness, ataxia, disorientation) and respiratory distress. This form of selenosis is most frequently observed in grazing animals that have consumed Se-accumulated plants. Chronic selenosis ("alkali disease") comes

  18. On the borderline of dissolved and particulate organic matter: partitioning and bioavailability of polycyclic aromatic hydrocarbons.

    PubMed

    Akkanen, Jarkko; Tuikka, Anita; Kukkonen, Jussi V K

    2012-04-01

    The functionality of dissolved organic matter (DOM) was studied by assessing the availability of polycyclic aromatic hydrocarbons (PAHs) spiked in pore water samples separated from sediments by water extraction and centrifugation with or without subsequent filtration. The purpose was to compare the effects of traditionally defined DOM (0.45-μm cut off) and larger colloidal material present in the separated pore water samples on the partitioning and bioavailability of PAHs. The tested PAHs included phenanthrene (Phe), fluoranthene (Flu), pyrene (Pyr) and benzo[a]pyrene (BaP). Bioavailability of the selected PAHs was tested with two ecologically different organisms: pelagic filter feeder Daphnia magna and sediment-dwelling deposit feeder Lumbriculus variegatus. Sorption to DOM (i.e. in filtered samples) was clearly higher for BaP than for the other PAH. This was also reflected in significantly reduced bioavailability for both model organisms in the filtered samples compared to DOM-free conditions. For the other PAHs the sorption was significant only in the unfiltered samples indicating the importance of larger colloidal material. Thus, the bioavailability of PAHs was also more effectively reduced by the colloidal material. This holds true for both the model organisms, indicating that the ecological differences i.e. filter feeder vs. deposit feeder do not affect in this respect. It appears that considering only traditionally defined DOM, material that may be present in environmental samples and is important for the speciation and bioavailability of contaminants is ignored.

  19. Bioavailability of iron, vitamin A, zinc, and folic acid when added to condiments and seasonings.

    PubMed

    Degerud, Eirik M; Manger, Mari Skar; Strand, Tor A; Dierkes, Jutta

    2015-11-01

    Seasonings and condiments can be candidate vehicles for micronutrient fortification if consumed consistently and if dietary practices ensure bioavailability of the nutrient. In this review, we identify factors that may affect the bioavailability of iron, vitamin A, zinc, and folic acid when added to seasonings and condiments and evaluate their effects on micronutrient status. We take into consideration the chemical and physical properties of different forms of the micronutrients, the influence of the physical and chemical properties of foods and meals to which fortified seasonings and condiments are typically added, and interactions between micronutrients and the physiological and nutritional status of the target population. Bioavailable fortificants of iron have been developed for use in dry or fluid vehicles. For example, sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) and ferrous sulfate with citric acid are options for iron fortification of fish and soy sauce. Furthermore, NaFeEDTA, microencapsulated ferrous fumarate, and micronized elemental iron are potential fortificants in curry powder and salt. Dry forms of retinyl acetate or palmitate are bioavailable fortificants of vitamin A in dry candidate vehicles, but there are no published studies of these fortificants in fluid vehicles. Studies of zinc and folic acid bioavailability in seasonings and condiments are also lacking.

  20. Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters

    USGS Publications Warehouse

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.

  1. Bioavailability of iron, vitamin A, zinc, and folic acid when added to condiments and seasonings

    PubMed Central

    Degerud, Eirik M.; Manger, Mari Skar; Strand, Tor A.

    2015-01-01

    Seasonings and condiments can be candidate vehicles for micronutrient fortification if consumed consistently and if dietary practices ensure bioavailability of the nutrient. In this review, we identify factors that may affect the bioavailability of iron, vitamin A, zinc, and folic acid when added to seasonings and condiments and evaluate their effects on micronutrient status. We take into consideration the chemical and physical properties of different forms of the micronutrients, the influence of the physical and chemical properties of foods and meals to which fortified seasonings and condiments are typically added, and interactions between micronutrients and the physiological and nutritional status of the target population. Bioavailable fortificants of iron have been developed for use in dry or fluid vehicles. For example, sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) and ferrous sulfate with citric acid are options for iron fortification of fish and soy sauce. Furthermore, NaFeEDTA, microencapsulated ferrous fumarate, and micronized elemental iron are potential fortificants in curry powder and salt. Dry forms of retinyl acetate or palmitate are bioavailable fortificants of vitamin A in dry candidate vehicles, but there are no published studies of these fortificants in fluid vehicles. Studies of zinc and folic acid bioavailability in seasonings and condiments are also lacking. PMID:26469774

  2. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  3. Biodegradation of chitosan and its effect on metal bioavailability.

    PubMed

    Kamari, A; Pulford, I D; Hargreaves, J S J

    2015-02-01

    The microbial breakdown of chitosan, a fishery waste-based material, and its derivative cross-linked chitosans, in both non-contaminated and contaminated conditions was investigated in a laboratory incubation study. Biodegradation of chitosan and cross-linked chitosans was affected by the presence of heavy metals. Zn was more pronounced in inhibiting microbial activity than Cu and Pb. It was estimated that a longer period is required to complete the breakdown of the cross-linked chitosans (up to approximately 100 years) than unmodified chitosan (up to approximately 10 years). The influence of biodegradation on the bioavailable fraction of heavy metals was studied concurrently with the biodegradation trial. It was found that the binding behaviour of chitosan for heavy metals was not affected by the biodegradation process.

  4. Selenium quantum dots: Preparation, structure, and properties

    NASA Astrophysics Data System (ADS)

    Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping

    2017-01-01

    An interesting class of low-dimensional nanomaterials, namely, selenium quantum dots (SeQDs), which are composed of nano-sized selenium particles, is reported in this study. The SeQDs possess a hexagonal crystal structure. They can be synthesized in large quantity by ultrasound liquid-phase exfoliation using NbSe2 powders as the source material and N-Methyl-2-pyrrolidone (NMP) as the dispersant. During sonication, the Nb-Se bonds dissociate; the SeQDs are formed, while niobium is separated by centrifugation. The SeQDs have a narrow diameter distribution from 1.9 to 4.6 nm and can be dispersed with high stability in NMP without the need for passivating agents. They exhibit photoluminescence properties that are expected to find useful applications in bioimaging, optoelectronics, as well as nanocomposites.

  5. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles.

    PubMed

    Zinicovscaia, I; Chiriac, T; Cepoi, L; Rudi, L; Culicov, O; Frontasyeva, M; Rudic, V

    2017-01-01

    The process of selenium uptake by biomass of the cyanobacterium Arthrospira (Spirulina) platensis was investigated by neutron activation analysis at different selenium concentrations in solution and at different contact times. Experimental data showed good fit with the Freundlich adsorption isotherm model, with a regression coefficient value of 0.99. In terms of absorption dependence on time, the maximal selenium content was adsorbed in the first 5 min of interaction without significant further changes. It was also found that A. platensis biomass forms spherical selenium nanoparticles. Biochemical analysis was used to assess the changes in the main components of spirulina biomass (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation.

  6. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  7. Bioavailability of Cadmium in Inexpensive Jewelry

    PubMed Central

    Miller, Jennifer; Guinn, Daphne; Pearson, Janna

    2011-01-01

    Objectives: We evaluated the bioavailability of Cd in 86 components of 57 jewelry items found to contain high levels of Cd (> 10,000 ppm) by X-ray fluorescence (XRF), using extractions that simulate mouthing or swallowing of jewelry items. Methods: We screened jewelry for Cd content by XRF. Bioavailability was measured in two ways. Items were placed in saline solution at 37°C for 6 hr to simulate exposures from mouthing of jewelry items. Items were placed in dilute hydrochloric acid (HCl) at 37°C for 6–96 hr, simulating the worst-case scenario of a child swallowing a jewelry item. Damaged pieces of selected samples were also extracted by both methods to determine the effect of breaching the outer plating on bioavailability. Total Cd content of all items was determined by atomic absorption. Results: The 6-hr saline extraction yielded as much as 2,200 µg Cd, and 24-hr dilute HCl extraction yielded a maximum of > 20,000 µg Cd. Leaching of Cd in dilute HCl increased linearly over 6–96 hr, indicating potential for increasing harm the longer an item remains in the stomach. Damage to jewelry by breaching the outer plating generally, but not always, increased Cd release. Bioavailability did not correlate directly with Cd content. Conclusions: These results indicate the potential for dangerous Cd exposures to children who wear, mouth, or accidentally swallow high-Cd jewelry items. PMID:21377949

  8. Iron bioavailability to phytoplankton: an empirical approach.

    PubMed

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-03-17

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe', buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe'. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe' and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe' at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe' but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism.

  9. BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS

    EPA Science Inventory

    Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...

  10. Enhanced bioavailability of opiates after intratracheal administration

    SciTech Connect

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-03-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities (codeine (84%), ethylmorphine (100%), and morphine (87%)) of drugs with poor oral availabilities were all markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability.

  11. Iron bioavailability to phytoplankton: an empirical approach

    PubMed Central

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-01-01

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe′, buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe′. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe′ and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe′ at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe′ but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism. PMID:25350155

  12. Clearance of absorbed selenium by the liver

    SciTech Connect

    Kato, Tatsuko; Read, R.; Rozga, J.; Burk, R.F. )

    1991-03-11

    The liver plays a central role in the metabolism of selenium. It secretes plasma selenoproteins, contains a major fraction of the glutathione peroxidase in the body, and synthesizes excretory metabolites. The role of the liver in processing newly absorbed selenium was studied. Male chow-fed rats were fasted overnight and given 24 ng of selenium as {sup 75}SeO{sub 3}{sup 2{minus}} by stomach tube. Animals were exsanguinated at 15, 30, 45, 60, 90, 120, and 180 min after dosing. Comparison of {sup 75}Se uptake by liver, kidney, heart, muscle, testis, brain, and spleen indicated an earlier uptake by liver than by any other tissue. At 15 min, {sup 75}Se in the portal vein blood was 2.6 times that in the hepatic vein blood. Gel filtration analysis suggested a loose association of {sup 75}Se with protein in plasma at 15 min, but immunoprecipitation indicated it was largely in the form of selenoprotein P after 30 min. End-to-side portacaval shunts (PCS) were constructed in rats and sham-operated animals were used as controls. When {sup 75}SeO{sub 3}{sup 2{minus}} was given to animals with PCS, uptake of {sup 75}Se by liver did not precede uptake by other tissues. Also no gradient was detected across the lungs or kidney. {sup 75}Se content of the kidney was higher in PCS rats than in sham-operated rats. This is consistent with removal of the first-pass effect of the liver facilitating uptake of {sup 75}Se by systemic tissues. These results suggest that the preferential uptake of absorbed selenium by the liver is due both to its position in the portal circulation and to an intrinsic high uptake capacity.

  13. [Selenium and oxidative stress in cancer patients].

    PubMed

    Gorozhanskaia, É G; Sviridova, S P; Dobrovol'skaia, M M; Zybrikhina, G N; Kashnia, Sh R

    2013-01-01

    In order to identify the features of violations of free-radical processes in blood serum of 94 untreated cancer patients with different localization of the tumor (cancer of the stomach, colon, breast, ovarian, hemoblastoses) were determined selenium levels and indicators of oxidative stress (sum of metabolites of nitrogen--NOx, the level of superoxide dismutase--Cu/ZnSOD and malondiialdehyde-MDA, and the activity of catalase). In addition, 40 patients with malignant liver disease and clinical signs of liver failure in the early postoperative period was carried out a comparative evaluation of the efficacy of selenium-containing drug "Selenaze" (sodium selenite pentahydrate). It was found that selenium levels in cancer patients by 25-30% below the norm of 110-120 mg/l at a rate of 73.0 +/- 2.6 mg/l. Low levels of NOx was detected in patients with all tumor localizations (22.1 +/- 1.1 microM, with normal range 28.4 +/- 0.9 microM). The exceptions were patients with extensive malignant process in the liver, in which the NOx levels were significantly higher than normal (p < 0.001). The high level of NOx has a toxic effect on the hepatocyte, causing metabolic disorders and inflammatory-necrotic changes in the liver. Elevated levels of SOD and MDA in normal values of catalase activity was detected in all patients. The use of "Selenaze" in postoperative patients with tumors of the liver increased selenium levels by 10-12%, which was accompanied by a decrease in the content of SOD and NOx, and contributed to earlier recovery of detoxic and synthetic liver function. These findings point to an intensification of oxidative stress and metabolic disorders in the malignant process, which is the basis for metabolic correction.

  14. Analysis of Sulfur And Selenium Assimilation in 'Astragalus' Plants With Varying Capacities to Accumulate Selenium

    SciTech Connect

    Sors, T.G.; Ellis, D.R.; Na, G.Nam.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E.; /Purdue U. /Rutgers U., Piscataway /Saskatchewan U.

    2007-08-08

    Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.

  15. The stability of arsenic and selenium compounds that were retained in limestone in a coal gasification atmosphere.

    PubMed

    Díaz-Somoano, M; López-Antón, M A; Huggins, F E; Martínez-Tarazona, M R

    2010-01-15

    The aim of this work was to evaluate the stability of arsenic and selenium species retained in a lime/limestone mixture obtained by using limestone as a sorbent for gas cleaning in a coal gasification atmosphere. It was found that the stability of arsenic and selenium species produced by the gas-solid reactions with lime/limestone may be affected by their exposure to air and by their contact with water. The results confirm the conclusions of a previous work in which Ca(AsO(2))(2) and CaSe was postulated as the products of the reaction between the arsenic and selenium species present in a coal gasification atmosphere with lime/limestone. Moreover it was proved that the compounds (Ca(AsO(2))(2) and CaSe) may undergo transformations when the sorbents post-retention are stored or disposed of in air. From the results obtained by XAFS it was possible to identify the Ca(3)(AsO(4))(2) produced by the oxidation of the Ca(AsO(2))(2) on the sorbent surface. The XAFS results for selenium showed that the CaSe formed on the sorbent was transformed to form several species, but mainly elemental Se. These changes in the speciation of arsenic and selenium may explain the behavior of the sorbent post-retention during the water solubility test. Although the selenium compounds and the products that may originate from their decomposition in water are not toxic, in the case of arsenic, species like Ca(AsO(2))(2) and Ca(3)(AsO(4))(2) may lixiviate, and generate toxic arsenic compounds in solution that could pose a risk when the sorbent is finally disposed of.

  16. Selenium provides protection to the liver but not the reproductive organs in an atrazine-model of experimental toxicity.

    PubMed

    Adesiyan, Adebukola C; Oyejola, Titilola O; Abarikwu, Sunny O; Oyeyemi, Matthew O; Farombi, Ebenezer O

    2011-03-01

    The present study evaluated the possible protective effects of selenium against atrazine-induced toxicity in the liver and reproductive system of rats. Atrazine administered to rats orally at a dose of 120 mg/kg caused an inhibition in the activity of glutathione-S-transferase and an increase in malondialdehyde formation in the liver, testis and epididymis. Superoxide dismutase decreased in the liver and testis but was increased in the epididymis. Furthermore, hepatic glutathione and lactate dehydrogenase activity increased while epididymal catalase, ascorbate content, hepatic aspartate aminotransferase and glutathione peroxidase activities in all the tissues decreased in the atrazine-treated animals. Hepatic, testicular and epididymal alanine aminotransferase activities were not affected by atrazine (p>0.05). Decreased epididymal and testicular sperm number, sperm motility, daily sperm production and increased number of dead and abnormal sperm were observed in atrazine-treated rats. Treatment of rats orally with selenium at a dose of 0.25 mg/kg did not prevent atrazine-induced changes in sperm characteristics and had no protective effects against atrazine-induced biochemical alterations in the testis and epididymis except testicular lactate dehydrogenase. Catalase activity and ascorbate contents were unchanged in these groups of animals. However, selenium effectively protected against atrazine-induced changes in biochemical indices in the liver. In rats treated with selenium alone, glutathione peroxidase in all the tissues, hepatic glutathione and superoxide dismutase, testicular lactate dehydrogenase activity and ascorbate content increased, while hepatic catalase activities decreased (p<0.05). Our data suggest that selenium effectively attenuated the toxic effects of atrazine-induced liver changes but not in the reproductive organs and sperms of rats. Selenium might therefore be useful in ameliorating oxidative stress in the liver.

  17. Zinc and selenium nutritional status in vegetarians.

    PubMed

    de Bortoli, Maritsa Carla; Cozzolino, Silvia Maria Franciscato

    2009-03-01

    A vegetarian diet may have beneficial effects on human health, however when it is not well-balanced may be deficient in some nutrients, as minerals for example. The aim of the present study was to assess the nutritional status of zinc and selenium in vegetarians in the city of São Paulo. A cross-sectional study was performed, and the inclusion criteria were age > or = 18 years, both gender, no use of food or pharmaceutical supplements. Thirty vegetarian, of both genders, mean age of 27 years and 4.5 years of vegetarianism had performed the study, and their mean BMI was 21.5. Zinc plasma concentration was 71 and 62.5 microg/dL for men and women and erythrocyte concentration was 37 microg/gHb for both genders. Selenium concentration was 73.5 and 77.3 microg/L in plasma and 51.4 and 66.9 microg/L in erythrocytes for men and women, respectively. These biochemical values show that, according to the references, selenium blood levels are adequate and zinc concentration in erythrocytes is deficient in the studied population. For this reason, vegetarians should be constantly assessed and receive nutritional support to reduce the effects of inadequate zinc status.

  18. Biofortification and phytoremediation of selenium in China.

    PubMed

    Wu, Zhilin; Bañuelos, Gary S; Lin, Zhi-Qing; Liu, Ying; Yuan, Linxi; Yin, Xuebin; Li, Miao

    2015-01-01

    Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed.

  19. Selenium Derivatization of Nucleic Acids for Crystallography

    SciTech Connect

    Jiang,J.; Sheng, J.; Carrasco, N.; Huang, Z.

    2007-01-01

    The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native and Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.

  20. Selenium binding to human hemoglobin via selenotrisulfide.

    PubMed

    Haratake, Mamoru; Fujimoto, Katsuyoshi; Ono, Masahiro; Nakayama, Morio

    2005-05-25

    Selenotrisulfide (e.g., glutathione selenotrisulfide (GSSeSG)) is an important intermediate in the metabolism of selenite. However, its reactivity with biological substances such as peptides and proteins in the subsequent metabolism is still far from clearly understood, because of its chemical instability under physiological conditions. Penicillamine (Pen) is capable of generating a chemically stable and isolatable selenotrisulfide, PenSSeSPen. To explore the metabolic fate of selenite in red blood cells (RBC), we investigated the reaction of selenotrisulfide with human hemoglobin (Hb) using PenSSeSPen as a model. PenSSeSPen rapidly reacted with Hb under physiological conditions. From the analysis of selenium binding using the Langmuir type binding equation, the apparent binding number of selenium per Hb tetramer almost corresponded to the number of reactive thiol groups of Hb. The thiol group blockade of Hb by iodoacetamide treatment completely inhibited the reaction of PenSSeSPen with Hb. In addition, MALDI-TOF mass spectrometric analysis of the selenium-bound Hb revealed that PenSSe moiety binds to the beta subunits of Hb. Overall, the reaction of PenSSeSPen with Hb appears to involve the thiol exchange between Pen and the cysteine residues on the beta subunit of Hb.

  1. Biofortification and phytoremediation of selenium in China

    PubMed Central

    Wu, Zhilin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Yuan, Linxi; Yin, Xuebin; Li, Miao

    2015-01-01

    Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed. PMID:25852703

  2. Incorporation of selenium into egg proteins from dietary selenite.

    PubMed

    Davis, R H; Fear, J

    1996-03-01

    1. The deposition of selenium in egg components has been investigated in two experiments in which sodium selenite was added to a conventional cereal-based layer diet. 2. Addition of graded amounts of selenite up to 4 mg Se/kg resulted in linear increases in the selenium content of egg white and yolk, and in protein fractions derived from them. The presence of selenium in yolk phosvitin indicates that deposition is not dependent upon the presence of cysteine. 3. Addition of sodium nitroprusside at 0.l5 and 0.3 g/kg to diets having an addition of selenite at the highest concentration, 4 mg Se/kg, resulted in substantial reductions in the selenium concentration in egg components. 4. Samples from eggs laid by hens receiving a diet containing an additional 8 mg selenite Se/kg were subjected to dialysis against sodium hydroxide or cysteine, or subjected to reduction with hydrochloric acid and zinc under anaerobic conditions. Comparisons were made with similar samples prepared from eggs laid by hens on the control diet. 5. Both sodium hydroxide and cysteine were more effective at extracting additional diet-derived selenium from whole white than from whole yolk. The proportion of selenium that could be extracted from the water-soluble or the high density fractions of yolk by either reagent was similar for both control and high selenium samples. However, neither reagent was effective at removing selenium from the ovalbumin or globin fractions of white from control eggs but substantial amounts were extracted from high selenium samples. 6. Most of the selenium was present in non-reducible forms in all samples. There was significantly more reducible selenium in ovalbumin from control eggs than from all other samples but even so non-reducible selenium accounted for two thirds of the selenium present. 7. The differential responses to chemical treatment suggest that selenium can be deposited in eggs in an unspecified number of different forms. These have still to be characterised

  3. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  4. Bioavailability of voriconazole in hospitalised patients.

    PubMed

    Veringa, Anette; Geling, Sanne; Span, Lambert F R; Vermeulen, Karin M; Zijlstra, Jan G; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2017-02-01

    An important element in antimicrobial stewardship programmes is early switch from intravenous (i.v.) to oral antimicrobial treatment, especially for highly bioavailable drugs. The antifungal agent voriconazole is available both in i.v. and oral formulations and bioavailability is estimated to be >90% in healthy volunteers, making this drug a suitable candidate for such a transition. Recently, two studies have shown that the bioavailability of voriconazole is substantially lower in patients. However, for both studies various factors that could influence the voriconazole serum concentration, such as inflammation, concomitant intake of food with oral voriconazole, and gastrointestinal complications, were not included in the evaluation. Therefore, in this study a retrospective chart review was performed in adult patients treated with both oral and i.v. voriconazole at the same dose and within a limited (≤5 days) time interval in order to evaluate the effect of switching the route of administration on voriconazole serum concentrations. A total of 13 patients were included. The mean voriconazole trough concentration was 2.28 mg/L [95% confidence interval (CI) 1.29-3.26 mg/L] for i.v. voriconazole administration and 2.04 mg/L (95% CI 0.78-3.30 mg/L) for oral administration. No significant difference was found in the mean oral and i.v. trough concentrations of voriconazole (P = 0.390). The mean bioavailability was 83.0% (95% CI 59.0-107.0%). These findings suggest that factors other than bioavailability may cause the observed difference in voriconazole trough concentrations between oral and i.v. administration in the earlier studies and stress the need for an antimicrobial stewardship team to guide voriconazole dosing.

  5. Subcutaneous bioavailability of therapeutic antibodies as a function of FcRn binding affinity in mice

    PubMed Central

    Meng, Y Gloria; Hoyte, Kwame; Lutman, Jeff; Lu, Yanmei; Iyer, Suhasini; DeForge, Laura E; Theil, Frank-Peter; Fielder, Paul J; Prabhu, Saileta

    2012-01-01

    The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid β monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice. Our results indicated that the SC bioavailability of mIgG2a was affected by mFcRn-binding affinity. Variant I253A.H435A, which did not bind to mFcRn at either pH 6.0 or pH 7.4, had the lowest bioavailability (41.8%). Variant N434Y, which had the greatest increase in binding affinity at both pH 6.0 and pH 7.4, had comparable bioavailability to the WT antibody (86.1% vs. 76.3%), whereas Variant N434H, which had modestly increased binding affinity at pH 6.0 to mFcRn and affinity comparable to the WT antibody at pH 7.4, had the highest bioavailability (94.7%). A semi-mechanism-based pharmacokinetic model, which described well the observed data with the WT antibody and variant I253A.H435A, is consistent with the hypothesis that the decreased bioavailability of variant I253A.H435A was due to loss of the FcRn-mediated protection from catabolism at the absorption site. Together, these data demonstrate that FcRn plays an important role in SC bioavailability of therapeutic IgG antibodies. PMID:22327433

  6. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  7. Bioavailability of purified subcellular metals to a marine fish.

    PubMed

    Guo, Feng; Yao, Jie; Wang, Wen-Xiong

    2013-09-01

    In the present study, the authors used a supply of naturally contaminated oysters to investigate how the subcellular metal distribution and the metal burden in prey affected the transfer of metals to a marine fish, the grunt Terapon jarbua. The oysters, Crassostrea hongkongensis, each with different contamination histories, were collected and separated into 3 subcellular fractions: 1) metal-rich granules, 2) cellular debris, and 3) a combined fraction of organelles, heat-denatured proteins, and metallothionein-like proteins, defined as the trophically available metal (TAM). These purified fractions showed a wide range of metal concentrations and were fed to the fish for a period of 7 d at a daily comparable feeding rate of 3% of fish body weight. After 7 d exposure, the newly absorbed metals were mainly distributed in the intestine and liver, indicating a significant tissue-specific trophic transfer, especially for Cd and Cu. The trophic transfer factors (TTFs) showed a sequence of cellular debris >TAM > metal-rich granules, suggesting the impact of subcellular distribution in prey on metal bioavailability. However, significant inverse relationships between the TTFs and the metal concentrations in diets were also found in the present study, especially for Cd and Zn. The subcellular metal compartmentalization might be less important than the metal concentration in prey influencing the trophic transfer. The authors' results have important implications for bioavailability and environmental assessment of dietary metals.

  8. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    PubMed Central

    Tuomela, Annika; Hirvonen, Jouni; Peltonen, Leena

    2016-01-01

    Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed. PMID:27213435

  9. Selenium impacts on razorback sucker, Colorado: Colorado River: III. Larvae

    USGS Publications Warehouse

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.

    2005-01-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 ??g/L from 24-Road, 0.9 ??g/L from Horsethief, 5.5 ??g/L from Adobe Creek, and 10.7 ??g/L from the North Pond. Selenium in dietary items averaged 2.7 ??g/g in brine shrimp, 5.6 ??g/g in zooplankton from Horsethief east wetland, 20 ??g/g in zooplankton from Adobe Creek, and 39 ??g/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of ???4.6 ??g/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  10. 21 CFR 522.2100 - Selenium, vitamin E injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium, vitamin E injection. 522.2100 Section... § 522.2100 Selenium, vitamin E injection. (a)(1) Specifications. The drug is an emulsion containing in... of vitamin E (68 I.U.) (as d-alpha tocopheryl acetate). (2) Sponsor. See No. 000061 in §...

  11. 21 CFR 522.2100 - Selenium, vitamin E injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Selenium, vitamin E injection. 522.2100 Section... § 522.2100 Selenium, vitamin E injection. (a)(1) Specifications. The drug is an emulsion containing in... of vitamin E (68 I.U.) (as d-alpha tocopheryl acetate). (2) Sponsor. See No. 000061 in §...

  12. 21 CFR 522.2100 - Selenium, vitamin E injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Selenium, vitamin E injection. 522.2100 Section... § 522.2100 Selenium, vitamin E injection. (a)(1) Specifications. The drug is an emulsion containing in... of vitamin E (68 I.U.) (as d-alpha tocopheryl acetate). (2) Sponsor. See No. 000061 in §...

  13. 21 CFR 522.2100 - Selenium, vitamin E injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Selenium, vitamin E injection. 522.2100 Section... § 522.2100 Selenium, vitamin E injection. (a)(1) Specifications. The drug is an emulsion containing in... of vitamin E (68 I.U.) (as d-alpha tocopheryl acetate). (2) Sponsor. See No. 000061 in §...

  14. CANOLA CROP TAKES UP SELENIUM PROVIDES BIOFUEL AND FEED SUPPLEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the Brassica plant taxi that are candidates for phytoremediation of selenium also produce products that be used for refining into biodiesel, as well as selenium enriched animal feeds. These include canola (Brassica napus) that is planted in the Westside soils of central California (Oxalis si...

  15. Selenium impacts on razorback sucker, Colorado: Colorado River III. Larvae.

    PubMed

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-06-01

    Razorback sucker (Xyrauchen texanus) larvae from adults exposed to selenium at three sites near Grand Junction, Colorado, for 9 months were used in a 30-day waterborne and dietary selenium study. Selenium concentrations in water averaged <1.6 microg/L from 24-Road, 0.9 microg/L from Horsethief, 5.5 microg/L from Adobe Creek, and 10.7 microg/L from the North Pond. Selenium in dietary items averaged 2.7 microg/g in brine shrimp, 5.6 microg/g in zooplankton from Horsethief east wetland, 20 microg/g in zooplankton from Adobe Creek, and 39 microg/g in zooplankton from North Pond. The lowest survival occurred in larvae fed zooplankton rather than brine shrimp. Survival of larvae at Adobe Creek and North Pond was lower in site water than in reference water. Survival of brood stock larvae was higher than Horsethief larvae even though they received the same water and dietary treatments. Arsenic concentrations in brine shrimp may have resulted in an antagonistic interaction with selenium and reduced adverse effects in larvae. Deformities in larvae from North Pond were similar to those reported for selenium-induced teratogenic deformities in other fish species. Selenium concentrations of 4.6 microg/g in food resulted in rapid mortality of larvae from Horsethief, Adobe Creek, and North Pond, and suggested that selenium toxicity in the Colorado River could limit recovery of this endangered fish.

  16. A global perspective of selenium deficiency and toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium is an essential nutrient that has a relatively narrow margin between ingested amounts that cause deficiency and toxicosis. Both selenium deficiency and toxicosis occur in several regions in many countries throughout the world and result in substantial losses to the livestock industry. Sel...

  17. Do genes modify the association of selenium and lipid levels?

    PubMed

    Galan-Chilet, Inmaculada; Guallar, Eliseo; Martin-Escudero, J Carlos; De Marco, Griselda; Dominguez-Lucas, Alejandro; Gonzalez-Manzano, Isabel; Lopez-Izquierdo, Raul; Redon, Josep; Chaves, F Javier; Tellez-Plaza, Maria

    2015-05-20

    The interaction of selenium, a component of antioxidant selenoproteins, with genetic variation in lipid-related pathways has not been evaluated earlier as a potential determinant of blood lipid levels. We aimed at evaluating the effects of gene-environment interactions between plasma levels of selenium and polymorphisms in lipid metabolic pathways on plasma lipid levels in a study population from Spain (N=1,315). We observed statistically significant associations between plasma selenium and lipid levels (differences in total, low-density lipoprotein [LDL]-cholesterol, and triglycerides comparing the 80th with the 20th percentiles of plasma selenium levels were, respectively, 12.0 (95% confidence interval 6.3, 17.8), 8.9 (3.7, 14.2), and 9.0 (2.9, 15.2) mg/dl). We also found statistically significant interactions at the Bonferroni-corrected significance level (p=0.0008) between selenium and rs2290201 in FABP4 for total and LDL cholesterol levels and rs1800774 in CETP for elevated LDL cholesterol. Other polymorphisms showed statistically significant differential associations of plasma selenium levels and lipids biomarkers at the nominal p-value of 0.05. Reported statistical interactions with genes involved in lipid transport and transfer provide biological support to the positive associations of selenium with lipids shown in cross-sectional studies and lead to the hypothesis that selenium and lipid levels share common biological pathways that need to be elucidated in mechanistic studies.

  18. Estimating relative bioavailability of soil lead in the mouse.

    PubMed

    Bradham, Karen D; Green, William; Hayes, Hunter; Nelson, Clay; Alava, Pradeep; Misenheimer, John; Diamond, Gary L; Thayer, William C; Thomas, David J

    2016-01-01

    Lead (Pb) in soil is an important exposure source for children. Thus, determining bioavailability of Pb in soil is critical in evaluating risk and selecting appropriate strategies to minimize exposure. A mouse model was developed to estimate relative bioavailability of Pb in NIST SRM 2710a (Montana 1 Soil). Based on Pb levels in tissues, the mean relative bioavailability of this metal in this soil was 0.5. Estimates of relative bioavailabilities derived from mouse compared favorably with those obtained in juvenile swine. The mouse model is thus an efficient and inexpensive method to obtain estimates of relative bioavailability of soil Pb.

  19. Higher selenium status is associated with adverse blood lipid profile in British adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent findings have raised concern about possible associations of high selenium exposure with diabetes and hyperlipidemia in the US, a population with high selenium status. In the UK, a population with lower selenium status, there is little data on the association of selenium status with cardio-met...

  20. The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems.

    PubMed

    Pettine, Maurizio; Gennari, Francesca; Campanella, Luigi

    2013-01-01

    Abiotic processes able to reduce oxidized Se species may have a strong influence on the environmental behavior of selenium since Se toxicity, bioavailability and mobility follow the order Se(-II)affecting its speciation and environmental behavior. The rates of the reduction of Se(IV) by ascorbic acid (C(6)H(8)O(6)=H(2)A) were measured in NaCl and NaClO(4) solutions with 1 μM Se(IV) and 100-1000 μM H(2)A as a function of pH, temperature and ionic strength and in the presence of possible interfering metals. The rates of the reaction decreased abruptly with increasing of pH in the range 2-5.5, while slowly at lower pH. The rates showed a small influence of temperature in the range 10-40°C and were independent of ionic strength from 0.01 M to 1M. The values of the second-order rate constant (k) calculated from the values of k(1)/[H(2)A](T) can be determined from the equation: log k = -0.92 × pH - 3368.4/T + 0.24 × I(0.5) + 16.94 for the pH range 2-5.5 (σ=±0.23), from 10 to 40 °C and from 0.01 to 1M ionic strength. The effect of pH and ionic strength on the reaction suggests that the second-order rate expression over the entire pH range investigated can be determined from (H(2)A=C(6)H(8)O(6); HA=C(6)H(7)O(6)(-); H(2)B=H(2)SeO(3); HB=HSeO(3)(-)) [formula, see text] where K(HA), K(A), K(HB), K(B) are the dissociation constants of selenous acid and ascorbic acid, k(H2A-H2B)=5577±78 and k(H2A-HB)=812±102 M(-1)h(-1). The presence of Cu(II), which is a strong catalyzer for the oxidation of H(2)A, decreases the rates of Se(IV) reduction by H(2)A in oxygenated waters. Mn(IV) causes an oxidation of Se(IV) to Se(VI) at high Mn(IV)/H(2)A molar ratios (>0.3), while does not affect