Science.gov

Sample records for affects skin temperature

  1. Procedure of rectal temperature measurement affects brain, muscle, skin and body temperatures and modulates the effects of intravenous cocaine

    PubMed Central

    Bae, David D.; Brown, P. Leon; Kiyatkin, Eugene A.

    2007-01-01

    Rectal probe thermometry is commonly used to measure body core temperature in rodents because of its ease of use. Although previous studies suggest that rectal measurement is stressful and results in long-lasting elevations in body temperatures, we evaluated how this procedure affects brain, muscle, skin and core temperatures measured with chronically implanted thermocouple electrodes in rats. Our data suggest that the procedure of rectal measurement results in powerful locomotor activation, rapid and strong increases in brain, muscle, and deep body temperatures, as well as a biphasic, down-up fluctuation in skin temperature, matching the response pattern observed during tail-pinch, a representative stressful procedure. This response, moreover, did not habituate after repeated day-to-day testing. Repeated rectal probe insertions also modified temperature responses induced by intravenous cocaine. Under quiet resting conditions, cocaine moderately increased brain, muscle and deep body temperatures. However, during repeated rectal measurements, which increased temperatures, cocaine induced both hyperthermic and hypothermic responses. Direct comparisons revealed that body temperatures measured by a rectal probe are typically lower (∼0.6°C) and more variable than body temperatures recorded by chronically implanted electrodes; the difference is smaller at low and greater at high basal temperatures. Because of this difference and temperature increases induced by the rectal probe per se, cocaine had no significant effect on rectal temperatures compared to control animals exposed to repeated rectal probes. Therefore, although rectal temperature measurements provide a decent correlation with directly measured deep body temperatures, the arousing influence of this procedure may drastically modulate the effects of other arousing stimuli and drugs. PMID:17466279

  2. Environment and activity affect skin temperature in breeding adult male elephant seals (Mirounga angustirostris).

    PubMed

    Norris, A L; Houser, D S; Crocker, D E

    2010-12-15

    The large body size and high rates of metabolic heat production associated with male mating success in polygynous systems creates potential thermoregulatory challenges for species breeding in warm climates. This is especially true for marine predators carrying large blubber reserves intended for thermoregulation in cold water and fuel provision during extended fasts. Thermographic images were used to measure changes in skin temperature (T(S)) in adult male northern elephant seals (Mirounga angustirostris) over the breeding season. Environmental variables, primarily ambient temperature and solar radiation, were the principal determinants of mean and maximum T(S). When controlled for environmental variables, dominance rank significantly impacted mean T(S), being highest in alpha males. Behavioral activity significantly influenced T(S) but in a counter-intuitive way, with inactive males exhibiting the highest T(S). This was likely due to strong impacts of environmental variables on the kinds of behavior exhibited, with males being less active on warm, humid days at peak solar radiation. We classified thermal windows as areas in which T(S) was one standard deviation greater than mean T(S) for the individual seal within a thermograph. Thermal features suggest active physiological thermoregulation during and after combat and significant circulatory adaptations for heat dumping, as evidenced by recurring locations of thermal windows representing widely varying T(S) values. Frequent observations of localized T(S) above 37°C, particularly after combat, suggest the production of thermoregulatory stress during breeding behavior. Our findings demonstrate the importance of environmental drivers in shaping activity patterns during breeding and provide evidence for thermoregulatory costs of successful breeding in large polygynous males. PMID:21113001

  3. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat.

    PubMed

    Cuddy, John S; Hailes, Walter S; Ruby, Brent C

    2014-07-01

    The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a "critical" core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h(-1) with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h(-1), grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m(-2) min(-1), respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences

  4. A prospective, descriptive study of hour-to-hour and day-to-day temperature variability of skin affected by chronic venous disorders.

    PubMed

    Kelechi, Teresa J; McNeil, Rebecca B

    2008-04-01

    Evidence suggests that skin temperature is elevated in the lower legs of individuals with the most severe stages of chronic venous disorder-related skin inflammation. Fifteen (15) patients (average age 67.7 years) with several chronic health conditions, chronic venous disorders, and a history of leg ulcers volunteered to participate in a prospective, descriptive, two-part (hourly and daily) study to test two hypotheses: 1) that skin temperature variations of chronically inflamed skin of lower legs affected by chronic venous disorders exhibit no differences in hour-to-hour and day-to-day rhythmic patterns associated with sleep and activities such as walking, exercise, or compression stocking use among four selected skin sites (two per leg) or between the legs of individuals with chronic venous disorders; and 2) that the difference in temperature between sites is unequal between legs. All study participants were at high risk for developing venous ulcers (CEAP stage 4 and 5). Skin temperature was obtained at sites with highest temperatures and/or areas of healed ulcers and mapped hourly over a 2-day period with a data logger and daily for 30 days with an infrared thermometer. No consistent, visually detectable effects due to caffeine use, eating, activity, or other variables assessed were found; only sleeping resulted in a consistent increase in skin temperature. Difference in skin temperature between measurement sites was found to be dependent on the leg on which the sites were located (P=0.1127). Because skin temperature variability could not be explained by the variables assessed, a temperature change could suggest the presence of a pathological process such as an infection or increased inflammation. Future studies to determine whether variability of skin temperature over sites affected by chronic venous disorders heralds further skin impairment are warranted. PMID:18480503

  5. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  6. Skin temperatures generated following plaster splint application.

    PubMed

    Lindeque, Bennie G P; Shuler, Franklin D; Bates, Christopher M

    2013-05-01

    Heat is generated during the exothermic reaction associated with plaster splint application. The amount of heat generated is affected by the plaster thickness, dipping water temperature, and extremity elevation method. The authors assessed the effect of these variables on skin and plaster temperatures. Short-leg posterior splints were applied to noninjured extremities on a volunteer using 2 protocols. Following splint application, the splinted leg was elevated in 4 ways: on plastic-covered urethane pillows in cotton pillowcases, on cotton blankets, on ice packs (short-term cryotherapy) placed on top of cotton blankets, or with heel elevation to promote free air circulation. Skin and plaster temperatures were monitored at 1-minute intervals. The maximum skin temperature generated and the average time that skin temperature was 40 °C or higher were recorded. PMID:23672893

  7. Skin rubdown with a dry towel, 'kanpu-masatsu' is an aerobic exercise affecting body temperature, energy production, and the immune and autonomic nervous systems.

    PubMed

    Watanabe, Mayumi; Takano, Osamu; Tomiyama, Chikako; Matsumoto, Hiroaki; Kobayashi, Takahiro; Urahigashi, Nobuatsu; Urahigashi, Nobuatsu; Abo, Toru

    2012-01-01

    Skin rubdown using a dry towel (SRDT) to scrub the whole body is a traditional therapy for health promotion. To investigate its mechanism, 24 healthy male volunteers were studied. Body temperature, pulse rate, red blood cells (RBCs), serum levels of catecholamines and cortisol, blood gases (PO(2), sO(2), PCO(2) and pH), lactate and glucose, and the ratio and number of white blood cells (WBCs) were assessed before and after SRDT. After SRDT, pulse rate and body temperature were increased. PO(2), sO(2) and pH were also increased and there was no Rouleaux formation by RBCs. Lactate level tended to increase, whereas that of glucose did not. Adrenaline and noradrenaline levels increased, indicating sympathetic nerve (SN) dominance with increase in granulocytes. WBC number and ratio were divided into two groups according to granulocyte ratio (≤ or < 60%) before SRDT: a normal group and a SN group. Only in the SN group did the granulocyte ratio decrease and the lymphocyte ratio and number increase after SRDT. It is suggested that SRDT is a mild aerobic, systemic exercise that might affect the immune system via the autonomic nervous system. PMID:22975635

  8. Skin Temperature Recording with Phosphors

    PubMed Central

    Lawson, Ray N.; Alt, Leslie L.

    1965-01-01

    New knowledge of temperature irregularities associated with various disease states has resulted in increasing interest in the recording of heat radiation from the human body. Infrared radiation from the skin is a surface phenomenon and the amount of such radiation increases with temperature. Previous recording techniques have been not only crude but difficult and expensive. An unconventional thermal imaging system is described which gives superior temperature patterns and is also simpler and cheaper than any of the other available procedures. This system is based on the employment of thermally sensitive phosphors which glow when exposed to ultraviolet illumination, in inverse proportion to the underlying temperature. The thermal image can be directly observed or more critically analyzed and photographed on a simple closed-circuit television monitor. ImagesFig. 3Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14270208

  9. Treated-skin temperature regularities revealed by IR thermography

    NASA Astrophysics Data System (ADS)

    Vainer, Boris G.

    2001-03-01

    Experimental results disclosing temperature change of human skin affected by various unnatural factors are presented in detail. Thermograms are obtained with the IR thermograph containing high performance InAs CID FPA-based photosensitive unit. Using logarithmic scale of time, evolution of skin temperature after moistening, spirit sponging, and olive oil lubrication is investigated. A comparative analysis of the resulting effects of treatments including alpha-hydroxy acid, cosmetic regenerating cream, spirit, and water, is made. Quantitative distinctions between skin regions characterized by ordinary, and depleted blood supply, including areas located directly above surface main vessels, are revealed. Strongly logarithmic time- dependence of a skin temperature is discovered when the skin is cooled down after its preliminary heating with a hot wax. Non-monotonic change of a local temperature during electrically active procedure is described. Low level light therapy equipment is also applied. A special role of the temperature of nose is discussed.

  10. Turbine vane with high temperature capable skins

    DOEpatents

    Morrison, Jay A.

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  11. Skin Temperature Biofeedback in Children and Adults.

    ERIC Educational Resources Information Center

    Suter, Steve; Loughry-Machado, Glenna

    1981-01-01

    Skin temperature biofeedback performance was studied in 38 6- to 10-year-old children and 38 of their parents across two sessions of audio biofeedback segments in which participants alternately attempted hand-warming and hand-cooling. Children were superior to adults in controlling skin temperature in the presence of biofeedback. (Author/DB)

  12. Low skin temperatures produced by new skin refrigerants.

    PubMed

    Strick, R A; Moy, R L

    1985-12-01

    Temperatures produced by Cryosthesia -30 degrees C, Cryosthesia -60 degrees C, and Frigiderm were measured in minipigs. Cryosthesia -60 degrees C and Cryosthesia -30 degrees C were both found to rapidly lower skin temperatures to levels that have been shown to cause cell injury, necrosis, and loss of melanocytes. Use of these agents requires extreme caution in dermabrasion. PMID:3905895

  13. Breaching the skin barrier through temperature modulations.

    PubMed

    Shahzad, Yasser; Louw, Ruaan; Gerber, Minja; du Plessis, Jeanetta

    2015-03-28

    The impermeability of the stratum corneum often hinders the transport of molecules across the skin. Temperature modulations in the skin and the application of local heat both have the potential of circumventing this problem temporarily and reversibly and when applied, may aid in enhancing drug diffusion through the skin. A controlled and precise application of heat has the ability to create a cascade of events in the skin and thus aids in facilitating a faster movement of molecules into and across the skin. Possible mechanisms of enhancing drug permeation include: a) increase in drug diffusivity in the vehicle and/or in the skin, b) increase in partitioning and diffusion, c) disturbance in the lipid structure of the stratum corneum, and d) increased local blood flow. These mechanisms may operate individually or concurrently. The creation of micropores or channels in response to exposure to very high heat energy for a fraction of time is another technique that can facilitate the transport, known as thermal ablation. These micropores then serve as channels from where drug molecules can escape from formulations into the skin at a much faster rate than through passive diffusion. This review, therefore, summarises the effects that temperature modulations may have on the permeability of the skin. Physical techniques of heat induced skin ablation, such as chemical heating, thermoporation, radiofrequency induced thermal ablation, and laser induced thermal ablation are also presented in this review. PMID:25616160

  14. Skin and bulk temperature difference at Lake Tahoe: A case study on lake skin effect

    NASA Astrophysics Data System (ADS)

    Wilson, R. Chris; Hook, Simon J.; Schneider, Philipp; Schladow, S. Geoffrey

    2013-09-01

    water, infrared radiometers on satellites measure radiation leaving from the surface skin layer and therefore the retrieved temperature is representative of the skin layer. This is slightly different from the bulk layer deeper in the water where various floating thermometers take temperature measurements to validate satellite measurements. The difference between the bulk and skin temperature (skin effect) must be understood to properly validate schemes that use surface skin temperature to infer bulk temperatures. Further skin temperatures retrieved over inland waters may show different patterns to those retrieved over oceans due to differences in conditions such as wind speed, aerosols, and elevation. We have analyzed the differences between the skin and bulk temperatures at four permanent monitoring stations (buoys) located on Lake Tahoe since 1999 and compared the results with similar studies over the ocean typically obtained from boat cruises. Skin effect distributions were found to be consistent across the buoys; however, the diurnal behavior of the skin effect was slightly different and shown to be related to wind speed measured at an individual buoy. When wind speed was less than 2 m s-1, the skin temperature osclillated and greatly increased the uncertainty in the skin effect reported over Lake Tahoe. When downwelling sky radiation was increased from clouds or high humidity, this led to nighttime skin temperatures that were warmer than bulk temperatures by as much as 0.5 K. The size of the warm skin effect is larger than other ocean studies that observed warm nighttime skin values around 0.1 K. The nighttime skin effect was seen to be more consistent with a smaller standard deviation compared to the daytime skin effect. The nighttime skin behavior had a mean and standard deviation that ranged between 0.3 and 0.5 K and between 0.3 and 0.4 K, respectively. In contrast, daytime skin effect was strongly influenced by direct solar illumination and typically had a

  15. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  16. Evaluation of skin temperature over carotid artery for temperature monitoring in comparison to nasopharyngeal temperature in adults under general anesthesia

    PubMed Central

    Selvaraj, Venkatesh; Gnanaprakasam, Pughal Vendan

    2016-01-01

    Background: Thermoregulation is markedly affected in patients undergoing surgical procedures under anesthesia. Monitoring of temperature is very important during such conditions. Skin temperature is one of the easy and noninvasive ways of temperature monitoring. Common skin temperature monitoring sites are unreliable and did not correlate to the core temperature measurement. Aim: To compare and study the correlation of skin temperature over carotid artery in the neck to that of simultaneously measured nasopharyngeal temperature in adult patients undergoing surgical procedures under general anesthesia. Settings and Design: Prospective double-blinded study in a Tertiary Care Center. Materials and Methods: Ninety-seven consecutive American Society of Anesthesiologists I–II patients of age 18–40 years posted for elective surgical procedures under general anesthesia were included. Two temperature sites are monitored: The skin temperature over the carotid artery in the neck with a skin temperature probe T (skin-carotid) and the nasopharyngeal temperature T (naso) with another nasopharyngeal probe. The temperature readings are taken at 0, 15, 30, 45, and 60 min after induction of general anesthesia. Statistical Analysis: Paired t-test, Pearson correlation and Bland–Altman analysis for the rate of agreement. Results: The skin over the carotid artery in the neck showed statistically significant lower values than simultaneously measured nasopharyngeal temperature. This comparison is done with paired t-test at P< 0.05 significance. Bland–Altman plots showed good agreement between the two sites of temperature measurement. Conclusion: This study has shown that the skin temperature over the carotid artery in the neck was strongly correlated to the nasopharyngeal temperature in adult patients undergoing surgical procedures under general anesthesia. PMID:27212763

  17. Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature

    NASA Technical Reports Server (NTRS)

    Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.

    1974-01-01

    A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.

  18. Skin-light interaction of three main chromofores in skin affected by Port Wine Stain

    NASA Astrophysics Data System (ADS)

    Mújica Ascencio, S.; Velázquez González, J. S.; Álvarez Chávez, J. A.

    2013-11-01

    In this paper, simulation and mathematical analysis of the absorption, dispersion and dynamics of laser light generated at 690nm and its interaction with skin affected by the Port Wine Stain is presented. The absorption coefficient and penetration depth of water, hemoglobin and oxy-hemoglobin, as key chromophores are calculated. A suitable wavelength for possible treatment on Port Wine Stain located in the skin layers such as Dermis and Hypodermis is determined. The presentation will include a full fiber laser design description, detailed skin affectation explanation and preliminary results.

  19. Nerve conduction studies in upper extremities: skin temperature corrections.

    PubMed

    Halar, E M; DeLisa, J A; Soine, T L

    1983-09-01

    The relationship of skin to near nerve (NN) temperature and to nerve conduction velocity (NCV) and distal latency (DL) was studied in 34 normal adult subjects before and after cooling both upper extremities. Median and ulnar motor and sensory NCV, DL, and NN temperature were determined at ambient temperature (mean X skin temp = 33 C) and after cooling, at approximately 26, 28, and 30 C of forearm skin temperature. Skin temperatures on the volar side of the forearm, wrist, palm, and fingers and NN temperature at the forearm, midpalm, and thenar or hypothenar eminence were compared with respective NCV and DL. Results showed a significant linear correlation between skin temperature and NN temperature at corresponding sites (r2 range, 0.4-0.84; p less than 0.005). Furthermore, both skin and NN temperatures correlated significantly with respective NCV and DL. Midline wrist skin temperature showed the best correlation to NCV and DL. Median motor and sensory NCV were altered 1.5 and 1.4m/sec/C degree and their DL 0.2 msec/C degree of wrist skin temperature change, respectively. Ulnar motor and sensory NCV were changed 2.1 and 1.6m/sec/C degree respectively, and 0.2 msec/C degree wrist temperature for motor and sensory DL. Average ambient skin temperature at the wrist (33 C) was used as a standard skin temperature in the temperature correction formula: NCV or DL(temp corrected) = CF(Tst degree - Tm degree) + obtained NCV or DL, where Tst = 33 C for wrist, Tm = the measured skin temperature, and CF = correction factor of tested nerve. Use of temperature correction formula for NCV and DL is suggested in patients with changed wrist skin temperature outside 29.6-36.4C temperature range. PMID:6615178

  20. The ocean skin temperature distribution and the bulk-skin temperature difference

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Phadnis, K.; Atmane, M.; Zappa, C.; Loewen, M.; Asher, B.

    2008-12-01

    An experiment in a wind-wave flume was conducted to investigate the relationship between the bulk-skin temperature difference (deltaT) and the ocean skin temperature distribution (Tskin PDF). Skin temperature was measured with an infrared radiometer, bulk temperature was measured with a profiler, and the distribution was measured with an infrared camera. The gradient flux technique was used to measure the net heat flux, which was varied by controlling the wind speed, air-water temperature difference, and relative humidity. This data set provides a unique opportunity to compare direct measurements of deltaT to the Tskin PDF. We found that the percentile of the distribution of measured skin temperatures that corresponded to the measured sub-skin bulk temperature was in the 99.8th or higher percentile for 18 out of 21 cases and higher than the 99.9th percentile when deltaT > 0.15 K. This result shows that the bulk temperature corresponds to the maximum value in the Tskin PDF. We found that the analytical expression for fitting the distribution developed by Garbe et al. [JGR, 2004] was successfully only when the distribution was truncated at the 99.9th percentile, removing the warmest temperatures. However, because the measured bulk temperature (Tbulk) was found to correspond to these same warmest temperatures, especially when deltaT > 0.15 K, our results demonstrate that the method of Garbe et al. [2004] underestimates Tbulk and therefore deltaT. This conclusion was supported by comparing deltaT values from the GasEx01 cruise reported by Garbe et al. [2004] with deltaT from concurrent, direct measurements of Tskin and Tbulk The comparison showed that deltaT from the PDF fitting technique consistently underestimated the measured deltaT by an average factor of 5. We have shown that the skin layer is completely renewed by near-surface turbulence, which is a fundamental assumption of surface renewal theory. Paradoxically, we also have shown that a technique based on a

  1. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  2. Elasticity of vesicles affects hairless mouse skin structure and permeability.

    PubMed

    van den Bergh, B A; Bouwstra, J A; Junginger, H E; Wertz, P W

    1999-12-01

    One of the possibilities for increasing the penetration rate of drugs through the skin is the use of vesicular systems. Currently, special attention is paid to the elastic properties of liquid-state vesicles, which are supposed to have superior properties compared to gel-state vesicles with respect to skin interactions. In this study, the effects of vesicles on hairless mouse skin, both in vivo and in vitro, were studied in relation to the composition of vesicles. The interactions of elastic vesicles containing the single chain surfactant octaoxyethylene laurate-ester (PEG-8-L) and sucrose laurate-ester (L-595) with hairless mouse skin were studied, in vivo, after non-occlusive application for 1, 3 and 6 h. The skin ultrastructure was examined by ruthenium tetroxide electron microscopy (TEM) and histology. The extent, to which vesicle constituents penetrated into the stratum corneum, was quantified by thin layer chromatography (TLC). The interactions of the elastic vesicles containing PEG-8-L and L-595 surfactants were compared with those observed after treatment with rigid vesicles containing the surfactant sucrose stearate-ester (Wasag-7). Furthermore, skin permeability experiments were carried out to investigate the effect of treatment with PEG-8-L micelles, elastic vesicles (containing PEG-8-L and L-595 surfactants) or rigid Wasag-7 vesicles on the 3H(2)O transport through hairless mouse skin, in vitro, after non-occlusive application. Treatment of hairless mouse skin with the elastic vesicles affected the ultrastructure of the stratum corneum: distinct regions with lamellar stacks derived from the vesicles were observed in intercellular spaces of the stratum corneum. These stacks disrupted the organization of skin bilayers leading to an increased skin permeability, whereas no changes in the ultrastructure of the underlying viable epidermis were observed. Treatment with rigid Wasag-7 vesicles did not affect the skin ultrastructure or skin permeability. TLC

  3. Estimation of Thermal Sensation Based on Wrist Skin Temperatures

    PubMed Central

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-01-01

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one’s thermal environment. PMID:27023538

  4. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  5. Breathable and Stretchable Temperature Sensors Inspired by Skin.

    PubMed

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  6. Breathable and Stretchable Temperature Sensors Inspired by Skin

    PubMed Central

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  7. Breathable and Stretchable Temperature Sensors Inspired by Skin

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  8. Therapeutic Magnets Do Not Affect Tissue Temperatures

    PubMed Central

    Sweeney, Kathleen B.; Ingersoll, Christopher D.; Swez, John A.

    2001-01-01

    Objective: Manufacturers of commercially available “therapeutic” magnets claim that these magnets cause physiologic thermal effects that promote tissue healing. We conducted this study to determine if skin or intramuscular temperatures differed among magnet, sham, and control treatments during 60 minutes of application to the quadriceps muscle. Design and Setting: A 3 × 3 mixed-model, factorial design with repeated measures on both independent variables was used. The first independent variable, application duration, had 3 random levels (20, 40, and 60 minutes). The second independent variable, treatment, had 3 fixed levels (magnet, sham, and control). The dependent variable was tissue temperature (°C). Measurement depth served as a control variable, with 2 levels: skin and 1 cm below the fat layer. Data were collected in a thermoneutral laboratory setting and analyzed using a repeated-measures analysis of variance. Subjects: The study included 13 healthy student volunteers (8 men, 5 women; age, 20.5 ± 0.9 years; height, 176.8 ± 10.4 cm; weight, 73.8 ± 11.8 kg; anterior thigh skinfold thickness, 16.9 ± 6.5 mm). Measurements: Temperatures were measured at 30-second intervals using surface and implantable thermocouples. Temperature data at 20, 40, and 60 minutes were used for analysis. Each subject received all 3 treatments on different days. Results: Neither skin nor intramuscular temperatures were different across the 3 treatments at any time. For both skin and intramuscular temperatures, a statistically significant but not clinically meaningful temperature increase (less than 1°C), was observed over time within treatments, but this increase was similar in all treatment groups. Conclusions: No meaningful thermal effect was observed with any treatment over time, and treatments did not differ from each other. We conclude that flexible therapeutic magnets were not effective for increasing skin or deep temperatures, contradicting one of the fundamental claims

  9. Skin temperature changes induced by strong static magnetic field exposure.

    PubMed

    Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo

    2003-09-01

    High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease. PMID:12929156

  10. Chilling temperatures affect flavor quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomatoes are harvested green in Florida and gassed with ethylene, then stored at chilling temperatures. These chilled temperatures of 12-13ºC can cause a decrease in aroma. Green fruit are more susceptible to chilling injury (CI) which manifests as a pitting of the peel through which decay organisms...

  11. Effect of skin temperature on cutaneous vasodilator response to the β-adrenergic agonist isoproterenol

    PubMed Central

    Hodges, Gary J.; Johnson, John M.

    2015-01-01

    The vascular response to local skin cooling is dependent in part on a cold-induced translocation of α2C-receptors and an increased α-adrenoreceptor function. To discover whether β-adrenergic function might contribute, we examined whether β-receptor sensitivity to the β-agonist isoproterenol was affected by local skin temperature. In seven healthy volunteers, skin blood flow was measured from the forearm by laser-Doppler flowmetry and blood pressure was measured by finger photoplethysmography. Data were expressed as cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial blood pressure). Pharmacological agents were administered via intradermal microdialysis. We prepared four skin sites: one site was maintained at a thermoneutral temperature of 34°C (32 ± 10%CVCmax) one site was heated to 39°C (38 ± 11%CVCmax); and two sites were cooled, one to 29°C (22 ± 7%CVCmax) and the other 24°C (16 ± 4%CVCmax). After 20 min at these temperatures to allow stabilization of skin blood flow, isoproterenol was perfused in concentrations of 10, 30, 100, and 300 μM. Each concentration was perfused for 15 min. Relative to the CVC responses to isoproterenol at the thermoneutral skin temperature (34°C) (+21 ± 10%max), low skin temperatures reduced (at 29°C) (+17 ± 6%max) or abolished (at 24°C) (+1 ± 5%max) the vasodilator response, and warm (39°C) skin temperatures enhanced the vasodilator response (+40 ± 9%max) to isoproterenol. These data indicate that β-adrenergic function was influenced by local skin temperature. This finding raises the possibility that a part of the vasoconstrictor response to direct skin cooling could include reduced background β-receptor mediated vasodilation. PMID:25701007

  12. Using MODIS Skin Temperature to Assess Urban Heat Island Effect and Biosphere-Atmosphere-Land Interactions

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Dickinson, R.; Shepherd, J. M.

    2011-12-01

    Two surface temperatures have been used in global change studies - 2-m surface air temperature (Tair) and skin temperature (Tskin). Skin temperature provides additional new information about the Earth surface because its physical meaning and magnitude differ from Tair. We will present two examples to reveal the advantages of using Tskin in studying land-atmosphere-biosphere interactions: an urban system and a Tibetan system. Ten-years of NASA MODIS skin temperature observations reveal new features related to the urban heat island effect (UHI). For example, the UHI is evident in both daytime and nighttime instead of being a nocturnal phenomenon traditionally referred from Tair. UHI is partially due to both albedo and emissivity reduction and partially due to soil moisture modification by urban surfaces (i.e., a change in Bowen ratio). Furthermore, urban aerosols affect surface insloation, which leads to a reduction in surface skin temperature. In summary, clearly the UHI is a result of land-atmosphere-biosphere interactions. Skin temperatures also provide detailed information for remote regions that are difficult to access, in particular, the Tibetan Plateau. Tskin shows a slight increase during 2000-2010, nevertheless, such an increase is only statistically significant for summer urban regions. Different land covers have varying patterns and seasonality of skin temperature. In particular, skin temperature and vegetation index (NDVI) have close relationships for their extremes. Such extremes are also a function of season and land cover. In conclusion, skin temperature is very useful in our understanding on biosphere-land-and atmosphere interactions. Further work is needed to examine the implications of these finding for scientific research and societal applications.

  13. Effect of Acupuncture Manipulations at LI4 or LI11 on Blood Flow and Skin Temperature.

    PubMed

    Li, Weihui; Ahn, Andrew

    2016-06-01

    Acupuncture induces physiological changes, and patients have reported warm or cool sensations with "Burning Fire" (BF) or "Penetrating Cool" (PC) manipulations. This study aimed to evaluate whether these techniques had distinct effects on skin temperature and blood flow and to examine whether skin temperature correlated with blood flow. The participants were 25 healthy volunteers, each receiving acupuncture manipulations on points LI4 and LI11 bilaterally. Skin temperatures and blood flow were recorded continuously on both arms. The study found that acupuncture significantly increased skin temperature on the needling arm by 0.3514°C on average, but decreased it on the contralateral arm by 0.2201°C on average. Blood flow decreased significantly in both arms during needling (-3.4% and -5.97% for the ipsilateral and the contralateral sides, respectively), but the changes in skin temperature did not correlate with the changes in blood flow. Furthermore, these changes were not significantly different between acupuncture techniques and acupuncture points. In conclusion, acupuncture changes local skin temperature and blood flow independent of the manipulation technique. Moreover, blood flow may not be affected by the increased temperature on the needling arm. These results help to verify traditional Chinese medicine concepts and may help in establishing standards for acupuncture treatments. PMID:27342886

  14. NONINVASIVE, CONTINUOUS MEASUREMENT OF RAT TAIL SKIN TEMPERATURE BY RADIOTELEMETRY.

    EPA Science Inventory

    Tail skin temperature (Tsk) can provide a wealth of information on the thermoregulatory status of the rat. Drug- and toxic-induced changes in body temperature are often mediated by vasodilation or constriction of blood flow to the tail and Tsk can generally be used as an indica...

  15. Skin temperature oscillation model for assessing vasomotion of microcirculation

    NASA Astrophysics Data System (ADS)

    Tang, Yuan-Liang; He, Ying; Shao, Hong-Wei; Mizeva, Irina

    2015-02-01

    It has been proved that there exists a certain correlation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of human hand is presented to investigate how the blood flow oscillation in the endothelial frequency band influences fingertip skin temperature oscillations. The porosity which represents the density of micro vessels is assumed to vary periodically and is a function of the skin temperature. Finite element analysis of skin temperature for a contra lateral hand under a cooling test was conducted. Subsequently, wavelet analysis was carried out to extract the temperature oscillations of the data through the numerical analysis and experimental measurements. Furthermore, the oscillations extracted from both numerical analyses and experiments were statistically analyzed to compare the amplitude. The simulation and experimental results show that for the subjects in cardiovascular health, the skin temperature fluctuations in endothelial frequency decrease during the cooling test and increase gradually after cooling, implying that the assumed porosity variation can represent the vasomotion in the endothelial frequency band.

  16. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli.

    PubMed

    Park, Jonghwa; Kim, Marie; Lee, Youngoh; Lee, Heon Sang; Ko, Hyunhyub

    2015-10-01

    In human fingertips, the fingerprint patterns and interlocked epidermal-dermal microridges play a critical role in amplifying and transferring tactile signals to various mechanoreceptors, enabling spatiotemporal perception of various static and dynamic tactile signals. Inspired by the structure and functions of the human fingertip, we fabricated fingerprint-like patterns and interlocked microstructures in ferroelectric films, which can enhance the piezoelectric, pyroelectric, and piezoresistive sensing of static and dynamic mechanothermal signals. Our flexible and microstructured ferroelectric skins can detect and discriminate between multiple spatiotemporal tactile stimuli including static and dynamic pressure, vibration, and temperature with high sensitivities. As proof-of-concept demonstration, the sensors have been used for the simultaneous monitoring of pulse pressure and temperature of artery vessels, precise detection of acoustic sounds, and discrimination of various surface textures. Our microstructured ferroelectric skins may find applications in robotic skins, wearable sensors, and medical diagnostic devices. PMID:26601303

  17. Modulation of ocean skin temperature by swell waves

    NASA Astrophysics Data System (ADS)

    Jessup, A. T.; Hesany, V.

    1996-03-01

    Infrared measurements of sea surface temperature from R/P Flip in the deep ocean show that there is significant modulation of ocean skin temperature by swell waves and that the wind plays a dominant role in the process. The squared coherence and the magnitude of the transfer function between the skin temperature and surface displacement respond to the wind speed, while its phase is determined by the direction of the wind relative to the swell. When the swell and wind are in the same direction, the transfer function phase indicates that the maximum skin temperature occurs on the forward face, which, in this case, is also the downwind side. Remarkably, the phase changes by roughly 180° when the wind direction reverses from going with the swell to going against it, so that the maximum switches to the rear face, which is again downwind. The peak-to-peak modulation T0 is found to be correlated with the bulk-skin temperature difference ΔT. Furthermore, T0 is of the same order as ΔT, suggesting that small-scale wave breaking due to longwave/shortwave interaction may dominate the phenomenon.

  18. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    PubMed

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P < 0.01). In conclusion, sodium oxybate administration resulted in a partial normalisation of the skin temperature profile, by increasing daytime proximal skin temperature, and by strengthening the known relationship between skin temperature and daytime sleep propensity. These changes seem to be related to the clinical improvement induced by sodium oxybate treatment. A causal relationship is not proven. PMID:25913575

  19. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    PubMed Central

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  20. The effect of skin temperature on performance during a 7.5-km cycling time trial.

    PubMed

    Levels, Koen; de Koning, Jos J; Foster, Carl; Daanen, Hein A M

    2012-09-01

    Aerobic exercise performance is seriously compromised in the heat. Possibly, a high skin temperature causes a rating of perceived exertion (RPE)-mediated decrease in exercise intensity. The purpose of this study was to determine the effect of skin temperature on power output during a 7.5-km cycling time trial. Thirteen well-trained male subjects performed a 7.5-km cycling time trial at 15°C and 50% relative humidity (CONTROL), with radiative heat stress during the time trial, and with (PRECOOL) or without (HEAT) precooling. Heat stress was applied by infrared heaters positioned in front of the cycle ergometer between 1.5 and 6.0 km. Skin, rectal, and pill temperature, power output, heart rate, and RPE were measured during the trial. Despite the lower mean skin temperature at the start of the time trial for PRECOOL compared to HEAT (-2.1 ± 0.7°C; P < 0.01) and CONTROL (-1.8 ± 0.6°C; P < 0.05), and a greater increase in mean skin temperature during the heat stress period for PRECOOL (4.5 ± 1.0°C) and HEAT (3.9 ± 0.8°C) than for CONTROL (-0.3 ± 0.6°C; P < 0.01), no differences in power output were found between HEAT (273 ± 45 W) and CONTROL (284 ± 43 W; P = 0.11) and between HEAT and PRECOOL (266 ± 50 W; P = 0.47). Power output during the time trial was greater for CONTROL than for PRECOOL (P < 0.05). Additionally, no differences were observed in core temperature measures, HR, and RPE. Skin temperature does not affect the selection and modulation of exercise intensity in a 7.5-km cycling time trial. PMID:22270485

  1. The effect of environmental humidity and temperature on skin barrier function and dermatitis.

    PubMed

    Engebretsen, K A; Johansen, J D; Kezic, S; Linneberg, A; Thyssen, J P

    2016-02-01

    Physicians are aware that climatic conditions negatively affect the skin. In particular, people living in equator far countries such as the Northern parts of Europe and North America are exposed to harsh weather during the winter and may experience dry and itchy skin, or deterioration of already existing dermatoses. We searched the literature for studies that evaluated the mechanisms behind this phenomenon. Commonly used meteorological terms such as absolute humidity, relative humidity and dew point are explained. Furthermore, we review the negative effect of low humidity, low temperatures and different seasons on the skin barrier and on the risk of dermatitis. We conclude that low humidity and low temperatures lead to a general decrease in skin barrier function and increased susceptible towards mechanical stress. Since pro-inflammatory cytokines and cortisol are released by keratinocytes, and the number of dermal mast cells increases, the skin also becomes more reactive towards skin irritants and allergens. Collectively, published data show that cold and dry weather increase the prevalence and risk of flares in patients with atopic dermatitis. PMID:26449379

  2. Effect of saddle height on skin temperature measured in different days of cycling.

    PubMed

    Priego Quesada, Jose Ignacio; Carpes, Felipe P; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2016-01-01

    Infrared thermography can be useful to explore the effects of exercise on neuromuscular function. During cycling, it could be used to investigate the effects of saddle height on thermoregulation. The aim of this study was to examine whether different cycling postures, elicited by different knee flexion angles, could influence skin temperature. Furthermore, we also determined whether the reproducibility of thermal measurements in response to cycling differed in the body regions affected or not affected by saddle height. Sixteen cyclists participated in three tests of 45 min of cycling at their individual 50 % peak power output. Each test was performed in a different knee flexion position on the bicycle (20°, 30°, 40° knee flexion when the pedal crank was at 180°). Different knee angles were obtained by changing saddle height. Skin temperatures were determined by infrared thermography before, immediately after and 10 min after the cycling test, in 16 different regions of interest (ROI) in the trunk and lower limbs. Changes in saddle height did not result in changes in skin temperature in the ROI. However, lower knee flexion elicited higher temperature in popliteus after cycling than higher flexion (p = 0.008 and ES = 0.8), and higher knee flexion elicited lower temperature variation in the tibialis anterior than intermediate knee flexion (p = 0.004 and ES = 0.8). Absolute temperatures obtained good and very good intraday reproducibility in the different measurements (ICCs between 0.44 and 0.85), but temperature variations showed lower reproducibility (ICCs between 0.11 and 0.74). Different postures assumed by the cyclist due to different saddle height did not influence temperature measurements. Skin temperature can be measured on different days with good repeatability, but temperature variations can be more sensitive to the effects of an intervention. PMID:27026901

  3. Skin temperature reveals the intensity of acute stress.

    PubMed

    Herborn, Katherine A; Graves, James L; Jerem, Paul; Evans, Neil P; Nager, Ruedi; McCafferty, Dominic J; McKeegan, Dorothy E F

    2015-12-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  4. Skin temperature reveals the intensity of acute stress

    PubMed Central

    Herborn, Katherine A.; Graves, James L.; Jerem, Paul; Evans, Neil P.; Nager, Ruedi; McCafferty, Dominic J.; McKeegan, Dorothy E.F.

    2015-01-01

    Acute stress triggers peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature in homeotherms. We tested, for the first time, whether this response has the potential to quantify stress, by exhibiting proportionality with stressor intensity. We used established behavioural and hormonal markers: activity level and corticosterone level, to validate a mild and more severe form of an acute restraint stressor in hens (Gallus gallus domesticus). We then used infrared thermography (IRT) to non-invasively collect continuous temperature measurements following exposure to these two intensities of acute handling stress. In the comb and wattle, two skin regions with a known thermoregulatory role, stressor intensity predicted the extent of initial skin cooling, and also the occurrence of a more delayed skin warming, providing two opportunities to quantify stress. With the present, cost-effective availability of IRT technology, this non-invasive and continuous method of stress assessment in unrestrained animals has the potential to become common practice in pure and applied research. PMID:26434785

  5. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  6. Brain temperature could affect neurochemical evaluations

    PubMed Central

    Kiyatkin, Eugene A

    2014-01-01

    This article demonstrates the importance of natural brain temperature fluctuations as a critical factor affecting electrochemical detection of extracellular glutamate in awake rats and proposes a viable strategy to exclude this inescapable influence, thereby increasing the reliability of electrochemical measurements of glutamate in behaving animals.

  7. [Skin temperature and lactate threshold during muscle work in sportsmen].

    PubMed

    Akimov, E B; Son'kin, V D

    2011-01-01

    The purpose of the investigation was to estimate change of a thermal condition of an organism during exhausting work (maximal aerobic test) on cycle ergometer on the basis of studying of dynamics of temperature of a forehead skin. Regularly training 20 men have taken part in the research--sportsmen of various specializations (skiers, rock-climbers, boxers, etc.). Temperature of forehead skin was registered by infrared thermovision chamber Nec TH 9100SL. These results compared with the data of measurements of heart rate, gas exchange, the lactate concentration in peripheral blood, and also with anthropometrical characteristics. It was shown that on dynamics of skin temperature at maximal work load it was possible to divide all subjects into 2 unequal groups: 1 (2/3 subjects, the majority of which trains endurance) - after temperature decrease take place its smooth increase up to refusal ofwork; 2 (1/3 subjects, concerning various sports specializations)--from the moment of the beginning of active evaporation of sweat the temperature decreases to the work termination. In group 1 lactate threshold (lactate concentration in blood--4 mm/l) corresponds to the beginning of rise in temperature after its decrease as a result of sweat evaporation. In group 2 lactate threshold was necessary on a phase of decrease in temperature at the moment of active evaporation of sweat. Distinctions between groups in structure of correlation relationship between the measured indicators are revealed, inversion of a sign ofcorrelation quotient in some cases were shown. Thus significant distinctions between groups in the level of the working capacity indicators were not revealed. All it testifies to existence possibility at least two various successful strategy of urgent adaptation of system of thermoregulation to intense muscular work. PMID:22117467

  8. Histologic and temperature alterations induced by skin refrigerants.

    PubMed

    Dzubow, L M

    1985-05-01

    The histologic alterations induced by spray refrigerants independent of and in combination with dermabrasion were studied with the use of the domestic pig as a model. Tissue injury was found to be a function of spray duration and freeze intensity. Both preabrasion freezing and postabrasion refreezing could produce damage additive to that of mechanical planing. Skin surface and intradermal temperature variations during refrigeration were recorded. The possible implications of these findings as they pertain to clinical dermabrasion are discussed. PMID:4008684

  9. Dietary water affects human skin hydration and biomechanics

    PubMed Central

    Palma, Lídia; Marques, Liliana Tavares; Bujan, Julia; Rodrigues, Luís Monteiro

    2015-01-01

    It is generally assumed that dietary water might be beneficial for the health, especially in dermatological (age preventing) terms. The present study was designed to quantify the impact of dietary water on major indicators of skin physiology. A total of 49 healthy females (mean 24.5±4.3 years) were selected and characterized in terms of their dietary daily habits, especially focused in water consumption, by a Food Frequency Questionnaire. This allowed two groups to be set – Group 1 consuming less than 3,200 mL/day (n=38), and Group 2 consuming more than 3,200 mL/day (n=11). Approximately 2 L of water were added to the daily diet of Group 2 individuals for 1 month to quantify the impact of this surplus in their skin physiology. Measurements involving epidermal superficial and deep hydration, transepidermal water loss, and several biomechanical descriptors were taken at day 0 (T0), 15 (T1), and 30 (T2) in several anatomical sites (face, upper limb, and leg). This stress test (2 L/day for 30 days) significantly modified superficial and deep skin hydration, especially in Group 1. The same impact was registered with the most relevant biomechanical descriptors. Thus, in this study, it is clear that higher water inputs in regular diet might positively impact normal skin physiology, in particular in those individuals with lower daily water consumptions. PMID:26345226

  10. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  11. Responses in acral and non-acral skin vasomotion and temperature during lowering of ambient temperature.

    PubMed

    Elstad, Maja; Vanggaard, Leif; Lossius, Astrid H; Walløe, Lars; Bergersen, Tone Kristin

    2014-10-01

    Arteriovenous anastomoses (AVA) in acral skin (palms and soles) have a huge capacity to shunt blood directly from the arteries to the superficial venous plexus of the extremities. We hypothesized that acral skin, which supplies blood to the superficial venous plexus, has a stronger influence on blood flow adjustments during cooling in thermoneutral subjects than does non-acral skin. Thirteen healthy subjects were exposed to stepwise cooling from 32 °C to 25 °C and 17 °C in a climate chamber. Laser Doppler flux and skin temperature were measured simultaneously from the left and right third finger pulp and bilateral upper arm skin. Coherence and correlation analyses were performed of short-term fluctuations at each temperature interval. The flux from finger pulps showed the synchronous spontaneous fluctuations characteristic of skin areas containing AVAs. Fluctuation frequency, amplitude and synchronicity were all higher at 25 °C than at 32 °C and 17 °C (p<0.02). Bilateral flux from the upper arm skin showed an irregular, asynchronous vasomotor pattern with small amplitudes which were independent of ambient temperature. At 32 °C, ipsilateral median flux values from the right arm (95% confidence intervals) were 492 arbitrary units (au) (417, 537) in finger pulp and 43 au (35, 60) in upper arm skin. Flux values gradually decreased in finger pulp to 246 au (109, 363) at 25 °C, before an abrupt fall occurred at a median room temperature of 24 °C, resulting in a flux value of 79 au (31, 116) at 17 °C. In the upper arm skin a gradual fall throughout the cooling period to 21 au (13, 27) at 17 °C was observed. The fact that the response of blood flow to ambient cooling is stronger in acral skin than in non-acral skin suggests that AVAs have a greater capacity to adjust blood flow in thermoneutral zone than arterioles in non-acral skin. PMID:25436967

  12. Prediction of Skin Temperature Distribution in Cosmetic Laser Surgery

    NASA Astrophysics Data System (ADS)

    Ting, Kuen; Chen, Kuen-Tasnn; Cheng, Shih-Feng; Lin, Wen-Shiung; Chang, Cheng-Ren

    2008-01-01

    The use of lasers in cosmetic surgery has increased dramatically in the past decade. To achieve minimal damage to tissues, the study of the temperature distribution of skin in laser irradiation is very important. The phenomenon of the thermal wave effect is significant due to the highly focused light energy of lasers in very a short time period. The conventional Pennes equation does not take the thermal wave effect into account, which the thermal relaxation time (τ) is neglected, so it is not sufficient to solve instantaneous heating and cooling problem. The purpose of this study is to solve the thermal wave equation to determine the realistic temperature distribution during laser surgery. The analytic solutions of the thermal wave equation are compared with those of the Pennes equation. Moreover, comparisons are made between the results of the above equations and the results of temperature measurement using an infrared thermal image instrument. The thermal wave equation could likely to predict the skin temperature distribution in cosmetic laser surgery.

  13. Registered report: measuring unconscious deception detection by skin temperature

    PubMed Central

    van ’ t Veer, Anna E.; Stel, Mariëlle; van Beest, Ilja; Gallucci, Marcello

    2014-01-01

    Findings from the deception detection literature suggest that although people are not skilled in consciously detecting a liar, they may intuit that something about the person telling a lie is off. In the current proposal, we argue that observing a liar influences the observer’s physiology even though the observer may not be consciously aware of being lied to (i.e., the observers’ direct deception judgment does not accurately differentiate between liars and truth-tellers). To test this hypothesis, participants’ finger temperature will be measured while they watch videos of persons who are either honest or dishonest about their identity. We hypothesize that skin temperature will be lower when observing a liar than when observing a truth-teller. Additionally, we test whether perceiving a liar influences finger skin temperature differently when an individual is, or is not, alerted to the possibility of deceit. We do this by varying participants’ awareness of the fact that they might be lied to. Next to measuring physiological responses to liars and truth-tellers, self-reported direct and indirect veracity judgments (i.e., trustworthiness and liking) of the target persons will be assessed. We hypothesize that indirect veracity judgments will better distinguish between liars and truth-tellers than direct veracity judgments. PMID:24904461

  14. Registered report: measuring unconscious deception detection by skin temperature.

    PubMed

    van ' T Veer, Anna E; Stel, Mariëlle; van Beest, Ilja; Gallucci, Marcello

    2014-01-01

    Findings from the deception detection literature suggest that although people are not skilled in consciously detecting a liar, they may intuit that something about the person telling a lie is off. In the current proposal, we argue that observing a liar influences the observer's physiology even though the observer may not be consciously aware of being lied to (i.e., the observers' direct deception judgment does not accurately differentiate between liars and truth-tellers). To test this hypothesis, participants' finger temperature will be measured while they watch videos of persons who are either honest or dishonest about their identity. We hypothesize that skin temperature will be lower when observing a liar than when observing a truth-teller. Additionally, we test whether perceiving a liar influences finger skin temperature differently when an individual is, or is not, alerted to the possibility of deceit. We do this by varying participants' awareness of the fact that they might be lied to. Next to measuring physiological responses to liars and truth-tellers, self-reported direct and indirect veracity judgments (i.e., trustworthiness and liking) of the target persons will be assessed. We hypothesize that indirect veracity judgments will better distinguish between liars and truth-tellers than direct veracity judgments. PMID:24904461

  15. The non-linear relationship between nerve conduction velocity and skin temperature.

    PubMed Central

    Todnem, K; Knudsen, G; Riise, T; Nyland, H; Aarli, J A

    1989-01-01

    Median motor and sensory nerves were examined in 20 healthy subjects. Superficial stimulating and recording electrodes were used, and the nerves were examined at natural skin temperature, after cooling and after heating of the arm. The conduction velocity for the fastest and slow conducting sensory fibres (temperature range 17-37 degrees C), and for the fastest conducting motor fibres (temperature range 19-38 degrees C) increased non-linearly with increase in skin temperature. Similarly, distal motor latencies increased non-linearly with decrease in skin temperature. The effect of temperature was most pronounced in the low temperature range, and change in conduction velocity per degree centigrade was reduced toward higher skin temperature. Sensory nerve response duration increased linearly with decline in skin temperature. Sensory and motor amplitude did not show any significant relation to skin temperature. PMID:2738592

  16. Beyond the colour of my skin: how skin colour affects the sense of body-ownership.

    PubMed

    Farmer, Harry; Tajadura-Jiménez, Ana; Tsakiris, Manos

    2012-09-01

    Multisensory stimulation has been shown to alter the sense of body-ownership. Given that perceived similarity between one's own body and those of others is crucial for social cognition, we investigated whether multisensory stimulation can lead participants to experience ownership over a hand of different skin colour. Results from two studies using introspective, behavioural and physiological methods show that, following synchronous visuotactile (VT) stimulation, participants can experience body-ownership over hands that seem to belong to a different racial group. Interestingly, a baseline measure of implicit racial bias did not predict whether participants would experience the RHI, but the overall strength of experienced body-ownership seemed to predict the participants' post-illusion implicit racial bias with those who experienced a stronger RHI showing a lower bias. These findings suggest that multisensory experiences can override strict ingroup/outgroup distinctions based on skin colour and point to a key role for sensory processing in social cognition. PMID:22658684

  17. Water Temperature Affects Susceptibility to Ranavirus.

    PubMed

    Brand, Mabre D; Hill, Rachel D; Brenes, Roberto; Chaney, Jordan C; Wilkes, Rebecca P; Grayfer, Leon; Miller, Debra L; Gray, Matthew J

    2016-06-01

    The occurrence of emerging infectious diseases in wildlife populations is increasing, and changes in environmental conditions have been hypothesized as a potential driver. For example, warmer ambient temperatures might favor pathogens by providing more ideal conditions for propagation or by stressing hosts. Our objective was to determine if water temperature played a role in the pathogenicity of an emerging pathogen (ranavirus) that infects ectothermic vertebrate species. We exposed larvae of four amphibian species to a Frog Virus 3 (FV3)-like ranavirus at two temperatures (10 and 25°C). We found that FV3 copies in tissues and mortality due to ranaviral disease were greater at 25°C than at 10°C for all species. In a second experiment with wood frogs (Lithobates sylvaticus), we found that a 2°C change (10 vs. 12°C) affected ranaviral disease outcomes, with greater infection and mortality at 12°C. There was evidence that 10°C stressed Cope's gray tree frog (Hyla chrysoscelis) larvae, which is a species that breeds during summer-all individuals died at this temperature, but only 10% tested positive for FV3 infection. The greater pathogenicity of FV3 at 25°C might be related to faster viral replication, which in vitro studies have reported previously. Colder temperatures also may decrease systemic infection by reducing blood circulation and the proportion of phagocytes, which are known to disseminate FV3 through the body. Collectively, our results indicate that water temperature during larval development may play a role in the emergence of ranaviruses. PMID:27283058

  18. Skin Temperature Over the Carotid Artery, an Accurate Non-invasive Estimation of Near Core Temperature

    PubMed Central

    Imani, Farsad; Karimi Rouzbahani, Hamid Reza; Goudarzi, Mehrdad; Tarrahi, Mohammad Javad; Ebrahim Soltani, Alireza

    2016-01-01

    Background: During anesthesia, continuous body temperature monitoring is essential, especially in children. Anesthesia can increase the risk of loss of body temperature by three to four times. Hypothermia in children results in increased morbidity and mortality. Since the measurement points of the core body temperature are not easily accessible, near core sites, like rectum, are used. Objectives: The purpose of this study was to measure skin temperature over the carotid artery and compare it with the rectum temperature, in order to propose a model for accurate estimation of near core body temperature. Patients and Methods: Totally, 124 patients within the age range of 2 - 6 years, undergoing elective surgery, were selected. Temperature of rectum and skin over the carotid artery was measured. Then, the patients were randomly divided into two groups (each including 62 subjects), namely modeling (MG) and validation groups (VG). First, in the modeling group, the average temperature of the rectum and skin over the carotid artery were measured separately. The appropriate model was determined, according to the significance of the model’s coefficients. The obtained model was used to predict the rectum temperature in the second group (VG group). Correlation of the predicted values with the real values (the measured rectum temperature) in the second group was investigated. Also, the difference in the average values of these two groups was examined in terms of significance. Results: In the modeling group, the average rectum and carotid temperatures were 36.47 ± 0.54°C and 35.45 ± 0.62°C, respectively. The final model was obtained, as follows: Carotid temperature × 0.561 + 16.583 = Rectum temperature. The predicted value was calculated based on the regression model and then compared with the measured rectum value, which showed no significant difference (P = 0.361). Conclusions: The present study was the first research, in which rectum temperature was compared with that

  19. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed

    Patra, VijayKumar; Byrne, Scott N; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  20. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  1. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  2. A dynamic model of circadian rhythms in rodent tail skin temperature for comparison of drug effects

    PubMed Central

    2012-01-01

    Menopause-associated thermoregulatory dysfunction can lead to symptoms such as hot flushes severely impairing quality of life of affected women. Treatment effects are often assessed by the ovariectomized rat model providing time series of tail skin temperature measurements in which circadian rhythms are a fundamental ingredient. In this work, a new statistical strategy is presented for analyzing such stochastic-dynamic data with the aim of detecting successful drugs in hot flush treatment. The circadian component is represented by a nonlinear dynamical system which is defined by the van der Pol equation and provides well-interpretable model parameters. Results regarding the statistical evaluation of these parameters are presented. PMID:22221596

  3. [Factors affecting the temperature of domestic refrigerators].

    PubMed

    Derens, E; Laguerre, O; Palagos, B

    2001-01-01

    A survey was carried out in France in 1999 in order to know the air temperature in domestic refrigerators and the factors which may effect this temperature. Temperatures were recorded at three levels (top, middle and bottom of the refrigerator compartment). A questionnaire was filled to acquire the following information: characteristic of family (number of family members, age, profession, income...), characteristic of refrigerator (trade, type, age, temperature setting, refrigerating type...) and the use condition (room temperature, near by heat source, built in, door opening frequency...). The average temperature of the 119 surveyed refrigerators was 6.6 degrees C. Descriptive analysis and multi dimensional analysis of factors effecting refrigerator temperature were carried out. The classification tree and the segmentation confirm the influence of the use condition (frequency of door opening, temperature setting, near by heat source and built in). There is no direct effect of one factor but the combination of all of them. PMID:11474586

  4. Skin Diseases: Skin Health and Skin Diseases

    MedlinePlus

    ... the sun. Photo: PhotoDisc Care for conditions from acne to wrinkles Did you know that your skin ... other skin conditions. Many skin problems, such as acne, also affect your appearance. Your skin can also ...

  5. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    SciTech Connect

    Biswal, N C; Wu, Z; Chu, J; Sun, J

    2015-06-15

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) and at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.

  6. Proteome Analysis of Human Sebaceous Follicle Infundibula Extracted from Healthy and Acne-Affected Skin

    PubMed Central

    Bek-Thomsen, Malene; Lomholt, Hans B.; Scavenius, Carsten; Enghild, Jan J.; Brüggemann, Holger

    2014-01-01

    Acne vulgaris is a very common disease of the pilosebaceous unit of the human skin. The pathological processes of acne are not fully understood. To gain further insight sebaceous follicular casts were extracted from 18 healthy and 20 acne-affected individuals by cyanoacrylate-gel biopsies and further processed for mass spectrometry analysis, aiming at a proteomic analysis of the sebaceous follicular casts. Human as well as bacterial proteins were identified. Human proteins enriched in acne and normal samples were detected, respectively. Normal follicular casts are enriched in proteins such as prohibitins and peroxiredoxins which are involved in the protection from various stresses, including reactive oxygen species. By contrast, follicular casts extracted from acne-affected skin contained proteins involved in inflammation, wound healing and tissue remodeling. Among the most distinguishing proteins were myeloperoxidase, lactotransferrin, neutrophil elastase inhibitor and surprisingly, vimentin. The most significant biological process among all acne-enriched proteins was ‘response to a bacterium’. Identified bacterial proteins were exclusively from Propionibacterium acnes. The most abundant P. acnes proteins were surface-exposed dermatan sulphate adhesins, CAMP factors, and a so far uncharacterized lipase in follicular casts extracted from normal as well as acne-affected skin. This is a first proteomic study that identified human proteins together with proteins of the skin microbiota in sebaceous follicular casts. PMID:25238151

  7. Axillary and thoracic skin temperatures poorly comparable to core body temperature circadian rhythm: results from 2 adult populations.

    PubMed

    Thomas, Karen A; Burr, Robert; Wang, Shu-Yuann; Lentz, Martha J; Shaver, Joan

    2004-01-01

    Data from 2 separate studies were used to examine the relationships of axillary or thoracic skin temperature to rectal temperature and to determine the phase relationships of the circadian rhythms of these temperatures. In study 1, axillary skin and rectal temperatures were recorded in 19 healthy women, 21 to 36 years of age. In study 2, thoracic skin and rectal temperatures were recorded in 74 healthy women, 39 to 59 years of age. In both studies, temperatures were recorded continuously for 24 h while subjects carried out normal activities. Axillary and thoracic probes were insulated purposely to prevent ambient effects. Cosinor analysis was employed to estimate circadian rhythm mesor, amplitude, and acrophase. In addition, correlations between temperatures at various measurement sites were calculated and agreement determined. The circadian timing of axillary and skin temperature did not closely approximate that of rectal temperature: the mean acrophase (clock time) for study 1 was 18:57 h for axillary temperature and 16:12 h for rectal; for study 2, it was 03:05 h for thoracic and 15:05 h for rectal. Across individual subjects, the correlations of axillary or thoracic temperatures with rectal temperatures were variable. Results do not support the use of either axillary or skin temperature as a substitute for rectal temperature in circadian rhythm research related to adult women. PMID:14737919

  8. [Comparison of formulas for calculating average skin temperature and their characteristics].

    PubMed

    Mochida, T; Shimakura, K; Yoshida, N

    1994-11-01

    In order to obtain data of skin temperatures experiments were carried out using three healthy young Japanese males. The subjects were exposed to each of the four environments with dry bulb temperatures of 15 degrees C, 19 degrees C, 25 degrees C and 33 degrees C. At each of these air temperatures, relative humidity and air movement were set at 50% and 0.15m/s respectively. The subjects wore only athletic shorts, seated on the meshed chair. Each subject was measured with thermisters continuously for one hour under these conditions to obtain twenty-nine regional skin temperature. The above experiments were made with one subject at a time in the test chamber. The data of skin temperatures observed were substituted into twenty-eight different weighting formulas for comparison. The present analysis revealed that the calculation from the 12-point and the 7-point skin area formulas by Hardy-DuBois showed approximate mean values of the twenty eight. Moreover, the values calculated from the formula by Nadel et al, which was weighted by skin area and thermal sensitivity, are similar to the values calculated by the formula of Mochida, which was weighted by skin area, heat transfer coefficients and thermal sensitivity. Furthermore, the authors verified that the area-mean weighting factor was derived from the Teichner's definition in which a limiting value of arithmetical mean of skin temperatures gave a value of average skin temperature. PMID:7880325

  9. Temperature affects Aethina tumida (Coleoptera: Nitidulidae) Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of temperature on several life history parameters of small hive beetles (SHB),Aethina tumida, were investigated under laboratory conditions. Our results showed that the development, body size and weight of SHB were dependent on temperature. Exposure of beetles to a lower (room) temperatu...

  10. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    PubMed Central

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p < 0.001). The model simulations of superficial temperature correlated with the measured skin surface temperature (r > 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  11. Dynamics of thermographic skin temperature response during squat exercise at two different speeds.

    PubMed

    Formenti, Damiano; Ludwig, Nicola; Trecroci, Athos; Gargano, Marco; Michielon, Giovanni; Caumo, Andrea; Alberti, Giampietro

    2016-07-01

    Low intensity resistance training with slow movement and tonic force generation has been shown to create blood flow restriction within muscles that may affect thermoregulation through the skin. We aimed to investigate the influence of two speeds of exercise execution on skin temperature dynamics using infrared thermography. Thirteen active males performed randomly two sessions of squat exercise (normal speed, 1s eccentric/1s concentric phase, 1s; slow speed, 5s eccentric/5s concentric phase, 5s), using ~50% of 1 maximal repetition. Thermal images of ST above muscles quadriceps were recorded at a rate of 0.05Hz before the exercise (to determine basal ST) and for 480s following the initiation of the exercise (to determine the nonsteady-state time course of ST). Results showed that ST changed more slowly during the 5s exercise (p=0.002), whereas the delta (with respect to basal) excursions were similar for the two exercises (p>0.05). In summary, our data provided a detailed nonsteady-state portrait of ST changes following squat exercises executed at two different speeds. These results lay the basis for further investigations entailing the joint use of infrared thermography and Doppler flowmetry to study the events taking place both at the skin and the muscle level during exercises executed at slow speed. PMID:27264889

  12. Effects of temperature, surfactants and skin location on the dermal penetration of haloacetonitriles and chloral hydrate.

    PubMed

    Trabaris, Maria; Laskin, Jeffrey D; Weisel, Clifford P

    2012-07-01

    Dermal exposure has been recognized as an important contributor to the total internal dose to disinfection-by-products (DBPs) in water. However, the effect of the use of surfactants, water temperature and area of the body exposed to DBPs on their dermal flux has not been characterized and was the focus of the present study using an in-vitro system. The dermal flux of mg/l concentrations of haloacetonitriles and chloral hydrate (CH), important cytotoxic DBPs, increased by approximately 50% to 170% with increasing temperature from 25 °C to 40 °C. The fluxes for the torso and dorsum of the hand were much higher than that of palm and scalp skin. An increase in flux was observed for chloroacetonitrite and dichloroacetonitrile, two less lipophilic HANs, but not for trichloroacetonitrile or CH, with the addition of 2% sodium lauryl sulfate or 2% sodium laureth sulfate, two surfactants commonly used in soaps and shampoos used in showering and bathing. Thus, factors such as temperature, surfactants and skin location affect dermal penetration and should be considered when evaluating dermal absorption. PMID:22549718

  13. Ephemeral skin-flows on talus affected by permafrost degradation (Corral del Veleta, Spain)

    NASA Astrophysics Data System (ADS)

    Tanarro, L. M.; Palacios, D.; Zamorano, J. J.; Gómez, A.

    2009-04-01

    temperature (BTS measurements, miniature temperature dataloggers) and geophysical surveys (Gómez et al., 2001, 2003). However, these methods for detecting permafrost (pending more detailed surveys) have shown that the presence of permafrost or buried ice in the slope is discontinuous. The geomorphological interpretation shows that the flows are small scale. The maximum length of the largest flow occurring during the observation period is around 50 m, and its width oscillates between 25-30 m. In general the flow only affects a layer of debris of less than 30 cm. The dislodged layer is made up of fine material and small clasts or gravel and pebble sized fragments, with a significant presence of numerous multiple flows which diverge or divide when they encounter a large block and end up forming small lobes. The interior of these is made up of fine material (clay and silt) and the lobe itself is made of small, tightly compressed fragments. Here it should also be noted that many of the flows are stopped or ended when they collide with a block of larger size, forming a series of lobes. It seems clear that many of these flows, as they are moving only a thin layer of fine material, are controlled by the presence of larger blocks which remain stable on the slope. The location of the skin flows at the base of the snowpatches in late summer seems to be the main factor which triggers their genesis. Here, as has been observed in other areas, the absence of vegetation and the abundant water delivered by the rapid nival fusion or snow melt, stronger here as this is an area with Mediterranean climate and also linked to the presence of abundant fine material, provide the conditions needed to favor the triggering of this kind of movement. However it was observed that some skin flows develop in sectors of the slope where the permafrost is absent and so their origin seems to be clearly related to the snow melt. In addition in these cases, the morphology of the flows once they are formed is not

  14. Numerical modelling of salt diapirism and the surrounding temperature field during thin-skinned extension

    NASA Astrophysics Data System (ADS)

    Thieulot, Cedric; Harms, Guido

    2016-04-01

    The occurrence of salt diapirs is strongly associated with potential geothermal and hydrocarbon energy sources. Many numerical modelling studies of diapirism have been done in the past, though very few of these in fact use geologically realistic settings and materials. Besides, only analogue and structural studies have been done on full scale diapirism during thin-skinned extension. Two-dimensional numerical modelling of this problem using a Finite Element code aims at addressing the following questions: which geometrical or material parameters affect the growth rate and shape of the diapir and how? what is the effect of this diapirism on the temperature field and surface heat flux? How does the inclusion of simple surface processes influence these observations to first order ? Our results show that, in compliance with both analogue modelling and structural geological studies, a diapir formed during thin-skinned extension undergoes three phases: reactional piercement, active piercement and passive piercement. Extension rates directly influence the total time required for the diapir to reach the surface, as well as how long the system remains in a state of reactional diapirism, which both affect the shape of the resulting diapir. Erosion efficiency is found to affect the growth rate of the diapir during its active stage and the total rising time, which affects in turn its the shape. The density contrast between the salt and the sediments also influences the growth rate during active and passive piercement. Finally, the temperature surrounding a rising diapir (especially in the region above it) is found to be heightened by a few dozens of degrees.

  15. The effect of body temperature on the hunting response of the middle finger skin temperature.

    PubMed

    Daanen, H A; Van de Linde, F J; Romet, T T; Ducharme, M B

    1997-01-01

    The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8 degree C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15 degrees C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0 degrees C). The middle finger temperature (Tfi) response was recorded, together with ear canal (Tear), rectal (Tre), and mean skin temperature (Tsk). The induced mean Tear changes were -0.34 (0.08) and +0.29 (0.03) degrees C following consumption of the cold and hot beverage, respectively. Tsk ranged from 26.7 to 34.5 degrees C during the tests. In the warm environment after a hot drink, the initial finger temperature (T(fi,base)) was 35.3 (0.4) degrees C, the minimum finger temperature during immersion (T(fi,min)) was 11.3 (0.5) degrees C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T(fi,base) was 32.1 (1.0) degrees C, T(fi,min) was 9.6 (0.3) degrees C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9) degrees C, 8.7 (0.2) degrees C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in Tear and Tsk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and Tsk. Both T(fi,min) and the maximal finger temperature during immersion were higher when the core temperature was elevated; Tsk

  16. The influence of internal and skin temperatures on active cutaneous vasodilation under different levels of exercise and ambient temperatures in humans

    NASA Astrophysics Data System (ADS)

    Demachi, Koichi; Yoshida, Tetsuya; Kume, Masashi; Tsuji, Michio; Tsuneoka, Hideyuki

    2013-07-01

    To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.

  17. Stratospheric ozone affects mesospheric temperature trends

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-01-01

    Since 1961, temperatures in the summer mesosphere have undergone a series of reversals. From 1961 to 1979 the atmospheric layer that stretches from roughly 50- to 100-kilometer altitude cooled by 0.5 K per decade. In the subsequent 2 decades the rate of cooling escalated to -3 to -5 K per decade, while the next 10 years saw a mild recovery. Though these temperature flips are seen in the observational record, they have never been reliably re-created in computer models of the middle atmosphere. Unlike the troposphere or stratosphere, for which there are extensive records, observations of mesospheric temperature are limited to point-source detections, making accurate modeling particularly important.

  18. Responses in rectal and skin temperatures to centrifugal forces in rats of different ambient temperatures

    NASA Astrophysics Data System (ADS)

    Ohara, K.; Sato, H.; Okuda, N.; Makino, Y.; Isobe, Y.

    1982-03-01

    Effects of centrifugation upon rectal (Tre) and tail skin temperatures (Ts) were studied in male Wistar rats at varying ambient temperature (Ta) using a centrifuge which was placed in a climatic chamber. Centrifugal forces of Gz of 3.0 were imposed on rats which were suspended at horizontal body position using a newly developed mesh suits holding method in the animal box placed on the rotating arm of the centrifuge. Headwards or tailwards forces were applied according to the experimental design. No significant difference of the responses was observed between the two force directions. Centrifugations imposed at different Ta of 15, 20, 25, 30 and 32.5‡C resulted in falls in Tre accompanied by rises in tail Ts at the cooler environments, while rises in Tre accompanied by falls in Ts in the warmer environments. The Ta at which the response pattern of Tre and Ts was reversed (critical ambient temperature) was 26.8±2.3 (mean and SE) and 27.9±2.8‡C, respectively. Tolerance to centrifugation was markedly increased in cooler environments than in wanner ones. It was suggested that the increased skin pressure due to centrifugation exerted some inhibitory effects upon central thermoregulatory ability.

  19. The use of infrared thermography to detect the skin temperature response to physical activity

    NASA Astrophysics Data System (ADS)

    Tanda, G.

    2015-11-01

    Physical activity has a noticeable effect on skin blood flow and temperature. The thermal regulatory and hemodynamic processes during physical activity are controlled by two conflicting mechanisms: the skin vasoconstriction induced by the blood flow demand to active muscles and the skin vasodilation required by thermoregulation to increase warm blood flow and heat conduction to the skin. The time-evolution of skin temperature during exercise can give useful information about the adaptation of the subject as a function of specific type, intensity and duration of exercise. In this paper, infrared thermography is used to investigate the thermal response of skin temperature during running exercise on treadmill for a group of seven healthy and trained runners. Two different treadmill exercises are considered: a graded load exercise and a constant load exercise; for both exercises the duration was 30 minutes. Within the limits due to the relatively small size of the sample group, results typically indicate a fall in skin temperature during the initial stage of running exercise. As the exercise progresses, the dynamics of the skin temperature response depends on the type of exercise (graded versus constant load) and probably on the level of training of the subject.

  20. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion.

    PubMed

    Khoshnevis, Sepideh; Craik, Natalie K; Matthew Brothers, R; Diller, Kenneth R

    2016-03-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC-skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy. PMID:26632263

  1. Comparison of techniques for the measurement of skin temperature during exercise in a hot, humid environment.

    PubMed

    McFarlin, Bk; Venable, As; Williams, Rr; Jackson, Aw

    2015-03-01

    Exercising or working in a hot, humid environment can results in the onset of heat-related illness when an individual's temperature is not carefully monitored. The purpose of the present study was to compare three techniques (data loggers, thermal imaging, and wired electrodes) for the measurement of peripheral (bicep) and central (abdominal) skin temperature. Young men and women (N = 30) were recruited to complete the present study. The three skin temperature measurements were made at 0 and every 10-min during 40-min (60% VO2max) of cycling in a hot (39±2°C), humid (45±5% RH) environment. Data was statistically analyzed using the Bland-Altman method and correlation analysis. For abdominal skin temperature, the Bland-Altman limits of agreement indicated that data loggers (1.5) were a better index of wired than was thermal imaging (3.5), For the bicep skin temperature the limits of agreement was similar between data loggers (1.9) and thermal (1.9), suggesting the both were suitable measurements. We also found that when skin temperature exceeded 35°C, we observed progressively better prediction between data loggers, thermal imaging, and wired skin sensors. This report describes the potential for the use of data loggers and thermal imaging to be used as alternative measures of skin temperature in exercising, human subjects. PMID:25729144

  2. Comparison of techniques for the measurement of skin temperature during exercise in a hot, humid environment

    PubMed Central

    Venable, AS; Williams, RR; Jackson, AW

    2014-01-01

    Exercising or working in a hot, humid environment can results in the onset of heat-related illness when an individual's temperature is not carefully monitored. The purpose of the present study was to compare three techniques (data loggers, thermal imaging, and wired electrodes) for the measurement of peripheral (bicep) and central (abdominal) skin temperature. Young men and women (N = 30) were recruited to complete the present study. The three skin temperature measurements were made at 0 and every 10-min during 40-min (60% VO2max) of cycling in a hot (39±2°C), humid (45±5% RH) environment. Data was statistically analyzed using the Bland-Altman method and correlation analysis. For abdominal skin temperature, the Bland-Altman limits of agreement indicated that data loggers (1.5) were a better index of wired than was thermal imaging (3.5), For the bicep skin temperature the limits of agreement was similar between data loggers (1.9) and thermal (1.9), suggesting the both were suitable measurements. We also found that when skin temperature exceeded 35°C, we observed progressively better prediction between data loggers, thermal imaging, and wired skin sensors. This report describes the potential for the use of data loggers and thermal imaging to be used as alternative measures of skin temperature in exercising, human subjects. PMID:25729144

  3. Low temperature alteration processes affecting ultramafic bodies

    USGS Publications Warehouse

    Nesbitt, H.W.; Bricker, O.P.

    1978-01-01

    At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

  4. Research of temperature field measurement using a flexible temperature sensor array for robot sensing skin

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Wu, Siyu; Li, Ruiqi; Yang, Qinghua; Zhang, Yugang; Liu, Caixia

    2013-10-01

    This paper presents a novel temperature sensor array by dispensing conductive composites on a flexible printed circuit board which is able to acquire the ambient temperature. The flexible temperature sensor array was fabricated by using carbon fiber-filled silicon rubber based composites on a flexible polyimide circuit board, which can both ensure their high flexibility. It found that CF with 12 wt% could be served as the best conductive filler for higher temperature sensitivity and better stability comparing with some other proportion for dynamic range from 30&° to 90°. The preparation of the temperature sensitive material has also been described in detail. Connecting the flexible sensor array with a data acquisition card and a personal computer (PC), some heat sources with different shapes were loaded on the sensor array; the detected results were shown in the interface by LabVIEW software. The measured temperature contours are in good agreement with the shapes and amplitudes of different heat sources. Furthermore, in consideration of the heat dissipation in the air, the relationship between the resistance and the distance of heat sources with sensor array was also detected to verify the accuracy of the sensor array, which is also a preparation for our future work. Experimental results demonstrate the effectiveness and accuracy of the developed flexible sensor array, and it can be used as humanoid artificial skin for sensation system of robots.

  5. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  6. Effects of incubation temperatures and trace mineral sources on chicken live performance and footpad skin development.

    PubMed

    Da Costa, M J; Oviedo-Rondón, E O; Wineland, M J; Claassen, K; Osborne, J

    2016-04-01

    One experiment was conducted to evaluate the effects of two incubation temperature profiles (TEM) and two trace mineral (TM) sources with their inclusion levels on performance and footpad skin development of Ross 708 chickens. A total of 1,000 eggs from 29-wk-old breeders were incubated following two TEM profiles: a standard (S) eggshell temperature (37.8±0.2°C) for 21 d of incubation and an early-low late-high (LH) TEM. The second profile had low (37.2±0.2°C) temperature for the first 3 d, and S until the last 3 d when eggshell temperature was 39.2±0.2°C. At hatch, 15 male and 15 female chicks from each TEM were selected, and footpads sampled. Additionally, 168 males per TEM were placed in 24 battery cages with 7 chickens each. The 48 cages were assigned to two TM dietary treatments: one with inorganic (ITM) sources of Zn (120 ppm), Cu (10 ppm), and Mn (120 ppm) and the other with chelated (CTM) mineral sources using lower inclusion levels of Zn (32 ppm), Cu (8 ppm), and Mn (32 ppm). At 7 and 21 d, BW gain and feed conversion ratio (FCR) were obtained and chicks sampled for footpads. Histological analysis assessed thickness and area ofstratus corneum(SC), epidermis, and dermis. Data were analyzed as a completely randomized block design in a 2×2 factorial arrangement of treatments with TEM and sex as main factors for hatch data and TEM and TM diets for 7 and 21 d data. The LH chicks were heavier than S chicks at hatch, but had more residual yolk. However, S TEM male chickens were heavier at 7 and 21 d. The S TEM had better FCR than LH TEM.Papillaedermis parameters at hatch were higher in the S TEM. At 7 d, SC height and area were increased by the S TEM. At 21 d CTM increased dermis height and area. In conclusion, TEM affected footpad skin development and broiler performance. Replacing ITM with reduced levels of CTM increased dermis development without affecting live performance or other skin layers. PMID:26908890

  7. [Bathing in bed accelerates the recovery of skin temperature after ethanol-loading].

    PubMed

    Okumura, Y; Asakawa, K; Ogasahara, Y; Muramatu, A; Wada, S; Tamaru, S; Nagai, M

    1994-01-01

    Bathing in bed (BB) is an essential nursing technique applied to patients with restricted physical abilities. The aim of this technique is to keep the functions of the skin as an external barrier and to prevent the patients from infection and decubitus. However, the effect of BB on the blood circulation of the skin has not yet been identified, and the data observed are controversial. We have evaluated the effects of BB on the blood circulation of the skin by use of thermography. BB was applied on the right side of the back (RB) in 6 healthy female subjects who exposed both sides of their back (RB and LB) at room temperature. Ethanol was applied on the 5 x 5 cm area of RB and LB after BB, and recovery of the skin temperature was observed. After BB, the average temperature of RB was significantly lower than that of LB. This shows that BB decreases temperature of the skin exposed in the air probably due to the supply of water by washcloth. Recovery of the skin temperature after the ethanol-loading was accelerated on RB. This indicates that BB facilitates the response of the blood vessels in the skin. PMID:8129834

  8. Some Physical and Computational Issues in Land Surface Data Assimilation of Satellite Skin Temperatures

    NASA Astrophysics Data System (ADS)

    Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour

    2012-03-01

    Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.

  9. The use of thermal imaging to monitoring skin temperature during cryotherapy: A systematic review

    NASA Astrophysics Data System (ADS)

    Matos, Filipe; Neves, Eduardo Borba; Norte, Marco; Rosa, Claudio; Reis, Victor Machado; Vilaça-Alves, José

    2015-11-01

    Cryotherapy has been applied on clinical injuries and as a method for exercise recovery. It is aimed to reduce edema, nervous conduction velocity, and tissue metabolism, as well as to accelerate the recovery process of the muscle injury induced by exercise. Objective: This review aim to investigate the applicability of thermal imaging as a method for monitoring skin temperature during cryotherapy. Method: Search the Web of Science database using the terms "Cryotherapy", "Thermography", "Thermal Image" and "Cooling". Results: Nineteen studies met the inclusion criteria and pass the PEDro scale quality evaluation. Evidence support the use of thermal imaging as a method for monitoring the skin temperature during cryotherapy, and it is superior to other contact methods and subjective methods of assessing skin temperature. Conclusion: Thermography seems to be an efficient, trustworthy and secure method in order to monitoring skin temperature during cryotherapy application. Evidence supports the use of thermography in detriment of contact methods as well as other subjective ones.

  10. Broiler skin color as affected by organic acids: influence of concentration and method of application.

    PubMed

    Bilgili, S F; Conner, D E; Pinion, J L; Tamblyn, K C

    1998-05-01

    Color of broiler skin was evaluated after exposure to organic acids under various concentrations and simulated potential plant application conditions. Breast skin from chilled broiler carcasses was treated with acetic (AA), citric (CA), lactic (LA), malic (ML), mandelic (MN), propionic (PA), or tartaric (TA) acids at 0.5, 1, 2, 4, and 6% concentrations. Each acid and concentration was applied in simulated dip (23 C for 15 s), scalder (50 C for 2 min), and immersion chiller (1 C for 60 min) conditions. A tap water control was included with each application method. Objective color values of L* (lightness), a* (redness), and b* (yellowness) were measured before and after the treatments to calculate color differentials under a factorial arrangement of organic acids and concentrations. Skin lightness increased (P < 0.01) in simulated chiller as compared to dip and scalder applications. Skin redness was reduced significantly in scalder, and yellowness in dip and scalder applications, respectively. In simulated dip application, with the exception of PA, all acids decreased lightness and increased redness and yellowness values. Propionic acid had little affect on lightness and redness values, but decreased yellowness values. In simulated scalder application, with the exception of PA, all acids decreased lightness with increasing concentration. The redness values changed little in scalder application. However, yellowness values were increased with all acids, except for PA, which decreased yellowness values. In simulated chiller conditions, all acids, except for PA, decreased lightness and redness and increased yellowness values. Propionic acid increased lightness and decreased yellowness values significantly in chiller conditions. Alterations in skin color should be taken into account in the selection and application of organic acids as carcass disinfectants. PMID:9603365

  11. Evaluation of insulated miniature thermistors for skin temperature measurement in the rat

    NASA Astrophysics Data System (ADS)

    Szlyk, Patricia C.; Sils, Ingrid V.; Ferguson, June D.; Matthew, William T.; Hubbard, Roger W.

    1986-08-01

    A miniature thermistor modified by covering its outer surface with insulating foam was evaluated as a temperature sensor at three skin sites in the adult male laboratory rat. A high precision thermistor was modified by covering the outer epoxy surface with about 1/4 inch of a commercially available insulating foam. Such foam thickness provided sufficient insulation to reduce the influence of ambient temperature on the thermistor reading yet contributed minimal additional probe weight. Results indicate that compared to the insulated thermistor, the uninsulated probe underestimated skin temperature measured at the midscapular region of the back, ventral surface of the foot, and dorsal base of the tail at cool ambient temperature (25c) and overestimated temperature at the back and tail skin sites at high ambient temperature (42c). The differences in temperature measured by the insulated and uninsulated thermistors were greastest at the back skin site, which was the only fur-covered and the least vascularized area of the rat that we studied. Using an insulated miniature thermistor to reduce the influence of environmental temperature on thermistor readings when measuring skin temperature in a furred laboratory animal is recommended.

  12. The Ocean? No Sweat! How the Oceans Affect Temperatures.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1986

    1986-01-01

    Presents an activity which helps students investigate how the ocean affects air temperature. Includes temperature data and a map for students to use in plotting and analyzing the temperature ranges of selected cities in Oregon. A supplementary laboratory activity is also offered. (ML)

  13. Skin temperature recording with phosphors: toxicity studies on animals.

    PubMed

    Derse, P H; Alt, L L

    1966-08-20

    In a previous communication in this journal, a method was described for converting invisible thermal patterns of the human skin into a detailed visible picture. At that time, the question of possible toxicity of the thermographic phosphor was raised. Toxicity studies conducted on laboratory animals indicate that the probability of toxic side reactions resulting from the use of zinc-cadmium sulfide phosphor spray is very low. PMID:5943198

  14. Are infrared and thermistor thermometers interchangeable for measuring localized skin temperature?

    PubMed

    Kelechi, Teresa J; Michel, Yvonne; Wiseman, Jan

    2006-01-01

    Localized skin temperature must be measured by accurate and reliable thermometers to effectively evaluate treatment outcomes, monitor changes, and predict potential complications. This study compared localized skin temperature measurements with a contact thermistor thermometer used as a reference standard and a noncontact infrared (IR) skin thermometer to determine their interchangeability with calculated Bland-Altman limits of agreement. Fifty-five adults ages 50 to 89 participated in the study in which data were collected in a climate-controlled room over 3 measurement periods, 1 week apart. The thermistor and IR thermometers were interchangeable with a limit of agreement of +/- 1.5 degrees C. This limit of agreement is acceptable as a reference standard for IR thermometers to measure localized skin temperature in clinical settings. PMID:16764175

  15. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  16. Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

    NASA Astrophysics Data System (ADS)

    Martínez, Natividad; Psikuta, Agnes; Kuklane, Kalev; Quesada, José Ignacio Priego; de Anda, Rosa María Cibrián Ortiz; Soriano, Pedro Pérez; Palmer, Rosario Salvador; Corberán, José Miguel; Rossi, René Michel; Annaheim, Simon

    2016-05-01

    The most complete and realistic physiological data are derived from direct measurements during human experiments; however, they present some limitations such as ethical concerns, time and cost burden. Thermophysiological models are able to predict human thermal response in a wide range of environmental conditions, but their use is limited due to lack of validation. The aim of this work was to validate the thermophysiological model by Fiala for prediction of local skin temperatures against a dedicated database containing 43 different human experiments representing a wide range of conditions. The validation was conducted based on root-mean-square deviation (rmsd) and bias. The thermophysiological model by Fiala showed a good precision when predicting core and mean skin temperature (rmsd 0.26 and 0.92 °C, respectively) and also local skin temperatures for most body sites (average rmsd for local skin temperatures 1.32 °C). However, an increased deviation of the predictions was observed for the forehead skin temperature (rmsd of 1.63 °C) and for the thigh during exercising exposures (rmsd of 1.41 °C). Possible reasons for the observed deviations are lack of information on measurement circumstances (hair, head coverage interference) or an overestimation of the sweat evaporative cooling capacity for the head and thigh, respectively. This work has highlighted the importance of collecting details about the clothing worn and how and where the sensors were attached to the skin for achieving more precise results in the simulations.

  17. Examining an Affective Aggression Framework: Weapon and Temperature Effects on Aggressive Thoughts, Affect, and Attitudes.

    ERIC Educational Resources Information Center

    Anderson, Craig A.; And Others

    1996-01-01

    A general framework for studying affective aggression, integrating many insights from previous models, is presented. New research examining effects of extreme temperature and photos of guns on arousal, cognition, and affect is presented. Hostile cognition was assessed using automatic priming tasks (i.e., Stroop interference). Hostile affect was…

  18. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-01-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively. PMID:25234839

  19. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  20. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  1. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Astrophysics Data System (ADS)

    Chesters, D.

    1984-05-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  2. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  3. Assessment of model land skin temperature and surface-atmosphere coupling using remotely sensed estimates

    NASA Astrophysics Data System (ADS)

    Trigo, Isabel; Boussetta, Souhail; Balsamo, Gianpaolo; Viterbo, Pedro; Beljaars, Anton; Sandu, Irina

    2016-04-01

    The coupling between land surface and the atmosphere is a key feature in Earth System Modelling for exploiting the predictability of slowly evolving geophysical variables (e.g., soil moisture or vegetation state), and for correctly representing rapid variations within the diurnal cycle, particularly relevant in data assimilation applications. Land Surface Temperature (LST) routinely estimated from Meteosat Second Generation (MSG) by the LandSAF is used to assess the European Centre for Medium-range Weather Forecasts (ECMWF) skin temperature. LST can be interpreted as a radiative temperature of the model surface, which is close to the ECMWF modelled skin temperature. It is shown that the model tends to slightly overestimate skin temperature during night-time and underestimate daytime values. Such underestimation of daily amplitudes is particularly pronounced in (semi-)arid regions, suggesting a misrepresentation of surface energy fluxes in those areas. The LST estimated from MSG is used to evaluate the impact of changes in some of the ECMWF model surface parameters. The introduction of more realistic model vegetation is shown to have a positive, but limited impact on skin temperature: long integration leads to an equilibrium state where changes in the latent heat flux and soil moisture availability compensate each other. Revised surface roughness lengths for heat and momentum, however, lead to overall positive impact on daytime skin temperature, mostly due to a reduction of sensible heat flux. This is particularly relevant in non-vegetated areas, unaffected by model vegetation. The reduction of skin conductivity, a parameter which controls the heat transfer to ground by diffusion, is shown to further improve the model skin temperature. A revision of the vertical soil discretization is also expected to improve the match to the LST, particularly over sparsely vegetated areas. The impact of a finer discretization (10-layer soil) is currently ongoing; preliminary

  4. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring. PMID:26214379

  5. [Measuring skin temperature in premature infants. Comparison of infrared telethermography and electric contact thermometry].

    PubMed

    Hanssler, L; Breukmann, H

    1992-01-01

    In a group of 6 premature infants, mean weight 1776 g, we measured skin surface temperatures, comparing infrared telethermography (San-ei Thermo-Tracer 6T62) and conventional skin thermometry (Eidatherm). Surface temperatures were measured at 10 different sites, with the infants nursed in an incubator. The same methods were used to compare temperatures on the lower arm of an adult. The results of the two different techniques showed only minor differences of approximately 0,2 degrees C. These discrepancies could be explained by problems of either method. They could also be attributed to the fact, that the emissivity of human skin is not exactly identical with the emissivity of a perfect black body. In clinical practice, infrared thermography and conductive thermometry can be used for determinations of body surface temperature of premature infants, also under the condition of high temperatures and high humidity within an incubator. PMID:1405422

  6. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. PMID:26706765

  7. Case study of skin temperature and thermal perception in a hot outdoor environment

    NASA Astrophysics Data System (ADS)

    Pantavou, Katerina; Chatzi, Evriklia; Theoharatos, George

    2014-08-01

    Focusing on the understanding and the estimation of the biometeorological conditions during summer in outdoor places, a field study was conducted in July 2010 in Athens, Greece over 6 days at three different sites: Syntagma Square, Ermou Street and Flisvos coast. Thermo-physiological measurements of five subjects were carried out from morning to evening for each site, simultaneously with meteorological measurements and subjective assessments of thermal sensation reported by questionnaires. The thermo-physiological variables measured were skin temperature, heat flux and metabolic heat production, while meteorological measurements included air temperature, relative humidity, wind speed, globe temperature, ground surface temperature and global radiation. The possible relation of skin temperature with the meteorological parameters was examined. Theoretical values of mean skin temperature and mean radiant temperature were estimated applying the MENEX model and were compared with the measured values. Two biometeorological indices, thermal sensation (TS) and heat load (HL)—were calculated in order to compare the predicted thermal sensation with the actual thermal vote. The theoretically estimated values of skin temperature were underestimated in relation to the measured values, while the theoretical model of mean radiant temperature was more sensitive to variations of solar radiation compared to the experimental values. TS index underestimated the thermal sensation of the five subjects when their thermal vote was `hot' or `very hot' and overestimated thermal sensation in the case of `neutral'. The HL index predicted with greater accuracy thermal sensation tending to overestimate the thermal sensation of the subjects.

  8. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  9. cdk4 Deficiency Inhibits Skin Tumor Development but Does Not Affect Normal Keratinocyte Proliferation

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; Miliani de Marval, Paula L.; LaCava, Margaret; Moons, David S.; Kiyokawa, Hiroaki; Conti, Claudio J.

    2002-01-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue. PMID:12163365

  10. Time required to document temperature by electronic skin thermometer in a healthy neonate.

    PubMed

    Roy, Ananada Shankar; Chowdhury, T; Bandhopadhya, D; Ghosh, Gautam

    2009-12-01

    We studied the actual time taken to document temperature in a stable neonate by an electronic digital skin thermometer with automatic time beeper. We studied 100 neonates after initial stabilization. The mean time required for documenting the temperature by a electronic thermometer in axilla was 56.34+/-1.54 secs for term neonates (>2500g) and 54.87+/-1.23 secs for low birth weight (<2500g). The skin temperature measured simultaneously by the ordinary mercury thermometer kept for traditional 3 minutes supported the electronic measurement (P < 0.01). PMID:20061590

  11. Do Haematophagous Bugs Assess Skin Surface Temperature to Detect Blood Vessels?

    PubMed Central

    Ferreira, Raquel A.; Lazzari, Claudio R.; Lorenzo, Marcelo G.; Pereira, Marcos H.

    2007-01-01

    Background It is known that some blood-sucking insects have the ability to reach vessels under the host skin with their mouthparts to feed blood from inside them. However, the process by which they locate these vessels remains largely unknown. Less than 5% of the skin is occupied by blood vessels and thus, it is not likely that insects rely on a “random search strategy”, since it would increase the probability of being killed by their hosts. Indeed, heterogeneities along the skin surface might offer exploitable information for guiding insect's bites. Methodology/Principal Findings We tested whether the bug Rhodnius prolixus can evaluate temperature discontinuities along the body surface in order to locate vessels before piercing the host skin. When placed over a rabbit ear, the bug's first bites were mostly directed towards the main vessels. When insects were confronted to artificial linear heat sources presenting a temperature gradient against the background, most bites were directly addressed to the warmer linear source, notwithstanding the temperature of both, the source and the background. Finally, tests performed using uni- and bilaterally antennectomized insects revealed that the bilateral integration of thermal inputs from both antennae is necessary for precisely directing bites. Conclusions/Significance R. prolixus may be able to exploit the temperature differences observed over the skin surface to locate blood vessles. Bugs bite the warmest targets regardless of the target/background temperatures, suggesting that they do not bite choosing a preferred temperature, but select temperature discontinuities along the skin. This strategy seems to be an efficient one for finding blood vessels within a wide temperature range, allowing finding them on different hosts, as well as on different areas of the host body. Our study also adds new insight about the use of antennal thermal inputs by blood sucking bugs. PMID:17895973

  12. Skin temperature profiles on the human chest and in the wrist area

    NASA Astrophysics Data System (ADS)

    Nissila, Seppo M.; Ahola, Onni; Heikkilae, Ilkka; Ruha, Antti; Kopola, Harri K.

    1996-01-01

    Skin temperatures on the chest and in the wrist area are interesting for continuous monitoring because they can be easily instrumented using an elastic belt or wristband which do not hamper movement in sports, for example. An infrared thermograph camera and NTC thermistors were used to take temperature profiles at these sensing points with a resolution of 0.1 degrees Celsius, and colored thermograms were used to analyze and compare the results. The effect of environmental changes on the skin temperature in the wrist area was studied by cooling and heating the fingers in water at 10 degrees Celsius and 40 degrees Celsius, and the effects of a loading situation on the chest area and wrist area were tested by means of a 30 min bicycle ergometer exercise. NTC thermistors were also used to measure wrist and chest temperatures in two environmental tests at minus 10 degrees Celsius and plus 60 degrees Celsius. Cooling of the fingers naturally reduces the skin temperature in the wrist area and heating increases it due to the venous circulation. The area of the radial artery in the wrist seems to be the most stable temperature point, altering by only about 2 degrees Celsius, whereas the temperature change at other points is up to 4 degrees Celsius. The bicycle ergometer exercise caused a decrease in skin temperature on the chest because of sweating. At the same time the skin temperature on the wrist decreased by about 1.5 degrees Celsius after the first 20 minutes and then returned to its previous level. The area of the radial artery in the wrist seems to be an attractive point for continuous temperature monitoring, especially under normal conditions, and also seems to reflect body temperature quite well upon loading and under different environmental conditions.

  13. Skin temperature, thermal comfort, sweating, clothing and activity of men sledging in Antarctica

    PubMed Central

    Budd, G. M.

    1966-01-01

    1. Three men were studied while dog-sledging 320 km in 12 days in Antarctica. Conventional Antarctic clothing (`sweaters and windproofs') was worn. Four hundred observations were made of medial thigh skin temperature, thermal comfort, sweating, clothing, activity and environmental conditions. 2. Work occupied an average of 11·0 hr/day and sleep 7·5 hr. Estimated daily energy expenditure averaged 5100 kcal (range 2740-6660 kcal). 3. Skin temperature fell on exposure to cold despite the clothing worn, but was not changed by the level of activity. Sweating, and thermal comfort, were directly related to both skin temperature and activity. 4. Inside the tent, the modal value of skin temperature was 33° C (range 27-36° C) and the men were comfortable in 94% of observations. 5. During the 9·2 hr/day spent outdoors the modal value of skin temperature was 27° C (range 18-33° C) and the men felt too cold (but did not shiver) in 11% (range 7-20%) of observations, suggesting that cold stress was not negligible. However, they also felt too hot in 20% of observations and were sweating in 23%. PMID:5914254

  14. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. PMID:25660627

  15. Effect of background color and low temperature on skin color and circulating alpha-MSH in two species of leopard frog.

    PubMed

    Fernandez, P J; Bagnara, J T

    1991-07-01

    Circulating levels of alpha-melanocyte stimulating hormone (alpha-MSH) in two species of leopard frog, Rana pipiens and R. chiricahuensis, were measured by radioimmunoassay to reveal the correlation between skin color change induced by background color and by low temperature. High levels of alpha-MSH were found in both species of frog on a black background, but R. chiricahuensis had eight times higher levels than R. pipiens, R. chiricahuensis also exhibited the ability to darken its ventral surface, whereas the ventral surface of R. pipiens remained white. Neither skin color nor plasma alpha-MSH of R. pipiens was affected by cold. Low temperature did, however, darken dorsal and ventral skin of R. chiricahuensis in vivo, which corresponded to increased levels of plasma alpha-MSH. Dorsal and ventral skin of R. chiricahuensis, in vitro, darken in a dose-dependent manner to alpha-MSH, but not to cold. PMID:1879665

  16. Elevated local skin temperature impairs cutaneous vasoconstrictor responses to a simulated haemorrhagic challenge while heat stressed

    PubMed Central

    Pearson, J.; Lucas, R. A. I.; Crandall, C. G.

    2016-01-01

    During a simulated haemorrhagic challenge, syncopal symptoms develop sooner when individuals are hyperthermic relative to normothermic. This is due, in part, to a large displacement of blood to the cutaneous circulation during hyperthermia, coupled with inadequate cutaneous vasoconstriction during the hypotensive challenge. The influence of local skin temperature on these cutaneous vasoconstrictor responses is unclear. This project tested the hypothesis that local skin temperature modulates cutaneous vasoconstriction during simulated haemorrhage in hyperthermic humans. Eight healthy participants (four men and four women; 32 ± 7 years old; 75.2 ± 10.8 kg) underwent lower-body negative pressure to presyncope while heat stressed via a water-perfused suit sufficiently to increase core temperature by 1.2 ± 0.2°C. At forearm skin sites distal to the water-perfused suit, local skin temperature was either 35.2 ± 0.6 (mild heating) or 38.2 ± 0.2°C (moderate heating) throughout heat stress and lower-body negative pressure, and remained at these temperatures until presyncope. The reduction in cutaneous vascular conductance during the final 90 s of lower-body negative pressure, relative to heat-stress baseline, was greatest at the mildly heated site (−10 ± 15% reduction) relative to the moderately heated site (−2 ± 12%; P = 0.05 for the magnitude of the reduction in cutaneous vascular conductance between sites), because vasoconstriction at the moderately heated site was either absent or negligible. In hyperthermic individuals, the extent of cutaneous vasoconstriction during a simulated haemorrhage can be modulated by local skin temperature. In situations where skin temperature is at least 38°C, as is the case in soldiers operating in warm climatic conditions, a haemorrhagic insult is unlikely to be accompanied by cutaneous vasoconstriction. PMID:22903981

  17. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density.

    PubMed

    Smith, D C

    1992-01-01

    Skin--electrode impedance was determined at 100 Hz and 1 kHz between two disposable electrodes, 5 cm apart, at current densities < 65 microA.cm-2. Measurements were made on the volar skin of the forearm during cooling on cardiopulmonary bypass, and on the dorsum of the foot in the absence of skin blood flow during aortic aneurysm repair. Both the resistive and reactive components of the skin-electrode impedence showed an inverse linear relationship to temperature between 26 and 36 degrees C. The magnitude of the impedance change was different for each patient studied; resistance changes ranged from 0.03 to 23.2 k omega. Degrees C-1 at 100 Hz and from 0.03 to 2.7 k omega. Degrees C-1 at 1 kHz, while reactance changes ranged from 0.4 to 2.1 k omega. Degrees C-1 at 100 Hz and from 0.04 to 0.18 k omega. Degrees C-1 at 1 kHz. Changes in skin-electrode impedance were not due to changes in skin blood flow. There was no consistent change in offset potential with temperature. Although the skin-electrode impedance increases as temperature falls, it is concluded that temperature effects at the skin-electrode interface are not responsible for the observed failure of evoked electromyography during clinical monitoring of neuromuscular function. PMID:1404312

  18. Evolution of Skin Temperature after the Application of Compressive Forces on Tendon, Muscle and Myofascial Trigger Point

    PubMed Central

    Magalhães, Marina Figueiredo; Dibai-Filho, Almir Vieira; de Oliveira Guirro, Elaine Caldeira; Girasol, Carlos Eduardo; de Oliveira, Alessandra Kelly; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus

    2015-01-01

    Some assessment and diagnosis methods require palpation or the application of certain forces on the skin, which affects the structures beneath, we highlight the importance of defining possible influences on skin temperature as a result of this physical contact. Thus, the aim of the present study is to determine the ideal time for performing thermographic examination after palpation based on the assessment of skin temperature evolution. Randomized and crossover study carried out with 15 computer-user volunteers of both genders, between 18 and 45 years of age, who were submitted to compressive forces of 0, 1, 2 and 3 kg/cm2 for 30 seconds with a washout period of 48 hours using a portable digital dynamometer. Compressive forces were applied on the following spots on the dominant upper limb: myofascial trigger point in the levator scapulae, biceps brachii muscle and palmaris longus tendon. Volunteers were examined by means of infrared thermography before and after the application of compressive forces (15, 30, 45 and 60 minutes). In most comparisons made over time, a significant decrease was observed 30, 45 and 60 minutes after the application of compressive forces (p < 0.05) on the palmaris longus tendon and biceps brachii muscle. However, no difference was observed when comparing the different compressive forces (p > 0.05). In conclusion, infrared thermography can be used after assessment or diagnosis methods focused on the application of forces on tendons and muscles, provided the procedure is performed 15 minutes after contact with the skin. Regarding to the myofascial trigger point, the thermographic examination can be performed within 60 minutes after the contact with the skin. PMID:26070073

  19. Effects of skin blood flow and temperature on bioelectric impedance after exercise.

    PubMed

    Liang, M T; Norris, S

    1993-11-01

    To examine the effects of increased skin blood flow (BFsk) and skin temperature (Tsk) on bioelectric impedance (BIA), 30 young males participated as subjects. All subjects underwent the following measurements: 1) BFsk and Tsk for the chest, biceps, thigh, and calf; 2) body composition using the BIA prediction equations and underwater weighting (UW); and 3) triceps skinfold (SFtri) thickness. After the baseline studies (M1) the subjects exercised for 30 min at approximately 83% of maximal heart rate. The above measurements were repeated immediately after exercise (M2), and at 1-h recovery from exercise (M3). Repeated measures ANOVA showed that mean Tsk and BFsk, and for the four measured sites were significantly increased from M1 to M2 (P < 0.05) and decreased from M2 to M3 (P < 0.05). These changes did not affect BIA measurement for resistance (R) and reactance between M1 and M2 (P > 0.05), and between M2 and M3 (P > 0.05). With regression analysis the following independent variables were identified as strong contributing factors for predicting fat-free mass (FFM): 1) SFtri and total body water for M1 and M3; and 2) WT, SFtri, and Tsk of the chest for M2. Two FFM equations have little multicolinearity (M1 and M2), e.g., they have low root mean square errors (< or = 2.6 kg), very high values for R2 (> or = 0.94), and relatively low values for coefficient of variations (< or = 5.65%). Differences (P < 0.05) were observed between the UW method and the Lukasi equation for estimating FFM for M1 and M3, but not for M2.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8289609

  20. The simulation of skin temperature distributions by means of a relaxation method.

    PubMed

    Vermey, G F

    1975-05-01

    To solve the differential equation for the heat in a two-layer, rectangular piece of skin tissue, a relaxation method, based on a finite difference technique, is used. The temperature distributions on the skin surface are calculated. The results are used to derive a criterion for the resolution for an infrared thermograph in a specific situation. A major limitation on the resolution in medical thermography is given. As an example of the power of the model, the sensitivity of the temperature profiles for variations of the layer thickness is determined. PMID:1187763

  1. Effects of Gloves, Temperature and Their Interaction on Finger, Hand, and Arm Blood Flow and Skin Temperature: A Pilot Study

    NASA Technical Reports Server (NTRS)

    Hallbech, M. Susan

    1996-01-01

    The objective of this study is to investigate the effects of cold only, commercially available gloves only, and the combination of gloves and cold on the blood flow and surface (skin) temperature of the medial and proximal phalanxes of digit 3, the metacarpal region of the hand, and the forearm.

  2. Evaluation of wireless determination of skin temperature using iButtons.

    PubMed

    van Marken Lichtenbelt, Wouter D; Daanen, Hein A M; Wouters, Loek; Fronczek, Rolf; Raymann, Roy J E M; Severens, Natascha M W; Van Someren, Eus J W

    2006-07-30

    Measurements of skin temperatures are often complicated because of the use of wired sensors. This is so in field studies, but also holds for many laboratory conditions. This article describes a wireless temperature system for human skin temperature measurements, i.e. the Thermochron iButton DS1291H. The study deals with validation of the iButton and its application on the human skin, and describes clinical and field measurements. The validation study shows that iButtons have a mean accuracy of -0.09 degrees C (-0.4 degrees C at most) with a precision of 0.05 degrees C (0.09 degrees C at most). These properties can be improved by using calibration. Due to the size of the device the response time is longer than that of conventional sensors, with a tau in water of 19 s. On the human skin under transient conditions the response time is significantly longer, revealing momentary deviations with a magnitude of 1 degrees C. The use of iButtons has been described in studies on circadian rhythms, sleep and cardiac surgery. With respect to circadian rhythm and sleep research, skin temperature assessment by iButtons is of significant value in laboratory, clinical and home situations. We demonstrate that differences in laboratory and field measurements add to our understanding of thermophysiology under natural living conditions. The advantage of iButtons in surgery research is that they are easy to sterilize and wireless so that they do not hinder the surgical procedure. In conclusion, the application of iButtons is advantageous for measuring skin temperatures in those situations in which wired instruments are unpractical and fast responses are not required. PMID:16797616

  3. The relationship between skin surface temperature, transepidermal water loss and electrical capacitance among workers in the fish processing industry: comparison with other occupations. A field study.

    PubMed

    Halkier-Sørensen, L; Thestrup-Pedersen, K

    1991-05-01

    A field study among workers in the fish processing industry (n = 143) was performed to obtain information about skin surface temperature, transepidermal water loss (TEWL), and electrical capacitance and their relationships during work. The skin temperature, TEWL and electrical capacitance were measured on the fingers, hands and forearms. A linear positive relation was found between the temperature and TEWL (in all measured areas), a linear negative relation between the temperature and capacitance (fingers and palms), and a linear negative relation between the capacitance and TEWL (fingers). The results on the fingers among workers in the fish processing industry were compared with results among metal workers (n = 52), cleaners (n = 30), gut cleaners (n = 25), nurses (n = 16), office workers with indoor climate syndrome (n = 20) and normal controls (n = 29). A linear positive relation was found between the respective temperature-TEWL values and a linear negative relation between the respective temperature-capacitance values in the various groups. Furthermore the slope of the temperature-TEWL relations was identical in all groups. Therefore, differences in TEWL levels (comparison at the same temperature) between the respective groups and controls and between the various groups might indicate damage to the skin barrier caused by contact with different irritants and chemicals. However, differences in environment-related variables in the various occupations might also affect TEWL levels. This field study demonstrates, from a practical point of view, how the skin temperature affects TEWL in the various occupations and, as a new point, how sensitive capacitance is to changes in skin temperature. Seasonal variation in TEWL and capacitance was demonstrated among workers in the fish processing industry, with a low TEWL and a high capacitance during summer when the workload is lower. PMID:1893687

  4. The influence of different acupuncture manipulations on the skin temperature of an acupoint.

    PubMed

    Huang, Tao; Huang, Xin; Zhang, Weibo; Jia, Shuyong; Cheng, Xinnong; Litscher, Gerhard

    2013-01-01

    This study was performed to observe the influence of sham and different verum acupuncture manipulations on skin temperature of the stimulated acupoint in healthy volunteers. Thirty-seven healthy volunteers with a mean age of 25.4 ± 2.2 years were enrolled in the study. All volunteers had experienced acupuncture before. They received sham acupuncture and two different kinds of verum acupuncture stimulation (lifting-thrusting and twisting-rotating) on Zusanli (ST36). The skin temperature of ST36 was measured before acupuncture, after needle insertion, after needle manipulation, immediately after removal of the needle, and as further control 5 minutes after removal of the needle using a FLIR i7 infrared thermal camera. During the measurement, the needling sensations of volunteers were enquired and recorded. During the sham acupuncture stimulation, the skin temperature of ST36 decreased in the first 5 minutes, when the point was exposed, and then increased gradually. During verum acupuncture stimulations, the skin temperature increased continually and then decreased in the last phase. The increase in temperature caused by lifting-thrusting stimulation was significantly higher than that of twisting-rotating manipulation, which may be related to the stimulation intensity. PMID:23476709

  5. Infrared skin temperature measurements for monitoring health in pigs: a review.

    PubMed

    Soerensen, Dennis Dam; Pedersen, Lene Juul

    2015-01-01

    Infrared temperature measurement equipment (IRTME) is gaining popularity as a diagnostic tool for evaluating human and animal health. It has the prospect of reducing subject stress and disease spread by being implemented as an automatic surveillance system and by a quick assessment of skin temperatures without need for restraint or contact. This review evaluates studies and applications where IRTME has been used on pigs. These include investigations of relationships between skin, ambient and body temperatures and applications for detecting fever, inflammation, lesions, ovulation, and stress as well as for meat quality assessment. The best skin locations for high correlation between skin temperature and rectal temperature are most likely thermal windows such as ear base, eye region and udder. However, this may change with age, stressors, and biological state changes, for example, farrowing. The studies performed on pigs using IRTME have presented somewhat discrepant results, which could be caused by inadequate equipment, varying knowledge about reliable equipment operation, and site-specific factors not included in the assessment. Future focus areas in the field of IRTME are suggested for further development of new application areas and increased diagnostic value in the porcine and animal setting in general. PMID:25644397

  6. Measurement of flexible temperature-pressure distribution for robot sensing skin

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Huang, Ying; Wu, Siyu; Miao, Wei; Liu, Xiumei

    2013-01-01

    The design of flexible pressure and temperature sensor array, which will serve as the artificial skin for robot applications, is presented. Different conductive rubber,which has different kinds of conductive filler, is employed as the pressure and temperature sensing material. The pressure sensing material is carbon black (CB)/multi-walled carbon nanotubes (MWCNTS)/silicon rubber, the proportion of CB and CNTS is 6% and 4%, respectively. The temperature sensing material is carbon fiber/silicon rubber; the proportion of carbon fiber (CF) is 12%. Both of the materials are flexible enough to use as artificial skin. Small disks of pressure and temperature conductive rubber are bonded on predefined flexible interdigital copper array. The pressure and temperature sensitive properties of the sensor array are measured. The structure of the sensor array make the temperature sensing material doesn't take any interference of pressure. The separate collection of pressure and temperature signals with the scanning circuits can effectively reduce the crosstalk between each sensing element. With this integrated sensor array, the images of pressure and temperature distribution have been successfully shown by LabVIEW. This flexible sensor array can be bended without any influence of performance, so the sensor array is flexible and sensitive enough to be used as robot skin.

  7. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli

    PubMed Central

    Park, Jonghwa; Kim, Marie; Lee, Youngoh; Lee, Heon Sang; Ko, Hyunhyub

    2015-01-01

    In human fingertips, the fingerprint patterns and interlocked epidermal-dermal microridges play a critical role in amplifying and transferring tactile signals to various mechanoreceptors, enabling spatiotemporal perception of various static and dynamic tactile signals. Inspired by the structure and functions of the human fingertip, we fabricated fingerprint-like patterns and interlocked microstructures in ferroelectric films, which can enhance the piezoelectric, pyroelectric, and piezoresistive sensing of static and dynamic mechanothermal signals. Our flexible and microstructured ferroelectric skins can detect and discriminate between multiple spatiotemporal tactile stimuli including static and dynamic pressure, vibration, and temperature with high sensitivities. As proof-of-concept demonstration, the sensors have been used for the simultaneous monitoring of pulse pressure and temperature of artery vessels, precise detection of acoustic sounds, and discrimination of various surface textures. Our microstructured ferroelectric skins may find applications in robotic skins, wearable sensors, and medical diagnostic devices. PMID:26601303

  8. Distributed landsurface skin temperature sensing in Swiss Alps

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Baerenbold, F.; Nadeau, D. F.; Pardyjak, E.; Parlange, M. B.

    2010-12-01

    The ZyTemp TN9 is a mass-produced thermal infrared (TIR) sensor that is normally used to build handheld non-contact thermometers. The measurement principle of the TN9 is similar to that of very costly meteorological pyrgeometers. The costs of the TN9 are less than 10. The output of the TN9 consists of observed thermal radiation, the temperature of the measurement instrument, and the emissivity used. The output is provided through a Serial Peripheral Interface protocol. The TN9 was combined with an Arduino board that registered data onto a USB memory stick. A solar cell, lead acid battery, housing and stand completed the meausrement set up. Total costs per set was in the order of 200 Land surface atmosphere interactions in mountainous areas, such as the Swiss Alps, are spatially heterogeneous. Shading, multi-layer cloud formation, and up- and downdrafts make for a very dynamic exchange of mass and energy along and across slopes. In order to better understand these exchanges, the Swiss Slope Experiment at La Fouly (SELF) has built a distributed sensing network consisting of eight micro-met stations and two flux towers in the "La Fouly" watershed in the upper Alps. To obtain a better handle on surface temperature, fifteen TIR sensing stations were installed that made observations during the 2010 Summer. Methods and results will be presented. Overview La Fouly watershed (source: http://eflum.epfl.ch/research/images/fouly_2.jpg)

  9. Light and temperature effects on phenolics in dark-skinned grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade we refined our understanding of the effects of solar radiation and temperature on the accumulation of phenolic compounds in grapes in the field, particularly dark-skinned cultivars used for red wine. The work was precipitated by nearly universal prescriptive advice a decade pr...

  10. Stress Evaluation while Prolonged Driving Operation Using the Facial Skin Temperature

    NASA Astrophysics Data System (ADS)

    Asano, Hirotoshi; Muto, Takumi; Ide, Hideto

    There is a relation to the accident of a car and the physiological and psychological state of a driver. The stress may lead to the fall of a fatigue or attentiveness. Therefore, it is an important subject from viewpoint such as accident prevention to evaluate the mental state of a driver. The study aimed at the development of a quantitative instrumentation technology of the stress when a subject is driving for a long time. First of all, we measured the physiological and psychological stress of a driver. The facial skin temperature and ventricular rate that was driver's physiological amount were measured and compared it with visual analog scale of the subjective amount. It was able to be obtaining of the high correlation in facial skin temperature and visual analog scale from the outcome of the experiment. Therefore, the possibility of appreciable of driver's stress at a facial skin temperature was shown. As a result of the experiment, we showed a possibility that facial skin temperature could evaluate long driving stress.

  11. Effects of different sitting positions on skin temperature of the lower extremity

    PubMed Central

    Namkoong, Seung; Shim, JeMyung; Kim, SungJoong; Shim, JungMyo

    2015-01-01

    [Purpose] The purpose of this study was to identify the effect of different sitting positions on the skin temperature of the lower extremity. [Subjects] The subjects of this study were 23 healthy university students (8 males, 15 females). [Methods] Normal sitting (NS), upper leg cross (ULC) and ankle on knee (AOK) positions were conducted to measure the changes in skin temperature using digital infrared thermographic imaging (DITI). [Results] ULC upper ankle, NS upper shin, ULC upper shin and NS lower shin showed significant declines in temperature with time. [Conclusion] These finding suggest that the ULC and NS sitting positions cause decline of blood flow volume to the lower extremity resulting in decrease of temperature of the lower extremity. Especially, sitting with the legs crossed interferes with the circulation of blood flowing volume much more than just sitting in a chair. PMID:26355265

  12. The effect of repeated laser stimuli to ink-marked skin on skin temperature-recommendations for a safe experimental protocol in humans.

    PubMed

    Madden, Victoria J; Catley, Mark J; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad; Moseley, G Lorimer

    2016-01-01

    Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it. PMID:26793428

  13. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney

    2010-12-01

    With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land

  14. Wavelet-analysis of skin temperature oscillations during local heating for revealing endothelial dysfunction.

    PubMed

    Podtaev, Sergey; Stepanov, Rodion; Smirnova, Elena; Loran, Evgenia

    2015-01-01

    Skin microvessels have proven to be a model to investigate the mechanisms of vascular disease; in particular, endothelial dysfunction. To analyze skin blood flow, high-resolution thermometry can be used because low-amplitude skin temperature oscillations are caused by changes in the tone of skin vessels. The aim of our study was to test the possibilities of wavelet analysis of skin temperature (WAST) for the diagnosis of impaired regulation of microvascular tone in patients with type 2 diabetes. A local heating functional test was used for the assessment of microvascular tone regulation. A control group consisted of healthy male and female volunteers (n=5 each), aged 39.1±5.3years. A group of patients with type 2 diabetes comprised thirteen people, seven men and six women, aged 36 to 51years old (43.2±3.4years). The diagnosis of diabetes was made according to the criteria of the World Health Organization (WHO). The mean disease duration was 7.36±0.88years. Skin temperature oscillations, reflecting intrinsic myogenic activity (0.05-0.14Hz), neurogenic factors (0.02-0.05Hz) and endothelial activity (0.0095-0.02Hz) increase greatly during local heating for healthy subjects. In the group of patients with type 2 diabetes, no statistically significant differences in the amplitudes in the endothelial range were observed. Relative changes in the oscillation amplitudes in patients with type 2 diabetes were markedly lower compared to the control group. The latter indicates that the WAST method enables assessment of the state of vascular tone and the effects of mechanisms responsible for regulation of blood flow in the microvasculature. PMID:25446367

  15. Simultaneous measurements of skin sea surface temperature and sea surface emissivity from a single thermal imagery.

    PubMed

    Yoshimori, Kyu; Tamba, Sumio; Yokoyama, Ryuzo

    2002-08-20

    A novel method, to our knowledge, to measure simultaneously the thermal emissivity and skin temperature of a sea surface has been developed. The proposed method uses an infrared image that includes a sea surface and a reference object located near the surface. By combining this image with sky radiation temperature, we retrieve both skin sea surface temperature and sea surface emissivity from the single infrared image. Because the method requires no knowledge of thermal radiative properties of actual sea surfaces, it can be used even for a contaminated sea surface whose emissivity is hard to determine theoretically, e.g., oil slicks or slicks produced by biological wastes. Experimental results demonstrate that the estimated emissivity agrees with the theoretical prediction and, also, the recovered temperature distribution of skin sea surface has no appreciable high-temperature area that is due to reflection of the reference object. The method allows the acquisition of match-up data of radiometric sea surface temperatures that precisely correspond to the satellite observable data. PMID:12206200

  16. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.

    PubMed

    Abraham, John P; Plourde, Brian; Vallez, Lauren; Stark, John; Diller, Kenneth R

    2015-12-01

    The objective of this study is to develop and present a simple procedure for evaluating the temperature and exposure-time conditions that lead to causation of a deep-partial thickness burn and the effect that the immediate post-burn thermal environment can have on the process. A computational model has been designed and applied to predict the time required for skin burns to reach a deep-partial thickness level of injury. The model includes multiple tissue layers including the epidermis, dermis, hypodermis, and subcutaneous tissue. Simulated exposure temperatures ranged from 62.8 to 87.8°C (145-190°F). Two scenarios were investigated. The first and worst case scenario was a direct exposure to water (characterized by a large convection coefficient) with the clothing left on the skin following the exposure. A second case consisted of a scald insult followed immediately by the skin being washed with cool water (20°C). For both cases, an Arrhenius injury model was applied whereby the extent and depth of injury were calculated and compared for the different post-burn treatments. In addition, injury values were compared with experiment data from the literature to assess verification of the numerical methodology. It was found that the clinical observations of injury extent agreed with the calculated values. Furthermore, inundation with cool water decreased skin temperatures more quickly than the clothing insulating case and led to a modest decrease in the burn extent. PMID:26188899

  17. INFLUENCE OF BLOOD FLOW AND MILLIMETER WAVE EXPOSURE ON SKIN TEMPERATURE IN DIFFERENT THERMAL MODELS

    PubMed Central

    Alekseev, S.I.; Ziskin, M.C.

    2008-01-01

    Recently we showed that the Pennes bioheat transfer equation was not adequate to quantify mm wave heating of the skin at high blood flow rates. To do so, it is necessary to incorporate an “effective” thermal conductivity to obtain a hybrid bioheat equation (HBHE). The main aim of this study was to determine the relationship between non-specific tissue blood flow in a homogeneous unilayer model and dermal blood flow in multilayer models providing that the skin surface temperatures before and following mm wave exposure were the same. This knowledge could be used to develop multilayer models based on the fitting parameters obtained with the homogeneous tissue models. We tested four tissue models consisting of 1 to 4 layers and applied the one-dimensional steady-state HBHE. To understand the role of the epidermis in skin models we added to the one- and three-layer models an external thin epidermal layer with no blood flow. Only the combination of models containing the epidermal layer was appropriate for determination of the relationship between non-specific tissue and dermal blood flows giving the same skin surface temperatures. In this case we obtained a linear relationship between non-specific tissue and dermal blood flows. The presence of the fat layer resulted in the appearance of a significant temperature gradient between the dermis and muscle layer which increased with the fat layer thickness. PMID:18780297

  18. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure.

    PubMed

    Laakso, Ilkka; Hirata, Akimasa

    2011-12-01

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters--some of which may be subject to considerable uncertainty--that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg(-1). PMID:22080753

  19. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2011-12-01

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg-1.

  20. Measurement of the thermal inertia of the skin using successive thermograms taken at a stepwise change in ambient radiation temperature.

    PubMed

    Huang, J; Togawa, T

    1995-11-01

    Skin thermal properties are difficult to measure in vivo in the steady state because there is a constant temperature gradient across the skin surface. However, measurement of skin thermal properties is postulated in quantitative evaluation for thermographic observation. In this study, imaging of the thermal inertia of the skin was attempted by thermographic measurements at a stepwise change in ambient radiation temperature achieved by quickly switching two hoods maintained at different temperatures. Using this technique, a total of 65 thermograms were sequentially recorded at intervals of 0.5 s beginning 2 s before the stepwise change. The image of skin thermal inertia was estimated by applying statistical curve fitting at each pixel of the thermograms. In addition, the emissivity and true temperature of the skin were also determined, together with thermal inertia, in a single measurement. Measurements were made at different sites on 10 subjects. The average values of thermal inertia of normal skin were scattered throughout a range from 1.4 x 10(3) to 2.1 x 10(3) W s1/2 m-2 K-1. Investigations of the relationship between skin blood flow and thermal inertia were also made by imaging thermal inertia when skin blood flow was changed by applying a vasodilator or vasoconstrictor on the skin surface. In a comparison with the data measured by laser Doppler flowmetry, the average slope of skin blood flow versus thermal inertia was 2.88 x 10(-4) V per W s1/2 m-2 K-1, and the thermal inertia of the skin with no blood flow was 1.03 x 10(3) W s1/2 m-2 K-1. The results also show an almost linear correlation between skin blood flow and thermal inertia in each individual, but inter-individual differences were also observed. The results suggest that skin blood flow distribution can be estimated by non-contact imaging of thermal inertia. PMID:8599689

  1. Considerations for the measurement of core, skin and mean body temperatures.

    PubMed

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. PMID:25455943

  2. The effect of using different regions of interest on local and mean skin temperature.

    PubMed

    Maniar, Nirav; Bach, Aaron J E; Stewart, Ian B; Costello, Joseph T

    2015-01-01

    The dynamic nature of tissue temperature and the subcutaneous properties, such as blood flow, fatness, and metabolic rate, leads to variation in local skin temperature. Therefore, we investigated the effects of using multiple regions of interest when calculating weighted mean skin temperature from four local sites. Twenty-six healthy males completed a single trial in a thermonetural laboratory (mean ± SD): 24.0 (1.2)°C; 56 (8%) relative humidity; <0.1 m/s air speed). Mean skin temperature was calculated from four local sites (neck, scapula, hand and shin) in accordance with International Standards using digital infrared thermography. A 50 mm × 50 mm, defined by strips of aluminium tape, created six unique regions of interest, top left quadrant, top right quadrant, bottom left quadrant, bottom right quadrant, centre quadrant and the entire region of interest, at each of the local sites. The largest potential error in weighted mean skin temperature was calculated using a combination of a) the coolest and b) the warmest regions of interest at each of the local sites. Significant differences between the six regions interest were observed at the neck (P<0.01), scapula (P<0.001) and shin (P<0.05); but not at the hand (P = 0.482). The largest difference (± SEM) at each site was as follows: neck 0.2 (0.1)°C; scapula 0.2 (0.0)°C; shin 0.1 (0.0)°C and hand 0.1 (0.1)°C. The largest potential error (mean ± SD) in weighted mean skin temperature was 0.4 (0.1)°C (P<0.001) and the associated 95% limits of agreement for these differences was 0.2-0.5 °C. Although we observed differences in local and mean skin temperature based on the region of interest employed, these differences were minimal and are not considered physiologically meaningful. PMID:25774024

  3. Galectin expression in healing wounded skin treated with low-temperature plasma: Comparison with treatment by electronical coagulation.

    PubMed

    Akimoto, Yoshihiro; Ikehara, Sanae; Yamaguchi, Takashi; Kim, Jaeho; Kawakami, Hayato; Shimizu, Nobuyuki; Hori, Masaru; Sakakita, Hajime; Ikehara, Yuzuru

    2016-09-01

    Low-temperature plasma is useful for the care of wounded skin. It accelerates wound healing. However, the mechanism of this effect has not been fully elucidated yet. Galectin-1 is reported to accelerate wound healing via the Smad signaling pathway. In the present study to clarify whether or not galectins were expressed during the process of wound healing in the plasma-treated skin, we examined the effect of low-temperature plasma on galectin expression in the healing skin. We compared the effects of low-temperature plasma on the expression of galectin-1, -2, and -3 in the healing skin with those of electrocoagulation conducted with a high-frequency electrical coagulator. Immediately after the start of low-temperature plasma treatment following the incision made in the skin, a membrane-like structure was formed on the surface of the wound. Immunoelectron microscopy showed that these galectins were localized in the membrane-like structure of the plasma-treated skin. The expressions of these galectins were increased by the low-temperature plasma treatment, whereas they were inhibited by the electrocoagulation. These results suggest that galectins were involved in the wound healing of low-temperature plasma-treated skin. Galectins will thus be good markers for further examination of the effects of low-temperature plasma on the healing of wounded skin. PMID:26827730

  4. Application of vibration to wrist and hand skin affects fingertip tactile sensation.

    PubMed

    Lakshminarayanan, Kishor; Lauer, Abigail W; Ramakrishnan, Viswanathan; Webster, John G; Seo, Na Jin

    2015-07-14

    A recent study showed that fingertip pads' tactile sensation can improve by applying imperceptible white-noise vibration to the skin at the wrist or dorsum of the hand in stroke patients. This study further examined this behavior by investigating the effect of both imperceptible and perceptible white-noise vibration applied to different locations within the distal upper extremity on the fingertip pads' tactile sensation in healthy adults. In 12 healthy adults, white-noise vibration was applied to one of four locations (dorsum hand by the second knuckle, thenar and hypothenar areas, and volar wrist) at one of four intensities (zero, 60%, 80%, and 120% of the sensory threshold for each vibration location), while the fingertip sensation, the smallest vibratory signal that could be perceived on the thumb and index fingertip pads, was assessed. Vibration intensities significantly affected the fingertip sensation (P < 0.01) in a similar manner for all four vibration locations. Specifically, vibration at 60% of the sensory threshold improved the thumb and index fingertip tactile sensation (P < 0.01), while vibration at 120% of the sensory threshold degraded the thumb and index fingertip tactile sensation (P < 0.01) and the 80% vibration did not significantly change the fingertip sensation (P > 0.01), all compared with the zero vibration condition. This effect with vibration intensity conforms to the stochastic resonance behavior. Nonspecificity to the vibration location suggests the white-noise vibration affects higher level neuronal processing for fingertip sensing. Further studies are needed to elucidate the neural pathways for distal upper extremity vibration to impact fingertip pad tactile sensation. PMID:26177959

  5. Application of vibration to wrist and hand skin affects fingertip tactile sensation

    PubMed Central

    Lakshminarayanan, Kishor; Lauer, Abigail W; Ramakrishnan, Viswanathan; Webster, John G; Seo, Na Jin

    2015-01-01

    A recent study showed that fingertip pads’ tactile sensation can improve by applying imperceptible white-noise vibration to the skin at the wrist or dorsum of the hand in stroke patients. This study further examined this behavior by investigating the effect of both imperceptible and perceptible white-noise vibration applied to different locations within the distal upper extremity on the fingertip pads’ tactile sensation in healthy adults. In 12 healthy adults, white-noise vibration was applied to one of four locations (dorsum hand by the second knuckle, thenar and hypothenar areas, and volar wrist) at one of four intensities (zero, 60%, 80%, and 120% of the sensory threshold for each vibration location), while the fingertip sensation, the smallest vibratory signal that could be perceived on the thumb and index fingertip pads, was assessed. Vibration intensities significantly affected the fingertip sensation (P < 0.01) in a similar manner for all four vibration locations. Specifically, vibration at 60% of the sensory threshold improved the thumb and index fingertip tactile sensation (P < 0.01), while vibration at 120% of the sensory threshold degraded the thumb and index fingertip tactile sensation (P < 0.01) and the 80% vibration did not significantly change the fingertip sensation (P > 0.01), all compared with the zero vibration condition. This effect with vibration intensity conforms to the stochastic resonance behavior. Nonspecificity to the vibration location suggests the white-noise vibration affects higher level neuronal processing for fingertip sensing. Further studies are needed to elucidate the neural pathways for distal upper extremity vibration to impact fingertip pad tactile sensation. PMID:26177959

  6. Immediate Tight Sealing of Skin Incisions Using an Innovative Temperature-controlled Laser Soldering Device

    PubMed Central

    Simhon, David; Halpern, Marisa; Brosh, Tamar; Vasilyev, Tamar; Ravid, Avi; Tennenbaum, Tamar; Nevo, Zvi; Katzir, Abraham

    2007-01-01

    Background: A feedback temperature-controlled laser soldering system (TCLS) was used for bonding skin incisions on the backs of pigs. The study was aimed: 1) to characterize the optimal soldering parameters, and 2) to compare the immediate and long-term wound healing outcomes with other wound closure modalities. Materials and Methods: A TCLS was used to bond the approximated wound margins of skin incisions on porcine backs. The reparative outcomes were evaluated macroscopically, microscopically, and immunohistochemically. Results: The optimal soldering temperature was found to be 65°C and the operating time was significantly shorter than with suturing. The immediate tight sealing of the wound by the TCLS contributed to rapid, high quality wound healing in comparison to Dermabond or Histoacryl cyanoacrylate glues or standard suturing. Conclusions: TCLS of incisions in porcine skin has numerous advantages, including rapid procedure and high quality reparative outcomes, over the common standard wound closure procedures. Further studies with a variety of skin lesions are needed before advocating this technique for clinical use. PMID:17245173

  7. Improvement of Surface skin temperature simulation over the Tibetan Plateau from an energy balance perspective

    NASA Astrophysics Data System (ADS)

    Zhuo, Haifeng

    2015-04-01

    There has a big cold bias of temperature about reanalysis and simulations over Tibetan Plateau comparing with observations. In order to solve this problem, for the land -- atmosphere interaction in arid and semi-arid region is mainly dominated by heat transfer process, a latest revision of surface sensible heat parameterization introduced by Zeng et al is then used for bare soil in WRFV3 (CLM4) model. Results show that the annual surface skin temperature has approximately up to 2.0 degree improvement on average over Tibetan Plateau. Firstly, the revised scheme changes the energy balance over and around Tibetan Plateau. It significantly reduces the overestimate of surface sensible heat and improves the surface skin temperature simulation, which tends more close to the observation. Secondly, the revised scheme weakens the sensible heat air pump effect of Tibetan Plateau. The diabatic heating reduce and the updraft airflow weaken especially over the southern slope of plateau, meanwhile the clouds thin, the incident solar radiation increases, eventually led to the increase of surface skin temperature in North India in dry season.

  8. Using skin temperature variability to quantify surface and subsurface estuarine processes

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Anderson, S. P.; Dugan, J. P.

    2012-12-01

    IR imagery is a unique tool to study nearshore processes. It not only provides a measure for surface skin temperature, but also permits the determination of surface currents. Variations in the skin temperature arise from disruption and renewal of the thermal boundary layer (TBL) as a result of wind forcing at the air-water interface, or due to turbulent eddies generated from below. The TBL plays a critical role in nearshore processes, in particular air-water heat and gas exchanges. It is essential to characterize the spatio-temporal scales of the disruption of the TBL and the extent to which it is renewed, as well as to understand how environmental factors relate to skin temperature variability. Furthermore, it is necessary to evaluate the ability not only to derive surface currents, but also to infer subsurface properties and processes from IR images. Estuarine and inlet environments such as the Hudson River are more complex, with multitude of additional processes at play, compared to the open ocean. For instance, the atmospheric boundary layer is complicated by the fact that that air is moving over both land and water, flow is fetch limited and there is orographic steering of winds. In addition, the subsurface turbulence is enhanced due to the bottom boundary layer. Here, high resolution IR imagery was collected from a ship stationed roughly 12 miles upstream of the New York Harbor in November 2010. On a nearby piling, several in situ instruments were mounted both above and below water, measuring environmental parameters such as wind speed, heat fluxes, air and water temperature, humidity as well as subsurface currents, turbulence, temperature and salinity. An IR imager installed on the cliff overlooking the river provided a complete view of the experiment area, with both the ship and the steel piling in its field of view. This study aims not only to characterize the skin temperature variability, but also to assess the validity of the various models for surface

  9. Satellite and Skin Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Bates, John J.; Scott, Donna J.

    2000-01-01

    The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in our ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and our ability to estimate and interpret the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES Imagers on the GOES 8-10 satellites are shown to have very small bias (less than 0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known "satellite midnight" calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.

  10. UVA-induced erythema, pigmentation, and skin surface temperature changes are irradiance dependent

    SciTech Connect

    Kagetsu, N.; Gange, R.W.; Parrish, J.A.

    1985-11-01

    Human cutaneous erythemogenic and melanogenic responses to long-wave (UVA) ultraviolet radiation were investigated using irradiances ranging from 5-50 mW/cm2. Skin surface temperature changes resulting from the different irradiances were also compared. In general, threshold doses for erythema and pigmentation were higher when UVA was administered at the lowest irradiance (5 mW/cm2) than at the highest (50 mW/cm2). Erythema was maximal immediately after exposure to UVA. The most intense responses (erythema with edema, or intense pigmentation) were induced more frequently by the highest irradiance. Components of both the erythema and the pigment response to UVA are therefore irradiance-dependent. The greatest increase in skin surface temperature was observed after exposure to the highest irradiance.

  11. Arterio-venous anastomoses in the human skin and their role in temperature control.

    PubMed

    Walløe, Lars

    2016-01-01

    Arterio-venous anastomoses (AVAs) are direct connections between small arteries and small veins. In humans they are numerous in the glabrous skin of the hands and feet. The AVAs are short vessel segments with a large inner diameter and a very thick muscular wall. They are densely innervated by adrenergic axons. When they are open, they provide a low-resistance connection between arteries and veins, shunting blood directly into the venous plexuses of the limbs. The AVAs play an important role in temperature regulation in humans in their thermoneutral zone, which for a naked resting human is about 26°C to 36°C, but lower when active and clothed. From the temperature control center in the hypothalamus, bursts of nerve impulses are sent simultaneously to all AVAs. The AVAs are all closed near the lower end and all open near the upper end of the thermoneutral zone. The small veins in the skin of the arms and legs are also contracted near the lower end of the thermoneutral zone and relax to a wider cross section as the ambient temperature rises. At the cold end of the thermoneutral range, the blood returns to the heart through the deep veins and cools the arterial blood through a countercurrent mechanism. As the ambient temperature rises, more blood is returned through the superficial venous plexuses and veins and heats the skin surface of the full length of the 4 limbs. This skin surface is responsible for a large part of the loss of heat from the body toward the upper end of the thermoneutral zone. PMID:27227081

  12. Arterio-venous anastomoses in the human skin and their role in temperature control

    PubMed Central

    Walløe, Lars

    2016-01-01

    ABSTRACT Arterio-venous anastomoses (AVAs) are direct connections between small arteries and small veins. In humans they are numerous in the glabrous skin of the hands and feet. The AVAs are short vessel segments with a large inner diameter and a very thick muscular wall. They are densely innervated by adrenergic axons. When they are open, they provide a low-resistance connection between arteries and veins, shunting blood directly into the venous plexuses of the limbs. The AVAs play an important role in temperature regulation in humans in their thermoneutral zone, which for a naked resting human is about 26°C to 36°C, but lower when active and clothed. From the temperature control center in the hypothalamus, bursts of nerve impulses are sent simultaneously to all AVAs. The AVAs are all closed near the lower end and all open near the upper end of the thermoneutral zone. The small veins in the skin of the arms and legs are also contracted near the lower end of the thermoneutral zone and relax to a wider cross section as the ambient temperature rises. At the cold end of the thermoneutral range, the blood returns to the heart through the deep veins and cools the arterial blood through a countercurrent mechanism. As the ambient temperature rises, more blood is returned through the superficial venous plexuses and veins and heats the skin surface of the full length of the 4 limbs. This skin surface is responsible for a large part of the loss of heat from the body toward the upper end of the thermoneutral zone. PMID:27227081

  13. Effects of gestational and postnatal age on body temperature, oxygen consumption, and activity during early skin-to-skin contact between preterm infants of 25-30-week gestation and their mothers.

    PubMed

    Bauer, K; Pyper, A; Sperling, P; Uhrig, C; Versmold, H

    1998-08-01

    Temporary skin-to-skin contact between preterm infant and the mother is increasingly used in neonatal medicine to promote bonding. It is not known at which gestational age (GA) and postnatal age skin-to-skin contact outside the incubator is a sufficiently warm environment and is tolerated by preterm infants without a decrease in body temperature, oxygen consumption (VO2) increase, or unrest. We conducted a prospective clinical study of 27 spontaneously breathing preterm infants of 25-30-wk GA. Rectal temperature (Trecta), VO2 (indirect calorimetry), and activity were continuously measured in the incubator (60 min), during skin-to-skin contact (60 min), and back in the incubator (60 min) in wk 1 and 2 of life. In wk 1 the change in Trectal during skin-to-skin contact was related to GA (r=0.585, p=0.0027): infants of 25-27-wk GA lost heat during skin-to-skin contact, whereas infants of 28-30 wk gained heat and their mean Trectal during skin-to-skin contact was 0.3 degrees C higher than before (p < 0.01). No significant changes of VO2 or activity occurred. In wk 2 the infants' VO2 was higher than in wk 1, but VO2 during skin-to-skin contact was the same as in the incubator. Only small fluctuations in Trectal occurred. In wk 2 all infants slept more during skin-to-skin contact than in the incubator (p < 0.02). We conclude that, for preterm infants of 28-30-wk GA, skin-to-skin contact was a sufficiently warm environment as early as postnatal wk 1. For infants of 25-27-wk GA skin-to-skin contact should be postponed until wk 2 of life, when their body temperature remains stable and they are more quiet during skin-to-skin contact than in the incubator. PMID:9702922

  14. Topical anaesthesia does not affect cutaneous vasomotor or sudomotor responses in human skin.

    PubMed

    Metzler-Wilson, K; Wilson, T E

    2013-10-01

    (1) The effects of local sensory blockade (topical anaesthesia) on eccrine sweat glands and cutaneous circulation are not well understood. This study aimed to determine whether topical lidocaine/prilocaine alters eccrine sweat gland and cutaneous blood vessel responses. (2) Sweating (capacitance hygrometry) was induced via forearm intradermal microdialysis of five acetylcholine (ACh) doses (1 × 10(-4) to 1 × 10(0) m, 10-fold increments) in control and treated forearm sites in six healthy subjects. Nitric oxide-mediated vasodilatory (sodium nitroprusside) and adrenergic vasoconstrictor (noradrenaline) agonists were iontophoresed in lidocaine/prilocaine-treated and control forearm skin in nine healthy subjects during blood flow assessment (laser Doppler flowmetry, expressed as% from baseline cutaneous vascular conductance; CVC; flux/mean arterial pressure). (3) Non-linear regression curve fitting identified no change in the ED50 of ACh-induced sweating after sensory blockade (-1.42 ± 0.23 logM) compared to control (-1.27 ± 0.23 logM; P > .05) or in Emax (0.43 ± 0.08 with, 0.53 ± 0.16 mg cm(-2) min(-1) without lidocaine/prilocaine; P > .05). Sensory blockade did not alter the vasodilator response to sodium nitroprusside (1280 ± 548% change from baseline CVC with, 1204 ± 247% without lidocaine/prilocaine) or vasoconstrictor response to noradrenaline (-14 ± 4% change from baseline CVC with, -22 ± 14% without lidocaine/prilocaine; P > 0.05). (4) Cutaneous sensory blockade does not appear to alter nitric oxide-mediated vasodilation, adrenergic vasoconstriction, or cholinergic eccrine sweating dose-response sensitivity or responsiveness to maximal dose. Thus, lidocaine/prilocaine treatment should not affect sweat gland function or have blood flow implications for subsequent research protocols or clinical procedures. PMID:23663206

  15. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.

    PubMed

    Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A

    2016-09-01

    The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. PMID:27287726

  16. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off

    PubMed Central

    Bracci, Massimo; Ciarapica, Veronica; Copertaro, Alfredo; Barbaresi, Mariella; Manzella, Nicola; Tomasetti, Marco; Gaetani, Simona; Monaco, Federica; Amati, Monica; Valentino, Matteo; Rapisarda, Venerando; Santarelli, Lory

    2016-01-01

    The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers. PMID:27128899

  17. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off.

    PubMed

    Bracci, Massimo; Ciarapica, Veronica; Copertaro, Alfredo; Barbaresi, Mariella; Manzella, Nicola; Tomasetti, Marco; Gaetani, Simona; Monaco, Federica; Amati, Monica; Valentino, Matteo; Rapisarda, Venerando; Santarelli, Lory

    2016-01-01

    The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers. PMID:27128899

  18. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage. PMID:22773133

  19. Factors affecting rectal temperature measurement using commonly available digital thermometers.

    PubMed

    Naylor, Jonathan M; Streeter, Renee M; Torgerson, Paul

    2012-02-01

    Rectal temperature measurement is an essential part of physical examination of cattle and some physiological experiments. Modern digital thermometers are often used to measure rectal temperatures by students; this study describes their reliability and appropriate use. Students measured rectal temperature on 53 occasions using their personal digital thermometer and techniques gained from previous instruction, rectal temperature was also measured by an experienced person using a Cornell mercury thermometer completely inserted in the rectum. Cornell mercury thermometers values were 38.95±0.05°C (mean±1 SE, n=53). Student rectal temperature measurements using their initial technique were nearly 0.5°C lower, 38.46±0.07°C. After receiving instruction to insert the digital thermometer to the window, student obtained values were 38.77±0.06°C; these are significantly higher than with the student's initial technique and closer to those obtained with a Cornell thermometer. In a series of 53 water bath tests, student owned thermometers recorded similar mean values to those of a traceable (reference) digital thermometer, Cornell mercury thermometer readings were 0.2°C higher. 10 individual digital thermometers were repeatedly tested against a traceable thermometer in a water bath, one was inaccurate. In a separate experiment a trained clinician tested the effect of angle of insertion of a digital thermometer on temperature readings and the affect was <0.1°C. We conclude that accurate temperature measurements using digital thermometers are only likely if the thermometer is inserted to the beginning of the window and the thermometer's accuracy is checked periodically. PMID:21147490

  20. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.

    PubMed

    Patel, S; Knapp, C F; Donofrio, J C; Salcido, R

    1999-07-01

    The effect of varying local skin temperature on surface pressure-induced changes in skin perfusion and deformation was determined in hairless fuzzy rats (13.5+/-3 mo, 474+/-25 g). Skin surface pressure was applied by a computer-controlled plunger with corresponding skin deformation measured by a linear variable differential transformer while a laser Doppler flowmeter measured skin perfusion. In Protocol I, skin surface perfusion was measured without heating (control, T=28 degrees C), with heating (T=36 degrees C), for control (probe just touching skin, 3.7 mmHg), and at two different skin surface pressures, 18 mmHg and 73 mmHg. Heating caused perfusion to increase at control and 18 mmHg pressure, but not at 73 mmHg. In Protocol II, skin perfusion was measured with and without heating as in Protocol I, but this time skin surface pressure was increased from 3.7 to 62 mmHg in increments of 3.7 mmHg. For unheated skin, perfusion increased as skin surface pressure increased from 3.7 to 18 mmHg. Further increases in surface pressure caused a decrease in perfusion until zero perfusion was reached for pressures over 55 mmHg. Heating increased skin perfusion for surface pressures from 3.7 to 18 mmHg, but not for pressures greater than 18 mmHg. After the release of surface pressure, the reactive hyperemia peak of perfusion increased with heating. In Protocol III, where skin deformation (creep and relaxation) was measured during the application of 3.7 and 18 mmHg, heating caused the tissue to be stiffer, allowing less deformation. It was found that for surface pressures below 18 mmHg, increasing skin temperature significantly increased skin perfusion and tissue stiffness. The clinical significance of these findings may have relevance in evaluating temperature and pressure effects on skin blood flow and deformation as well as the efficacy of using temperature as a therapeutic modality in the treatment of pressure ulcers. PMID:10659802

  1. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  2. Hand and finger skin temperatures in convective and contact cold exposure.

    PubMed

    Chen, F; Liu, Z Y; Holmér, I

    1996-01-01

    The present study aimed at investigating the spatial variability of skin temperature (Tsk) measured at various points on the hand during convective and cold contact exposure. A group of 8 subjects participated in a study of convective cooling of the hand (60 min) and 20 subjects to contact cooling of the finger pad (5 min). Experiments were carried out in a small climatic chamber into which the hand was inserted. For convective cold exposure, Tsk was measured at seven points on the palmer surface of the fingers of the left hand, one on the palmar surface and one on the dorsal surface of the hand. The air temperature inside the mini-chamber was 0, 4, 10 and 16 degrees C. With the contact cold exposure, the subjects touched at constant pressures an aluminum cube cooled to temperatures of -7, 0 and 7 degrees C in the same mini-chamber. Contact Tsk was measured on the finger pad of the index finger of the left hand. The Tsk of the proximal phalanx of the index finger (on both palm and back sides), and of the middle phalanx of the little finger was also measured. The variation of Tsk between the proximal and the distal phalanx of the index finger was between 1.5 to 10 degrees C during the convective cold exposure to an air temperature of 0 degree C. Considerable gradients persisted between the hand and fingers (from 2 to 17 degrees C at 0 degree C air temperature) and between the phalanges of the finger (from 0.5 to 11.4 degrees C at 0 degree C air temperature). The onset of cold induced vasodilatation (CIVD) on different fingers varied from about 5 to 15 min and it did not always appear in every finger. For contact cold exposure, when Tsk on the contact skin cooled down to nearly 0 degree C, the temperature at the area close to the contact skin could still be 30 degrees C. Some cases of CIVD were observed in the contact skin area, but not on other measuring points of the same finger. These results indicated that local thermal stimuli were the temperature may require

  3. Impact of skin temperature and hydration on plasma volume responses during exercise.

    PubMed

    Kenefick, Robert W; Sollanek, Kurt J; Charkoudian, Nisha; Sawka, Michael N

    2014-08-15

    Heat stress and hydration may both alter plasma volume (PV) responses during acute exercise; potential interactions have not been fully studied. The purpose of this study was to determine the effect of graded elevations in skin temperature (Tsk) on PV changes during steady-state exercise under conditions of euhydration (EU) and hypohydration (HYPO, -4% of body mass). Thirty-two men (22 ± 4 yr) were divided into four cohorts (n = 8 each) and completed EU and HYPO trials in one environment [ambient temperature (Ta) 10, 20, 30, and 40°C]. Thirty minutes of cycle ergometry (50% V̇o2peak) was performed. Core (Tre) and mean skin (Tsk) temperatures were measured; changes in PV, total circulating protein (TCP), and mean arterial pressure (MAP) were calculated; and skin blood flow (SkBF) was estimated. Hypohydration decreased (P < 0.05) PV by 200 ml (-5.7%) but did not alter TCP. Plasma loss was not different between EU and HYPO during exercise at any Ta. Plasma losses were greater (P < 0.05) with elevated Ta with an average -130, -174, -294, and -445 ml losses during the 10, 20, 30, and 40°C trials, respectively. Significant (P < 0.05) correlations (r = 0.50 to 0.84) were found between ΔTCP and ΔPV during exercise when Tsk was cool/warm (<33°C; Ta 10, 20, and 30°C), but not at 40°C (high Tsk). We conclude that 1) graded skin warming proportionally accentuated plasma loss; 2) plasma loss was associated with plasma protein efflux at lower Tsk and SkBF; 3) at high Tsk, additional plasma loss likely results from increased net filtration at the capillaries; and 4) HYPO did not alter vascular fluid loss during exercise in any environment. PMID:24994888

  4. Transdermal glyceryl trinitrate (nitroglycerin) in healthy persons: acute effects on skin temperature and hemodynamic orthostatic response.

    PubMed

    Haebisch, E M

    1995-01-01

    In order to find an explanation for individual reactions to transdermal glyceryl trinitrate (GTN) we studied the skin temperature and hemodynamic reactions in 63 healthy persons. The data were obtained before and after the application of GTN and Glycerin (GL) placebo patches, during one hour. The skin temperature was measured on both forearms, the local (left sided) and systemic (right sided) reaction on GTN was related to the skin fold and the calculated body fat content. The bilateral rise of skin temperature and its duration was higher and longer in obese than in lean persons mainly in obese women. The UV induced thermo and the later photothermoreaction (Erythema) was reduced on the left forearm after the application of GTN and GL patches. The observed hemodynamic GTN effect confirmed known postural reactions, such as decreased arterial pressure (delta mAP = -2.9%), increased heart rate (delta HR = +7.4%) and QTc prolongation (delta QTc = +4.9%) in upright position. An adverse drug effect with increased mean blood pressure (delta mAP = +12%) and increased heart rate (delta HR = +10.4%) mainly in supine position was observed in 11% of the participants, but only in men. Such a reaction was already described by Murell, 1879. Individual GTN effects were analyzed and related to habits and family history. In male smokers and in persons with hypertensive and diabetic close relatives, the hypotensive GTN effect was accentuated in supine position. In the upright position the group with hypertensives in the family presented a moderate hypotensive reaction without secondary tachycardia and the smokers presented only a slightly increased heart rate. Our observations suggest that individual reactions to transdermal glyceryl trinitrate (GTN) with its active component nitric oxide (NO) depends on physiological conditions, related to endogenous vasoactive substances, mainly the interaction with EDRF (the endogenous NO) and the activity of the Renin-Angiotensin System. PMID

  5. How does temperature affect the function of tissue macrophages?

    NASA Astrophysics Data System (ADS)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  6. Temperature Affects Human Sweet Taste via At Least Two Mechanisms

    PubMed Central

    Nachtigal, Danielle

    2015-01-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5–41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5–12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2–T1R3 transduction cascade. PMID:25963040

  7. Temperature Affects Human Sweet Taste via At Least Two Mechanisms.

    PubMed

    Green, Barry G; Nachtigal, Danielle

    2015-07-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5-41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5-12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2-T1R3 transduction cascade. PMID:25963040

  8. PREDICTIVE MODEL FOR SURVIVAL AND GROWTH OF SALMONELLA TYPHIMURIUM DT104 ON CHICKEN SKIN DURING TEMPERATURE ABUSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better predict risk of Salmonella infection from chicken subjected to temperature abuse, a study was undertaken to develop a predictive model for survival and growth of Salmonella Typhimurium DT104 on chicken skin with native micro flora. For model development, chicken skin portions were inocula...

  9. [Evaluation of postoperative mucosa and skin temperature after surgery for impacted third molar].

    PubMed

    Sortino, F; Messina, G; Pulvirenti, G

    2003-01-01

    Surgery for impacted third molar is often characterized, in the postoperative period, by pain, trismus and swelling. The study evaluates temperature variations of mucosa and skin after application of ice packs, in three different modalities, to the region overlying the surgical site. The goal was to identify any correlation between variations of temperature and postoperative clinical symptoms. For this purpose we selected 54 patients programmed for impacted third molar surgery. The patients were divided into three groups of 18. Time and frequency of application of the ice pack varied in the three groups; 5'/30' (group 1); 10'/60' (group 2); 20'/60' (group 3). During the four hours following surgery, temperatures of mucosa and of skin at the surgical site were measured with high-precision thermocouples, maximum response 5". The results indicate that application of an ice pack for 5'/30' or for 10'/60' controls the temperature of the mucosa post-surgery more effectively, and that the duration of surgery appears not to influence temperature variations. In the postoperative phase we recommend a rational application of ice packs appropriate to the constitution of each patient. PMID:14608260

  10. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.

    PubMed

    Deng, Zhong-Shan; Liu, Jing

    2004-09-01

    In non-invasive thermal diagnostics, accurate correlations between the thermal image on skin surface and interior human pathophysiology are often desired, which require general solutions for the bioheat equation. In this study, the Monte Carlo method was implemented to solve the transient three-dimensional bio-heat transfer problem with non-linear boundary conditions (simultaneously with convection, radiation and evaporation) and space-dependent thermal physiological parameters. Detailed computations indicated that the thermal states of biological bodies, reflecting physiological conditions, could be correlated to the temperature or heat flux mapping recorded at the skin surface. The effect of the skin emissivity and humidity, the convective heat transfer coefficient, the relative humidity and temperature of the surrounding air, the metabolic rate and blood perfusion rate in the tumor, and the tumor size and number on the sensitivity of thermography are comprehensively investigated. Moreover, several thermal criteria for disease diagnostic were proposed based on statistical principles. Implementations of this study for the clinical thermal diagnostics are discussed. PMID:15265721

  11. A comprehensive comparison between satellite-measured skin and multichannel sea surface temperature

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Schluessel, Peter

    1992-01-01

    Three algorithms for computing sea-surface temperature (SST) from AVHRR channel-4 and -5 brightness temperatures were compared using 1-week blocks of global-area-coverage (GAC) data archived at NCAR. These are the multichannel SST (MCSST), the cross-product SST (CPSST), and the AVHRR-only satellite-measured ocean-surface skin temperature (SMSST). Maps of each SST product were produced and were compared for various time periods. The difference between the algorithms range from +1.6 to -1.2 K, resulting from the different forms of both the algorithms and the ground truth from which the algorithms were derived. It is concluded that, for the study of relative SST patterns, any of the algorithms can be used. However, for applications requiring accurate absolute temperature measurements, the differences are significant and the derivation of the algorithm must be considered when an algorithm is selected.

  12. Does lactobionic acid affect the colloidal structure and skin moisturizing potential of the alkyl polyglucoside-based emulsion systems?

    PubMed

    Tasic-Kostov, M Z; Reichl, S; Lukic, M Z; Jaksic, I N; Savic, S D

    2011-11-01

    Moisturizing creams are the most prescribed products in dermatology, essential in maintaining healthy skin as well as in the topical treatment of some diseases. The irritation potential of commonly used emulsifiers and moisturizing ingredients, but also their mutual interactions, could affect the functionality and safety of those dermopharmaceutics. The aim of this study was to promote moisturizing alkyl polyglucoside (APG)-based emulsion as vehicle for lactobionic acid (LA), advantageous representative of the alphahydroxyacids (AHAs)-multifunctional moisturizers, assessing the safety for use (in vitro acute skin irritation test using cytotoxicity assay compared with in vivo data obtained using skin bioengineering methods) and in vivo moisturizing capacity (bioengineering of the skin). In order to investigate possible interactions between APG mild natural emulsifier-based emulsion and LA, a deeper insight into the colloidal structure of the placebo and the emulsion with LA was given using polarization and transmission electron microscopy, rheology, thermal and texture analysis. This study showed that APG-based emulsions could be promoted as safe cosmetic/dermopharmaceutical vehicles and carriers for extremely acidic and hygroscopic AHA class of actives (specifically LA); prospective safety for human use of both APG and LA with the correlation between in vivo and in vitro findings was shown. However, it was revealed that LA strongly influenced the colloidal structure of the emulsion based on APGs and promoted the formation of lamellar structures which reflects onto the mode of water distribution within the cream. The advantageous skin hydrating potential of LA-containing emulsion vs. placebo was unlikely to be achieved, pointing that emulsions stabilized by lamellar liquid crystalline structures probably are not satisfying carriers for highly hygroscopic actives in order to reach the full moisturizing potential. Safe and effective use on dry skin is presumed. PMID

  13. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Trigo, I. F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I.

    2015-12-01

    The coupling between land surface and the atmosphere is a key feature in Earth System Modeling for exploiting the predictability of slowly evolving geophysical variables (e.g., soil moisture or vegetation state), and for correctly representing rapid variations within the diurnal cycle, particularly relevant in data assimilation applications. In this study, land surface temperature (LST) estimated from Meteosat Second Generation (MSG) is used to assess the European Centre for Medium-Range Weather Forecasts (ECMWF) skin temperature, which can be interpreted as a radiative temperature of the model surface. It is shown that the ECMWF model tends to slightly overestimate skin temperature during nighttime and underestimate daytime values. Such underestimation of daily amplitudes is particularly pronounced in (semiarid) arid regions, suggesting a misrepresentation of surface energy fluxes in those areas. The LST estimated from MSG is used to evaluate the impact of changes in some of the ECMWF model surface parameters. The introduction of more realistic model vegetation is shown to have a positive but limited impact on skin temperature: long integration leads to an equilibrium state where changes in the latent heat flux and soil moisture availability compensate each other. Revised surface roughness lengths for heat and momentum, however, lead to overall positive impact on daytime skin temperature, mostly due to a reduction of sensible heat flux. This is particularly relevant in nonvegetated areas, unaffected by model vegetation. The reduction of skin conductivity, a parameter which controls the heat transfer to ground by diffusion, is shown to further improve the model skin temperature.

  14. Temperature affects the silicate morphology in a diatom

    PubMed Central

    Javaheri, N.; Dries, R.; Burson, A.; Stal, L. J.; Sloot, P. M. A.; Kaandorp, J. A.

    2015-01-01

    Silica deposition by diatoms, a common component of the phytoplankton, has attracted considerable interest given the importance in ecology and materials science. There has recently been a great deal of research into the biological control of biosilicifcation, yet the in vivo physical and chemical effects have not been quantitatively investigated. We have grown the marine diatom Thalassiosira pseudonana in batch culture at three temperatures (14o, 18o, and 23 °C). We observed three distinct temperature-dependent growth phases. The morphology of silica was investigated using scanning electron microscopy followed by image analysis and supervised learning. The silica in the valves of the same species showed different structures: a mesh-like pattern in silicon-rich cultures and a tree-like pattern in silicon-limited cultures. Moreover, temperature affected this silica pattern, especially in silicon-limited cultures. We conclude that cells grown at 14 °C and 18 °C divide more successfully in Si-limited conditions by developing a tree-like pattern (lower silicification). PMID:26113515

  15. Mild cold effects on hunger, food intake, satiety and skin temperature in humans

    PubMed Central

    Langeveld, M; Tan, C Y; Virtue, S; Ambler, G K; Watson, L P E; Murgatroyd, P R; Chatterjee, V K; Vidal-Puig, A

    2016-01-01

    Background Mild cold exposure increases energy expenditure and can influence energy balance, but at the same time it does not increase appetite and energy intake. Objective To quantify dermal insulative cold response, we assessed thermal comfort and skin temperatures changes by infrared thermography. Methods We exposed healthy volunteers to either a single episode of environmental mild cold or thermoneutrality. We measured hunger sensation and actual free food intake. After a thermoneutral overnight stay, five males and five females were exposed to either 18°C (mild cold) or 24°C (thermoneutrality) for 2.5 h. Metabolic rate, vital signs, skin temperature, blood biochemistry, cold and hunger scores were measured at baseline and for every 30 min during the temperature intervention. This was followed by an ad libitum meal to obtain the actual desired energy intake after cold exposure. Results We could replicate the cold-induced increase in REE. But no differences were detected in hunger, food intake, or satiety after mild cold exposure compared with thermoneutrality. After long-term cold exposure, high cold sensation scores were reported, which were negatively correlated with thermogenesis. Skin temperature in the sternal area was tightly correlated with the increase in energy expenditure. Conclusions It is concluded that short-term mild cold exposure increases energy expenditure without changes in food intake. Mild cold exposure resulted in significant thermal discomfort, which was negatively correlated with the increase in energy expenditure. Moreover, there is a great between-subject variability in cold response. These data provide further insights on cold exposure as an anti-obesity measure. PMID:26864459

  16. Prolonged physical inactivity leads to a drop in toe skin temperature during local cold stress.

    PubMed

    Keramidas, Michail E; Kölegård, Roger; Eiken, Ola; Mekjavic, Igor B

    2014-03-01

    The purpose was to examine the effects of a prolonged period of recumbency on the toe temperature responses during cold-water foot immersion. Ten healthy males underwent 35 days of horizontal bed rest. The right foot of the subjects was assigned as the experimental (EXP) foot. To prevent bed rest-induced vascular deconditioning in the left control foot (CON), a sub-atmospheric vascular pressure countermeasure regimen was applied on the left lower leg for 4 × 10 min every second day. On the first (BR-1) and the last (BR-35) day of the bed rest, subjects performed two 30 min foot immersion tests in 8 °C water, one with the EXP foot and the other with the CON foot. The tests were conducted in counter-balanced order and separated by at least a 15 min interval. At BR-35, the average skin temperature of the EXP foot was lower than at BR-1 (-0.8 °C; P = 0.05), a drop that was especially pronounced in the big toe (-1.6 °C; P = 0.05). In the CON foot, the average skin temperature decreased by 0.6 °C in BR-35, albeit the reduction was not statistically significant (P = 0.16). Moreover, the pressure countermeasure regimen ameliorated immersion-induced thermal discomfort for the CON foot (P = 0.05). Present findings suggest that severe physical inactivity exaggerates the drop in toe skin temperature during local cold stress, and thus might constitute a potential risk factor for local cold injury. PMID:24552380

  17. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  18. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Aires, Filipe; Rossow, William B.

    2003-05-01

    A neural network inversion scheme including first guess information has been developed to retrieve surface temperature Ts, along with atmospheric water vapor, cloud liquid water, and surface emissivities over land from a combined analysis of Special Sensor Microwave/Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence of routine in situ surface skin measurements, retrieved Ts values are evaluated by comparison to the surface air temperature Tair measured by the meteorological station network. The Ts - Tair difference shows all the expected variations with solar flux, soil characteristics, and cloudiness. During daytime the Ts - Tair difference is driven by the solar insulation, with positive differences that increase with increasing solar flux. With decreasing soil and vegetation moisture the evaporation rate decreases, increasing the sensible heat flux, thus requiring larger Ts - Tair differences. Nighttime Ts - Tair differences are governed by the longwave radiation balance, with Ts usually closer or lower than Tair. The presence of clouds dampens all the difference. After suppression of the variability associated to the diurnal solar flux variations, the Ts and Tair data sets show very good agreement in their synoptic variations, even for cloudy cases, with no bias and a global rms difference of ˜2.9 K. This value is an upper limit of the retrieval rms because it includes errors in the in situ data as well as errors related to imperfect time and space collocations between the satellite and in situ measurements.

  19. No effect of skin temperature on human ventilation response to hypercapnia during light exercise with a normothermic core temperature.

    PubMed

    Greiner, Jesse G; Clegg, Miriam E; Walsh, Michael L; White, Matthew D

    2010-05-01

    Hyperthermia potentiates the influence of CO(2) on pulmonary ventilation (.V(E)). It remains to be resolved how skin and core temperatures contribute to the elevated exercise ventilation response to CO(2). This study was conducted to assess the influences of mean skin temperature (_T(SK)) and end-tidal PCO(2) (P(ET)CO(2)) on .V(E) during submaximal exercise with a normothermic esophageal temperature (T(ES)). Five males and three females who were 1.76 +/- 0.11 m tall (mean +/- SD), 75.8 +/- 15.6 kg in weight and 22.0 +/- 2.2 years of age performed three 1 h exercise trials in a climatic chamber with the relative humidity (RH) held at 31.5 +/- 9.5% and the ambient temperature (T (AMB)) maintained at one of 25, 30, or 35 degrees C. In each trial, the volunteer breathed eucapnic air for 5 min during a rest period and subsequently cycle ergometer exercised at 50 W until T (ES) stabilized at approximately 37.1 +/- 0.4 degrees C. Once T (ES) stabilized in each trial, the volunteer breathed hypercapnic air twice for approximately 5 min with P(ET)CO(2) elevated by approximately +4 or +7.5 mmHg. The significantly (P < 0.05) different increases of P(ET)CO(2) of +4.20 +/- 0.49 and +7.40 +/- 0.51 mmHg gave proportionately larger increases in .V(E) of 10.9 +/- 3.6 and 15.2 +/- 3.6 L min(-1) (P = 0.001). This hypercapnia-induced hyperventilation was uninfluenced by varying the _T(SK) to three significantly different levels (P < 0.001) of 33.2 +/- 1.2 degrees C, to 34.5 +/- 0.8 degrees C to 36.4 +/- 0.5 degrees C. In conclusion, the results support that skin temperature between approximately 33 and approximately 36 degrees C has neither effect on pulmonary ventilation nor on hypercapnia-induced hyperventilation during a light exercise with a normothermic core temperature. PMID:20087599

  20. Spatial Mathematical Model of Heat Transfer in Human Skin Influenced by Heated up to High Temperatures Particle

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Solodkin, Andrey S.; Stuparenko, Alexandr A.

    2016-02-01

    Numerical research results of heat transfer in system "air-heated particle-skin layer" presented. Skin was influenced by heated up to high temperatures particle. The problem is solved in tree-dimensional statement in Cartesian system of coordinates. The typical range of influence parameters of heated particle considered. Temperature distributions in different moments of time obtained. Condition of burn occurrence by heated particle is under consideration in this research.

  1. Reliability of an infrared forehead skin thermometer for core temperature measurements.

    PubMed

    Kistemaker, J A; Den Hartog, E A; Daanen, H A M

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal sensor, with an oesophageal sensor and with the SensorTouch. After entering a warm chamber the SensorTouch underestimated the core temperature during the first 10 minutes. After that, the SensorTouch was not significantly different from the core temperature, with an average difference of 0.5 degrees C (SD 0.5 degrees C) in the first study and 0.3 degrees C (SD 0.2 degrees C) in the second study. The largest differences between the SensorTouch and the core temperature existed 15 minutes after the start of the exercise. During this period the SensorTouch was significantly higher than the core temperature. The SensorTouch did not provide reliable values of the body temperature during periods of increasing body temperature, but the SensorTouch might work under stable conditions. PMID:16864237

  2. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration.

    PubMed

    Nielsen, Jesper Bo; Sørensen, Jens Ahm

    2012-02-15

    Protective gloves are used to reduce dermal exposure when managing chemical exposures at the work place. Different glove materials may offer different degrees of protection. The present study combined the traditional ASTM (American Society for Testing and Materials) model with the Franz diffusion cell to evaluate overall penetration through glove and skin as well as the deposition in the different reservoirs. Benzoic acid was applied on latex or nitrile gloves placed on top of human skin. The amounts of chemical were quantified in the glove material, between glove and skin, within the skin, and in the receptor chamber. Both glove materials reduce total penetration of benzoic acid, but nitrile gloves offer a significantly better protection than latex gloves. This difference was less pronounced at the higher of the two concentrations of benzoic acid applied. Thus, glove types that offer relevant protection at low concentrations does not necessarily give appropriate protection at high concentrations. Significant amounts of benzoic acid could be extracted from the glove materials after exposure. If a chemical is accumulated in the glove material, reuse of single-use gloves should be cautioned. The reuse of gloves is generally not to be recommended without effective decontamination. PMID:22264917

  3. Investigating the roles of core and local temperature on forearm skin blood flow.

    PubMed

    Mallette, Matthew M; Hodges, Gary J; McGarr, Gregory W; Gabriel, David A; Cheung, Stephen S

    2016-07-01

    We sought to isolate the contributions of core and local temperature on forearm skin blood flow (SkBF), and to examine the interaction between local- and reflexive-mechanisms of SkBF control. Forearm SkBF was assessed using laser-Doppler flowmetry in eight males and eight females during normothermia and hyperthermia (+1.2°C rectal temperature). Mean experimental forearm temperature was manipulated in four, 5min blocks between neutral (A: 33.0°C) and warm (B: 38.5°C) in an A-B-A-B fashion during normothermia, and B-A-B-A during hyperthermia. Mean control forearm skin temperature was maintained at ~33°C. Finally, local heating to 44°C was performed on both forearms to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. No sex differences were observed in any CVC measures (P>0.05). During normothermia, increasing experimental forearm temperature to 38.5°C elevated CVC by 42±8%max (d=3.1, P<0.001). Subsequently decreasing experimental forearm temperature back down to 33.0°C reduced CVC by 36±7%max (d=2.5, P<0.001). Finally, the second increase in experimental forearm temperature to 38.5°C increased CVC by 25±6%max (d=1.9, P<0.0001). During hyperthermia, decreasing experimental forearm temperature to 33.0°C reduced CVC by 6±1%max (d=0.5, P<0.001). Increasing experimental forearm temperature to 38.5°C increased CVC by 4±2%max (d=0.4, P<0.001). Finally, decreasing experimental forearm temperature to 33.0°C reduced CVC by 8±2%max (d=0.7, P<0.001). Compared to normothermia, CVC responses to local temperature changes during hyperthermia were almost abolished (normothermia: d=1.9-3.1; hyperthermia: d=0.4-0.7). These data indicate that local temperature drives SkBF during normothermia, while reflexive mechanisms regulate SkBF during hyperthermia. PMID:27072118

  4. Factors affecting characterization of bulk high-temperature superconductors

    SciTech Connect

    Hull, J.R.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  5. Factors affecting growth and toxin production by Clostridium botulinum type E on irradiated (0. 3 Mrad) chicken skins

    SciTech Connect

    Firstenberg-Eden, R.; Rowley, D.B.; Shattuck, G.E.

    1982-05-01

    A model system (chicken skins with chicken exudate) was used to determine if Clostridium botulinum type E (Beluga) spores, stressed by low dose irradiation, would develop and produce toxin at abuse temperatures of 10 and 30/sup 0/C in the absence of characteristic spoilage. Unstressed spores germinated, multiplied, and produced toxin on vacuum-packed chicken skins, stored at either 30 or 10/sup 0/C. Cell numbers increased faster and toxin was evident sooner at 30/sup 0/C than at 10/sup 0/C. At 30/sup 0/C, growth occurred and toxin was produced more slowly when samples were incubated aerobically than anaerobically. When samples were incubated aerobically at 10/sup 0/C, no toxin was detected within a test period of 14 days. An irradiation dose of 0.3 Mrad at 5/sup 0/C reduced a spore population on vacuum-sealed chicken skins by about 90%. The surviving population produced toxin at 30/sup 0/C under either aerobic or anaerobic conditions, at 10/sup 0/C no toxin was detected even on skins incubated anaerobically. Under the worst conditions (30/sup 0/C, vacuum packed) toxin was not detected prior to characteristic spoilage caused by the natural flora surviving 0.3 Mrad.

  6. High-temperature gas chromatography-mass spectrometry for skin surface lipids profiling[S

    PubMed Central

    Michael-Jubeli, Rime; Bleton, Jean; Baillet-Guffroy, Arlette

    2011-01-01

    Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved. PMID:20952798

  7. Riverine skin temperature response to subsurface processes in low wind speeds

    NASA Astrophysics Data System (ADS)

    Brumer, Sophia E.; Zappa, Christopher J.; Anderson, Steven P.; Dugan, John P.

    2016-03-01

    Both surface and subsurface processes modulate the surface thermal skin and as such the skin temperature may serve as an indicator for coastal, estuarine, and alluvial processes. Infrared (IR) imagery offers the unique tool to survey such systems, allowing not only to assess temperature variability of the thermal boundary layer, but also to derive surface flow fields through digital particle image velocimetry, optical flow techniques, or spectral methods. In this study, IR time-series imagery taken from a boat moored in the Hudson River estuary is used to determine surface flow, turbulent kinetic energy dissipation rate, and characteristic temperature and velocity length scales. These are linked to subsurface measurements provided by in situ instruments. Under the low wind conditions and weak stratification, surface currents and dissipation rate are found to reflect subsurface mean flow (r2 = 0.89) and turbulence (r2 = 0.75). For relatively low dissipation rates, better correlations are obtained by computing dissipation rates directly from wavenumber spectra rather than when having to assume the validity of the Taylor hypothesis. Furthermore, the subsurface dissipation rate scales with the surface length scales (L) and mean flow (U) using ɛ ∝ U3/L (r2 = 0.9). The surface length scale derived from the thermal fields is found to have a strong linear relationship (r2 = 0.88) to water depth (D) with (D/L) ˜ 13. Such a relation may prove useful for remote bathymetric surveys when no waves are present.

  8. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat.

    PubMed

    Faulkner, S H; Hupperets, M; Hodder, S G; Havenith, G

    2015-06-01

    Self-paced endurance performance is compromised by moderate-to-high ambient temperatures that are evident in many competitive settings. It has become common place to implement precooling prior to competition in an attempt to alleviate perceived thermal load and performance decline. The present study aimed to investigate precooling incorporating different cooling avenues via either evaporative cooling alone or in combination with conductive cooling on cycling time trial performance. Ten trained male cyclists completed a time trial on three occasions in hot (35 °C) ambient conditions with the cooling garment prepared by (a) immersion in water (COOL, evaporative); (b) immersion in water and frozen (COLD, evaporative and conductive); or (c) no precooling (CONT). COLD improved time trial performance by 5.8% and 2.6% vs CONT and COOL, respectively (both P < 0.05). Power output was 4.5% higher for COLD vs CONT (P < 0.05). Mean skin temperature was lower at the onset of the time trial following COLD compared with COOL and CONT (both P < 0.05) and lasted for the first 20% of the time trial. Thermal sensation was perceived cooler following COOL and COLD. The combination of evaporative and conductive cooling (COLD) had the greatest benefit to performance, which is suggested to be driven by reduced skin temperature following cooling. PMID:25943669

  9. Thermographical measuring of the skin temperature using laser needle acupuncture in preterm neonates.

    PubMed

    Raith, Wolfgang; Litscher, Gerhard; Sapetschnig, Iris; Bauchinger, Sebastian; Ziehenberger, Evelyne; Müller, Wilhelm; Urlesberger, Berndt

    2012-01-01

    In children, laser acupuncture is used more often than needle acupuncture in Western countries, due to their aversion to needles. When applying laser acupuncture to premature babies and neonates, firstly the degree of the thermal increase to the skin has to be evaluated so as to guarantee safe application. The patients were premature neonates before their discharge from hospital. The measurements were carried out by means of a polygraphy while they were asleep shortly. The large intestine 4 acupoint (LI4, Hegu) was stimulated by a microlaser needle (10 mW, 685 nm) twice (5 and 10 min). Local thermographic pictures were taken with a thermal camera (Flir i5, Flir Systems Inc., Portland, USA), and the warmest point was determined and subsequently compared. The study included 10 premature neonates (7 male, 3 female). The measurements were carried out on the 33rd day of life (weight 2030 g, gestational age 36 + 3 weeks of pregnancy). In comparison to the initial temperature (32.9°C), after 5 minutes of stimulation (33.9°C) (P = 0.025) and also after 10 minutes of stimulation (34.0°C) (P = 0.01), there was found to be a significant increase in the skin temperature. The singular maximum value of 37.9°C bears a potential danger; however, compared to the local temperatures reached in transcutaneous blood gas measurements it appears not to entail any risks. PMID:22666295

  10. Skin Pigmentation Disorders

    MedlinePlus

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  11. A coupling system to predict the core and skin temperatures of human wearing protective clothing in hot environments.

    PubMed

    Yang, Jie; Weng, Wenguo; Fu, Ming

    2015-11-01

    The aim of this study is to predict the core and skin temperatures of human wearing protective clothing in hot environments using the coupling system. The coupling system consisted of a sweating manikin Newton controlled by a multi-node human thermal model, and responded dynamically to the thermal environment as human body. Validation of the coupling system results was conducted by comparison with the subject tests. Five healthy men wearing protective clothing were exposed to the thermal neutral and high temperature environments. The skin temperatures of seven body segments and the rectal temperatures were recorded continuously. The predictions of core temperatures made by the coupling system showed good agreement with the experimental data, with maximum difference of 0.19 °C and RMSD of 0.12 °C. The predicted mean skin temperatures fell outside of the 95% CI for most points, whereas the difference between the simulated results and measured data was no more than 1 °C which is acceptable. The coupling system predicted the local skin temperatures reasonably with the maximum local skin temperature of 1.30 °C. The coupling system has been validated and exhibited reasonable accuracy compared with the experimental results. PMID:26154234

  12. Does the technique employed for skin temperature assessment alter outcomes? A systematic review.

    PubMed

    Bach, Aaron J E; Stewart, Ian B; Minett, Geoffrey M; Costello, Joseph T

    2015-09-01

    Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings.Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: (1) the literature was written in English, (2) participants were human (in vivo), (3) skin surface temperature was assessed at the same site, (4) with at least two commercially available devices employed-one conductive and one infrared-and (5) had skin temperature data reported in the study.A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned.Methodology quality was assessed by two authors independently, using the Cochrane risk of bias tool.A total of 16 articles (n = 245) met the inclusion criteria.Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within  ±0.5 °C and limits of agreement of  ±1.0 °C.Twelve of the included studies found mean differences greater than  ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies found exacerbated measurement differences between conductive and infrared devices.This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation

  13. HMM-based estimation of menstrual cycle from skin temperature during sleep.

    PubMed

    Chen, Wenxi; Kitazawa, Masumi; Togawa, Tatsuo

    2008-01-01

    An HMM-based method is proposed to estimate biphasic property in female menstrual cycle. A tiny device is developed to measure skin temperature change during sleep. Data are collected from 30 female participants for 6 months. Raw data are preprocessed to remove obvious outliers and clamped between 34 and 42 degree Celsius. A two hidden states HMM-based algorithm was applied to estimate the biphasic property in menstrual cycle. The results showed that the number of correctly detected menstrual cycle is 159 among 173 in 30 participants during 6 months. Overall sensitivity reaches 92.0%. PMID:19162990

  14. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  15. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  16. Plant Canopy Temperature and Heat Flux Profiles: What Difference Does an Isothermal Skin Make?

    NASA Astrophysics Data System (ADS)

    Crago, R. D.; Qualls, R. J.

    2015-12-01

    Land surface temperature Ts plays a vital role in the determination of sensible (H) and latent heat flux, upwelling long-wave radiation, and ground heat flux. While it is widely recognized that there is a range of skin temperatures represented in even a homogeneous canopy, it is often necessary or convenient to treat the surface as isothermal. This study investigates, at the sub-canopy scale, the implications of assuming that a canopy is isothermal. The focus is on profiles within the canopy of air, foliage, and soil surface temperature, and of sensible and latent heat flux source strength. Data from a dense grassland at the Southern Great Plains experiment in 1997 (SGP97) were used to assess the ability of a multi-layer canopy model to match measured sensible and latent heat fluxes along with radiometric surface temperatures. In its standard mode, the model solves the energy balance for each canopy layer and uses Localized Near Field (LNF) theory to model the turbulent transport. The results suggest the model captures the most important features of canopy flux generation and transport, and support its use to investigate scalar profiles within canopies. For 112 data points at SGP97, the model produced realistic temperature and sensible heat flux source profiles. In addition, it was run in a mode that seeks the isothermal (soil and foliage) skin temperature (Ti) that provides the same Hproduced by the model in its standard mode. This produces profiles of air and foliage temperature and of sensible heat source strength that differ significantly from profiles from the standard mode. Based on these simulations, realistic canopies may have a mixture of positive and negative sensible heat flux sources at various heights, typically with large contributions from the soil surface. There is frequently a discontinuity between foliage temperatures near the soil and the actual soil surface temperature. For isothermal canopies, heat sources at all levels had the same sign and

  17. What's in a face? The role of skin tone, facial physiognomy, and color presentation mode of facial primes in affective priming effects.

    PubMed

    Stepanova, Elena V; Strube, Michael J

    2012-01-01

    Participants (N = 106) performed an affective priming task with facial primes that varied in their skin tone and facial physiognomy, and, which were presented either in color or in gray-scale. Participants' racial evaluations were more positive for Eurocentric than for Afrocentric physiognomy faces. Light skin tone faces were evaluated more positively than dark skin tone faces, but the magnitude of this effect depended on the mode of color presentation. The results suggest that in affective priming tasks, faces might not be processed holistically, and instead, visual features of facial priming stimuli independently affect implicit evaluations. PMID:22468422

  18. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  19. Assessment of pepper spray product potency in Asian and Caucasian forearm skin using transepidermal water loss, skin temperature and reflectance colorimetry.

    PubMed

    Pershing, Lynn K; Reilly, Christopher A; Corlett, Judy L; Crouch, Dennis J

    2006-01-01

    Historically, pepper spray product potency has been established using a taste test evaluation. A taste test is subjective and may not be appropriate for assessing pepper potency in skin. The current study evaluated chemically diverse pepper sprays in human forearm skin using three objective, noninvasive parameters: transepidermal water loss, skin surface temperature and erythema, as a means for assessing dermal pharmacology, toxicology and product potency. Five commercial pepper spray products containing various capsaicinoid analogs at various concentrations were evaluated in duplicate on volar forearms of six Caucasians and six Asians using a 10 min exposure. Mean surface skin temperature, transepidermal water loss results were highly variable and therefore did not demonstrate dose responsive behavior to increasing capsaicinoid concentrations. Erythema, as measured by increases in a* (reflected light in the red-to-green color spectrum) of the L*a*b* uniform color scale, was superior among parameters evaluated in discriminating pepper spray potency and correlated well with the relative and total capsaicinoid concentration in the products. Products containing greater than 16 mg ml(-1) capsaicinoid concentration produced greater erythema responses in Caucasians than Asians. Asians responded greater to the synthetic analog, nonivamide, than to mixtures of capsaicinoids, while Caucasians responded equally to both capsaicinoid analogs. Thus, pepper spray product potency in human skin reflects the total capsaicinoid concentration, the specific capsaicin analog(s) present, and the race of the individual exposed. The finding that the reflectance colorimeter a* scale can differentiate these parameters in skin will have a significant impact on evaluating the use and efficacy of pepper spray products in humans. PMID:16220469

  20. Temporal and spatial temperature distributions on glabrous skin irradiated by a 1940 nm continuous-wave laser stimulator

    PubMed Central

    Yang, Ji-chun; Dong, Xiao-xi; Mu, Zhi-ming; Jin, Wen-dong; Huang, He; Lu, Yu; Chen, Zhu-ying; Li, Ying-xin

    2015-01-01

    For predicting pain stimulation effects and avoiding damage in 1940nm laser evoked potentials (LEPs) experiments, a 2-layer finite element model (FEM-2) was constructed. A series of experiments were conducted on ex-vivo pig skin pieces to verify temperature distribution predicted by this model. Various laser powers and beam radii were employed. Experimental data of time-dependent temperature responses in different sub-skin depths and space-dependent surface temperature was recorded by thermocouple instrument. By comparing with the experimental data and model results, FEM-2 model was proved to predict temperature distributions accurately. A logarithmic relationship between laser power density and temperature increment was revealed by the results. It is concluded that power density is an effective parameter to estimate pain and damage effect. The obtained results also indicated that the proposed FEM-2 model can be extended to predict pain and damage thresholds of human skin samples and thus contribute to LEPs study. PMID:25909027

  1. Temporal and spatial temperature distributions on glabrous skin irradiated by a 1940 nm continuous-wave laser stimulator.

    PubMed

    Yang, Ji-Chun; Dong, Xiao-Xi; Mu, Zhi-Ming; Jin, Wen-Dong; Huang, He; Lu, Yu; Chen, Zhu-Ying; Li, Ying-Xin

    2015-04-01

    For predicting pain stimulation effects and avoiding damage in 1940nm laser evoked potentials (LEPs) experiments, a 2-layer finite element model (FEM-2) was constructed. A series of experiments were conducted on ex-vivo pig skin pieces to verify temperature distribution predicted by this model. Various laser powers and beam radii were employed. Experimental data of time-dependent temperature responses in different sub-skin depths and space-dependent surface temperature was recorded by thermocouple instrument. By comparing with the experimental data and model results, FEM-2 model was proved to predict temperature distributions accurately. A logarithmic relationship between laser power density and temperature increment was revealed by the results. It is concluded that power density is an effective parameter to estimate pain and damage effect. The obtained results also indicated that the proposed FEM-2 model can be extended to predict pain and damage thresholds of human skin samples and thus contribute to LEPs study. PMID:25909027

  2. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography

    PubMed Central

    Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos

    2016-01-01

    Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931

  3. Effect of local cooling on skin temperature and blood flow of men in Antarctica

    NASA Astrophysics Data System (ADS)

    Naidu, M.; Sachdeva, U.

    1993-12-01

    Alterations to the finger skin temperature (Tsk) and blood flow (FBF) before and after cold immersion on exposure to an Antarctic environment for 8 weeks were studied in 64 subjects. There was a significant fall in Tsk and increase in finger blood flow after 1 week of Antarctic exposure. The Tsk did not further change even after 8 weeks of stay in Antarctica but a significant increase in FBF was obtained after 8 weeks. The cold immersion test was performed at non-Antarctic and Antarctic conditions by immersing the hand for 2 min in 0 4° C cold water. In the non-Antarctic environment the Tsk and FBF dropped significantly ( P < 0.001) indicating a vasoconstriction response. Interestingly after 8 weeks of stay in Antarctic conditions, the skin temperature dropped ( P < 0.001) but the cold induced fall in FBF was inhibited. Based on these observations it may be hypothesized that continuous cold exposure in Antarctica results in vasodilatation, which overrides the stronger vasoactive response of acute cold exposure and thus prevents cold injuries.

  4. Frequency and temperature dependence of skin bioimpedance during a contralateral cold test.

    PubMed

    Podtaev, S; Nikolaev, D; Samartsev, V; Gavrilov, V; Tsiberkin, K

    2015-03-01

    A study of the α- and β-dispersion of skin bioimpedance dependence on temperature and micro-hemodynamics is presented. The vascular tone changes during the cold test are verified by the wavelet-analysis of skin temperature signals obtained simultaneously with impedance measurements. Thirty three normal healthy subjects of 28  ±  7 years old were entered into the study. The tetra-polar electrode system was used to record the resistance and reactance; measurements were carried out at 67 frequencies, in a frequency range from 2 Hz to 50 kHz. It has been found that the impedance decreases with vasodilation and increases with vasoconstriction. The high values of correlation among thermal oscillation amplitudes and Nyquist diagram parameters prove the impedance dependence on blood flow in three frequency bands corresponding to the myogenic, neurogenic and endothelial vascular tone regulation mechanisms. Using an equivalent RC circuit, we obtained the changes in the Nyquist diagram matching the experimental data. The proposed descriptive α-dispersion model can be used to study mechanisms responsible for intercellular interaction. PMID:25690397

  5. Changes of Locoregional Skin Temperature in Neonates Undergoing Laser Needle Acupuncture at the Acupuncture Point Large Intestine 4

    PubMed Central

    Kurath-Koller, Stefan; Gross, Anna; Freidl, Thomas; Urlesberger, Berndt; Raith, Wolfgang

    2015-01-01

    Laser acupuncture bears a potential risk for the skin surface, especially in neonates whose skin has histological and physiological peculiarities. We evaluated thermal changes of skin temperature in neonates during laser acupuncture by using a thermal camera (Flir i5, Flir Systems Inc., Portland, USA). Laserneedles (Laserneedle GmbH, Glienicke/Nordbahn, Germany) were fixed to the skin at Large Intestine 4 (LI 4, Hegu), bilaterally. Before application of laser acupuncture (685 nm, 15 mW, 500 μm), as well as after 1, 5, and 10 min, thermographic pictures of both hands were taken. The measuring was carried out on the 23rd day after birth (20 neonates, mean postmenstrual gestational age 38 + 2, mean weight 2604 g). Compared to the initial temperature of 34.2°C on the right hand, the skin temperature had increased to 35.3°C (P < 0.05) after 5 min and up to 36.1°C (P < 0.05) after 10 min of stimulation. Equally, on the left hand, an increase of the skin temperature from 34.5°C to 35.9°C (P < 0.05) and 35.9°C (P < 0.05) was measured. The highest measured skin temperature after 10 min of stimulation amounted to 38.7°C, without any clinically visible changes on the skin surface. PMID:25922612

  6. Changes of locoregional skin temperature in neonates undergoing laser needle acupuncture at the acupuncture point large intestine 4.

    PubMed

    Kurath-Koller, Stefan; Litscher, Gerhard; Gross, Anna; Freidl, Thomas; Koestenberger, Martin; Urlesberger, Berndt; Raith, Wolfgang

    2015-01-01

    Laser acupuncture bears a potential risk for the skin surface, especially in neonates whose skin has histological and physiological peculiarities. We evaluated thermal changes of skin temperature in neonates during laser acupuncture by using a thermal camera (Flir i5, Flir Systems Inc., Portland, USA). Laserneedles (Laserneedle GmbH, Glienicke/Nordbahn, Germany) were fixed to the skin at Large Intestine 4 (LI 4, Hegu), bilaterally. Before application of laser acupuncture (685 nm, 15 mW, 500 μm), as well as after 1, 5, and 10 min, thermographic pictures of both hands were taken. The measuring was carried out on the 23rd day after birth (20 neonates, mean postmenstrual gestational age 38 + 2, mean weight 2604 g). Compared to the initial temperature of 34.2°C on the right hand, the skin temperature had increased to 35.3°C (P < 0.05) after 5 min and up to 36.1°C (P < 0.05) after 10 min of stimulation. Equally, on the left hand, an increase of the skin temperature from 34.5°C to 35.9°C (P < 0.05) and 35.9°C (P < 0.05) was measured. The highest measured skin temperature after 10 min of stimulation amounted to 38.7°C, without any clinically visible changes on the skin surface. PMID:25922612

  7. Relationships of skin depths and temperatures when varying pulse repetition frequencies from 2.0-μm laser light incident on pig skin

    NASA Astrophysics Data System (ADS)

    Schaaf, David; Johnson, Thomas

    2010-07-01

    Human perception of 2.0-μm infrared laser irradiation has become significant in such disparate fields as law enforcement, neuroscience, and pain research. Several recent studies have found damage thresholds for single-pulse and continuous wave irradiations at this wavelength. However, the only publication using multiple-pulse irradiations was investigating the cornea rather than skin. Literature has claimed that the 2.0-μm light characteristic thermal diffusion time was as long as 300-ms. Irradiating the skin with 2.0-μm lasers to produce sensation should follow published recommendations to use pulses on the order of 10 to 100 ms, which approach the theoretical thermal diffusion time. Therefore, investigation of the heating of skin for a variety of laser pulse combinations was undertaken. Temperatures of ex vivo pig skin were measured at the surface and at three depths from pulse sequences of six different duty factors. Differences were found in temperature rise per unit exposure that did not follow a linear relation to duty factor. The differences can be explained by significant heat conduction during the pulses. Therefore, the common heat modeling assumption of thermal confinement during a pulse may need to be experimentally verified if the pulse approaches the theoretical thermal confinement time.

  8. Social Attention, Affective Arousal and Empathy in Men with Klinefelter Syndrome (47,XXY): Evidence from Eyetracking and Skin Conductance

    PubMed Central

    van Rijn, Sophie; Barendse, Marjolein; van Goozen, Stephanie; Swaab, Hanna

    2014-01-01

    Individuals with an extra X chromosome (Klinefelter syndrome) are at risk for problems in social functioning and have an increased vulnerability for autism traits. In the search for underlying mechanisms driving this increased risk, this study focused on social attention, affective arousal and empathy. Seventeen adults with XXY and 20 non-clinical controls participated in this study. Eyetracking was used to investigate social attention, as expressed in visual scanning patterns in response to the viewing of empathy evoking video clips. Skin conductance levels, reflecting affective arousal, were recorded continuously during the clips as well. Empathic skills, i.e. participants' understanding of own and others' emotions in response to the clips was also assessed. Results showed reduced empathic understanding, decreased visual fixation to the eye region, but increased affective arousal in individuals with Klinefelter syndrome. We conclude that individuals with XXY tend to avoid the eye region. Considering the increased affective arousal, we speculate that this attentional deployment strategy may not be sufficient to successfully downregulate affective hyper-responsivity. As increased affective arousal was related to reduced empathic ability, we hypothesize that own affective responses to social cues play an important role in difficulties in understanding the feelings and intentions of others. This knowledge may help in the identification of risk factors for psychopathology and targets for treatment. PMID:24416272

  9. Social attention, affective arousal and empathy in men with Klinefelter syndrome (47,XXY): evidence from eyetracking and skin conductance.

    PubMed

    van Rijn, Sophie; Barendse, Marjolein; van Goozen, Stephanie; Swaab, Hanna

    2014-01-01

    Individuals with an extra X chromosome (Klinefelter syndrome) are at risk for problems in social functioning and have an increased vulnerability for autism traits. In the search for underlying mechanisms driving this increased risk, this study focused on social attention, affective arousal and empathy. Seventeen adults with XXY and 20 non-clinical controls participated in this study. Eyetracking was used to investigate social attention, as expressed in visual scanning patterns in response to the viewing of empathy evoking video clips. Skin conductance levels, reflecting affective arousal, were recorded continuously during the clips as well. Empathic skills, i.e. participants' understanding of own and others' emotions in response to the clips was also assessed. Results showed reduced empathic understanding, decreased visual fixation to the eye region, but increased affective arousal in individuals with Klinefelter syndrome. We conclude that individuals with XXY tend to avoid the eye region. Considering the increased affective arousal, we speculate that this attentional deployment strategy may not be sufficient to successfully downregulate affective hyper-responsivity. As increased affective arousal was related to reduced empathic ability, we hypothesize that own affective responses to social cues play an important role in difficulties in understanding the feelings and intentions of others. This knowledge may help in the identification of risk factors for psychopathology and targets for treatment. PMID:24416272

  10. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence.

    PubMed Central

    Stienen, G J; Kiers, J L; Bottinelli, R; Reggiani, C

    1996-01-01

    1. Myofibrillar ATP consumption and isometric tension (P0) were determined in chemically skinned skeletal muscle fibres from human rectus abdominis and vastus lateralis muscle. Fibres were classified in four groups (I, IIA, IIB, IIA/B or mixed) based on myosin heavy chain composition. 2. ATP consumption (+/- S.E.M.) at 20 degrees C varied from 0.41 +/- 0.06 mmol l-1 s-1 in type IIB fibres (n = 5) to 0.10 +/- 0.01 mmol l-1 s-1 in type I fibres (n = 13). 3. The ratio between ATPase activity and P0 (tension cost) differed significantly between fast type II and slow type I fibres. At 12 degrees C tension cost was lower than the values found previously in corresponding fibre types in the rat. 4. The relative increase in ATPase activity for a 10 degrees C temperature change (Q10), determined in the range from 12 to 30 degrees C, was temperature independent and amounted to 2.60 +/- 0.06. The increase in P0 with temperature was smaller and declined when the temperature increased. 5. From these measurements, estimates were obtained for the maximum rate of isometric ATP consumption and force development at muscle temperature in vivo (35 degrees C). Images Figure 1 PMID:8782097

  11. Skin toxins in coral-associated Gobiodon species (Teleostei: Gobiidae) affect predator preference and prey survival

    PubMed Central

    Gratzer, Barbara; Millesi, Eva; Walzl, Manfred; Herler, Juergen

    2015-01-01

    Predation risk is high for the many small coral reef fishes, requiring successful sheltering or other predator defence mechanisms. Coral-dwelling gobies of the genus Gobiodon live in close association with scleractinian corals of the genus Acropora. Earlier studies indicated that the low movement frequency of adult fishes and the development of skin toxins (crinotoxicity) are predation avoidance mechanisms. Although past experiments showed that predators refuse food prepared with goby skin mucus, direct predator–prey interactions have not been studied. The present study compares the toxicity levels of two crinotoxic coral gobies – Gobiodon histrio, representative of a conspicuously coloured species, and Gobiodon sp.3 with cryptic coloration – using a standard bioassay method. The results show that toxin levels of both species differ significantly shortly after mucus release but become similar over time. Predator preferences were tested experimentally in an aquarium in which the two gobies and a juvenile damselfish Chromis viridis were exposed to the small grouper Epinephelus fasciatus. Video-analysis revealed that although coral gobies are potential prey, E. fasciatus clearly preferred the non-toxic control fish (C. viridis) over Gobiodon. When targeting a goby, the predator did not prefer one species over the other. Contrary to our expectations that toxic gobies are generally avoided, gobies were often captured, but they were expelled quickly, repeatedly and alive. This unusual post-capture avoidance confirms that these gobies have a very good chance of surviving attacks in the field due to their skin toxins. Nonetheless, some gobies were consumed: the coral shelter may therefore also provide additional protection, with toxins protecting them mainly during movement between corals. In summary, chemical deterrence by crinotoxic fishes seems to be far more efficient in predation avoidance than in physical deterrence involving body squamation and/or strong fin

  12. Bead temperature effects on FCAW heat-affected zone hardness

    SciTech Connect

    Kiefer, J.H.

    1995-11-01

    Hardness limits for welding procedure qualification are often imposed to lessen the chances of delayed hydrogen cracking during production fabrication. Temper bead techniques have been used by fabricators during these qualifications to improve their chances of success. This practice involves using the heat of additional weld beads to soften the heat-affected zone (HAZ) hardness in the base metal next to the weld where the hardness is the greatest. The technique works under controlled conditions, but the consistency for field use was questionable. This report describes an investigate of the effect of welding parameters, base metal chemical composition, and weld bead placement on HAZ softening. An empirical formula developed from base plate chemical composition, weld cooling time, and temper bead placement can be used to estimate the amount of HAZ tempering. Combined with an appropriate hardness prediction formula, it can help find the welding procedure needed to achieve a desired maximum HAZ hardness, or predict the HAZ hardness of existing welds. Based on the results of the study, bead temperature is not recommended for HAZ hardness control on large scale fabrications.

  13. Anthocyanin yield and skin softening during maceration, as affected by vineyard row orientation and grape ripeness of Vitis vinifera L. cv. Shiraz.

    PubMed

    Giacosa, Simone; Marengo, Fabio; Guidoni, Silvia; Rolle, Luca; Hunter, Jacobus J

    2015-05-01

    Anthocyanin and mechanical properties were evaluated on Shiraz grapes, picked from both sides of North-South and East-West vineyard row orientations at two harvest dates. Wines were made from each combination. The evaluation and evolution of crushed skin mechanical properties during maceration-fermentation, as also affected by grape ripeness, are shown for the first time. No significant differences in anthocyanin content were found in the grapes between the two vineyard row orientations. However, a significant decrease in anthocyanins and berry skin break force (also referred as skin hardness or strength) was found between the two harvest dates. During maceration, a reduction in the crushed berry skin break force of more than 15% occurred. The intact berries and macerated skins showed similarity in skin break energy values. The anthocyanin profile of the grapes and of the wines prominently displayed malvidin forms, changed mainly by the ripeness level of the grapes. PMID:25529645

  14. All-weather land surface skin temperatures from a combined analysis of microwave and infrared satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface skin temperature (Ts) is a key parameter at the land-atmosphere interface. Upwelling longwave radiation directly epends upon Ts. Energy exchanges at the land-surface boundary are largely controlled by the difference between Ts and the surface air temperature, the air and the surface reac...

  15. Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956).

    PubMed

    Tattersall, Glenn J; Eterovick, Paula C; de Andrade, Denis V

    2006-04-01

    In amphibians solar basking far from water sources is relatively uncommon since the highly permeable amphibian skin does not represent a significant barrier to the accompanying risk of losing water by evaporation. A South American frog, Bokermannohyla alvarengai (Bokermann 1956), however, spends a significant amount of the day exposed to full sun and relatively high temperatures. The means by which this frog copes with potentially high rates of evaporative water loss and high body temperatures are unknown. Thus, in this study, skin colour changes, body surface temperature, and evaporative water loss rates were examined under a mixture of field and laboratory conditions to ascertain whether changes in skin reflectivity play an important role in this animal's thermal and hydric balance. Field data demonstrated a tight correlation between the lightness of skin colour and frog temperature, with lighter frogs being captured possessing higher body temperatures. Laboratory experiments supported this relationship, revealing that frogs kept in the dark or at lower temperatures (20 degrees C) had darker skin colours, whereas frogs kept in the light or higher temperatures (30 degrees C) had skin colours of a lighter hue. Light exhibited a stronger influence on skin colour than temperature alone, suggesting that colour change is triggered by the increase in incident solar energy and in anticipation of changes in body temperature. This conclusion is corroborated by the observation that cold, darkly coloured frogs placed in the sun rapidly became lighter in colour during the initial warming up period (over the first 5 min), after which they warmed up more slowly and underwent a further, albeit slower, lightening of skin colour. Surprisingly, despite its natural disposition to bask in the sun, this species does not possess a ;waterproof' skin, since its rates of evaporative water loss were not dissimilar from many hylid species that live in arboreal or semi-aquatic environments

  16. Experimental factors affecting in vitro absorption of six model compounds across porcine skin.

    PubMed

    Karadzovska, Daniela; Brooks, James D; Riviere, Jim E

    2012-10-01

    This comparative study evaluated the effect of several experimental variables on the absorption of six model [(14)C]-labeled compounds (caffeine, cortisone, diclofenac sodium, mannitol, salicylic acid, and testosterone) through porcine skin. Using static and flow-through diffusion cells, finite or infinite, saturated or unsaturated doses were applied in one of three vehicles: propylene glycol, water, and ethanol following a full factorial experimental design. The flux of each compound into the receptor phase, with or without bovine serum albumin (BSA), was monitored over 24 h. Levels of radioactivity were also determined in the stratum corneum by tape stripping and in the remaining skin. Apparent permeability coefficients (Kp) and dose absorbed were calculated and compared. The overall results emphasize the importance of experimental design and confirm previous findings that identified dose volume, saturation level and vehicle as the main sources of variation in the in vitro assessment of dermal absorption, whilst diffusion cell model and the presence/absence of BSA in the receptor phase had minimal effect. Although the acquired data do not directly reveal new mechanistic information on dermal absorption, the unique and complete study design has provided a suitable data source for the development of dermal absorption prediction models. PMID:22750544

  17. Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2011-03-01

    Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.

  18. Thermographic evaluation of hind paw skin temperature and functional recovery of locomotion after sciatic nerve crush in rats

    PubMed Central

    Z. Sacharuk, Viviane; A. Lovatel, Gisele; Ilha, Jocemar; Marcuzzo, Simone; Severo do Pinho, Alexandre; L. Xavier, Léder; A. Zaro, Milton; Achaval, Matilde

    2011-01-01

    INTRODUCTION: Peripheral nerves are often damaged by direct mechanical injury, diseases, and tumors. The peripheral nerve injuries that result from these conditions can lead to a partial or complete loss of motor, sensory, and autonomic functions, which in turn are related to changes in skin temperature, in the involved segments of the body. The aim of this study was to evaluate the changes in hind paw skin temperature after sciatic nerve crush in rats in an attempt to determine whether changes in skin temperature correlate with the functional recovery of locomotion. METHODS: Wistar rats were divided into three groups: control (n = 7), sham (n = 25), and crush (n = 25). All groups were subjected to thermographic, functional, and histological assessments. RESULTS: ΔT in the crush group was different from the control and sham groups at the 1st, 3rd and 7rd postoperative days (p<0.05). The functional recovery from the crush group returned to normal values between the 3rd and 4th week post-injury, and morphological analysis of the nerve revealed incomplete regeneration at the 4th week after injury. DISCUSSION: This study is the first demonstration that sciatic nerve crush in rats induces an increase in hind paw skin temperature and that skin temperature changes do not correlate closely with functional recovery PMID:21876984

  19. Aspirin and Clopidogrel Alter Core Temperature and Skin Blood Flow during Heat Stress

    PubMed Central

    Bruning, Rebecca S.; Dahmus, Jessica D.; Kenney, W. Larry; Holowatz, Lacy A.

    2012-01-01

    Antithrombotic therapy with oral aspirin or clopidogrel (PlavixR) is associated with an attenuated skin vasodilator response and a greater rate of rise in core temperature in healthy, middle-aged individuals during passive heating in a water perfused suit. Purpose The present double-blind, crossover study examined the functional consequences of 7 days of low-dose aspirin (ASA, 81 mg/day) vs. clopidogrel (CLO, 75 mg/day) treatment in 14 healthy, middle-aged (50–65 yrs) men and women during passive heating in air (40 min at 30°C, 40% rh) followed by exercise (60% V̇O2peak). Methods Oral temperature (Tor) was measured in the antechamber (23.0 ± 0.1°C) before entering a warm environmental chamber. After 40 minutes of rest subjects cycled on a recumbent cycle ergometer for up to 120 minutes. Esophageal temperature (Tes) and laser Doppler flux were measured continuously, and the latter was normalized to maximal cutaneous vascular conductance (%CVCmax). Results Prior to entry into the environmental chamber there were no differences in Tor among treatments; however, after 40 minutes of rest in the heat, Tes was significantly higher for ASA and CLO vs. placebo (37.2±0.1°C, 37.3±0.1°C, vs. 37.0±0.1°C, both P<0.001), a difference that persisted throughout exercise (P<0.001 vs. placebo). The mean body temperature thresholds for the onset of cutaneous vasodilation were shifted to the right for both ASA and CLO during exercise (P<0.05). Conclusion ASA and CLO resulted in elevated core temperatures during passive heat stress and shifted the onset of peripheral thermoeffector mechanisms toward higher body temperatures during exercise heat stress. PMID:23135368

  20. Improvement of imaging of skin thermal properties by successive thermographic measurements at a stepwise change in ambient radiation temperature.

    PubMed

    Huang, J; Togawa, T

    1995-11-01

    Imaging of skin thermal properties was attempted by successive thermographic measurements of the skin surface with a stepwise change in ambient radiation temperature. In order to produce the stepwise change in ambient radiation temperature, two hoods maintained at different temperatures, 20 degrees C and 60 degrees C, were mechanically switched. A total of 65 thermograms were taken from 2 s before to 32 s seconds after the hood switching. Images of skin emissivity, emissivity-corrected skin temperature and thermal inertia were obtained by least-squares fitting at each pixel of 64 thermograms. Measurements were performed on the forehead, cheek, forearm, palm and back of the hand of 10 healthy male subjects. Differences in emissivity between sites and subjects were insignificant. Significant differences were observed in thermal inertia values between sites. Great improvements in the imaging of thermal inertia have been achieved by applying least-squares fitting to 64 thermograms instead of by computations from only two thermograms as in the previous study. Non-contact measurement and visualization of skin thermal properties are significant advantages of this method. PMID:8599696

  1. Intravital multiphoton tomography as a novel tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2010-02-01

    Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.

  2. Effects of season on sleep and skin temperature in the elderly

    NASA Astrophysics Data System (ADS)

    Okamoto-Mizuno, Kazue; Tsuzuki, Kazuyo

    2010-07-01

    The effects of season on sleep and skin temperature (Tsk) in 19 healthy, elderly volunteers were investigated. Measurements were obtained in summer, winter, and fall, and activity levels were monitored using a wrist actigraph system for five consecutive days. The temperature and humidity of the bedrooms of the subjects’ homes were measured continuously for five days. During actigraphic measurement, Tsk during sleep was measured for two nights. The bedroom temperature and humidity significantly increased in summer compared to winter and fall. In summer, the total sleep time decreased (mean ± SE min; summer, 350.8 ± 15.7; winter, 426.5 ± 14.2; fall, 403.2 ± 16.4) and wakefulness increased ( P < 0.003) compared to those in fall or winter. The sleep efficiency index that was derived from wrist actigraphy was significantly decreased ( P < 0.001) in summer (81.4 ± 2.9%) compared with winter (91.6 ± 1.3%) or fall (90.2 ± 1.2%). The forehead Tsk significantly increased, while the chest and thigh Tsks were decreased in summer compared to those in fall or winter. These results suggest that, in the elderly, sleep is disturbed in summer more than in other seasons, and that this disturbance is related to fluctuations in Tsk.

  3. Study on the Effect of Thermal and Magnetic Stimulation by Measuring of the Peripheral Blood Flow and Skin Temperature

    NASA Astrophysics Data System (ADS)

    Kubota, Kouhei; Nuruki, Atsuo; Tamari, Youzou; Yunokuchi, Kazutomo

    Recently, the stiff shoulder accompanying the muscle fatigue becomes an issue of public concern. Therefore, we paid attention to the effect of the thermal and magnetic stimulation for the muscle fatigue. The maximum voluntary contraction has recovered significantly, and also peripheral blood flow has increased by stimulation. In order to evaluate if the thermal and magnetic stimulation has any effects, three parameters was measured, which are the maximum voluntary contraction, peripheral blood flow and skin temperature. The skin temperature, however, did not changed significantly.

  4. Body visual discontinuity affects feeling of ownership and skin conductance responses

    PubMed Central

    Tieri, Gaetano; Tidoni, Emmanuele; Pavone, Enea Francesco; Aglioti, Salvatore Maria

    2015-01-01

    When we look at our hands we are immediately aware that they belong to us and we rarely doubt about the integrity, continuity and sense of ownership of our bodies. Here we explored whether the mere manipulation of the visual appearance of a virtual limb could influence the subjective feeling of ownership and the physiological responses (Skin Conductance Responses, SCRs) associated to a threatening stimulus approaching the virtual hand. Participants observed in first person perspective a virtual body having the right hand-forearm (i) connected by a normal wrist (Full-Limb) or a thin rigid wire connection (Wire) or (ii) disconnected because of a missing wrist (m-Wrist) or a missing wrist plus a plexiglass panel positioned between the hand and the forearm (Plexiglass). While the analysis of subjective ratings revealed that only the observation of natural full connected virtual limb elicited high levels of ownership, high amplitudes of SCRs were found also during observation of the non-natural, rigid wire connection condition. This result suggests that the conscious embodiment of an artificial limb requires a natural looking visual body appearance while implicit reactivity to threat may require physical body continuity, even non-naturally looking, that allows the implementation of protective reactions to threat. PMID:26602036

  5. One night of partial sleep deprivation affects habituation of hypothalamus and skin conductance responses.

    PubMed

    Peters, Anja C; Blechert, Jens; Sämann, Philipp G; Eidner, Ines; Czisch, Michael; Spoormaker, Victor I

    2014-09-15

    Sleep disturbances are prevalent in clinical anxiety, but it remains unclear whether they are cause and/or consequence of this condition. Fear conditioning constitutes a valid laboratory model for the acquisition of normal and pathological anxiety. To explore the relationship between disturbed sleep and anxiety in more detail, the present study evaluated the effect of partial sleep deprivation (SD) on fear conditioning in healthy individuals. The neural correlates of 1) nonassociative learning and physiological processing and 2) associative learning (differential fear conditioning) were addressed. Measurements entailed simultaneous functional MRI, EEG, skin conductance response (SCR), and pulse recordings. Regarding nonassociative learning, partial SD resulted in a generalized failure to habituate during fear conditioning, as evidenced by reduced habituation of SCR and hypothalamus responses to all stimuli. Furthermore, SCR and hypothalamus activity were correlated, supporting their functional relationship. Regarding associative learning, effects of partial SD on the acquisition of conditioned fear were weaker and did not reach statistical significance. The hypothalamus plays an integral role in the regulation of sleep and autonomic arousal. Thus sleep disturbances may play a causal role in the development of normal and possibly pathological fear by increasing the susceptibility of the sympathetic nervous system to stressful experiences. PMID:24920020

  6. Low-Temperature Biochar Affects an Eroded Calcareous Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research showed little benefit from using a high temperature, high pH biochar for improving the fertility of eroded calcareous soils. We thus explored the potential of an activated, low-temperature, low pH biochar to improve their fertility status. In a microcosm study conducted at 20 de...

  7. All-weather estimates of the land surface skin temperatures from combined analyses of microwave and infrared satellite observations

    NASA Astrophysics Data System (ADS)

    Jimenez, C.; Aires, F.; Prigent, C.; Catherinot, J.; Rossow, W. B.

    2011-12-01

    The surface skin temperature (Ts) is a key parameter at the land-atmosphere interface. Global datasets of Ts are traditionally estimated from satellite infrared radiance observations, under clear sky conditions. First, the inter-comparison of different IR land surface temperature satellite datasets (ISCCP, MODIS, and AIRS) is presented, along with an evaluation with in situ measurements at selected stations archived during CEOP (Coordinated Enhanced Observing Period). The objective is to assess the accuracy of the Ts estimates, and to evidence the major error sources in the retrieval. Results show that the major sources of differences between the different satellite products come from instrument calibration differences, especially for high Ts, followed by the impact of the water vapor treatment in the algorithm, and the differences in surface emissivities. The main limitation of satellite infrared measurements of Ts is their inability to penetrate clouds, limiting them to clear conditions. Microwave wavelengths, being much less affected by clouds than the infrared, are an attractive alternative in cloudy regions as they can be used to derive an all-sky skin Ts product. A neural network inversion scheme has been developed to retrieve surface Ts along with atmospheric water vapor, cloud liquid water, and surface emissivities over land from a combined analysis of Special Sensor Microwave /Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence of routine in situ Ts measurements, retrieved all-weather Ts values are first evaluated globally by comparison to the surface air temperature (Tair) measured by the meteorological station network. The Ts-Tair difference from the global comparisons showed all the expected variations with solar flux, soil characteristics, and cloudiness. This evaluation has been recently extended locally at a few sites by using the Ts in-situ measurements from several CEOP stations representing different

  8. CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumor development.

    PubMed

    Macias, Everardo; Miliani de Marval, Paula L; De Siervi, Adriana; Conti, Claudio J; Senderowicz, Adrian M; Rodriguez-Puebla, Marcelo L

    2008-08-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21(Cip1) and p27(Kip1). Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4(D158N) mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4(D158N), but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21(Cip1) in K5Cdk2, but not in K5Cdk4(D158N), epidermis, suggesting that CDK2 overexpression elicits a p21(Cip1) response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis. PMID:18599613

  9. Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle.

    PubMed

    Búa, Sabela; Sotiropoulou, Peggy; Sgarlata, Cecilia; Borlado, Luis R; Eguren, Manuel; Domínguez, Orlando; Ortega, Sagrario; Malumbres, Marcos; Blanpain, Cedric; Méndez, Juan

    2015-01-01

    Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice. PMID:26697840

  10. The human touch: skin temperature during the rubber hand illusion in manual and automated stroking procedures.

    PubMed

    Rohde, Marieke; Wold, Andrew; Karnath, Hans-Otto; Ernst, Marc O

    2013-01-01

    A difference in skin temperature between the hands has been identified as a physiological correlate of the rubber hand illusion (RHI). The RHI is an illusion of body ownership, where participants perceive body ownership over a rubber hand if they see it being stroked in synchrony with their own occluded hand. The current study set out to replicate this result, i.e., psychologically induced cooling of the stimulated hand using an automated stroking paradigm, where stimulation was delivered by a robot arm (PHANToM(TM) force-feedback device). After we found no evidence for hand cooling in two experiments using this automated procedure, we reverted to a manual stroking paradigm, which is closer to the one employed in the study that first produced this effect. With this procedure, we observed a relative cooling of the stimulated hand in both the experimental and the control condition. The subjective experience of ownership, as rated by the participants, by contrast, was strictly linked to synchronous stroking in all three experiments. This implies that hand-cooling is not a strict correlate of the subjective feeling of hand ownership in the RHI. Factors associated with the differences between the two designs (differences in pressure of tactile stimulation, presence of another person) that were thus far considered irrelevant to the RHI appear to play a role in bringing about this temperature effect. PMID:24260454

  11. Validation of Surface Skin Temperature and Moisture Profiles Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.

    1999-01-01

    New validation techniques and metrics using satellite data have been developed to evaluate the quality of model-based estimates of surface skin temperature (Tg) and moisture profiles (q). The satellite data consist of clear sky outgoing long-wave radiation (CLR), broadband radiances from 8 to 12 mu (RadWn), brightness temperature centered around 10.8 mu (Tbb), and total precipitable water (TPW) from microwave radiometry. We show that CLR can be used to diagnose Tg. Furthermore, by using a combination of CLR and RadWn from CERES-TRMM measurements and TPW from SSM/I, we are able to identify errors in the moisture profile. Finally, three-hourly Tbb from the International Satellite Cloud Climatology Project can be used to evaluate the amplitude and diurnal variation of Tg. For purpose of illustration, Tg and q are evaluated from runs with an early version of the Goddard Earth Observing System Data Assimilation System (GEOS-2). It is found that, in general, Tg is too cold in the winter hemisphere and q is too wet in the upper atmosphere. In order to address these deficiencies, several improvements have been implemented into GEOS-2, including a Land-Surface-Model, a Moist Turbulence Scheme, and the assimilation of new TOVS retrievals. Preliminary results indicate positive impacts from each of these implementations.

  12. Canopy temperature view angle affects on the water deficit index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased water use efficiency for irrigated agricultural crop production requires solutions that improve irrigation scheduling and management. Several techniques exist that utilize canopy temperature measurements to assess the severity of plant water stress. The Water Deficit Index (WDI) was develo...

  13. Temperature can interact with landscape factors to affect songbird productivity.

    PubMed

    Cox, W Andrew; Thompson, Frank R; Reidy, Jennifer L; Faaborg, John

    2013-04-01

    Increased temperatures and more extreme weather patterns associated with global climate change can interact with other factors that regulate animal populations, but many climate change studies do not incorporate other threats to wildlife in their analyses. We used 20 years of nest-monitoring data from study sites across a gradient of habitat fragmentation in Missouri, USA, to investigate the relative influence of weather variables (temperature and precipitation) and landscape factors (forest cover and edge density) on the number of young produced per nest attempt (i.e., productivity) for three species of songbirds. We detected a strong forest cover × temperature interaction for the Acadian Flycatcher (Empidonax virescens) on productivity. Greater forest cover resulted in greater productivity because of reduced brood parasitism and increased nest survival, whereas greater temperatures reduced productivity in highly forested landscapes because of increased nest predation but had no effect in less forested landscapes. The Indigo Bunting (Passerina cyanea) exhibited a similar pattern, albeit with a marginal forest cover × temperature interaction. By contrast, productivity of the Northern Cardinal (Cardinalis cardinalis) was not influenced by landscape effects or temperature. Our results highlight a potential difficulty of managing wildlife in response to global change such as habitat fragmentation and climate warming, as the habitat associated with the greatest productivity for flycatchers was also that most negatively influenced by high temperatures. The influence of high temperatures on nest predation (and therefore, nest predators) underscores the need to acknowledge the potential complexity of species' responses to climate change by incorporating a more thorough consideration of community ecology in the development of models of climate impacts on wildlife. PMID:23504884

  14. Temperature and curing time affect composite sorption and solubility

    PubMed Central

    de CASTRO, Fabrício Luscino Alves; CAMPOS, Bruno Barbosa; BRUNO, Kely Firmino; REGES, Rogério Vieira

    2013-01-01

    Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8x2 mm) were prepared using a commercial composite resin (ICE, SDI). Three temperatures (10º C, 25º C and 60º C) and five curing times (5 s, 10 s, 20 s, 40 s and 60 s) were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1); B: 7 days after storage (M2); C: 7 days after storage plus 1 day of drying (M3). The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%). Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p<0.05). At 60º C, the composite sorption showed an inverse relationship with the curing time (p<0.05). The composite cured for 5 s showed higher sorption for the 40 s or 60 s curing times when compared with all temperatures (p<0.05). Curing times of 20 s and 40 s showed similar sorption data for all temperatures (p>0.05). The 60º C composite temperature led to lower values of sorption for all curing times when compared with the 10º C temperature (p<0.05). The same results were found when comparing 10º C and 25º C (p<0.05), except that the 20 s and 40 s curing times behaved similarly (p>0.05). Solubility was similar at 40 s and 60 s for all temperatures (p>0.05), but was higher at 10º C than at 60º C for all curing times (p<0.05). When the composite was cured at 25º C, similar solubility values were found when comparing the 5 s and 10 s or 20 s and 40 s curing times (p>0.05). Conclusion: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and

  15. The relative influence of urban climates on outdoor human energy budgets and skin temperature II. Man in an urban environment

    NASA Astrophysics Data System (ADS)

    Burt, J. E.; O'Rourke, P. A.; Terjung, W. H.

    1982-03-01

    Four typical urban neighborhoods or street canyon settings (including street parks) were simulated. These urban morphologies were exposed to typical summer and winter climatic scenarios for latitudes 10‡, 34‡, and 50‡N. The changes induced in the components of the human energy budget were examined. Resultant skin temperatures were compared with non-urban, unobstructed environments.

  16. Temperature affects the morphology and calcification of Emiliania huxleyi strains

    NASA Astrophysics Data System (ADS)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2016-05-01

    The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC-temperature

  17. Temperature-dependent electrical and ultrastructural characterizations of porcine skin upon electroporation.

    PubMed Central

    Gallo, Stephen A; Sen, Arindam; Hensen, Mary L; Hui, Sek Wen

    2002-01-01

    The mechanism of high-voltage pulse-induced permeabilization of the stratum corneum, the outer layer of the skin, is still not completely understood. It has been suggested that joule heating resulting from the applied pulse may play a major role in disrupting the stratum corneum. In this study, electrical and ultrastructural measurements were conducted to examine the temperature dependence of the pulse-induced permeabilization of the stratum corneum. The stratum corneum resistance was measured using a vertical diffusion holder, with the stratum corneum placed between two electrode-containing chambers. The stratum corneum resistance was reduced manyfold during the applied pulse. The extent of resistance reduction increased with pulse voltage until reaching a threshold value, above which the resistance reduction was less dependent on the pulse voltage. The stratum corneum was more susceptible to permeabilization at high temperature, the threshold voltage being lower. The stratum corneum resistance recovered within milliseconds after a single 0.3-ms pulse. High-temperature samples had a more prolonged recovery time. Using time-resolved freeze fracture electron microscopy, aggregates of lipid vesicles were observed in all samples pulsed above the threshold voltage. The sizes and fractional areas occupied by aggregates of lipid vesicles at 4 degrees C and at 25 degrees C were measured at different time points after the applied pulse. Aggregates of vesicles persisted long after the electric resistance was recovered. After pulsing at the same voltage of 80 V, samples at 4 degrees C were found to have slightly more extensive aggregate formation initially, but recovered more rapidly than those at 25 degrees C. The more rapid recovery of the 4 degrees C samples was likely due to a lower supra-threshold voltage. Viscoelastic instability propagation created by the pulse may also play a role in the recovery of the aggregates. PMID:11751300

  18. Investigation of Radiation Affected High Temperature Superconductors - YBCO

    NASA Astrophysics Data System (ADS)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Sojak, S.; Degmová, J.; Snopek, J.

    In this paper, high temperature superconductors are studied in terms of radiation stability, which is necessary for application in fusion reactors. Perspective superconducting materials based on YBCO (Perkovskite structure) were measured by positron annihilation lifetime spectroscopy. Measurements were performed for samples prior to and after fast neutron irradiation in TRIGA MARK II reactor in Vienna. The samples demonstrated accumulation of Cu-O di-vacancies due to the irradiation. Nevertheless, the structure showed regeneration during thermal treatment by defects recombination. Positron spectroscopy results were complemented with values of critical temperature, which also showed changes of superconducting properties after the irradiation and the annealing.

  19. Phasic temperature change patterns affect growth and tuberization in potatoes

    SciTech Connect

    Cao, W.; Tibbitts, T.W. . Dept. of Horticulture)

    1994-07-01

    This study determined the response of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods. In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22 C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22 C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increased from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers was highest with 22-17-22C, and number of large tubers was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

  20. PHYSICOCHEMICAL FACTORS AFFECTING TOXICITY IN FRESHWATER: HARDNESS, PH, AND TEMPERATURE

    EPA Science Inventory

    A search of the literature for effects of hardness, pH, or temperature on the toxicity of chemicals to freshwater organisms suggested that the amount of reliable and useful data is limited. uch of the disparity among results reported in the literature was caused by improperly des...

  1. MATURITY AND TEMPERATURE AFFECTS THE GERMINATION OF STYRAX JAPONICUS SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of seed maturity, warm (18oC) or cold (5.5oC) temperature, and gibberellic acid (GA3) on seed germination of Styrax japonicus Sieb. et. Zucc was investigated. Seed maturity and morphological changes were observed using magnetic resonance (MR) imaging (MRI). Fruits harvested on July 22,...

  2. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. PMID:25965021

  3. Changes in skin and rectal temperature in lactating buffaloes provided with showers and wallowing during hot-dry season.

    PubMed

    Aggarwal, Anjali; Singh, Mahendra

    2008-04-01

    Twelve Murrah buffaloes in second or third parity during early lactation (50-70 days) were selected from the Institute's herd. All the buffaloes were kept under loose housing system and were provided ad lib green maize fodder and water to drink during 30 days experiment during the month of August-September. The buffaloes were divided into two groups of six each. Showering group (SG) buffaloes were kept under water showers from 11:00 A.M. to 4:00 P.M., while wallowing group (WG) buffaloes were allowed to wallow in a water pond during the same time. Physiological responses viz. rectal temperature (RT), respiration rate (RR), pulse rate (PR) and skin temperature (ST) were recorded before (8.00 A.M.) and after (4.00 P.M.) showers or wallowing. Skin temperature at different sites i.e. trunk, forehead, udder, udder vein, and neck regions was measured. Skin and rectal temperature of both the groups were non significant in morning but varied (P < 0.01) in the evening. Skin temperature measured at all the sites was significantly lower (P < 0.01) in wallowing buffaloes than the showering group. Further, skin temperature of neck, head, udder, udder vein and RT varied (P < 0.01) in SG and WG buffaloes during periods of study. The significant changes in all the parameters of study further support the evidence on effective cooling of skin by wallowing in comparison to water showers. The correlation data indicated a positive correlation of maximum air temperature with RT in SG but correlation was non-significant in WG. RT was positively correlated with ST in SG (P < 0.05) and WG (P < 0.01). The pooled data analysis of both groups also indicated a positive correlation of maximum temperature with RT (P < 0.05). The morning respiration and pulse rate non-significantly varied in both group, however, in the evening, the respiration rate and pulse rate was more (P < 0.01) in SG in comparison to WG. No adverse effect of wallowing or shower treatment on mastitis incidence and general

  4. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.

    PubMed

    Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2014-12-23

    A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics. PMID:25437513

  5. Comparison of Land Skin Temperature from a Land Model, Remote Sensing, and In-situ Measurement

    NASA Technical Reports Server (NTRS)

    Wang, Aihui; Barlage, Michael; Zeng, Xubin; Draper, Clara Sophie

    2014-01-01

    Land skin temperature (Ts) is an important parameter in the energy exchange between the land surface and atmosphere. Here hourly Ts from the Community Land Model Version 4.0, MODIS satellite observations, and in-situ observations in 2003 were compared. Compared with the in-situ observations over four semi-arid stations, both MODIS and modeled Ts show negative biases, but MODIS shows an overall better performance. Global distribution of differences between MODIS and modeled Ts shows diurnal, seasonal, and spatial variations. Over sparsely vegetated areas, the model Ts is generally lower than the MODIS observed Ts during the daytime, while the situation is opposite at nighttime. The revision of roughness length for heat and the constraint of minimum friction velocity from Zeng et al. [2012] bring the modeled Ts closer to MODIS during the day, and have little effect on Ts at night. Five factors contributing to the Ts differences between the model and MODIS are identified, including the difficulty in properly accounting for cloud cover information at the appropriate temporal and spatial resolutions, and uncertainties in surface energy balance computation, atmospheric forcing data, surface emissivity, and MODIS Ts data. These findings have implications for the cross-evaluation of modeled and remotely sensed Ts, as well as the data assimilation of Ts observations into Earth system models.

  6. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  7. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions.

    PubMed

    Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron

    2015-01-01

    Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing. PMID:26720882

  8. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions

    NASA Astrophysics Data System (ADS)

    Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron

    2015-12-01

    Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing.

  9. A comparison of peripheral skin blood flow and temperature during endoscopic thoracic sympathotomy.

    PubMed

    Eisenach, John H; Pike, Tasha L; Wick, Diane E; Dietz, Niki M; Fealey, Robert D; Atkinson, John L D; Charkoudian, Nisha

    2005-01-01

    The assessment of sympathetic denervation to the upper extremities during surgery for hyperhidrosis is essential in predicting postoperative outcome, particularly for endoscopic thoracic chain sympathotomy, a recently described, minimally destructive technique that minimizes postoperative compensatory hyperhidrosis. To test the hypothesis that skin blood flow (SkBF; laser Doppler flowmetry) provides a faster and more reliable indication of denervation than temperature (temp), we prospectively compared palmar SkBF and fingertip temp in 10 patients undergoing endoscopic thoracic chain sympathotomy for essential hyperhidrosis. From baseline to peak values, palmar SkBF (mean +/- SEM) increased 273.3 +/- 24.7 arbitrary units and 252.4 +/- 30.1 arbitrary units, whereas temp increased 0.9 degrees C +/- 0.3 degrees C and 1.5 degrees C +/- 0.6 degrees C on the right and left, respectively. Upon effective sympathotomy of the right thoracic chain, the time to peak SkBF was 43 +/- 13 s, whereas the time to peak temp was 277 +/- 53 s (P <0.001). On the left, the time to peak SkBF was 81 +/- 14 s, and time to peak temp was 305 +/- 34 s (P <0.001). All patients considered the sympathotomy successful. We conclude that laser Doppler SkBF is superior to temp in temporal resolution for assessment of denervation during sympathotomy and that it provides a superior qualitative and quantitative adjunct to monitoring denervation. PMID:15616090

  10. Preliminary Study of Altered Skin Temperature at Body Sites Associated with Self-Injurious Behavior in Adults Who Have Developmental Disabilities.

    ERIC Educational Resources Information Center

    Symons, Frank J.; Sutton, Kelly A.; Bodfish, James W.

    2001-01-01

    The sensory status of four nonverbal adults with mental retardation and severe self-injury was examined using skin temperature measures prior to opiate antagonist treatment. For each participant, the body site targeted most frequently for self-injury was associated with altered skin temperature and reduced by naltrexone treatment. In all cases,…

  11. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  12. Observation of temperature trace, induced by changing of temperature inside the human body, on the human body skin using commercially available IR camera

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2015-05-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possibility of temperature trace on human body skin, caused by changing of temperature inside the human body due to water drinking. We use as a computer code that is available for treatment of images captured by commercially available IR camera, manufactured by Flir Corp., as well as our developed computer code for computer processing of these images. Using both codes we demonstrate clearly changing of human body skin temperature induced by water drinking. Shown phenomena are very important for the detection of forbidden samples and substances concealed inside the human body using non-destructive control without X-rays using. Early we have demonstrated such possibility using THz radiation. Carried out experiments can be used for counter-terrorism problem solving. We developed original filters for computer processing of images captured by IR cameras. Their applications for computer processing of images results in a temperature resolution enhancing of cameras.

  13. Histological Lesions and Cellular Response in the Skin of Alpine Chamois (Rupicapra r. rupicapra) Spontaneously Affected by Sarcoptic Mange

    PubMed Central

    Salvadori, Claudia; Lazzarotti, Camilla; Trogu, Tiziana; Lanfranchi, Paolo

    2016-01-01

    Population dynamics of chamois (genus Rupicapra, subfamily Caprinae) can be influenced by infectious diseases epizootics, of which sarcoptic mange is probably the most severe in the Alpine chamois (Rupicapra rupicapra rupicapra). In this study, skin lesions and cellular inflammatory infiltrates were characterized in 44 Alpine chamois affected by sarcoptic mange. Dermal cellular responses were evaluated in comparison with chamois affected by trombiculosis and controls. In both sarcoptic mange and trombiculosis, a significantly increase of eosinophils, mast cells, T and B lymphocytes, and macrophages was detected. Moreover, in sarcoptic mange significant higher numbers of T lymphocytes and macrophages compared to trombiculosis were observed. Lesions in sarcoptic mange were classified in three grades, according to crusts thickness, correlated with mite counts. Grade 3 represented the most severe form with crust thickness more than 3.5 mm, high number of mites, and severe parakeratosis with diffuse bacteria. Evidence of immediate and delayed hypersensitivity was detected in all three forms associated with diffuse severe epidermal hyperplasia. In grade 3, a significant increase of B lymphocytes was evident compared to grades 1 and 2, while eosinophil counts were significantly higher than in grade 1, but lower than in grade 2 lesions. An involvement of nonprotective Th2 immune response could in part account for severe lesions of grade 3. PMID:27403422

  14. Selective mass treatment with ivermectin to control intestinal helminthiases and parasitic skin diseases in a severely affected population.

    PubMed Central

    Heukelbach, Jörg; Winter, Benedikt; Wilcke, Thomas; Muehlen, Marion; Albrecht, Stephan; de Oliveira, Fabíola Araújo Sales; Kerr-Pontes, Lígia Regina Sansigolo; Liesenfeld, Oliver; Feldmeier, Hermann

    2004-01-01

    OBJECTIVE: To assess the short-term and long-term impact of selective mass treatment with ivermectin on the prevalence of intestinal helminthiases and parasitic skin diseases in an economically depressed community in north-east Brazil. METHODS: An intervention was carried out in a traditional fishing village in north-east Brazil where the population of 605 is heavily affected by ectoparasites and enteroparasites. The prevalence of intestinal helminths was determined by serial stool examination and the prevalence of parasitic skin diseases by clinical inspection. A total of 525 people out of a target population of 576 were treated at baseline. The majority of these were treated with ivermectin (200 microg/kg with a second dose given after 10 days). If ivermectin was contraindicated, participants were treated with albendazole or mebendazole for intestinal helminths or with topical deltamethrin for ectoparasites. Follow-up examinations were performed at 1 month and 9 months after treatment. FINDINGS: Prevalence rates of intestinal helminthiases before treatment and at 1 month and 9 months after mass treatment were: hookworm disease 28.5%, 16.4% and 7.7%; ascariasis 17.1%, 0.4% and 7.2%; trichuriasis 16.5%, 3.4% and 9.4%; strongyloidiasis 11.0%, 0.6% and 0.7%; and hymenolepiasis 0.6%; 0.4% and 0.5%, respectively. Prevalence rates of parasitic skin diseases before treatment and 1 month and 9 months after mass treatment were: active pediculosis 16.1%, 1.0% and 10.3%; scabies 3.8%, 1.0% and 1.5%; cutaneous larva migrans 0.7%, 0% and 0%; tungiasis 51.3%, 52.1% and 31.2%, respectively. Adverse events occurred in 9.4% of treatments. They were all of mild to moderate severity and were transient. CONCLUSION: Mass treatment with ivermectin was an effective and safe means of reducing the prevalence of most of the parasitic diseases prevalent in a poor community in north-east Brazil. The effects of treatment lasted for a prolonged period of time. PMID:15375445

  15. Establishing Bedding Requirements during Transport and Monitoring Skin Temperature during Cold and Mild Seasons after Transport for Finishing Pigs.

    PubMed

    McGlone, John; Johnson, Anna; Sapkota, Avi; Kephart, Rebecca

    2014-01-01

    The broad aim of this study was to determine whether bedding level in the transport trailer influenced pig performance and welfare. Specifically, the objective was to define the bedding requirements of pigs during transportation in commercial settings during cold and mild weather. Animals (n = 112,078 pigs on 572 trailers) used were raised in commercial finishing sites and transported in trailers to commercial processing plants. Dead on arrival (DOA), non-ambulatory (NA), and total dead and down (D&D) data were collected and skin surface temperatures of the pigs were measured by infrared thermography. Data were collected during winter (Experiment 1) and fall/spring (Experiment 2). Total D&D percent showed no interaction between bedding level and outside air temperature in any experiments. Average skin surface temperature during unloading increased with outside air temperature linearly in both experiments (P < 0.01). In conclusion, over-use of bedding may be economically inefficient. Pig skin surface temperature could be a useful measure of pig welfare during or after transport. PMID:26480039

  16. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?

    PubMed

    Wang, Faming; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2012-01-01

    Clothing evaporative resistance is one of the inherent factors that impede heat exchange by sweating evaporation. It is widely used as a basic input in physiological heat strain models. Previous studies showed a large variability in clothing evaporative resistance both at intra-laboratory and inter-laboratory testing. The errors in evaporative resistance may cause severe problems in the determination of heat stress level of the wearers. In this paper, the effect of temperature difference between the manikin nude surface and wet textile skin surface on clothing evaporative resistance was investigated by both theoretical analysis and thermal manikin measurements. It was found that the temperature difference between the skin surface and the manikin nude surface could lead to an error of up to 35.9% in evaporative resistance of the boundary air layer. Similarly, this temperature difference could also introduce an error of up to 23.7% in the real clothing total evaporative resistance (R ( et_real ) < 0.1287 kPa m(2)/W). Finally, it is evident that one major error in the calculation of evaporative resistance comes from the use of the manikin surface temperature instead of the wet textile fabric skin temperature. PMID:21318453

  17. How Temperature and Water levels affect Polar Mesospheric Cloud Formation

    NASA Astrophysics Data System (ADS)

    Smith, L. L.; Randall, C. E.; Harvey, V.

    2012-12-01

    Using the Cloud Imaging and Particle Size (CIPS) instrument data, which is part of the Aeronomy in the Mesosphere (AIM) mission, we compare the albedo and ice water content measurements of CIPS with the Navy Operation Global Atmospheric Prediction System - Advanced Level Phyiscs and High Altitude (NOGAPS-ALPHA) temperature and water vapor data in order to derive a greater understanding of cloud formation and physics. We particularly focus on data from June 2007 and July 2007 in this case study because of particular cloud structures and formations during this time period for future studies.

  18. Cold-blooded loneliness: social exclusion leads to lower skin temperatures.

    PubMed

    Ijzerman, Hans; Gallucci, Marcello; Pouw, Wim T J L; Weiβgerber, Sophia C; Van Doesum, Niels J; Williams, Kipling D

    2012-07-01

    Being ostracized or excluded, even briefly and by strangers, is painful and threatens fundamental needs. Recent work by Zhong and Leonardelli (2008) found that excluded individuals perceive the room as cooler and that they desire warmer drinks. A perspective that many rely on in embodiment is the theoretical idea that people use metaphorical associations to understand social exclusion (see Landau, Meier, & Keefer, 2010). We suggest that people feel colder because they are colder. The results strongly support the idea that more complex metaphorical understandings of social relations are scaffolded onto literal changes in bodily temperature: Being excluded in an online ball tossing game leads to lower finger temperatures (Study 1), while the negative affect typically experienced after such social exclusion is alleviated after holding a cup of warm tea (Study 2). The authors discuss further implications for the interaction between body and social relations specifically, and for basic and cognitive systems in general. PMID:22717422

  19. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    SciTech Connect

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peak intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at

  20. Analysing visual pattern of skin temperature during submaximal and maximal exercises

    NASA Astrophysics Data System (ADS)

    Balci, Gorkem Aybars; Basaran, Tahsin; Colakoglu, Muzaffer

    2016-01-01

    Aims of this study were to examine our hypotheses assuming that (a) skin temperature patterns would differ between submaximal exercise (SE) and graded maximal exercise test (GXT) and (b) thermal kinetics of Tskin occurring in SE and GXT might be similar in a homogenous cohort. Core temperature (Tcore) also observed in order to evaluate thermoregulatory responses to SE and GXT. Eleven moderately to well-trained male athletes were volunteered for the study (age: 22.2 ± 3.7 years; body mass: 73.8 ± 6.9 kg; height: 181 ± 6.3 cm; body surface area 1.93 ± 0.1 m2; body fat: 12.6% ± 4.2%; V ˙ O2max: 54 ± 9.9 mL min-1 kg-1). Under stabilized environmental conditions in climatic chamber, GXT to volitional exhaustion and 20-min SE at 60% of VO2max were performed on cycle ergometer. Thermal analyses were conducted in 2-min intervals throughout exercise tests. Tskin was monitored by a thermal camera, while Tcore was recorded via an ingestible telemetric temperature sensor. Thermal kinetic analyses showed that Tskin gradually decreased till the 7.58 ± 1.03th minutes, and then initiated to increase till the end of SE (Rsqr = 0.97), while Tskin gradually decreased throughout the GXT (Rsqr = 0.89). Decrease in the level of Tskin during the GXT was significantly below from the SE [F (4, 40) = 2.67, p = 0.07, ηp2 = 0.211]. In the meantime, Tcore continuously increased throughout the SE and GXT (p < 0.05). Both GXT and SE were terminated at very close final Tcore values (37.8 ± 0.3 °C and 38.0 ± 0.3 °C, respectively; p > 0.05). However, total heat energies were calculated as 261.5 kJ/m2 and 416 kJ/m2 for GXT and SE, respectively (p < 0.05). Thus, it seems that SE may be more advantageous than GXT in thermoregulation. In conclusion, Tcore gradually increased throughout maximal and submaximal exercises as expected. Tskin curves patterns found to be associated amongst participants at both GXT and SE. Therefore, Tskin kinetics may ensure an important data for monitoring

  1. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat.

    PubMed

    James, C A; Richardson, A J; Watt, P W; Maxwell, N S

    2014-10-01

    New technologies afford convenient modalities for skin temperature (TSKIN) measurement, notably involving wireless telemetry and non-contact infrared thermometry. The purpose of this study was to investigate the validity and reliability of skin temperature measurements using a telemetry thermistor system (TT) and thermal camera (TC) during exercise in a hot environment. Each system was compared against a certified thermocouple, measuring the surface temperature of a metal block in a thermostatically controlled waterbath. Fourteen recreational athletes completed two incremental running tests, separated by one week. Skin temperatures were measured simultaneously with TT and TC compared against a hard-wired thermistor system (HW) throughout rest and exercise. Post hoc calibration based on waterbath results displayed good validity for TT (mean bias [MB]=-0.18 °C, typical error [TE]=0.18 °C) and reliability (MB=-0.05 °C, TE=0.31 °C) throughout rest and exercise. Poor validity (MB=-1.4 °C, TE=0.35 °C) and reliability (MB=-0.65 °C, TE=0.52 °C) was observed for TC, suggesting it may be best suited to controlled, static situations. These findings indicate TT systems provide a convenient, valid and reliable alternative to HW, useful for measurements in the field where traditional methods may be impractical. PMID:25436963

  2. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.

    2010-01-01

    Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.

  3. Nitroglycerin-induced changes in facial skin temperature: 'cold nose' as a predictor of headache?

    PubMed

    Zaproudina, Nina; Närhi, Matti; Lipponen, Jukka A; Tarvainen, Mika P; Karjalainen, Pasi A; Karhu, Jari; Airaksinen, Olavi; Giniatullin, Rashid

    2013-11-01

    Nitroglycerin (NTG) often induces headaches when used to treat cardiac diseases. Such property of NTG has been widely used in modelling of migraine-like headaches. However, background reasons, predisposing to the development of NTG-headache, are less studied. The main aim of our study was to find, using NTG model, easily accessible markers of the vascular changes associated with headache. Because changes in the blood flow alter the local skin temperature (Tsk), we studied the relationship between the regional changes in the facial Tsk and NTG-induced headaches. Tsk was measured with infrared thermography in 11 healthy women during 3 h after sublingual NTG administration. NTG caused headache in five women, and four of them were the first-degree relatives of migraine patients. Notably, before NTG administration, subjects in the headache group had lower Tsk values, especially in the nose area, than women in the pain-free group (n = 6). NTG-induced headache was associated with a long-lasting increase of Tsk over the baseline. In sharp contrast, in the pain-free group, the Tsk reduced and returned rapidly to the baseline. Thus, the low baseline level and greater increase of regional Tsk correlated with the incidence of headache that supports a role of greater vascular changes in headache happening on the basis of the dissimilarities in vascular tone. An easily accessible phenomenon of 'cold nose' may indicate background vascular dysfunctions in individuals with predisposition to headache. Facial infrared thermography, coupled with NTG administration, suggests a novel temporally controlled approach for non-invasive investigation of vascular processes accompanying headaches. PMID:23701267

  4. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  5. How microphysical choices affect simulated infrared brightness temperatures

    NASA Astrophysics Data System (ADS)

    Eikenberg, S.; Köhler, C.; Seifert, A.; Crewell, S.

    2015-04-01

    Numerical weather prediction (NWP) today relies more and more on satellite data, both for assimilation and for evaluation. However, process-based analyses of the biases between observed and simulated satellite data, which go beyond a mere identification of the biases, are rare. The present study investigates a long-known bias (Böhme et al., 2011) between brightness temperatures (BTs) simulated from the regional NWP model COSMO-DE forecasts via RTTOV (Radiative Transfer for TOVS) and those observed by Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). The pivotal question is whether a novel two-moment cloud ice scheme, developed by Köhler (2013) primarily to improve the representation of ice nucleation processes, exhibits an improved performance with respect to this bias and, if that is so, to provide a process-based analysis which identifies the reasons for the improved behaviour. It is shown that the new two-moment cloud ice scheme reduces the BT bias distinctly and can therefore be considered an improvement in comparison to two standard schemes, the two-category ice scheme and the three-category ice scheme. The improvement in simulated BTs is due to a vertical redistribution of cloud ice to lower model levels. Sensitivity studies identify two of the introduced changes in the two-moment cloud ice scheme to be hand-in-hand responsible for most of the improved performance: the choice of heterogeneous ice nucleation scheme and the consideration of cloud ice sedimentation. Including only cloud ice sedimentation without changing the heterogeneous ice nucleation scheme has no distinct effect on cloud ice. Further sensitivity studies with varying aerosol number densities reveal a comparably small sensitivity, indicating that the use of a physically reasonable heterogeneous ice nucleation scheme is far more important than the exact knowledge of the actual aerosol number densities.

  6. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  7. Assimilation of Goes-Derived Skin Temperature Tendencies into Mesoscale Models to Improve Forecasts of near Surface Air Temperature and Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; McNider, Richard T.; Suggs, Ron; Jedlovec, Gary; Robertson, Franklin R.

    1998-01-01

    A technique has been developed for assimilating GOES-FR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature chance closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48 h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, the need to specify poorly known soil and vegetative characteristics is eliminated. The GOES assimilation technique has been incorporated into the PSU/NCAR MM5. Results will be presented to demonstrate the ability of the assimilation scheme to improve short- term (0-48h) simulations of near-surface air temperature and mixing ratio during the warm season for several selected cases which exhibit a variety of atmospheric and land-surface conditions. In addition, validation of terms in the simulated surface energy budget will be presented using in situ data collected at the Southern Great Plains (SGP) Cloud And Radiation Testbed (CART) site as part of the Atmospheric Radiation Measurements Program (ARM).

  8. Interleukin 22 early affects keratinocyte differentiation, but not proliferation, in a three-dimensional model of normal human skin.

    PubMed

    Donetti, Elena; Cornaghi, Laura; Arnaboldi, Francesca; Landoni, Federica; Romagnoli, Paolo; Mastroianni, Nicolino; Pescitelli, Leonardo; Baruffaldi Preis, Franz W; Prignano, Francesca

    2016-07-15

    Interleukin (IL)-22 is a pro-inflammatory cytokine driving the progression of the psoriatic lesion with other cytokines, as Tumor Necrosis Factor (TNF)-alpha and IL-17. Our study was aimed at evaluating the early effect of IL-22 alone or in combination with TNF-alpha and IL-17 by immunofluorescence on i) keratinocyte (KC) proliferation, ii) terminal differentiation biomarkers as keratin (K) 10 and 17 expression, iii) intercellular junctions. Transmission electron microscopy (TEM) analysis was performed. A model of human skin culture reproducing a psoriatic microenvironment was used. Plastic surgery explants were obtained from healthy young women (n=7) after informed consent. Fragments were divided before adding IL-22 or a combination of the three cytokines, and harvested 24 (T24), 48 (T48), and 72 (T72)h later. From T24, in IL-22 samples we detected a progressive decrease in K10 immunostaining in the spinous layer paralleled by K17 induction. By TEM, after IL-22 incubation, keratin aggregates were evident in the perinuclear area. Occludin immunostaining was not homogeneously distributed. Conversely, KC proliferation was not inhibited by IL-22 alone, but only by the combination of cytokines. Our results suggest that IL-22 affects keratinocyte terminal differentiation, whereas, in order to induce a proliferation impairment, a more complex psoriatic-like microenvironment is needed. PMID:27207586

  9. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption.

    PubMed

    Larese Filon, Francesca; Bello, Dhimiter; Cherrie, John W; Sleeuwenhoek, Anne; Spaan, Suzanne; Brouwer, Derk H

    2016-08-01

    The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication. PMID:27289581

  10. Proteomic studies on soybean seed quality as affected by high temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term high temperature stresses can occur during soybean seed development through maturity and negatively impact seed quality. We investigated soybean seed quality as affected by high temperature using a proteomic approach. The effects of a prolonged high temperature treatment (37/30ºC day/nigh...

  11. Skin Pigmentation Disorders

    MedlinePlus

    ... skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or unhealthy, it affects melanin production. Some pigmentation disorders affect just patches of ...

  12. Infrared thermal imaging as a physiological access pathway: a study of the baseline characteristics of facial skin temperatures.

    PubMed

    Nhan, B R; Chau, T

    2009-04-01

    In this study we examine the baseline characteristics of facial skin temperature, as measured by dynamic infrared thermal imaging, to gauge its potential as a physiological access pathway for non-verbal individuals with severe motor impairments. Frontal facial recordings were obtained from 12 asymptomatic adults in a resting state with a high-end infrared thermal imaging system. From the infrared thermal recordings, mean skin temperature time series were generated for regions of interest encompassing the nasal, periorbital and supraorbital areas. A 90% bandwidth for all regions of interest was found to be in the 1 Hz range. Over 70% of the time series were identified as nonstationary (p<0.05), with the nonstationary mean as the greatest contributing source. Correlation coefficients between regions were significant (p<0.05) and ranged from values of 0.30 (between periorbital and supraorbital regions) to 0.75 (between contralateral supraorbital regions). Using information measures, we concluded that the greatest degree of information existed in the nasal and periorbital regions. Mutual information existed across all regions but was especially prominent between the nasal and periorbital regions. Results from this study provide insight into appropriate analysis methods and potential discriminating features for the application of facial skin temperature as a physiological access pathway. PMID:19332894

  13. Tension responses to joule temperature jump in skinned rabbit muscle fibres.

    PubMed

    Bershitsky, S Y; Tsaturyan, A K

    1992-02-01

    1. Joule temperature jumps (T-jumps) from 5-9 degrees C up to 40 degrees C were used to study the cross-bridge kinetics and thermodynamics in skinned rabbit muscle fibres. To produce a T-jump, an alternating current pulse was passed through a fibre 5 s after removing the activating solution (pCa congruent to 4.5) from the experimental trough. The pulse frequency was congruent to 30 kHz, amplitude less than or equal to 3 kV, and duration 0.2 ms. The pulse energy liberated in the fibre was calculated using a special analog circuit and then used for estimation of the T-jump amplitude. 2. The T-jump induced a tri-exponential tension transient. Phases 1 and 2 had rate constants k1 = 450-1750 s-1 and k2 = 60-250 s-1 respectively, characterizing the tension rise, whereas phase 3 had a rate constant k3 = 5-10 s-1 representing tension recovery due to the fibre cooling. 3. An increase from 13 to 40 degrees C for the final temperature achieved by the T-jump led to an increase in the amplitudes of phases 1 and 2. After T-jumps to 30-40 degrees C during phase 1, tension increased by 50-80%. During phase 2 an approximately 2-fold tension increase continued. Rate constants k1 and k2 increased with temperature and temperature coefficients (Q10) were 1.6 and 1.7, respectively. 4. To study which processes in the cross-bridges are involved in phases 1 and 2, a series of experiments were made where step length changes of -9 to +3 nm (hs)-1 (nanometres per half-sarcomere length) were applied to the fibre 4 ms before the T-jump. 5. After the step shortening, the rate constant of phase 1 increased, whereas its amplitude decreased compared to those without a length change. This indicates that phase 1 is determined by some force-generating process in the cross-bridges attached to the thin filaments. This process is, most probably, the same as that producing the early tension recovery following the length change. The enthalpy change (delta H) associated with the reaction controlling this

  14. Relationships between facial temperature changes, end-exercise affect and during-exercise changes in affect: a preliminary study.

    PubMed

    Legrand, Fabien D; Bertucci, William M; Arfaoui, Ahlem

    2015-01-01

    The present study was performed as an evaluation of the relationships between changes in facial temperature and self-reported pleasure-displeasure during an acute aerobic exercise bout. Ninety-two students performed a 10-minute long session of cycle ergometry at 80-85% of age-predicted maximal heart rate. Using infrared thermography and a single-item measure of pleasure-displeasure (the Feeling Scale, FS), facial temperature and the FS score were sampled at the beginning (Min1:00) and at the end of the exercise session (Min9:00). Statistical analyses revealed that cheek (but not forehead) temperature was higher at the end of the exercise bout compared to Min1:00 (it increased by about 5%). Change in cheek temperature was negatively related to end-exercise affect (β = -0.28, P < 0.001) and to during-exercise affective changes (β = -0.35, P < 0.001). No significant relationship with forehead temperature was found. Some of the possible reasons for this differential effect as well as theoretical and practical implications of our findings are discussed. PMID:25131146

  15. Establishing Bedding Requirements during Transport and Monitoring Skin Temperature during Cold and Mild Seasons after Transport for Finishing Pigs

    PubMed Central

    McGlone, John; Johnson, Anna; Sapkota, Avi; Kephart, Rebecca

    2014-01-01

    Simple Summary Typically, bedding is used to improve pig comfort and welfare during transport. This study assesses the level of bedding required during transport of finishing pigs in semi-truck trailers. The present study shows that adding more than six bales/trailer of bedding in cold weather and more than three bales/trailer of bedding in mild weather provides no benefit to the pigs. Economic forces would not favor increased bedding with no benefit. Use of infrared thermography may provide a useful tool to indicate when cooling interventions are needed during warm weather. Abstract The broad aim of this study was to determine whether bedding level in the transport trailer influenced pig performance and welfare. Specifically, the objective was to define the bedding requirements of pigs during transportation in commercial settings during cold and mild weather. Animals (n = 112,078 pigs on 572 trailers) used were raised in commercial finishing sites and transported in trailers to commercial processing plants. Dead on arrival (DOA), non-ambulatory (NA), and total dead and down (D&D) data were collected and skin surface temperatures of the pigs were measured by infrared thermography. Data were collected during winter (Experiment 1) and fall/spring (Experiment 2). Total D&D percent showed no interaction between bedding level and outside air temperature in any experiments. Average skin surface temperature during unloading increased with outside air temperature linearly in both experiments (P < 0.01). In conclusion, over-use of bedding may be economically inefficient. Pig skin surface temperature could be a useful measure of pig welfare during or after transport. PMID:26480039

  16. Ambient Temperature and 17β-Estradiol Modify Fos Immunoreactivity in the Median Preoptic Nucleus, a Putative Regulator of Skin Vasomotion

    PubMed Central

    Dacks, Penny A.; Krajewski, Sally J.

    2011-01-01

    Estrogen has pronounced effects on thermoregulation, but the anatomic sites of integration between the reproductive and thermoregulatory axes are unknown. In this study, we tested whether estradiol-17β (E2) treatment would alter the activity of thermoregulatory brain regions responding to mild changes in ambient temperature (TAMBIENT). Core and tail skin temperatures were recorded at the ambient temperatures of 20, 24, or 31 C in ovariectomized (OVX) rats with and without E2. Neuronal activity was evaluated by counting the number of Fos-immunoreactive cells in the brains of rats killed 90 min after exposure to one of the three ambient temperatures. Of 14 brain areas examined, the median preoptic nucleus (MnPO) was the only site that exhibited increased Fos immunoreactivity at the high TAMBIENT of 31 C. At 24 C, OVX rats exhibited increased numbers of MnPO Fos-immunoreactive cells, compared with OVX + E2 rats. Interestingly, tail skin vasomotion and MnPO Fos expression were affected in a similar manner by TAMBIENT and E2 treatment. In the arcuate nucleus and anteroventral periventricular nucleus (AVPV), Fos immunoreactivity was highest at the low TAMBIENT of 20 C, with inhibitory (arcuate nucleus) and stimulatory (AVPV) effects of E2. No other areas responded to both TAMBIENT and E2 treatment. These results implicate the MnPO, the arcuate nucleus, and the AVPV as sites of integration between the reproductive and thermoregulatory axes. Combined with studies showing the importance of MnPO neurons in heat-defense pathways, the MnPO emerges as a likely site for E2 modulation of thermoregulatory vasomotion. PMID:21521752

  17. Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature

    PubMed Central

    Plasencia, I.; Norlén, L.; Bagatolli, L. A.

    2007-01-01

    The main function of skin is to serve as a physical barrier between the body and the environment. This barrier capacity is in turn a function of the physical state and structural organization of the stratum corneum extracellular lipid matrix. This lipid matrix is essentially composed of very long chain saturated ceramides, cholesterol, and free fatty acids. Three unsolved key questions are i), whether the stratum corneum extracellular lipid matrix is constituted by a single gel phase or by coexisting crystalline (solid) domains; ii), whether a separate liquid crystalline phase is present; and iii), whether pH has a direct effect on the lipid matrix phase behavior. In this work the lateral structure of membranes composed of lipids extracted from human skin stratum corneum was studied in a broad temperature range (10°C–90°C) using different techniques such as differential scanning calorimetry, fluorescence spectroscopy, and two-photon excitation and laser scanning confocal fluorescence microscopy. Here we show that hydrated bilayers of human skin stratum corneum lipids express a giant sponge-like morphology with dimensions corresponding to the global three-dimensional morphology of the stratum corneum extracellular space. These structures can be directly visualized using the aforementioned fluorescence microscopy techniques. At skin physiological temperatures (28°C–32°C), the phase state of these hydrated bilayers correspond microscopically (radial resolution limit 300 nm) to a single gel phase at pH 7, coexistence of different gel phases between pH 5 and 6, and no fluid phase at any pH. This observation suggests that the local pH in the stratum corneum may control the physical properties of the extracellular lipid matrix by regulating membrane lateral structure and stability. PMID:17631535

  18. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  19. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis

    PubMed Central

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  20. Skin turgor

    MedlinePlus

    Doughy skin; Poor skin turgor; Good skin turgor; Decreased skin turgor ... Call your health care provider if: Poor skin turgor occurs with vomiting, diarrhea, or fever. The skin is very slow to return to normal, or the skin "tents" up ...

  1. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures.

    PubMed

    Wang, Yufeng; Zhang, Jianhui; Shi, Xiaoliang; Peng, Yu; Li, Ping; Lin, Dongzhi; Dong, Yanjun; Teng, Sheng

    2016-09-01

    Chloroplasts are essential for photosynthesis and play critical roles in plant development. In this study, we characterized the temperature-sensitive chlorophyll-deficient rice mutant tcd5, which develops albino leaves at low temperatures (20 °C) and normal green leaves at high temperatures (32 °C). The development of chloroplasts and etioplasts is impaired in tcd5 plants at 20 °C, and the temperature-sensitive period for the albino phenotype is the P4 stage of leaf development. The development of thylakoid membranes is arrested at the mid-P4 stage in tcd5 plants at 20 °C. We performed positional cloning of TCD5 and then complementation and knock-down experiments, and the results showed that the transcript LOC_Os05g34040.1 from the LOC_Os05g34040 gene corresponded to the tcd5 phenotype. TCD5 encodes a conserved plastid-targeted monooxygenase family protein which has not been previously reported associated with a temperature-sensitive albino phenotype in plants. TCD5 is abundantly expressed in young leaves and immature spikes, and low temperatures increased this expression. The transcription of some genes involved in plastid transcription/translation and photosynthesis varied in the tcd5 mutant. Although the phenotype and temperature dependence of the TCD5 orthologous mutant phenotype were different in rice and Arabidopsis, OsTCD5 could rescue the phenotype of the Arabidopsis mutant, suggesting that TCD5 function is conserved between monocots and dicots. PMID:27531886

  2. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures

    PubMed Central

    Wang, Yufeng; Zhang, Jianhui; Shi, Xiaoliang; Peng, Yu; Li, Ping; Lin, Dongzhi; Dong, Yanjun; Teng, Sheng

    2016-01-01

    Chloroplasts are essential for photosynthesis and play critical roles in plant development. In this study, we characterized the temperature-sensitive chlorophyll-deficient rice mutant tcd5, which develops albino leaves at low temperatures (20 °C) and normal green leaves at high temperatures (32 °C). The development of chloroplasts and etioplasts is impaired in tcd5 plants at 20 °C, and the temperature-sensitive period for the albino phenotype is the P4 stage of leaf development. The development of thylakoid membranes is arrested at the mid-P4 stage in tcd5 plants at 20 °C. We performed positional cloning of TCD5 and then complementation and knock-down experiments, and the results showed that the transcript LOC_Os05g34040.1 from the LOC_Os05g34040 gene corresponded to the tcd5 phenotype. TCD5 encodes a conserved plastid-targeted monooxygenase family protein which has not been previously reported associated with a temperature-sensitive albino phenotype in plants. TCD5 is abundantly expressed in young leaves and immature spikes, and low temperatures increased this expression. The transcription of some genes involved in plastid transcription/translation and photosynthesis varied in the tcd5 mutant. Although the phenotype and temperature dependence of the TCD5 orthologous mutant phenotype were different in rice and Arabidopsis, OsTCD5 could rescue the phenotype of the Arabidopsis mutant, suggesting that TCD5 function is conserved between monocots and dicots. PMID:27531886

  3. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and

  4. Caterpillar biomass depends on temperature and precipitation, but does not affect bird reproduction

    NASA Astrophysics Data System (ADS)

    Schöll, Eva Maria; Ohm, Judith; Hoffmann, Konstantin Frank; Hille, Sabine Marlene

    2016-07-01

    Complex changes in phenological events appear as temperatures are increasing: In deciduous forests bud burst, hatching of herbivorous caterpillars, egg laying and nestling time of birds when feeding chicks on caterpillars, may differentially shift into early season and alter synchronization. If timing of bird reproduction has to match with short periods of food availability, phenological mismatch could negatively affect reproductive success. Using a unique empirical approach along an altitudinal temperature gradient, we firstly asked whether besides temperature, also precipitation and leaf phenology interplay and affect caterpillar biomass, since impacts of rainfall on caterpillars have been largely neglected so far. Secondly, we asked whether abundance of caterpillars and thereby body mass of great tit nestlings, which are mainly fed with caterpillars, vary along the altitudinal temperature gradient. We demonstrated that next to temperature also precipitation and leaf phenology affected caterpillar biomass. In our beech forest, even along altitudes, caterpillars were available throughout the great tit breeding season but in highly variable amounts. Our findings revealed that although timing of leaf phenology and great tit breeding season were delayed with decreasing temperature, caterpillars occurred synchronously and were not delayed according to altitude. However, altitude negatively affected caterpillar biomass, but body mass of fledglings at high altitude sites was not affected by lower amounts of caterpillar biomass. This might be partially outweighed by larger territory sizes in great tits.

  5. Nuclear microprobe investigation of the penetration of ultrafine zinc oxide into human skin affected by atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.

    2011-10-01

    Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.

  6. Evaluation of ear skin temperature as a cow-side test to predict postpartum calcium status in dairy cows.

    PubMed

    Venjakob, P L; Borchardt, S; Thiele, G; Heuwieser, W

    2016-08-01

    Subclinical hypocalcemia is considered a gateway disease that increases susceptibility to other metabolic and infectious diseases in transition dairy cows. In the absence of a cow-side test, however, it is difficult to identify hypocalcemic cows. The objective of this study was to evaluate ear skin temperature as a diagnostic predictor of serum calcium concentration. We conducted a cross-sectional study on 7 commercial dairy farms, involving 251 cows 0 to 48h after calving. Skin temperature of the ears (STEar) was scored manually by palpating both ears. An infrared thermometer was used to measure ear temperature, skin temperature on the coxal tuber (STCox), and ambient temperature. Rectal temperature was measured using a digital thermometer. A blood sample was drawn to determine serum calcium concentration. Hypocalcemia was defined as serum calcium below 2.0mmol/L, irrespective of clinical symptoms. Serum calcium concentration <2.0mmol/L in connection with clinical symptoms was defined as clinical milk fever; serum calcium concentration <2.0mmol/L without clinical symptoms was defined as subclinical hypocalcemia. Multivariate analysis using the GENLINMIXED procedure and receiver operating characteristic analysis were performed to evaluate whether serum calcium concentration could be predicted using ear temperature and other temperature estimates. The prevalence of hypocalcemia was 3.3, 27.3, 32.8, and 69.6% for cows in first, second, third, and fourth or greater lactation, respectively. None of the cows in first and second lactation had clinical milk fever. The prevalence of clinical milk fever was 6.0 and 20.3% for cows in their third and fourth or greater lactation, respectively. A decrease in ear temperature of 0.39°C [95% confidence interval (CI): 0.25-0.54] was associated with a decrease of 0.1mmol/L in serum calcium concentration. Ambient temperature, however, was a major confounder for ear temperature. With an increase in ambient temperature of 1°C, STEar

  7. Forearm-finger skin temperature gradient as an index of cutaneous perfusion during steady-state exercise.

    PubMed

    Keramidas, Michail E; Geladas, Nickos D; Mekjavic, Igor B; Kounalakis, Stylianos N

    2013-09-01

    The purpose of this study was to examine whether the forearm-finger skin temperature gradient (T(forearm-finger)), an index of vasomotor tone during resting conditions, can also be used during steady-state exercise. Twelve healthy men performed three cycling trials at an intensity of ~60% of their maximal oxygen uptake for 75 min separated by at least 48 h. During exercise, forearm skin blood flow (BFF ) was measured with a laser-Doppler flowmeter, and finger skin blood flow (PPG) was recorded from the left index fingertip using a pulse plethysmogram. T(forearm-finger) of the left arm was calculated from the values derived by two thermistors placed on the radial side of the forearm and on the tip of the middle finger. During exercise, PPG and BFF increased (P<0.001), and T(forearm-finger) decreased (P<0.001) from their resting values, indicating a peripheral vasodilatation. There was a significant correlation between T(forearm-finger) and both PPG (r = -0.68; P<0.001) and BFF (r = -0.50; P<0.001). It is concluded that T(forearm-finger) is a valid qualitative index of cutaneous vasomotor tone during steady-state exercise. PMID:23701282

  8. Measurements of skin temperature responses to cold exposure of foot and face in healthy individuals: variability and influencing factors.

    PubMed

    Zaproudina, Nina; Lipponen, Jukka A; Eskelinen, Perttu; Tarvainen, Mika P; Karjalainen, Pasi A; Närhi, Matti

    2011-07-01

    Skin vasomotor responses to cold exposure (CE) have been measured widely and shown to be abnormal in some clinical conditions. Among other methods, monitoring of skin temperature (Tsk) changes has been applied for those purposes. We investigated such changes simultaneously in different skin areas of healthy young men during foot and facial CE. Tsk was measured using infrared thermography in the big toe and dorsum of the left foot and with a contact thermode in the fingertip. The relationship of Tsk responses within individuals and factors influencing them were examined using mixed model analysis. Tsk changes varied greatly between sessions, measured areas and individuals. Foot CE that was painful produced both stronger central circulatory and Tsk responses than facial CE. Tsk changes were prominent in the fingertip, moderate in the toe and weak or absent in the dorsal foot. The Tsk changes were related to the baseline levels and changes of blood pressure, heart rate, the baseline Tsk values and stimulus intensity. However, despite the different cold stimuli and measurement techniques, an intra-individual correlation of the Tsk responses was good. In the foot, the big toe area is applicable for studies of Tsk reactions when warm, and the modified Tsk gradient helps to evaluate the level of peripheral vasoconstriction. The cold-induced Tsk changes may be informative in the studies of the cutaneous vasoregulation but the individual character of the cold stress reactivity and numerous confusing factors should be considered when drawing conclusions on the basis of the recorded results. PMID:21672139

  9. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2014-12-01

    Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency. PMID:25285641

  10. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  11. The relative influence of urban climates on outdoor human energy budgets and skin temperature I. Modeling considerations

    NASA Astrophysics Data System (ADS)

    Burt, J. E.; O'Rourke, P. A.; Terjung, W. H.

    1982-03-01

    An attempt is made to provide a tool for systematically analyzing variations of outdoor human energy budgets and skin temperatures as a result of different urban street canyon geometries and vegetative properties. To this end, three previously developed numerical models were combined. The interaction of the models and the derivation of the necessary human-urban view-factors is discussed. Some sample results are given for non-urban macadam and park plains, to be used later as standards in the comparison of the impact of urban morphology on human comfort.

  12. Sperm Affects Head Sensory Neuron in Temperature Tolerance of Caenorhabditis elegans.

    PubMed

    Sonoda, Satoru; Ohta, Akane; Maruo, Ayana; Ujisawa, Tomoyo; Kuhara, Atsushi

    2016-06-28

    Tolerance to environmental temperature change is essential for the survival and proliferation of animals. The process is controlled by various body tissues, but the orchestration of activity within the tissue network has not been elucidated in detail. Here, we show that sperm affects the activity of temperature-sensing neurons (ASJ) that control cold tolerance in Caenorhabditis elegans. Genetic impairment of sperm caused abnormal cold tolerance, which was unexpectedly restored by impairment of temperature signaling in ASJ neurons. Calcium imaging revealed that ASJ neuronal activity in response to temperature was decreased in sperm mutant gsp-4 with impaired protein phosphatase 1 and rescued by expressing gsp-4 in sperm. Genetic analysis revealed a feedback network in which ASJ neuronal activity regulates the intestine through insulin and a steroid hormone, which then affects sperm and, in turn, controls ASJ neuronal activity. Thus, we propose that feedback between sperm and a sensory neuron mediating temperature tolerance. PMID:27320929

  13. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula.

    PubMed

    Strømme, C B; Julkunen-Tiitto, R; Krishna, U; Lavola, A; Olsen, J E; Nybakken, L

    2015-05-01

    Perennial plants growing at high latitudes synchronize growth and dormancy to appropriate seasons by sensing environmental cues. Autumnal growth cessation, bud set and dormancy induction are commonly driven by the length of photoperiod and light quality, and the responses are modified by temperature. However, although ultraviolet (UV)-B radiation is well known to affect plant growth and development, information on the effects on bud phenology is scarce. We examined the separate and combined effects of enhanced temperature and UV-B on autumnal bud set and spring bud break in female and male clones of Populus tremula in an outdoor experiment in Joensuu, Eastern Finland. Enhancements of UV-B and temperature were modulated to +30% and +2 °C, respectively, from June to October 2012. Enhanced UV-B accelerated bud set, while increased temperature delayed it. For both UV-B and temperature, we found sex-related differences in responsiveness. Temperature increase had a stronger delaying effect on bud maturation in male compared with female clones. Also, male clones were more responsive to UV-B increase than female clones. Increasing autumnal temperature enhanced bud break in spring for both sexes, while UV-B enhanced bud break in male clones. In conclusion, we found that UV-B affected phenological shifts in P. tremula, and that temperature and UV-B affected genders differently. PMID:24689776

  14. Moisturizing Different Racial Skin Types

    PubMed Central

    Wong, Victor W.; Longaker, Michael T.; Yang, George P.

    2014-01-01

    The skin is a complex organ involved in thermoregulation, gas exchange, protection against pathogens, and barrier function to maintain proper hydration. When dry, the ability for skin to execute these tasks becomes impaired. Dry skin affects almost everyone as we age, but it is also dependent on external factors, such as dry climate, colder temperatures, and repeated washing. In addition, increasing evidence has shown racial variability in the physiological properties of skin, which directly impacts water content of the stratum corneum and sensitivity to exogenously applied agents. A multitude of products have been developed to treat dry skin, and as a group, moisturizers have been designed to either impart or restore hydration in the stratum corneum. Given the large number of moisturizers presently available, depending on individual components, several different mechanisms may be employed to promote skin hydration. As there exists dramatic racial variability in skin properties, certain moisturizers may thus be more effective in some and less effective in others to treat the common condition of dry skin. PMID:25013536

  15. Elevated oxidative stress in skin of B6C3F1 mice affects dermal exposure to metal working fluid.

    PubMed

    Shvedova, A A; Kisin, E; Kisin, J; Castranova, V; Kommineni, C

    2000-09-01

    Metal working fluids (MWFs) are widely used in industry for metal cutting, drilling, shaping, lubricating, and milling. Potential for dermal exposure to MWFs exists for a large number of men and women via aerosols and splashing during the machining operations. It has been reported earlier that occupational exposure to MWFs causes allergic and irritant contact dermatitis. Previously, we showed that dermal exposure of female and male B6C3F1 mice to 5% MWFs for 3 months resulted in accumulation of mast cells and elevation of histamine in the skin. Topical exposure to MWF also resulted in elevated oxidative stress in the liver of both sexes and the testes in males. The goal of this study was to evaluate the interaction between oxidative stress in the skin and topical application of MWF. Oxidative stress in skin ofB6C3F1 mice of both sexes was generated by intradermal injection ofthe hydrogen peroxide (H2O2) -producing enzyme, glucose oxidase with polyethylene glycol (GOD+PEG). In mice given GOD+PEG, topical treatment with MWF (200 microl, 30%, for 1, 3, or 7 days) resulted in a mixed inflammatory cell response, accumulation of peroxidative products, and reduction of GSH content in the skin. Such changes were not observed with MWF treatment alone. These data indicate that oxidative stress can enhance dermal inflammation caused by occupational exposure to MWF. PMID:11693944

  16. Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators.

    PubMed

    Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2015-01-01

    The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen's inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen's inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697

  17. The influence of ambient salinity and temperature on lipid metabolism in toad (Bufo bufo) skin. Is phosphatidylethanolamine an endogenous regulator of ion channels?

    PubMed

    Hansen, H J; Olsen, A G; Willumsen, N J

    1994-08-01

    Incorporation of (32P) phosphate and (14C) acetate into frog (Rana temporaria) skin phospholipids in vitro was positively correlated to skin MR cell density. Transport across toad (Bufo bufo) skin and incorporation into skin phospholipids of the radioactive tracers were independent of transepithelial electrical potential in vitro. While all the incorporations in vitro showed (32P) and (14C) frog and toad skin phospholipid patterns dominated by phosphatidylcholine-independent of adaptational temperature and salinity--corresponding phospholipid patterns dominated by phosphatidylethanolamine (PE) were found in vivo, when toads adapted to Ringer solution were transferred to tap water containing tracer amounts of (32P) phosphate and (14C) acetate. PE could play a role in the formation of a "hydrophilic" environment and thereby, e.g. stabilise the integral membrane proteins that regulate the function of ion channels. PMID:7521276

  18. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.

    PubMed

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-01-01

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates. PMID:27487917

  19. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature

    PubMed Central

    Sørensen, Jesper Givskov; Schou, Mads Fristrup; Kristensen, Torsten Nygaard; Loeschcke, Volker

    2016-01-01

    Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates. PMID:27487917

  20. Skin Dictionary

    MedlinePlus

    ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ... your skin, hair, and nails Skin dictionary Camp Discovery Good Skin Knowledge lesson plans and activities Video library Find a ...

  1. Skin graft

    MedlinePlus

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  2. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser

    NASA Astrophysics Data System (ADS)

    Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung

    2012-11-01

    Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.

  3. Ambient temperature effect on changes in heat exchange and skin and coat thermoisolation induced with nembutal in guinea pigs.

    PubMed

    Laszczyńska, J

    1983-01-01

    The experiment was carried out on adult male guinea pigs not adapted to cold at temperatures of 29 degrees, 20 degrees and 12 degrees C. During 150 minutes after nembutal injection the following values were recorded: oxygen consumption, subcutaneous, cutaneous and hair-coat temperatures. Using Hatfield's disc heat loss from the body surface by radiation and convection was measured. Nembutal not only inhibited thermogenetic processes at low ambient temperature, but decreased also heat production in a thermoneutral environment. This effect increased with decreasing ambient temperature. At the same time, there was a reduction in heat loss, although in a lower degree. The final result was a fall of the rectal temperature (even by 10 degrees C in a cold environment). Following nembutal administration skin thermoinsulation decreased slightly but the thermoinsulating activity of the hair-coat increased (the pilomotor response was more pronounced than in waking animals). Thermoregulation disturbances induced by nembutal included mainly thermogenesis impairment. The effect of general anaesthesia on heat loss was without any greater importance for maintenance of thermic homeostasis of the organism. PMID:6675430

  4. A hypothesis about factors that affect maximum stream temperatures across montane landscapes

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.

    2001-01-01

    Temperature is an important variable structuring lotic biotas, but little is known about how montane landscapes function to determine stream temperatures. We developed an a priori hypothesis that was used to predict how watershed elements would interact to affect stream temperatures. The hypothesis was tested in a series of path analyses using temperature data from 26 sites on second-order to fourth-order streams across a fifth-order Rocky Mountain watershed. Based on the performance of the first hypothesis, two revised versions of the hypothesis were developed and tested that proved to be more accurate than the original hypothesis. The most plausible of the revised hypotheses accounted for 82 percent of the variation in maximum stream temperature, had a predicted data structure that did not deviate from the empirical data structure, and was the most parsimonious. The final working hypothesis suggested that stream temperature maxima were directly controlled by a large negative effect from mean basin elevation (direct effect = -0.57, p < 0.01) and smaller effects from riparian tree abundance (direct effect = -0.28, p = 0.03), and cattle density (direct effect = 0.24, p = 0.05). Watershed slope, valley constraint, and the abundance of grass across a watershed also affected temperature maxima, but these effects were indirect and mediated through cattle density and riparian trees. Three variables included in the a priori hypothesis - watershed aspect, stream width, and watershed size - had negligible effects on maximum stream temperatures and were omitted from the final working hypothesis.

  5. Lower head temperature does not affect children's self-paced running velocity.

    PubMed

    Ferreira Júnior, João; Martini, Angelo; Borba, Diego; Gomes, Leonardo; Pinto, João; Oliveira, Bernardo; Coelho, Daniel; Prado, Luciano; Rodrigues, Luiz

    2013-02-01

    To test if the use of a peaked cap protects children against sun radiation, allowing increased exercise performance, nineteen healthy children (10.3 ± 0.8 years old, 146.2 ± 6.9 cm, 36.8 ± 5.5 kg, 1.2 ± 0.1 m2 and 44.1 ± 2.8 mL.kg-1.min-1) took part in 4 experimental situations: 2 initial familiarization runs and 2 self-paced 6km runs (4 × 1.5 km exercise bouts with 3min rest intervals) one of them wearing a peaked cap (CAP) and another situation without the cap (NOCAP). The CAP and NOCAP situations were randomized. Exercise was performed outdoors 3-7 days apart. Environmental variables were measured every 10min, and physiological variables were measured before and after each run and during the rest intervals. Running velocity did not differ between CAP and NOCAP situations. The mean head temperature was reduced by 1.1 °C in the CAP situation (p < .05). Average skin temperature, mean heart rate, rate of perceived exertion and wet bulb and globe temperature did not differ between CAP and NOCAP. The decrease in the mean head temperature was not sufficient to alter running velocity. PMID:23406699

  6. The Effect of Acupuncture to SP6 on Skin Temperature Changes of SP6 and SP10: An Observation of “Deqi”

    PubMed Central

    Yang, Jia-Min; Shen, Xiao-Yu; Shen, Song-Xi; Qi, Dan-Dan; Luo, Li; Ren, Xiao-Xuan; Ji, Bo; Zhang, Lu-Fen; Li, Xiao-Hong; Zhu, Jiang

    2014-01-01

    Background. Deqi sensation is a complex but an important component for acupuncture effect. In this study, we tried to observe the relationship between Deqi and skin temperature changes and whether there was some relativity between Deqi and needle stimulations on cold congealing and dysmenorrhea rat model. Thirty-two female Sprague Dawley (SD) rats were randomly divided into four groups (Saline Control Group, Model Group, Group A with strong stimulation, and Group B with small stimulation). Group A and Group B were performed with different stimulations. We found that, compared with saline control group, model group, and Group B, Group A showed that the skin temperature changes on right acupoint SP6 and SP10 increased significantly at 5 min–10 min interval. The skin temperature changes on left SP6 decreased at instant–5 min interval. The skin temperature changes on right SP10 decreased significantly at instant–5 min interval and 10 min–20 min interval. Thermogenic action along Spleen Meridian of Foot Greater Yin was manifested as simultaneous skin temperature increase on right SP6 and SP10 at 5 min–10 min interval after needling SP6, which was helpful to illustrate the relationship between the characteristic of Deqi and needle stimulations. PMID:24665334

  7. Infrared camera assessment of skin surface temperature--effect of emissivity.

    PubMed

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. PMID:23084004

  8. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  9. Study of the structure of synthetic opals affected by temperature and pressure

    NASA Astrophysics Data System (ADS)

    Somenkov, V. A.; Agafonov, S. S.; Glazkov, V. P.; Kovalenko, E. S.; Shushunov, M. N.

    2015-01-01

    It is demonstrated that synthetic opals, like most natural ones, have a cristobalite rather than quartz basis, change their color from white to blue after losing their water-containing component, and form superlattices. Being affected by temperature and pressure, they undergo partial or complete crystallization to the corresponding polymorphic modifications.

  10. Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee (Megachile rotundata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alfalfa leafcutting bee (Megachile rotundata) is affected by a fungal disease called chalkbrood. In several species of bees, chalkbrood is more likely to occur in larvae kept at 25-30 C than at 35 C. We found that both high and low temperature stress increased the expression of immune response g...

  11. Do Changes in Tympanic Temperature Predict Changes in Affective Valence during High-Intensity Exercise?

    ERIC Educational Resources Information Center

    Legrand, Fabien D.; Joly, Philippe M.; Bertucci, William M.

    2015-01-01

    Purpose: Increased core (brain or body) temperature that accompanies exercise has been posited to play an influential role in affective responses to exercise. However, findings in support of this hypothesis have been equivocal, and most of the performed studies have been done in relation to anxiety. The aim of the present study was to investigate…

  12. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  13. Skin temperature evaluation by infrared thermography: Comparison of image analysis methods

    NASA Astrophysics Data System (ADS)

    Ludwig, N.; Formenti, D.; Gargano, M.; Alberti, G.

    2014-01-01

    Body temperature in medicine is a parameter indicating abnormal activity of human tissues; it is used to diagnose specific pathologies or as an indicator of the muscle activity during physical exercise.

  14. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  15. Fish pre-acclimation temperature only modestly affects cadmium toxicity in Atlantic salmon hepatocytes.

    PubMed

    Olsvik, Pål A; Søfteland, Liv; Hevrøy, Ernst M; Rasinger, Josef D; Waagbø, Rune

    2016-04-01

    An emerging focus in environmental toxicology is how climate change will alter bioavailability and uptake of contaminants in organisms. Ectothermic animals unable to adjust their temperature by local migration, such as farmed fish kept in net pens, may become more vulnerable to contaminants in warmer seas. The aim of this work was to study cadmium (Cd) toxicity in cells obtained from fish acclimated to sub-optimal growth temperature. Atlantic salmon hepatocytes, harvested from fish pre-acclimated either at 15°C (optimal growth temperature) or 20°C (heat-stressed), were exposed in vitro to two concentrations of Cd (control, 1 and 100µM Cd) for 48h. Cd-induced cytotoxicity, determined with the xCELLigence system, was more pronounced in cells from fish pre-acclimated to a high temperature than in cells from fish grown at optimal temperature. A feed spiked with antioxidants could not ameliorate the Cd-induced cytotoxicity in cells from temperature-stressed fish. At the transcriptional level, Cd exposure affected 11 out of 20 examined genes, of which most are linked to oxidative stress. The transcriptional levels of a majority of the altered genes were changed in cells harvested from fish grown at sub-optimal temperature. Interaction effects between Cd exposure and fish pre-acclimation temperature were seen for four transcripts, hmox1, mapk1, fth1 and mmp13. Overall, this study shows that cells from temperature-stressed fish are modestly more vulnerable to Cd stress, and indicate that mechanisms linked to oxidative stress may be differentially affected in temperature-stressed cells. PMID:27033036

  16. Hydration kinetics and physical properties of split chickpea as affected by soaking temperature and time.

    PubMed

    Johnny, Saeed; Razavi, Seyed M A; Khodaei, Diako

    2015-12-01

    In this study, some physical properties (principal dimensions, mean diameters, sphericity, area, density and electrical conductivity) of split chickpea were measured as function of soaking time (up to 360 min) and temperature (25-65 °C). Initially, the water absorption rate was high and then it showed a progressive decrease at all temperatures, whereas solid loss exhibited a power function of temperature (P < 0.05). The Peleg model was predicted well the kinetic of split chickpea soaking. No significant difference (P < 0.05) was observed in Peleg rate constant (K1) and Peleg capacity constant (K2) at all temperatures except for K1 at 25 °C. The discrepancy for K1 was in relation to permeability characteristics of split chickpea at temperature of 25 °C. As temperature increased from 25 to 65 °C, the K1 value decreased from 0.04620 to 0.00945 g h(-1), whereas the K2 value increased from 0.08597 to 0.11320 g(-1). Plot for K1 exhibited a slope changes around 45 °C corresponding to gelatinization temperature of split chickpeas. The effect of temperature and time on physical properties of split chickpea during soaking was monitored by regression equations. It was concluded that physical properties of split chickpea affected by its water absorption especially at higher temperatures. PMID:26604418

  17. Re-oxygenation of post-mortem lividity by passive diffusion through the skin at low temperature.

    PubMed

    Watchman, Hannah; Walker, G Stewart; Randeberg, Lise L; Langlois, Neil E I

    2011-12-01

    Post-mortem hypostasis develops due to passive settling of the blood under the effect of gravity after death. Due to consumption of oxygen in the tissues by residual cellular activity after the circulation has stopped, lividity is composed of deoxygenated blood. It has been previously shown that cooling of a body causes lividity to oxygenate, changing from a dark red/blue to a pink/red color, due to hemoglobin's increased affinity for oxygen at low temperature. This study has confirmed that this occurs by passive diffusion through the skin, but that this can only occur within a limited time frame. The reasons for this process and its potential forensic application require further investigation. PMID:21590457

  18. Skin Temperatures During Unaided Egress: Unsuited and While Wearing the NASA Launch and Entry or Advanced Crew Escape Suits

    NASA Technical Reports Server (NTRS)

    Woodruff, Kristin K.; Lee, Stuart M. C.; Greenisen, Michael C.; Schneider, Suzanne M.

    2000-01-01

    The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.

  19. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  20. Evidence that elevated water temperature affects the reproductive physiology of the European bullhead Cottus gobio.

    PubMed

    Dorts, Jennifer; Grenouillet, Gaël; Douxfils, Jessica; Mandiki, Syaghalirwa N M; Milla, Sylvain; Silvestre, Frédéric; Kestemont, Patrick

    2012-04-01

    Climate change is predicted to increase the average water temperature and alter the ecology and physiology of several organisms including fish species. To examine the effects of increased water temperature on freshwater fish reproduction, adult European bullhead Cottus gobio of both genders were maintained under three temperature regimes (T1: 6-10, T2: 10-14 and T3: 14-18°C) and assessed for gonad development (gonadosomatic index-GSI and gonad histology), sex steroids (testosterone-T, 17β-estradiol-E2 and 11-ketotestosterone-11-KT) and vitellogenin (alkali-labile phosphoprotein phosphorus-ALP) dynamics in December, January, February and March. The results indicate that a 8°C rise in water temperature (T3) deeply disrupted the gonadal maturation in both genders. This observation was associated with the absence of GSI peak from January to March, and low levels of plasma sex steroids compared with T1-exposed fish. Nevertheless, exposure to an increasing temperature of 4°C (T2) appeared to accelerate oogenesis with an early peak value in GSI and level of plasma T recorded in January relative to T1-exposed females. In males, the low GSI, reduced level of plasma 11-KT and the absence of GSI increase from January to March support the deleterious effects of increasing water temperature on spermatogenesis. The findings of the present study suggest that exposure to elevated temperatures within the context of climate warming might affect the reproductive success of C. gobio. Specifically, a 4°C rise in water temperature affects gametogenesis by advancing the spawning, and a complete reproductive failure is observed at an elevated temperature of 8°C. PMID:21638008

  1. UVB radiation variably affects n-3 fatty acids but elevated temperature reduces n-3 fatty acids in juvenile Atlantic Salmon (Salmo salar).

    PubMed

    Arts, Michael T; Palmer, Michelle E; Skiftesvik, Anne Berit; Jokinen, Ilmari E; Browman, Howard I

    2012-12-01

    Temperature and ultraviolet B radiation (UVB 290-320 nm) are inextricably linked to global climate change. These two variables may act separately, additively, or synergistically on specific aspects of fish biochemistry. We raised Atlantic Salmon (Salmo salar) parr for 54 days in outdoor tanks held at 12 and 19 °C and, at each temperature, we exposed them to three spectral treatments differing in UV radiation intensity. We quantified individual fatty acid (FA) mass fractions in four tissues (dorsal muscle, dorsal and ventral skin, and ocular tissue) at each temperature × UV combination. FA composition of dorsal muscle and dorsal and ventral skin was not affected by UV exposure. Mass fractions of 16:0, 18:0, and saturated fatty acids (SFA) were greater in dorsal muscle of warm-reared fish whereas 18:3n-3, 20:2, 20:4n-6, 22:5n-3, 22:6n-3, n-3, n-6, polyunsaturated fatty acids (PUFA), and total FA were significantly higher in cold-reared fish. Mass fractions of most of the FA were greater in the dorsal and ventral skin of warm-reared fish. Cold-reared salmon exposed to enhanced UVB had higher ocular tissue mass fractions of 20:2, 20:4n-6, 22:6n-3, n-3, n-6, and PUFA compared to fish in which UV had been removed. These observations forecast a host of ensuing physiological and ecological responses of juvenile Atlantic Salmon to increasing temperatures and UVB levels in native streams and rivers where they mature before smolting and returning to the sea. PMID:23108959

  2. Correlation between skin temperature and heart rate during exercise and recovery, and the influence of body position in these variables in untrained women

    NASA Astrophysics Data System (ADS)

    Neves, Eduardo Borba; Cunha, Raphael Martins; Rosa, Claudio; Antunes, Natacha Sousa; Felisberto, Ivo Miguel Vieira; Vilaça-Alves, José; Reis, Victor Machado

    2016-03-01

    It was known that the thermal response varies according to some variables. Until now, there are no studies that have investigated the relationship of skin temperature and heart rate during and after the workout, either the thermal behavior during postural changes. Objective: the aim of this study was to evaluate the behavior of skin temperature and heart rate, during exercise and up to an hour of recovery (with postural change), performed in two different intensities sessions (70% and 85% of 10 repetitions maximum) and observe the correlation between them. Method: This was a short longitudinal study, carried out with women aged from 18 to 30 years. A sample of 31 untrained women, aged 18 and 30 was used. The volunteers were randomized into two groups: Biceps Group (BG), with 15 women, and Quadriceps Group (QG) with 16 women. Results: During and after completion of the exercise session, there was a significant reduction in skin temperature on the active muscles in both groups (BG and QG), with similar thermal responses for the two intensities studied (70% and 85%) to the minute 15 (which marks the end of the recovery in the standing position). From minute 15 to minute 20-60, the skin temperature increases abruptly and significantly, returning to levels close to those observed before exercise. Conclusion: There were no statistical differences in thermal response to exercises in 70% or 85% of 10RM. There is a negative correlation between heart rate and skin temperature when untrained women perform anaerobic exercise. It was observed that after a change of posture (from a standing position to a sitting posture) skin temperature increased abruptly and significantly.

  3. The Clinical Relevance of Maintaining the Functional Integrity of the Stratum Corneum in both Healthy and Disease-affected Skin

    PubMed Central

    Del Rosso, James Q.; Levin, Jacqueline

    2011-01-01

    It has been recognized for approximately 50 years that the stratum corneum exhibits biological properties that contribute directly to maintaining and sustaining healthy skin. Continued basic science and clinical research coupled with keen clinical observation has led to more recent recognition and general acceptance that the stratum corneum completes many vital “barrier” tasks, including but not limited to regulating epidermal water content and the magnitude of water loss; mitigating exogenous oxidants that can damage components of skin via an innate antioxidant system; preventing or limiting cutaneous infection via multiple antimicrobial peptides; responding via innate immune mechanisms to “cutaneous invaders” of many origins, including microbes, true allergens, and other antigens; and protecting its neighboring cutaneous cells and structures that lie beneath from damaging effects of ultraviolet radiation. Additionally, specific abnormalities of the stratum corneum are associated with the clinical expression of certain disease states. This article provides a thorough “primer” for the clinician, reviewing the multiple normal homeostatic functions of the stratum corneum and the cutaneous challenges that arise when individual functions of this thin yet very active epidermal layer are compromised by exogenous and/or endogenous factors. PMID:21938268

  4. Longitudinal changes of nerve conduction velocity, distal motor latency, compound motor action potential duration, and skin temperature during prolonged exposure to cold in a climate chamber.

    PubMed

    Maetzler, Walter; Klenk, Jochen; Becker, Clemens; Zscheile, Julia; Gabor, Kai-Steffen; Lindemann, Ulrich

    2012-09-01

    Changes of nerve conduction velocity (NCV), distal motor latency (DML), compound motor action potential (CMAP) duration, and skin temperature with regard to cold have been investigated by use of ice packs or cold water baths, but not after cooling of environmental temperature which has higher ecological validity. The aim of this study was to investigate these parameters during cooled room temperature. NCV, DML, and CMAP duration of the common fibular nerve, and skin temperature were measured in 20 healthy young females during exposure to 15°C room temperature, coming from 25°C room. We found that NCV decreased and DML increased linearly during 45 min observation time, in contrast to CMAP duration and skin temperature which changes followed an exponential curve. To the best of our knowledge, this is the first study investigating changes of these parameters during exposure to environmental cold. The results may pilot some new hypotheses and studies on physiological and pathological changes of the peripheral nervous system and skin to environmental cold, e.g., in elderly with peripheral neuropathies. PMID:22510085

  5. Sagging Skin

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  6. Ambient temperature: a factor affecting performance and physiological response of broiler chickens

    NASA Astrophysics Data System (ADS)

    Donkoh, A.

    1989-12-01

    An experiment was conducted to elucidate the influence of four constant ambient temperatures (20°, 25°, 30° and 35°C) on the performance and physiological reactions of male commercial broiler chicks from 3 to 7 weeks of age. A 12 h light-dark cycle was operated, while relative humidity and air circulation were not controlled. Exposure of broiler chickens to the 20°, 25°, 30° and 35°C treatments showed highly significant ( P<0.0001) depression in growth rate, food intake and efficiency of food utilization, and a significant increase in water consumption for the 30° and 35°C groups. Mortality was, however, not affected by the temperature treatments. Changes in physiological status, such as increased rectal temperatures, decreased concentration of red blood cells, haemoglobin, haematocrit, and total plasma protein were observed in birds housed in the higher temperature (30° and 35°C) environments. Moreover, in these broiler chickens, there was an increased blood glucose concentration and a decreased thyroid gland weight. These results indicate that continuous exposure of broiler chickens to high ambient temperatures markedly affects their performance and physiological response.

  7. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    PubMed

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. PMID:22218181

  8. Regional Surface Fluxes From Remotely Sensed Skin Temperature and Lower Boundary Layer Measurements

    NASA Astrophysics Data System (ADS)

    Sugita, Michiaki; Brutsaert, Wilfried

    1990-12-01

    During First International Satellite Land Surface Climatology Project Field Experiment in north-eastern Kansas, surface temperature was measured by infrared radiation thermometers at some 12 stations spread over the 15 × 15 km experimental area. These data, together with wind and temperature profiles in the unstable atmospheric boundary layer measured by means of radiosondes, were analyzed within the framework of Monin-Obukhov similarity. The radiometric scalar roughness corresponding to the radiometric surface temperature was found to increase as the season progressed; for the spring campaign the mean value was zoh,r = 4.56 × 10-7 m and for the fall zoh, r = 1.01 × 10 -2 m. The radiometric scalar roughness could also be expressed as a function of solar elevation and to a lesser extent, of canopy height or leaf area index. For an elevation range 10° ≤ α ≤ 75° the regression equation is zoh,r = exp [-0.735 - 3.61 tan (α)]. With this function good agreement (r = 0.87) was obtained between the profile-derived regional surface flux of sensible heat and the mean flux measured independently at ground-based stations under unstable conditions. Similarly, regional values of evaporation, obtained by means of the energy budget method from these sensible heat flux estimates, were in good agreement (r = 0.96).

  9. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-05-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  10. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  11. Effects of a topically applied counterirritant (Eucalyptamint) on cutaneous blood flow and on skin and muscle temperatures. A placebo-controlled study.

    PubMed

    Hong, C Z; Shellock, F G

    1991-02-01

    This study was designed to investigate the effects of a new product of counterirritant, Eucalyptamint, on the cutaneous circulation and on skin and muscle temperatures. Ten normal subjects (six males and four females, with an average age of 34 +/- 6 yr) were involved in this study. Eucalyptamint was applied to the anterior forearm skin of one side, and placebo was applied to the contralateral forearm. The subjective feelings, cutaneous blood flow, and skin temperature were measured before and periodically (5-min intervals) after the application of the compound. Muscle temperature was measured before and 30 min after the application of the Eucalyptamint. There was no significant effect on the subjective sensation. However, there were statistically significant (P less than 0.05) increases in cutaneous blood flow (up to 4 times base-line) and skin temperatures (up to 0.8 degrees C higher than base-line) after the application of Eucalyptamint with the effects lasting up to 45 min after the application. The muscle temperature was also increased (0.4 degrees C) significantly (P less than 0.05) 30 min after application of the Eucalyptamint. There were no significant changes in the placebo application. The results of this study suggested that the new product of counterirritant, Eucalyptamint, produced significant physiologic responses that may be beneficial for pain relief and/or useful to athletes as a passive form of warm-up. PMID:1994967

  12. Temperature Affects the Tripartite Interactions between Bacteriophage WO, Wolbachia, and Cytoplasmic Incompatibility

    PubMed Central

    Bordenstein, Sarah R.; Bordenstein, Seth R.

    2011-01-01

    Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed. PMID:22194999

  13. Relating trends in land surface skin-air temperature difference to soil moisture and evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Veal, K. L.; Taylor, C.; Gallego-Elvira, B.

    2015-12-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited (water-stressed) and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived datasets to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more (e.g. MODIS Terra LST - 2000 to present; Along-Track Scanning Radiometer (ATSR) LST record - 1995 to 2012). As part of the e-stress project these datasets have been used calculate time series of delta T. This paper reports the use of MODIS LST and ESA GlobTemperature ATSR LST with 2m air temperatures from a range of reanalyses to calculate trends in delta T and water-stressed area. We examine the variability of delta T in relation to satellite soil moisture, vegetation and precipitation and model evaporation data.Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux.In conclusion there have been distinct signals in delta T during recent decades and these provide an independent assessment of hydrologically-forced changes in the land surface energy balance which can be used as a metric for the assessment of ESM and global surface flux products.

  14. Evaluation of the Driver's Temporary Arousal Level by Facial Skin Thermogram—Effect of Surrounding Temperature and Wind on the Thermogram—

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryo; Nozawa, Akio; Tanaka, Hisaya; Mizuno, Tota; Ide, Hideto

    Recently, established transportation system is actively done to the research on ITS that starts achieving a more excellent traffic environment by using most-advanced information and communications technology. We studied the method of evaluating physiologycal state of human based on facial skin thermal image analysis. However it is said that facial skin thermogram have a susceptibility to environmental variation. In this paper, how much the facial skin thermogram effected the influence of the outside environment was examined. As a result, when there is no stressor from the outside, the environmental variation can be removed by calculating the temperature of ( nasal - forehead ). On the other hand, in the case of giving subject the stressor, the change of temperature appeared only nose.

  15. Prediction of mean skin temperature for use as a heat strain scale by introducing an equation for sweating efficiency

    NASA Astrophysics Data System (ADS)

    Kubota, H.; Kuwabara, K.; Hamada, Y.

    2014-09-01

    The present paper made the heat balance equation (HBE) for nude or minimally clad subjects a linear function of mean skin temperature ( t sk) by applying new equations for sweating efficiency ( η sw) and thermoregulatory sweat rate ( S wR). As the solution of the HBE, the equation predicting t sk was derived and used for a heat strain scale of subjects. The η sw was proportional to the reciprocal of S w/ E max ( S w, sweat rate; E max maximum evaporative capacity) and the S wR was proportional to t sk with a parameter of the sweating capacity of the subject. The errors of predicted t sk from observations due to the approximation of η sw were examined based on experimental data conducted on eight young male subjects. The value of errors of t sk was -0.10 ± 0.42 °C (mean ± sample standard deviation (SSD)). We aim to apply the predicted t sk of a subject at a level of sweating capacity as a heat strain scale of a function of four environmental factors (dry- and wet-bulb temperatures, radiation, and air velocity) and three human factors (metabolic rate, sweating capacity, and clothing (≤0.2clo)).

  16. Prediction of mean skin temperature for use as a heat strain scale by introducing an equation for sweating efficiency.

    PubMed

    Kubota, H; Kuwabara, K; Hamada, Y

    2014-09-01

    The present paper made the heat balance equation (HBE) for nude or minimally clad subjects a linear function of mean skin temperature (t(sk)) by applying new equations for sweating efficiency (η(sw)) and thermoregulatory sweat rate (S(wR)). As the solution of the HBE, the equation predicting t(sk) was derived and used for a heat strain scale of subjects. The η(sw) was proportional to the reciprocal of S(w)/E(max) (S(w), sweat rate; E(max) maximum evaporative capacity) and the S(wR) was proportional to t(sk) with a parameter of the sweating capacity of the subject. The errors of predicted t(sk) from observations due to the approximation of η(sw) were examined based on experimental data conducted on eight young male subjects. The value of errors of t(sk) was -0.10 ± 0.42 °C (mean ± sample standard deviation (SSD)). We aim to apply the predicted t(sk) of a subject at a level of sweating capacity as a heat strain scale of a function of four environmental factors (dry- and wet-bulb temperatures, radiation, and air velocity) and three human factors (metabolic rate, sweating capacity, and clothing (≤0.2clo)). PMID:24305992

  17. Swimming performance of hatchling green turtles is affected by incubation temperature

    NASA Astrophysics Data System (ADS)

    Burgess, Elizabeth A.; Booth, David T.; Lanyon, Janet M.

    2006-08-01

    In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles ( Chelonia mydas). In the first year, hatchlings from eggs incubated at 26°C were larger in size than hatchlings from 28 and 30°C, whilst in the second year hatchlings from 25.5°C were similar in size to hatchings from 30°C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28°C, hatchlings from eggs incubated at 25.5 and 26°C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30°C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.

  18. Elevated Ambient Temperature Differentially Affects Virus Resistance in Two Tobacco Species.

    PubMed

    Ma, L; Huang, X; Yu, R; Jing, X L; Xu, J; Wu, C A; Zhu, C X; Liu, H M

    2016-01-01

    Antiviral defense of plants is usually enhanced by an elevated temperature under natural conditions. In order to better understand this phenomenon, we carried out temperature shift experiments with Nicotiana glutinosa plants that were infected with Potato virus X (PVX) or the necrotic strain of Potato virus Y (PVY(N)). The virus titer of the plants was found to be much lower when they were maintained at 30°C compared with 22°C, particularly in the upper leaves. PVX resistance at 30°C persisted for a short period even when temperature was shifted back to 22°C. In contrast, N. benthamiana lost the virus resistance immediately after the temperature dropped to 22°C. Expression analysis of two RNA-dependent RNA polymerases in N. glutinosa (NgRDR) showed that a 12-day treatment at 30°C increased the expression of NgRDR1, while NgRDR6 was not affected. In addition, the NgRDR6 mRNA level correlated with the PVX titer but was unaffected by PVY(N) infection. These observations indicate that PVX and PVY(N), although they are both RNA viruses, might trigger different defense responses at elevated temperatures. Our study provides valuable data for a better understanding of the temperature-regulated host virus interaction. PMID:26474332

  19. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.

    PubMed

    Richter-Boix, Alex; Katzenberger, Marco; Duarte, Helder; Quintela, María; Tejedo, Miguel; Laurila, Anssi

    2015-08-01

    Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow. PMID:26118477

  20. Degradation of soil fumigants as affected by initial concentration and temperature.

    PubMed

    Ma, Q L; Gan, J; Papiernik, S K; Becker, J O; Yates, S R

    2001-01-01

    Soil fumigation using shank injection creates high fumigant concentration gradients in soil from the injection point to the soil surface. A temperature gradient also exists along the soil profile. We studied the degradation of methyl isothiocyanate (MITC) and 1,3-dichloropropene (1,3-D) in an Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralf) at four temperatures and four initial concentrations. We then tested the applicability of first-order, half-order, and second-order kinetics, and the Michaelis-Menten model for describing fumigant degradation as affected by temperature and initial concentration. Overall, none of the models adequately described the degradation of MITC and 1,3-D isomers over the range of the initial concentrations. First-order and half-order kinetics adequately described the degradation of MITC and 1,3-D isomers at each initial concentration, with the correlation coefficients greater than 0.78 (r2> 0.78). However, the derived rate constant was dependent on the initial concentration. The first-order rate constants varied between 6 and 10x for MITC for the concentration range of 3 to 140 mg kg(-1), and between 1.5 and 4x for 1,3-D isomers for the concentration range of 0.6 to 60 mg kg(-1), depending on temperature. For the same initial concentration range, the variation in the half-order rate constants was between 1.4 and 1.7x for MITC and between 3.1 and 6.1x for 1,3-D isomers, depending on temperature. Second-order kinetics and the Michaelis-Menten model did not satisfactorily describe the degradation at all initial concentrations. The degradation of MITC and 1,3-D was primarily biodegradation, which was affected by temperature between 20 and 40 degrees C, following the Arrhenius equation (r2 > 0.74). PMID:11476506

  1. Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise.

    PubMed

    Tew, Garry A; Ruddock, Alan D; Saxton, John M

    2010-11-01

    The impact of skin blood flow changes on near-infrared spectroscopy (NIRS)-derived measures of muscle oxygen saturation (SmO(2)) and blood volume has not been fully established. We measured SmO(2) and total hemoglobin concentration ([tHb]) responses of the right vastus lateralis during rest and dynamic knee extension exercise in ten young, healthy males. The protocol was repeated four times: twice without thigh heating for reliability, and twice with different grades of thigh heating for assessing the impact of cutaneous vasodilation on SmO(2) and Δ[tHb]. The reliability of our SmO(2) and [tHb] measurements was good. Thigh heating at 37 and 42°C caused marked increases in cutaneous vascular conductance (CVC) during rest and exercise (P < 0.001 between each condition), and small increases in SmO(2) during rest (from 69 ± 8% to 71 ± 7% and 73 ± 6%, respectively; P < 0.05 between each condition), but not during exercise (e.g. 1 min exercise: 51 ± 11% vs. 51 ± 11% and 52 ± 11%, respectively; P > 0.05 at all time points). In contrast, heating-induced increases in %CVC(peak) were accompanied by increases in [tHb] at rest and during exercise and a decrease in Δ[tHb] during exercise (all P < 0.05). Our findings suggest that NIRS-derived measures of SmO(2) and blood volume are differentially affected by skin blood flow at rest and during exercise. The findings from this study should be considered in NIRS experiments where skin blood flow can change markedly (e.g. high-intensity and/or prolonged exercise). PMID:20700602

  2. The skin tissue is adversely affected by TNF-alpha blockers in patients with chronic inflammatory arthritis: a 5-year prospective analysis

    PubMed Central

    Machado, Natalia P.; dos Reis Neto, Edgard Torres; Soares, Maria Roberta M. P.; Freitas, Daniele S.; Porro, Adriana; Ciconelli, Rozana M.; Pinheiro, Marcelo M.

    2013-01-01

    OBJECTIVE: We evaluated the incidence of and the main risk factors associated with cutaneous adverse events in patients with chronic inflammatory arthritis following anti-TNF-α therapy. METHODS: A total of 257 patients with active arthritis who were taking TNF-α blockers, including 158 patients with rheumatoid arthritis, 87 with ankylosing spondylitis and 12 with psoriatic arthritis, were enrolled in a 5-year prospective analysis. Patients with overlapping or other rheumatic diseases were excluded. Anthropometric, socioeconomic, demographic and clinical data were evaluated, including the Disease Activity Score-28, Bath Ankylosing Spondylitis Disease Activity Index and Psoriasis Area Severity Index. Skin conditions were evaluated by two dermatology experts, and in doubtful cases, skin lesion biopsies were performed. Associations between adverse cutaneous events and clinical, demographic and epidemiological variables were determined using the chi-square test, and logistic regression analyses were performed to identify risk factors. The significance level was set at p<0.05. RESULTS: After 60 months of follow-up, 71 adverse events (73.85/1000 patient-years) were observed, of which allergic and immune-mediated phenomena were the most frequent events, followed by infectious conditions involving bacterial (47.1%), parasitic (23.5%), fungal (20.6%) and viral (8.8%) agents. CONCLUSION: The skin is significantly affected by adverse reactions resulting from the use of TNF-α blockers, and the main risk factors for cutaneous events were advanced age, female sex, a diagnosis of rheumatoid arthritis, disease activity and the use of infliximab. PMID:24141833

  3. Effect of joule temperature jump on tension and stiffness of skinned rabbit muscle fibers.

    PubMed

    Bershitsky SYu; Tsaturyan, A K

    1989-11-01

    The effects of a temperature jump (T-jump) from 5-7 degrees C to 26-33 degrees C were studied on tension and stiffness of glycerol-extracted fibers from rabbit psoas muscle in rigor and during maximal Ca2+ activation. The T-jump was initiated by passing an alternating current pulse (30 kHz, up to 2.5 kV, duration 0.2 ms) through a fiber suspended in air. In rigor the T-jump induces a drop of both tension and stiffness. During maximal activation, the immediate stiffness dropped by (4.4 +/- 1.6) x 10(-3)/1 degree C (mean + SD) in response to the T-jump, and this was followed by a monoexponential stiffness rise by a factor of 1.59 +/- 0.14 with a rate constant ks = 174 +/- 42 s-1 (mean +/- SD, n = 8). The data show that the fiber stiffness, determined by the cross-bridge elasticity, in both rigor and maximal activation is not rubber-like. In the activated fibers the T-jump induced a biexponential tension rise by a factor of 3.45 +/- 0.76 (mean +/- SD, n = 8) with the rate constants 500-1,000 s-1 for the first exponent and 167 +/- 39 s-1 (mean +/- SD, n = 8) for the second exponent. The data are in accordance with the assumption that the first phase of the tension transient after the T-jump is due to a force-generating step in the attached cross-bridges, whereas the second one is related to detachment and reattachment of cross-bridges. PMID:2605297

  4. Sitting in the sun: Nest microhabitat affects incubation temperatures in seabirds.

    PubMed

    Hart, Lorinda A; Downs, Colleen T; Brown, Mark

    2016-08-01

    During incubation parent birds are committed to a nest site and endure a range of ambient conditions while regulating egg temperatures. Using artificial eggs containing temperature loggers alongside ambient temperature (Ta) controls, incubation profiles were determined for four tropical seabird species at different nest site locations. Camera traps were used for ad-hoc behavioural incubation observations. Eggs experienced a range of temperatures during incubation and varied significantly between species and in some cases between different microhabitats within a species. Such variation has important consequences in the phenotypic expression of both physical and physiological traits of chicks, and ultimately species fitness. Exposed nest sites were more strongly correlated to Tas. Camera traps highlighted different incubation strategies employed by these species that could be related to trade-offs in predator defence, feeding habits, and temperature regulation of eggs. This study provides evidence that species with similar breeding habits could be affected by environmental stressors in similar ways and that the differences shown in nest site selection could negate some of these effects. We propose that habitats providing suitable nest microclimates will become increasingly important for the successful breeding of seabird species, particularly under predicted climate change scenarios. PMID:27503727

  5. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes

    USGS Publications Warehouse

    Houser, J.N.

    2006-01-01

    The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.

  6. Temperature affects the timing of spawning and migration of North Sea mackerel

    NASA Astrophysics Data System (ADS)

    Jansen, Teunis; Gislason, Henrik

    2011-01-01

    Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.

  7. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit* #

    PubMed Central

    Cheng, Lin; Sun, Rong-rong; Wang, Fei-yan; Peng, Zhen; Kong, Fu-ling; Wu, Jian; Cao, Jia-shu; Lu, Gang

    2012-01-01

    Objective: High temperature adversely affects quality and yield of tomato fruit. Polyamine can alleviate heat injury in plants. This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit. Methods: An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd, 1 mmol/L) and high temperature (33/27 °C) treatments in tomato fruits at mature green stage. Results: Of the 10 101 tomato probe sets represented on the array, 127 loci were differentially expressed in high temperature-treated fruits, compared with those under normal conditions, functionally characterized by their involvement in signal transduction, defense responses, oxidation reduction, and hormone responses. However, only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits, which were involved in primary metabolism, signal transduction, hormone responses, transcription factors, and stress responses. Meanwhile, 55 genes involved in energy metabolism, cell wall metabolism, and photosynthesis were down-regulated in Spd-treated fruits. Conclusions: Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage. PMID:22467370

  8. A Comparison of Skin Interface Temperature Response Between the ProHeat™ Instant Reusable Hot Pack and the Standard Hydrocollator Steam Pack

    PubMed Central

    Tomaszewski, Donald; Dandorph, Michael J.; Manning, James

    1992-01-01

    The ProHeat™ reusable hot pack is being used increasingly as a substitute for the standard hydrocollator steam pack. This study evaluated the effects of these two modalities on skin temperature. Seventeen subjects were studied during separate 30-minute applications of a ProHeat pack with a wet barrier, a ProHeat pack with a dry barrier, a hydrocollator pack, and a control pack on their nondominant calf. We measured the skin interface temperature and pack surface temperature during each application with surface thermocouples. The skin interface temperature rise time to the minimum therapeutic temperature (104°F) and the total time at and above the minimum therapeutic temperature, for each application, were analyzed using an analysis of variance (ANOVA) with repeated measures (p<.05). The ProHeat pack application, with one layer of wet toweling as a barrier, was not significantly different from the hydrocollator steam pack application. We conclude that the ProHeat pack, prepared with a wet barrier, can be considered a viable alternative to the standard hydrocollator steam pack. PMID:16558193

  9. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures.

    PubMed Central

    Stephenson, D G; Williams, D A

    1981-01-01

    1. Force responses from mechanically skinned fibres of rat skeletal muscles (extensor digitorum longus and soleus) were measured at different temperatures in the range 3-35 degrees C following sudden changes in Ca2+ concentration in the preparations. 2. At all temperatures there were characteristic differences between the slow- and fast-twitch muscle fibres with respect to the relative steady-state force-[Ca2+] relation: such as a lower [Ca2+] threshold for activation and a less steep force-pCa curve in slow-twitch muscle fibres. 3. At 3-5 degrees C the force changes in both types of muscle fibres lagged considerably behind the estimated changes in [Ca2+] within the preparations and this enabled us to perform a comparative analysis of the Ca2+ kinetics in the process of force development in both muscle fibre types. This analysis suggest that two and six Ca2+ ions are involved in the regulatory unit for contraction of slow- and fast-twitch muscle fibres respectively. 4. The rate of relaxation following a sudden decrease in [Ca2+] was much lower in the slow-twitch than in the fast-twitch muscle at 5 degrees C, suggesting that properties of the contractile apparatus could play an essential role in determining the rate of relaxation in vivo. 5. There was substantial variation in Ca2+ sensitivity between muscle fibres of the same type from different animals at each temperature. However the steepness of the force-[Ca2+] relation was essentially the same for all fibres of the same type. 6. A change in temperature from 5 to 25 degrees C had a statistically significant effect on the sensitivity of the fast-twitch muscle fibres, rendering them less sensitive to Ca2+ by a factor of 2. However a further increase in temperature from 25 to 35 degrees C did not have any statistically significant effect on the force-[Ca2+] relation in fast-twitch muscle fibres. 7. The effect of temperature on the Ca2+ sensitivity of slow-twitch muscle fibres was not statistically significant

  10. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  11. Different types of stainless steel used in equipment in meat plants do not affect the initial microbial transfer, including pathogens, from pork skin

    PubMed Central

    Larivière-Gauthier, Guillaume; Quessy, Sylvain; Fournaise, Sylvain; Letellier, Ann; Fravalo, Philippe

    2015-01-01

    This study describes and measures the impact of different compositions and finishes of stainless steel used in equipment in the meat industry on the transfer of natural flora and selected pathogens from artificially contaminated pork skin. It is known that the adhesion to surfaces of Listeria monocytogenes and Salmonella, 2 pathogens frequently found in contaminated pork meat, depends on the nature and roughness of the surface. Our results show no statistically significant differences in microbial transfer regardless of the types of stainless steel considered, with the highest measured transfer difference being 0.18 log colony-forming units (CFUs)/800 cm2. Moreover, no differences in total microbial community were observed after transfer on the 5 types of stainless steel using single-strand conformation polymorphism (SSCP). It was concluded that the different characteristics of the stainless steel tested did not affect the initial bacterial transfer in this study. PMID:26130860

  12. A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery

    PubMed Central

    Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.

    2015-01-01

    Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140

  13. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-10-01

    Uncertainties in the satellite-derived surface skin temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) 2003-2014 were investigated and the three data sets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. The AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically warmer up to 1.65 K at the sea ice boundary and colder down to -2.04 K in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a less accurate GCM forecast over the seasonally varying frozen oceans than the microwave data. The three data sets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~ 2.8 ± 1.9 K decade-1) in the northern high regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  14. Uncertainties of satellite-derived surface skin temperatures in the polar oceans: MODIS, AIRS/AMSU, and AIRS only

    NASA Astrophysics Data System (ADS)

    Kang, H.-J.; Yoo, J.-M.; Jeong, M.-J.; Won, Y.-I.

    2015-05-01

    Uncertainties in the satellite-derived Surface Skin Temperature (SST) data in the polar oceans during two periods (16-24 April and 15-23 September) of 2003-2014 were investigated and the three datasets were intercompared as follows: MODerate Resolution Imaging Spectroradiometer Ice Surface Temperature (MODIS IST), the SST of the Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A (AIRS/AMSU), and AIRS only. AIRS only algorithm was developed in preparation for the degradation of the AMSU-A. MODIS IST was systematically up to 1.65 K warmer at the sea ice boundary and up to 2.04 K colder in the polar sea ice regions of both the Arctic and Antarctic than that of the AIRS/AMSU. This difference in the results could have been caused by the surface classification method. The spatial correlation coefficient of the AIRS only to the AIRS/AMSU (0.992-0.999) method was greater than that of the MODIS IST to the AIRS/AMSU (0.968-0.994). The SST of the AIRS only compared to that of the AIRS/AMSU had a bias of 0.168 K with a RMSE of 0.590 K over the Northern Hemisphere high latitudes and a bias of -0.109 K with a RMSE of 0.852 K over the Southern Hemisphere high latitudes. There was a systematic disagreement between the AIRS retrievals at the boundary of the sea ice, because the AIRS only algorithm utilized a~less accurate GCM forecast over the seasonally-varying frozen oceans than the microwave data. The three datasets (MODIS, AIRS/AMSU and AIRS only) showed significant warming rates (2.3 ± 1.7 ~2.8 ± 1.9 K decade-1) in the northern high latitude regions (70-80° N) as expected from the ice-albedo feedback. The systematic temperature disagreement associated with surface type classification had an impact on the resulting temperature trends.

  15. Changes of skin temperature of parts of the body and serum asymmetric dimethylarginine (ADMA) in type-2 diabetes mellitus Indian patients.

    PubMed

    Anburajan, M; Sivanandam, S; Bidyarasmi, S; Venkatraman, B; Menaka, M; Raj, Baldev

    2011-01-01

    In India, number of people with type 2 Diabetes Mellitus (DM) would be 87 million by the year 2030. DM disturbs autonomic regulation of skin micro-circulation, and causes decrease in resting blood flows through the skin. The skin blood flow has a major effect on its temperature. The aim of the study was to evaluate changes of skin temperature of all parts of the body and serum asymmetric dimethylarginine, ADMA (μmol/L) in type-2 DM Indian patients. Group-I: Normal (n = 17; M/F: 10/15, mean ± SD = 43.2 ± 9.4 years); Group-II: Type-2 DM without cardiovascular (CV) complications (n = 15; M/F: 10/7, mean ± SD = 46.3 ± 14.0 years); Thermograms of all parts of the body were acquired using a non-contact infrared (IR) thermography camera (ThermaCAM T400, FLIR Systems, Sweden). Blood parameters and thyroid hormone were measured biochemically. Indian diabetic risk score (IDRS) was calculated for each subject. In type-2 DM patients without CV group (n = 15), there was a statistically significant (p = 0.01) negative correlations between HbA(1c) and skin temperature of eye and nose (r = -0.57 and r = -0.55 respectively). ADMA was correlated significantly (p = 0.01) with HbA(1c) (r = 0.65) and estimated average glucose, eAG (r = 0.63). In normal subjects, mean minimum and maximum values of skin temperatures were observed at posterior side of sole (26.89 °C) and ear (36.85 °C) respectively. In type-2 DM without CV, mean values of skin temperature in different parts of the body from head to toe were lesser than those values in control group; but this decreases were statistically significant in nose (32.66 Vs 33.99 °C, p = 0.024) as well as in tibia (32.78 Vs 33.13 °C, p = 0.036) regions. PMID:22255768

  16. Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature.

    PubMed

    Bardil, Amélie; de Almeida, Juliana Dantas; Combes, Marie Christine; Lashermes, Philippe; Bertrand, Benoît

    2011-11-01

    • Polyploidy occurs throughout the evolutionary history of many plants and considerably impacts species diversity, giving rise to novel phenotypes and leading to ecological diversification and colonization of new niches. Recent studies have documented dynamic changes in plant polyploid gene expression, which reflect the genomic and functional plasticity of duplicate genes and genomes. • The aim of the present study was to describe genomic expression dominance between a relatively recently formed natural allopolyploid (Coffea arabica) and its ancestral parents (Coffea canephora and Coffea eugenioides) and to determine if the divergence was environment-dependent. Employing a microarray platform designed against 15,522 unigenes, we assayed unigene expression levels in the allopolyploid and its two parental diploids. For each unigene, we measured expression variations among the three species grown under two temperature conditions (26-22°C (day-night temperatures) and 30-26°C (day-night temperatures)). • More than 35% of unigenes were differentially expressed in each comparison at both temperatures, except for C. arabica vs C. canephora in the 30-26°C range, where an unexpectedly low unigene expression divergence (< 9%) was observed. • Our data revealed evidence of transcription profile divergence between the allopolyploid and its parental species, greatly affected by environmental conditions, and provide clues to the plasticity phenomenon in allopolyploids. PMID:21797880

  17. Low temperature sensitization of type 304 stainless steel pipe weld heat affected zone

    NASA Astrophysics Data System (ADS)

    Schmidt, Charles G.; Caligiuri, Robert D.; Eiselstein, Lawrence E.; Wing, Sharon S.; Cubicciotti, Daniel

    1987-08-01

    Large-diameter Type 304 stainless steel pipe weld heat-affected zone (HAZ) was investigated to determine the rate at which low temperature sensitization (LTS) can occur in weld HAZ at nuclear reactor operating temperatures and to determine the effects of LTS on the initiation and propagation of intergranular stress corrosion cracks (IGSCC). The level of sensitization was determined with the electrochemical potentiokinetic reactivation (EPR) test, and IGSCC susceptibility was determined with constant extension rate tests (CERT) and actively loaded compact tension (CT) tests. Substructural changes and carbide compositions were analyzed by electron microscopy. Weld HAZ was found to be susceptible to IGSCC in the as-welded condition for tests conducted in 8-ppm-oxygen, high-purity water at 288 °C. For low oxygen environments ( i.e., 288 °C/0.2 ppm O2 or 180 °C/1.0 ppm O2), IGSCC susceptibility was detected only in weld HAZ that had been sensitized at temperatures from 385 °C to 500 °C. Lower temperature heat treatments did not produce IGSCC. The microscopy studies indicate that the lack of IGSCC susceptibility from LTS heat treatments below 385 °C is a result of the low chromium-to-iron ratio in the carbide particles formed at grain boundaries. Without chromium enrichment of carbides, no chromium depleted zone is produced to enhance IGSCC susceptibility.

  18. SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water

    SciTech Connect

    E Richey; DS Morton; RA Etien; GA Young; RB Bucinell

    2006-11-03

    Studies have shown that grain boundary chromium carbides improve the stress corrosion cracking (SCC) resistance of nickel based alloys exposed to high temperature, high purity water. However, thermal cycles from welding can significantly alter the microstructure of the base material near the fusion line. In particular, the heat of welding can solutionize grain boundary carbides and produce locally high residual stresses and strains, reducing the SCC resistance of the Alloy 600 type material in the heat affected zone (HAZ). Testing has shown that the SCC growth rate in Alloy 600 heat affected zone samples can be {approx}30x faster than observed in the Alloy 600 base material under identical testing conditions due to fewer intergranular chromium rich carbides and increased plastic strain in the HAZ [1, 2]. Stress corrosion crack initiation tests were conducted on Alloy 600 HAZ samples at 360 C in hydrogenated, deaerated water to determine if these microstructural differences significantly affect the SCC initiation resistance of Alloy 600 heat affected zones compared to the Alloy 600 base material. Alloy 600 to EN82H to Alloy 600 heat-affected-zone (HAZ) specimens where fabricated from an Alloy 600 to Alloy 600 narrow groove weld with EN82H filler metal. The approximate middle third of the specimen gauge region was EN82H such that each specimen had two HAZ regions. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load, and a direct current electric potential drop was used for in-situ detection of SCC. Test results suggest that the SCC initiation resistance of Alloy 600 and its weld metal follows the following order: EN82H > Alloy 600 HAZ > Alloy 600. The high SCC initiation resistance observed to date in Alloy 600 heat affected zones compared to wrought Alloy 600 is unexpected based on the microstructure of HAZ versus wrought material and based on prior SCC growth rate studies. The observed behavior for the HAZ specimens is likely

  19. Rabbit and pig ear skin sample cryobanking: effects of storage time and temperature of the whole ear extirpated immediately after death.

    PubMed

    Silvestre, M A; Saeed, A M; Cervera, R P; Escribá, M J; García-Ximénez, F

    2003-03-01

    The post-mortem temporal and thermal limits within which there will be ample guarantees of rescuing living skin cells from dead specimens of two species, rabbit and pig, were studied. Post-mortem extirpated whole ears were stored (in non-aseptic conditions) either at 4 degrees C or at room temperature (from 22 to 25 degrees C) or at 35 degrees C for different time lapses after animal death. In both species, the post-mortem maximum time lapses where cell viability was not significantly reduced were 240, 72, and 24 h post-mortem (hpm) for 4, 22-25 and 35 degrees C, respectively. Once the post-mortem temporal limits for each tested thermal level at which cells from skin samples are able to grow in culture were defined, the survival ability of skin samples submitted to these temporal limits and cryopreserved were tested. In the pig, skin samples stored at the three tested thermal levels survived after vitrification-warming, reaching confluence in culture. In rabbit, only tissue samples from ears stored at 35 degrees C for 24 hpm did not survive after vitrification-warming. In conclusion, we should remark that cell survival rates obtained according to the assayed post-mortem time lapses and thermal levels are sufficient to collect and to cryopreserve skin samples from the majority of dead specimens. PMID:12527093

  20. Borrelia burgdorferi Proteins Whose Expression Is Similarly Affected by Culture Temperature and pH

    PubMed Central

    Ramamoorthy, Ramesh; Scholl-Meeker, Dorothy

    2001-01-01

    Previously, we had demonstrated the upregulation in the expression of several proteins, including the lipoproteins OspC and P35, of Borrelia burgdorferi in the stationary growth phase. Since the expression of OspC is also known to be affected by culture temperature and pH, we examined the effects of both variables on the expression of the remaining stationary-phase-upregulated proteins. Our study revealed that the expression of each of the remaining stationary-phase-upregulated proteins, P35 included, was also influenced by culture temperature; these proteins were selectively expressed at 34°C but not at 24°C. Significantly, the expression of a majority of these proteins was also affected by culture pH, since they were abundantly expressed at pH 7.0 (resembling the tick midgut pH of 6.8 during feeding) but only sparsely at pH 8.0 (a condition closer to that of the unfed tick midgut pH of 7.4). We propose that this group of B. burgdorferi proteins, which in culture is selectively expressed under conditions of 34°C and pH 7.0, may be induced in the tick midgut during the feeding event. Furthermore, the differential and coordinate expression of these proteins under different environmental conditions suggests that the encoding genes may be coregulated. PMID:11254645

  1. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. PMID:27343937

  2. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  3. Grapefruit gland oil composition is affected by wax application, storage temperature, and storage time.

    PubMed

    Sun, D; Petracek, P D

    1999-05-01

    The effect of wax application, storage temperature (4 or 21 degrees C), and storage time (14 or 28 days after wax application) on grapefruit gland oil composition was examined by capillary gas chromatography. Wax application decreases nonanal and nootkatone levels. beta-Pinene, alpha-phellandrene, 3-carene, ocimene, octanol, trans-linalool oxide, and cis-p-mentha-2,8-dien-1-ol levels increase, but limonene levels decrease, with temperature. Levels of alpha-pinene, limonene, linalool, citronellal, alpha-terpineol, neral, dodecanal, and alpha-humulene decrease with time. Levels of alpha-phellandrene, 3-carene, ocimene, and trans-linalool oxide increase with time. No compound level was affected by the interactive action of temperature and wax application, suggesting that these two factors cause grapefruit oil gland collapse (postharvest pitting) through means other than changing gland oil composition. Compounds that are toxic to the Caribbean fruit fly (alpha-pinene, limonene, alpha-terpineol, and some aldehydes) decrease with time, thus suggesting grapefruit becomes increasingly susceptible to the fly during storage. PMID:10552497

  4. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  5. Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with (1-/sup 14/C)propionate

    SciTech Connect

    Giudici, T.A.; Chen, R.G.; Oizumi, J.; Shaw, K.N.; Ng, W.G.; Donnell, G.N.

    1986-06-01

    Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with (1-/sup 14/C)propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines.

  6. Percutaneous absorption in diseased skin: an overview.

    PubMed

    Chiang, Audris; Tudela, Emilie; Maibach, Howard I

    2012-08-01

    The stratum corneum's (SC) functions include protection from external hazardous environments, prevention of water loss and regulation of body temperature. While intact skin absorption studies are abundant, studies on compromised skin permeability are less common, although products are often used to treat affected skin. We reviewed literature on percutaneous absorption through abnormal skin models. Tape stripping is used to disrupt water barrier function. Studies demonstrated that physicochemical properties influence the stripping effect: water-soluble drugs are more affected. Abrasion did not affect absorption as much. Freezing is commonly used to preserve skin. It does not seem to modify water absorption, but still increases the penetration of compounds. Comparatively, heating the skin consistently increased percutaneous absorption. Removing SC lipids may increase percutaneous absorption of drugs. Many organic solvents are employed to delipidize. Delipidization with chloroform-methanol increased hydrophilic compound permeability, but not lipophilic. Acetone pre-treatment enhanced hydrophilic compound penetration. More data is needed to determine influence on highly lipophilic compound penetration. Sodium lauryl sulfate (SLS) induces irritant dermatitis and is frequently used as a model. Studies revealed that SLS increases hydrophilic compound absorption, but not lipophilic. However, skin irritation with other chemicals increases lipophilic penetration as much as hydrophilic. Animal studies show that UV exposure increases percutaneous absorption whereas human studies do not. Human studies show increased penetration in psoriatic and atopic dermatitis skin. The data summarized here begin to characterize flux alteration associated with damaged skin. Understanding the degree of alteration requires interpretation of involved conditions and the enlarging of our database to a more complete physicochemical spectrum. PMID:22912973

  7. A Dynamic Approach to Addressing Observation-Minus-Forecast Mean Differences in a Land Surface Skin Temperature Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Draper, Clara; Reichle, Rolf; De Lannoy, Gabrielle; Scarino, Benjamin

    2015-01-01

    In land data assimilation, bias in the observation-minus-forecast (O-F) residuals is typically removed from the observations prior to assimilation by rescaling the observations to have the same long-term mean (and higher-order moments) as the corresponding model forecasts. Such observation rescaling approaches require a long record of observed and forecast estimates, and an assumption that the O-F mean differences are stationary. A two-stage observation bias and state estimation filter is presented, as an alternative to observation rescaling that does not require a long data record or assume stationary O-F mean differences. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal scale O-F mean difference from the assimilated observations, allowing the assimilation to correct the model for synoptic-scale errors without adverse effects from observation biases. The two-stage filter is demonstrated by assimilating geostationary skin temperature (Tsk) observations into the Catchment land surface model. Global maps of the O-F mean differences are presented, and the two-stage filter is evaluated for one year over the Americas. The two-stage filter effectively removed the Tsk O-F mean differences, for example the GOES-West O-F mean difference at 21:00 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.3 K. Compared to independent in situ and remotely sensed Tsk observations, the two-stage assimilation reduced the unbiased Root Mean Square Difference (ubRMSD) of the modeled Tsk by 10 of the open-loop values.

  8. Surface Facial Electromyography, Skin Conductance, and Self-Reported Emotional Responses to Light- and Season-Relevant Stimuli in Seasonal Affective Disorder

    PubMed Central

    Lindsey, Kathryn Tierney; Rohan, Kelly J.; Roecklein, Kathryn A.; Mahon, Jennifer N.

    2011-01-01

    Background Learned associations between depressive behavior and environmental stimuli signaling low light availability and winter season may play a role in seasonal affective disorder (SAD). The purpose of this study was to determine whether light and season environmental cues elicit emotional responses that are distinct in individuals with SAD. Methods Twenty-four currently depressed SAD participants were compared to 24 demographically-matched controls with no depression history on emotional responses to outdoor scenes captured under two light intensity (i.e., clear, sunny vs. overcast sky) and three season (i.e., summer with green leaves, fall with autumn foliage, and winter with bare trees) conditions. Emotion measures included surface facial electromyography (EMG) activity in the corrugator supercilii and zygomaticus major muscle regions, skin conductance, and self-reported mood state on the Profile of Mood States Depression–Dejection Subscale. Results Light intensity was a more salient cue than season in determining emotional reactions among SAD participants. Relative to controls, SAD participants displayed more corrugator activity, more frequent significant skin conductance responses (SCR), greater SCR magnitude, and more self-reported depressed mood in response to overcast stimuli and less corrugator activity, lower SCR magnitude, and less self-reported depressed mood in response to sunny stimuli. Limitations Study limitations include the single, as opposed to repeated, assessment and the lack of a nonseasonal depression group. Conclusions These findings suggest that extreme emotional reactivity to light-relevant stimuli may be a correlate of winter depression; and future work should examine its potential onset or maintenance significance. PMID:21600661

  9. Analysing Thermal Response Test Data Affected by Groundwater Flow and Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Imitazione, Gianmario; Chiozzi, Paolo; Orsi, Marco; Armadillo, Egidio

    2014-05-01

    Tests that record the underground temperature variation due to a constant heat injected into a borehole (or extracted from it) by means of a carrier fluid are routinely performed to infer subsurface thermal conductivity and borehole thermal resistance, which are needed to size geothermal heat pump systems. The most popular model to analyse temperature-time curves obtained from these tests is the infinite line source (ILS). This model gives appropriate estimations of thermal parameters only if particular hydro-geological conditions are fulfilled. Several flaws can however affect data interpretation with ILS, which is based on strong assumptions like those of a purely conductive heat transfer regime in a homogeneous medium, no vertical heat flow and infinite length of the borehole. Other drawbacks can arise from the difficulty in the proper thermal insulation of the test equipment, and consequently with oscillations of the carrier fluid temperature due to surface temperature changes. In this paper, we focused on the treatment of thermal response test data when both advection and periodic changes of surface temperature occur. We used a moving line source model to simulate temperature-time signals under different hypothesis of Darcy velocity and thermal properties. A random noise was added to the signal in order to mimic high frequency disturbances, possibly caused by equipment operating conditions and/or geological variability. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root mean square error between the synthetic dataset and the theoretical model. The optimisation was carried out with the Nelder-Mead algorithm, and thermal and hydraulic properties were determined by iterative reprocessing according to a trial-and-error procedure. The inferred thermal and hydraulic parameters are well consistent with the 'a priory' values, and the presence of noise in the synthetic data does not produce

  10. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature. PMID:27139422

  11. Does correlated color temperature affect the ability of humans to identify veins?

    PubMed

    Argyraki, Aikaterini; Clemmensen, Line Katrine Harder; Petersen, Paul Michael

    2016-01-01

    In the present study we provide empirical evidence and demonstrate statistically that white illumination settings can affect the human ability to identify veins in the inner hand vasculature. A special light-emitting diode lamp with high color rendering index (CRI 84-95) was developed and the effect of correlated color temperature was evaluated, in the range between 2600 and 5700 K at an illuminance of 40±9  lx on the ability of adult humans to identify veins. It is shown that the ability to identify veins can, on average, be increased up to 24% when white illumination settings that do not resemble incandescent light are applied. The illuminance reported together with the effect of white illumination settings on direct visual perception of biosamples are relevant for clinical investigations during the night. PMID:26831595

  12. Ion-temperature gradient modes affected by helical magnetic field of magnetic islands

    SciTech Connect

    Ishizawa, A.; Diamond, P. H.

    2010-07-15

    Ion temperature gradient mode (ITG) affected by static magnetic field of magnetic islands is investigated numerically by means of Landau fluid model. The ITG is localized around O-points of magnetic islands, and the localization in poloidal direction is similar to the poloidal localization of toroidal ITG. This is because the helical magnetic field of magnetic islands causes geometrical coupling, and thus Fourier modes that have the same helicity as the islands are coupled together. The strength of coupling is characterized by the square of island width, and it corresponds to the fact that the strength of mode coupling of toroidal ITG is characterized by the inverse aspect ratio of torus in reduced fluid models.

  13. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. PMID:26465806

  14. Lower temperature during the dark cycle affects disease development on Lygodium microphyllum (Old World climbing fern) by Bipolaris sacchari

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth chamber studies were conducted to examine environmental parameters affecting disease development by the indigenous pathogen Bipolaris sacchari isolate LJB-1L on the invasive weed Lygodium microphyllum (Old World climbing fern). Initial studies examined three different temperature regimes (20...

  15. Validation of the retrieval of surface skin temperature and surface emissivity from MOPITT measurements and their impacts on the retrieval of tropospheric carbon monoxide profiles

    NASA Astrophysics Data System (ADS)

    Ho, Shu-Peng; Gille, John C.; Edwards, David P.; Warner, Juying; Deeter, Merritt N.; Francis, Gene L.; Ziskin, Daniel C.

    2003-04-01

    The Measurements of Pollution In The Troposphere (MOPITT) instrument is designed to measure the spatial and temporal variation of the carbon monoxide (CO) profile and total column amount in the troposphere from the space. MOPITT channels are sensitive to both thermal emission from the surface and target gas absorption and emission. Surface temperature and emissivity are retrieved simultaneously with the CO profile. To obtain the desired 10% precision for the retrieved CO from MOPITT measurements, it is important to understand MOPITT CO channel sensitivity to surface temperature and emissivity and the impacts of the effects of any errors in retrieved skin temperature and emissivity on retrieved CO for various underlying surfaces. To demonstrate the impacts of the surface temperature and emissivity on the retrieval of the tropospheric CO profile, simulation studies are performed. The collocated Moderate Resolution Imaging Spectroradiometer (MODIS) surface products are used to assess the accuracy of the retrieved MOPITT surface temperature and emissivity.

  16. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed Central

    Medina, Izarne; Casal, José; Fabre, Caroline C. G.

    2015-01-01

    ABSTRACT Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  17. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed

    Medina, Izarne; Casal, José; Fabre, Caroline C G

    2015-01-01

    Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  18. Temperature and Time of Steeping Affect the Antioxidant Properties of White, Green, and Black Tea Infusions.

    PubMed

    Hajiaghaalipour, Fatemeh; Sanusi, Junedah; Kanthimathi, M S

    2016-01-01

    Tea (Camellia sinensis) is the most highly consumed beverage in the world next to water. The common way of preparation is steeping in hot water which is varying for different type of tea. We investigated the antioxidant properties of 6 type of tea leaves under different time and temperatures of extraction method used. In general, all samples tested in this study demonstrated high levels of antioxidant capacity and antioxidant activity. The results indicate that the antioxidants activity is significantly affected by time and temperature of steeping and the highest was depending on the variety. White state values, green and black teas showed different levels of antioxidants under different extraction conditions. Overall, the highest activity for white tea was in prolonged hot and in some assays prolonged hot and cold extracts, whereas for green tea the highest activity observed in prolonged cold steeping while, for black tea was in short hot water infusion. The results of this study showed the antioxidant capacity of white and green tea was greater than black tea. PMID:26613545

  19. Weld heat-affected-zone response to elevated-temperature deformation

    SciTech Connect

    Bowers, R.J.; Nippes, E.F.

    1996-11-01

    The mechanical response to elevated-temperature deformation was assessed for weld heat-affected-zone (HAZ) and base-metal microstructures in 2.25Cr-1Mo steel. A constant-displacement-rate (CDR) test, capable of determining long-time, notch-sensitivity tendencies, was implemented on a Gleeble 1,500 thermal/mechanical simulator and an Instron. Microstructures representative of the coarse-grained, grain-refined, and intercritical regions of the HAZ were simulated on a Gleeble. Microstructural reproduction reflected the preheat and postweld heat treatments in accordance with the required codes. A K{sub 1} analysis of the data was conducted, which showed that small-scale yielding criteria were adhered to throughout the test. The test results indicated that the high-temperature extensometer control of the Instron was better able to maintain stable crack growth after peak load than the crosshead control of the Gleeble. The CDR test was seen to be an effective, short-time procedure to delineate and compare the strength and relative service life of the structures present in the weld HAZ.

  20. A New Approach to Defining Human Touch Temperature Standards

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Stroud, Kenneth

    2010-01-01

    Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the skin temperature during contact, which depends on the contact thermal conductance, the object's initial temperature, and its material properties. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of likely designs. A new approach has been developed for updated NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.

  1. Skin Cancer

    MedlinePlus

    ... are specialized skin cells that produce pigment called melanin. The melanin pigment produced by melanocytes gives skin its color. ... absorbing and scattering the energy. People with more melanin have darker skin and better protection from UV ...

  2. Skin Conditions

    MedlinePlus

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  3. From skin to bulk: An adjustment technique for assimilation of satellite-derived temperature observations in numerical models of small inland water bodies

    NASA Astrophysics Data System (ADS)

    Javaheri, Amir; Babbar-Sebens, Meghna; Miller, Robert N.

    2016-06-01

    Data Assimilation (DA) has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., lakes and reservoirs) has, however, received limited attention. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, assimilating water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. This study proposes a novel approach to address this representation challenge by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter based data assimilation technique. Additionally, the proposed approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Application of the methodology on a test site - Eagle Creek Reservoir - in Central Indiana demonstrated that assimilation of remotely sensed skin temperature data using the proposed approach improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6°C to 0.51°C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95°C (before assimilation

  4. Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China

    NASA Astrophysics Data System (ADS)

    Huang, Xianyu; Meyers, Philip A.; Xue, Jiantao; Gong, Linfeng; Wang, Xinxin; Xie, Shucheng

    2015-04-01

    Progressively more evidence reveals the abundant occurrence of the C31 homohopane with a 17α, 21β-configuration (C31 αβ) in immature peats. This compound is commonly considered to be an indicator of thermal maturity in petroleum source rocks, but in peats it has also been interpreted to reflect the oxidation and subsequent decarboxylation reactions of bacteriohopanepolyols with microbially mediated epimerization at C-17 that is catalyzed by the acidic peat conditions. To learn more about the environmental factors that affect the low-temperature isomerization of homohopanes, we investigated the distribution patterns of homohopanes in a well-studied peat core from the Dajiuhu peatland, central China, together with data from modern surface peat samples from Dajiuhu and three other locations. From comparison with paleotemperature and paleohydrologic records in the peat core, we hypothesize that the ratio of C31 αβ hopane relative to the ββ isomer (C31 αβ/ββ) is mainly influenced on a centennial to millennial timescale by ambient temperature with a secondary effect from redox conditions that are defined by peatland water levels. The surface peat samples revealed that relatively high C31 αβ/ββ values occurred under pH < 6. These results suggest that pH is indeed an important factor in the low-temperature isomerization of C31 homohopanes, although the magnitude of the pH effect may be less than those of ambient temperature and redox conditions. In both surface peat and peat horizons from the Dajiuhu peatland, the amount of the C31 αβ compound with R configuration relative to that with S configuration (C31 R/S) varied closely with C31 αβ/ββ, suggesting that the epimerization at both C-17 and C-22 may happen synchronously and at similar rates. This study reveals that the isomerization of homohopanes has the potential to reflect paleoenvironmental changes in acidic peat deposits. In addition, acidic peat samples investigated in this and previous studies

  5. Cryotherapy - skin

    MedlinePlus

    Cryosurgery - skin; Warts - freezing; Warts - cryotherapy ... Cryotherapy or cryosurgery may be used to: Remove warts Destroy precancerous skin lesions (actinic keratoses or solar keratoses) In rare cases, ...

  6. Operative treatment of functional facial skin disorders

    PubMed Central

    Scheithauer, Marc Oliver; Rettinger, Gerhard

    2005-01-01

    The skin is the principal interface between the body and the surrounding world and thus serves as a protective barrier against trauma, temperature extremes and radiation. With receptors for pressure, movement, heat and cold, it also acts as sensory organ and through sweat secretion plays a role in thermoregulation and electrolyte metabolism. Not all of these functions are relevant to facial skin, however, cosmetic aspects are of vital importance. Disorders primarily affect the protective skin function in defect and scar areas. For operative correction, the following principles should be applied: Minimization of scar development by adherence to indicated incision lines in the face, preferred use of local skin flaps for defect coverage in order to obtain optimal results regarding texture, complexion and sensitivity of skin, as well as consideration of aesthetic units. Recent developments in this field are tissue culture, occlusive dressings, and the use of growth factors. Age-related skin changes with impairment of cosmetic function are characterized by the development of creases and looseness of skin. Rejuvenation has become an important segment of skin surgery. For surface treatment, especially of creases and acne scars, various types of laser treatment are employed. Deeper lines can be filled with filler materials. The integration of the superficial musculoaponeurotic system (SMAS) into face lift procedures has lead to more viable and natural results. Due to protruding tissue, blepharoplasty of the upper lid is often carried out in combination with forehead lift and eyebrow lift procedures. The optimized use of growth factors and synthetic materials, which serve as a matrix, are aimed at skin replacement which mimics the quality and functions of skin as closely as possible. On the whole, however, the reconstruction of defect through local tissue transfer is still considered as the treatment of choice. PMID:22073066

  7. Survival of salmonella on dried fruits and in aqueous dried fruit homogenates as affected by temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2014-07-01

    A study was done to determine the ability of Salmonella to survive on dried cranberries, raisins, and strawberries and in date paste, as affected by storage temperature. Acid-adapted Salmonella, initially at 6.57 to 7.01 log CFU/g, was recovered from mist-inoculated cranberries (water activity [aw] 0.47) and raisins (aw 0.46) stored at 25°C for 21 days but not 42 days, strawberries (aw 0.21) for 42 days but not 84 days, and date paste (aw 0.69) for 84 days but not 126 days. In contrast, the pathogen was detected in strawberries stored at 4°C for 182 days (6 months) but not 242 days (8 months) and in cranberries, date paste, and raisins stored for 242 days. Surface-grown cells survived longer than broth-grown cells in date paste. The order of rate of inactivation at 4°C was cranberry > strawberry > raisin > date paste. Initially at 2.18 to 3.35 log CFU/g, inactivation of Salmonella on dry (sand)&ndash inoculated fruits followed trends similar to those for mist-inoculated fruits. Survival of Salmonella in aqueous homogenates of dried fruits as affected by fruit concentration and temperature was also studied. Growth was not observed in 10% (aw 0.995 to 0.999) and 50% (aw 0.955 to 0.962) homogenates of the four fruits held at 4°C, 50% homogenates at 25°C, and 10% cranberry and strawberry homogenates at 25°C. Growth of the pathogen in 10% date paste and raisin homogenates stored at 25°C was followed by rapid inactivation. Results of these studies suggest the need to subject dried fruits that may be contaminated with Salmonella to a lethal process and prevent postprocess contamination before they are eaten out-of-hand or used as ingredients in ready-to-eat foods. Observations showing that Salmonella can grow in aqueous homogenates of date paste and raisins emphasize the importance of minimizing contact of these fruits with high-moisture environments during handling and storage. PMID:24988015

  8. Temperature Significantly Affects the Plaquing and Adsorption Efficiencies of Listeria Phages.

    PubMed

    Tokman, Jeffrey I; Kent, David J; Wiedmann, Martin; Denes, Thomas

    2016-01-01

    Listeria-infecting phages are currently being used to control and detect the important foodborne pathogen Listeria monocytogenes; however, the influence of environmental conditions on the interactions between L. monocytogenes and its phages has not been explored in depth. Here, we examined the infective potential of four Listeria phages (two each from the P70-like and P100-like phages of Listeria) against five strains of L. monocytogenes (representing serotypes 1/2a, 1/2b, 4a, and 4b) grown under a range of temperatures (7-37°C). We show that the plaquing efficiencies for all four phages were significantly affected by temperature. Interestingly, no plaques were observed for any of the four phages at 37°C. Adsorption assays performed with the P100-like phages, LP-048 and LP-125, showed that LP-048 had a severely reduced adsorption efficiency against susceptible strains at 37°C as compared to 30°C, suggesting that there is considerably less accessible rhamnose (LP-048's putative phage receptor) on the host at 37°C than at 30°C. LP-125 adsorbed to host cells at 37°C, indicating that the inability for LP-125 to plaque at 37°C is not due to adsorption inhibition. LP-048 showed significantly higher adsorption efficiency against a mutant strain lacking N-acetylglucosamine in its wall teichoic acids (WTA) than the parental strain at both 30 and 37°C, suggesting that N-acetylglucosamine competes with rhamnose for glycosylation sites on the WTA. The data presented here clearly shows that L. monocytogenes can gain physiological refuge from phage infection, which should be carefully considered for both the design and implementation of phage-based control and detection applications. PMID:27199957

  9. Temperature Significantly Affects the Plaquing and Adsorption Efficiencies of Listeria Phages

    PubMed Central

    Tokman, Jeffrey I.; Kent, David J.; Wiedmann, Martin; Denes, Thomas

    2016-01-01

    Listeria-infecting phages are currently being used to control and detect the important foodborne pathogen Listeria monocytogenes; however, the influence of environmental conditions on the interactions between L. monocytogenes and its phages has not been explored in depth. Here, we examined the infective potential of four Listeria phages (two each from the P70-like and P100-like phages of Listeria) against five strains of L. monocytogenes (representing serotypes 1/2a, 1/2b, 4a, and 4b) grown under a range of temperatures (7–37°C). We show that the plaquing efficiencies for all four phages were significantly affected by temperature. Interestingly, no plaques were observed for any of the four phages at 37°C. Adsorption assays performed with the P100-like phages, LP-048 and LP-125, showed that LP-048 had a severely reduced adsorption efficiency against susceptible strains at 37°C as compared to 30°C, suggesting that there is considerably less accessible rhamnose (LP-048’s putative phage receptor) on the host at 37°C than at 30°C. LP-125 adsorbed to host cells at 37°C, indicating that the inability for LP-125 to plaque at 37°C is not due to adsorption inhibition. LP-048 showed significantly higher adsorption efficiency against a mutant strain lacking N-acetylglucosamine in its wall teichoic acids (WTA) than the parental strain at both 30 and 37°C, suggesting that N-acetylglucosamine competes with rhamnose for glycosylation sites on the WTA. The data presented here clearly shows that L. monocytogenes can gain physiological refuge from phage infection, which should be carefully considered for both the design and implementation of phage-based control and detection applications. PMID:27199957

  10. Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles.

    PubMed

    Radmilovich, Milka; Fernández, Anabel; Trujillo-Cenóz, Omar

    2003-09-01

    The spinal cords and brains--comprising dorsal cortex (DC), medial cortex (MC) and diencephalon (Dien)--of juvenile turtles acclimated to warm temperature [27-30 degrees C; warm-acclimated turtles (WATs)] revealed higher density values of bromodeoxyuridine-labeled cells (BrdU-LCs) than those acclimated to a cooler environment [5-14 degrees C; cold-acclimated turtles (CATs)]. Both populations were under the influence of the seasonal daily light-dark rhythms. Pronounced differences between WATs and CATs (independent t-test; confidence level, P<0.01) were found in the central area of the spinal gray matter and in the ependymal epithelium lining the brain ventricles. Forebrain regions (DC, MC and Dien) also revealed significant differences between WATs and CATs (independent t-test; confidence level, P<0.01-0.05). Unexplored biological clocks that may be affecting cell proliferation were equalized by performing paired experiments involving one WAT and one CAT. Both animals were injected on the same day at the same time and both were sacrificed 24 h later. These experiments confirmed that a warm environment increased cell proliferation in the CNS of turtles. Double- and triple-labeling experiments involving anti-BrdU antibody together with anti-glial protein antibodies revealed that temperature modulates not only cell populations expressing glial markers but also other cells that do not express them. As expected, in the case of short post-injection (BrdU) surviving time points, no cells were found colabeling for BrdU and NeuN (neuronal marker). The probable direct effect of temperature on the cell division rate should be analyzed together with potential indirect effects involving increased motor activity and increased food intake. The fate of the increased BrdU-LCs (death, permanence as progenitor cells or differentiation following neuronal or glial lines) remains a matter for further investigation. Results are discussed in the light of current opinions concerned with

  11. Ballistics ordnance gelatine - How different concentrations, temperatures and curing times affect calibration results.

    PubMed

    Maiden, Nicholas R; Fisk, Wesley; Wachsberger, Christian; Byard, Roger W

    2015-08-01

    A study was undertaken to determine whether different concentrations of ordnance gelatine, water types, temperatures and curing times would have an effect on projectile penetration of a gelatine tissue surrogate. Both Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organization (NATO) specified gelatines were compared against the FBI calibration standard. 10% w/w and 20% w/w concentrations of gelatine with Bloom numbers of 250 and 285 were prepared and cured at variable temperatures (3-20°C) for 21 hours-3 weeks. Each block was shot on four occasions on the same range using steel calibre 4.5 mm BBs fired from a Daisy(®) air rifle at the required standard velocity of 180 ± 4.5 m/s, to ascertain the mean penetration depth. The results showed no significant difference in mean penetration depth using the three different water types (p > 0.05). Temperature changes and curing times did affect penetration depth. At 10°C, mean penetration depth with 20% gelatine 285 Bloom for the two water types tested was 49.7 ± 1.5 mm after 21 h curing time, whereas the same formulation at 20°C using two different water types was 79.1 ± 2.1 mm after 100 h curing time (p < 0.001). Neither of the NATO 20% concentrations of gelatine at 10°C or a 20% concentration of 285 Bloom gelatine at 10°C met the same calibration standard as the FBI recommended 10% formulation at 4°C. A 20% concentration of 285 Bloom at 20°C met the same calibration/penetration criteria as a 10% concentration of 250 Bloom at 4 °C after 100 h of curing, therefore matching the FBI calibration standard for a soft tissue simulant for wound ballistics research. These results demonstrate significant variability in simulant properties. Failure to standardise ballistic simulants may invalidate experimental results. PMID:26165674

  12. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice.

    PubMed

    Baud, Maxime O; Magistretti, Pierre J; Petit, Jean-Marie

    2013-02-01

    Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea. PMID:22734931

  13. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam.

    PubMed

    Pham, C H; Vu, C C; Sommer, S G; Bruun, S

    2014-07-01

    This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature (°C) at a depth of 140 cm and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank. PMID:25050049

  14. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam

    PubMed Central

    Pham, C. H.; Vu, C. C.; Sommer, S. G.; Bruun, S.

    2014-01-01

    This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature (°C) at a depth of 140 cm and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank. PMID:25050049

  15. Skin Biomes.

    PubMed

    Fyhrquist, N; Salava, A; Auvinen, P; Lauerma, A

    2016-05-01

    The cutaneous microbiome has been investigated broadly in recent years and some traditional perspectives are beginning to change. A diverse microbiome exists on human skin and has a potential to influence pathogenic microbes and modulate the course of skin disorders, e.g. atopic dermatitis. In addition to the known dysfunctions in barrier function of the skin and immunologic disturbances, evidence is rising that frequent skin disorders, e.g. atopic dermatitis, might be connected to a dysbiosis of the microbial community and changes in the skin microbiome. As a future perspective, examining the skin microbiome could be seen as a potential new diagnostic and therapeutic target in inflammatory skin disorders. PMID:27056560

  16. Aldo-keto Reductase 1C3 (AKR1C3) is overexpressed in skin squamous cell carcinoma (SCC) and affects SCC growth via prostaglandin metabolism

    PubMed Central

    Mantel, Alon; Carpenter-Mendini, Amanda; VanBuskirk, JoAnne; Pentland, Alice P.

    2014-01-01

    Aldo-keto reductase 1C3 (AKR1C3) is an enzyme involved in metabolizing prostaglandins (PGs) and sex hormones. It metabolizes PGD2 to 9α11β-PGF2, diverting the spontaneous conversion of PGD2 to the PPARγ agonist, 15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2). AKR1C3 is overexpressed in various malignancies, suggesting a tumor promoting function. This work investigates AKR1C3 expression in human non-melanoma skin cancers, revealing overexpression in squamous cell carcinoma (SCC). Effects of AKR1C3 overexpression were then evaluated using 3 SCC cell lines. AKR1C3 was detected in all SCC cell lines and its expression was upregulated in response to its substrate, PGD2. Although attenuating AKR1C3 expression in SCC cells by siRNA did not affect growth, treatment with PGD2 and its dehydration metabolite, 15d-PGJ2, decreased SCC proliferation in a PPARγ-dependent manner. In addition, treatment with the PPARγ agonist pioglitazone profoundly inhibited SCC proliferation. Finally, we generated an SCC cell line that stably overexpressed AKR1C3 (SCC-AKR1C3). SCC-AKR1C3 metabolized PGD2 to 9α11β-PGF2 12 fold faster than the parent cell line and was protected from the anti-proliferative effect mediated by PGD2. This work suggests that PGD2 and its metabolite 15d-PGJ2 attenuate SCC proliferation in a PPARγ-dependent manner, therefore activation of PPARγ by agonists such as Pioglitazone may benefit those at high risk of SCC. PMID:24917395

  17. Hiding from the moonlight: luminosity and temperature affect activity of Asian nocturnal primates in a highly seasonal forest.

    PubMed

    Starr, Carly; Nekaris, K A I; Leung, Luke

    2012-01-01

    The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus) is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert) or active behaviour (travel, feeding, grooming, or others). Moon luminosity (bright/dark) and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive), and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours. PMID:22558461

  18. Hiding from the Moonlight: Luminosity and Temperature Affect Activity of Asian Nocturnal Primates in a Highly Seasonal Forest

    PubMed Central

    Starr, Carly; Nekaris, K. A. I.; Leung, Luke

    2012-01-01

    The effect of moonlight and temperature on activity of slow lorises was previously little known and this knowledge might be useful for understanding many aspects of their behavioural ecology, and developing strategies to monitor and protect populations. In this study we aimed to determine if the activity of the pygmy loris (Nycticebus pygmaeus) is affected by ambient temperature and/or moonlight in a mixed deciduous forest. We radio-collared five females and five males in the Seima Protection Forest, Cambodia, in February to May, 2008 and January to March, 2009 and recorded their behaviour at 5 minutes intervals, totalling 2736 observations. We classified each observation as either inactive (sleeping or alert) or active behaviour (travel, feeding, grooming, or others). Moon luminosity (bright/dark) and ambient temperature were recorded for each observation. The response variable, activity, was binary (active or inactive), and a logit link function was used. Ambient temperature alone did not significantly affect mean activity. Although mean activity was significantly affected by moonlight, the interaction between moonlight and temperature was also significant: on bright nights, studied animals were increasingly more active with higher temperature; and on dark nights they were consistently active regardless of temperature. The most plausible explanation is that on bright cold nights the combined risk of being seen and attacked by predators and heat loss outweigh the benefit of active behaviours. PMID:22558461

  19. Oxytetracycline depletion from skin-on fillet tissue of coho salmon fed oxytetracycline medicated feed in freshwater at temperatures less than 9°C

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Gaikowski, Mark P.; Stehly, Guy R.; Gingerich, William H.; Evered, Joy A.

    2001-01-01

    Oxytetracycline (OTC) is a broad spectrum antibacterial agent approved in the USA for treating certain bacterial diseases in salmonids cultured in freshwater at temperatures greater than or equal to 9°C. This study was conducted to provide the information necessary to expand the OTC label to include treatment of diseased salmonids cultured in freshwater at temperatures below 9°C. The study was designed to treat juvenile coho salmon (Oncorhynchus kisutch) with OTC-medicated feed and determine the depletion of OTC from the skin-on fillet tissue. Oxytetracycline depletion was evaluated in juvenile coho salmon (weight range, 13–62 g) fed OTC-medicated feed at a rate of 88.2 mg OTC/kg body weight/day for 10 days. Pairs of skin-on fillets were taken from individual fish on days 4 and 10 during the treatment phase and on days 1, 4, 8, 14, and 19 during the depletion phase. Water temperatures during the study period ranged from 4.1°C to 8.5°C. The OTC concentrations in medicated feed and skin-on fillets were determined with high-performance liquid chromatography methods. The maximum mean OTC concentration in fillet tissue was 932 ng/g, 1 day after the last treatment and decreased to 32 ng/g 19 days after the last treatment. The log-linear loss of OTC from the fillet tissue was biphasic with a terminal phase half-life of 4.9 days.

  20. Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? A systematic review and meta-analysis

    PubMed Central

    2013-01-01

    Introduction The aim of this systematic review was to evaluate the strength of the existing research to answer the question: Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? Methods This study is a systematic review and meta-analysis of temperature-monitoring in the prediction and prevention of diabetic foot ulceration. Two investigators conducted a literature search for all relevant articles from 1960 until July 2011. During this process the following data bases were searched: MEDLINE, Science Direct, AMED, Australian Medical Index, APAIS-Health, ATSIhealth, EMBASE, Web of Science and OneSearch. Keywords used in this search included diabetes, foot complications, ulceration, temperature-monitoring, prediction and prevention. Results Results of the meta-analysis support the theory that an increase in skin temperature is predictive of foot ulceration when compared with the same site on the contralateral limb. The theory that there is a mean norm foot temperature which can be used as a benchmark to monitor pathological change was unsupported by this meta-analysis. Conclusions The conclusions derived from this review are based on the best available scientific evidence in this field. It is intended that the results of this study will improve clinical decision-making and encourage the appropriate measures used to predict and prevent ulceration in people with diabetes at high risk of foot complications. Based on quality studies in this area, the results of this review have indicated that the use of temperature-monitoring is an effective way to predict, and thus prevent, diabetic foot ulceration. PMID:23919736

  1. Precautions for breast cancer-related lymphoedema: risk from air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and cellulitis.

    PubMed

    Asdourian, Maria S; Skolny, Melissa N; Brunelle, Cheryl; Seward, Cara E; Salama, Laura; Taghian, Alphonse G

    2016-09-01

    Precautionary recommendations conveyed to survivors of cancer by health-care practitioners to reduce the risk of breast cancer-related lymphoedema are indispensable aspects of clinical care, yet remain unsubstantiated by high-level scientific evidence. By reviewing the literature, we identified 31 original research articles that examined whether lifestyle-associated risk factors (air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and skin infections-eg, cellulitis) increase the risk of breast cancer-related lymphoedema. Among the few studies that lend support to precautionary guidelines, most provide low-level (levels 3-5) or inconclusive evidence of an association between lymphoedema and these risk factors, and only four level 2 studies show a significant association. Skin infections and previous infection or inflammation on the ipsilateral arm were among the most clearly defined and well established risk factors for lymphoedema. The paucity of high-level evidence and the conflicting nature of the existing literature make it difficult to establish definitive predictive factors for breast cancer-related lymphoedema, which could be a considerable source of patient distress and anxiety. Along with further research into these risk factors, continued discussion regarding modification of the guidelines and adoption of a risk-adjusted approach is needed. PMID:27599144

  2. Sex, season, and time of day interact to affect body temperatures of the Giant Gartersnake

    USGS Publications Warehouse

    Wylie, G.D.; Casazza, M.L.; Halstead, B.J.; Gregory, C.J.

    2009-01-01

    1.We examined multiple hypotheses regarding differences in body temperatures of the Giant Gartersnake using temperature-sensitive radio telemetry and an information-theoretic analytical approach.2.Giant Gartersnakes selected body temperatures near 30 ??C, and males and females had similar body temperatures most of the year, except during the midsummer gestation period.3.Seasonal differences in the body temperatures of males and females may relate to both the costs associated with thermoregulatory behavior, such as predation, and the benefits associated with maintaining optimal body temperatures, such as successful incubation.

  3. Sex and hibernaculum temperature predict survivorship in white-nose syndrome affected little brown myotis (Myotis lucifugus).

    PubMed

    Grieneisen, Laura E; Brownlee-Bouboulis, Sarah A; Johnson, Joseph S; Reeder, DeeAnn M

    2015-02-01

    White-nose syndrome (WNS), an emerging infectious disease caused by the novel fungus Pseudogymnoascus destructans, has devastated North American bat populations since its discovery in 2006. The little brown myotis, Myotis lucifugus, has been especially affected. The goal of this 2-year captive study was to determine the impact of hibernacula temperature and sex on WNS survivorship in little brown myotis that displayed visible fungal infection when collected from affected hibernacula. In study 1, we found that WNS-affected male bats had increased survival over females and that bats housed at a colder temperature survived longer than those housed at warmer temperatures. In study 2, we found that WNS-affected bats housed at a colder temperature fared worse than unaffected bats. Our results demonstrate that WNS mortality varies among individuals, and that colder hibernacula are more favourable for survival. They also suggest that female bats may be more negatively affected by WNS than male bats, which has important implications for the long-term survival of the little brown myotis in eastern North America. PMID:26064604

  4. Sex and hibernaculum temperature predict survivorship in white-nose syndrome affected little brown myotis (Myotis lucifugus)

    PubMed Central

    Grieneisen, Laura E.; Brownlee-Bouboulis, Sarah A.; Johnson, Joseph S.; Reeder, DeeAnn M.

    2015-01-01

    White-nose syndrome (WNS), an emerging infectious disease caused by the novel fungus Pseudogymnoascus destructans, has devastated North American bat populations since its discovery in 2006. The little brown myotis, Myotis lucifugus, has been especially affected. The goal of this 2-year captive study was to determine the impact of hibernacula temperature and sex on WNS survivorship in little brown myotis that displayed visible fungal infection when collected from affected hibernacula. In study 1, we found that WNS-affected male bats had increased survival over females and that bats housed at a colder temperature survived longer than those housed at warmer temperatures. In study 2, we found that WNS-affected bats housed at a colder temperature fared worse than unaffected bats. Our results demonstrate that WNS mortality varies among individuals, and that colder hibernacula are more favourable for survival. They also suggest that female bats may be more negatively affected by WNS than male bats, which has important implications for the long-term survival of the little brown myotis in eastern North America. PMID:26064604

  5. How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX?

    PubMed

    Wu, Qiong; Xiong, Guolin; Zhu, Weihua; Xiao, Heming

    2015-09-21

    We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives. PMID:26264421

  6. Temperature abuse timing affects the quality deterioration of commercially packaged ready-to-eat baby spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature abuse of fresh-cut products occurs routinely during transportation and retail store display. However, the stage of product shelf life during temperature abuse and its impact on sensory attributes and product quality have not been studied. This study evaluated the effect of temperature ab...

  7. KINETICS OF LEAF TEMPERATURE FLUCTUATION AFFECT ISOPRENE EMISSION FROM RED OAK (QUERCUS RUBRA) LEAVES

    EPA Science Inventory

    Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated the natural fluctuations on leaf temperature and the effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the to...

  8. Study of surfactant-skin interactions by skin impedance measurements.

    PubMed

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation. PMID:21923733

  9. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  10. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure

    SciTech Connect

    Lindberg, Anna-Lena; Rahman, Mahfuzar; Persson, Lars-Ake; Vahter, Marie

    2008-07-01

    It is known that a high fraction of methylarsonate (MA) in urine is a risk modifying factor for several arsenic induced health effects, including skin lesions, and that men are more susceptible for developing skin lesions than women. Thus, we aimed at elucidating the interaction between gender and arsenic metabolism for the risk of developing skin lesions. This study is part of a population-based case-referent study concerning the risk for skin lesions in relation to arsenic exposure via drinking water carried out in Matlab, a rural area 53km south-east of Dhaka, Bangladesh. We randomly selected 526 from 1579 referents and all 504 cases for analysis of arsenic metabolites in urine using HPLC coupled to inductively coupled plasma mass spectrometry (HPLC-HG-ICPMS). The present study confirm previous studies, with the risk for skin lesions being almost three times higher in the highest tertile of %MA (adjusted OR 2.8, 95% CI: 1.9-4.2, p < 0.001) compared to the lowest tertile. The present study is the first to show that the well documented higher risk for men to develop arsenic-related skin lesions compared to women is mainly explained by the less efficient methylation of arsenic, as defined by a higher fraction of MA and lower fraction of DMA in the urine, among men. Our previously documented lower risk for skin lesions in individuals exposed since infancy, or before, was found to be independent of the observed arsenic methylation efficiency. Thus, it can be speculated that this is due to a programming effect of arsenic in utero.

  11. Incubation temperature affects the behavior of adult leopard geckos (Eublepharis macularius).

    PubMed

    Flores, D; Tousignant, A; Crews, D

    1994-06-01

    The leopard gecko has temperature-dependent sex determination (TSD); females are predominantly produced when incubated at 26 degrees C (100%), 30 degrees C (70%), and 34 degrees C (95%), whereas males are predominantly produced at 32.5 degrees C (75%). Exogenous estradiol can override the effect of temperature on sex determination. To compare temperature-determined females with hormone-determined females, eggs from the male-biased temperature were treated with estradiol benzoate during incubation. As adults, animals from a male-biased incubation temperature were more likely to exhibit aggression than animals from female-biased incubation temperatures. Furthermore, females from a male-biased incubation temperature tended to be less attractive than females from female-biased temperatures. Hormone-determined females were both attractive and aggressive. This suggests that incubation temperature is an important development determinant of adult aggressiveness and attractiveness. The 26 degrees C animals ovariectomized on the day of hatch exhibited more frequent aggression and were unreceptive to males, indicating that postnatal ovarian hormones also play a role in adult sociosexual behaviors. The parallel between incubation temperature and intrauterine position in laboratory mammals is discussed. PMID:8047573

  12. Factors affecting quality of temperature models for the pre-appearance interval of forensically useful insects.

    PubMed

    Matuszewski, Szymon; Mądra, Anna

    2015-02-01

    In the case of many forensically important insects an interval preceding appearance of an insect stage on a corpse (called the pre-appearance interval or PAI) is strongly temperature-dependent. Accordingly, it was proposed to estimate PAI from temperature by using temperature models for PAI of particular insect species and temperature data specific for a given case. The quality of temperature models for PAI depends on the protocols for PAI field studies. In this article we analyze effects of sampling frequency and techniques, temperature data, as well as the size of a sample on the quality of PAI models. Models were created by using data from a largely replicated PAI field study, and their performance in estimation was tested with external body of PAI data. It was found that low frequency of insect sampling distinctly deteriorated temperature models for PAI. The effect of sampling techniques was clearly smaller. Temperature data from local weather station gave models of poor quality, however their retrospective correction clearly improved the models. Most importantly, current results demonstrate that sample size in PAI field studies may be substantially reduced, with no model deterioration. Samples consisting of 11-14 carcasses gave models of high quality, as long as the whole range of relevant temperatures was studied. Moreover, it was found that carcasses exposed in forests and carcasses exposed in early spring are particularly important, as they ensure that PAI data is collected at low temperatures. A preliminary best practice model for PAI field studies is given. PMID:25541074

  13. Heat-affected zone toughness of a TMCP steel designed for low-temperature applications

    SciTech Connect

    Gianetto, J.A.; Braid, J.E.M.; Bowker, J.T.; Tyson, W.R.

    1997-05-01

    The objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results form both Charpy-vee notch (CVN) and crack-tip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KAW-L and KAW-H) did not meet the targeted requirement of {delta} = 0.07 mm at {minus}50 C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being samples, which was {approximately} 55% for the bottom compared to 25--30% for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships.

  14. Growth characteristics of Listeria monocytogenes as affected by a -native microflora in cooked ham under refrigerated and temperature abuse conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the growth characteristics of L. monocytogenes as affected by a native microflora in cooked ham at refrigerated and abuse temperatures. A five-strain mixture of L. monocytogenes and a native microflora isolated from cooked meat were inoculated alone (monocultured) or co-inoculate...

  15. Tumor necrosis factor-alpha and interleukin-17 differently affects Langerhans cell distribution and activation in an innovative three-dimensional model of normal human skin.

    PubMed

    Prignano, Francesca; Arnaboldi, Francesca; Cornaghi, Laura; Landoni, Federica; Tripo, Lara; Preis, Franz William Baruffaldi; Donetti, Elena

    2015-02-01

    Among the several cytokines involved in the psoriasis pathogenesis, tumor necrosis factor (TNF)-alpha and interleukin (IL)-17 play a central role. Many biomolecular steps remain unknown due to difficulty to obtain psoriatic models. To investigate the effect of TNF-alpha and IL-17 on the ultrastructure, immunophenotype, and number of epidermal Langerhans cells (LCs), human skin explants (n=7) were cultured air-liquid interface in a Transwell system. Four different conditions were used: medium alone (control), medium added with 100 ng/ml TNF-alpha or 50 ng/ml IL-17 or a combination of both cytokines. Samples were harvested 24 and 48 h after cytokine addition and were frozen. Samples harvested at 24h were also processed for transmission electron microscopy (TEM). By immunofluorescence analysis with anti-human Langerin antibody (three experiments/sample) we calculated the percentage of LCs/mm(2) of living epidermis after 24 and 48 h of incubation (considering control as 100%). At 24h LC number was significantly higher in samples treated with both cytokines (216.71+15.10%; p<0.001) and in TNF-alpha (125.74+26.24%; p<0.05). No differences were observed in IL-17-treated samples (100.14+38.42%). After 48 h, the number of epidermal Langerin-positive cells in IL-17- and TNF-alpha treated samples slightly decreased (94.99+36.79% and 101.37+23% vs. their controls, respectively). With the combination of both cytokines epidermal LCs strongly decreased (120+13.36%). By TEM, upon TNF-alpha stimulus LCs appeared with few organelles, mostly mitochondria, lysosomes, and scattered peripherical BGs. Upon IL-17 stimulus, LCs showed a cytoplasm with many mitochondria and numerous BGs close to the perinuclear space and Golgi apparatus, but also at the periphery, at the beginning of the dendrites. The addition of both cytokines did not affect LC ultrastructure. Our study showed that IL-17 induced significant changes in LC ultrastructure, while the combination of both cytokines seems to

  16. Skin Aging

    MedlinePlus

    ... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...

  17. Skin Complications

    MedlinePlus

    ... drugs that can help clear up this condition. Day-to-Day Skin Care See our tips for daily skin ... Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to Know Your ...

  18. Skin lumps

    MedlinePlus

    ... and contains fluid or semisolid material Benign skin growths such as seborrheic keratoses or neurofibromas Boils , painful, red bumps usually involving an infected hair follicle Corn or callus, caused by skin thickening in response ...

  19. Skin Pigment

    MedlinePlus

    ... Professional Version Pigment Disorders Overview of Skin Pigment Albinism Vitiligo Hyperpigmentation Melasma Melanin is the brown pigment ... dark-skinned people produce the most. People with albinism have little or no melanin and thus their ...

  20. Temperature Measurement Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA's Ames Research Center has designed a simple but medically important device--one which holds temperature probes, called thermistors, to a person's skin without affecting the characteristics of the skin segment being measured. The device improves the accuracy of skin surface temperature measurements, valuable data in health evaluation. The need for such a device was recognized in the course of life science experiments at Ames. In earlier methods, the sensing head of the temperature probe was affixed to the patient's skin by tape or elastic bands. This created a heat variance which altered skin temperature readings. The Ames-developed thermistor holder is a plastic ring with tab extensions, shown in the upper photo on the chest, arm and leg of the patient undergoing examination. The ring holds the sensing head of the temperature probe and provides firm, constant pressure between the skin and the probe. The tabs help stabilize the ring and provide attachment points for the fastening tape or bands, which do not directly touch the sensor. With this new tool, it is possible to determine more accurately the physiological effects of strenuous exercise, particularly on the treadmill. The holder is commercially available from Yellow Springs Instrument Company, Inc., Yellow Springs, Ohio, which is producing the device under a NASA patent license.

  1. Heat and moisture production of growing-finishing barrows as affected by environmental temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat and moisture production measurements were completed on barrows over the normal weight range of 60 to 120 kg and a temperature range of 16 to 32°C. All measurements were based on a 21-hr period and adjusted to a 24-hr base. Animals were acclimated to treatment temperatures for 2 weeks, and the...

  2. Analytical and experimental spur gear tooth temperature as affected by operating variables

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1980-01-01

    A gear tooth temperature analysis was performed using a finite element method combined with a calculated heat input, calculated oil jet impingement depth, and estimated heat transfer coefficients. Experimental measurements of gear tooth average surface temperatures and instantaneous surface temperatures were made with a fast response infrared radiometric microscope. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at both high load and speeds. Increasing the speed at constant load and increasing the load at constant speed causes a significant rise in average and peak surface temperatures of gear teeth. The oil jet pressure required for adequate cooling at high speed and load conditions must be high enough to get full depth penetration of the teeth. Calculated and experimental results were in good agreement with high oil jet penetration but showed poor agreement with low oil jet penetration depth.

  3. Analytical and experimental spur gear tooth temperature as affected by operating variables

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1980-01-01

    A gear tooth temperature analysis was performed using a finite element method combined with a calculated heat input, calculated oil jet impingement depth, and estimated heat transfer coefficients. Experimental measurements of gear tooth average surface temperatures and instanteous surface temperatures were made with a fast response infrared radiometric microscope. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at both high load and speeds. Increasing the speed at constant load and increasing the load at constant speed causes a significant rise in average and peak surface temperatures of gear teeth. The oil jet pressure required for adequate cooling at high speed and load conditions must be high enough to get full depth penetration of the teeth. Calculated and experimental results were in good agreement with high oil jet penetration but showed poor agreement with low oil jet penetration depth.

  4. Skin graft

    MedlinePlus

    ... caused a large amount of skin loss Burns Cosmetic reasons or reconstructive surgeries where there has been skin damage or skin ... anesthesia are: Reactions to medicines Problems with breathing Risks for this surgery are: Bleeding Chronic pain (rarely) Infection Loss of ...

  5. Skin Aging

    MedlinePlus

    Your skin changes as you age. You might notice wrinkles, age spots and dryness. Your skin also becomes thinner and loses fat, making it ... heal, too. Sunlight is a major cause of skin aging. You can protect yourself by staying out ...

  6. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?

    PubMed Central

    Horváthová, Terézia; Antol, Andrzej; Czarnoleski, Marcin; Kramarz, Paulina; Bauchinger, Ulf; Labecka, Anna Maria; Kozłowski, Jan

    2015-01-01

    Abstract According to the temperature-size rule (TSR), ectotherms developing under cold conditions experience slower growth as juveniles but reach a larger size at maturity. Whether temperature alone causes this phenomenon is unknown, but oxygen limitation can play a role in the temperature-size relationship. Oxygen may become limited under warm conditions when the resulting higher metabolism creates a greater demand for oxygen, especially in larger individuals. We examined the independent effects of oxygen concentration (10% and 22% O2) and temperature (15 °C and 22 °C) on duration of ontogenic development, which takes place within the maternal brood pouch (marsupium), and juvenile growth in the terrestrial isopod common rough woodlouse (Porcellio scaber). Individuals inside the marsupium undergo the change from the aqueous to the gaseous environment. Under hypoxia, woodlice hatched from the marsupium sooner, but their subsequent growth was not affected by the level of oxygen. Marsupial development and juvenile growth were almost three times slower at low temperature, and marsupial development was longer in larger females but only in the cold treatment. These results show that temperature and oxygen are important ecological factors affecting developmental time and that the strength of the effect likely depends on the availability of oxygen in the environment. PMID:26261441

  7. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    PubMed

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. PMID:25402319

  8. Survival and growth of acid-adapted and unadapted Salmonella in and on raw tomatoes as affected by variety, stage of ripeness, and storage temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2008-08-01

    Consumption of raw round and Roma tomatoes has been associated with outbreaks of salmonellosis. A study was done to determine whether survival and growth of Salmonella in and on tomatoes is affected by variety of tomato, stage of ripeness, and storage temperature. The influence of acid adaptation of cells and site of inoculation on survival and growth was studied. Salmonella grew in stem scar and pulp tissues of round, Roma, and grape tomatoes stored at 12 and 21 degrees C but not in those tomatoes stored at 4 degrees C. Survival and growth was largely unaffected by variety and stage of ripeness at the time of inoculation. The pathogen did not grow on the skin of grape tomatoes stored at 4, 12, and 21 degrees C. Survival and growth of Salmonella inoculated into stem scar and pulp tissues of round and Roma tomatoes were unaffected by exposure of cells to an acidic (pH 4.75) environment before inoculation. Results emphasize the importance of preventing contamination of tomatoes with Salmonella at all stages of ripeness, regardless of variety or previous exposure of cells to an acidic environment. PMID:18724750

  9. Daily Mean Temperature Affects Urolithiasis Presentation in Seoul: a Time-series Analysis

    PubMed Central

    2016-01-01

    This study aimed to investigate the overall cumulative exposure-response and the lag response relationships between daily temperature and urolithiasis presentation in Seoul. Using a time-series design and distributing lag nonlinear methods, we estimated the relative risk (RR) of urolithiasis presentation associated with mean daily temperature, including the cumulative RR for a 20 days period, and RR for individual daily lag through 20 days. We analyzed data from 14,518 patients of 4 hospitals emergency department who sought medical evaluation or treatment of urolithiasis from 2005-2013 in Seoul. RR was estimated according to sex and age. Associations between mean daily temperature and urolithiasis presentation were not monotonic. Furthermore, there was variation in the exposure-response curve shapes and the strength of association at different temperatures, although in most cases RRs increased for temperatures above the 13°C reference value. The RRs for urolothiasis at 29°C vs. 13°C were 2.54 in all patients (95% confidence interval [CI]: 1.67-3.87), 2.59 in male (95% CI, 1.56-4.32), 2.42 in female (95% CI, 1.15-5.07), 3.83 in male less than 40 years old (95% CI, 1.78-8.26), and 2.47 in male between 40 and 60 years old (95% CI, 1.15-5.34). Consistent trends of increasing RR of urolithiasis presentation were observed within 5 days of high temperatures across all groups. Urolithiasis presentation increased with high temperature with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days, in Seoul, a metropolitan city in Korea. PMID:27134497

  10. Thermal Destruction of Escherichia coli O157:H7 in Sous-vide Cooked Ground Beef as affected by Tea Leaf and Apple Skin Powders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of white and green tea powders and an apple skin extract. Inoculated meat, packaged in bags, was completely immersed in a circulating water bath and cooked fo...

  11. Specific gravity of bovine colostrum immunoglobulins as affected by temperature and colostrum components.

    PubMed

    Mechor, G D; Gröhn, Y T; McDowell, L R; Van Saun, R J

    1992-11-01

    The effects of temperature and colostrum components on specific gravity in bovine colostrum were investigated. Thirty-nine first milking colostrum samples were collected from Holstein cows. The samples were assayed for alpha-tocopherol, fat, protein, total solids, and IgG. The concentrations of total solids, total protein, total IgG, and fat in colostrum were 26.6, 12.5, 3.7, and 9.4 g/100 g, respectively. A range of 1.8 to 24.7 micrograms/ml for alpha-tocopherol was measured in the colostrum samples. Specific gravity of the colostrum was measured using a hydrometer in increments of 5 degrees C from 0 to 40 degrees C. Specific gravity explained 76% of the variation in colostral total IgG at a colostrum temperature of 20 degrees C. The regression model was improved only slightly with the addition of protein, fat, and total solids. The model for samples at 20 degrees C was IgG (milligrams per milliliter) = 958 x (specific gravity) - 969. Measurement of specific gravity at variable temperatures necessitated inclusion of temperature in the model for estimation of IgG. Inclusion of the other components of colostrum into the model slightly improved the fit. The regression model for samples at variable temperatures was as follows: IgG (milligrams per milliliter) = 853 x (specific gravity) + .4 x temperature (Celsius degrees) - 866. PMID:1460140

  12. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2015-03-01

    Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  13. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2014-09-01

    Submersible pressure transducers have been utilized for collecting water level data since early 1960s. Together with a digital datalogger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the widely use of pressure transducers for water level monitoring, little has been reported for their accuracy and performance under field conditions. The effect of temperature fluctuations on the output of vented pressure transducers were discussed in this study. The pressure transducer was tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effect in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  14. Factors affecting temperature variation and habitat use in free-ranging diamondback terrapins.

    PubMed

    Akins, C D; Ruder, C D; Price, S J; Harden, L A; Gibbons, J W; Dorcas, M E

    2014-08-01

    Measuring the thermal conditions of aquatic reptiles with temperature dataloggers is a cost-effective way to study their behavior and habitat use. Temperature dataloggers are a particularly useful and informative approach to studying organisms such as the estuarine diamondback terrapin (Malaclemys terrapin) that inhabits a dynamic environment often inaccessible to researchers. We used carapace-mounted dataloggers to measure hourly carapace temperature (Tc) of free-ranging terrapins in South Carolina from October 2007 to 2008 to examine the effects of month, sex, creek site, and tide on Tc and to determine the effects of month, sex, and time of day on terrapin basking frequency. Simultaneous measurements of environmental temperatures (Te; shallow mud, deep mud, water) allowed us to make inferences about terrapin microhabitat use. Terrapin Tc differed significantly among months and creek and between sexes. Terrapin microhabitat use also varied monthly, with shallow mud temperature being the best predictor of Tc November-March and water temperature being the best predictor of Tc April-October. Terrapins basked most frequently in spring and fall and males basked more frequently than females. Our study contributes to a fuller understanding of terrapin thermal biology and provides support for using dataloggers to investigate behavior and habitat use of aquatic ectotherms inhabiting dynamic environments. PMID:25086975

  15. Temperature and age affect the life history characteristics and fatty acid profiles of Moina macrocopa (Cladocera).

    PubMed

    Gama-Flores, José Luis; Huidobro-Salas, María Elena; Sarma, S S S; Nandini, S; Zepeda-Mejia, Ricardo; Gulati, Ramesh D

    2015-10-01

    Demographic responses and fatty acid profiles of Moina macrocopa were quantified under different temperature regimes (20°C, 25°C and 30°C and diurnally variable 20-30°C) and at fixed ration (10.65µgDWml(-1)) of Chlorella. Highest constant temperature (30°C) reduced the density of M. macrocopa. The cladocerans under the fluctuating temperature regime too had lower population growth (about 50% lower than that at constant 25°C). The survivorship of M. macrocopa was higher at 20°C than that at 25°C and 30°C or at variable temperature regime. Gross and net reproductive rates were higher at 25°C. At 20°C, neonates had the highest proportion (67%) of myristic, palmitic and stearic acids while the adults had the lowest (26%) proportion. For both adults and neonates, palmitoleic, linoleic and linolenic comprised of 15-35% of the total fatty acids. Higher percentage (19%) of linoleic acid was present in adults than neonates (7%). Adults had linolenic acid level which was 3-times higher than in neonates. Linoleic and linolenic fatty acids decreased with increasing temperature for neonates and adults from 20°C to 30°C. The demographic responses and fatty acid profiles of M. macrocopa were discussed in relation to level and mode of temperature exposure. PMID:26590466

  16. Sensitive skin.

    PubMed

    Misery, L; Loser, K; Ständer, S

    2016-02-01

    Sensitive skin is a clinical condition defined by the self-reported facial presence of different sensory perceptions, including tightness, stinging, burning, tingling, pain and pruritus. Sensitive skin may occur in individuals with normal skin, with skin barrier disturbance, or as a part of the symptoms associated with facial dermatoses such as rosacea, atopic dermatitis and psoriasis. Although experimental studies are still pending, the symptoms of sensitive skin suggest the involvement of cutaneous nerve fibres and neuronal, as well as epidermal, thermochannels. Many individuals with sensitive skin report worsening symptoms due to environmental factors. It is thought that this might be attributed to the thermochannel TRPV1, as it typically responds to exogenous, endogenous, physical and chemical stimuli. Barrier disruptions and immune mechanisms may also be involved. This review summarizes current knowledge on the epidemiology, potential mechanisms, clinics and therapy of sensitive skin. PMID:26805416

  17. A bulk similarity approach in the atmospheric boundary layer using radiometric skin temperature to determine regional surface fluxes

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1991-01-01

    Profiles of wind velocity and temperature in the outer region of the atmospheric boundary layer (ABL) were used together with surface temperature measurements, to determine regional shear stress and sensible heat flux by means of transfer parameterizations on the basis of bulk similarity. The profiles were measured by means of radiosondes and the surface temperatures by infrared radiation thermometry over hilly prairie terrain in northeastern Kansas during the First ISLSCP Field Experiment (FIFE). In the analysis, the needed similarity functions were determined and tested.

  18. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  19. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax.

    PubMed

    Toffan, Anna; Panzarin, Valentina; Toson, Marica; Cecchettin, Krizia; Pascoli, Francesco

    2016-05-26

    Betanodaviruses are the causative agents of a highly infectious disease of fish known as viral nervous necrosis (VNN). To date, 4 different nervous necrosis virus (NNV) genotypes have been described, but natural reassortant viruses have also been detected, which further increase viral variability. Water temperature plays an important role in determining the appearance and the severity of VNN disease. We assessed the effect of temperature (20°, 25° and 30°C) on mortality and virus load in the brain of European sea bass Dicentrarchus labrax experimentally infected with 4 genetically different betanodaviruses, namely red-spotted grouper NNV (RGNNV), striped jack NNV (SJNNV) and the reassortant strains RGNNV/SJNNV and SJNNV/RGNNV. The RGNNV/SJNNV virus possesses the polymerase gene of RGNNV and the coat protein gene of SJNNV, and vice versa for the SJNNV/RGNNV virus. The obtained results showed that the RGNNV strain is the most pathogenic for juvenile sea bass, but clinical disease and mortality appeared only at higher temperatures. The SJNNV strain is weakly pathogenic for D. labrax regardless of the temperature used, while virus replication was detected in the brain of survivors only at 20°C. Finally, reassortant strains caused low mortality, independent of the temperature used, but the viral load in the brain was strongly influenced by water temperature and the genetic type of the polymerase gene. Taken together, these data show that nodavirus replication in vivo is a composite process regulated by both the genetic features of the viral strain and water temperatures. PMID:27225206

  20. Low Temperature Treatment Affects Concentration and Distribution of Chrysanthemum Stunt Viroid in Argyranthemum.

    PubMed

    Zhang, Zhibo; Lee, YeonKyeong; Sivertsen, Astrid; Skjeseth, Gry; Haugslien, Sissel; Clarke, Jihong Liu; Wang, Qiao-Chun; Blystad, Dag-Ragnar

    2016-01-01

    Chrysanthemum stunt viroid (CSVd) can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate (1) the effect of low temperature treatment combined with meristem culture on elimination of CSVd, (2) the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM), and (3) CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in 'Border Dark Red', but none in 'Yellow Empire'. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased 'Yellow Empire' following 5°C treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased 'Border Dark Red' following prolonged 5°C treatment. Localization of CSVd in the flowers and stems of infected 'Border Dark Red' and 'Yellow Empire' indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants. PMID:26973607

  1. Low Temperature Treatment Affects Concentration and Distribution of Chrysanthemum Stunt Viroid in Argyranthemum

    PubMed Central

    Zhang, Zhibo; Lee, YeonKyeong; Sivertsen, Astrid; Skjeseth, Gry; Haugslien, Sissel; Clarke, Jihong Liu; Wang, Qiao-Chun; Blystad, Dag-Ragnar

    2016-01-01

    Chrysanthemum stunt viroid (CSVd) can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate (1) the effect of low temperature treatment combined with meristem culture on elimination of CSVd, (2) the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM), and (3) CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in ‘Border Dark Red’, but none in ‘Yellow Empire’. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased ‘Yellow Empire’ following 5°C treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased ‘Border Dark Red’ following prolonged 5°C treatment. Localization of CSVd in the flowers and stems of infected ‘Border Dark Red’ and ‘Yellow Empire’ indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants. PMID:26973607

  2. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth

    PubMed Central

    Hossain, Akbar; Teixeira da Silva, Jaime A.; Lozovskaya, Marina Viacheslavovna; Zvolinsky, Vacheslav Petrovich

    2012-01-01

    Heat stress, when combined with drought, is one of the major limitations to food production worldwide, especially in areas that use rainfed agriculture. As the world population continues to grow, and water resources for the crop production decline and temperature increases, so the development of heat- and drought-tolerant cultivars is an issue of global concern. In this context, four barley and two wheat genotypes were evaluated in south-eastern Russia to identify heat- and drought-tolerant genotypes for future breeding programmes by identifying suitable sowing times for specific genotypes. High temperature stress, when combined with drought during late sowing, decreased the days to visible awns, days to heading and days to ripe harvest, finally negatively affecting the growth and development of plants and resulting in a lower plant population m−2, tillers plant−1, plant height and dry matter production m−2. On the other hand, low temperature in combination with early sowing increased the number of days to germination, reduced seedling stand establishment and tillering capacity, finally affecting the growth and development of the crops. Compared to overall performance and optimum sowing date, barley genotypes ‘Zernograd.770’ and ‘Nutans’, and wheat genotype ‘Line4’ performed best in both late (high temperature with drought) and early (low temperature) stress conditions. PMID:23961209

  3. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri.

    PubMed

    Valenzano, Dario R; Terzibasi, Eva; Cattaneo, Antonino; Domenici, Luciano; Cellerino, Alessandro

    2006-06-01

    Temperature variations are known to modulate aging and life-history traits in poikilotherms as different as worms, flies and fish. In invertebrates, temperature affects lifespan by modulating the slope of age-dependent acceleration in death rate, which is thought to reflect the rate of age-related damage accumulation. Here, we studied the effects of temperature on aging kinetics, aging-related behavioural deficits, and age-associated histological markers of senescence in the short-lived fish Nothobranchius furzeri. This species shows a maximum captive lifespan of only 3 months, which is tied with acceleration in growth and expression of aging biomarkers. These biological peculiarities make it a very convenient animal model for testing the effects of experimental manipulations on life-history traits in vertebrates. Here, we show that (i) lowering temperature from 25 degrees C to 22 degrees C increases both median and maximum lifespan; (ii) life extension is due to reduction in the slope of the age-dependent acceleration in death rate; (iii) lowering temperature from 25 degrees C to 22 degrees C retards the onset of age-related locomotor and learning deficits; and (iv) lowering temperature from 25 degrees C to 22 degrees C reduces the accumulation of the age-related marker lipofuscin. We conclude that lowering water temperature is a simple experimental manipulation which retards the rate of age-related damage accumulation in this short-lived species. PMID:16842500

  4. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context. PMID:26271295

  5. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular

  6. Skin aging and dry skin.

    PubMed

    Hashizume, Hideo

    2004-08-01

    Skin aging appears to be the result of both scheduled and continuous "wear and tear" processes that damage cellular DNA and proteins. Two types of aging, chronological skin aging and photoaging, have distinct clinical and histological features. Chronological skin aging is a universal and inevitable process characterized primarily by physiologic alterations in skin function. In this case, keratinocytes are unable to properly terminally differentiate to form a functional stratum corneum, and the rate of formation of neutral lipids that contribute to the barrier function slows, causing dry, pale skin with fine wrinkles. In contrast, photoaging results from the UVR of sunlight and the damage thus becomes apparent in sun-exposed skin. Characteristics of this aging type are dry and sallow skin displaying fine wrinkles as well as deep furrows, resulting from the disorganization of epidermal and dermal components associated with elastosis and heliodermatitis. Understanding of the functions of the skin and the basic principles of moisturizer use and application is important for the prevention of skin aging. Successful treatment of dry skin with appropriate skin care products gives the impression of eternal youth. PMID:15492432

  7. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    PubMed

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. PMID:26938497

  8. Temperature and moisture status affect afterripening of leafy spurge (Euphorbia esula) seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the germination potential of dormant seeds in a population over time generally requires afterripening. Research was conducted to study the relationship between temperature and seed moisture content on afterripening of dormant leafy spurge seeds. Germination of non-afterripened seeds was 5...

  9. Temperature affects Hg-induced antioxidant responses in Chinese rare minnow Gobiocypris rarus larvae in vitro.

    PubMed

    Li, Zhi-Hua; Li, Ping; Chen, Lu

    2014-12-01

    The effect of temperature on HgCl2 (Hg(2+))-induced oxidative stress to Chinese rare minnow (Gobiocypris rarus) was evaluated in vitro. Malondialdehyde (MDA) content and superoxide dismutase, catalase and glutathione peroxidase activities were determined in whole body homogenates incubated with 0.1 mg/L Hg(2+) at 15, 25 and 35°C for 60 min. The result showed that oxidative stress was at a normal level in the Hg(2+) + NT (0.1 mg/L Hg(2+) and normal temperature, 25°C) and Hg(2+) + LT (0.1 mg/L Hg(2+) and low temperature, 15°C) groups, but a significant induction in oxidative stress occurred in the Hg(2+) + HT (35°C) group. This was reflected by an increased level of MDA and decreased activities of the antioxidant enzymes. The results suggest that higher temperature enhances heavy metal toxicity in aquatic systems, which should be given more attention in the future. PMID:25323039

  10. Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?

    ERIC Educational Resources Information Center

    Paiva, Joao C. M.; Goncalves, Jorge; Fonseca, Susana

    2008-01-01

    In this article we examine three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?" In the first approach, the answer is yes as a result of a common students' alternative conception; the second approach, valid only for ideal…

  11. Physicochemical and pasting properties of maize as affected by storage temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize grains are used as raw material in various food products. In countries where the production is seasonal, the grains must be stored during all the year in order to provide maize supply for food industries and consumers. During storage, the temperature is known as one of the most critical variab...

  12. INSECTICIDE PERSISTENCE IN NATURAL SEAWATER AS AFFECTED BY SALINITY, TEMPERATURE, AND STERILITY

    EPA Science Inventory

    The effect of temperature, salinity, and sterility on the degradation of malathion, parathion, methyl parathion, diazinon, and methoxychlor in fresh and estuarine water has been determined under controlled laboratory conditions. Surface water samples of 1, 10, 20, and 28 ppt sali...

  13. Does overwinter temperature affect maternal body composition and egg traits in yellow perch Perca flavescens?

    PubMed

    Feiner, Z S; Coulter, D P; Guffey, S C; Höök, T O

    2016-04-01

    Female yellow perch Perca flavescens exposed to three overwinter temperature regimes (4, 8 and 13° C) for 150 days spawned in markedly different proportions upon spring warming (37% of females in 4° C v. 64 and 91% in 8 and 13° C treatments, respectively), but exhibited no differences in fecundity, egg size or egg lipid content. Females held at 4° C also exhibited less within-clutch egg size variation than females held at 13° C. Moreover, eggs differed among temperature treatments in the overall proportions of 18 fatty acids, with the colder treatments resulting in potentially higher quality eggs containing more of the unsaturated fatty acids C16:1, C22:6-n3 and C18:2 cis. Female somatic condition also varied with temperature. Maternal somatic growth and protein content increased while lipid content decreased in 13° C compared to the colder treatments. There were, however, no differences among treatments in the fatty acid composition of maternal muscle. These results suggest that the temperatures experienced during winter may be less influential to P. flavescens egg size or number, which may exhibit relatively little plasticity in this species, but can alter both the number of females that spawn and the overall composition of eggs and maternal somatic tissues, which may have implications for future reproductive success. PMID:26939992

  14. Emission of volatile organic compounds as affected by feedlot location, moisture, and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects within pen location, moisture, and temperature on odor emission from manure resulting from a diet containing 30% wet distillers grain with solubles. Pen surface material was collected from three locations. Material from each pen was consolidated for each specific...

  15. SURVIVAL OF SALMONELLA TYPHIMURIUM IN FOUR SOIL MICROCOSMS AS AFFECTED BY SOIL TYPE AND INCUBATION TEMPERATURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival of Salmonella typhimurium was determined in sterile and non-sterile microcosms in four soil series (Brooksville, Leeper, Marietta, and Ruston) held at 10, 15, 25 and 35 degrees C. Exponential linear destruction was observed for S. typhimurium in non-sterile soil stored at all temperatures....

  16. Temperature affect on caste differentiation and protein composition in Coptotermes formosanus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caste systems, and the division of labor they make possible, are common underlying features of all social insects. In termites, multiple extrinsic factors have been shown to impact caste differentiation; for example, temperature has been shown to increase soldier production. The objective of this in...

  17. The effect of perfusion on post-operative viability in the replanted rabbit ear: measured by laser Doppler flowmetry and skin temperature.

    PubMed

    Pietilä, J; von Smitten, K; Sundell, B

    1985-01-01

    The effect of perfusion by heparinized Ringer solution on post-operative microcirculation in rabbit ear replants was studied. One ear in each of five rabbits was replanted after perfusion with heparinized Ringer solution and these were compared with five replantations of rabbit ears without perfusion. The ears were studied post-operatively for 2 1/2 days by skin temperature monitoring and Laser Doppler Flowmetry (LDF). During the first day after replantation the perfused ears had better capillary flow, whereafter no significant differences were noted. LDF was more sensitive to changes in capillary blood flow, and this seems to make the reproducibility of LDF poor. It is, however, a suitable method for continued observation of post-operative viability. PMID:2937141

  18. How stress and temperature conditions affect rock-fluid chemistry and mechanical deformation

    NASA Astrophysics Data System (ADS)

    Nermoen, Anders; Korsnes, Reidar; Aursjø, Olav; Madland, Merete; Kjørslevik, Trygve Alexander; Østensen, Geir

    2016-02-01

    We report the results from a series of chalk flow-through-compaction experiments performed at three effective stresses (0.5 MPa, 3.5 MPa and 12.3 MPa) and two temperatures (92° and and 130°). The results show that both stress and temperature are important to both chemical alteration and mechanical deformation. The experiments were conducted on cores drilled from the same block of outcrop chalks from the Obourg quarry within the Saint Vast formation (Mons, Belgium). The pore pressure was kept at 0.7 MPa for all experiments with a continuous flow of 0.219 M MgCl2 brine at a constant flow rate; 1 original pore volume (PV) per day. The experiments have been performed in tri-axial cells with independent control of the external stress (hydraulic pressure in the confining oil), pore pressure, temperature, and the injected flow rate. Each experiment consists of two phases; a loading phase where stress-strain dependencies are investigated (approx. 2 days), and a creep phase that lasts for more than 150-160 days. During creep, the axial deformation was logged, and the effluent samples were collected for ion chromatography analyses. Any difference between the injected and produced water chemistry gives insight into the rock-fluid interactions that occur during flow through of the core. The observed effluent concentration shows a reduction in Mg2+, while the Ca2+ concentration is increased. This, together with SEM-EDS analysis, indicates that magnesium-bearing mineral phases are precipitated leading to dissolution of calcite, an observation . This is in-line with other flow-through experiments reported earlier. The observed dissolution and precipitation are sensitive to the effective stress and test temperature. Typically. H, higher stress and temperature lead to increased concentration differences of Mg2+ and Ca2+ concentration changes.. The observed strain can be partitioned additively into a mechanical and chemical driven component.

  19. Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).

    PubMed

    Lannig, Gisela; Cherkasov, Anton S; Pörtner, Hans-O; Bock, Christian; Sokolova, Inna M

    2008-04-01

    Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can have detrimental effects on oysters (Crassostrea virginica). During acute warming from 20 to 28 degrees C (4 degrees C/48 h) standard metabolic rate (SMR) rose in control and cadmium-exposed (50 microg Cd2+/l) animals, with a consistently higher SMR in Cd-exposed oysters. Additionally, Cd-exposed oysters showed a stronger temperature-dependent decrease in hemolymph oxygen partial pressures. This observation indicates that the effect of temperature on aerobic metabolism was exacerbated due to the additional Cd stress. The oxygen delivery systems could not provide enough oxygen to cover Cd-induced elevated metabolic demands at high temperatures. Interestingly, cardiac performance (measured as the heart rate and hemolymph supply to tissues) rose to a similar extent in control and Cd-exposed oysters with warming indicating that cardiac output was unable to compensate for elevated energy demand in Cd-exposed oysters. Together with the literature data on metal-induced reduction of ventilatory capacity, these findings suggest that synergistic effects of elevated temperatures and cadmium exposure led to oxygen limitation by impaired performance in oxygen supply through ventilation and circulation. Overall, cadmium exposure resulted in progressive hypoxemia in oysters at high temperatures, suggesting that the thermal tolerance window is narrowed in marine ectotherms inhabiting polluted areas compared with pristine environments. PMID:18272660

  20. Injection Temperature Significantly Affects In Vitro and In Vivo Performance of Collagen-Platelet Scaffolds

    PubMed Central

    Palmer, M.P.; Abreu, E.L.; Mastrangelo, A.; Murray, M.M.

    2009-01-01

    Collagen-platelet composites have recently been successfully used as scaffolds to stimulate anterior cruciate ligament (ACL) wound healing in large animal models. These materials are typically kept on ice until use to prevent premature gelation; however, with surgical use, placement of a cold solution then requires up to an hour while the solution comes to body temperature (at which point gelation occurs). Bringing the solution to a higher temperature before injection would likely decrease this intra-operative wait; however, the effects of this on composite performance are not known. The hypothesis tested here was that increasing the temperature of the gel at the time of injection would significantly decrease the time to gelation, but would not significantly alter the mechanical properties of the composite or its ability to support functional tissue repair. Primary outcome measures included the maximum elastic modulus (stiffness) of the composite in vitro and the in vivo yield load of an ACL transection treated with an injected collagen-platelet composite. In vitro findings were that injection temperatures over 30°C resulted in a faster visco-elastic transition; however, the warmed composites had a 50% decrease in their maximum elastic modulus. In vivo studies found that warming the gels prior to injection also resulted in a decrease in the yield load of the healing ACL at 14 weeks. These studies suggest that increasing injection temperature of collagen-platelet composites results in a decrease in performance of the composite in vitro and in the strength of the healing ligament in vivo and this technique should be used only with great caution. PMID:19030174

  1. Effects of magnetosonic perturbations on electron temperature gradient driven modes and the stability of skin depth sized electron ballooning modes

    SciTech Connect

    Joiner, N.; Hirose, A.

    2007-11-15

    The effect of the magnetosonic perturbation {delta}B{sub parallel} on the growth of electron temperature gradient driven (ETG) modes and electron temperature gradient driven ballooning modes [Hirose, Plasma Phys. Control. Fusion 49, 145 (2007)] is investigated using local gyrokinetic analysis and numerical solution, with supporting simulations from the initial value code GS2 [Kotschenreuther, et al., Comp. Phys. Commun. 88, 128 (1996)]. The effect of {delta}B{sub parallel} on the ETG mode is found to depend on the competition between two physical processes related to magnetosonic compression. Local analysis of the ballooning mode appears to significantly overestimate growth rates of this instability. The electron temperature gradient driven ballooning mode has been observed in GS2 simulations. However, this work supports the conclusion that this instability will be subdominant to the ETG mode in normal tokamak regimes.

  2. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols. PMID:26796702

  3. Mechanical sensibility of nociceptive and non-nociceptive fast-conducting afferents is modulated by skin temperature.

    PubMed

    Boada, M Danilo; Eisenach, James C; Ririe, Douglas G

    2016-01-01

    The ability to distinguish mechanical from thermal input is a critical component of peripheral somatosensory function. Polymodal C fibers respond to both stimuli. However, mechanosensitive, modality-specific fast-conducting tactile and nociceptor afferents theoretically carry information only about mechanical forces independent of the thermal environment. We hypothesize that the thermal environment can nonetheless modulate mechanical force sensibility in fibers that do not respond directly to change in temperature. To study this, fast-conducting mechanosensitive peripheral sensory fibers in male Sprague-Dawley rats were accessed at the soma in the dorsal root ganglia from T11 or L4/L5. Neuronal identification was performed using receptive field characteristics and passive and active electrical properties. Neurons responded to mechanical stimuli but failed to generate action potentials in response to changes in temperature alone, except for the tactile mechanical and cold sensitive neurons. Heat and cold ramps were utilized to determine temperature-induced modulation of response to mechanical stimuli. Mechanically evoked electrical activity in non-nociceptive, low-threshold mechanoreceptors (tactile afferents) decreased in response to changes in temperature while mechanically induced activity was increased in nociceptive, fast-conducting, high-threshold mechanoreceptors in response to the same changes in temperature. These data suggest that mechanical activation does not occur in isolation but rather that temperature changes appear to alter mechanical afferent activity and input to the central nervous system in a dynamic fashion. Further studies to understand the psychophysiological implications of thermal modulation of fast-conducting mechanical input to the spinal cord will provide greater insight into the implications of these findings. PMID:26581873

  4. Survival of Manure-borne and Fecal Coliforms in Soil: Temperature Dependence as Affected by Site-Specific Factors.

    PubMed

    Park, Yongeun; Pachepsky, Yakov; Shelton, Daniel; Jeong, Jaehak; Whelan, Gene

    2016-05-01

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce. The objective of this work was to evaluate the effects of soil properties, animal source, experimental conditions, and the application method on temperature dependencies of manure-borne generic , O157:H7, and fecal coliforms survival in soils. A literature search yielded 151 survival datasets from 70 publications. Either one-stage or two-stage kinetics was observed in the survival datasets. We used duration and rate of the logarithm of concentration change as parameters of the first stage in the two-stage kinetics data. The second stage of the two-stage kinetics and the one-stage kinetics were simulated with the model to find the dependence of the inactivation rate on temperature. Classification and regression trees and linear regressions were applied to parameterize the kinetics. Presence or absence of two-stage kinetics was controlled by temperature, soil texture, soil water content, and for fine-textured soils by setting experiments in the field or in the laboratory. The duration of the first stage was predominantly affected by soil water content and temperature. In the model dependencies of inactivation rates on temperature, parameter estimates were significantly affected by the laboratory versus field conditions and by the application method, whereas inactivation rates at 20°C were significantly affected by all survival and management factors. Results of this work can provide estimates of coliform survival parameters for models of microbial water quality. PMID:27136162

  5. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    SciTech Connect

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  6. Atmospheric depression-mediated water temperature changes affect the vertical movement of chum salmon Oncorhynchus keta.

    PubMed

    Kitagawa, Takashi; Hyodo, Susumu; Sato, Katsufumi

    2016-08-01

    The Sanriku coastal area, Japan, is one of the southern-most natural spawning regions of chum salmon Oncorhynchus keta. Here, we report their behavioral response to changes in ambient temperature after the passage of an atmospheric depression during the early spawning season. Before the passage, all electrically tagged fish moved vertically for several hours to depths below the shallow thermocline at >100 m. However, during the atmospheric depression, the salmon shortened the duration of their vertical movements and spent most time at the surface. The water column was homogenous at <150 m deep except for the surface. The descending behavior may have been discontinued because the cooler water below the thermocline was no longer in a thermally defined layer, due to strong vertical mixing by high wave action. Instead, they likely spent time within the cooler water temperatures at the surface of bays to minimize metabolic energy cost during migration. PMID:27236419

  7. Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties.

    PubMed

    Utrera, Mariana; Morcuende, David; Estévez, Mario

    2014-03-01

    The effect of three frozen storage temperatures (-8, -18 and -80 °C) on protein oxidation in beef patties was studied through the analysis of novel oxidation markers. Additionally, the connection between lipid and protein oxidation and the impact of the latter on particular quality traits (water holding capacity, color and texture) of subsequently processed beef patties (cooking/cold-stored) were investigated. Protein oxidation was measured as the loss of tryptophan fluorescence and formation of diverse lysine oxidation products (α-aminoadipic semialdehyde, α-aminoadipic acid and Schiff bases). Lipid oxidation was assessed by levels of thiobarbituric acid reactive substances and hexanal. A significant effect of storage temperature on protein oxidation was detected. Frozen storage increased the susceptibility of meat proteins to undergo further oxidation during processing. Timely interactions were found between lipid and protein oxidation. Plausible mechanisms by which oxidative damage to proteins may have an impact in particular quality traits are thoroughly discussed. PMID:24334047

  8. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    PubMed

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host. PMID:22669278

  9. Stable carbon isotope fractionation of six strongly fractionating microorganisms is not affected by growth temperature under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Penger, Jörn; Conrad, Ralf; Blaser, Martin

    2014-09-01

    Temperature is the major driving force for many biological as well as chemical reactions and may impact the fractionation of stable carbon isotopes. Thus, a good correlation between temperature and fractionation is observed in many chemical systems that are controlled by an equilibrium isotope effect. In contrast, biological systems that are usually controlled by a kinetic isotope effect are less well studied with respect to temperature effects and have shown contrasting results. We studied three different biological pathways (methylotrophic methanogenesis, hydrogenotrophic methanogenesis, acetogenesis by the acetyl-CoA pathway) which are characterized by very strong carbon isotope enrichment factors (-50‰ to -83‰). The microorganisms (Methanosarcina barkeri, Methanosarcina acetivorans, Methanolobus zinderi, Methanothermobacter marburgensis, Methanothermobacter thermoautotrophicus, Thermoanaerobacter kivui) exhibiting these pathways were grown at different temperatures ranging between 25 and 68 °C, and the fractionation factors were determined from 13C/12C isotope discrimination during substrate depletion and product formation. Our experiments showed that the fractionation factors were different for the different metabolic pathways but were not much affected by the different growth temperatures. Slight variations were well within the standard errors of replication and regression analysis. Our results showed that temperature had no significant effect on the fractionation of stable carbon isotopes during anaerobic microbial metabolism with relatively strong isotope fractionation.

  10. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Møller, Ian Max; Song, Song-Quan

    2015-05-01

    Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two-dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5-fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins spec