Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex
Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.
2013-01-01
The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754
Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru
2009-03-27
Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.
Yamada-Hanff, Jason
2015-01-01
We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current—which amplifies EPSPs—was most effectively recruited by rapid voltage changes, while Ih—which blunts EPSPs—was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. PMID:26289465
Benzonatate inhibition of voltage-gated sodium currents.
Evans, M Steven; Maglinger, G Benton; Fletcher, Anita M; Johnson, Stephen R
2016-02-01
Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 μM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin
2013-11-01
All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.
Biber, Thomas U. L.
1971-01-01
The unidirectional sodium, uptake at the outer surface of the frog skin was measured by the method described by Biber and Curran (8). With bathing solutions containing 6 mM NaCl there is a good correlation between sodium uptake and short-circuit current (SCC) measured simultaneously except that the average uptake is about 40% higher than the average SCC. The discrepancy between uptake and SCC increases approximately in proportion to an increase in sodium concentration of the bathing solutions. Amiloride inhibits the unidirectional sodium uptake by 21 and 69% at a sodium concentration of 115 and 6 mM, respectively. This indicates that amiloride acts on the entry step of sodium but additional effects cannot be excluded. The sodium, uptake is not affected by 10-4 M ouabain at a sodium concentration of 115 mM but is inhibited by 40% at a sodium concentration of 6 mM. Replacement of air by nitrogen leads to a 40% decrease of sodium uptake at a sodium concentration of 6 mM. The results support the view proposed previously (8) that the sodium uptake is made up of two components, a linear component which is, essentially, not involved in transepithelial movement of sodium and a saturating component which reflects changes in transepithelial transport. Amiloride, seems largely to affect the saturating component. PMID:5559619
Baker, Erin M; Thompson, Christopher H; Hawkins, Nicole A; Wagnon, Jacy L; Wengert, Eric R; Patel, Manoj K; George, Alfred L; Meisler, Miriam H; Kearney, Jennifer A
2018-06-01
De novo mutations of SCN8A, encoding the voltage-gated sodium channel Na V 1.6, have been associated with a severe infant onset epileptic encephalopathy. Individuals with SCN8A encephalopathy have a mean age of seizure onset of 4-5 months, with multiple seizure types that are often refractory to treatment with available drugs. Anecdotal reports suggest that high-dose phenytoin is effective for some patients, but there are associated adverse effects and potential for toxicity. Functional characterization of several SCN8A encephalopathy variants has shown that elevated persistent sodium current is one of several common biophysical defects. Therefore, specifically targeting elevated persistent current may be a useful therapeutic strategy in some cases. The novel sodium channel modulator GS967 has greater preference for persistent as opposed to peak current and nearly 10-fold greater potency than phenytoin. We evaluated the therapeutic effect of GS967 in the Scn8a N1768D/+ mouse model carrying an SCN8A patient mutation that results in elevated persistent sodium current. We also performed patch clamp recordings to assess the effect of GS967 on peak and persistent sodium current and excitability in hippocampal neurons from Scn8a N1768D/+ mice. GS967 potently blocked persistent sodium current without affecting peak current, normalized action potential morphology, and attenuated excitability in neurons from heterozygous Scn8a N1768D/+ mice. Acute treatment with GS967 provided dose-dependent protection against maximal electroshock-induced seizures in Scn8a N1768D/+ and wild-type mice. Chronic treatment of Scn8a N1768D/+ mice with GS967 resulted in lower seizure burden and complete protection from seizure-associated lethality observed in untreated Scn8a N1768D/+ mice. Protection was achieved at a chronic dose that did not cause overt behavioral toxicity or sedation. Persistent sodium current modulators like GS967 may be an effective precision targeting strategy for SCN8A encephalopathy and other functionally similar channelopathies when elevated persistent sodium current is the primary dysfunction. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
2013-01-01
Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli. PMID:24283218
Effects of nano red elemental selenium on sodium currents in rat dorsal root ganglion neurons.
Yuan, Huijun; Lin, Jiarui; Lan, Tonghan
2006-01-01
Nano red elemental selenium (Nano-Se), was demonstrated to be useful in medical and scientific researches. Here, we investigated the effects of Nano-Se on sodium currents on rat dorsal root ganglion neurons (DRG), using the whole-cell patch clamp method. Nano-Se reversibly decrease the I(Na)(TTX-S) in a concentration-dependent, time-dependent and open-channel block manners without affecting I(Na)(TTX-R). It shifted the steady-state activation and inactivation curves for I(Na) to more negative potentials. In the research of recovery from inactivation, the recovery time constant is longer in the present of Nano-Se. Nano-Se had a weaker inhibitory effect on I(Na), compared with marked decrease caused by selenite which indicated that Nano-Se is less neurotoxic than selenite in short-term/large dose treatments and had similar bio availability to sodium selenite. The results of interaction between the effects of Nano-Se and selenite on sodium currents indicated a negative allosteric interaction between the selenite binding site and the Nano-Se binding site or that they have the same competitive binding site.
Curia, Giulia; Biagini, Giuseppe; Perucca, Emilio; Avoli, Massimo
2016-01-01
The mechanism of action of several antiepileptic drugs (AEDs) rests on their ability to modulate the activity of voltage-gated sodium currents that are responsible for fast action potential generation. Recent data indicate that lacosamide (a compound with analgesic and anticonvulsant effects in animal models) shares a similar mechanism. When compared with other AEDs, lacosamide has the unique ability to interact with sodium channel slow inactivation without affecting fast inactivation. This article reviews these findings and discusses their relevance within the context of neuronal activity seen during epileptiform discharges generated by limbic neuronal networks in the presence of chemical convulsants. These seizure-like events are characterized by sustained discharges of sodium-dependent action potentials supported by robust depolarizations, thus providing synchronization within neuronal networks. Generally, AEDs such as phenytoin, carbamazepine and lamotrigine block sodium channels when activated. In contrast, lacosamide facilitates slow inactivation of sodium channels both in terms of kinetics and voltage dependency. This effect may be relatively selective for repeatedly depolarized neurons, such as those participating in seizure activity in which the persistence of sodium currents is more pronounced and promotes neuronal excitation. The clinical effectiveness of lacosamide has been demonstrated in randomized, double-blind, parallel-group, placebo-controlled, adjunctive-therapy trials in patients with refractory partial seizures. Further studies should determine whether the effects of lacosamide in animal models and in clinical settings are fully explained by its selective action on sodium current slow inactivation or whether other effects (e.g. interactions with the collapsin-response mediator protein-2) play a contributory role. PMID:19552484
Tosti, Elisabetta; Gallo, Alessandra; Silvestre, Francesco
2011-01-01
Electrophysiological techniques were used to study the role of ion currents in the ascidian Ciona intestinalis oocyte plasma membrane during different stages of growth, meiosis, fertilization and early development. Three stages of immature oocytes were discriminated in the ovary, with the germinal vesicle showing specific different features of growth and maturation. Stage-A (pre-vitellogenic) oocytes exhibited the highest L-type calcium current activity and were incompetent for meiosis resumption. Stage-B (vitellogenic) oocytes showed a progressive disappearance of calcium currents and the first appearance of sodium currents that remained high during the maturation process, up to the post-vitellogenic stage-C oocytes. The latter had acquired meiotic competence, undergoing spontaneous in vitro maturation and interacting with the spermatozoon. However, fertilized oocytes did not produce normal larvae, suggesting that cytoplasmic maturation may affect embryo development. In mature oocytes at the metaphase I stage, sodium currents were present and remained high up to the zygote stage. Oocytes fertilized in the absence of sodium showed significant reduction of the fertilization current amplitude and high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, whereas resumption of all the current activities occurred at the 8-cell embryo. Taken together, these results suggest: (i) an involvement of L-type calcium currents in initial oocyte meiotic progression and growth; (ii) a role of sodium currents at fertilization; (iii) a role of the fertilization current in ensuring normal embryo development. Copyright © 2011 Wiley Periodicals, Inc.
Hirotani, Shinichi; Masuyama, Tohru
2014-12-01
Sodium restriction has been believed to be indispensible to manage fluid overload during acute decompensated heart failure (ADHF). However, recently, it was reported that a change in aggression of sodium and water restriction did not affect the outcome of ADHF. In contrast, current data suggest that small amount of hypertonic saline solution with high-dose furosemide produces an improvement in haemodynamic and clinical parameters without any severe adverse effects. In this perspective, first, we are going to describe the effects of sodium loading on neurohormonal activation, body's sodium balance, and renal function in chronic heart failure and the efficacy of loop diuretics in ADHF. Then, we are going to explain the possible mechanisms by which sodium loading enhances the efficacy of loop diuretics and about the clinical conditions during which sodium loading should be avoided. © 2014 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.
Xie, Rou-Gang; Zheng, Da-Wei; Xing, Jun-Ling; Zhang, Xu-Jie; Song, Ying; Xie, Ya-Bin; Kuang, Fang; Dong, Hui; You, Si-Wei; Xu, Hui; Hu, San-Jue
2011-04-25
In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.
NASA Astrophysics Data System (ADS)
Paul, Jodi R.; Dewoskin, Daniel; McMeekin, Laura J.; Cowell, Rita M.; Forger, Daniel B.; Gamble, Karen L.
2016-11-01
How neurons encode intracellular biochemical signalling cascades into electrical signals is not fully understood. Neurons in the central circadian clock in mammals provide a model system to investigate electrical encoding of biochemical timing signals. Here, using experimental and modelling approaches, we show how the activation of glycogen synthase kinase 3 (GSK3) contributes to neuronal excitability through regulation of the persistent sodium current (INaP). INaP exhibits a day/night difference in peak magnitude and is regulated by GSK3. Using mathematical modelling, we predict and confirm that GSK3 activation of INaP affects the action potential afterhyperpolarization, which increases the spontaneous firing rate without affecting the resting membrane potential. Together, these results demonstrate a crucial link between the molecular circadian clock and electrical activity, providing examples of kinase regulation of electrical activity and the propagation of intracellular signals in neuronal networks.
O'Mahony, M
1979-01-01
The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.
Kumar, S; Singh, S P
1981-01-01
In two separate experiments, the effects of sodium depletion and aldosterone administration on sodium and potassium concentrations in muzzle secretion, saliva and urine were studied in buffalo calves. Sodium deficiency in the animals was experimentally produced by unilateral parotid saliva deprivation for 18 days. During sodium depletion, the sodium levels in saliva and muzzle secretion gradually fell while the potassium level gradually rose. The concentrations of both of these cations in urine gradually fell during the course of sodium depletion. Aldosterone administration in normal (sodium-replete) animals simulated the effects of sodium depletion as far as cationic changes in saliva were concerned. However, aldosterone did not affect sodium and potassium concentration in the urine and in muzzle secretion in a manner similar to that caused by sodium depletion. Though the hormone decreased urinary sodium without affecting urinary potassium, it did not affect the muzzle sodium or potassium. Results suggest that aldosterone affects the composition of saliva and urine in buffaloes as it does in sheep and other ruminants. Similar changes in composition of muzzle secretion and saliva during sodium depletion indicate that the concentration of sodium in muzzle secretion could possibly be used to evaluate the sodium status of animals.
Barbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons
Blaustein, M. P.
1968-01-01
Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization along the voltage axis. Since pentobarbital (pKa = 8.0) blocks the action potential more effectively at pH 8.5 than at pH 6.7, the anionic form of the drug appears to be active. The data suggest that these drugs affect the axon membrane directly, rather than secondarily through effects on intermediary metabolism. It is suggested that penetration of the lipid layer of the membrane by the nonpolar portion of the barbiturate molecules may cause the decrease in membrane conductances, while electrostatic interactions involving the anionic group on the barbiturate, divalent cations, and "fixed charges" in the membrane could account for the slowing of the rate of sodium conductance turn-on and the shift of the normalized conductance curves along the voltage axis. PMID:5648829
Transient sodium current at subthreshold voltages: activation by EPSP waveforms
Carter, Brett C.; Giessel, Andrew J.; Sabatini, Bernardo L.; Bean, Bruce P.
2012-01-01
Summary Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also “persistent” sodium current, a non-inactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37 °C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo. PMID:22998875
NASA Astrophysics Data System (ADS)
Pujar, M. G.; Anita, T.; Shaikh, H.; Dayal, R. K.; Khatak, H. S.
2007-08-01
In the present paper, studies were conducted on AISI Type 316 stainless steel (SS) in deaerated solutions of sodium sulfate as well as sodium chloride to establish the effect of sulfate and chloride ions on the electrochemical corrosion behavior of the material. The experiments were conducted in deaerated solutions of 0.5 M sodium sulfate as well as 0.5 M sodium chloride using electrochemical noise (EN) technique at open circuit potential (OCP) to collect the correlated current and potential signals. Visual records of the current and potential, analysis of data to arrive at the statistical parameters, spectral density estimation using the maximum entropy method (MEM) showed that sulfate ions were incorporated in the passive film to strengthen the same. However, the adsorption of chloride ions resulted in pitting corrosion thereby adversely affecting noise resistance ( R N). Distinct current and potential signals were observed for metastable pitting, stable pitting and passive film build-up. Distinct changes in the values of the statistical parameters like R N and the spectral noise resistance at zero frequency ( R°SN) revealed adsorption and incorporation of sulfate and chloride ions on the passive film/solution interface.
Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz
2017-01-01
In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Second-messenger regulation of sodium transport in mammalian airway epithelia.
Graham, A; Steel, D M; Alton, E W; Geddes, D M
1992-01-01
1. Sodium absorption is the dominant ion transport process in conducting airways and is a major factor regulating the composition of airway surface liquid. However, little is known about the control of airway sodium transport by intracellular regulatory pathways. 2. In sheep tracheae and human bronchi mounted in Ussing chambers under short circuit conditions, the sodium current can be isolated by pretreating tissues with acetazolamide (100 microM) to inhibit bicarbonate secretion, bumetanide (100 microM) to inhibit chloride secretion and phloridzin (200 microM) to inhibit sodium-glucose cotransport. This sodium current consists of amiloride-sensitive (57%) and amiloride-insensitive (43%) components. 3. The regulation of the isolated sodium current by three second messenger pathways was studied using the calcium ionophore A23187 to elevate intracellular calcium, a combination of forskolin and the phosphodiesterase inhibitor zardaverine to elevate intracellular cyclic AMP, and the phorbol ester 12,13-phorbol dibutyrate (PDB) to stimulate protein kinase C. 4. In sheep trachea, A23187 produces a dose-related inhibition of the sodium current with maximal effect (38% of ISC) at 10 microM and IC50 1 microM. This response affects both the amiloride-sensitive and insensitive components of the sodium current and is not altered by prior stimulation of protein kinase C or elevation of intracellular cyclic AMP. In human bronchi, A23187 (10 microM) produced a significantly greater inhibition of ISC (68%), a response which was unaffected by prior treatment with PDB or forskolin-zardaverine. 5. In sheep trachea, stimulation of protein kinase C with PDB produced a dose-related inhibition of ISC maximal (56% of ISC) at 50 nM (IC50 7 nM). This response was abolished by amiloride (100 microM) pretreatment suggesting a selective effect on the amiloride-sensitive component of the sodium current. The response was not altered by prior elevation of intracellular calcium or cyclic AMP. PDB (10 nM) caused a similar inhibition of ISC in human bronchi (43%). The effect of PKC stimulation following pretreatment with A23187 was diminished in human bronchi. Elevating intracellular cyclic AMP did not alter this response. 6. Addition of forskolin (1 microM) together with the phosphodiesterase inhibitor zardaverine (100 microM) produced a mean 35-fold increase in intracellular cyclic AMP in sheep trachea. This was associated with a small, but significant, 6% transient increase in ISC followed by a significant 4% fall. Neither effect could be abolished by amiloride pretreatment. In human bronchi, a small decrease in ISC which could not be distinguished from that occurring in controls was observed.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1464841
Toxins That Affect Voltage-Gated Sodium Channels.
Ji, Yonghua
2017-10-26
Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.
Unusual Voltage-Gated Sodium Currents as Targets for Pain.
Barbosa, C; Cummins, T R
2016-01-01
Pain is a serious health problem that impacts the lives of many individuals. Hyperexcitability of peripheral sensory neurons contributes to both acute and chronic pain syndromes. Because voltage-gated sodium currents are crucial to the transmission of electrical signals in peripheral sensory neurons, the channels that underlie these currents are attractive targets for pain therapeutics. Sodium currents and channels in peripheral sensory neurons are complex. Multiple-channel isoforms contribute to the macroscopic currents in nociceptive sensory neurons. These different isoforms exhibit substantial variations in their kinetics and pharmacology. Furthermore, sodium current complexity is enhanced by an array of interacting proteins that can substantially modify the properties of voltage-gated sodium channels. Resurgent sodium currents, atypical currents that can enhance recovery from inactivation and neuronal firing, are increasingly being recognized as playing potentially important roles in sensory neuron hyperexcitability and pain sensations. Here we discuss unusual sodium channels and currents that have been identified in nociceptive sensory neurons, describe what is known about the molecular determinants of the complex sodium currents in these neurons. Finally, we provide an overview of therapeutic strategies to target voltage-gated sodium currents in nociceptive neurons. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Mengli; Du, Yuzhe; Nomura, Yoshiko; Zhu, Guonian; Zhorov, Boris S; Dong, Ke
2017-05-01
Pyrethroid insecticides exert toxic effects by prolonging the opening of voltage-gated sodium channels. More than 20 sodium channel mutations from arthropod pests and disease vectors have been confirmed to confer pyrethroid resistance. These mutations have been valuable in elucidating the molecular interaction between pyrethroids and sodium channels, including identification of two pyrethroid receptor sites. Previously, two alanine to valine substitutions, one in the pore helix IIIP1 and the other in the linker-helix connecting S4 and S5 in domain III (IIIL45), were found in Drosophila melanogaster mutants that are resistant to DDT and deltamethrin (a type II pyrethroid with an α-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids), but their role in target-site-mediated insecticide resistance has not been functionally confirmed. In this study, we functionally examined the two mutations in cockroach sodium channels expressed in Xenopus laevis oocytes. Both mutations caused depolarizing shifts in the voltage dependence of activation, conferred DDT resistance and also resistance to two Type I pyrethroids by almost abolishing the tail currents induced by Type I pyrethroids. In contrast, neither mutation reduced the amplitude of tail currents induced by the Type II pyrethroids, deltamethrin or cypermethrin. However, both mutations accelerated the decay of Type II pyrethroid-induced tail currents, which normally decay extremely slowly. These results provided new insight into the molecular basis of different actions of Type I and Type II pyrethroids on sodium channels. Computer modeling predicts that both mutations may allosterically affect pyrethroid binding. Copyright © 2016 Elsevier B.V. All rights reserved.
Sodium efflux from voltage clamped squid giant axons.
Landowne, D
1977-01-01
1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10. This deviation from independence in the sodium fluxes is the type expected from some kind of mixing and binding of sodium within the membrane phase. PMID:856999
Current understanding of the mechanism of action of the antiepileptic drug lacosamide.
Rogawski, Michael A; Tofighy, Azita; White, H Steve; Matagne, Alain; Wolff, Christian
2015-02-01
The antiepileptic drug lacosamide [(R)-2-acetamido-N-benzyl-3-methoxypropanamide], a chiral functionalized amino acid, was originally identified by virtue of activity in the mouse and rat maximal electroshock (MES) test. Attention was drawn to lacosamide because of its high oral potency and stereoselectivity. Lacosamide is also active in the 6 Hz seizure model but inactive against clonic seizures in rodents induced by subcutaneous pentylenetetrazol, bicuculline and picrotoxin. It is also ineffective in genetic models of absence epilepsy. At doses greater than those required to confer protection in the MES test, lacosamide inhibits behavioral and electrographic seizures in hippocampal kindled rats. It also effectively terminates seizures in the rat perforant path stimulation status epilepticus model when administered early after the onset of seizures. Lacosamide does not exhibit antiepileptogenic effects in kindling or post-status epilepticus models. The profile of lacosamide in animal seizure and epilepsy models is similar to that of sodium channel blocking antiepileptic drugs, such as phenytoin and carbamazepine. However, unlike these agents, lacosamide does not affect sustained repetitive firing (SRF) on a time scale of hundreds of milliseconds or affect fast inactivation of voltage-gated sodium channels; however, it terminates SRF on a time scale of seconds by an apparent effect on sodium channel slow inactivation. Lacosamide shifts the slow inactivation curve to more hyperpolarized potentials and enhances the maximal fraction of channels that are in the slow inactivated state. Currently, lacosamide is the only known antiepileptic drug in clinical practice that exerts its anticonvulsant activity predominantly by selectively enhancing slow sodium channel inactivation. Copyright © 2014 Elsevier B.V. All rights reserved.
Krimm, R F; Hill, D L
1999-05-01
Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.
NASA Astrophysics Data System (ADS)
Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan
2016-10-01
Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eitan, M.; Fowler, E.; Herrmann, R.
1990-06-26
A new toxin, Lqh alpha IT, which caused a unique mode of paralysis of blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant insect-selective neurotoxins, Lqh alpha IT was highly toxic to insects, but it differed from these toxins in two important characteristics: (a) Lqh alpha IT lacked strict selectivity for insects; it was highly toxic to crustaceans and had a measurable but low toxicity to mice. (b) It didmore » not displace an excitatory insect toxin, 125I-AaIT, from its binding sites in the insect neuronal membrane; this indicates that the binding sites for Lqh alpha IT are different from those shared by the excitatory and depressant toxins. However, in its primary structure and its effect on excitable tissues, Lqh alpha IT strongly resembled the well-characterized alpha scorpion toxins, which affect mammals. The amino acid sequence was identical with alpha toxin sequences in 55%-75% of positions. This degree of similarity is comparable to that seen among the alpha toxins themselves. Voltage- and current-clamp studies showed that Lqh alpha IT caused an extreme prolongation of the action potential in both cockroach giant axon and rat skeletal muscle preparations as a result of the slowing and incomplete inactivation of the sodium currents. These observations indicate that Lqh alpha IT is an alpha toxin which acts on insect sodium channels.« less
Fatehi, M; Rowan, E G; Harvey, A L; Moya, E; Blagbrough, I S
1997-02-01
FTX-3.3 is the proposed structure of a calcium-channel blocking toxin that has been isolated from the funnel web spider (Agelenopsis aperta). The effects of FTX-3.3 and one of its analogues, sFTX-3.3, on acetylcholine release, on presynaptic currents at mouse motor nerve terminals and on whole-cell sodium currents in SK.N.SH cells (a human neuroblastoma cell line) have been studied. FTX-3.3 (10-30 microM) and sFTX-3.3 (100-300 microM) reversibly reduced release of acetylcholine by approximately 70-90% and 40-60%, respectively. FTX-3.3 (10 microM) blocked the fast component of presynaptic calcium currents by approximately 60%. sFTX-3.3 (100 microM) reduced the duration of the slow component of presynaptic calcium currents by about 50% of the control and also reduced presynaptic sodium current by approximately 20% of the control. sFTX-3.3 (100 microM) reduced whole-cell sodium current recorded from SK.N.SH cells by approximately 15%, whereas FTX-3.3, even at 200 microM, did not affect this current. Since the only difference in chemical structures of these toxins is that sFTX-3.3 has an amide function which is absent in FTX-3.3, the amide function may be responsible for the reduced potency and selectivity of sFTX-3.3. This study also provides further support for the existence of P-type calcium channels at mouse motor nerve terminals.
Jia, Zhanfeng; Jia, Yueqin; Liu, Boyi; Zhao, Zhiying; Jia, Qingzhong; Liang, Huiling; Zhang, Hailin
2008-08-01
Voltage-gated sodium channels play a crucial role in the initiation and propagation of neuronal action potentials. Genistein, an isoflavone phytoestrogen, has long been used as a broad-spectrum inhibitor of protein tyrosine kinases (PTK). In addition, genistein-induced modulation of ion channels has been described previously in the literature. In this study, we investigated the effect of genistein on voltage-gated sodium channels in rat superior cervical ganglia (SCG) neurons. The results show that genistein inhibits Na(+) currents in a concentration-dependent manner, with a concentration of half-maximal effect (IC(50)) at 9.1 +/- 0.9 microM. Genistein positively shifted the voltage dependence of activation but did not affect inactivation of the Na(+) current. The inactive genistein analog daidzein also inhibited Na(+) currents, but was less effective than genistein. The IC(50) for daidzein-induced inhibition was 20.7 +/- 0.1 microM. Vanadate, an inhibitor of protein tyrosine phosphatases, partially but significantly reversed genistein-induced inhibition of Na(+) currents. Other protein tyrosine kinase antagonists such as tyrphostin 23, an erbstatin analog, and PP2 all had small but significant inhibitory effects on Na(+) currents. Among all active and inactive tyrosine kinase inhibitors tested, genistein was the most potent inhibitor of Na(+) currents. These results suggest that genistein inhibits Na(+) currents in rat SCG neurons through two distinct mechanisms: protein tyrosine kinase-independent, and protein tyrosine kinase-dependent mechanisms. Furthermore, the Src kinase family may be involved in the basal phosphorylation of the Na(+) channel.
Organ allocation for chronic liver disease: model for end-stage liver disease and beyond.
Asrani, Sumeet K; Kim, W Ray
2010-05-01
Implementation of the model for end-stage liver disease (MELD) score has led to a reduction in waiting list registration and waitlist mortality. Prognostic models have been proposed to either refine or improve the current MELD-based liver allocation. The model for end-stage liver disease - sodium (MELDNa) incorporates serum sodium and has been shown to improve the predictive accuracy of the MELD score. However, laboratory variation and manipulation of serum sodium is a concern. Organ allocation in the United Kingdom is now based on a model that includes serum sodium. An updated MELD score is associated with a lower relative weight for serum creatinine coefficient and a higher relative weight for bilirubin coefficient, although the contribution of reweighting coefficients as compared with addition of variables is unclear. The D-MELD, the arithmetic product of donor age and preoperative MELD, proposes donor-recipient matching; however, inappropriate transplantation of high-risk donors is a concern. Finally, the net benefit model ranks patients according to the net survival benefit that they would derive from the transplant. However, complex statistical models are required and unmeasured characteristics may unduly affect the model. Despite their limitations, efforts to improve the current MELD-based organ allocation are encouraging.
The target-specific transporter and current status of diuretics as antihypertensive.
Ali, Syed Salman; Sharma, Pramod Kumar; Garg, Vipin Kumar; Singh, Avnesh Kumar; Mondal, Sambhu Charan
2012-04-01
The currently available diuretics increase the urinary excretion of sodium chloride by selective inhibition of specific sodium transporters in the loop of Henle and distal nephron. In recent years, the molecular cloning of the diuretic-sensitive sodium transporters at distal convoluted tubule has improved our understanding of the cellular mechanisms of action of each class of diuretics. Diuretics are tools of considerable therapeutic importance. First, they effectively reduce blood pressure. Loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 and exert their diuretic action by binding to the Na(+)-K(+)-2Cl(-) co-transporter type 2 in the thick ascending limb and the Na(+)-Cl(-) co-transporter in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. The WHO/ISH guidelines point out that diuretics enhance the efficacy of antihypertensive drugs and will most often be a component of combination therapy. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.
Wang, X; Xiao, H; Dai, X; Liu, X; Yu, X; Wu, J
2000-05-01
To study the joint neurotoxic effects of phoxim (Pho) and fenvalerate (Fen) on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) currents in dorsal root ganglion (DRG) neurons of adult rat. Whole cell patch clamp technique was used to test the effects of Pho and Fen on TTX-S and TTX-R sodium currents in DRG neurons. The inactivation of TTX-R sodium channel was obviously slowed down by Fen. The tau(Na) of peak currents at doses of 10, 50 and 100 micromol/L Fen and control groups were (8.10 +/- 2.41) ms, (11.78 +/- 2.76) ms, P < 0.01, (8.76 +/-1.94) ms, P < 0.05 and (6.41 +/- 1.32) ms respectively. The inactivation of TTX-R sodium channel tail currents was also significantly delayed by Fen. The tau(Na) of the tail currents at doses of 10, 50, 100 micromol/L Fen and control groups were 6.11 +/- 0.52 (P < 0.05), 7.82 +/- 0.82 (P < 0.05), 7.23 +/- 1.09 (P < 0.05) and (4.91 +/- 0.97) ms separately. As compared with TTX-R sodium channel, the TTX-S sodium channel was less responsive to Fen exposure, which only led to slowly decay TTX-S sodium tail currents. There was no any effect of Pho on the TTX-S and TTX-R sodium channels. The mixed treatment of a Pho and Fen did not show joint effect on the sodium currents. Both the peak and tail currents are changed by Fen, however, Fen has more remarkable effects on TTX-R than on TTX-S sodium channel. The combined exposure to Pho and Fen shows no joint effect on the sodium channel.
Adelman, William J.; Taylor, Robert E.
1964-01-01
It was observed that a reduction of the sodium chloride concentration in the external solution bathing a squid giant axon by replacement with sucrose resulted in marked decreases in the peak inward and steady-state outward currents through the axon membrane following a step decrease in membrane potential. These effects are quantitatively acounted for by the increase in series resistance resulting from the decreased conductivity of the sea water and the assumption that the sodium current obeys a relation of the form I = k1C1 - k2C2 where C1, C2 are internal and external ion activities and k1, k2 are independent of concentration. It is concluded that the potassium ion current is independent of the sodium concentration. That the inward current is carried by sodium ions has been confirmed. The electrical potential (or barrier height) profile in the membrane which drives sodium ions appears to be independent of sodium ion concentration or current. A specific effect of the sucrose on hyperpolarizing currents was observed and noted but not investigated in detail. PMID:14232131
Wang, G K
1984-01-01
The effects of externally applied chloramine-T on the excitability of single toad myelinated nerve fibres were studied. Chloramine-T is a mild oxidant which reacts specifically with the cysteine and methionine residues of proteins. Chloramine-T prolongs the action potential of a single myelinated fibre by more than 1000-fold. This effect is concentration- and time-dependent; higher concentrations and longer incubation times increase prolongation. Under voltage-clamp conditions, sodium channel inactivation is markedly inhibited by chloramine-T while sodium channel activation remains normal. Prolonged depolarization of the membrane leads to a maintained sodium current. The maintained sodium currents show activation kinetics, dependence on membrane potential, and reversal potentials which are similar to those of normal, inactivating sodium currents in untreated fibres. Both the maintained and the peak sodium currents are equally inhibited by tetrodotoxin. After partial removal of sodium inactivation by brief exposures to chloramine-T, the voltage dependence of the steady-state sodium current inactivation (h infinity) is shifted in the depolarized direction by about 20 mV, even after correction for the non-inactivating component contributed by the maintained current. The phenomena described here imply that cysteine or methionine residues are critical for the sodium channel inactivation processes. The two different modifications of inactivation, its removal shown by the maintained current, and the shift in the voltage-dependence of the remaining inactivatable channels, reveal that at least two separate residues are modified by chloramine-T. PMID:6321714
Salt taste inhibition by cathodal current.
Hettinger, Thomas P; Frank, Marion E
2009-09-28
Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.
Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng
2006-05-01
To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.
Effects of sodium puddling on male mating success, courtship and flight in a swallowtail butterfly
Mitra, Chandreyee; Reynoso, Edgar; Davidowitz, Goggy; Papaj, Daniel
2016-01-01
In many Lepidoptera species usually only males puddle for sodium. Two explanations have been offered for this: (1) neuromuscular activity: males need increased sodium for flight because they are more active flyers than females; and (2) direct benefits: sodium is a type of direct benefit provided by males to females via ejaculate during mating. Surprisingly, there is little direct experimental evidence for either of these. In this study, we examined both explanations using the pipevine swallowtail butterfly, Battus philenor L. If sodium increases neuromuscular activity, males consuming sodium should be better fliers than males without sodium. If males collect sodium for nuptial gifts that benefit their mates, males consuming sodium may have greater mating success than males without sodium. In that case, females then need an honest cue/signal of the quality of male-provided direct benefits that they can assess before mating. If sodium affects male courtship flight by increasing neuromuscular activity, how a male courts could serve as such a premating cue/signal of male benefit quality. Therefore, sodium may benefit males in terms of obtaining mates by increasing their neuromuscular activity. In this study we found that males that consumed sodium courted more vigorously and had greater mating success than males that consumed water. In addition, the courtship displays of males consuming sodium were significantly different from those of males consuming water, providing a possible honest cue/signal of male benefit quality that females can assess. Interestingly, we did not find evidence that sodium consumption affects male flight outside of courtship. That only aspects of male flight related to mating were affected by sodium, while aspects of general flight were not, is consistent with the idea that sodium may benefit males in terms of obtaining mates via effects on neuromuscular activity. PMID:27103748
Spider toxin inhibits gating pore currents underlying periodic paralysis.
Männikkö, Roope; Shenkarev, Zakhar O; Thor, Michael G; Berkut, Antonina A; Myshkin, Mikhail Yu; Paramonov, Alexander S; Kulbatskii, Dmitrii S; Kuzmin, Dmitry A; Sampedro Castañeda, Marisol; King, Louise; Wilson, Emma R; Lyukmanova, Ekaterina N; Kirpichnikov, Mikhail P; Schorge, Stephanie; Bosmans, Frank; Hanna, Michael G; Kullmann, Dimitri M; Vassilevski, Alexander A
2018-04-24
Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel Na V 1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP. Copyright © 2018 the Author(s). Published by PNAS.
Ma, Rena; Liu, Fang; Yap, Soe F; Lee, Hoyul; Leong, Rupert W; Riordan, Stephen M; Grimm, Michael C; Zhang, Li
2018-01-01
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract with multifactorial etiology. Both dietary factors and the microbe Campylobacter concisus have been found to be associated with the condition. The current study examined the effects of sodium fumarate, a neutralized product of the food additives fumaric acid and monosodium fumarate when in the intestinal environment, on the growth of C. concisus to determine the effects of these food additives on IBD-associated bacterial species. Through culture methods and quantification, it was found that neutralized fumaric acid, neutralized monosodium fumarate, and sodium fumarate increased the growth of C. concisus , with the greatest increase in growth at a concentration of 0.4%. Further examination of 50 C. concisus strains on media with added sodium fumarate showed that greatest growth was also achieved at a concentration of 0.4%. At a concentration of 2% sodium fumarate, all strains examined displayed less growth in comparison with those cultured on media without sodium fumarate. Using mass spectrometry, multiple C. concisus proteins showed significant differential expression when cultured on media with and without 0.4% sodium fumarate. The findings presented suggest that patients with IBD should consider avoiding excessive consumption of foods with fumaric acid or its sodium salts, and that the addition of 0.4% sodium fumarate alone to media may assist in the isolation of C. concisus from clinical samples.
NASA Technical Reports Server (NTRS)
Williams, R. M.; Ryan, M. A.; LeDuc, H.; Cortez, R. H.; Saipetch, C.; Shields, V.; Manatt, K.; Homer, M. L.
1998-01-01
This paper presents a model of the exchange current developed for porous molybdenum electrodes on sodium beta-alumina ceramics in low pressure sodium vapor, but which has general applicability to gas/porous metal electrodes on solid electrolytes.
Meng, Xinghua; Savage, Phillip E; Deng, Da
2015-10-20
Harmful algal blooms (HABs) are frequently reported around the globe. HABs are typically caused by the so-called blue-green algae in eutrophic waters. These fast-growing HABs could be a good source for biomass. Unlike terrestrial plants, they need no land or soil. If HABs could be harvested on a large scale, it could not only possible to mitigate the issue of HABs but also provide a source of biomass. Herein, we demonstrate a facile procedure for converting the HABs into a promising high-performance negative-electrode material for sodium-ion batteries (SIBs). The carbon material derived from blue-green algae demonstrated promising electrochemical performance in reversible sodium storage. The algae used in this work was collected directly from Lake Erie during the algal blooms that affected 500 000 residents in Toledo in 2014. The carbon, derived from the freshly collected HABs by calcination in argon without any additional purification process, delivered a highly stable reversible specific capacity (∼230 mAh/g at a testing current of 20 mA/g) with nearly 100% Columbic efficiency in sodium storage. Impressive rate performance was achieved with a capacity of ∼135 mAh/g even after the testing current was increased fivefold. This proof of concept provides a promising route for mitigating the issue of HABs as "trash" and for generating high-capacity, low-cost electrodes for SIBs as "treasure".
Okada, Kyle S; Lee, Youngsoo
2017-07-01
The effects of formulation and processing parameters on sodium availability in a model lipid/protein-based emulsion gel were studied for purposes of sodium reduction. Heat-set model gels were prepared with varying levels of protein, lipid, and NaCl contents and high pressure homogenization treatments. Single quantum and double quantum-filtered 23 Na NMR spectroscopy experiments were used to characterize sodium mobility, structural order around "bound" (restricted mobility) sodium, and sodium binding, which have been correlated to saltiness perception in food systems previously. Total sodium mobility was lower in gels with higher protein or fat content, and was not affected by changes in homogenization pressure. The gels with increased protein, fat, or homogenization pressure had increased structure surrounding "bound" sodium and more relative "bound" sodium due to increased interfacial protein interactions. The data obtained in this study provide information on factors affecting sodium availability, which can be applied towards sodium reduction in lipid/protein-based foods. © 2017 Institute of Food Technologists®.
Modulation of neuronal sodium channels by the sea anemone peptide BDS-I
Liu, Pin; Jo, Sooyeon
2012-01-01
Blood-depressing substance I (BDS-I), a 43 amino-acid peptide from sea anemone venom, is used as a specific inhibitor of Kv3-family potassium channels. We found that BDS-I acts with even higher potency to modulate specific types of voltage-dependent sodium channels. In rat dorsal root ganglion (DRG) neurons, 3 μM BDS-I strongly enhanced tetrodotoxin (TTX)-sensitive sodium current but weakly inhibited TTX-resistant sodium current. In rat superior cervical ganglion (SCG) neurons, which express only TTX-sensitive sodium current, BDS-I enhanced current elicited by small depolarizations and slowed decay of currents at all voltages (EC50 ∼ 300 nM). BDS-I acted with exceptionally high potency and efficacy on cloned human Nav1.7 channels, slowing inactivation by 6-fold, with an EC50 of approximately 3 nM. BDS-I also slowed inactivation of sodium currents in N1E-115 neuroblastoma cells (mainly from Nav1.3 channels), with an EC50 ∼ 600 nM. In hippocampal CA3 pyramidal neurons (mouse) and cerebellar Purkinje neurons (mouse and rat), BDS-I had only small effects on current decay (slowing inactivation by 20–50%), suggesting relatively weak sensitivity of Nav1.1 and Nav1.6 channels. The biggest effect of BDS-I in central neurons was to enhance resurgent current in Purkinje neurons, an effect reflected in enhancement of sodium current during the repolarization phase of Purkinje neuron action potentials. Overall, these results show that BDS-I acts to modulate sodium channel gating in a manner similar to previously known neurotoxin receptor site 3 anemone toxins but with different isoform sensitivity. Most notably, BDS-I acts with very high potency on human Nav1.7 channels. PMID:22442564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason
The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HXmore » channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.« less
Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway.
Li, Shao; Wang, Xi; Ma, Quan-Hong; Yang, Wu-Lin; Zhang, Xiao-Gang; Dawe, Gavin S; Xiao, Zhi-Cheng
2016-12-23
Amyloid precursor protein (APP), commonly associated with Alzheimer's disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Na v 1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668.
Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway
Li, Shao; Wang, Xi; Ma, Quan-Hong; Yang, Wu-lin; Zhang, Xiao-Gang; Dawe, Gavin S.; Xiao, Zhi-Cheng
2016-01-01
Amyloid precursor protein (APP), commonly associated with Alzheimer’s disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Nav1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668. PMID:28008944
St-Louis, Jean; Sicotte, Benoît; Beauséjour, Annie; Brochu, Michèle
2006-02-01
Lowering and increasing sodium intake in pregnant rats evoke opposite changes in renin-angiotensin-aldosterone system (RAAS) activity and are associated with alterations of blood volume expansion. As augmented uterine blood flow during gestation is linked to increased circulatory volume, we wanted to determine if low- and high-sodium intakes affect the mechanical properties and angiotensin II (AngII) responses of the uterine vasculature. Non-pregnant and pregnant rats received a normal sodium (0.22% Na+) diet. On the 15th day of gestation some animals were moved to a low-sodium (0.03%) diet, whereas others were given NaCl supplementation as beverage (saline, 0.9% or 1.8%) for 7 days. All rats were killed after 7 days of treatment (eve of parturition). Uterine arcuate arteries (>100 microm) were set up in wire myographs under a tension equivalent to 50 mmHg transmural pressure. The pregnancy-associated increase in diameter of the uterine arteries was significantly attenuated on the low-sodium diet and 1.8% NaCl supplementation. The arcuate arteries of non-pregnant rats on the low-sodium diet showed markedly increased responses to AngII and phenylephrine (Phe). Pregnancy also resulted in heightened responses to AngII and Phe that were significantly reduced for the former agent in rats on the low-sodium diet. Sodium supplementation of non-pregnant rats did not affect the reactivity of the uterine arteries to AngII, but significantly reduced the effect of Phe (1 micromol/l). High salt also significantly diminished the elevated responses to AngII in the arteries of pregnant animals. It was observed that altered sodium intake affects the mechanical and reactive properties of the uterine arcuate arteries more importantly in pregnant than in non-pregnant rats. Low-salt intake similarly affected the reactivity of the uterine arcuate arteries to AngII and Phe, whereas high-salt intake more specifically affected AngII responses. These results showed that perturbations of sodium intake have major impacts on the structure and functions of the uterine arterial circulation, indicating RAAS involvement in uterine vascular remodeling and function during gestation.
Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S
2016-11-01
The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anthropogenic changes in sodium affect neural and muscle development in butterflies
Snell-Rood, Emilie C.; Espeset, Anne; Boser, Christopher J.; White, William A.; Smykalski, Rhea
2014-01-01
The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5–30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates. PMID:24927579
Anthropogenic changes in sodium affect neural and muscle development in butterflies.
Snell-Rood, Emilie C; Espeset, Anne; Boser, Christopher J; White, William A; Smykalski, Rhea
2014-07-15
The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5-30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates.
Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla
2014-12-18
Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.
Cheng, Zheng-Xiang; Lan, Dan-Mei; Wu, Pei-Ying; Zhu, Yan-Hua; Dong, Yi; Ma, Lan; Zheng, Ping
2008-03-01
Dehydroepiandrosterone sulphate is one of the most important neurosteroids. In the present paper, we studied the effect of dehydroepiandrosterone sulphate on persistent sodium currents and its mechanism and functional consequence with whole-cell patch clamp recording method combined with a pharmacological approach in the rat medial prefrontal cortex slices. The results showed that dehydroepiandrosterone sulphate inhibited the amplitude of persistent sodium currents and the inhibitory effect was significant at 0.1 microM, reached maximum at 1 microM and decreased with the increase in the concentrations of above 1 microM. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was canceled by the Gi protein inhibitor and the protein kinase C inhibitor, but not by the protein kinase A inhibitor. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was also canceled by the sigma-1 receptor blockers and the sigma-1 receptor agonist could mimic the effect of dehydroepiandrosterone sulphate. Dehydroepiandrosterone sulphate had no significant influence on neuronal excitability but could significantly inhibit chemical inhibition of mitochondria-evoked increase in persistent sodium currents. These results suggest that dehydroepiandrosterone sulphate inhibits persistent sodium currents via the activation of sigma-1 receptors-Gi protein-protein kinase C-coupled signaling pathway, and the main functional consequence of this effect of DHEAS is presumably to protect neurons under ischemia.
Consumer awareness of salt and sodium reduction and sodium labeling.
Kim, M K; Lopetcharat, K; Gerard, P D; Drake, M A
2012-09-01
Reduction of dietary sodium by reduction of sodium in foods is a current industry target. Quantitative information on consumer knowledge of sodium and reduction of dietary sodium is limited. The objectives of this study were to characterize consumer knowledge and awareness of sodium and salt reduction in foods. Consumers (n = 489) participated in a quantitative internet survey designed to gather knowledge and attitudes towards dietary sodium, sodium in foods, and health. Eating habits and food consumption characteristics, knowledge of salt and sodium, and interest in health and wellness were probed. Saltiness believe and sodium knowledge indices were calculated based on correct responses to salt levels in food products. Kano analysis was conducted to determine the role of nutrition labels and satisfaction/dissatisfaction of foods. Consumers were aware of the presence of sodium in "salty" foods, and that sodium was part of salt. People who had a family history of certain diseases associated with a higher intake of dietary sodium did not necessarily have more knowledge of the relationship between sodium intake and a specific disease compared to consumers with no family history. Sodium content on the food label panel did not influence consumer dissatisfaction; however, sodium content did not necessarily increase consumer product satisfaction either. The addition of a healthy nutrient (that is, whole grain, fiber) into a current food product was appealing to consumers. For nutrient labeling, a "reduced" claim was more appealing to consumers than a "free" claim for "unhealthy" nutrients such as fat, sodium, and sugar. This study demonstrated the current state of consumer knowledge on sodium and salt reduction, and consumer perception of the relationship between diets high in sodium and many chronic diseases. Information that may contribute to consumer satisfaction on nutrition panel labeling was also determined. © 2012 Institute of Food Technologists®
Sodium influxes in internally perfused squid giant axon during voltage clamp.
Atwater, I; Bezanilla, F; Rojas, E
1969-05-01
1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential.2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio ;measured sodium influx/computed ionic flux during the early current' is 0.92 +/- 0.12.3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses.
Active ion transport in dog tongue: a possible role in taste.
DeSimone, J A; Heck, G L; DeSimone, S K
1981-11-27
An in vitro preparation of the dorsal epithelium of the dog tongue actively transports ions, producing a transepithelial potential difference characteristic of the ions and their concentration. Hypertonic sodium chloride solutions generally cause increased potentials and short-circuit currents and reduced resistances when placed on the mucosal surface. This hypertonic flux is eliminated by ouabain and is not found in ventral lingual epithelia. When either sodium acetate or tetramethylammonium chloride is substituted for sodium chloride in the mucosal medium, the currents are diminished but their sum at a given concentration approximates that for sodium chloride at the same concentration. This result suggests a current composed of inward sodium ion movement and outward chloride ion movement. Actively regulated potentials and currents, whether generated in the taste buds or in supporting cells, may be important in both normal chemotransduction and in taste responses evoked by currents passing through the tongue.
Konfino, Jonatan; Mekonnen, Tekeshe A.; Coxson, Pamela G.; Ferrante, Daniel; Bibbins-Domingo, Kirsten
2013-01-01
Background Cardiovascular disease (CVD) is the leading cause of death in adults in Argentina. Sodium reduction policies targeting processed foods were implemented in 2011 in Argentina, but the impact has not been evaluated. The aims of this study are to use Argentina-specific data on sodium excretion and project the impact of Argentina’s sodium reduction policies under two scenarios - the 2-year intervention currently being undertaken or a more persistent 10 year sodium reduction strategy. Methods We used Argentina-specific data on sodium excretion by sex and projected the impact of the current strategy on sodium consumption and blood pressure decrease. We assessed the projected impact of sodium reduction policies on CVD using the Cardiovascular Disease (CVD) Policy Model, adapted to Argentina, modeling two alternative policy scenarios over the next decade. Results Our study finds that the initiative to reduce sodium consumption currently in place in Argentina will have substantial impact on CVD over the next 10 years. Under the current proposed policy of 2-year sodium reduction, the mean sodium consumption is projected to decrease by 319–387 mg/day. This decrease is expected to translate into an absolute reduction of systolic blood pressure from 0.93 mmHg to 1.81 mmHg. This would avert about 19,000 all-cause mortality, 13,000 total myocardial infarctions, and 10,000 total strokes over the next decade. A more persistent sodium reduction strategy would yield even greater CVD benefits. Conclusion The impact of the Argentinean initiative would be effective in substantially reducing mortality and morbidity from CVD. This paper provides evidence-based support to continue implementing strategies to reduce sodium consumption at a population level. PMID:24040085
Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species
Bao, Hui-Fang; Song, John Z.; Duke, Billie J.; Ma, He-Ping; Denson, Donald D.
2012-01-01
Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (Po) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC Po and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde. PMID:22895258
Agarwal, Sanjiv; Fulgoni, Victor L; Spence, Lisa; Samuel, Priscilla
2015-11-01
Limiting dietary sodium intake has been a consistent dietary recommendation. Using NHANES 2007-2010 data, we estimated current sodium intake and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were used to assess current sodium intake. The National Cancer Institute method was used for usual intake determination. Suggested sodium reductions using SODA-LO (®) Salt Microspheres ranged from 20% to 30% in 953 foods and usual intakes were modeled by using various reduction factors and levels of market penetration. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across gender and age groups. Current (2007-2010) sodium intake (mg/day) exceeds recommendations across all age gender groups and has not changed during the last decade. However, sodium intake measured as a function of food intake (mg/g food) has decreased significantly during the last decade. Two food categories contribute about 2/3rd of total sodium intake: "Grain Products" and "Meat, Poultry, Fish & Mixtures". Sodium reduction, with 100% market penetration of the new technology, was estimated to be 230-300 mg/day or 7-9% of intake depending upon age and gender group. Sodium reduction innovations like SODA-LO (®) Salt Microspheres could contribute to meaningful reductions in sodium intake.
SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome
Muskiet, Marcel H.A.; Tonneijck, Lennart; Kramer, Mark H.H.; Nieuwdorp, Max; van Raalte, Daniel H.
2017-01-01
Diabetic kidney disease not only has become the leading cause for ESRD worldwide but also, highly contributes to increased cardiovascular morbidity and mortality in type 2 diabetes. Despite increased efforts to optimize renal and cardiovascular risk factors, like hyperglycemia, hypertension, obesity, and dyslipidemia, they are often insufficiently controlled in clinical practice. Although current drug interventions mostly target a single risk factor, more substantial improvements of renal and cardiovascular outcomes can be expected when multiple factors are improved simultaneously. Sodium-glucose cotransporter type 2 in the renal proximal tubule reabsorbs approximately 90% of filtered glucose. In type 2 diabetes, the maladaptive upregulation of sodium-glucose cotransporter type 2 contributes to the maintenance of hyperglycemia. Inhibiting these transporters has been shown to effectively improve glycemic control through inducing glycosuria and is generally well tolerated, although patients experience more genital infections. In addition, sodium-glucose cotransporter type 2 inhibitors favorably affect body weight, BP, serum uric acid, and glomerular hyperfiltration. Interestingly, in the recently reported first cardiovascular safety trial with a sodium-glucose cotransporter type 2 inhibitor, empagliflozin improved both renal and cardiovascular outcomes in patients with type 2 diabetes and established cardiovascular disease. Because the benefits were seen rapidly after initiation of therapy and other glucose-lowering agents, with the exception of liraglutide and semaglutide, have not been able to improve cardiovascular outcome, these observations are most likely explained by effects beyond glucose lowering. In this mini review, we present the drug class of sodium-glucose cotransporter type 2 inhibitors, elaborate on currently available renal and cardiovascular outcome data, and discuss how the effects of these agents on renal physiology may explain the data. PMID:28254770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Jerden, James
2016-02-01
The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less
New Insights into the Instability of Discharge Products in Na-O2 Batteries.
Landa-Medrano, Imanol; Pinedo, Ricardo; Bi, Xuanxuan; Ruiz de Larramendi, Idoia; Lezama, Luis; Janek, Jürgen; Amine, Khalil; Lu, Jun; Rojo, Teófilo
2016-08-10
Sodium-oxygen batteries currently stimulate extensive research due to their high theoretical energy density and improved operational stability when compared to lithium-oxygen batteries. Cell stability, however, needs to be demonstrated also under resting conditions before future implementation of these batteries. In this work we analyze the effect of resting periods on the stability of the sodium superoxide (NaO2) discharge product. The instability of NaO2 in the cell environment is demonstrated leading to the evolution of oxygen during the resting period and the decrease of the cell efficiency. In addition, migration of the superoxide anion (O2(-)) in the electrolyte is observed and demonstrated to be an important factor affecting Coulombic efficiency.
Molecular Basis of Paralytic Neurotoxin Action on Voltage-Sensitive Sodium Channels
1987-10-20
reaching a new steady state rate of inactivation after 5 min. Fig. 6C shows a family of sodium currents elicited by depolarizations to test potentials...Fig. 7 compares time courses of decay of sodium currents during test pulses to +10 mV for 70 msec in the presence or absence of I x 10-7 CsTx on semi...logarithmic coordinates. The decay of the sodium currents in the absence of toxin was described by a single exponential with a decay constant of 0.7
... also make blood pressure rise. Eating too much sodium Unhealthy eating patterns, particularly eating too much sodium, ... you an adult who is curious about how sodium affects your blood pressure? This study is testing ...
Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea.
Evans, M G; Fuchs, P A
1987-10-01
We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.
Sodium influxes in internally perfused squid giant axon during voltage clamp
Atwater, I.; Bezanilla, F.; Rojas, E.
1969-01-01
1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential. 2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio `measured sodium influx/computed ionic flux during the early current' is 0·92 ± 0·12. 3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses. PMID:5767887
Effect of thiopental sodium on N-methyl-D-aspartate-gated currents.
Liu, Hongliang; Dai, Tijun; Yao, Shanglong
2006-05-01
N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC) are closely related with the excitability of pyramidal neurons and PFC function. As the effect of thiopental sodium on the central nervous system may partly result from the inhibition of PFC NMDA receptors, we investigated the effect of thiopental sodium with different concentrations on NMDA-gated currents in acutely dissociated rat PFC pyramidal neurons. We sought to determine whether thiopental sodium inhibits NMDA receptor function. Three to four week old male Sprague-Dawley rats were sacrificed and the PFC was dissected. Pyramidal neurons from the PFC were prepared and standard whole-cell patch clamp recordings were performed. Escalating concentrations from 3-1000 microM NMDA were applied 100 microm from the pyramidal cells, and the concentration in the effect compartment related to 50% effect (EC50) of NMDA was determined for the ensuing experiments. One hundred microM NMDA alone (control) or NMDA with different concentrations (10-1000 microM) of thiopental sodium were applied. After the inhibitory concentration, in 50% of NMDA effect (IC50) of thiopental sodium was established this IC50 and NMDA 3-1000 microM were applied 100 microm from the pyramidal cells. The EC50 value of NMDA under the effect of IC50 thiopental sodium was determined. N-methyl-D-aspartate induced inward currents in a concentration-dependent manner, which were completely antagonized by 50 microM AP5. The maximal amplitude of NMDA-induced current was 1.15 +/- 0.27 nA. The EC50 of NMDA was 53.6 +/- 12.4 microM. The NMDA (100 microM)-gated current was inhibited by thiopental sodium in a concentration-dependent manner, and the IC50 of thiopental sodium was 33.6 +/- 6.1 microM. Under the effect of 33.6 microM thiopental sodium, the maximal amplitude of NMDA-induced current was 0.87 +/- 0.17 nA. The concentration-response curve of NMDA was shifted rightwards. The EC50 of NMDA was 128 +/- 15 microM, which was greater than that of NMDA without thiopental sodium (P < 0.01). Thiopental sodium decreases NMDA-gated currents in acutely dissociated rat prefrontal cortical pyramidal neurons in a concentration-dependent manner.
Qu, Daofeng; Gu, Yanpei; Feng, Lifang; Han, Jianzhong
2017-10-15
Foods contain various additives that affect our daily lives. At present, food additive safety evaluation standards are based on the toxicity of single additives, but food additives are often used in combination and may have additive, synergistic or antagonistic actions. The current study investigated the toxicity of food additives and mechanisms of damage in HepG2 cells using High Content Analysis (HCA). We used the CCK-8 assay to determine cell viability, providing an experimental basis for determining the safety of food additives. All of the food additives tested were observed to decrease the growth of HepG2 cells in a dose-dependent manner. Sunset yellow and sodium sulfite had IC50 values of 1.06, and 0.30g/L at 24h, respectively. HCA showed that both sunset yellow and sodium sulfite had synergistic effects on cell number, membrane permeability, mitochondrial membrane potential, intracellular calcium level, oxidative stress, and high dose group DNA damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability
Carmean, V.; Yonkers, M. A.; Tellez, M. B.; Willer, J. R.; Willer, G. B.; Gregg, R. G.; Geisler, R.; Neuhauss, S. C.
2015-01-01
The study of touch-evoked behavior allows investigation of both the cells and circuits that generate a response to tactile stimulation. We investigate a touch-insensitive zebrafish mutant, macho (maco), previously shown to have reduced sodium current amplitude and lack of action potential firing in sensory neurons. In the genomes of mutant but not wild-type embryos, we identify a mutation in the pigk gene. The encoded protein, PigK, functions in attachment of glycophosphatidylinositol anchors to precursor proteins. In wild-type embryos, pigk mRNA is present at times when mutant embryos display behavioral phenotypes. Consistent with the predicted loss of function induced by the mutation, knock-down of PigK phenocopies maco touch insensitivity and leads to reduced sodium current (INa) amplitudes in sensory neurons. We further test whether the genetic defect in pigk underlies the maco phenotype by overexpressing wild-type pigk in mutant embryos. We find that ubiquitous expression of wild-type pigk rescues the touch response in maco mutants. In addition, for maco mutants, expression of wild-type pigk restricted to sensory neurons rescues sodium current amplitudes and action potential firing in sensory neurons. However, expression of wild-type pigk limited to sensory cells of mutant embryos does not allow rescue of the behavioral touch response. Our results demonstrate an essential role for pigk in generation of the touch response beyond that required for maintenance of proper INa density and action potential firing in sensory neurons. PMID:26133798
Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt
NASA Astrophysics Data System (ADS)
Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming
2018-02-01
Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.
Overgaard-Steensen, Christian; Stødkilde-Jørgensen, Hans; Larsson, Anders; Tønnesen, Else; Frøkiaer, Jørgen; Ring, Troels
2016-07-01
What is the central question of this study? The brain response to acute hyponatraemia is usually studied in rodents by intraperitoneal instillation of hypotonic fluids (i.p. model). The i.p. model is described as 'dilutional' and 'syndrome of inappropriate ADH (SIADH)', but the mechanism has not been explored systematically and might affect the brain response. Therefore, in vivo brain and muscle response were studied in pigs. What is the main finding and its importance? The i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution, not dilution. A large reduction in brain sodium is observed, probably because of the specific mechanism causing the hyponatraemia. This is not accounted for in current understanding of the brain response to acute hyponatraemia. Hyponatraemia is common clinically, and if it develops rapidly, brain oedema evolves, and severe morbidity and even death may occur. Experimentally, acute hyponatraemia is most frequently studied in small animal models, in which the hyponatraemia is produced by intraperitoneal instillation of hypotonic fluids (i.p. model). This hyponatraemia model is described as 'dilutional' or 'syndrome of inappropriate ADH (SIADH)', but seminal studies contradict this interpretation. To confront this issue, we developed an i.p. model in a large animal (the pig) and studied water and electrolyte responses in brain, muscle, plasma and urine. We hypothesized that hyponatraemia was induced by simple water dilution, with no change in organ sodium content. Moderate hypotonic hyponatraemia was induced by a single i.v. dose of desmopressin and intraperitoneal instillation of 2.5% glucose. All animals were anaesthetized and intensively monitored. In vivo brain and muscle water was determined by magnetic resonance imaging and related to the plasma sodium concentration. Muscle water content increased less than expected as a result of pure dilution, and muscle sodium content decreased significantly (by 28%). Sodium was redistributed to the peritoneal fluid, resulting in a significantly reduced plasma volume. This shows that the i.p. model induces hypovolaemic hyponatraemia and not dilutional/SIADH hyponatraemia. Brain oedema evolved, but brain sodium content decreased significantly (by 21%). To conclude, the i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution and not water dilution. The large reduction in brain sodium is probably attributable to the specific mechanism that causes the hyponatraemia. This is not accounted for in the current understanding of the brain response to acute hyponatraemia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Socioeconomic status and electrolyte intake in black adults: the Pitt County Study.
Gerber, A M; James, S A; Ammerman, A S; Keenan, N L; Garrett, J M; Strogatz, D S; Haines, P S
1991-01-01
BACKGROUND. Although the inverse association between socioeconomic status (SES) and blood pressure has often been observed, little is known about the relationship between SES and dietary risk factors for elevated blood pressure. Therefore, this study described the distribution of dietary intakes of sodium, potassium, and calcium and examined the association between electrolyte intake and SES among 1784 Black men and women aged 25 to 50 residing in eastern North Carolina. METHODS. Household interviews were conducted in 1988 to obtain information on psychosocial and dietary correlates of blood pressure. Electrolyte intake (mg/day) was assessed using a food frequency questionnaire adapted to reflect regional and ethnic food preferences. SES was categorized into three levels defined by the participant's educational level and occupation. RESULTS. After adjustment for age and energy intake, potassium and calcium intake increased with increasing SES for both sexes. Sodium intake was high for all groups and did not vary markedly with SES, but sodium to potassium and sodium to calcium ratios decreased with increasing SES. In addition, high SES individuals were more likely to believe that diet affects risk for disease and to report less salt use at the table and less current sodium consumption than in the past. CONCLUSION. These data indicate that nutritional beliefs as well as the consumption of electrolytes are associated with SES in Black adults. PMID:1746658
Effect of Sodium Fluoride Mouthwash on the Frictional Resistance of Orthodontic Wires.
Geramy, Allahyar; Hooshmand, Tabassom; Etezadi, Tahura
2017-09-01
The friction between the brackets and orthodontic wire during sliding mechanics inflicts difficulties such as decreasing the applied force and tooth movement and also the loss of anchorage. Therefore, many studies have focused on the factors that affect the friction. The purpose of this study was to assess the effect of 0.05% sodium fluoride mouthwash on the friction between orthodontic brackets and wire. Four types of orthodontic wires including rectangular standard stainless steel (SS), titanium molybdenum alloy (TMA), nickel-titanium (NiTi) and copper-nickel-titanium (Cu-NiTi) were selected. In each group, half of the samples were immersed in 0.05% sodium fluoride mouthwash and the others were immersed in artificial saliva for 10 hours. An elastomeric ligature was used for ligating the wires to brackets. The frictional test was performed in a universal testing machine at the speed of 10 mm/minute. Two-way ANOVA was used for statistical analysis of the friction rate. The friction rate was significantly higher after immersion in 0.05% sodium fluoride mouthwash in comparison with artificial saliva (P=0.00). Cu-NiTi wire showed the highest friction value followed by TMA, NiTi and SS wires. According to the results of the current study, 0.05% sodium fluoride mouthwash increased the frictional characteristics of all the evaluated orthodontic wires.
Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.
Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J
1985-02-01
Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a psi mc of +50 mV whereas ethoxzolamide exerted minimal effect on psi mc when the ERP was approached either by voltage clamping the apical membrane or by the addition of amiloride. We show that electroneutral sodium-proton countertransport is not the mechanism of active proton excretion in frog skin but that it is the proton excretion which provides a favourable electrical driving force for passive apical sodium entry.(ABSTRACT TRUNCATED AT 400 WORDS)
Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.
Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J
1985-01-01
Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a psi mc of +50 mV whereas ethoxzolamide exerted minimal effect on psi mc when the ERP was approached either by voltage clamping the apical membrane or by the addition of amiloride. We show that electroneutral sodium-proton countertransport is not the mechanism of active proton excretion in frog skin but that it is the proton excretion which provides a favourable electrical driving force for passive apical sodium entry.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 6 Fig. 7 PMID:2582114
Consumer awareness and interest toward sodium reduction trends in Korea.
Kim, Mina K; Lee, Kwang-Geun
2014-07-01
Reduction of dietary sodium intake by lowering amount of sodium in foods is a global industry target. Quantitative information on current consumer knowledge of sodium reduction trends in Korea is unknown. The objective of this study was to quantify the consumer knowledge and awareness of sodium and salt reduction in foods and to characterize consumer interest in health labeling on the food package. Additionally, comparison of consumer knowledge status between Korea and United States was followed. Consumers (n = 289) participated in an internet survey designed to gauge consumer knowledge and attitudes toward dietary sodium, the sodium content in representative food products (n = 27), and their interest toward specific health claims, including sodium labeling. Questions regarding demographics as well as consumption characteristics were asked. Sodium knowledge index and saltiness belief index were calculated based on the number of correct responses regarding the salt level and sodium content in given food products. Kano analysis was conducted to determine the role of nutrition labels in consumer satisfaction with products. Current consumer knowledge on the sodium content in food products was high, and consumers were adept at matching the sodium content with the salty taste intensity of food products. Consumers' knowledge of the relationship between diets high in sodium and an increased risk of developing previously reported sodium-related diseases, such as hypertension, coronary heart disease, kidney disease, and stomach cancer, were also high. Information on the nutrition panel that influences the consumer satisfaction (trans-fat, sodium, ingredient list, and country of origin) as well as adjective-nutrition claim pairs that appeal positively to purchase intent of the product were identified. This work provided the current status of Korean consumer knowledge on the amount of sodium in food and that sodium can be a risk factor of developing chronic diseases. It also provided practical information to food marketers on what consumers like and what they want to see on product labels in Korea. © 2014 Institute of Food Technologists®
Erythrocyte sodium pump activity in bipolar affective disorder and other psychiatric disorders.
Hokin-Neaverson, M; Jefferson, J W
1989-01-01
Erythrocyte ouabain-inhibitable sodium pump activity, a measure of NaK-ATPase activity, was studied in 6 diagnostic groups of psychiatric subjects: bipolar affective disorder, unipolar depressive disorder, neurotic depression, chronic alcohol abuse, schizoaffective disorder, and schizophrenia, and in sex- and age-matched normal controls. In the bipolar manic-depressive group, which was restricted to lithium-free subjects, values for sodium pump activity were significantly lower than in the controls (-11.4%, n = 53, p less than 0.001); subgrouping of the bipolar group by sex or age showed a significantly lower sodium pump activity in each of the groups. In the unipolar depressive group, values for sodium pump activity were significantly higher than in the controls (+13.7%, n = 12, p less than 0.01). The difference in direction of changed sodium pump activity between the bipolar and the unipolar groups was also observed in the values for subgroups of subjects in the two categories who were in a depressed state at the time the blood sample was taken. In the chronic alcohol abuse group, values for sodium pump activity were significantly higher than those for the control group (+13.5%, n = 20, p less than 0.05). In the neurotic depression (n = 24), schizoaffective (n = 12), and schizophrenia (n = 35) groups, there were no significant differences in sodium pump activity between the group of psychiatric subjects and their matched controls. These observations indicate that there is a trait-dependent deficiency of NaK-ATPase activity in bipolar affective disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, J.-S.; Soderlund, David M.
2006-03-15
Pyrethroid insecticides bind to voltage-sensitive sodium channels and modify their gating kinetics, thereby disrupting nerve function. This paper describes the action of 11 structurally diverse commercial pyrethroid insecticides on the rat Na{sub v}1.8 sodium channel isoform, the principal carrier of the tetrodotoxin-resistant, pyrethroid-sensitive sodium current of sensory neurons, expressed in Xenopus laevis oocytes. All 11 compounds produced characteristic sodium tail currents following a depolarizing pulse that ranged from rapidly-decaying monoexponential currents (allethrin, cismethrin and permethrin) to persistent biexponential currents (cyfluthrin, cyhalothrin, cypermethrin and deltamethrin). Tail currents for the remaining compounds (bifenthrin, fenpropathrin, fenvalerate and tefluthrin) were monoexponential and decayed withmore » kinetics intermediate between these extremes. Reconstruction of currents carried solely by the pyrethroid-modified subpopulation of channels revealed two types of pyrethroid-modified currents. The first type, found with cismethrin, allethrin, permethrin and tefluthrin, activated relatively rapidly and inactivated partially during a 40-ms depolarization. The second type, found with cypermethrin, cyfluthrin, cyhalothrin, deltamethrin, fenpropathrin and fenvalerate, activated more slowly and did not detectably inactivate during a 40-ms depolarization. Only bifenthrin did not produce modified currents that fit clearly into either of these categories. In all cases, the rate of activation of modified channels was strongly correlated with the rate of tail current decay following repolarization. Modification of Na{sub v}1.8 sodium channels by cyfluthrin, cyhalothrin, cypermethrin and deltamethrin was enhanced 2.3- to 3.4-fold by repetitive stimulation; this effect appeared to result from the accumulation of persistently open channels rather than preferential binding to open channel states. Fenpropathrin was the most effective compound against Na{sub v}1.8 sodium channels from the perspective of either resting or use-dependent modification. When use dependence is taken into account, cypermethrin, deltamethrin and tefluthrin approached the effectiveness of fenpropathrin. The selective expression of Na{sub v}1.8 sodium channels in nociceptive neurons suggests that these channels may be important targets for pyrethroids in the production of paresthesia following dermal expo0010su.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bean, Bruce Palmer
The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in themore » hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.« less
Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic–clonic seizures
Rhodes, Thomas H; Vanoye, Carlos G; Ohmori, Iori; Ogiwara, Ikuo; Yamakawa, Kazuhiro; George, Alfred L
2005-01-01
Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel α1 subunit (NaV1.1), are associated with genetic forms of epilepsy, including generalized epilepsy with febrile seizures plus (GEFS+ type 2), severe myoclonic epilepsy of infancy (SMEI) and related conditions. Several missense SCN1A mutations have been identified in probands affected by the syndrome of intractable childhood epilepsy with generalized tonic–clonic seizures (ICEGTC), which bears similarity to SMEI. To test whether ICEGTC arises from molecular mechanisms similar to those involved in SMEI, we characterized eight ICEGTC missense mutations by whole-cell patch clamp recording of recombinant human SCN1A heterologously expressed in cultured mammalian cells. Two mutations (G979R and T1709I) were non-functional. The remaining alleles (T808S, V983A, N1011I, V1611F, P1632S and F1808L) exhibited measurable sodium current, but had heterogeneous biophysical phenotypes. Mutant channels exhibited lower (V983A, N1011I and F1808L), greater (T808S) or similar (V1611F and P1632S) peak sodium current densities compared with wild-type (WT) SCN1A. Three mutations (V1611F, P1632S and F1808L) displayed hyperpolarized conductance–voltage relationships, while V983A exhibited a strong depolarizing shift in the voltage dependence of activation. All mutants except T808S had hyperpolarized shifts in the voltage dependence of steady-state channel availability. Three mutants (V1611F, P1632S and F1808L) exhibited persistent sodium current ranging from ∼1–3% of peak current amplitude that was significantly greater than WT-SCN1A. Several mutants had impaired slow inactivation, with V983A showing the most prominent effect. Finally, all of the functional alleles exhibited reduced use-dependent channel inhibition. In summary, SCN1A mutations associated with ICEGTC result in a wide spectrum of biophysical defects, including mild-to-moderate gating impairments, shifted voltage dependence and reduced use dependence. The constellation of biophysical abnormalities for some mutants is distinct from those previously observed for GEFS+ and SMEI, suggesting possible, but complex, genotype–phenotype correlations. PMID:16210358
Milstein, Michelle L; Musa, Hassan; Balbuena, Daniela Ponce; Anumonwo, Justus M B; Auerbach, David S; Furspan, Philip B; Hou, Luqia; Hu, Bin; Schumacher, Sarah M; Vaidyanathan, Ravi; Martens, Jeffrey R; Jalife, José
2012-07-31
The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.
Apparatus for detecting leakage of liquid sodium
Himeno, Yoshiaki
1978-01-01
An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.
Hagenacker, T; Schäfer, N; Büsselberg, D; Schäfers, M
2013-07-01
Lacosamide is a novel anti-epileptic drug that enhances the slow- and not fast-inactivating state of voltage-gated sodium channels. Lacosamide has demonstrated analgesic efficacy in several animal studies but preclinical studies on neuropathic pain models are rare, and recent clinical trials showed no superior analgesic effects. Here, we examine whether an acute or chronic administration of lacosamide (3-60 mg/kg, i.p.) attenuates pain behaviour induced by spinal nerve ligation (SNL). To validate the inhibitory efficacy of lacosamide on voltage-gated sodium channels, sodium currents in naïve and SNL-injured dorsal root ganglion (DRG) neurons were recorded using whole-cell patch clamping. Lacosamide only marginally attenuated thermal hyperalgesia, but not tactile allodynia when applied once 7 or 14 days after SNL and showed no analgesic effect when applied daily for 19 days. In naïve neurons, 100 μmol/L lacosamide inhibited sodium channel currents by 58% and enhanced the slow inactivation (87% for lacosamide vs. 47% for control). In contrast, lacosamide inhibited sodium currents in injured DRG neurons by only 15%, while the effects on slow inactivation were diminished. Isolated currents from the NaV 1.8 channel subtype were only marginally changed by lacosamide. The reduced effectiveness of lacosamide on voltage-gated sodium channel currents in injured DRG neurons may contribute to the reduced analgesic effect observed for the SNL model. © 2012 European Federation of International Association for the Study of Pain Chapters.
Sodium 4-phenylbutyrate upregulates ENaC and sodium absorption in T84 cells.
Iordache, Claudiu; Duszyk, Marek
2007-01-15
Butyrate and other short-chain fatty acids (SCFA), produced by colonic bacterial flora, affect numerous epithelial cell functions. To better understand how SCFA regulate ion transport, we investigated the effects of 4-phenylbutyrate (4-PBA) on Na(+) absorption in T84 cells. Under standard cell culture conditions, the short circuit current did not display any amiloride-sensitive Na(+) absorption and was wholly representative of Cl(-) secretion. However, when T84 cells were grown in the presence of 5 mM 4-PBA, a gradual appearance of amiloride-sensitive Na(+) channel (ENaC) activity was observed that reached a plateau after 24 h. Quantitative RT-PCR and Western blot studies of ENaC subunit expression indicated that 4-PBA stimulated alpha and gamma subunits. Trichostatin A, an inhibitor of histone deacetylase, mimicked the effects of 4-PBA, suggesting that 4-PBA affects ENaC expression by inhibiting deacetylases. 4-PBA had no effect on ENaC expression in airway epithelial cells indicating tissue-specific effect. We conclude that butyrate plays an important role in regulating colonic Na(+) absorption by increasing ENaC transcription and activity.
Petty, Sandra J; Milligan, Carol J; Todaro, Marian; Richards, Kay L; Kularathna, Pamuditha K; Pagel, Charles N; French, Chris R; Hill-Yardin, Elisa L; O'Brien, Terence J; Wark, John D; Mackie, Eleanor J; Petrou, Steven
2016-09-01
Fracture risk is a serious comorbidity in epilepsy and may relate to the use of antiepileptic drugs (AEDs). Many AEDs inhibit ion channel function, and the expression of these channels in osteoblasts raises the question of whether altered bone signaling increases bone fragility. We aimed to confirm the expression of voltage-gated sodium (NaV ) channels in mouse osteoblasts, and to investigate the action of carbamazepine and phenytoin on NaV channels. Immunocytochemistry was performed on primary calvarial osteoblasts extracted from neonatal C57BL/6J mice and additional RNA sequencing (RNASeq) was included to confirm expression of NaV . Whole-cell patch-clamp recordings were made to identify the native currents expressed and to assess the actions of carbamazepine (50 μm) or phenytoin (50 μm). NaV expression was demonstrated with immunocytochemistry, RNA sequencing, and functionally, with demonstration of robust tetrodotoxin-sensitive and voltage-activated inward currents. Application of carbamazepine or phenytoin resulted in significant inhibition of current amplitude for carbamazepine (31.6 ± 5.9%, n = 9; p < 0.001), and for phenytoin (35.5 ± 6.9%, n = 7; p < 0.001). Mouse osteoblasts express NaV , and native NaV currents are blocked by carbamazepine and phenytoin, supporting our hypothesis that AEDs can directly influence osteoblast function and potentially affect bone strength. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resorcylic acid. 69-72-7 Salicylic acid. 127-09-3 Sodium acetate. 532-32-1 Sodium benzoate. 9004-32-4 Sodium... Benzoyl chloride. 100-51-6 Benzyl alcohol. 100-46-9 Benzylamine. 120-51-4 Benzyl benzoate. 100-44-7 Benzyl... 2-ethylhexanol. 122-51-0 Ethyl orthoformate. 95-92-1 Ethyl oxalate. 41892-71-1 Ethyl sodium...
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resorcylic acid. 69-72-7 Salicylic acid. 127-09-3 Sodium acetate. 532-32-1 Sodium benzoate. 9004-32-4 Sodium... Benzoyl chloride. 100-51-6 Benzyl alcohol. 100-46-9 Benzylamine. 120-51-4 Benzyl benzoate. 100-44-7 Benzyl... 2-ethylhexanol. 122-51-0 Ethyl orthoformate. 95-92-1 Ethyl oxalate. 41892-71-1 Ethyl sodium...
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resorcylic acid. 69-72-7 Salicylic acid. 127-09-3 Sodium acetate. 532-32-1 Sodium benzoate. 9004-32-4 Sodium... Benzoyl chloride. 100-51-6 Benzyl alcohol. 100-46-9 Benzylamine. 120-51-4 Benzyl benzoate. 100-44-7 Benzyl... 2-ethylhexanol. 122-51-0 Ethyl orthoformate. 95-92-1 Ethyl oxalate. 41892-71-1 Ethyl sodium...
Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping
2015-01-01
Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.
Method of making a current collector for a sodium/sulfur battery
Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.
1987-03-10
This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.
Method of making a current collector for a sodium/sulfur battery
Tischer, Ragnar P.; Winterbottom, Walter L.; Wroblowa, Halina S.
1987-01-01
This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.
Current Regulator For Sodium-Vapor Lamps
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1989-01-01
Regulating circuit maintains nearly-constant alternating current in sodium-vapor lamp. Regulator part of dc-to-ac inverter circuit used to supply power to street lamp from battery charged by solar-cell array.
21 CFR 184.1768 - Sodium lactate.
Code of Federal Regulations, 2014 CFR
2014-04-01
....1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with sodium hydroxide. (b) The... ingredient is used in food at levels not to exceed current good manufacturing practice. (d) Prior sanctions...
ERIC Educational Resources Information Center
Kelly, Resa M.; Jones, Loretta L.
2007-01-01
Animations of molecular structure and dynamics are often used to help students understand the abstract ideas of chemistry. This qualitative study investigated how the features of two different styles of molecular-level animation affected students' explanations of how sodium chloride dissolves in water. In small group sessions 18 college-level…
Reardon, David P; Yoo, Peter S
2016-01-01
Treatment of hypothyroidism with levothyroxine sodium often requires multiple dose adjustments and can be complicated by patients with gastric and intestinal dysfunction that limits absorption. In these cases, doses are often titrated higher than commonly used in clinical practice. Multiple formulations of levothyroxine are currently available and some may be preferred in cases of malabsorption. We report a case of a 42-year-old female who presented with a living unrelated kidney transplant evaluation with myxedema while being treated with levothyroxine sodium tablets. She was noted to have gastroparesis secondary to Type I diabetes mellitus which may have contributed to levothyroxine malabsorption. Changing to a gelatin capsule formulation quickly corrected her thyroid function assays. This case suggests that gastroparesis may affect absorption of levothyroxine tablets and the gelatin capsules may be an effective alternative therapy.
The thermal stability of sodium beta'-Alumina solid electrolyte ceramic in AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Roger M.; Ryan, Margaret A.; Homer, Margie L.
1999-01-22
A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the beta'-alumina solid electrolyte ceramic (BASE), for which there exists no substitute. The temperature and environmental conditions under which BASE remains stable control operational parameters of AMTEC devices. We have used mass loss experiments in vacuum to 1573K to characterize the kinetics of BASE decomposition, and conductivity and exchange current measurements in sodium vapor filled exposure cells to 1223K to investigate changes in the BASE which affect its ionic conductivity. There is no clear evidence of direct thermal decomposition of BASE below 1273K,more » although limited soda loss may occur. Reactive metals such as Mn or Cr can react with BASE at temperatures at least as low as 1223K.« less
Free standing Cu2Te, new anode material for sodium-ion battery
NASA Astrophysics Data System (ADS)
Sarkar, Ananta; Mallick, Md. Mofasser; Panda, Manas Ranjan; Vitta, Satish; Mitra, Sagar
2018-05-01
Sodium-ion battery is the most popular alternative to lithium-ion energy storage system due to its low cost and huge abundant resources throughout the world. Although recent literature showed cathode materials for sodium ion battery performs almost equivalent to lithium-ion counterpart but the anode of this sodium-ion battery is in premature state. Here, we introduced free-standing copper telluride (Cu2Te), a new anode materials for sodium-ion battery. For making the electrode we did not use any conductive carbon or current collector which increase the volumetric density as well as reduce the cost of the cell. This metallic Cu2Te alloy exhibited a high reversible capacity of ˜275 mAh g-1 at 50 mA g-1 current density and ˜200 mAh g-1 at higher current density of 100 mA g-1, operating between 0.1 to 2.0 V.
Drinking water sodium and blood pressure in children: a second look.
Tuthill, R W; Calabrese, E J
1981-01-01
A previous study by the current authors demonstrated a statistically significant and clinically important elevation of 3-5 mmHg in mean systolic and diastolic blood pressure in high school sophomores in a community with 108 mg/L of sodium in the water supply when compared to their peers in an appropriately matched community with 8 mg/L of sodium. The current investigation, employing identical techniques but studying third graders in the same two communities, showed similar results. This second look considered dietary intake and urinary excretion of sodium. Since the difference in 24-hour dietary sodium consumption was 300 milligrams between the communities, an intake of one liter of high sodium tap water represented approximately 25 per cent of the difference in total sodium intake between the two communities. These studies suggest that sodium consumption in both drinking water and diet may be contributing to the different blood pressure distributions among the normotensive children in the two communities. PMID:7246839
Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.
Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam
2016-10-10
Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders. Copyright © 2016 Elsevier B.V. All rights reserved.
Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells
Varghese, Anthony
2016-01-01
The inwardly rectifying potassium current (IK1) and the fast inward sodium current (INa) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for IK1–INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1–GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1–GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1–GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1–GNa changes allowed fibers to remain excitable at high GK1 values. Reciprocal modulation of the inwardly rectifying potassium current and the fast inward sodium current may have a functional role in allowing cardiac tissue to remain excitable when IK1 is upregulated. PMID:27895596
Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.
2014-01-01
Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426
2016-01-01
Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between −30 and −40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli. PMID:26936982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David
A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooledmore » fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the current state of knowledge is extensive, and in most areas may be sufficient. Several knowledge gaps were identified, such as uncertainty in release from molten fuel and availability of thermodynamic data for lanthanides and actinides in liquid sodium. However, the overall findings suggest that high retention rates can be expected within the fuel and primary sodium for all radionuclides other than noble gases.« less
Estimates of Dietary Sodium Consumption in Patients With Chronic Heart Failure.
Colin-Ramirez, Eloisa; Arcand, JoAnne; Ezekowitz, Justin A
2015-12-01
Estimating dietary sodium intake is a key component of dietary assessment in the clinical setting of HF to effectively implement appropriate dietary interventions for sodium reduction and monitor adherence to the dietary treatment. In a research setting, assessment of sodium intake is crucial to an essential methodology to evaluate outcomes after a dietary or behavioral intervention. Current available sodium intake assessment methods include 24-hour urine collection, spot urine collections, multiple day food records, food recalls, and food frequency questionnaires. However, these methods have inherent limitations that make assessment of sodium intake challenging, and the utility of traditional methods may be questionable for estimating sodium intake in patients with HF. Thus, there are remaining questions about how to best assess dietary sodium intake in this patient population, and there is a need to identify a reliable method to assess and monitor sodium intake in the research and clinical setting of HF. This paper provides a comprehensive review of the current methods for sodium intake assessment, addresses the challenges for its accurate evaluation, and highlights the relevance of applying the highest-quality measurement methods in the research setting to minimize the risk of biased data. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.
Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young
2015-04-01
Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.
Monte Carlo Model Insights into the Lunar Sodium Exosphere
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Killen, R. M.; Sarantos, M.
2012-01-01
Sodium in the lunar exosphere is released from the lunar regolith by several mechanisms. These mechanisms include photon stimulated desorption (PSD), impact vaporization, electron stimulated desorption, and ion sputtering. Usually, PSD dominates; however, transient events can temporarily enhance other release mechanisms so that they are dominant. Examples of transient events include meteor showers and coronal mass ejections. The interaction between sodium and the regolith is important in determining the density and spatial distribution of sodium in the lunar exosphere. The temperature at which sodium sticks to the surface is one factor. In addition, the amount of thermal accommodation during the encounter between the sodium atom and the surface affects the exospheric distribution. Finally, the fraction of particles that are stuck when the surface is cold that are rereleased when the surface warms up also affects the exospheric density. In [1], we showed the "ambient" sodium exosphere from Monte Carlo modeling with a fixed source rate and fixed surface interaction parameters. We compared the enhancement when a CME passes the Moon to the ambient conditions. Here, we compare model results to data in order to determine the source rates and surface interaction parameters that provide the best fit of the model to the data.
Reduced Sodium Current in the Lateral Ventricular Wall Induces Inferolateral J-Waves.
Meijborg, Veronique M F; Potse, Mark; Conrath, Chantal E; Belterman, Charly N W; De Bakker, Jacques M T; Coronel, Ruben
2016-01-01
J-waves in inferolateral leads are associated with a higher risk for idiopathic ventricular fibrillation. We aimed to test potential mechanisms (depolarization or repolarization dependent) responsible for inferolateral J-waves. We hypothesized that inferolateral J-waves can be caused by regional delayed activation of myocardium that is activated late during normal conditions. Computer simulations were performed to evaluate how J-point elevation is influenced by reducing sodium current conductivity (GNa), increasing transient outward current conductivity (Gto), or cellular uncoupling in three predefined ventricular regions (lateral, anterior, or septal). Two pig hearts were Langendorff-perfused with selective perfusion with a sodium channel blocker of lateral or anterior/septal regions. Volume-conducted pseudo-electrocardiograms (ECG) were recorded to detect the presence of J-waves. Epicardial unipolar electrograms were simultaneously recorded to obtain activation times (AT). Simulation data showed that conduction slowing, caused by reduced sodium current, in lateral, but not in other regions induced inferolateral J-waves. An increase in transient outward potassium current or cellular uncoupling in the lateral zone elicited slight J-point elevations which did not meet J-wave criteria. Additional conduction slowing in the entire heart attenuated J-waves and J-point elevations on the ECG, because of masking by the QRS. Experimental data confirmed that conduction slowing attributed to sodium channel blockade in the left lateral but not in the anterior/septal ventricular region induced inferolateral J-waves. J-waves coincided with the delayed activation. Reduced sodium current in the left lateral ventricular myocardium can cause inferolateral J-waves on the ECG.
Peng, Kuan; Shu, Qin; Liu, Zhonghua; Liang, Songping
2002-12-06
We have isolated a highly potent neurotoxin from the venom of the Chinese bird spider, Selenocosmia huwena. This 4.1-kDa toxin, which has been named huwentoxin-IV, contains 35 residues with three disulfide bridges: Cys-2-Cys-17, Cys-9-Cys-24, and Cys-16-Cys-31, assigned by a chemical strategy including partial reduction of the toxin and sequence analysis of the modified intermediates. It specifically inhibits the neuronal tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel with the IC(50) value of 30 nm in adult rat dorsal root ganglion neurons, while having no significant effect on the tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel. This toxin seems to be a site I toxin affecting the sodium channel through a mechanism quite similar to that of TTX: it suppresses the peak sodium current without altering the activation or inactivation kinetics. The three-dimensional structure of huwentoxin-IV has been determined by two-dimensional (1)H NMR combined with distant geometry and simulated annealing calculation by using 527 nuclear Overhauser effect constraints and 14 dihedral constraints. The resulting structure is composed of a double-stranded antiparallel beta-sheet (Leu-22-Ser-25 and Trp-30-Tyr-33) and four turns (Glu-4-Lys-7, Pro-11-Asp-14, Lys-18-Lys-21 and Arg-26-Arg-29) and belongs to the inhibitor cystine knot structural family. After comparison with other toxins purified from the same species, we are convinced that the positively charged residues of loop IV (residues 25-29), especially residue Arg-26, must be crucial to its binding to the neuronal tetrodotoxin-sensitive voltage-gated sodium channel.
Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F
1987-12-01
1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)
USDA-ARS?s Scientific Manuscript database
Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...
USDA-ARS?s Scientific Manuscript database
Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...
Khan, Faisal; Saify, Zafar Saeed; Jamali, Khawar Saeed; Naz, Saima; Hassan, Sohail; Siddiqui, Sonia
2018-01-01
Vitex negundo (Vn) extract is famous for the treatment of neurological diseases such as migraine and epilepsy. These neurological diseases have been associated with abnormally increased influx of sodium ions into the neurons. Drugs that inhibit voltage gated sodium channels can be used as potent anti-epileptics. Till now, the effects of Vn on sodium channels have not been investigated. Therefore, we have investigated the effects of methalonic fraction of Vn extract in Murine Neuro 2A cell line. Cells were cultured in a defined medium with or without the Vn extract (100 μg/ml). Sodium currents were recorded using whole-cell patch clamp method. The data show that methanolic extract of Vn inhibited sodium currents in a dose dependent manner (IC50 =161μg/ml). Vn (100 μg/ml) shifted the steady-state inactivation curve to the left or towards the hyper polarization state. However, Vn did not show any effects on outward rectifying potassium currents. Moreover, Vn (100 μg/ml) significantly reduced the sustained repetitive (48±4.8%, P<0.01) firing from neonatal hippocampal neurons at 12 DIV. Hence, our data suggested that inhibition of sodium channels by Vn may exert pharmacological effects in reducing pain and convulsions.
The U.S. Department of Agriculture Automated Multiple-Pass Method accurately assesses sodium intakes
USDA-ARS?s Scientific Manuscript database
Accurate and practical methods to monitor sodium intake of the U.S. population are critical given current sodium reduction strategies. While the gold standard for estimating sodium intake is the 24 hour urine collection, few studies have used this biomarker to evaluate the accuracy of a dietary ins...
Zhang, Jiao; Li, Chuanqi; Peng, Zhikun; Liu, Yushan; Zhang, Jianmin; Liu, Zhongyi; Li, Dan
2017-07-07
Sodium ion batteries have drawn extensive attentions for large-scale energy storage to replace lithium ion batteries primarily due to the natural abundance of sodium resource and low cost, but their energy density and electrochemical performance are hindered by the sluggish diffusion kinetics of sodium ion. Herein, free-standing nitrogen-doped graphene aerogel has been fabricated via hydrothermal reaction as the potential anode material for sodium ion batteries. The three dimensional porous network structure of the graphene aerogel provides sufficient interstitial space for sodium ion accommodation, allowing fast and reversible ion intercalation/de-intercalation. The nitrogen doping could introduce defects on the graphene sheets, making the feasible transport of large-sized sodium ion. Benefiting from the effective structure and nitrogen doping, the obtained material demonstrates high reversible capacities, good cycling performance (287.9 mA h g -1 after 200 cycles at a current density of 100 mA g -1 ), especially superior rate capability (151.9 mA h g -1 at a high current density of 5 A g -1 ).
Teng, Siyong; Huang, Jian; Gao, Zhan; Hao, Jie; Yang, Yuejin; Zhang, Shu; Pu, Jielin; Hui, Rutai; Wu, Yongjian; Fan, Zheng
2017-01-01
Nonsense mutation readthrough is used as a gene-specific treatment in some genetic diseases. The response to readthrough treatment is determined by the readthrough efficiency of various nonsense mutations. In this manuscript, we aimed to explore the harmful effects of nonsense mutation suppression. HEK293 cells were transfected with two SCN5A (encode cardiac Na+ channel) nonsense mutations, p.R1623X and p.S1812X. We applied two readthrough-enhancing methods (either aminoglycosides or a siRNA-targeting eukaryotic release factor eRF3a (a GTPase that binds eRF1)) to suppress these SCN5A nonsense mutations. When either of readthrough methods was used, the sodium channel proteins were examined by western blot and immunoblotting and recorded by whole cell patch-clamp to observe the functional characterization of the restored channels. Upon readthrough treatment, the sodium currents were restored to the mutant cDNAs. These mutations reduced full-length sodium channel protein levels, and the sodium currents were reduced to 3% of wild-type. The mutant cDNA sodium currents were increased to 30% of wild-type, and the fulllength proteins also increased. However, the functional characterization of these channels from cDNAs carrying p.R1623X and p.S1812X exhibited abnormal biophysical properties, including a negative shift in steady-state sodium channel inactivation, a positive shift in sodium channel activation and robust late sodium currents. The ramp test showed prolonged QT intervals. These results demonstrated that readthrough-enhancing methods effectively suppressed nonsense mutations in SCN5A and restored the expression of full-length channels. However, the restored channels may increase the risk of arrhythmia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Inhibition of Acid Sensing Ion Channel Currents by Lidocaine in Cultured Mouse Cortical Neurons
Lin, Jun; Chu, Xiangping; Maysami, Samaneh; Li, Minghua; Si, Hongfang; Cottrell, James E.; Simon, Roger P.; Xiong, Zhigang
2012-01-01
BACKGROUND Lidocaine is a local anesthetic that has multiple pharmacological effects including antiarrhythmia, antinociception, and neuroprotection. Acid sensing ion channels (ASICs) are proton-gated cation channels that belong to the epithelial sodium channel/degenerin superfamily. Activation of ASICs by protons results in sodium and calcium influx. ASICs have been implicated in various physiological processes including learning/memory, nociception, and in acidosis-mediated neuron injury. In this study, we examined the effect of lidocaine on ASICs in cultured mouse cortical neurons. METHODS ASIC currents were activated and recorded using a whole-cell patch-clamp technique in cultured mouse cortical neurons. The effects of lidocaine at different concentrations were examined. To determine whether the inhibition of lidocaine on ASIC currents is subunit specific, we examined the effect of lidocaine on homomeric ASIC1a and ASIC2a currents expressed in Chinese hamster ovary cells. RESULTS Lidocaine significantly inhibits the ASIC currents in mouse cortical neurons. The inhibition was reversible and dose dependent. A detectable effect was noticed at a concentration of 0.3 mM lidocaine. At 30 mM, ASIC current was inhibited by approximately 90%. Analysis of the complete dose-response relationship yielded a half-maximal inhibitory concentration of 11.79 ± 1.74 mM and a Hill coefficient of 2.7 ± 0.5 (n = 10). The effect is rapid and does not depend on pH. In Chinese hamster ovary cells expressing different ASIC subunits, lidocaine inhibits the ASIC1a current without affecting the ASIC2a current. CONCLUSION ASIC currents are significantly inhibited by lidocaine. Our finding reveals a new pharmacological effect of lidocaine in neurons. PMID:21385979
Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping
2015-01-01
Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592
2015-06-18
sodium hypochlorite (NaOCl) became a main irrigant in endodontics (6) and is currently the preferred endodontic ... sodium hypochlorite used during endodontic irrigation (8). Since there may be many different concentrations of sodium hypochlorite available, the dentist...A, Brandt M. Toxicity of concentrated sodium hypochlorite used as an endodontic irrigant. Int Endod J 2004;37:272–80. 18. Hulsmann M, Hahn
Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.
Karus, Claudia; Ziemens, Daniel; Rose, Christine R
2015-01-01
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.
Lactate rescues neuronal sodium homeostasis during impaired energy metabolism
Karus, Claudia; Ziemens, Daniel; Rose, Christine R
2015-01-01
Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160
Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy.
Alves Rezende, Maria Cristina Rosifini; Alves, Ana Paula Rosifini; Codaro, Eduardo Norberto; Dutra, Conceição Aparecida Matsumoto
2007-01-01
The purpose of this work was to evaluate the effect of three commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. Experiments were made at 37.0 +/- 0.5 degrees C in a conventional three-compartment double wall glass cell containing commercial mouthwashes. Three mouthwashes with different active ingredients were tested: (I) 0.05% sodium fluoride + 0.03% triclosan; (II) 0.5 g/l cetylpyridinium chloride + 0.05% sodium fluoride; (III) 0.12% chlorohexidine digluconate. The assessment of the individual effect of active ingredients was studied by using 0.05% sodium fluoride. Commercially pure titanium (CP Ti) was used as control. Microstructures from Ti-10Mo experimental alloy and CP Ti were also evaluated using optical microscopy. Ti-10Mo as-cast alloy shows the typical rapidly cooled dendrites microstructure (beta phase) while CP Ti has exhibited a metastable martensitic microstructure. Electrochemical behavior of dental materials here studied was more affected by mouthwash type than by Ti alloy composition or microstructure. In both alloys passivation phenomenon was observed. This process may be mainly related to Ti oxides or other Ti species present in spontaneously formed film. Small differences in passive current densities values may be connected with changes in film porosity and thickness. Protective characteristics of this passive film are lower in 0.05% sodium fluoride + 0.03% triclosan mouthwash than in the other two mouthwashes tested.
NASA Astrophysics Data System (ADS)
Herzig, Volker; Ikonomopoulou, Maria; Smith, Jennifer J.; Dziemborowicz, Sławomir; Gilchrist, John; Kuhn-Nentwig, Lucia; Rezende, Fernanda Oliveira; Moreira, Luciano Andrade; Nicholson, Graham M.; Bosmans, Frank; King, Glenn F.
2016-07-01
The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1-S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.
Millar, A M; O'Brien, L M
1998-05-01
Reports have suggested that when sodium chloride injections from a plastic ampoule are used during the preparation of 99Tcm-mercaptoacetyltriglycine (99Tcm-MAG3), the radiochemical purity of the final product might be reduced. A study was therefore undertaken to examine the effect of sodium chloride injections from five manufacturers on the radiochemical purity and stability of 99Tcm-MAG3. One sodium chloride injection was supplied in a glass vial, three in plastic ampoules and one in a plastic infusion bag. Three batches of sodium chloride injections from each manufacturer were tested. The radiopharmaceutical was prepared at a radioactive concentration of 1.1 GBq in 10 ml according to the instructions of the manufacturer of TechneScan MAG3. Analysis of radiochemical purity was performed by high-performance liquid chromatography immediately after preparation and 6 h later. Using 95% as the minimum acceptable radiochemical purity, all the products were satisfactory over the 6 h test period. No manufacturer's sodium chloride injection was found to have a statistically significant effect on the radiochemical purity. Based on the 15 batches of sodium chloride injection tested, this study cannot confirm that sodium chloride injections from a plastic container affect the radiochemical purity of 99Tcm-MAG3. However, in view of the known sensitivity of some 99Tcm radiopharmaceuticals to external influences, it is probably good practice to test radiochemical purity when new batches of ancillary materials, such as sodium chloride injections, are introduced.
Wei, Zhengkai; Xiao, Chong; Guo, Changming; Zhang, Xu; Wang, Yanan; Wang, Jingjing; Yang, Zhengtao; Fu, Yunhe
2017-06-01
Bovine mastitis is one of the most costly and prevalent disease affecting dairy cows worldwide. It was reported that Staphylococcus aureus could internalize into bovine mammary epithelial cells (bMEC) and induce mastitis. Some short chain fatty acids (SCFA) have shown to suppress S. aureus invasion into bMEC and regulate antimicrobial peptides expression. But it has not been evaluated that sodium acetate has the similar effect. The aim of this study was to investigate the effect of sodium acetate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus. Gentamicin protection assay showed that the invasion of S. aureus into bMEC was inhibited by sodium acetate in a dose-dependent manner. Sodium acetate (0.25-5 mM) did not affect S. aureus growth and bMEC viability. The TAP gene level was decreased, while the BNBD5 mRNA level was enhanced in sodium acetate treated bMEC. In sodium acetate treated and S. aureus challenged bMEC, the TAP gene expression was increased and BNBD5 gene expression was not modified at low concentrations, but decreased at high concentrations. The Nitric oxide (NO) production of bMEC after S. aureus stimulation was decreased by sodium acetate treatment. Furthermore, sodium acetate treatment suppressed S. aureus-induced NF-κB activation in bMEC in a dose manner. In conclusion, our results suggested that sodium acetate exerts an inhibitory property on S. aureus internalization and modulates antimicrobial peptides gene expression. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 60.667 - Chemicals affected by subpart NNN.
Code of Federal Regulations, 2010 CFR
2010-07-01
... alcohols, ethoxylated, mixed Linear alcohols, ethoxylated, and sulfated, sodium salt, mixed Linear alcohols, sulfated, sodium salt, mixed Linear alkylbenzene 123-01-3 Magnesium acetate 142-72-3 Maleic anhydride 108...
40 CFR 60.667 - Chemicals affected by subpart NNN.
Code of Federal Regulations, 2011 CFR
2011-07-01
... alcohols, ethoxylated, mixed Linear alcohols, ethoxylated, and sulfated, sodium salt, mixed Linear alcohols, sulfated, sodium salt, mixed Linear alkylbenzene 123-01-3 Magnesium acetate 142-72-3 Maleic anhydride 108...
The Encounter of P/Shoemaker-Levy 9 with the Jovian Plasma and Extended Sodium Cloud
NASA Technical Reports Server (NTRS)
Niciejewski, R. J.
1997-01-01
The encounter of comet P/Shoemaker-Levy 9 with Jupiter during July, 1994, provided an unprecedented opportunity to observe any potential perturbations in the Jovian plasma torus and extended sodium cloud as the comet entered the planet's atmosphere. Though the most obvious affect of the encounter was the distinctive response of the visible disk to the impact of the cometary fragments, the potential disruptions to the extended Jovian atmosphere and the restoration of the system to equilibrium also provided a test for the current interpretation of the Jovian plasma torus and sodium magneto-nebula. The observations that were performed for this grant were made by a complementary group of researchers and could not have been made if the individuals worked singly. In a sense, the exciting opportunity provided by this astronomical event also provided a mechanism to test the potential of pooling limited resources from several sources to construct a state-of-the-art spectrally resolving instrument, to acquire the necessary time and resources from institutions that maintain world-class optical telescopes, to perform the observations with the assistance of students, and to analyze the data sets.
[Sulfide ooze mud and sodium chloride baths in treating osteoarthrosis patients].
Novikova, N V
1989-01-01
Humoral immunity initially affected in patients with osteoarthrosis returns to normal under the influence of a multiple-modality treatment involving application of sulphide moor in combination with sodium chloride baths.
Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F
2010-05-01
Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.
Electrocardiographic Biomarkers for Detection of Drug-Induced Late Sodium Current Block
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicente, Jose; Johannesen, Lars; Hosseini, Meisam
Drugs that prolong the heart rate corrected QT interval (QTc) on the electrocardiogram (ECG) by blocking the hERG potassium channel and also block inward currents (late sodium or L-type calcium) are not associated with torsade de pointes (e.g. ranolazine and verapamil). Furthermore, identifying ECG signs of late sodium current block could aid in the determination of proarrhythmic risk for new drugs. A new cardiac safety paradigm for drug development (the "CiPA" initiative) will involve the preclinical assessment of multiple human cardiac ion channels and ECG biomarkers are needed to determine if there are unexpected ion channel effects in humans.
Electrocardiographic Biomarkers for Detection of Drug-Induced Late Sodium Current Block
Vicente, Jose; Johannesen, Lars; Hosseini, Meisam; ...
2016-12-30
Drugs that prolong the heart rate corrected QT interval (QTc) on the electrocardiogram (ECG) by blocking the hERG potassium channel and also block inward currents (late sodium or L-type calcium) are not associated with torsade de pointes (e.g. ranolazine and verapamil). Furthermore, identifying ECG signs of late sodium current block could aid in the determination of proarrhythmic risk for new drugs. A new cardiac safety paradigm for drug development (the "CiPA" initiative) will involve the preclinical assessment of multiple human cardiac ion channels and ECG biomarkers are needed to determine if there are unexpected ion channel effects in humans.
Huo, Taoguang; Chen, Xi; Lu, Xiumei; Qu, Lianyue; Liu, Yang; Cai, Shuang
2014-10-15
Valproate sodium is one of the most prescribed antiepileptic drugs. However, valproate sodium has various side effects, especially its toxicity on liver. Current markers for toxicity reflect mostly the late stages of tissue damage; thus, more efficient methods for toxicity evaluation are desired. To evaluate the toxicity of valproate sodium on liver, we performed both UPLC-MS and (1)HNMR-based metabonomics analysis of serum samples from 34 epileptic patients (age: 42.0±18.6, 18 male/16 female) after valproate sodium treatment. Compared to conventional markers, the serum metabolic profiles provided clear distinction of the valproate sodium induced normal liver function and abnormal liver function in epileptic patients. Through multivariate statistical analysis, we identified marker metabolites associated with the hepatotoxicity induced by valproate sodium, such as glucose, lactate, acetoacetate, VLDL/LDL, lysophosphatidylcholines, phosphatidylcholines, choline, creatine, amino acids, N-acetyl glycoprotein, pyruvate and uric acid. This metabonomics approach may provide effective way to evaluate the valproate sodium-induced toxicity in a manner that can complement current measures. This approach is expected to find broader application in other drug-induced toxicity assessment. Copyright © 2014 Elsevier B.V. All rights reserved.
cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.
Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin
2009-09-01
The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.
Silva, Sara A.; L’Abbé, Mary; Jaime, Patricia C.
2017-01-01
Non-communicable diseases, including cardiovascular diseases, are responsible for over 70% of deaths in Brazil. Currently, over 25% of Brazilian adults are diagnosed as hypertensive; overall, current dietary sodium intake in Brazil (4700 mg/person) is over twice the international recommendations, and 70–90% of adolescents and adults consume excessive sodium. National sodium reduction strategies consider the main dietary sources of sodium to be added salt to foods, foods consumed outside of the household, and sodium in processed foods. The national voluntary strategy for sodium reduction in priority food categories has been continuously monitored over a 6-year period (2011–2017) and there was a significant 8–34% reduction in the average sodium content of over half food categories. Different food categories have undergone differing reductions in sodium over time, aiding gradual biannual targets to allow industries to develop new technologies and consumers to adapt to foods with less salt. By 2017, most products of all food categories had met the regional targets proposed by the Pan American Health Organization, showing that voluntary sodium reduction strategies can potentially contribute to food reformulation. Nevertheless, regulatory approaches may still be necessary in the future in order to reach all food producers and to allow stronger enforcement to meet more stringent regional targets. PMID:28704932
Stacked vapor fed amtec modules
Sievers, Robert K.
1989-01-01
The present invention pertains to a stacked AMTEC module. The invention includes a tubular member which has an interior. The member is comprised of a ion conductor that substantially conducts ions relative to electrons, preferably a beta"-alumina solid electrolyte, positioned about the interior. A porous electrode for conducting electrons and allowing sodium ions to pass therethrough, and wherein electrons and sodium ions recombine to form sodium is positioned about the beta"-alumina solid electrolyte. The electrode is operated at a temperature and a pressure that allows the recombined sodium to vaporize. Additionally, an outer current collector grid for distributing electrons throughout the porous electrode is positioned about and contacts the porous electrode. Also included in the invention is transporting means for transporting liquid sodium to the beta"-alumina solid electrolyte of the tubular member. A transition piece is positioned about the interior of the member and contacts the transporting means. The transition piece divides the member into a first cell and a second cell such that each first and second cell has a beta"-alumina solid electrolyte, a first and second porous electrode and a grid. The transition piece conducts electrons from the interior of the tubular member. There is supply means for supplying sodium to the transporting means. Preferably the supply means is a shell which surrounds the tubular member and is operated at a temperature such that the vaporized sodium condenses thereon. Returning means for returning the condensed sodium from the shell to the transporting means provides a continuous supply of liquid sodium to the transporting means. Also, there are first conducting means for conducting electric current from the transition piece which extends through the shell, and second conducting means for conducting electric current to the grid of the first cell which extends through the shell.
Factors affecting the corrosivity of pulping liquors
NASA Astrophysics Data System (ADS)
Hazlewood, Patrick Evan
Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.
Sodium-dependent magnesium uptake by ferret red cells.
Flatman, P W; Smith, L M
1991-01-01
1. Magnesium uptake can be measured in ferret red cells incubated in media containing more than 1 mM-magnesium. Uptake is substantially increased if the sodium concentration in the medium is reduced. 2. Magnesium uptake is half-maximally activated by 0.37 mM-external magnesium when the external sodium concentration is 5 mM. Increasing the external sodium concentration increases the magnesium concentration needed to activate the system. 3. Magnesium uptake is increased by reducing the external sodium concentration. Uptake is half-maximum at sodium concentrations of 17, 22 and 62 nM when the external magnesium concentrations are 2, 5 and 10 mM respectively. 4. Replacement of external sodium with choline does not affect the membrane potential of ferret red cells over a 45 min period. 5. Magnesium uptake from media containing 5 mM-sodium is inhibited by amiloride, quinidine and imipramine. It is not affected by ouabain or bumetanide. Vanadate stimulates magnesium uptake but has no effect on magnesium efflux. 6. When cell ATP content is reduced to 19 mumol (1 cell)-1 by incubating cells for 3 h with 2-deoxyglucose, magnesium uptake falls by 50% in the presence of 5 mM-sodium and is completely abolished in the presence of 145 mM-sodium. Some of the inhibition may be due to the increase in intracellular ionized magnesium concentration ([Mg2+]i) from 0.7 to 1.0 mM which occurs under these conditions. 7. Magnesium uptake can be driven against a substantial electrochemical gradient if the external sodium concentration is reduced sufficiently. 8. These findings are discussed in terms of several possible models for magnesium transport. It is concluded that the majority of magnesium uptake observed in low-sodium media is via sodium-magnesium antiport. A small portion of uptake is through a parallel leak pathway. It is believed that the antiport is responsible for maintaining [Mg2+]i below electrochemical equilibrium in these cells at physiological external sodium concentration. Thus in ferret red cells the direction of magnesium transport can be reversed by reversing the sodium gradient. PMID:1822527
Lee, Hyosung; Park, Ki Duk; Torregrosa, Robert; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Wilson, Sarah M; Barbosa, Cindy; Xiao, Yucheng; Cummins, Theodore R; Khanna, Rajesh; Kohn, Harold
2014-07-24
We prepared 13 derivatives of N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound's whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI=TD50/ED50) that compared favorably with clinical antiseizure drugs. Compounds with a polar, aprotic R-substituent potently promoted Na+ channel slow inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage of affecting these two pathways to decrease neurological hyperexcitability is discussed.
Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo
2017-01-01
Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268
A Global Model of Meteoric Sodium
NASA Technical Reports Server (NTRS)
Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.
2013-01-01
A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.
Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo
2017-05-30
Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.
High-sodium intake prevents pregnancy-induced decrease of blood pressure in the rat.
Beauséjour, Annie; Auger, Karine; St-Louis, Jean; Brochu, Michéle
2003-07-01
Despite an increase of circulatory volume and of renin-angiotensin-aldosterone system (RAAS) activity, pregnancy is paradoxically accompanied by a decrease in blood pressure. We have reported that the decrease in blood pressure was maintained in pregnant rats despite overactivation of RAAS following reduction in sodium intake. The purpose of this study was to evaluate the impact of the opposite condition, e.g., decreased activation of RAAS during pregnancy in the rat. To do so, 0.9% or 1.8% NaCl in drinking water was given to nonpregnant and pregnant Sprague-Dawley rats for 7 days (last week of gestation). Increased sodium intakes (between 10- and 20-fold) produced reduction of plasma renin activity and aldosterone in both nonpregnant and pregnant rats. Systolic blood pressure was not affected in nonpregnant rats. However, in pregnant rats, 0.9% sodium supplement prevented the decreased blood pressure. Moreover, an increase of systolic blood pressure was obtained in pregnant rats receiving 1.8% NaCl. The 0.9% sodium supplement did not affect plasma and fetal parameters. However, 1.8% NaCl supplement has larger effects during gestation as shown by increased plasma sodium concentration, hematocrit level, negative water balance, proteinuria, and intrauterine growth restriction. With both sodium supplements, decreased AT1 mRNA levels in the kidney and in the placenta were observed. Our results showed that a high-sodium intake prevents the pregnancy-induced decrease of blood pressure in rats. Nonpregnant rats were able to maintain homeostasis but not the pregnant ones in response to sodium load. Furthermore, pregnant rats on a high-sodium intake (1.8% NaCl) showed some physiological responses that resemble manifestations observed in preeclampsia.
Takahashi, Hakuo; Yoshika, Masamichi; Komiyama, Yutaka; Nishimura, Masato
2011-01-01
The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents. PMID:21814209
Kirchhof, Paulus; Tal, Tzachy; Fabritz, Larissa; Klimas, Jan; Nesher, Nir; Schulte, Jan S; Ehling, Petra; Kanyshkova, Tatayana; Budde, Thomas; Nikol, Sigrid; Fortmueller, Lisa; Stallmeyer, Birgit; Müller, Frank U; Schulze-Bahr, Eric; Schmitz, Wilhelm; Zlotkin, Eliahu; Kirchhefer, Uwe
2015-01-01
New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. © 2014 American Heart Association, Inc.
The effects of some inhalation anaesthetics on the sodium current of the squid giant axon.
Haydon, D A; Urban, B W
1983-01-01
The effects of diethyl ether, methoxyflurane, halothane, dichloromethane and chloroform on the ionic currents and electrical capacity of the squid giant axon have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. Sodium currents under voltage clamp were recorded in intracellularly perfused axons before, during, and sometimes after exposure to the test substances, and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the dependence of the steady-state activation and inactivation parameters (m infinity and h infinity) on membrane potential, reductions in the peak heights of the activation and inactivation time constants (tau m and tau h) and decreases in the maximum Na conductance (gNa) have been tabulated. For each of the anaesthetics the steady-state inactivation curve was shifted in the hyperpolarizing direction though less markedly than for the hydrocarbons. The steady-state activation curve was in each instance shifted in the depolarizing direction, as for the alcohols and other surface active substances. In common with both the hydrocarbons and the surface active substances the peak time constants were invariably reduced. The membrane capacity at 100 kHz was affected significantly only by methoxyflurane, where decreases of ca. 9% were observed for 3 mM solutions. The extent to which the results can be accounted for in terms of the perturbation of membrane lipid has been discussed. PMID:6312031
Metam sodium reduces viability and infectivity of Eimeria oocysts
USDA-ARS?s Scientific Manuscript database
Metam sodium (MS, sodium N-methyldithiocarbamate) is a widely used soil pesticide. Fumigation or chemical sterilization of poultry litter containing infectious oocysts could be an effective strategy to block the transmission of avian coccidia. In the current study the effect of MS on the viability ...
76 FR 17026 - New Animal Drugs; Arsanilate Sodium; Sulfaethoxypyridazine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... [Docket No. FDA-2011-N-0003] New Animal Drugs; Arsanilate Sodium; Sulfaethoxypyridazine AGENCY: Food and... Administration (FDA) is amending the animal drug regulations to remove sections pertaining to use of arsanilate sodium and sulfaethoxypyridazine in medicated feed because there are no currently approved new animal...
Effects of Volatile Aromatic Anesthetics on Voltage-Gated Na+ Channels Expressed in Xenopus Oocytes
Horishita, Takafumi; Eger, Edmond I; Harris, R. Adron
2008-01-01
Background Many inhaled anesthetics inhibit voltage-gated sodium channels at clinically relevant concentrations, and suppression of neurotransmitter release by these agents results, at least partly, from decreased presynaptic sodium channel activity. Volatile aromatic anesthetics can inhibit N-methyl-D-aspartate (NMDA) receptor function and enhance γ-amino butyric acid A (GABAA) receptor function, but these effects depend strongly on the chemical properties of the aromatic ompounds. The present study tested whether diverse aromatic anesthetics consistently inhibit sodium channel function. Methods We studied the effect of eight aromatic anesthetics on Nav1.2 sodium channels with β1 subunits, using whole-cell, two-electrode voltage-clamp techniques in Xenopus oocytes. Results All aromatic anesthetics inhibited INa (sodium currents) at a holding potential which produce half-maximal current (V1/2) (partial depolarization); inhibition was modest with 1,3,5-trifluorobenzene (8 ± 2%), pentafluorobenzene (13 ± 2%), and hexafluorobenzene (13 ± 2%), but greater with benzene (37 ± 2%), fluorobenzene (39 ± 2%), 1,2-difluorobenzene (48 ± 2%), 1,4-difluorobenzene (31 ± 3%), and 1,2,4-trifluorobenzene (33 ± 1%). Such dichotomous effects were noted by others for NMDA and GABAA receptors. Parallel, but much smaller inhibition, was found for INa at a holding potential which produced near maximal current (−90 mV) (VH-90), and hexafluorobenzene caused small (6 ± 1%) potentiation of this current. These changes in sodium channel function were correlated with effectiveness for inhibiting NMDA receptors, with lipid solubility of the compounds, with molecular volume, and with cation-π interactions. Conclusion Aromatic compounds vary in their actions on the kinetics of sodium channel gating and this may underlie their variable inhibition. The range of inhibition produced by MAC concentrations of inhaled anesthetics indicates that sodium channel inhibition may underlie the action of some of these anesthetics but not others. PMID:18931215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan Jianguo; Soderlund, David M., E-mail: dms6@cornell.ed
2010-09-15
We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}{sub 1} and {beta}{sub 2} auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 {mu}M), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were {approx}more » 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 {mu}M), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 {mu}M), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin {approx} 15-fold and that tefluthrin was {approx} 10-fold more potent than deltamethrin as a use-dependent modifier of Na{sub v}1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na{sub v}1.2 sodium channel coexpressed with the rat {beta}{sub 1} and {beta}{sub 2} subunits in oocytes showed that the Na{sub v}1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na{sub v}1.2 isoform. These results implicate sodium channels containing the Na{sub v}1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.« less
Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M
2016-03-07
Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.
Sodium Chloride Affects Helicobacter pylori Growth and Gene Expression▿
Gancz, Hanan; Jones, Kathleen R.; Merrell, D. Scott
2008-01-01
Epidemiological evidence links high-salt diets and Helicobacter pylori infection with increased risk of developing gastric maladies. The mechanism by which elevated sodium chloride content causes these manifestations is unclear. Here we characterize the response of H. pylori to temporal changes in sodium chloride concentration and show that growth, cell morphology, survival, and virulence factor expression are all altered by increased salt concentration. PMID:18375562
Reducing Sodium in Foods: The Effect on Flavor
Liem, Djin Gie; Miremadi, Fatemeh; Keast, Russell S. J.
2011-01-01
Sodium is an essential micronutrient and, via salt taste, appetitive. High consumption of sodium is, however, related to negative health effects such as hypertension, cardiovascular diseases and stroke. In industrialized countries, about 75% of sodium in the diet comes from manufactured foods and foods eaten away from home. Reducing sodium in processed foods will be, however, challenging due to sodium’s specific functionality in terms of flavor and associated palatability of foods (i.e., increase of saltiness, reduction of bitterness, enhancement of sweetness and other congruent flavors). The current review discusses the sensory role of sodium in food, determinants of salt taste perception and a variety of strategies, such as sodium replacers (i.e., potassium salts) and gradual reduction of sodium, to decrease sodium in processed foods while maintaining palatability. PMID:22254117
[Effect of pulse magnetic field on distribution of neuronal action potential].
Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling
2014-08-25
The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.
Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes.
Black, J A; Dib-Hajj, S; Cohen, S; Hinson, A W; Waxman, S G
1998-07-01
Astrocytes in vitro express several distinct voltage-sensitive sodium currents, including tetrodotoxin (TTX)-resistant in non-stellate astrocytes and TTX-sensitive currents in stellate astrocytes. However, the molecular identity of the underlying channels, and the mechanisms that regulate their expression, have yet to be identified. Since spinal cord astrocytes in vitro express sodium currents that are nearly ten-fold greater that those of astrocytes derived from other regions, we used reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunocytochemistry to search for a sodium channel mRNA and protein corresponding to a TTX-resistant channel in these cells. RT-PCR did not detect transcripts for SNS, which is known to encode a TTX-resistant current in dorsal root ganglion neurons. However, RT-PCR demonstrated the presence of rH1 mRNA in cultured spinal cord astrocytes derived from postnatal day 0 (P0) Sprague Dawley rats at 7 days in vitro and in also intact spinal cords of P0 and P7 rats. Hybridization signal for rH1 mRNA was detected by in situ hybridization cytochemistry in most non-stellate and, at varying levels, in stellate astrocytes in these cultures. Immunocytochemical studies, utilizing a polyclonal antibody (R-12) generated against a conserved polypeptide sequence of sodium channels, demonstrated sodium channel immunoreactivity in non-stellate and stellate astrocytes in these cultures. Spinal cord cultures reacted with a rH1-specific polyclonal antibody also showed rH1 immunostaining in non-stellate and stellate astrocytes, although the intensity of the rH1 immunoreactivity in both astrocyte morphologies was attenuated compared to that observed with the R-12 generic sodium channel antibody. The presence of rH1 mRNA and protein in non-stellate astrocytes in vitro provides a possible correlate for the TTX-resistant current that has been recorded in these cells. Since TTX-resistant current is not present in stellate astrocytes, the presence of rH1 mRNA and protein in these cells suggests, in addition, that post-translational mechanisms participate in the control of sodium channel expression in these cells.
2014-10-01
approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive...TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...NUMBER Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
2009-10-01
SUBJECT TERMS Traumatic Brain Injury, Alcohol Use , Mood , Mood Stabilization 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18...1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive episodes during long...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL
Schoppen, Stefanie; Pérez-Granados, Ana M; Carbajal, Angeles; Sarriá, Beatriz; Navas-Carretero, Santiago; Pilar Vaquero, M
2008-06-01
AIM To assess in healthy postmenopausal women the influence of consuming sodium-bicarbonated mineral water on postprandial evolution of serum aldosterone and urinary electrolyte excretion. Eighteen postmenopausal women consumed 500 ml of two sodium-bicarbonated mineral waters (sodium-bicarbonated mineral water 1 and sodium-bicarbonated mineral water 2) and a low-mineral water with a standard meal. Postprandial blood samples were taken at 60, 120, 240, 360 and 420 min and aldosterone concentrations were measured. Postprandial urinary minerals were determined. Urinary and total mineral excretion and urinary mineral concentrations did not differ except for sodium concentration, which was significantly higher with sodium-bicarbonated mineral water 1 than with low-mineral water (P = 0.005). There was a time effect (P = 0.003) on the aldosterone concentration. At 120 min, aldosterone concentrations were lower with sodium-bicarbonated mineral water 1 (P = 0.021) and sodium-bicarbonated mineral water 2 (P = 0.030) compared with low-mineral water. Drinking a sodium-rich bicarbonated mineral water with a meal increases urinary sodium concentration excretion without changes in the excretion of potassium and bone minerals.
Assessing U.S. sodium intake through dietary data and urine biomarkers
USDA-ARS?s Scientific Manuscript database
Sodium intake is directly related to blood pressure, a primary risk factor for heart disease and stroke. Reducing intake is estimated to save billions in U.S. health care dollars annually. Current public health recommendations and efforts targeting sodium reductions make accurate monitoring of pop...
Sodium and potassium conductance changes during a membrane action potential.
Bezanilla, F; Rojas, E; Taylor, R E
1970-12-01
1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.
Wang, Shuai; Tu, Jiguo; Yuan, Yan; Ma, Rui; Jiao, Shuqiang
2016-01-28
The paper reports a facile and cost effective method for fabricating sodium molybdenum sulfide nanoparticles through using MoS2 sheets as the precursor by sodium-modification. The electrochemical performances of sodium molybdenum sulfide nanoparticles are studied as anode materials for sodium-ion batteries. The galvanostatic charge-discharge measurements have been performed in a voltage range of 0.01-2.6 V vs. Na(+)/Na under different current densities, using the as-prepared sodium molybdenum sulfide nanoparticles as a working electrode. Typically, the initial discharge and charge capacities of sodium molybdenum sulfide nanoparticles are 475 and 380 mA h g(-1), respectively, at a current density of 20 mA g(-1). The sodium molybdenum sulfide nanoparticles exhibit high capacity with a reversible discharge capacity of about 190 mA h g(-1) after 100 cycles. It should be emphasized that the discharge reaction consists of two steps which correspond to voltage plateaus of 0.93 V and 0.85 V vs. Na(+)/Na in the first discharge curve of the Na/MoS2 battery, respectively. But there is only one apparent voltage plateau in the Na/Na-Mo-S battery, and it reduces to below 0.5 V vs. Na(+)/Na, which can enhance the power density. All of the findings demonstrate that sodium molybdenum sulfide nanoparticles have steady cycling performance and environmental and cost friendliness as next generation secondary batteries.
Phenomenological studies on sodium for CSP applications: A safety review
NASA Astrophysics Data System (ADS)
Armijo, Kenneth M.; Andraka, Charles E.
2016-05-01
Sodium Heat transfer fluids (HTF) such as sodium, can achieve temperatures above 700°C to obtain power cycle performance improvements for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF's (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable operating conditions that match proposed high temperature, isothermal power cycles. This advantage could increase the efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sensible sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium receiver designs, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Lessons obtained from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.
Antman, Elliott M; Appel, Lawrence J; Balentine, Douglas; Johnson, Rachel K; Steffen, Lyn M; Miller, Emily Ann; Pappas, Antigoni; Stitzel, Kimberly F; Vafiadis, Dorothea K; Whitsel, Laurie
2014-06-24
A 2-day interactive forum was convened to discuss the current status and future implications of reducing sodium in the food supply and to identify opportunities for stakeholder collaboration. Participants included 128 stakeholders engaged in food research and development, food manufacturing and retail, restaurant and food service operations, regulatory and legislative activities, public health initiatives, healthcare, academia and scientific research, and data monitoring and surveillance. Presentation topics included scientific evidence for sodium reduction and public health policy recommendations; consumer sodium intakes, attitudes, and behaviors; food technologies and solutions for sodium reduction and sensory implications; experiences of the food and dining industries; and translation and implementation of sodium intake recommendations. Facilitated breakout sessions were conducted to allow for sharing of current practices, insights, and expertise. A well-established body of scientific research shows that there is a strong relationship between excess sodium intake and high blood pressure and other adverse health outcomes. With Americans getting >75% of their sodium from processed and restaurant food, this evidence creates mounting pressure for less sodium in the food supply. The reduction of sodium in the food supply is a complex issue that involves multiple stakeholders. The success of new technological approaches for reducing sodium will depend on product availability, health effects (both intended and unintended), research and development investments, quality and taste of reformulated foods, supply chain management, operational modifications, consumer acceptance, and cost. The conference facilitated an exchange of ideas and set the stage for potential collaboration opportunities among stakeholders with mutual interest in reducing sodium in the food supply and in Americans' diets. Population-wide sodium reduction remains a critically important component of public health efforts to promote cardiovascular health and prevent cardiovascular disease and will remain a priority for the American Heart Association. © 2014 American Heart Association, Inc.
[Pathophysiology of hypertension : What are our current concepts?].
Jordan, J
2015-03-01
In the year 2015, many questions regarding the pathophysiology of essential arterial hypertension remain unresolved. Substantial scientific progress has been made in various medical areas aided by novel molecular"omics" techniques. The findings could then be implemented in diagnostic and therapeutic procedures. In the field of hypertension research such methods have been applied in very large cohorts but have contributed less to pathophysiological understanding and clinical management than expected. The findings on the pathophysiological importance of baroreflex mechanisms, natriuretic peptides and osmotically inactive sodium storage discussed in this article all have something in common: all are based on small, carefully conducted human physiological investigations and often challenge current textbook knowledge. Nevertheless, these findings have opened up new research fields and are likely to affect clinical care.
Complications of sodium hydroxide chemical matrixectomy: nail dystrophy, allodynia, hyperalgesia.
Bostancı, Seher; Koçyiğit, Pelin; Güngör, Hilayda Karakök; Parlak, Nehir
2014-11-01
Ingrown toenails are seen most commonly in young adults, and they can seriously affect daily life. Partial nail avulsion with chemical matrixectomy, generally by using either sodium hydroxide or phenol, is one of the most effective treatment methods. Known complications of phenol matrixectomy are unpredictable tissue damage, prolonged postoperative drainage, increased secondary infection rates, periostitis, and poor cosmetic results. To our knowledge, there have been no reports about the complications related to sodium hydroxide matrixectomy. Herein, we describe three patients who developed nail dystrophy, allodynia, and hyperalgesia after sodium hydroxide matrixectomy.
Dietary Sodium and Health: More Than Just Blood Pressure
Farquhar, William B.; Edwards, David G.; Jurkovitz, Claudine T.; Weintraub, William S.
2016-01-01
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt-sensitivity of BP varies widely, but certain subgroups tend to be more salt-sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood, but may involve alterations in renal function, fluid volume, fluid regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, we address these issues and the epidemiological literature relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. We also provide information and strategies for reducing dietary sodium. PMID:25766952
French, Christopher R; Zeng, Zhen; Williams, David A; Hill-Yardin, Elisa L; O'Brien, Terence J
2016-02-01
Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an "intermediate inactivation" (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials (V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 10(2)-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation. Copyright © 2016 the American Physiological Society.
Wallén, Peter; Robertson, Brita; Cangiano, Lorenzo; Löw, Peter; Bhattacharjee, Arin; Kaczmarek, Leonard K; Grillner, Sten
2007-01-01
The slow afterhyperpolarization (sAHP) following the action potential is the main determinant of spike frequency regulation. The sAHP after single action potentials in neurons of the lamprey locomotor network is largely due to calcium-dependent K+ channels (80%), activated by calcium entering the cell during the spike. The residual (20%) component becomes prominent during high level activity (50% of the sAHP). It is not Ca2+ dependent, has a reversal potential like that of potassium, and is not affected by chloride injection. It is not due to rapid activation of Na+/K+-ATPase. This non-KCa-sAHP is reduced markedly in amplitude when sodium ions are replaced by lithium ions, and is thus sodium dependent. Quinidine also blocks this sAHP component, further indicating an involvement of sodium-dependent potassium channels (KNa). Modulators tested do not influence the KNa-sAHP amplitude. Immunofluorescence labelling with an anti-Slack antibody revealed distinct immunoreactivity of medium-sized and large neurons in the grey matter of the lamprey spinal cord, suggesting the presence of a Slack-like subtype of KNa channel. The results strongly indicate that a KNa potassium current contributes importantly to the sAHP and thereby to neuronal frequency regulation during high level burst activity as during locomotion. This is, to our knowledge, the first demonstration of a functional role for the Slack gene in contributing to the slow AHP. PMID:17884929
NASA Astrophysics Data System (ADS)
Gulothungan, G.; Malathi, R.
2018-04-01
Disturbed sodium (Na+) and calcium (Ca2+) handling is known to be a major predisposing factor for life-threatening cardiac arrhythmias. Cardiac contractility in ventricular tissue is prominent by Ca2+ channels like voltage dependent Ca2+ channels, sodium-calcium exchanger (Na+-Ca2+x) and sacroplasmicrecticulum (SR) Ca2+ pump and leakage channels. Experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. Our aim of this article is to study the impact on action potential (AP) generation and propagation in single ventricular myocyte and ventricular tissue under different dysfunction Ca2+ channels condition. In enhanced activity of Na+-Ca2+x, single myocyte produces AP duration (APD90) and APD50 is significantly smaller (266 ms and 235 ms). Its Na+-Ca2+x current at depolarization is increases 60% from its normal level and repolarization current goes more negative (nonfailing= -0.28 pA/pF and failing= -0.47 pA/pF). Similarly, same enhanced activity of Na+-Ca2+x in 10 mm region of ventricular sheet, raises the plateau potential abruptly, which ultimately affects the diastolic repolarization. Compare with normal ventricular sheet region of 10 mm, 10% of ventricular sheet resting state is reduces and ventricular sheet at time 250 ms is goes to resting state very early. In hypertrophy condition, single myocyte produces APD90 and APD50 is worthy of attention smaller (232 mS and 198 ms). Its sodium-potassium (Na+-K+) pump current is 75% reduces from its control conditions (0.13 pA/pF). Hypertrophy condition, 50% of ventricular sheet is reduces to minimum plateau potential state, that starts the repolarization process very early and reduces the APD. In a single failing SR Ca2+ channels myocyte, recovery of Ca2+ concentration level in SR reduces upto 15% from its control myocytes. At time 290 ms, 70% of ventricular sheet is in dysfunction resting potential state in the range -83 mV and ventricular sheet at time 295 ms is goes to 65% dysfunction resting state. Therefore we concluded that shorter APD, instability resting potential and affected calcium induced calcium release (CICR) due to dysfunction Ca2+ channels is potentially have a substantial effect on cardiac contractility and relaxation. Computational study on ventricular tissue AP and its underlying ionic channel currents could help to elucidate possible arrhythmogenic mechanism on a cellular level.
Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.
Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J
2016-12-01
Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Dietary Sodium and Blood Pressure: How Low Should We Go?
Van Horn, Linda
2015-01-01
Sodium intake in the United States exceeds recommended amounts across all age, gender and ethnic groups. National dietary guidelines advocate reduced intake by at least 1,000mg per day or more, but whether there is population-wide benefit from further reductions to levels of 1500mg per day remains controversial. A brief review of current evidence-based dietary guidelines is provided and key prospective, randomized studies that report dietary and urinary sodium data are summarized. Dietary sources of sodium and eating patterns that offer nutritiously sound approaches to nutrient dense, reduced sodium intake are compared. No studies suggest that high sodium intake at the levels of the population's current diet is optimal. On the contrary, national and international evidence and systematic reviews consistently recommend reducing sodium intake overall, generally by 1000mg/day. Recommendations to reduce intakes to 2400mg/d are generally accepted as beneficial. Whether further reductions to 1500mg/d are useful, feasible and safe among specific subgroups in the population who are at increased risk of hypertension or stroke remains controversial and requires individualized consideration by patients and their health care providers. Copyright © 2015 Elsevier Inc. All rights reserved.
Allen, Alexander R; Gullixson, Leah R; Wolhart, Sarah C; Kost, Susan L; Schroeder, Darrell R; Eisenach, John H
2014-02-01
Dietary sodium influences intermediate physiological traits in healthy adults independent of changes in blood pressure. The purpose of this study was to test the hypothesis that dietary sodium affects cardiac autonomic modulation during mental stress. In a prospective, randomized cross-over design separated by 1 month between diets, 70 normotensive healthy young adults (F/M: 44/26, aged 18-38 years) consumed a 5-day low (10 mmol/day), normal (150 mmol), and high (400 mmol) sodium diet followed by heart rate variability (HRV) recordings at rest and during 5-min computerized mental arithmetic. Women were studied in the low hormone phase of the menstrual cycle following each diet. Diet did not affect resting blood pressure, but heart rate (HR) (mean ± SE) was 66 ± 1, 64 ± 1, and 63 ± 1 bpm in low, normal, and high sodium conditions, respectively (analysis of variance P = 0.02). For HRV, there was a main effect of sodium on resting SD of normalized RR intervals (SDNN), square root of the mean squared difference of successive normalized RR intervals (RMSSD), high frequency, low-frequency normalized units (LFnu), and high-frequency normalized units (HFnu) (P < 0.01 for all). The response to low sodium was most marked and consistent with sympathetic activation and reduced vagal activity, with increased LFnu and decreased SDNN, RMSSD, and HFnu compared to both normal and high sodium conditions (P ≤0.05 for all). Dietary sodium-by-mental stress interactions were significant for mean NN, RMSSD, high-frequency power, LFnu, and low frequency/high frequency ratio (P < 0.05 for all). The interactions signify that sodium restriction evoked an increase in resting sympathetic activity and reduced vagal activity to the extent that mental stress caused modest additional disruptions in autonomic balance. Conversely, normal and high sodium evoked a reduction in resting sympathetic activity and incremental increase in resting vagal activity, which were disrupted to a greater extent during mental stress compared to low sodium. We conclude that autonomic control of HRV at rest and during mental stress is altered by dietary sodium in healthy normotensive young adult men and women.
Fast-slow asymptotics for a Markov chain model of fast sodium current
NASA Astrophysics Data System (ADS)
Starý, Tomáš; Biktashev, Vadim N.
2017-09-01
We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.
Krishnan, Giri P.; Filatov, Gregory; Shilnikov, Andrey
2015-01-01
Ionic concentrations fluctuate significantly during epileptic seizures. In this study, using a combination of in vitro electrophysiology, computer modeling, and dynamical systems analysis, we demonstrate that changes in the potassium and sodium intra- and extracellular ion concentrations ([K+] and [Na+], respectively) during seizure affect the neuron dynamics by modulating the outward Na+/K+ pump current. First, we show that an increase of the outward Na+/K+ pump current mediates termination of seizures when there is a progressive increase in the intracellular [Na+]. Second, we show that the Na+/K+ pump current is crucial in maintaining the stability of the physiological network state; a reduction of this current leads to the onset of seizures via a positive-feedback loop. We then present a novel dynamical mechanism for bursting in neurons with a reduced Na+/K+ pump. Overall, our study demonstrates the profound role of the current mediated by Na+/K+ ATPase on the stability of neuronal dynamics that was previously unknown. PMID:25589588
Tian, Jun-Nan; Ge, Bing-Qiang; Shen, Yun-Feng; He, Yu-Xuan; Chen, Zhong-Xiu
2016-03-09
Interaction of endogenous sodium cholate (SC) with dietary amphiphiles would induce structural evolution of the self-assembled aggregates, which inevitably affects the hydrolysis of fat in the gut. Current work mainly focused on the interaction of bile salts with classical double-layered phospholipid vesicles. In this paper, the thermodynamics and structural evolution during the interaction of SC with novel unilamellar vesicles formed from vitamin-derived zwitterionic bolaamphiphile (DDO) were characterized. It was revealed that an increased temperature and the presence of NaCl resulted in narrowed micelle-vesicle coexistence and enlarged the vesicle region. The coexistence of micelles and vesicles mainly came from the interaction of monomeric SC with DDO vesicles, whereas micellar SC contributed to the total solubilization of DDO vesicles. This research may enrich the thermodynamic mechanism behind the structure transition of the microaggregates formed by amphiphiles in the gut. It will also contribute to the design of food formulation and drug delivery system.
Electrodialysis potential for fractionation of multicomponent aqueous solutions
NASA Astrophysics Data System (ADS)
Grzegorzek, Martyna; Majewska-Nowak, Katarzyna
2017-11-01
The paper aimed at the evaluation of the batch electrodialysis (ED) run in the course of treatment and desalination of various aqueous mixtures containing both mineral (sodium fluoride, sodium chloride) and organic substances (dyes or humic acids). The commercial ED stack (PCCell Bed) equipped with standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes was used. The ED experiments were performed at a constant current density (1.56 or 1.72 mA/cm2). The mechanism of ion migration as well as membrane deposition for variable solution composition and various membrane types was analyzed The calculated mass balance and electrical energy demand for each ED run were helpful in evaluating the membrane fouling intensity. It was found that the presence of organic substances in the treated solution had a minor impact on energy consumption, but rather strongly affected chloride flux. The extent of organics deposition was significantly lower for monovalent selective anion-exchange membranes than for classic anion-exchange membranes.
IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES
Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...
NASA Astrophysics Data System (ADS)
Tice, Ryan C.; Kim, Younggy
2014-12-01
Excessive amounts of ammonia are known to inhibit exoelectrogenic activities in microbial fuel cells (MFCs). However, the threshold ammonia concentration that triggers toxic effects is not consistent among literature papers, indicating that ammonia inhibition can be affected by other operational factors. Here, we examined the effect of substrate concentration and feed frequency on the capacity of exoelectrogenic bacteria to resist against ammonia inhibition. The high substrate condition (2 g L-1 sodium acetate, 2-day feed) maintained high electricity generation (between 1.1 and 1.9 W m-2) for total ammonia concentration up to 4000 mg-N L-1. The less frequent feed condition (2 g L-1 sodium acetate, 6-day feed) and the low substrate condition (0.67 g L-1 sodium acetate, 2-day feed) resulted in substantial decreases in electricity generation at total ammonia concentration of 2500 and 3000 mg-N L-1, respectively. It was determined that the power density curve serves as a better indicator than continuously monitored electric current for predicting ammonia inhibition in MFCs. The chemical oxygen demand (COD) removal gradually decreased at high ammonia concentration even without ammonia inhibition in electricity generation. The experimental results demonstrated that high substrate concentration and frequent feed substantially enhance the capacity of exoelectrogenic bacteria to resist against ammonia inhibition.
Preparation and testing of nickel-based superalloy/sodium heat pipes
NASA Astrophysics Data System (ADS)
Lu, Qin; Han, Haitao; Hu, Longfei; Chen, Siyuan; Yu, Jijun; Ai, Bangcheng
2017-11-01
In this work, a kind of uni-piece nickel-based superalloy/sodium heat pipe is proposed. Five models of high temperature heat pipe were prepared using GH3044 and GH4099 nickel-based superalloys. And their startup performance and ablation resistance were investigated by quartz lamp calorifier radiation and wind tunnel tests, respectively. It is found that the amount of charging sodium affects the startup performance of heat pipes apparently. No startup phenomenon was found for insufficient sodium charged model. In contrast, the models charged with sufficient sodium startup successfully, displaying a uniform temperature distribution. During wind tunnel test, the corresponding models experienced a shorter startup time than that during quartz lamp heating. GH4099/sodium heat pipe shows excellent ablation resistance, being better than that of GH3044/sodium heat pipe. Therefore, it is proposed that this kind of heat pipe has a potential application in thermal protection system of hypersonic cruise vehicles.
Dietary sodium and health: more than just blood pressure.
Farquhar, William B; Edwards, David G; Jurkovitz, Claudine T; Weintraub, William S
2015-03-17
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt sensitivity of BP varies widely, but certain subgroups tend to be more salt sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood but may involve alterations in renal function, fluid volume, fluid-regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, the investigators review these issues and the epidemiological research relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. They also provide information and strategies for reducing dietary sodium. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
2015-01-01
We prepared 13 derivatives of N-(biphenyl-4′-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound’s whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI = TD50/ED50) that compared favorably with clinical antiseizure drugs. Compounds with a polar, aprotic R-substituent potently promoted Na+ channel slow inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage of affecting these two pathways to decrease neurological hyperexcitability is discussed. PMID:25004277
Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.
Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto
2018-05-01
Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.
Rodnight, R.
1970-01-01
1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate. PMID:4250238
Søgaard, Ditte; Lindblad, Maiken M; Paidi, Maya D; Hasselholt, Stine; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille
2014-07-01
Moderate vitamin C (vitC) deficiency (plasma concentrations less than 23 μmol/L) affects as much as 10% of adults in the Western World and has been associated with an increased mortality in disease complexes such as cardiovascular disease and the metabolic syndrome. The distribution of vitC within the body is subjected to complex and nonlinear pharmacokinetics and largely depends on the sodium-dependent vitC-specific transporters, sodium-dependent vitamin C transporter 1 (SVCT1) and sodium-dependent vitamin C transporter 2 (SVCT2). Although currently not established, it is likely to expect that a state of deficiency may affect the expression of these transporters to preserve vitC concentrations in specific target tissues. We hypothesized that diet-induced states of vitC deficiency lead to alterations in the messenger RNA (mRNA) and/or protein expression of vitC transporters, thereby regulating vitC tissue distribution. Using guinea pigs as a validated model, this study investigated the effects of a diet-induced vitC deficiency (100 mg vitC/kg feed) or depletion (0 mg vitC/kg feed) on the expression of transporters SVCT1 and SVCT2 in selected tissues and the transport from plasma to cerebrospinal fluid (CSF). In deficient animals, SVCT1 was increased in the liver, whereas a decreased SVCT1 expression but increased SVCT2 mRNA in livers of depleted animals suggests a shift in transporter expression as response to the diet. In CSF, a constant plasma:CSF ratio shows unaltered vitC transport irrespective of dietary regime. The study adds novel information to the complex regulation maintaining vitC homeostasis in vivo during states of deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
[Study on THz spectra and vibrational modes of benzoic acid and sodium Benzoate].
Zheng, Zhuan-Ping; Fan, Wen-Hui; Yan, Hui; Liu, Jia; Xu, Li-Min
2013-03-01
Terahertz time-domain spectroscopy was employed to measure the terahertz absorption spectra of benzoic acid and sodium benzoate at room temperature. The origins of the measured features of benzoic acid were summarized based on previous study. Density functional theory was used to compute and analyze the molecular structure and vibrational modes of sodium benzoate in monomer. Based on the obtained results, the authors found that the THz spectral features can be used to distinguish benzoic acid and sodium benzoate totally; the essential reason for the THz spectral difference between benzoic acid and sodium benzoate is that the electrovalent bond of sodium benzoate affects the values of covalent bond lengths and bond angles, as well as the molecular interactions and arrangement in unit cell; the measured features of benzoic acid and sodium benzoate come from the collective vibrations except the peaks located at 107 cm-1 of benzoic acid and 54 cm-1 of sodium benzoate.
2013-10-01
acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury...and Alcohol Use Following Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR
2010-10-01
comparable to lithium in treating acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with...A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Lability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
USDA-ARS?s Scientific Manuscript database
Identifying current major dietary sources of sodium can enhance strategies to reduce excess sodium intake which occurs among 90% of U.S. school-aged children. We conducted a cross-sectional analysis of 24-hour dietary recall data from a nationally representative sample of 2,142 U.S. children aged 6...
Tatlican, Semih; Eren, Cemile; Yamangokturk, Burcu; Eskioglu, Fatma; Bostanci, Seher
2010-02-01
Treatment of ingrown toenails using chemical matricectomy in patients with diabetes has been difficult, because delayed wound healing, wound infections, and digital ischemia can interfere with the procedure. Chemical matricectomy with 10% sodium hydroxide is an effective treatment for ingrown toenails in a normal population. Investigation of the effectiveness and safety of chemical matricectomy with 10% sodium hydroxide solution for ingrown toenails in patients with diabetes. Thirty patients with diabetes with 40 ingrown toenails and 30 patients without diabetes with 41 ingrown toenails were enrolled in the study. After partial avulsion of the affected edge, germinal matrix was treated for 1 minute with 10% sodium hydroxide. Patients were observed on alternate days until complete healing was achieved and followed for up to 24 months for recurrence. Assessment of the treatment in both groups for complete healing, postoperative pain, tissue damage, drainage, infections, and rate of recurrences revealed no statistically significant difference. The partial avulsion of the affected edge and the treatment of the germinal matrix for 1 minute with 10% sodium hydroxide preceded by matrix curettage is an effective and safe treatment modality for ingrown toenails in people with diabetes.
In vivo sodium concentration continuously monitored with fluorescent sensors.
Dubach, J Matthew; Lim, Edward; Zhang, Ning; Francis, Kevin P; Clark, Heather
2011-02-01
Sodium balance is vital to maintaining normal physiological function. Imbalances can occur in a variety of diseases, during certain surgical operations or during rigorous exercise. There is currently no method to continuously monitor sodium concentration in patients who may be susceptible to hyponatremia. Our approach was to design sodium specific fluorescent sensors capable of measuring physiological fluctuations in sodium concentration. The sensors are submicron plasticized polymer particles containing sodium recognition components that are coated with biocompatible poly(ethylene) glycol. Here, the sensors were brought up in saline and placed in the subcutaneous area of the skin of mice by simple injection. The fluorescence was monitored in real time using a whole animal imager to track changes in sodium concentrations. This technology could be used to monitor certain disease states or warn against dangerously low levels of sodium during exercise.
µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential
Tosti, Elisabetta; Boni, Raffaele
2017-01-01
The Conus genus includes around 500 species of marine mollusks with a peculiar production of venomous peptides known as conotoxins (CTX). Each species is able to produce up to 200 different biological active peptides. Common structure of CTX is the low number of amino acids stabilized by disulfide bridges and post-translational modifications that give rise to different isoforms. µ and µO-CTX are two isoforms that specifically target voltage-gated sodium channels. These, by inducing the entrance of sodium ions in the cell, modulate the neuronal excitability by depolarizing plasma membrane and propagating the action potential. Hyperexcitability and mutations of sodium channels are responsible for perception and transmission of inflammatory and neuropathic pain states. In this review, we describe the current knowledge of µ-CTX interacting with the different sodium channels subtypes, the mechanism of action and their potential therapeutic use as analgesic compounds in the clinical management of pain conditions. PMID:28937587
NASA Astrophysics Data System (ADS)
Rogov, A. B.; Shayapov, V. R.
2017-02-01
In this paper, the influence of cationic electrolytes composition on electrical and optical responses of plasma electrolytic oxidation process of A1050 aluminum alloy under alternating polarization is considered. The electrolytes consist of 0.1 M boric acid with addition of one of the following hydroxides: LiOH, NaOH, KOH, tetraethylammonium hydroxide, Ca(OH)2 up to pH value 9.2. Coatings microstructure, elemental and phase compositions were studied by SEM, EDS and XRD. It was shown that the hysteresis of anodic current-voltage curve (specific feature of "Soft sparking" PEO) was clear observed in the presence of sodium and potassium cations. It was found that composition of microdischarges plasma is also affected by the nature of the cations. It was shown that there are a number of reciprocal processes, which take place under anodic and cathodic polarization.
Fatehi, M; Rowan, E G; Harvey, A L
2002-01-01
The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.
Miura, Katsuyuki; Ueshima, Hirotsugu
2017-01-01
Pathogenetic studies have demonstrated that the interdependency of sodium and potassium affects blood pressure. Emerging evidences on the sodium-to-potassium ratio show benefits for a reduction in sodium and an increase in potassium compared to sodium and potassium separately. As presently there is no known review, this article examined the practical use of the sodium-to-potassium ratio in daily practice. Epidemiological studies suggest that the urinary sodium-to-potassium ratio may be a superior metric as compared to separate sodium and potassium values for determining the relation to blood pressure and cardiovascular disease risks. Higher correlations and better agreements are seen for the casual urine sodium-to-potassium ratio than for casual urine sodium or potassium alone when compared with the 24-h urine values. Repeated measurements of the casual urine provide reliable estimates of the 7-day 24-h urine value with less bias for the sodium-to-potassium ratio as compared to the common formulas used for estimating the single 24-h urine from the casual urine for sodium and potassium separately. Self-monitoring devices for the urinary sodium-to-potassium ratio measurement makes it possible to provide prompt onsite feedback. Although these devices have been evaluated with a view to support an individual approach for sodium reduction and potassium increase, there has yet to be an accepted recommended guideline for the sodium-to-potassium ratio. This review concludes with a look at the practical use of the sodium-to-potassium ratio for assistance in practical sodium reduction and potassium increase. PMID:28678188
Sodium MRI: Methods and applications
Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej
2014-01-01
Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363
Muñoz-Hoyos, Antonio; Heredia, Francisco; Moreno, Francisco; García, Joaquín José; Molina-Carballo, Antonio; Escames, Germaine; Acuña-Castroviejo, Darío
2002-05-01
Midazolam and sodium thiopental are two commonly used drugs in anesthesia for minor surgical procedures in children. A relationship exists between benzodiazepines (BNZ), barbiturates and melatonin. Whereas these drugs increase pineal melatonin production, the indoleamine amplifies the effects of both BNZ and barbiturates on the central nervous system (CNS). Our purpose was thus to analyze the plasma levels of melatonin before and during midazolam or sodium thiopental anesthesia in children subjected to ambulatory surgical procedures. Midazolam (0.4 mg/kg) or sodium thiopental (5 mg/kg) were administered i.v. to 33 and 32 children (aged between 2 and 14 yr), respectively, and blood samples were taken before and 5, 10 and 20 min after the drugs were administered. Melatonin was measured in plasma by a commercial radioimmunoassay kit previously standardized in our laboratory. The results showed that neither midazolam nor sodium thiopental anesthesia significantly affected the levels of melatonin studied at anytime. Significant correlations were found comparing the levels of melatonin between the different times studied. These results suggest that midazolam or sodium thiopental did not affect melatonin production by the pineal gland, thus avoiding a possible potentiating effect of the indoleamine on the central effects of these drugs during anesthesia. However, the possibility that changes in melatonin had been masked by the antioxidant role of the neurohormone are discussed.
Rizo, Arantxa; Fuentes, Ana; Barat, José M; Fernández-Segovia, Isabel
2018-05-01
Food manufacturers need to reduce sodium content to meet consumer and public health demands. In the present study, the use of sodium-free (SF) salt and KCl to develop a novel smoke-flavoured salmon product with reduced sodium content was evaluated. Fifty percent of NaCl was replaced with 50% of SF salt or 50% KCl in the salmon smoke-flavouring process, which was carried out using water vapour permeable bags. Triangle tests showed that samples with either SF salt or KCl were statistically similar to the control samples (100% NaCl). Because no sensorial advantage in using SF salt was found compared to KCl and given the lower price of KCl, the KCl-NaCl samples were selected for the next phase. The changes of physicochemical and microbial parameters in smoke-flavoured salmon during 42 days showed that partial replacement of NaCl with KCl did not significantly affect the quality and shelf-life of smoke-flavoured salmon, which was over 42 days. Smoke-flavoured salmon with 37% sodium reduction was developed without affecting the sensory features and shelf-life. This is an interesting option for reducing the sodium content in such products to help meet the needs set by both health authorities and consumers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Carra, Graciela E; Matus, Daniel; Ibáñez, Jorge E; Saraví, Fernando D
2015-01-01
Aerobic metabolism is necessary for ion transport in many transporting epithelia, including the human colonic epithelium. We assessed the effects of the epithelial sodium channel blocker, amiloride, on oxygen consumption and short-circuit current of the human sigmoid epithelium to determine whether these effects were influenced by the age of the subject. Segments of the sigmoid colon were obtained from the safety margin of resections performed in patients of 62-77 years of age. Isolated mucosa preparations were obtained and mounted in airtight Ussing chambers, fit for simultaneous measurement of short-circuit current and oxygen concentration, before and after blocking epithelial sodium channels with amiloride (0.1 mmol/L). Regression analyses were performed to assess the associations between short-circuit current, oxygen consumption, and age of the subject as well as to define the relationship between the decreases in short-circuit current and oxygen consumption after blockade. Epithelial sodium channel blockade caused an 80% reduction in short-circuit current and a 26% reduction in oxygen consumption. Regression analysis indicated that both changes were significantly related (r = 0.884;P = 0.0007). Oxygen consumption decreased by 1 m mol/h/cm2 for each 25 m A/cm2 decrease in short-circuit current. Neither short-circuit current nor oxygen consumption had any significant relationship with the age of the subjects. The decrease in epithelial oxygen consumption caused by amiloride is proportional to the decrease in short-circuit current and independent of the age of the subject.
Capesius, Joseph P.; Sullivan, Joseph R.; O'Neill, Gregory B.; Williams, Cory A.
2005-01-01
Accurate ice-affected streamflow records are difficult to obtain for several reasons, which makes the management of instream-flow water rights in the wintertime a challenging endeavor. This report documents a method to improve ice-affected streamflow records for two gaging stations in Colorado. In January and February 2002, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, conducted an experiment using a sodium chloride tracer to measure streamflow under ice cover by the tracer-dilution discharge method. The purpose of this study was to determine the feasibility of obtaining accurate ice-affected streamflow records by using a sodium chloride tracer that was injected into the stream. The tracer was injected at two gaging stations once per day for approximately 20 minutes for 25 days. Multiple-parameter water-quality sensors at the two gaging stations monitored background and peak chloride concentrations. These data were used to determine discharge at each site. A comparison of the current-meter streamflow record to the tracer-dilution streamflow record shows different levels of accuracy and precision of the tracer-dilution streamflow record at the two sites. At the lower elevation and warmer site, Brandon Ditch near Whitewater, the tracer-dilution method overestimated flow by an average of 14 percent, but this average is strongly biased by outliers. At the higher elevation and colder site, Keystone Gulch near Dillon, the tracer-dilution method experienced problems with the tracer solution partially freezing in the injection line. The partial freezing of the tracer contributed to the tracer-dilution method underestimating flow by 52 percent at Keystone Gulch. In addition, a tracer-pump-reliability test was conducted to test how accurately the tracer pumps can discharge the tracer solution in conditions similar to those used at the gaging stations. Although the pumps were reliable and consistent throughout the 25-day study period, the pumps underdischarged the tracer by 5.8-15.9 percent as compared to the initial pumping rate setting, which may explain some of the error in the tracer-dilution streamflow record as compared to current-meter streamflow record.
Radhakrishnan, Ramalingam; Baek, Kwang Hyun
2017-07-01
Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Photometer for detection of sodium day airglow.
NASA Technical Reports Server (NTRS)
Mcmahon, D. J.; Manring, E. R.; Patty, R. R.
1973-01-01
Description of a photometer for daytime ground-based measurements of sodium airglow emission. The photometer described can be characterized by the following principal features: (1) a narrow (4.5-A) interference filter for initial discrimination; (2) cooled photomultiplier detector to reduce noise from dark current fluctuations and chopping to eliminate the average dark current; (3) a sodium vapor resonance cell to provide an effective bandpass comparable to the Doppler line width; (4) separate detection of all light transmitted by the interference filter to evaluate the Rayleigh and Mie components within the Doppler width of the resonance cell; and (5) temperature quenching of the resonance cell to evaluate and account for instrumental imperfections.
Phenomenological Studies on Sodium for CSP Applications: A Safety Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Andraka, Charles E.
Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transportmore » starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.« less
Sodium movements in perfused squid giant axons. Passive fluxes.
Rojas, E; Canessa-Fischer, M
1968-08-01
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm(2)sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm(2)sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 +/- 3 pmoles/cm(2)sec and 41 +/- 10 pmoles/cm(2)sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm(2)impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium.
Sodium Movements in Perfused Squid Giant Axons
Rojas, Eduardo; Canessa-Fischer, Mitzy
1968-01-01
Sodium movements in internally perfused giant axons from the squid Dosidicus gigas were studied with varying internal sodium concentrations and with fluoride as the internal anion. It was found that as the internal concentration of sodium was increased from 2 to 200 mM the resting sodium efflux increased from 0.09 to 34.0 pmoles/cm2sec and the average resting sodium influx increased from 42.9 to 64.5 pmoles/cm2sec but this last change was not statistically significant. When perfusing with a mixture of 500 mM K glutamate and 100 mM Na glutamate the resting efflux was 10 ± 3 pmoles/cm2sec and 41 ± 10 pmoles/cm2sec for sodium influx. Increasing the internal sodium concentration also increased both the extra influx and the extra efflux of sodium due to impulse propagation. At any given internal sodium concentration the net extra influx was about 5 pmoles/cm2impulse. This finding supports the notion that the inward current generated in a propagated action potential can be completely accounted for by movements of sodium. PMID:5672003
Inherited disorders of voltage-gated sodium channels
George, Alfred L.
2005-01-01
A variety of inherited human disorders affecting skeletal muscle contraction, heart rhythm, and nervous system function have been traced to mutations in genes encoding voltage-gated sodium channels. Clinical severity among these conditions ranges from mild or even latent disease to life-threatening or incapacitating conditions. The sodium channelopathies were among the first recognized ion channel diseases and continue to attract widespread clinical and scientific interest. An expanding knowledge base has substantially advanced our understanding of structure-function and genotype-phenotype relationships for voltage-gated sodium channels and provided new insights into the pathophysiological basis for common diseases such as cardiac arrhythmias and epilepsy. PMID:16075039
Kadala, Aklesso; Charreton, Mercedes; Jakob, Ingrid; Cens, Thierry; Rousset, Matthieu; Chahine, Mohamed; Le Conte, Yves; Charnet, Pierre; Collet, Claude
2014-01-01
The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central ‘antennal lobe neurons’ (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and processing of information at several levels of the bees olfactory pathway. PMID:25390654
Sodium hypochlorite (dilute chlorine bleach) oral rinse in patient self-care.
Rich, Sandra K; Slots, Jørgen
2015-01-01
Sodium hypochlorite (NaOCl), commonly known as "bleach," is widely accepted as being a safe and effective antiseptic against bacteria, fungi, and viruses. For over a century, bleach has been used to control or overcome infection in homes, hospitals, and even on battlefields, and in endodontics for disinfection of root canals. This paper reviews clinical studies on the efficacy of sodium hypochlorite oral rinse to combat dental plaque and gingival inflammation. Sodium hypochlorite is readily available as inexpensive household bleach, and we suggest that oral rinsing twice weekly with dilute bleach (0.25% sodium hypochlorite) constitutes a valuable adjunct to current methods of plaque removal.
An effective method to screen sodium-based layered materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen
2018-03-01
Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.
NASA Astrophysics Data System (ADS)
Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji
2013-08-01
Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na2CO3 powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. The concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.
Use of Urine Biomarkers to Assess Sodium Intake: Challenges and Opportunities
Maalouf, Joyce; Elliott, Paul; Loria, Catherine M.; Patel, Sheena; Bowman, Barbara A.
2017-01-01
This article summarizes current data and approaches to assess sodium intake in individuals and populations. A review of the literature on sodium excretion and intake estimation supports the continued use of 24-h urine collections for assessing population and individual sodium intake. Since 2000, 29 studies used urine biomarkers to estimate population sodium intake, primarily among adults. More than half used 24-h urine; the rest used a spot/casual, overnight, or 12-h specimen. Associations between individual sodium intake and health outcomes were investigated in 13 prospective cohort studies published since 2000. Only three included an indicator of long-term individual sodium intake, i.e., multiple 24-h urine specimens collected several days apart. Although not insurmountable, logistic challenges of 24-h urine collection remain a barrier for research on the relationship of sodium intake and chronic disease. Newer approaches, including modeling based on shorter collections, offer promise for estimating population sodium intake in some groups. PMID:25974702
Dietary sodium in chronic kidney disease: a comprehensive approach.
Wright, Julie A; Cavanaugh, Kerri L
2010-01-01
Despite existing guidelines, dietary sodium intake among people worldwide often exceeds recommended limits. Research evidence is growing in both animal and human studies showing indirect and direct adverse consequences of high dietary sodium on the kidney. In patients with kidney disease, dietary sodium may have important effects on proteinuria, efficacy of antiproteinuric pharmacologic therapy, hypertension control, maintaining an optimal volume status, and immunosuppressant therapy. Dietary sodium intake is an important consideration in patients with all stages of chronic kidney disease, including those receiving dialysis therapy or those who have received a kidney transplant. We review in detail the dietary sodium recommendations suggested by various organizations for patients with kidney disease. Potential barriers to successfully translating current sodium intake guidelines into practice include poor knowledge about the sodium content of food among both patients and providers, complex labeling information, patient preferences related to taste, and limited support for modifications in public policy. Finally, we offer existing and potential solutions that may assist providers in educating and empowering patients to effectively manage their dietary sodium intake.
A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination
Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia
2014-01-01
A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 μM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water. PMID:24569772
Ghatpande, A S; Rao, S; Sikdar, S K
2001-01-01
Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247
Variation of Lunar Sodium During Passage of the Moon through the Earth's Magnetotail
NASA Technical Reports Server (NTRS)
Potter, Andrew E.; Killen, Rosemary M.; Morgan, Thomas H.
2000-01-01
We measured sodium emission above the lunar equator over a range of lunar altitudes from 100 to 4000 km. The measurements were repeated approximately every 24 hours from June 7 to 16, 1998, covering the period during which the Moon passed through the Earth's magnetotail. Sodium temperatures derived from the altitude dependence of emission intensity ranged from 1200 to 2900 K. This result supports the view that photodesorption is a primary source of sodium in the exosphere since the most probable temperature of sodium form this source is in this range. Passage of the Moon through the Earth's magnetotail (where solar wind is essentially absent) affected the sodium density, such that it was higher before the Moon entered the Earth's magnetotail than after the Moon left it. This suggests that the solar wind plays a role in production of lunar sodium. We propose that its function is to mobilize sodium and bring it to the surface, where photodesorption can eject it into the exosphere. A two-step process such as this could help to explain the latitude dependence of sodium density, which varies as the second or higher power of cosine latitude.
Relating induced in situ conditions of raw chicken breast meat to pinking.
Holownia, K; Chinnan, M S; Reynolds, A E; Davis, J W
2004-01-01
Our objective was to simulate the pink color defect in cooked chicken breast meat with treatment combinations that would induce measurable changes in the conditions of raw meat. In addition, the feasibility of using induced raw meat conditions to develop a logistic regression model for prediction of pinking was studied. Approximately 960 breast fillets from 2 plants with 2 replications were used for inducing in situ conditions with 16 combinations of sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite (present and not present). Muscles in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Raw samples were analyzed for pH, oxidation-reduction potential, and pigment evaluation. Results indicated a significant role of induced in situ conditions of raw meat in the occurrence of pinking. Presence of 1 ppm or more of sodium nitrite in raw meat produced significant pinking of cooked meat. The light muscle color group was least affected and the dark group was most affected by induced pH, oxidation-reduction potential conditions, and metmyoglobin and nitrosopigment content. The predictive ability of the logistic model was more than 90% with nitrosopigment, pH, and reducing conditions being the most important factors. Moreover, validation of the model was confirmed by close association between observed pink samples and those predicted as pink.
Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.
Yin, Jiao; Qi, Li; Wang, Hongyu
2012-05-01
The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.
Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks
Picton, Laurence D.; Nascimento, Filipe; Broadhead, Matthew J.; Sillar, Keith T.
2017-01-01
Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more “natural” locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT The sodium pump is ubiquitously expressed and responsible for at least half of total brain energy consumption. The pumps maintain ionic gradients and the resting membrane potential of neurons, but increasing evidence suggests that activity- and state-dependent changes in pump activity also influence neuronal firing. Here we demonstrate that changes in sodium pump activity regulate locomotor output in the spinal cord of neonatal mice. We describe a sodium pump-mediated afterhyperpolarization in spinal neurons, mediated by spike-dependent increases in pump activity, which is affected by dopamine. Understanding how sodium pumps contribute to network regulation and are targeted by neuromodulators, including dopamine, has clinical relevance due to the role of the sodium pump in diseases, including amyotrophic lateral sclerosis, parkinsonism, epilepsy, and hemiplegic migraine. PMID:28123025
Effect of sodium azide addition and aging storage on casein micelle size
NASA Astrophysics Data System (ADS)
Sinaga, H.; Deeth, H.; Bhandari, B.
2018-02-01
Casein micelles affected most of milk properties, therefore the use sodium azide as milk preservation is not expected to alter milk properties during storage, including the casein micelle size. The aim of this study was to analyse casein micelle size after the addition of sodium azide during storage. The experiment was performed as a complete block randomised design with three replications. The addition of 0.02-0.10% Na-azide do not lead to any noticeable differences in average casein size at the same day and show similar trend after 14 day-storage. At concentration of 0.02% sodium azide (Na-azide), the size of pasteurised milk did not change up to 12 days, while the size of raw skim milk slightly increased by ageing time at day 5. The treated concentration did not affect the size distribution, except for milk with 0.02% Na-azide which had narrower distribution compared to other treated and control milk. The finding from this study suggests that the role of Na-azide in this experiments during storage at 4°C is only for preventing the microbial growth.
Selection of nutrient used in biogenic healing agent for cementitious materials
NASA Astrophysics Data System (ADS)
Tziviloglou, Eirini; Wiktor, Virginie; Jonkers, Henk M.; Schlangen, Erik
2017-06-01
Biogenic self-healing cementitious materials target on the closure of micro-cracks with precipitated inorganic minerals originating from bacterial metabolic activity. Dormant bacterial spores and organic mineral compounds often constitute a biogenic healing agent. The current paper focuses on the investigation of the most appropriate organic carbon source to be used as component of a biogenic healing agent. It is of great importance to use an appropriate organic source, since it will firstly ensure an optimal bacterial performance in terms of metabolic activity, while it should secondly affect the least the properties of the cementitious matrix. The selection is made among three different organic compounds, namely calcium lactate, calcium acetate and sodium gluconate. The methodology that was used for the research was based on continuous and non-continuous oxygen consumption measurements of washed bacterial cultures and on compressive strength tests on mortar cubes. The oxygen consumption investigation revealed a preference for calcium lactate and acetate, but an indifferent behaviour for sodium gluconate. The compressive strength on mortar cubes with different amounts of either calcium lactate or acetate (up to 2.24% per cement weight) was not or it was positively affected when the compounds were dissolved in the mixing water. In fact, for calcium lactate the increase in compressive strength reached 8%, while for calcium acetate the maximum strength increase was 13.4%.
Study on glutathionesulfonic acid sodium salt as biodistribution promoter for thiopental sodium.
Ohkawa, Yuhsuke; Fujimoto, Tomonori; Higashiyama, Kyohko; Maeda, Hiroshi; Asoh, Tomoyuki; Kurumi, Masateru; Sasaki, Kenji; Nakayama, Taiji
2002-06-01
The effects of glutathione (GSH) and glutathionesulfonic acid sodium salt [N-(N-gamma-L-glutamyl-L-beta-sulfoalanyl)glycine sodium salt, GSO3Na], which is a minor metabolite of GSH, on the pharmacokinetics of thiopental sodium were investigated in rats. The concomitant use of GSO3Na with thiopental sodium significantly increased the tissue-to-plasma concentration ratio (Kp) of thiopental sodium 60 min after its administration in the heart, lung, brain, liver, kidney, and spleen, while GSH did not affect them. On the other hand, the Kp value of thiopental sodium 5 min after its administration with concomitant GSO3Na decreased significantly only in the spleen. Neither GSO3Na nor GSH changes the pharmacokinetic parameters of thiopental sodium. Significant change of the binding ratio of thiopental sodium to bovine serum albumin (BSA) was not observed by the addition of less than 5-fold GSO3Na. About 50% of thiopental sodium was bound to the brain, lung or liver, however, no significant change of this binding ratio was observed by the concomitant use of GSO3Na. The partition coefficient of thiopental sodium apparently increased by the concomitant use of GSO3Na but not by GSH. This phenomenon seemed to be concerned with a mechanism to increase the Kp values of thiopental sodium in the tissues. The increment in the drug distribution to tissues with concomitant GSO3Na observed in this study is useful information for the application of drug combinations as a biodistribution promoter.
Alterations of red blood cell sodium transport during malarial infection
Dunn, Michael J.
1969-01-01
Previous studies have suggested that malaria induces changes in erythrocytic membrane permeability and susceptibility to osmotic lysis. The present study investigated erythrocytic transport of sodium with cells from Rhesus monkeys infected with Plasmodium knowlesi. Red blood cell sodium concentration was significantly elevated in 37 parasitized animals (21.8±1.2 mM; mean ±SEM), as compared to 23 control animals (10.0±0.38 mM). The cellular sodium increased with the density of parasitemia and the cellular potassium decreased in proportion to the elevation of sodium. Nonparasitized as well as parasitized erythrocytes possessed this abnormality of cation metabolism. Effective chloroquine therapy reversed the changes over a period of 4 days. Active sodium outflux rate constants were depressed in animals with malaria (0.202±0.012), as compared to controls (0.325±0.027). Passive sodium influx rate constants were higher in infected monkeys (0.028±0.002) than in control animals (0.019±0.002). The cross incubation of malarial plasma with normal red blood cells induced a 22% diminution in active sodium outflux but no changes were observed in sodium influx. It is concluded that malaria alters erythrocytic sodium transport in all erythrocytes. The elevated intracellular sodium concentration is the net result of decreased sodium outflux and increased sodium influx. The plasmodium organism or the affected host may produce a circulating substance that is deleterious to erythrocytic membrane cation transport. PMID:4975361
Slack, Slick, and Sodium-Activated Potassium Channels
Kaczmarek, Leonard K.
2013-01-01
The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675
McMahon, Emma; Webster, Jacqui; Brimblecombe, Julie
2017-01-01
Reducing sodium in the food supply is key to achieving population salt targets, but maintaining sales is important to ensuring commercial viability and maximising clinical impact. We investigated whether 25% sodium reduction in a top-selling bread affected sales in 26 remote Indigenous community stores. After a 23-week baseline period, 11 control stores received the regular-salt bread (400 mg Na/100 g) and 15 intervention stores received the reduced-salt version (300 mg Na/100 g) for 12-weeks. Sales data were collected to examine difference between groups in change from baseline to follow-up (effect size) in sales (primary outcome) or sodium density, analysed using a mixed model. There was no significant effect on market share (−0.31%; 95% CI −0.68, 0.07; p = 0.11) or weekly dollars ($58; −149, 266; p = 0.58). Sodium density of all purchases was not significantly reduced (−8 mg Na/MJ; −18, 2; p = 0.14), but 25% reduction across all bread could significantly reduce sodium (−12; −23, −1; p = 0.03). We found 25% salt reduction in a top-selling bread did not affect sales in remote Indigenous community stores. If achieved across all breads, estimated salt intake in remote Indigenous Australian communities would be reduced by approximately 15% of the magnitude needed to achieve population salt targets, which could lead to significant health gains at the population-level. PMID:28264485
Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.
Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta
2017-11-01
The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.
Inoue, Hiroko; Kuwano, Toshiko; Yamakawa-Kobayashi, Kimiko; Waguri, Toshiharu; Nakano, Teruyo; Suzuki, Yuichi
2017-01-01
Despite the negative health consequences of a high sodium consumption, humans consume well above the recommended levels. This study examines whether or not the dietary intake of sodium was affected by individual variation of the perceived bitterness of 6-n-propylthiouracil (PROP), and examines the relationship between the perceived bitterness of PROP and the preferred NaCl concentration of broth. Female students (20-22 y old) were recruited from the university community. Genotypes of A49P and I296V polymorphism of the TAS2R38 bitter taste receptor were determined for each subject. Samples containing NaCl, PROP or broth in 5-mL portions were evaluated by sensory testing. The participants completed a food record for each diet. Our results indicate that the individuals perceiving PROP to be more bitter had consumed a greater amount of dietary sodium. In contrast, there was no significant positive correlation between an individual's perceived saltiness and the dietary sodium intake. Those who perceived PROP to be more bitter preferred a broth containing a higher concentration of NaCl. All of these correlations were apparent even after those subjects with TAS2R38 AI/AI homozygotes (PROP non-taster) had been excluded. In conclusion, the results of this study suggest that a factor affecting the bitter rating of PROP other than the AI/AI homozygotes of TAS2R38 contributes to the variation in sodium intake and the preference for salty food.
Yong, Chul Soon; Oh, Yu-Kyoung; Kim, Yong-Il; Kim, Jong Oh; Yoo, Bong-Kyu; Rhee, Jong-Dal; Lee, Kang Choon; Kim, Dae-Duk; Park, Young-Joon; Kim, Chong-Kook; Choi, Han-Gon
2005-09-14
To develop a poloxamer-based solid suppository with poloxamer mixtures, the melting point of various formulations composed of poloxamer 124 (P 124) and poloxamer 188 (P 188) were investigated. The dissolution and pharmacokinetic study of diclofenac sodium delivered by the poloxamer-based suppository were performed. Furthermore, the identification test in the rectum and morphology test of rectal tissues were carried out after its rectal administration in rats. The poloxamer mixtures composed of P 124 and P 188 were homogeneous phases. Very small amounts of P 188 affected the melting point of poloxamer mixtures. In particular, the poloxamer mixture [P 124/P 188 (97/3%)] with the melting point of about 32 degrees C was a solid form at room temperature and instantly melted at physiological temperature. Very small amounts of P 188 hardly affected the dissolution rates of diclofenac sodium from the suppository. Dissolution mechanism analysis showed the dissolution of diclofenac sodium was proportional to the time. The poloxamer-based suppository gave significantly higher initial plasma concentrations and faster T(max) of diclofenac sodium than did conventional PEG-based suppository, indicating that the drug from poloxamer-based suppository could be absorbed faster than that from PEG-based one in rats. It retained in the rectum for at least 4 h and could not irritate or damage the rectal tissues of rats. Thus, the poloxamer-based solid suppository with P 124 and P 188 was a mucoadhesive, safe and effective rectal dosage form for diclofenac sodium.
SODIUM DITHIONITE INJECTIONS USED FOR CHROMIUM REDUCTION: NEWSLETTER
NEWSLETTER NRMRL-ADA- 02116 Paul*, C.J. "Sodium Dithionite Injections Used for Chromium Reduction." In: Groundwater Currents Newsletter 2002. A field-scale pilot study was conducted in 1999 at the U.S. Coast Guard Support Center in El...
Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats.
Vieira, Fabricio Furtado; Olivoto, Robson Ruiz; Silva, Priscyla Oliveira da; Francisco, Julio Cesar; Fogaça, Rosalvo Tadeu Hochmuller
2016-12-01
Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX) in the cardiac muscle. To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt) and relaxation (-df/dt), contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP), and contraction force induced by caffeine. In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05), increased +df/dt and -df/dt (p < 0.001), low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001), reduction of the maximum force in caffeine-induced contraction (p < 0.003), and decreased total contraction time (p < 0.001). The maximal contraction force did not differ significantly between groups (p = 0.973). We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.
Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert
2018-05-31
The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Development of a Sodium Lidar for Space-Borne Missions
NASA Astrophysics Data System (ADS)
Janches, D.; Krainak, M. A.; Yu, A. W.; Jones, S.; Chen, J. R.
2015-12-01
We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage to study the composition and dynamics of Earth's mesosphere based on a spaceborne instrument that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere - Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize the effect of small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. A nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS) will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with ~5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2/ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving "single" detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the ISS as well as show current progress results.
Tanaka, Hiroyuki; Takano, Kazuhiko; Iijima, Hiroaki; Kubo, Hajime; Maruyama, Nobuko; Hashimoto, Toshio; Arakawa, Kenji; Togo, Masanori; Inagaki, Nobuya; Kaku, Kohei
2017-02-01
Sodium glucose co-transporter 2 (SGLT2) inhibitors exhibit diuretic activity, which is a possible mechanism underlying the cardiovascular benefit of these inhibitors. However, the osmotic diuresis-induced increase in urine volume, and the risk of dehydration have been of concern with SGLT2 inhibitor treatment. This study aimed to investigate the mechanism underlying SGLT2 inhibitor canagliflozin-induced diuresis in Japanese type 2 diabetes mellitus (T2DM) patients. Thirteen T2DM patients received a daily oral dose of 100 mg canagliflozin before breakfast for 6 days. Blood and urine samples were collected at predetermined time points. The primary endpoint was evaluation of correlations between changes from baseline in urine volume and factors that are known to affect urine volume and between actual urine volume and these factors. Canagliflozin transiently increased urine volume and urinary sodium excretion on Day 1 with a return to baseline levels thereafter. Canagliflozin administration increased urinary glucose excretion, which was sustained during repeated-dose administration. Plasma atrial natriuretic peptide (ANP) and N-terminal pro-b-type natriuretic peptide (NT-proBNP) levels decreased, while plasma renin activity increased. On Day 1 of treatment, changes in sodium and potassium excretion were closely correlated with changes in urine output. A post hoc multiple regression analysis showed changes in sodium excretion and water intake as factors that affected urine volume change at Day 1. Furthermore, relative to that at baseline, canagliflozin decreased blood glucose throughout the day and increased plasma total GLP-1 after breakfast. Canagliflozin induced transient sodium excretion and did not induce water intake at Day 1; hence, natriuresis rather than glucose-induced osmotic diuresis may be a major factor involved in the canagliflozin-induced transient increase in urine output. In addition, canagliflozin decreased plasma ANP and NT-proBNP levels and increased plasma renin activity, which may be a compensatory mechanism for sodium retention, leading to subsequent urine output recovery. UMIN000019462. Mitsubishi Tanabe Pharma Corporation.
NASA Astrophysics Data System (ADS)
Riyanto; Prawidha, A. D.
2018-01-01
Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.
Zhang, Shuangling; Han, Yue
2018-01-01
Novel rutin-loaded zein-sodium caseinate nanoparticles (ZP) with antioxidant activity in aqueous medium were investigated. The results showed that the sodium caseinate concentrations, dosages of rutin and ethanol volume fractions significantly affected the zein nanoparticles' characteristics. Concerning the antioxidant properties, the highest values of rutin loaded ZP obtained using 2, 2-diphenyl-1-picrylhydrazyl scavenging and 2 and 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) decolourisation assays were 52.7% and 71.2%, respectively, and the total antioxidant capacity was 0.40 nmol g-1. The results suggest that zein-sodium caseinate nanoparticles can be used as a new nano carrier system for rutin or other water insoluble active ingredients.
Han, Yue
2018-01-01
Novel rutin-loaded zein-sodium caseinate nanoparticles (ZP) with antioxidant activity in aqueous medium were investigated. The results showed that the sodium caseinate concentrations, dosages of rutin and ethanol volume fractions significantly affected the zein nanoparticles’ characteristics. Concerning the antioxidant properties, the highest values of rutin loaded ZP obtained using 2, 2-diphenyl-1-picrylhydrazyl scavenging and 2 and 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) decolourisation assays were 52.7% and 71.2%, respectively, and the total antioxidant capacity was 0.40 nmol g-1. The results suggest that zein-sodium caseinate nanoparticles can be used as a new nano carrier system for rutin or other water insoluble active ingredients. PMID:29579133
Rapidly Synthesized, Few-Layered Pseudocapacitive SnS2 Anode for High-Power Sodium Ion Batteries.
Thangavel, Ranjith; Samuthira Pandian, Amaresh; Ramasamy, Hari Vignesh; Lee, Yun-Sung
2017-11-22
The abundance of sodium resources has recently motivated the investigation of sodium ion batteries (SIBs) as an alternative to commercial lithium ion batteries. However, the low power and low capacity of conventional sodium anodes hinder their practical realization. Although most research has concentrated on the development of high-capacity sodium anodes, anodes with a combination of high power and high capacity have not been widely realized. Herein, we present a simple microwave irradiation technique for obtaining few-layered, ultrathin two-dimensional SnS 2 over graphene sheets in a few minutes. SnS 2 possesses a large number of active surface sites and exhibits high-capacity, rapid sodium ion storage kinetics induced by quick, nondestructive pseudocapacitance. Enhanced sodium ion storage at a high current density (12 A g -1 ), accompanied by high reversibility and high stability, was demonstrated. Additionally, a rationally designed sodium ion full cell coupled with SnS 2 //Na 3 V 2 (PO 4 ) 3 exhibited exceptional performance with high initial Coulombic efficiency (99%), high capacity, high stability, and a retention of ∼53% of the initial capacity even after the current density was increased by a factor of 140. In addition, a high specific energy of ∼140 Wh kg -1 and an ultrahigh specific power of ∼8.3 kW kg -1 (based on the mass of both the anode and cathode) were observed. Because of its outstanding performance and rapid synthesis, few-layered SnS 2 could be a promising candidate for practical realization of high-power SIBs.
Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang
2016-07-25
In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation.
Irvine, L A; Jafri, M S; Winslow, R L
1999-01-01
A Markov model of the cardiac sodium channel is presented. The model is similar to the CA1 hippocampal neuron sodium channel model developed by Kuo and Bean (1994. Neuron. 12:819-829) with the following modifications: 1) an additional open state is added; 2) open-inactivated transitions are made voltage-dependent; and 3) channel rate constants are exponential functions of enthalpy, entropy, and voltage and have explicit temperature dependence. Model parameters are determined using a simulated annealing algorithm to minimize the error between model responses and various experimental data sets. The model reproduces a wide range of experimental data including ionic currents, gating currents, tail currents, steady-state inactivation, recovery from inactivation, and open time distributions over a temperature range of 10 degrees C to 25 degrees C. The model also predicts measures of single channel activity such as first latency, probability of a null sweep, and probability of reopening. PMID:10096885
Kazory, Amir
2016-01-01
Enhanced removal of sodium has often been cited as an advantage of ultrafiltration (UF) therapy over diuretic-based medical treatment in the management of acute decompensated heart failure. However, so far clinical studies have rarely evaluated the precise magnitude of sodium removal, and this assumption is largely based on the physiologic mechanisms and anecdotal observations that predate the contemporary management of heart failure. Recent data suggest that patients treated with UF experience substantial reduction in urinary sodium excretion possibly due to prolonged intravascular volume contraction. Consequently, the efficient sodium extraction through production of isotonic ultrafiltrate can be offset by urine hypotonicity. Based on the limited currently available data, it seems unlikely that the persistent benefits of UF could be solely explained by its greater efficiency in sodium removal. The design of the future studies should include frequent measurements of urine sodium to precisely compare the impact of UF and diuretics on sodium balance. © 2016 S. Karger AG, Basel.
Sostaric, Joe Z
2008-09-01
Sonolysis of aqueous solutions of n-alkyl anionic surfactants results in the formation of secondary carbon-centered radicals (-*CH-). The yield of -*CH- depends on the bulk surfactant concentration up to a maximum attainable radical yield (the 'plateau yield') where an increasing surfactant concentration (below the critical micelle concentration) no longer affects the -*CH- yield. In an earlier study it was found that the ratio of -*CH- detected following sonolysis of aqueous solutions of sodium pentane sulfonate (SPSo) to that of sodium dodecyl sulfate (SDS) (i.e. CH(SPSo)/CH(SDS)) depended on the frequency of sonolysis, but was independent of the ultrasound intensity, at the plateau concentrations [J.Z. Sostaric, P. Riesz, Adsorption of surfactants at the gas/solution interface of cavitation bubbles: an ultrasound intensity-independent frequency effect in sonochemistry, J. Phys. Chem. B 106 (2002) 12537-12548]. In the current study, it was found that the CH(SPSo)/CH(SDS) ratio depended only on the ultrasound frequency and did not depend on the geometry of the ultrasound exposure apparatus considered.
Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.
Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon
2014-07-01
The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.
Treatment of high salinity organic wastewater by membrane electrolysis
NASA Astrophysics Data System (ADS)
Dongfang, Shen; Jinghuan, Ma; Ying, Liu; Chenguang, Zhao
2018-03-01
The effects of different operating conditions on the treatment of electrolytic wastewater were investigated by analyzing the removal rate of ammonia and COD before and after wastewater treatment by cation exchange membrane. Experiment shows that as the running time increases the electrolysis effect first increases after the smooth. The removal rate of ammonia will increase with the increase of current density, and the removal rate of COD will increase first and then decrease with the increase of current density. The increase of the temperature of the electrolytic solution will slowly increase the COD removal rate to saturation, but does not affect the removal of ammonia nitrogen. When the flow rate is less than 60L / h, the change of influent flow rate will not affect the removal of ammonia nitrogen, but the effect on COD is small, which will increase and decrease slightly. After the experiment, the surface of the cation exchange membrane was analyzed by cold field scanning electron microscopy and X-ray energy dispersive spectrometer. The surface contamination and the pollutant were determined. The experimental results showed that the aggregates were mainly chlorinated Sodium, calcium and magnesium inorganic salts, which will change the morphology of the film to reduce porosity, reduce the mass transfer efficiency, affecting the electrolysis effect.
Electrophysiology of sodium-coupled transport in proximal renal tubules.
Lang, F; Messner, G; Rehwald, W
1986-06-01
Effects of sodium-coupled transport on intracellular electrolytes and electrical properties of proximal renal tubule cells are described in this review. Simultaneous with addition of substrate for sodium-coupled transport to luminal perfusates, both cell membranes depolarize. The luminal cell membrane depolarizes due to opening of sodium-cotransport pathways. The depolarization of the peritubular cell membrane during sodium-coupled transport is primarily due to a circular current reentering the lumen via the paracellular pathway. The depolarization leads to a transient decrease of basolateral potassium conductance that in turn amplifies the depolarization. However, within 5-10 min of continued exposure to substrate, potassium conductance increases again, and peritubular cell membrane repolarizes. During depolarization the driving force of peritubular bicarbonate exit is reduced. As a result net alkalinization of the cell prevails despite an increase of intracellular sodium activity, which reduces the driving force for the sodium-hydrogen ion exchanger and would thus have been expected to acidify the cell. No evidence is obtained for regulatory inhibition of sodium-coupled transport by intracellular sodium or calcium. Rather, luminal cotransport is altered by the change of driving forces.
Dietary Sodium in Chronic Kidney Disease: A Comprehensive Approach
Wright, Julie A.; Cavanaugh, Kerri L.
2010-01-01
Despite existing guidelines, dietary sodium intake among people worldwide often exceeds recommended limits. Research evidence is growing in both animal and human studies showing indirect and direct adverse consequences of high dietary sodium on the kidney. In patients with kidney disease, dietary sodium may have important effects on proteinuria, efficacy of antiproteinuric pharmacologic therapy, hypertension control, maintaining an optimal volume status, and immunosuppressant therapy. Dietary sodium intake is an important consideration in patients with all stages of chronic kidney disease, including those receiving dialysis therapy or those who have received a kidney transplant. We review in detail the dietary sodium recommendations suggested by various organizations for patients with kidney disease. Potential barriers to successfully translating current sodium intake guidelines into practice include poor knowledge about the sodium content of food among both patients and providers, complex labeling information, patient preferences related to taste, and limited support for modifications in public policy. Finally, we offer existing and potential solutions that may assist providers in educating and empowering patients to effectively manage their dietary sodium intake. PMID:20557489
Sodium and potassium conductance changes during a membrane action potential
Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.
1970-01-01
1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231
Zhang, H X; Hodson, J N; Williams, J P; Blumwald, E
2001-10-23
Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated.
Basile, Carlo; Pisano, Anna; Lisi, Piero; Rossi, Luigi; Lomonte, Carlo; Bolignano, Davide
2016-04-01
It is the object of debate whether a low or high dialysate sodium concentration (DNa(+)) should be advocated in chronic haemodialysis patients. In this paper, we aimed at evaluating benefits and harms of different DNa(+) prescriptions through a systematic review of the available literature. MEDLINE and CENTRAL databases were searched for studies comparing low or high DNa(+) prescriptions. Outcomes of interest were mortality, blood pressure (BP), interdialytic weight gain (IDWG), plasma sodium, hospitalizations, use of anti-hypertensive agents and intradialytic complications. Twenty-three studies (76 635 subjects) were reviewed. There was high heterogeneity in the number of patients analysed, overall study quality, duration of follow-up, DNa(+) and even in the definition of 'high' or 'low' DNa(+). The only three studies looking at mortality were observational. The risk of death was related to the plasma-DNa(+) gradient, but was also shown to be confounded by indication from the dialysate sodium prescription itself. BP was not markedly affected by high or low DNa(+). Patients treated with higher DNa(+) had overall higher IDWG when compared with those with lower DNa(+). Three studies reported a significant increase in intra-dialytic hypotensive episodes in patients receiving low DNa(+). Data on hospitalizations and use of anti-hypertensive agents were sparse and inconclusive. There is currently no definite evidence proving the superiority of a low or high uniform DNa(+) on hard or surrogate endpoints in maintenance haemodialysis patients. Future trials adequately powered to evaluate the impact of different DNa(+) on mortality or other patient-centred outcomes are needed. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Hiroshi; Sakai, Daisuke; Nishii, Junji
2013-08-14
Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na{sub 2}CO{sub 3} powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. Themore » concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.« less
Role of the Vascular Wall in Sodium Homeostasis and Salt Sensitivity
Olde Engberink, Rik H.G.; Rorije, Nienke M.G.; Homan van der Heide, Jaap J.; van den Born, Bert-Jan H.
2015-01-01
Excessive sodium intake is associated with both hypertension and an increased risk of cardiovascular events, presumably because of an increase in extracellular volume. The extent to which sodium intake affects extracellular volume and BP varies considerably among individuals, discriminating subjects who are salt-sensitive from those who are salt-resistant. Recent experiments have shown that, other than regulation by the kidney, sodium homeostasis is also regulated by negatively charged glycosaminoglycans in the skin interstitium, where sodium is bound to glycosaminoglycans without commensurate effects on extracellular volume. The endothelial surface layer is a dynamic layer on the luminal side of the endothelium that is in continuous exchange with flowing blood. Because negatively charged glycosaminoglycans are abundantly present in this layer, it may act as an intravascular buffer compartment that allows sodium to be transiently stored. This review focuses on the putative role of the endothelial surface layer as a contributor to salt sensitivity, the consequences of a perturbed endothelial surface layer on sodium homeostasis, and the endothelial surface layer as a possible target for the treatment of hypertension and an expanded extracellular volume. PMID:25294232
Progress on laser technology for proposed space-based sodium lidar
NASA Astrophysics Data System (ADS)
Krainak, Michael A.; Yu, Anthony W.; Li, Steven X.; Bai, Yingxin; Numata, Kenji; Chen, Jeffrey R.; Fahey, Molly E.; Micalizzi, Frankie; Konoplev, Oleg A.; Janches, Diego; Gardner, Chester S.; Allan, Graham R.
2018-02-01
We propose a nadir-pointing space-based Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS). The science instrument goal is temperature and vertical wind measurements of the Earth Mesosphere Lower Thermosphere (MLT) 75-115 km region using atomic sodium as a tracer. Our instrument concept uses a high-energy laser transmitter at 589 nm and highly sensitive photon counting detectors that permit range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are pursuing high power laser architectures that permit limited day time sodium lidar observations with the help of a narrow bandpass etalon filter. We discuss technology, prototypes, risks and trades for two 589 nm wavelength laser architectures: 1) Raman laser 2) Sum Frequency Generation. Laser-induced saturation of atomic sodium in the MLT region affects both sodium density and temperature measurements. We discuss the saturation impact on the laser parameters, laser architecture and instrument trades. Off-nadir pointing from the ISS causes Doppler shifts that effect the sodium spectroscopy. We discuss laser wavelength locking, tuning and spectroscopic-line sampling strategy.
Strategies to reduce sodium consumption: a food industry perspective.
Dötsch, Mariska; Busch, Johanneke; Batenburg, Max; Liem, Gie; Tareilus, Erwin; Mueller, Rudi; Meijer, Gert
2009-11-01
The global high prevalence of hypertension and cardiovascular disease has raised concerns regarding the sodium content of the foods which we consume. Over 75% of sodium intake in industrialized diets is likely to come from processed and restaurant foods. Therefore international authorities, such as the World Health Organisation, are encouraging the food industry to reduce sodium levels in their products. Significant sodium reduction is not without complications as salt plays an important role in taste, and in some products is needed also for preservation and processing. The most promising sodium reduction strategy is to adapt the preference of consumers for saltiness by reducing sodium in products in small steps. However, this is a time-consuming approach that needs to be applied industry-wide in order to be effective. Therefore the food industry is also investigating solutions that will maintain the same perceived salt intensity at lower sodium levels. Each of these has specific advantages, disadvantages, and time lines for implementation. Currently applied approaches are resulting in sodium reduction between 20-30%. Further reduction will require new technologies. Research into the physiology of taste perception and salt receptors is an emerging area of science that is needed in order to achieve larger sodium reductions.
Blood pressure reduction by reducing sodium intake in the population: one shoe fits all?
Teo, Koon; Mente, Andrew
2014-07-01
Current guidelines, based on extrapolations of observational studies or short-term relatively small clinical trials, recommend that daily sodium intake should be around 2 g/day or less. The assumption is that the relationship between sodium consumption and blood pressure (BP) levels is linear in all populations. Recent development suggests this may not be correct. We reviewed the literature on the association between sodium reduction and BP lowering, and preliminary data on 100,000 individuals from the Prospective Urban Rural Epidemiology study on sodium excretion and the association of sodium excretion with BP in general populations from 17 countries in five continents, with a focus on major subgroups. Earlier observational studies have shown inconsistencies in their findings which were not addressed by the recommendations. The PURE results showed that associations between sodium intake and BP were not linear; proportionally, higher BP was found in individuals with higher sodium intake compared with those with lower sodium intake, in individuals with hypertension compared to those without hypertension, and in older individuals compared with younger individuals. Recent data do not support the recommendation that all populations should reduce their sodium intake to one low level.
Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis.
Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Dominguez Rieg, Jessica A; Rieg, Timo
2017-08-01
The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it facilitates sodium (re)absorption and proton secretion. The importance of NHE3 in the kidney for sodium chloride homeostasis, relative to the intestine, is unknown. Constitutive tubule-specific NHE3 knockout mice (NHE3 loxloxCre) did not show significant differences compared to control mice in body weight, blood pH or bicarbonate and plasma sodium, potassium, or aldosterone levels. Fluid intake, urinary flow rate, urinary sodium/creatinine, and pH were significantly elevated in NHE3 loxloxCre mice, while urine osmolality and GFR were significantly lower. Water deprivation revealed a small urinary concentrating defect in NHE3 loxloxCre mice on a control diet, exaggerated on low sodium chloride. Ten days of low or high sodium chloride diet did not affect plasma sodium in control mice; however, NHE3 loxloxCre mice were susceptible to low sodium chloride (about -4 mM) or high sodium chloride intake (about +2 mM) versus baseline, effects without differences in plasma aldosterone between groups. Blood pressure was significantly lower in NHE3 loxloxCre mice and was sodium chloride sensitive. In control mice, the expression of the sodium/phosphate co-transporter Npt2c was sodium chloride sensitive. However, lack of tubular NHE3 blunted Npt2c expression. Alterations in the abundances of sodium/chloride cotransporter and its phosphorylation at threonine 58 as well as the abundances of the α-subunit of the epithelial sodium channel, and its cleaved form, were also apparent in NHE3 loxloxCre mice. Thus, renal NHE3 is required to maintain blood pressure and steady-state plasma sodium levels when dietary sodium chloride intake is modified. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Cardiac safety of lacosamide: the non-clinical perspective.
Delaunois, A; Colomar, A; Depelchin, B O; Cornet, M
2015-11-01
Lacosamide is indicated for the adjunctive treatment of partial-onset seizures in adult patients. Unlike other sodium channel-blocking antiepileptic drugs, lacosamide selectively enhances sodium channel slow inactivation. Potential effects of lacosamide on cardiac sodium channels and their cardiovascular consequences were comprehensively assessed. This manuscript presents the non-clinical cardiac safety profile of lacosamide. Lacosamide was tested in vitro on sodium and L-type calcium currents from isolated human atrial myocytes and on hERG-mediated potassium currents from stably transfected HEK293 cells. Cardiac action potentials were recorded in guinea pig ventricular myocytes. In vivo, hemodynamic and ECG parameters were evaluated in anesthetized dogs and monkeys receiving acute cumulative intravenous doses of lacosamide. Following intravenous dosing with lacosamide, dose-dependent PR and QRS prolongation and ECG abnormalities (loss of P waves, atrioventricular and intraventricular blocks, junctional premature contractions) were observed in anesthetized dogs and monkeys. In vitro, lacosamide reduced human cardiac sodium currents in a concentration-, voltage- and state-dependent manner. Lacosamide reductions in Vmax in guinea pig myocytes were similar to lamotrigine and carbamazepine. Lacosamide showed no relevant inhibitory effects on hERG and L-type calcium channels and did not prolong QTc in vivo. ECG findings in anesthetized animals correlate well with in vitro sodium channel-related effects and are also consistent with those (PR prolongation, first-degree atrioventricular block) reported in healthy volunteers and patients with epilepsy. Both in vivo and in vitro effects were detected from exposure levels 1.5- to 2-fold above those achieved with the maximum-recommended human lacosamide dose (400 mg/day). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tian, Kun; He, Cong-Cong; Xu, Hui-Nan; Wang, Yu-Xiang; Wang, Hong-Gang; An, Di; Heng, Bin; Pang, Wei; Jiang, Yu-Gang; Liu, Yan-Qiang
2017-05-01
In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn 2+ chelator, to establish a model of free Zn 2+ deficiency in neurons. The effects of TPEN-mediated free Zn 2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn 2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of I Na , 3) shifted the I Na activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn 2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K + currents (I A ) and delayed rectifier K + currents (I K ), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn 2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn 2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn 2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mechanisms of the palmitoylcarnitine-induced response in vascular endothelial cells.
Taki, H; Muraki, K; Imaizumi, Y; Watanabe, M
1999-09-01
The mechanisms of Ca2+ mobilization induced by palmitoylcarnitine (Palcar) in rabbit aortic endothelial cells (ETCs) were examined using electrophysiological techniques. The results obtained were compared with those induced by acetylcholine (ACh). When a rabbit aortic muscle preparation with an intact endothelium was treated with 10 microM Palcar, the ACh-induced relaxation was markedly attenuated, whereas endothelium-independent relaxation caused by sodium nitroprusside was not affected. Under perforated-patch whole-cell-clamp conditions, the application of Palcar over the concentration range 0.3 and 10 microM elicited a slowly activating outward current (IPalcar-out), whereas ACh induced a rapidly activating outward current (IACh). A potassium channel blocker, 4-aminopyridine, significantly inhibited both IPalcar-out and IACh. Removal of external Ca2+ almost abolished IPalcar-out. Under the same conditions, however, IACh remained transient. Addition of cation channel blockers SK&F96365 and La3+ inhibited IPalcar-out more effectively than IACh. Application of staurosporine, an inhibitor of protein kinase C, affected neither IACh nor IPalcar-out. In contrast, treatment of ETCs with pertussis toxin (PTX) reduced IACh and almost abolished IPalcar-out. These findings demonstrate that, in ETCs, Palcar induces Ca2+ influx via the activation of PTX-sensitive GTP-binding protein, leading to the activation of Ca(2+)-dependent K+ current and hyperpolarization of the cell.
Gudes, Sagi; Barkai, Omer; Caspi, Yaki; Katz, Ben; Lev, Shaya
2014-01-01
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes. PMID:25355965
Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.S.; Hong, J.
1994-10-01
Biomass of a mercury-resistance strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution of pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin. The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na[sup +] were present. Biosorption of mercury was also examined in sodium phosphate solution and phosphate-buffered saline solution containingmore » 50 mM and 150 mM of Na[sup +], respectively. It was found that the presence of Na[sup +] did not severely affect the biosorption of Hg[sup 2+], indicating a high mercury selectivity of the biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg[sup 2+] by the biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow the Langmuir or Freundlich adsorption isotherms.« less
McMahon, Emma; Webster, Jacqui; Brimblecombe, Julie
2017-02-28
Reducing sodium in the food supply is key to achieving population salt targets, but maintaining sales is important to ensuring commercial viability and maximising clinical impact. We investigated whether 25% sodium reduction in a top-selling bread affected sales in 26 remote Indigenous community stores. After a 23-week baseline period, 11 control stores received the regular-salt bread (400 mg Na/100 g) and 15 intervention stores received the reduced-salt version (300 mg Na/100 g) for 12-weeks. Sales data were collected to examine difference between groups in change from baseline to follow-up (effect size) in sales (primary outcome) or sodium density, analysed using a mixed model. There was no significant effect on market share (-0.31%; 95% CI -0.68, 0.07; p = 0.11) or weekly dollars ($58; -149, 266; p = 0.58). Sodium density of all purchases was not significantly reduced (-8 mg Na/MJ; -18, 2; p = 0.14), but 25% reduction across all bread could significantly reduce sodium (-12; -23, -1; p = 0.03). We found 25% salt reduction in a top-selling bread did not affect sales in remote Indigenous community stores. If achieved across all breads, estimated salt intake in remote Indigenous Australian communities would be reduced by approximately 15% of the magnitude needed to achieve population salt targets, which could lead to significant health gains at the population-level.
Tire-derived carbon composite anodes for sodium-ion batteries
Li, Yunchao; Paranthaman, M. Parans; Akato, Kokouvi; ...
2016-04-04
We report that hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). The tire-derived carbons obtained by pyrolyzing the acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g -1, respectively, after 100 cycles at a current density of 20 mA g -1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. Themore » low-voltage plateau is beneficial to enhance the energy density of the full cell. However, this plateau suffers rapid capacity fade at higher current densities. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.« less
Potassium Loss during Galvanotaxis of Slime Mold
Anderson, John D.
1962-01-01
The posterior reticulated regions of the plasmodia of the slime mold, Physarum polycephalum, whose migration has been oriented by direct current (3.0 to 5.0 µa/mm2 in the agar substrate), contain 30 per cent less potassium than the advancing non-reticulated region. The anterior regions have the same potassium concentration as that of the controls, approximately 32 meq/kg wet weight. Differences in potassium concentration between anterior and posterior regions of control plasmodia, not oriented by electric current, are less than 5 per cent. Sodium, in contrast to potassium, is generally less concentrated in the anterior than in the posterior regions of electrically oriented plasmodia, but sodium concentrations are extremely variable. No significant difference in protein concentration was found between oriented and control plasmodia. Thirty-five per cent of the total potassium, but none of the sodium, is found in acidified ethanol precipitates from plasmodial homogenates. Potassium, but not sodium, appears to be closely associated with processes which differentiate anterior from posterior in an oriented plasmodium. PMID:13861244
High Dietary Sodium Intake Impairs Endothelium-Dependent Dilation in Healthy Salt-Resistant Humans
DuPont, Jennifer J.; Greaney, Jody L.; Wenner, Megan M.; Lennon-Edwards, Shannon L.; Sanders, Paul W.; Farquhar, William B.; Edwards, David G.
2014-01-01
Excess dietary sodium has been linked to the development of hypertension and other cardiovascular diseases. In humans, the effects of sodium consumption on endothelial function have not been separated from the effects on blood pressure. The present study was designed to determine if dietary sodium intake affected endothelium-dependent dilation (EDD) independently of changes in blood pressure. Fourteen healthy salt resistant adults were studied (9M, 5F; age 33 ± 2.4 years) in a controlled feeding study. After a baseline run-in diet, participants were randomized to a 7 day high sodium (HS) (300-350 mmol/day) and 7 day low sodium (LS) (20 mmol/day) diet. Salt resistance, defined as a ≤ 5 mm Hg change in a 24-hour mean arterial pressure, was individually assessed while on the low sodium and high sodium diets and confirmed in the subjects undergoing study (LS: 85±1 mm Hg; HS: 85±2 mmHg). EDD was determined in each subject via brachial artery flow-mediated dilation on the last day of each diet. Sodium excretion increased during the high sodium diet (p < 0.01). EDD was reduced on the high sodium diet (Low: 10.3±0.9%, High: 7.3±0.7%, p < 0.05). The HS diet significantly suppressed plasma renin activity (PRA), plasma angiotensin II, and aldosterone (p < 0.05). These data demonstrate that excess salt intake in humans impairs endothelium-dependent dilation independently of changes in blood pressure. PMID:23263240
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
Review: the use of sodium hypochlorite in endodontics--potential complications and their management.
Spencer, H R; Ike, V; Brennan, P A
2007-05-12
Aqueous sodium hypochlorite (bleach) solution is widely used in dental practice during root canal treatment. Although it is generally regarded as being very safe, potentially severe complications can occur when it comes into contact with soft tissue. This paper discusses the use of sodium hypochlorite in dental treatment, reviews the current literature regarding hypochlorite complications, and considers the appropriate management for a dental practitioner when faced with a potentially adverse incident with this agent.
Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu
2017-06-27
Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.
ERIC Educational Resources Information Center
Set, Seng; Ford, David; Kita, Masakazu
2015-01-01
This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…
Casillas-Ituarte, Nadia N; Chen, Xiangke; Castada, Hardy; Allen, Heather C
2010-07-29
Hydration and orientation of the phosphate group of dipalmitoylphosphatidylcholine (DPPC) monolayers in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase in the presence of sodium ions and calcium ions was investigated with vibrational sum frequency generation (SFG) spectroscopy at the air-aqueous interface in conjunction with surface pressure measurements. In the LE phase, both sodium and calcium affect the phosphate group hydration. In the LC phase, however, sodium ions affect the phosphate hydration subtly, while calcium ions cause a marked dehydration. Silica-supported DPPC monolayers prepared by the Langmuir-Blodgett method reveal similar hydration behavior relative to that observed in the corresponding aqueous subphase for the case of water and in the presence of sodium ions. However, in the presence of calcium ions the phosphate group dehydration is greater than that from the corresponding purely aqueous CaCl(2) subphase. The average tilt angles from the surface normal of the PO(2)(-) group of DPPC monolayers on the water surface and on the silica substrate calculated from SFG data are found to be 59 degrees +/- 3 degrees and 72 degrees +/- 5 degrees , respectively. Orientation of the phosphate group is additionally affected by the presence of ions. These findings show that extrapolation of results obtained from model membranes from liquid surfaces to solid supports may not be warranted since there are differences in headgroup organization on the two subphases.
Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.
Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin
2016-04-01
Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).
New bimetallic EMF cell shows promise in direct energy conversion
NASA Technical Reports Server (NTRS)
Hesson, J. C.; Shimotake, H.
1968-01-01
Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.
Desmopressin to Prevent Rapid Sodium Correction in Severe Hyponatremia: A Systematic Review.
MacMillan, Thomas E; Tang, Terence; Cavalcanti, Rodrigo B
2015-12-01
Hyponatremia is common among inpatients and is associated with severe adverse outcomes such as osmotic demyelination syndrome. Current guidelines recommend serum sodium concentration correction targets of no more than 8 mEq/L per day in patients at high risk of osmotic demyelination syndrome. Desmopressin is recommended to control high rates of serum sodium concentration correction in severe hyponatremia. However, recommendations are based on limited data. The objective of this study is to review current strategies for DDAVP use in severe hyponatremia. Systematic literature search of 4 databases of peer-reviewed studies was performed and study quality was appraised. The literature search identified 17 observational studies with 80 patients. We found 3 strategies for desmopressin administration in hyponatremia: 1) proactive, where desmopressin is administered early based on initial serum sodium concentration; 2) reactive, where desmopressin is administered based on changes in serum sodium concentration or urine output; 3) rescue, where desmopressin is administered after serum sodium correction targets are exceeded or when osmotic demyelination appears imminent. A proactive strategy of desmopressin administration with hypertonic saline was associated with lower incidence of exceeding serum sodium concentration correction targets, although this evidence is derived from a small case series. Three distinct strategies for desmopressin administration are described in the literature. Limitations in study design and sample size prevent definitive conclusions about the optimal strategy for desmopressin administration to correct hyponatremia. There is a pressing need for better quality research to guide clinicians in managing severe hyponatremia. Copyright © 2015 Elsevier Inc. All rights reserved.
Rannou, F; Droguet, M; Giroux-Metges, M A; Pennec, Y; Gioux, M; Pennec, J P
2009-11-01
The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n = 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (I(max)), maximal sodium conductance (g(Na,max)) and time constants of activation and inactivation ((m) and (h)) increase according to the scheme I-->IIa-->IIx-->IIb (P < 0.05). (m) values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P = 0.97) despite different contractile properties. The voltage dependence of activation (V(a,1/2)) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle.
Laser transmitter for space-based sodium lidar instrument
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Konoplev, Oleg
2016-05-01
We are currently developing a laser transmitter to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our laser transmitter development effort with emphasis on wavelength tuning and power scaling of a diode-pumped Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that could produce multi-watt 589 nm wavelength output. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from past and current space flight missions.
Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.
2005-01-01
Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.
Hyndman, Kelly A; Mironova, Elena V; Giani, Jorge F; Dugas, Courtney; Collins, Jessika; McDonough, Alicia A; Stockand, James D; Pollock, Jennifer S
2017-10-24
During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1β pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. Male control and collecting duct nitric oxide synthase 1β knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1β signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Groundwater geochemistry in shallow aquifers above longwall mines in Illinois, USA
NASA Astrophysics Data System (ADS)
Booth, C. J.; Bertsch, L. P.
1999-12-01
Aquifers above high-extraction underground coal mines are not affected by mine drainage, but they may still exhibit changes in groundwater chemistry due to alterations in groundwater flow induced by mine subsidence. At two active longwall mine sites in Illinois, USA, glacial-drift aquifers were largely unaffected by mining, but the geochemistry of the bedrock aquifers changed during the post-mining water-level recovery. At the Jefferson site, brackish, high-sulfate water present in the upper bedrock shale briefly had lower values of total dissolved solids (TDS) after mining due to increased recharge from the overlying drift, whereas TDS and sulfate increased in the sodium-bicarbonate water present in the underlying sandstone due to downward leakage from the shale and lateral inflow of water through the sandstone. At the Saline site, sandstones contained water ranging from brackish sodium-chloride to fresh sodium-bicarbonate type. Post-mining recovery of the potentiometric levels was minimal, and the water had minor quality changes. Longwall mining affects geochemistry due to subsidence-related fracturing, which increases downward leakage from overlying units, and due to the temporary potentiometric depression and subsequent recovery, whereby water from surrounding areas of the aquifer recharges the affected zone above and adjacent to the mine.
Vehovszky, Agnes; Szabó, Henriette; Elliott, Christopher J H
2005-12-06
Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P < < 0.05) increased by (10 microM) octopamine, whereas the B2 motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons had two components, a transient IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium-free saline and so is likely to be carried by sodium ions. 10 microM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P < < 0.05), but a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1 motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the excitability markedly. We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.
Allison, Abimbola; Fouladkhah, Aliyar
2018-01-01
Although vital for maintaining health when consumed in moderation, various epidemiological studies in recent years have shown a strong association between excess dietary sodium with an array of health complications. These associations are robust and clinically significant for development of hypertension and prehypertension, two of the leading causes of preventable mortality worldwide, in adults with a high-sodium diet. Data from developed nations and transition economies show worldwide sodium intake of higher than recommended amounts in various nations. While natural foods typically contain a moderate amount of sodium, manufactured food products are the main contributor to dietary sodium intake, up to 75% of sodium in diet of American adults, as an example. Lower cost in formulation, positive effects on organoleptic properties of food products, effects on food quality during shelf-life, and microbiological food safety, make sodium chloride a notable candidate and an indispensable part of formulation of various products. Although low-sodium formulation of each product possesses a unique set of challenges, review of literature shows an abundance of successful experiences for products of many categories. The current study discusses adoptable interventions for product development and reformulation of products to achieve a modest amount of final sodium content while maintaining taste, quality, shelf-stability, and microbiological food safety. PMID:29389843
Allison, Abimbola; Fouladkhah, Aliyar
2018-02-01
Although vital for maintaining health when consumed in moderation, various epidemiological studies in recent years have shown a strong association between excess dietary sodium with an array of health complications. These associations are robust and clinically significant for development of hypertension and prehypertension, two of the leading causes of preventable mortality worldwide, in adults with a high-sodium diet. Data from developed nations and transition economies show worldwide sodium intake of higher than recommended amounts in various nations. While natural foods typically contain a moderate amount of sodium, manufactured food products are the main contributor to dietary sodium intake, up to 75% of sodium in diet of American adults, as an example. Lower cost in formulation, positive effects on organoleptic properties of food products, effects on food quality during shelf-life, and microbiological food safety, make sodium chloride a notable candidate and an indispensable part of formulation of various products. Although low-sodium formulation of each product possesses a unique set of challenges, review of literature shows an abundance of successful experiences for products of many categories. The current study discusses adoptable interventions for product development and reformulation of products to achieve a modest amount of final sodium content while maintaining taste, quality, shelf-stability, and microbiological food safety.
Hidalgo, C; Latorre, R
1970-11-01
1. The permeability for micro-injected [(3)H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed.2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above.3. Experiments were done with the combined voltage clamp-perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant.4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled.
Hidalgo, Cecilia; Latorre, Ramón
1970-01-01
1. The permeability for micro-injected [3H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed. 2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above. 3. Experiments were done with the combined voltage clamp—perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant. 4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled. PMID:5500991
Early adulthood: an overlooked age group in national sodium reduction initiatives in South Korea.
Park, Sohyun; Lee, Jounghee; Kwon, Kwang-Il; Kim, Jong-Wook; Byun, Jae-Eon; Kang, Baeg-Won; Choi, Bo Youl; Park, Hye-Kyung
2014-12-01
South Korean's sodium consumption level is more than twice the upper limit level suggested by the WHO. Steep increases in the prevalence of hypertension and cardiovascular disease in Korea necessitate more effective sodium reduction programs. This study was conducted in order to compare sodium intake-related eating behaviors and key psychosocial factors according to age group and gender. Using an online survey, a total of 1,564 adults (20-59 years old) considered to be geographically representative of South Korea were recruited and surveyed. The major outcomes were perceived behaviors, knowledge, intentions, and self-efficacy related to sodium intake. The results show that perceived behavior and level of self-efficacy related to low sodium consumption differed by age and gender. Female participants showed better behavior and intention towards low sodium intake than male counterparts. Young participants in their 20s showed the lowest intention to change their current sodium intake as well as lowest self-efficacy measures. Future sodium reduction interventions should be developed with tailored messages targeting different age and gender groups. Specifically, interventions can be planned and implemented at the college level or for workers in their early career to increase their intention and self-efficacy as a means of preventing future health complications associated with high sodium intake.
Elliott, A A; Elliott, J R
1993-04-01
1. The whole-cell patch-clamp technique was used to investigate the characteristics of two types of sodium current (INa) recorded at room temperature from small diameter (13-25 microns) dorsal root ganglion (DRG) cells, isolated from adult rats and maintained overnight in culture. 2. Sodium currents were isolated pharmacologically. Internal Cs+ and external tetraethylammonium (TEA) ions were used to suppress potassium currents. A combination of internal EGTA, internal F-, a low (10 microM) concentration of external Ca2+ and a relatively high (5 mM) concentration of internal and external Mg2+ was used to block calcium channels. The remaining voltage-dependent currents reversed direction at the calculated sodium equilibrium potential. Both the reversal potential and magnitude of the currents exhibited the expected dependence on the external sodium concentration. 3. INa subtypes were characterized initially in terms of their sensitivity to tetrodotoxin (TTX). TTX-sensitive (TTXs) currents were at least 97% suppressed by 0.1 microM TTX. TTX-resistant (TTXr) INa were recorded in the presence of 0.3 microM TTX and appeared to be reduced in amplitude by less than 50% in 75 microM TTX (n = 1). 4. As in earlier studies, the peak of the current-voltage relationship, the mid-point of the normalized conductance curve and the potential (Vh) at which the steady-state inactivation parameter (h infinity) was 0.5 were found to be significantly more depolarized for the TTXr INa (by ca 10, 14 and 37 mV respectively). There was little difference in the slope at the mid-point of the normalized conductance curves (the mean slope factors were 5.1 mV for the TTXs INa and 4.9 mV for the TTXr current) but the h infinity curves for TTXr currents were significantly steeper than those for TTXs currents (mean slope factors of 3.8 and 11.5 mV respectively). Both the time to peak and the decay time constant of the peak current recorded from a holding potential of -67 mV were more than a factor of three slower for the TTXr INa than for the TTXs current. 5. However, in direct contrast to the difference in activation and decay kinetics, 'slow' TTXr INa recovered from inactivation at -67mV, or reprimed, more than a factor of ten faster than 'fast' TTXs INa. 6. The differences apparent in both the repriming kinetics of TTXs and TTXr INa at -67 mV and the kinetics of the decay phase of the peak INa are shown to be explicable largely in terms of the voltage dependence of their respective inactivation systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Sodium fluoride in otosclerosis treatment: review.
Cruise, A S; Singh, A; Quiney, R E
2010-06-01
To review the current literature on the use of sodium fluoride in the treatment of otosclerosis. A literature review was conducted, searching the Medline and PubMed database from 1966 to 2009, using the terms 'otosclerosis' and 'fluoride'. Article abstracts were reviewed and relevant full articles acquired. There has been only one double-blind, placebo-controlled trial of the use of sodium fluoride in otosclerosis patients, and this found a reduced incidence of deterioration in hearing after two years in the treatment group. Several case-control series have described a hearing benefit in the sodium fluoride treated group. Treatment doses vary greatly, and there is no evidence regarding the optimum duration of treatment. There is low quality evidence suggesting that sodium fluoride may be of benefit to preserve hearing and reduce vestibular symptoms in patients with otosclerosis.
Inhibition of cardiac sodium currents by toluene exposure
Cruz, Silvia L; Orta-Salazar, Gerardo; Gauthereau, Marcia Y; Millan-Perez Peña, Lourdes; Salinas-Stefanón, Eduardo M
2003-01-01
Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 μM (confidence limits: 141–407μM). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i) the shape of the I–V curves; (ii) the reversal potential of Na+; and (iii) the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 μM toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect. PMID:14534149
Effect of cyclic aromatics on sodium active transport in frog skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankemeyer, J.T.; Bowerman, M.C.
1993-01-01
A modified glass Ussing-chamber was used to mount the skin. The electrical potential difference (PD) was measured by two 3% agar-frog Ringer's bridges. Current (i.e. short-circuit current, or ISC) was passed by Ag-AgCl electrodes placed so that current density was uniform across the skin. Ringer's solution, bathing each side of the frog skin, was stirred and aerated by gas-lift pumps. The effect of toxicants on the ISC was determined by using the 15 min prior to toxicant administration as a control period, then calculating the change in ISC during the toxicant period as a percent of the control ISC. Phenolmore » and benzene are components of crude oil and crude oil waste. These hydrocarbons and phenanthrene were tested for their effect on frog skin. The results show that the effect of organics on sodium active transport of an epithelium is to alter the active transport of sodium ions. 5 refs., 3 figs., 1 tab.« less
Compendium of Dental Residents’ Research Project and Literature Reviews - 1991.
1992-04-01
4-log1 0 (99.99%) reduction of any of the microorgan- isms under the test conditions. Sporicidin and 0.525% sodium hypochlorite were able to effect a...4-log1 0 reduction against S. aureus only. Impresept and 5.25% sodium hypochlorite did achieve a 4-log10 reduction in bacterial counts in all cases...alginate impressions is currently unknown and warrants investigation. Full strength (5.25%) sodium hypochlorite was effective in the shortest contact time (1
Sodium chloride inhibits IFN-γ, but not IL-4, production by invariant NKT cells.
Jeong, Dongjin; Kim, Hye Young; Chung, Doo Hyun
2018-01-01
Invariant NKT (iNKT) cells are a distinct subset of T cells that exert Janus-like functions in vivo by producing IFN-γ and IL-4. Sodium chloride modulates the functions of various immune cells, including conventional CD4 + T cells and macrophages. However, it is not known whether sodium chloride affects iNKT cell function, so we addressed this issue. Sodium chloride inhibited IFN-γ, but not IL-4, production by iNKT cells upon TCR or TCR-independent (IL-12 and IL-18) stimulation in a dose-dependent manner. Consistently, sodium chloride reduced the expression level of tbx21, but not gata-3, in iNKT cells stimulated with TCR engagement or IL-12 + IL-18. Sodium chloride increased phosphorylated p38 expression in iNKT cells and inhibitors of p38, NFAT5, SGK1, and TCF-1 restored IFN-γ production by iNKT cells stimulated with sodium chloride and TCR engagement. Furthermore, adoptive transfer of iNKT cells pretreated with sodium chloride restored antibody-induced joint inflammation to a lesser extent than for untreated iNKT cells in Jα18 knockout mice. These findings suggest that sodium chloride inhibits IFN-γ production by iNKT cells in TCR-dependent and TCR-independent manners, which is dependent on p38, NFAT5, SGK1, and TCF-1. These findings highlight the functional role of sodium chloride in iNKT cell-mediated inflammatory diseases. ©2017 Society for Leukocyte Biology.
Urinary sodium excretion and kidney failure in non-diabetic chronic kidney disease
Fan, Li; Tighiouart, Hocine; Levey, Andrew S.; Beck, Gerald J.; Sarnak, Mark J.
2014-01-01
Current guidelines recommend under 2g/day sodium intake in chronic kidney disease, but there are few studies relating sodium intake to long-term outcomes. Here we evaluated the association of mean baseline 24-hour urinary sodium excretion with kidney failure and a composite outcome of kidney failure or all-cause mortality using Cox regression in 840 participants enrolled in the Modification of Diet in Renal Disease Study. Mean 24-hour urinary sodium excretion was 3.46 g/day. Kidney failure developed in 617 and the composite outcome was reached in 723. In the primary analyses there was no association between 24-hour urine sodium and kidney failure [HR 0.99 (95% CI 0.91–1.08)] nor on the composite outcome [HR 1.01 (95% CI 0.93–1.09),] each per 1g/day higher urine sodium. In exploratory analyses there was a significant interaction of baseline proteinuria and sodium excretion with kidney failure. Using a 2-slope model, when urine sodium was under 3g/day, higher urine sodium was associated with increased risk of kidney failure in those with baseline proteinuria under 1g/day, and lower risk of kidney failure in those with baseline proteinuria of 1g/day or more. There was no association between urine sodium and kidney failure when urine sodium was 3g/day or more. Results were consistent using first baseline and time-dependent urine sodium. Thus, we noted no association of urine sodium with kidney failure. Results of the exploratory analyses need to be verified in additional studies and the mechanism explored. PMID:24646858
Low-sodium meat products: retaining salty taste for sweet health.
Verma, Arun Kumar; Banerjee, Rituparna
2012-01-01
There is a positive correlation between excessive intake of sodium and incidence of hypertension. As diet is the main source of sodium, awareness among people regarding its possible role upon health has driven demand for various low sodium foods including meat products. Meat products contribute a significant amount of dietary sodium, thus maligning their own image. However, this is not an easy task as common salt affects taste and flavor, functional attributes, stability, and food safety of meat products. The various properties such as taste and flavor, binding, as well as microbiological characteristics should be given due care while developing low salt meat products and accordingly different approaches have been proposed for processing of such products. Potassium chloride has been mostly used to replace sodium; however, a number of other salts, flavor enhancers, bitter blockers and water, as well as fat binders have also been attempted either alone or in different combinations. A number of low sodium meat products have been developed but their economy and consumer acceptability are the major concerns needing proper attention. In future it is anticipated that these challenges would be overcome to provide well acceptable and cost-effective healthier meat products to the consumers.
Theile, Jonathan W.; Cummins, Theodore R.
2011-01-01
Chronic and neuropathic pain constitute significant health problems affecting millions of individuals each year. Pain sensations typically originate in sensory neurons of the peripheral nervous system which relay information to the central nervous system (CNS). Pathological pain sensations can arise as result of changes in excitability of these peripheral sensory neurons. Voltage-gated sodium channels are key determinants regulating action potential generation and propagation; thus, changes in sodium channel function can have profound effects on neuronal excitability and pain signaling. At present, most of the clinically available sodium channel blockers used to treat pain are non-selective across sodium channel isoforms and can contribute to cardio-toxicity, motor impairments, and CNS side effects. Numerous strides have been made over the last decade in an effort to develop more selective and efficacious sodium channel blockers to treat pain. The purpose of this review is to highlight some of the more recent developments put forth by research universities and pharmaceutical companies alike in the pursuit of developing more targeted sodium channel therapies for the treatment of a variety of neuropathic pain conditions. PMID:22007172
Myotonia fluctuans. A third type of muscle sodium channel disease.
Ricker, K; Moxley, R T; Heine, R; Lehmann-Horn, F
1994-11-01
To define a new type of dominant myotonic muscle disorder and to identify the gene lesion. Case series, clinical examination and electromyography, measurements of grip force and relaxation time, and DNA analysis to probe for mutation in the gene for the skeletal muscle sodium channel. Outpatient clinic and home. Three families studied; all together, 17 affected and nine unaffected individuals. The findings in these three families confirm the existence of myotonia fluctuans as we described it previously in another family. Myotonia (prolongation of relaxation time) developed 20 to 40 minutes after exercise. Potassium caused generalized myotonia. Cooling had no major effect on muscle function. Three families had a common mutation in exon 22 and one family had a mutation in exon 14 of the gene for the sodium channel alpha subunit. Myotonia fluctuans is a disorder of the muscle sodium channel. There are at present two other distinct clinical muscle disorders associated with mutations in the sodium channel: hyperkalemic periodic paralysis and paramyotonia congenita. The findings in the present report indicate that myotonia fluctuans belongs to a third type of sodium channel disorder. Further work is needed to understand the complex genotype-phenotype correlations in sodium channel disorders.
von Stein, Richard T.; Silver, Kristopher S.; Soderlund, David M.
2013-01-01
Sodium channel inhibitor (SCI) insecticides were discovered almost four decades ago but have only recently yielded important commercial products (eg., indoxacarb and metaflumizone). SCI insecticides inhibit sodium channel function by binding selectively to slow-inactivated (non-conducting) sodium channel states. Characterization of the action of SCI insecticides on mammalian sodium channels using both biochemical and electrophysiological approaches demonstrates that they bind at or near a drug receptor site, the "local anesthetic (LA) receptor." This mechanism and site of action on sodium channels differentiates SCI insecticides from other insecticidal agents that act on sodium channels. However, SCI insecticides share a common mode of action with drugs currently under investigation as anticonvulsants and treatments for neuropathic pain. In this paper we summarize the development of the SCI insecticide class and the evidence that this structurally diverse group of compounds have a common mode of action on sodium channels. We then review research that has used site-directed mutagenesis and heterologous expression of cloned mammalian sodium channels in Xenopus laevis oocytes to further elucidate the site and mechanism of action of SCI insecticides. The results of these studies provide new insight into the mechanism of action of SCI insecticides on voltage-gated sodium channels, the location of the SCI insecticide receptor, and its relationship to the LA receptor that binds therapeutic SCI agents. PMID:24072940
Bayes, M; Rabasseda, X; Prous, J R
2002-05-01
Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables can be retrieved from the Clinical Studies knowledge area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: Abacavir sulfate, abarelix, abciximab, acarbose, alefacept, alteplase, amisulpride, amoxicillin trihydrate, apomorphine hydrochloride, aprepitant, argatroban monohydrate, aspirin, atenolol; Betamethasone dipropionate, betamethasone valerate, bicalutamide, bleomycin sulfate; Calcium carbonate, candesartan cilexetil, celecoxib, cetirizine hydrochloride, cisplatin, clarithromycin, clavulanate potassium, clomethiazole edisilate, clopidogrel hydrogensulfate, cyclophosphamide, chorionic gonadotropin (human); Dalteparin sodium, desloratadine, dexamethasone, doxorubicin, DPC-083; Efalizumab, efavirenz, enoxaparin sodium, eprosartan mesilate, etanercept, etoposide, ezetimibe; Faropenem daloxate, fenofibrate, fluocinolone acetonide, flutamide, fluvastatin sodium, follitropin beta, fondaparinux sodium; Gabapentin, glibenclamide, goserelin, granisetron hydrochloride; Haloperidol, hydrochlorothiazide; Imiquimod, interferon beta-1a, irbesartan, iseganan hydrochloride; L-758298, lamivudine, lanoteplase, leflunomide, leuprorelin acetate, loratadine, losartan potassium; Melagatran, metformin hydrochloride, methotrexate, metronidazole, micafungin sodium, mitoxantrone hydrochloride; Nelfinavir mesilate, neutral insulin injection, nizatidine; Olopatadine hydrochloride, omeprazole, ondansetron hydrochloride; Pamidronate sodium, paracetamol, paroxetine hydrochloride, perindopril, pimecrolimus, pioglitazone hydrochloride, piroxicam, pleconaril, pralmorelin, pravastatin sodium, prednisolone, prednisone, propofol; Raloxifene hydrochloride, ranpirnase, remifentanil hydrochloride, risedronate sodium, risperidone, rofecoxib, ropinirole hydrochloride, rosuvastatin calcium; Sevoflurane, sildenafil citrate, simvastatin, somatropin; Tacrolimus, tamoxifen citrate, telmisartan, temozolomide, thiopental sodium, tinzaparin sodium, tirofiban hydrochloride, treosulfan, triamcinolone acetonide; Urokinase; Valsartan, vardenafil, vincristine; Warfarin sodium; Ximelagatran; Zidovudine.
Dai, Caili; Yan, Zhihu; You, Qing; Du, Mingyong; Zhao, Mingwei
2014-01-01
Through the descriptive and rheological characterization of worm-like micelles formed by N-hexadecyl-N-methylpyrrolidinium bromide and sodium laurate, the formation and properties of the worm-like micelles were affected by the concentrations of sodium laurate and temperature. Additionally, cryogenic transmission electron microscopy images further validated the formation of worm-like micelles. PMID:25019152
Gross, Eitan; Pushkin, Alexander; Abuladze, Natalia; Fedotoff, Olga; Kurtz, Ira
2002-11-01
The HCO(3)(-) : Na(+) cotransport stoichiometry of the electrogenic sodium bicarbonate cotransporter kNBC1 determines the reversal potential (E(rev)) and thus the net direction of transport of these ions through the cotransporter. Previously, we showed that phosphorylation of kNBC1-Ser(982) in the carboxy-terminus of kNBC1 (kNBC1-Ct), by cAMP-protein kinase A (PKA), shifts the stoichiometry from 3 : 1 to 2 : 1 and that binding of bicarbonate to the cotransporter is electrostaticaly modulated. These results raise the possibility that phosphorylated kNBC1-Ser(982), or other nearby negatively charged residues shift the stoichiometry by blocking a bicarbonate-binding site. In the current study, we examined the role of the negative charge on Ser(982)-phosphate and three aspartate residues in a D986NDD custer in altering the stoichiometry of kNBC1. mPCT cells expressing kNBC1 mutants were grown on filters and mounted in an Ussing chamber for electrophysiological studies. Enhanced green fluorescence protein (EGFP)-tagged mutant constructs expressed in the same cells were used to determine the phosphorylation status of kNBC1-Ser(982). The data indicate that both kNBC1-Asp(986) and kNBC1-Asp(988), but not kNBC1-Asp(989), are required for the phosphorylation-induced shift in stoichiometry. A homologous motif (D887ADD) in the carboxy-terminus of the anion exchanger AE1 binds to carbonic anhydrase II (CAII). In isothermal titration calorimetry experiments, CAII was found to bind to kNBC1-Ct with a K(D) of 160 +/- 10 nM. Acetazolamide inhibited the short-circuit current through the cotransporter by 65 % when the latter operated in the 3 : 1 mode, but had no effect on the current in the 2 : 1 mode. Acetazolamide did not affect the cotransport stoichiometry or the ability of 8-Br-cAMP to shift the stoichiometry. Although CAII does not affect the transport stoichiometry, it may play an important role in enhancing the flux through the transporter when kNBC1-Ser(982) is unphosphorylated.
Moss, Arthur J.; Zareba, Wojciech; Schwarz, Karl Q.; Rosero, Spencer; McNitt, Scott; Robinson, Jennifer L.
2008-01-01
Introduction One form of the hereditary long QT-syndrome, LQT3-ΔKPQ, is associated with sustained inward sodium current during membrane depolarization. Ranolazine reduces late sodium channel current, and we hypothesized that ranolazine would have beneficial effects on electrical and mechanical cardiac function in LQT3 patients with the SCN5A-ΔKPQ mutation. Methods We assessed the effects of 8-hour intravenous ranolazine infusions (45mg/hr for 3 hours followed by 90mg/hr for 5 hours) on ventricular repolarization and myocardial relaxation in five LQT3 patients with the SCN5A-ΔKPQ mutation. Changes in electrocardiographic QTc parameters from before to during ranolazine infusion were evaluated by time-matched, paired t-test analyses. Cardiac ultrasound recordings were obtained before ranolazine infusion and just before completion of the 8-hour ranolazine infusion. Results Ranolazine shortened QTc by 26±3ms (p<0.0001) in a concentration-dependent manner. At peak ranolazine infusion, there was a significant 13% shortening in left ventricular isovolumic relaxation time, a significant 25% increase in mitral E-wave velocity, and a meaningful 22% decrease in mitral E-wave deceleration time compared to baseline. No adverse effects of ranolazine were observed in the study patients. Conclusion Ranolazine at therapeutic concentrations shortened a prolonged QTc interval and improved diastolic relaxation in patients with the LQT3-ΔKPQ mutation, a genetic disorder that is known to cause an increase of late sodium current. PMID:18662191
NASA Astrophysics Data System (ADS)
Tian, Ye; Wang, Wei D.; Zou, Wen-Bo; Qian, Jian-Qin; Hu, Chang-Qin
2018-04-01
The solid form of an active pharmaceutical ingredient is important when developing a new chemical entity. A solid understanding of the crystal structure and morphology that affect the mechanical and physical characteristics of pharmaceutical powders determines the manufacturing process. Solid-state NMR, thermogravimetric analysis, X-ray diffraction, and Fourier-transform infrared spectroscopy were combined with theoretical calculation to investigate different crystal packings of α-cefazolin sodium from three different vendors and conformational polymorphism was identified to exist in the α-cefazolin sodium. Marginal differences observed among CEZ-Na pentahydrate 1, 2, and 3 were speculated as the proportion of conformation 2. Understanding the differences in the polymorphic structure of α-cefazolin sodium may help with making modifications to incorporate new knowledge with a product’s development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu
We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased inmore » the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin shifted channel gating to hyperpolarized potentials. • The β1 subunit had opposite effects on the actions of tefluthrin and deltamethrin. • Auxiliary subunits are required for full reconstitution of channel function. • Channels in HEK293 cells exhibit properties similar to channels in neurons.« less
Jentsch, T J; Keller, S K; Koch, M; Wiederholt, M
1984-01-01
Using intracellular microelectrode technique, the response of the voltage V across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO3-]o (depolarization upon lowering and hyperpolarization upon raising [HCO3-]o) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+]o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10(-3) M) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+]o = 151 mM and [HCO3-]o = 46 mM, the transients of V depended, with 39.0 +/- 9.0 (SD) mV/decade, on bicarbonate and, with 15.3 +/- 5.8 (SD) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response of V was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10(-3) M) caused a reversible hyperpolarization of the steady-state potential by 8.5 +/- 2.6 mV (SD). It did not affect the immediate response to changes in [Na+]o or [HCO3-]o, but reduced the speed of regaining the steady-state potential after a change in [HCO3-]o. (8) Ouabain (10(-4) M) caused a fast depolarization of -6.8 +/- 1.1 (SD) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10(-5) M. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charge with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.
Schorr, U; Distler, A; Sharma, A M
1996-01-01
To examine the effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and parameters of glucose and lipid metabolism in elderly normotensive individuals. We examined 21 healthy men and women aged 60-72 years in a randomized, placebo-controlled, double-blind crossover trial. After reducing dietary salt intake to below 100 mmol/day, study participants were randomly assigned to drink 1.5 l daily of a sodium chloride-rich (sodium 84.5 mmol/l, chloride 63.7 mmol/l, bicarbonate 21.9 mmol/l), a sodium bicarbonate-rich (sodium 39.3 mmol/l, chloride 6.5 mmol/l, bicarbonate 48.8 mmol/l) and a low-sodium (placebo: sodium, chloride and bicarbonate < 0.02 mmol/l) mineral water for 4 weeks each in a three-phase crossover order. Each phase was separated by a 2-week washout period in which the study participants remained on a low-salt diet. Compliance was assessed by biweekly urinary electrolyte excretion and five study participants were excluded from analysis for failing to complete the trial or to fulfil the compliance criteria. Mean arterial blood pressure was significantly lower during the periods of consuming low-sodium -7.0 +/- 7.2 mmHg, P < 0.001) or sodium bicarbonate-rich (-5.7 +/- 6.4 mmHg, P < 0.05) water than at baseline. In contrast, blood pressure during the phase of drinking sodium chloride-rich water was identical to that at baseline. Ambulatory 24 h blood pressure, oral glucose tolerance and plasma lipids were not affected by the different regimens. Urinary calcium excretion was significantly reduced by drinking low-sodium or sodium bicarbonate-rich water but was unchanged under the sodium chloride-rich water. Consumption of sodium chloride-rich mineral water can abolish the blood pressure reduction induced by dietary salt restriction in elderly individuals. Sodium bicarbonate-rich mineral water in conjunction with a low-salt diet may have a beneficial effect on calcium homeostasis.
Gallo, Alessandra; Tosti, Elisabetta
2013-01-01
Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT) and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical properties of the mature oocytes and of events occurring at fertilization. With different toxicity assays, we studied the effect of the two biocides on the gametes by evaluating fertilization rate and embryo development. Results show that sodium (Na+) currents were significantly reduced by either of the two biocides, whereas conductance was significantly increased. The fertilization current frequency and amplitude, fertilization rate and larval development were affected only by TBT. This study suggests that: (i) the two biocides affect either the electrical properties of the oocyte plasma membrane and the reproductive success representing a risk factor for the survival of the species exposed to environmental pollution; (ii) the ascidian Ciona intestinalis may represent a good model organism to test toxicity of marine pollutants. Possible mechanisms of action of the two biocides are discussed. PMID:24065165
Protection against cyanide-induced convulsions with alpha-ketoglutarate.
Yamamoto, H
1990-04-30
Protection against convulsions induced by cyanide was observed after treatment with alpha-ketoglutarate, either alone or in combination with sodium thiosulfate, a classical antagonist for cyanide intoxication. However, sodium thiosulfate alone did not protect against cyanide (30 mg/kg)-induced convulsions. gamma-Aminobutyric acid (GABA) levels in brain were decreased by 31% in KCN-treated mice exhibiting convulsions. The combined administration of alpha-ketoglutarate and sodium thiosulfate completely abolished the decrease of GABA levels induced by cyanide. Furthermore, sodium thiosulfate alone also completely abolished the decrease of GABA levels. These results suggest that the depletion of brain GABA levels may not directly contribute to the development of convulsions induced by cyanide. On the other hand, cyanide increased calcium levels by 32% in brain crude mitochondrial fractions in mice with convulsions. The increased calcium levels were completely abolished by the combined administration of alpha-ketoglutarate and sodium thiosulfate, but not affected by sodium thiosulfate alone. These findings support the hypothesis proposed by Johnson et al. (Toxicol. Appl. Pharmacol., 84 (1986) 464) and Robinson et al. (Toxicology, 35 (1985) 59) that calcium may play an important role in mediating cyanide neurotoxicity.
The harmful effects of ethanol on ion transport and cellular respiration.
Blachley, J D; Johnson, J H; Knochel, J P
1985-01-01
The deleterious effects of ethanol on a variety of tissues may result largely from altered ion permeabilities and transport. Clinically relevant ethanol concentrations in blood increase the sodium permeability of the plasma membrane and depress active sodium transport by suppressing Na, K-ATPase activity. As a result, intracellular sodium concentration increases. The total tissue content of calcium increases. Important transport mechanisms deranged by ethanol probably include those regulating calcium-sodium and hydrogen-sodium exchange at the plasma membrane and calcium uptake by the sarcoplasmic reticulum. A modest decline in magnesium content of muscle occurs after chronic exposure to ethanol. This also has been associated with accumulation of calcium. After days to weeks of sustained ethanol intake, sodium pump activity, active sodium transport and tissue oxygen consumption increase. The cell membrane potential, initially lowered by alcohol, increases to supraphysiological levels. This is likely an electrogenic effect of increased sodium transport in response to a sodium leak. Eventually the earlier derangements in tissue composition, including retention of sodium, chloride, and calcium, and reductions in magnesium, potassium, and phosphate, slowly undergo correction. This biphasic response of injury and adaptation appears to depend upon adequate nutrition and the absence of other factors that can adversely affect cell function. That the Na, K-ATPase activity and oxygen consumption remain elevated suggests an ongoing sodium leak of the sarcolemmal membrane. Chronic ethanol-induced cell necrosis may be related to the increased intracellular calcium that accompanies the increase in sodium permeability. Conceivably, critically elevated concentrations of calcium in the cytoplasm may activate autolytic enzymes that in turn may be responsible for structural damage to the cell.
Bustamante, P; Pena, M A; Barra, J
2000-01-20
Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.
Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1
Xu, Ningyong; Cioffi, Donna L.; Alexeyev, Mikhail; Rich, Thomas C.
2014-01-01
Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membrane-associated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by ∼50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1. PMID:25428882
Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.
2010-01-01
The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384
NASA Astrophysics Data System (ADS)
Riastuti, R.; Ramadini, C.; Siallagan, S. T.; Rifki, A.; Herdino, F.
2018-04-01
The addition of sodium citrate to nickel electroplating process as additive is useful for refining the grain size of nickel deposit. The refining of grain size in nickel deposit as coating layer can improve surface performance, one of which corrosion resistance. This paper aims to investigate the effect of sodium citrate addition as grain refiner to promote corrosion resistance on SPCC steel. This experiment used Watt’s Bath solution of NiSO4 300 g/L, NiCl4 45 g/L, H3BO3 60 g/L, wetting agent 0.2 cc/L. Sodium citrate was added in composition of 45g/L and 60g/L. Nickel were deposited by direct current using current density on 6 A/dm2 at the acidity level of 5 for 30 minutes by keeping the operating temperature stable at 50°C. The grain size of nickel deposit was observed through Optical Microscope and Atomic Force Microscope (AFM). The corrosion behavior of SPCC was observed by linear polarization and Electrochemical Impedance Spectroscopy (EIS) methods using 3% NaCl solution. Based on the research, the addition of sodium citrate as grain refiner will increasing corrosion resistance on SPCC steel from 0.35 to 0.05 mm/year.
System for detecting and limiting electrical ground faults within electrical devices
Gaubatz, Donald C.
1990-01-01
An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.
Wang, Kun; Wang, Ning; He, Jianjiang; Yang, Ze; Shen, Xiangyan; Huang, Changshui
2017-11-22
Here, we apply three-dimensional (3D) architecture graphdiyne nanosheet (GDY-NS) as anode materials for sodium-ion storage devices achieving high energy and power performance along with excellent cyclic ability. The contribution of 3D architecture nanostructure and intramolecular pores of the GDY-NS can substantially optimize the sodium storage behavior through the accommodated intramolecular pore, 3D interconnective porous structure, and increased activity sites to facilitate a fast sodium-ion-diffusion channel. The contribution of butadiyne linkages and the formation of a stable solid electrolyte interface layer are directly confirmed through the in situ Raman measurement. The GDY-NS-based sodium-ion batteries exhibit a stable reversible capacity of approximately 812 mAh g -1 at a current density of 0.05 A g -1 ; they maintain more than 405 mAh g -1 over 1000 cycles at a current density of 1 A g -1 . Furthermore, the sodium-ion capacitors could deliver a capacitance more than 200 F g -1 over 3000 cycles at 1 A g -1 and display an initial specific energy as high as 182.3 Wh kg -1 at a power density of 300 W kg -1 and maintain specific energy of 166 Wh kg -1 even at a power density of 15 000 W kg -1 . The high energy and power density along with excellent cyclic performance based on the GDY-NS anode offers a great potential toward application on next-generation energy storage devices.
Maden, Murat; Ertuğrul, İhsan Furkan; Erik, Cevat Emre; Yetiş, Ceylan Çağıl; Tuncer, Yasin; Kahriman, Mesud
2017-01-01
Background This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. Methods Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21 days, the presence of the biofilm was confirmed by scanning electron microscopy (n = 3). Roots were randomly divided into seven groups according to decontamination procedures: G1: no treatment; G2: sterile saline; G3: 5.25% sodium hypochlorite; G4: passive ultrasonic irrigation; G5: EndoActivator (Dentsply Tulsa Dental Specialties, Tulsa, OK) agitation (EA); G6: μE agitation; and G7: μE-assisted sonic agitation. Fixed μE amperage and intensities were applied in G6 and G7. Following microbial sampling, bacterial colonies were counted using the direct plating method. Results Biofilm was not eradicated in any sample. The μE-assisted sonic agitation of sodium hypochlorite revealed the lowest cfu values (p<0.05), whereas there were no significant differences among the passive ultrasonic irrigation, EndoActivator and μE agitation alone (p>0.05). Conclusions Based on available evidence, the following conclusions were drawn: The μE-assisted sonic agitation increased the antibiofilm efficiency of sodium hypochlorite than passive ultrasonic irrigation and EndoActivator. The μE-assisted sonic agitation on 5.25% sodium hypochlorite is not capable to eradicate biofilms at 10mA energy level in 60s. PMID:28854274
Maden, Murat; Ertuğrul, İhsan Furkan; Orhan, Ekim Onur; Erik, Cevat Emre; Yetiş, Ceylan Çağıl; Tuncer, Yasin; Kahriman, Mesud
2017-01-01
This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21 days, the presence of the biofilm was confirmed by scanning electron microscopy (n = 3). Roots were randomly divided into seven groups according to decontamination procedures: G1: no treatment; G2: sterile saline; G3: 5.25% sodium hypochlorite; G4: passive ultrasonic irrigation; G5: EndoActivator (Dentsply Tulsa Dental Specialties, Tulsa, OK) agitation (EA); G6: μE agitation; and G7: μE-assisted sonic agitation. Fixed μE amperage and intensities were applied in G6 and G7. Following microbial sampling, bacterial colonies were counted using the direct plating method. Biofilm was not eradicated in any sample. The μE-assisted sonic agitation of sodium hypochlorite revealed the lowest cfu values (p<0.05), whereas there were no significant differences among the passive ultrasonic irrigation, EndoActivator and μE agitation alone (p>0.05). Based on available evidence, the following conclusions were drawn: The μE-assisted sonic agitation increased the antibiofilm efficiency of sodium hypochlorite than passive ultrasonic irrigation and EndoActivator. The μE-assisted sonic agitation on 5.25% sodium hypochlorite is not capable to eradicate biofilms at 10mA energy level in 60s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Momozaki, Y.; Li, M.
This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory,more » the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carbon particulates) in sodium that is of interest for materials compatibility evaluation. The removal of carbon from the sodium will be accomplished by exposing carbon-gettering alloys such as refractory metals that have a high partitioning coefficient for carbon and also precipitate carbides, thereby decreasing the carbon concentration in sodium.« less
Electromagnetism of Bacterial Growth
NASA Astrophysics Data System (ADS)
Ainiwaer, Ailiyasi
2011-10-01
There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.
Use of potassium chloride and flavor enhancers in low sodium Cheddar cheese.
Grummer, J; Bobowski, N; Karalus, M; Vickers, Z; Schoenfuss, T
2013-03-01
We investigated use of potassium chloride (KCl) to maintain both the salty flavor and to replace the preservative effects of salt when reducing the sodium content in natural cheese. Because salt replacers can affect flavor because of inherent off-flavors, such as bitter and metallic, we examined the use of flavor enhancers for their ability to modulate some of these undesirable sensory effects. Stirred-curd Cheddar-style cheese was manufactured using 2 cheese-making procedures (different curd knife sizes and target salting titratable acidities), in duplicate. Curd was salted with sodium chloride (NaCl) or 60% reduced sodium blends of NaCl and KCl (2 different sources). Curd was also salted at a 60% reduced sodium rate with NaCl and KCl with added flavor enhancers. A hydrolyzed vegetable protein/yeast extract blend, a natural "potassium-blocking type" flavor, disodium inosinate, or disodium guanylate were each blended with the reduced sodium salt blend and added to curd at the salting step. The resulting blocks of cheese were aged for 5 mo and evaluated monthly for chemical, microbial, and sensory differences. At 5 mo of aging, we measured liking for the cheeses using a consumer panel. Overall, cheeses were well liked by the consumer panel, and the scores of reduced sodium cheese with 2 different KCl sources were not different from those of the full-sodium control. The addition of flavor enhancers to Cheddar curd had mixed results, with one improving the consumer flavor liking only slightly over KCl, and one (disodium inosinate) significantly reducing consumer flavor liking scores, presumably due to the amount of umami flavor it contributed. Potassium chloride replacement salts sourced from different manufacturers affected the chemical and flavor properties of cheese, and changes to pH and temperature targets may be necessary to yield cheese with the moisture and pH targets desired. The cheese-making procedure used also influenced flavors observed, which resulted in higher levels of brothy flavor in cheese made with smaller curd knives and a higher target salting titratable acidity. This effect resulted in lower consumer liking scores. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fei, Hailong; Feng, Wenjing; Xu, Tan
2017-02-15
It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg -1 after 100 cycles at a current density of 100mAg -1 for lithium-ion batteries, while the second discharge capacity of 320.7mAhg -1 was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide...
In support of the Endocrine Disruptor Screening Program (EDSP), the U.S. EPA’s Office of Research and Development (ORD) is currently developing HTPS approaches to identify chemicals that may alter target sites in the thyroid hormone pathway. One target site is the sodium io...
Pyrethroids are pesticides that disrupt nervous system function by prolongation of sodium currents
through voltage-sensitive sodium channels present in nerve membranes. Pyrethroid usage has
increased as use of other pesticides has declined. A sensitive, dose-respons...
The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) and Office of Research and Development (ORD) are currently developing high throughput assays to screen chemicals that may alter the thyroid hormone pathway. One potential target in this pathway is the sodium iodide sympo...
Hou, Hongshuai; Shao, Lidong; Zhang, Yan; Zou, Guoqiang; Chen, Jun; Ji, Xiaobo
2017-01-01
Large-area phosphorus-doped carbon nanosheets (P-CNSs) are first obtained from carbon dots (CDs) through self-assembly driving from thermal treatment with Na catalysis. This is the first time to realize the conversion from 0D CDs to 2D nanosheets doped with phosphorus. The sodium storage behavior of phosphorus-doped carbon material is also investigated for the first time. As anode material for sodium-ion batteries (SIBs), P-CNSs exhibit superb performances for electrochemical storage of sodium. When cycled at 0.1 A g -1 , the P-CNSs electrode delivers a high reversible capacity of 328 mAh g -1 , even at a high current density of 20 A g -1 , a considerable capacity of 108 mAh g -1 can still be maintained. Besides, this material also shows excellent cycling stability, at a current density of 5 A g -1 , the reversible capacity can still reach 149 mAh g -1 after 5000 cycles. This work will provide significant value for the development of both carbon materials and SIBs anode materials.
Oral Versus Topical Diclofenac Sodium in the Treatment of Osteoarthritis.
Tieppo Francio, Vinicius; Davani, Saeid; Towery, Chris; Brown, Tony L
2017-06-01
Osteoarthritis (OA) is one of the most common causes of joint pain in the United States and non-steroidal anti-inflammatories (NSAIDs), such as Diclofenac sodium, which is currently available in two main routes of administration; oral and topical distribution have been established as one of the standard treatments for OA. Generally, oral NSAIDs are well tolerated; however our narrative review suggests that the topical solution had a better tolerability property than oral Diclofenac sodium, especially due to side effects of gastrointestinal bleeding with the utilization of the oral format. In addition, the topical route may be considered a reasonable selection by clinicians for management of musculoskeletal pain in those patients with a history of potential risk and adverse side effects. Most studies reviewed comparing oral versus topical solution of Diclofenac sodium revealed comparable efficacy, with minimal side effects utilizing the topical route. The key point of this narrative review is to help clinicians that currently must decide between very inexpensive diclofenac oral presentations and expensive topical presentations especially in the elderly population and the pros and cons of such decision-making process.
Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices.
Nowak, Kristen L; Fried, Linda; Jovanovich, Anna; Ix, Joachim; Yaffe, Kristine; You, Zhiying; Chonchol, Michel
2018-01-01
Dietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow. The aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included. The age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 ± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≥1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ. In community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging. © 2018 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Gerzer, Rupert
2014-11-01
For a long time, sodium balance appeared to be a ;done deal; and was thought to be well understood. However, experiments in preparation of space missions showed that the concept of osmotic sodium storage and close correlations of sodium with water balance are only part of the regulatory mechanisms of body salt. By now it has turned out that the human skin is an important storage place and regulator for sodium, that sodium storage involves macrophages which in turn salt-dependently co-regulate blood pressure, that body sodium also strongly influences bone and protein metabolism, and that immune functions are also strongly influenced by sodium. In addition, the aging process appears to lead to increased body sodium storage, which in turn might influence the aging process of the human body. The current review article summarizes the developments that have led to these revolutionizing new findings and concepts as well as consequences deriving from these findings. Therefore, it is not intended in this article to give a complete literature overview over the whole field but to focus on such key literature and considerations that led to the respective developments.
Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function
Resnick, Andrew
2011-01-01
Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression. PMID:22046444
Is it safe to re-access sodium bicarbonate bottles for use in minor surgery?
Bjornson, Lindsay; Bucevska, Marija; Tilley, Peter; Verchere, Cynthia
2018-04-06
Sodium bicarbonate is added to lidocaine to reduce injection pain. In Canada, it is available in vials exceeding the injection volume 100-fold. These are single-use vials that should be disposed of after one access. Some surgeons re-use vials to reduce waste, potentially causing contamination. This study aims to review the safety of sodium bicarbonate and assess alternatives to current practice. Strains of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Burkholderia cepacia were used to assess bacterial growth in vials of sodium bicarbonate. Each pathogen was inoculated into a vial for 14 days at room temperature. At several time points, 1 mL of solution was removed and diluted. One hundred microliters were transferred to blood agar plates and incubated at 35 °C. Colony counts were calculated, averaged and plotted onto a logarithmic graph. Colony counts of all strains fell below observational threshold after 7 days in sodium bicarbonate. Although all strains were reduced, bacteria can survive in sodium bicarbonate for several days, during which transmission may occur. Sodium bicarbonate vials should be treated as single-dose, as indicated by the manufacturers. To reduce waste, hospital pharmacies can repackage sodium bicarbonate into smaller vials or pre-alkalize lidocaine with sodium bicarbonate. Copyright © 2018 Elsevier Inc. All rights reserved.
Inhibition of Neuronal Voltage-Gated Sodium Channels by Brilliant Blue G
Jo, Sooyeon
2011-01-01
Brilliant blue G (BBG), best known as an antagonist of P2X7 receptors, was found to inhibit voltage-gated sodium currents in N1E-115 neuroblastoma cells. Sodium currents elicited from a holding potential of −60 mV were blocked with an IC50 of 2 μM. Block was enhanced in a use-dependent manner at higher stimulation rates. The voltage-dependence of inactivation was shifted in the hyperpolarizing direction, and recovery from inactivation was slowed by BBG. The most dramatic effect of BBG was to slow recovery from inactivation after long depolarizations, with 3 μM BBG increasing half-time for recovery (measured at −120 mV) from 24 to 854 ms after a 10-s step to 0 mV. These results were mimicked by a kinetic model in which BBG binds weakly to resting channels (Kd = 170 μM) but tightly to fast-inactivated channels (Kd = 5 μM) and even more tightly (Kd = 0.2 μM) to slow-inactivated channels. In contrast to BBG, the structurally related food-coloring dye Brilliant Blue FCF had very little effect at concentrations up to 30 μM. These results show that BBG inhibits voltage-gated sodium channels at micromolar concentrations. Although BBG inhibition of sodium channels is less potent than inhibition of P2X7 receptors, there may be significant inhibition of sodium channels at BBG concentrations achieved in spinal cord or brain during experimental treatment of spinal cord injury or Huntington's disease. Considered as a sodium channel blocker, BBG is remarkably potent, acting with more than 10-fold greater potency than lacosamide, another blocker thought to bind to slow-inactivated channels. PMID:21536754
The pH dependence of cocaine interaction with cardiac sodium channels.
Crumb, W J; Clarkson, C W
1995-09-01
Previous in vitro and in vivo studies have provided evidence implicating cocaine block of cardiac sodium channels as a putative mechanism for cocaine-induced arrhythmias and sudden death. Cocaine also has been shown to cause seizures which can result in respiratory and/or metabolic acidosis. In this study we investigated how changes in both internal pH (pHi) and external pH (pHo) over the range of 6.6 to 9.2 modify the sodium channel blocking properties of cocaine in isolated guinea pig ventricular myocytes by using the whole-cell variant of the patch clamp technique. Use-dependent block produced by a train of 1-sec pulses to -20 mV was not affected by changes in pHi, but both the amplitude and time constant for approaching steady-state block were significantly affected by changes in pHo. Characterization of the time course of cocaine binding during a depolarizing pulse indicated that the kinetics of drug interaction with inactivated channels were independent of pHi, but were significantly affected by changes in pHo. The rate of recovery from channel block at a holding potential of -140 mV also was independent of pHi, but strongly dependent on pHo, with the unblocking time constant decreasing exponentially as pHo was increased. The results of this study indicate that cocaine's effect on cardiac sodium channels can be modulated significantly by changes in pHo, and provide further support for previously poorly tested assumptions of the modulated receptor hypothesis.
Mounsey, J S; Hogan, S A; Murray, B A; O'Callaghan, D J
2012-05-01
Hydrolyzed or nonhydrolyzed sodium caseinate-lactose dispersions were spray dried, at a protein: lactose ratio of 0.5, to examine the effects of protein hydrolysis on relaxation behavior and stickiness of model powders. Sodium caseinate (NC) used included a nonhydrolyzed control (DH 0) and 2 hydrolyzed variants (DH 8.3 and DH 15), where DH = degree of hydrolysis (%). Prior to spray drying, apparent viscosities of liquid feeds (at 70°C) at a shear rate of 20/s were 37.6, 3.14, and 3.19 mPa·s, respectively, for DH 0, DH 8, and DH 15 dispersions. Powders containing hydrolyzed casein were more susceptible to sticking than those containing intact NC. The former had also lower bulk densities and powder particle sizes. Scanning electron microscopy showed that hydrolyzed powders had thinner particle walls and were more friable than powders containing intact NC. Secondary structure of caseinates, determined by Fourier transform infrared spectroscopy, was affected by the relative humidity of storage and the presence of lactose as co-solvent rather than its physical state. Glass transition temperatures and lactose crystallization temperatures, determined by differential scanning calorimetry were not affected by caseinate hydrolysis, although the effects of protein hydrolysis on glass-rubber transitions (T(gr)) could be determined by thermo-mechanical analysis. Powders containing hydrolyzed NC had lower T(gr) values (~30°C) following storage at a higher subcrystallization relative humidity (33%) compared with powder with nonhydrolyzed NC (T(gr) value of ~40°C), an effect that reflects more extensive plasticization of powder matrices by moisture. Results support that sodium caseinate-lactose interactions were weak but that relaxation behavior, as determined by the susceptibility of powder to sticking, was affected by hydrolysis of sodium caseinate. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pet food safety: sodium in pet foods.
Chandler, Marjorie L
2008-08-01
Healthy dogs and cats appear to be able to adjust to differing amounts of sodium in their diet via the rennin-angiotensin-aldosterone mechanisms. There is no strong evidence that increased dietary sodium increases the risk of hypertension in dogs and cats, and the current recommendation for hypertensive animals is to avoid high dietary salt intake without making a specific effort to restrict it. The prevalence of salt sensitivity and its effect on blood pressure has not been determined for cats or dogs. The ideal amount of sodium in the diet of dogs and cats with cardiac deficiency has not been determined, as increasing may detrimentally increase the extracellular fluid volume, but decreasing it may detrimentally increase the activation of the rennin-angiotensin-aldosterone system. Increased dietary sodium increases urine output and may decrease the risk of forming calcium oxalate uroliths due to the decrease in relative supersaturation of solutes. However, caution should be used in increasing the sodium intake of patients with renal disease as increased dietary sodium may have a negative effect on the kidneys independent of any effect on blood pressure.
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu
1994-01-01
Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.
Antiarrhythmic effect of IKr activation in a cellular model of LQT3.
Diness, Jonas Goldin; Hansen, Rie Schultz; Nissen, Jakob Dahl; Jespersen, Thomas; Grunnet, Morten
2009-01-01
Long QT syndrome type 3 (LQT3) is an inherited cardiac disorder caused by gain-of-function mutations in the cardiac voltage-gated sodium channel, Na(v)1.5. LQT3 is associated with the polymorphic ventricular tachycardia torsades de pointes (TdP), which can lead to syncope and sudden cardiac death. The sea anemone toxin ATX-II has been shown to inhibit the inactivation of Na(v)1.5, thereby closely mimicking the underlying cause of LQT3 in patients. The hypothesis for this study was that activation of the I(Kr) current could counteract the proarrhythmic effects of ATX-II. Two different activators of I(Kr), NS3623 and mallotoxin (MTX), were used in patch clamp studies of ventricular cardiac myocytes acutely isolated from guinea pig to test the effects of selective I(Kr) activation alone and in the presence of ATX-II. Action potentials were elicited at 1 Hz by current injection and the cells were kept at 32 degrees C to 35 degrees C. NS3623 significantly shortened action potential duration at 90% repolarization (APD(90)) compared with controls in a dose-dependent manner. Furthermore, it reduced triangulation, which is potentially antiarrhythmic. Application of ATX-II (10 nM) was proarrhythmic, causing a profound increase of APD(90) as well as early afterdepolarizations and increased beat-to-beat variability. Two independent I(Kr) activators attenuated the proarrhythmic effects of ATX-II. NS3623 did not affect the late sodium current (I(NaL)) in the presence of ATX-II. Thus, the antiarrhythmic effect of NS3623 is likely to be caused by selective I(Kr) activation. The present data show the antiarrhythmic potential of selective I(Kr) activation in a cellular model of the LQT3 syndrome.
NASA Astrophysics Data System (ADS)
Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.
2017-10-01
The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.
Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua
2010-12-01
This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash.
Modulation of leukocyte adhesion in rat mesenteric venules by aspirin and salicylate.
Asako, H; Kubes, P; Wallace, J; Wolf, R E; Granger, D N
1992-07-01
Erythrocyte velocity, vessel diameter, leukocyte rolling velocity, and number of adherent and emigrated leukocytes were measured in postcapillary venules both before and during superfusion of rat mesentery with either aspirin or sodium salicylate. In some experiments, animals were treated with either a leukotriene (LT)-synthesis inhibitor (L-663,536), an LTD4 antagonist (MK-571), an LTB4 antagonist (SC-41930), misoprostol, or prostaglandin (PG) I2, then the aspirin protocol was repeated. Superfusion of aspirin but not sodium salicylate resulted in increased leukocyte adherence and a reduced leukocyte rolling velocity but did not affect leukocyte emigration. Aspirin-induced leukocyte adhesion was effectively prevented by the LT-synthesis inhibitor and LTB4 antagonist but not by the LTD4 antagonist. Misoprostol and PGI2 also prevented the aspirin-induced adhesion responses. Superfusion of the mesentery with either platelet-activating factor (PAF) or LTB4 enhanced leukocyte adherence and emigration while reducing leukocyte rolling velocity. Sodium salicylate prevented all of the adhesion responses elicited by LTB4. Although salicylate did not affect the PAF-induced leukocyte adherence and rolling responses, it completely prevented the increased leukocyte emigration. These results indicate that aspirin promotes, whereas sodium salicylate inhibits, leukocyte-endothelial cell adhesive interactions at therapeutically relevant concentrations.
[Mechanisms of tolerance to sulfur dioxide and sodium metabisulfite].
Atzori, L; Corriga, A M; Cannas, E; Congiu, L
1997-01-01
Inhalation of sulphur dioxide (250 ppm), (SO2) or sodium metabisulfite (80 mM) (MBS) aerosol or perfusion with MBS (3 mM) induced a reduction in compliance and conductance in the isolated, perfused and ventilated guinea pig lung. Pretreatment of the lung with sodium sulfite (3 mM), a dissolution product of SO2 and MBS, reduced the bronchoconstriction induced by SO2 and MBS. Bronchoconstriction induced by SO2 and MBS in associated to increased levels of Calcitonin gene-Related Peptide (CGRP) in the perfusate effinent, indicating activation of sensory nerves. The release of CGRP induced by SO2 and MBS was not affected by sodium sulfite. Sulfite treatment did not modify lung reactivity towards acethylcholine, bradykinin, serotonin, histamine and substance P (fragment 5-11). An inhibitory effect by sulfite was observed on bronchoconstriction induced by neurokinin A (fragment 4-10). Since bronchoconstriction induced by SO2 and MBS appears to be mediated by neurokinin A release and action, sulfite may act by affecting its signal transduction pathway. In conclusion, the results indicate that during exposure to some environmental and occupational pollutants, e.g. SO2 and MBS, critical modifications of sulfhydryl groups on smooth muscle receptors may occur. We hypothesise this as a possible step in the development of tolerance and hyperreactivity.
Iranifam, Mortaza; Kharameh, Merhnaz Khabbaz
2014-09-01
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)-luminol-H2 O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2 O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10(-7) -4.0 × 10(-6) mol/L. The limit of detection was 2.6 × 10(-7) mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10(-6) mol/L ampicillin sodium was 4.71%. Also, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.
Inatsu, Yasuhiro; Bari, Md Latiful; Kawasaki, Susumu; Isshiki, Kenji; Kawamoto, Shinichi
2005-02-01
Efficacy of acidified sodium chlorite for reducing the population of Escherichia coli O157:H7 pathogens on Chinese cabbage leaves was evaluated. Washing leaves with distilled water could reduce the population of E. coli O157:H7 by approximately 1.0 log CFU/g, whereas treating with acidified chlorite solution could reduce the population by 3.0 log CFU/g without changing the leaf color. A similar level of reduction was achieved by washing with sodium chlorite solution containing various organic acids. However, acidified sodium chlorite in combination with a mild heat treatment reduced the population by approximately 4.0 log CFU/g without affecting the color, but it softened the leaves. Moreover, the efficacy of the washing treatment was similar at low (4 degrees C) and room (25 degrees C) temperatures, indicating that acidified sodium chloride solution could be useful as a sanitizer for surface washing of fresh produce.
Iron and boron removal from sodium silicate using complexation methods
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Suharty, N. S.; Pramono, E.; Ramelan, A. H.; Sasongko, B.; Dewi, A. O. T.; Hidayat, R.; Sulistyono, E.; Handayani, M.; Firdiyono, F.
2018-05-01
Silica purification of other materials is needed to improve the purity of silica that suitable for solar cells requirement. The silica is obtained from roasting of sand minerals in sodium silicate form. Iron (Fe) and boron (B) are an impurity that must be separated to obtain high pure silica. Separation of Fe and B used complexation methods. Chitosan-EDTA is used to remove Fe component and curcumin is used to remove B component. The elemental analysis with Atomic Absorption Spectrophotometer (AAS) showed the amount of Fe in sodium silicate decreased after binding to Chitosan EDTA. The contact duration between sodium silicate and chitosan-EDTA at baseline did not affect the results. Then the removal of B from sodium silicate using curcumin was done under basic conditions. B-Curcumin complexes were known from the wavelength number shifts of O-H, C-O, and C = O vibrational in the IR spectrum. The results showed that the optimum concentration of curcumin for removal B was 2 × 10-7 M.
Wielgosz, Andreas; Robinson, Christopher; Mao, Yang; Jiang, Ying; Campbell, Norm R C; Muthuri, Stella; Morrison, Howard
2016-06-01
The standard for population-based surveillance of dietary sodium intake is 24-hour urine testing; however, this may be affected by incomplete urine collection. The impact of different indirect methods of assessing completeness of collection on estimated sodium ingestion has not been established. The authors enlisted 507 participants from an existing community study in 2009 to collect 24-hour urine samples. Several methods of assessing completeness of urine collection were tested. Mean sodium intake varied between 3648 mg/24 h and 7210 mg/24 h depending on the method used. Excluding urine samples collected for longer or shorter than 24 hours increased the estimated urine sodium excretion, even when corrections for the variation in timed collections were applied. Until an accurate method of indirectly assessing completeness of urine collection is identified, the gold standard of administering para-aminobenzoic acid is recommended. Efforts to ensure participants collect complete urine samples are also warranted. ©2015 Wiley Periodicals, Inc.
The sodium hypochlorite accident: experience of diplomates of the American Board of Endodontics.
Kleier, Donald J; Averbach, Robert E; Mehdipour, Omid
2008-11-01
To better understand the etiology associated with sodium hypochlorite accidents, we surveyed diplomates of the American Board of Endodontics. Of the 314 diplomates who responded, 132 reported experiencing a sodium hypochlorite accident. Questions were asked about the age and sex of the patient as well as the tooth being treated, preoperative signs, symptoms, diagnosis, and radiographic appearance. Data were analyzed by chi-square tests. Significantly more women experienced sodium hypochlorite accidents compared with men (p < 0.0001). More maxillary teeth than mandibular teeth (p < 0.0001) and more posterior than anterior teeth (p < 0.0001) were involved. A diagnosis of pulp necrosis with radiographic findings of periradicular radiolucency were positively associated with such accidents (p < 0.0001). Most respondents reported that patient signs and symptoms completely resolved within a month. The occurrence of an accident, by itself, did not adversely affect the endodontic prognosis of the involved tooth. Anatomic variations may contribute significantly to the occurrence of a sodium hypochlorite accident.
Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G
1992-01-01
We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171
Role of aquaporin and sodium channel in pleural water movement.
Jiang, Jinjun; Hu, Jie; Bai, Chunxue
2003-12-16
The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.
Zieger, Marina; Punzo, Claudio
2016-01-01
Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199
Kamii, Hironori; Kurosawa, Ryo; Taoka, Naofumi; Shinohara, Fumiya; Minami, Masabumi; Kaneda, Katsuyuki
2015-05-01
The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine-induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter-delivered cocaine exposure, ex vivo whole-cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular- but not burst-type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole-sensitive persistent sodium currents, but not changes in Ca(2+) -activated BK, SK or voltage-dependent A-type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine-induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine-induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine-induced addictive behaviors. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Impact of the post fire management in some soil chemical properties. First results.
NASA Astrophysics Data System (ADS)
Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavi
2016-04-01
Post-fire management after severe wildfires has impact on soil properties. In Mediterranean environments management of fire affected areas is a common practice. This intervention may change soil chemical properties of the soil such as major cations. The aim of this work is to study the impact of different types of forest management in soil extractable calcium, magnesium, sodium and potassium after a severe wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1235 ha. After the fire an experimental plot was designed 9 plots with 2x2 meters (4 square meters). The different managements were: a) clear-cuted area and wood removed, b) no treatment); and c) clear-cutted. The results of the first sampling showed significant differences among all treatments in extractable calcium, sodium and potassium. The amount of these extractable elements was high in clear-cutted treatment in comparison to the others. No differences were identified in extractable magnesium. Overall, in the immediate period after the fire, burned area management, changed the studied soil properties. We are currently studying the evolution of this soil properties in these plots with the time
A uniquely adaptable pore is consistent with NALCN being an ion sensor
Senatore, Adriano; Spafford, J. David
2013-01-01
NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN’s most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd3+-sensitive, NMDG+-impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels. PMID:23442378
A uniquely adaptable pore is consistent with NALCN being an ion sensor.
Senatore, Adriano; Spafford, J David
2013-01-01
NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN's most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd ( 3+) -sensitive, NMDG (+) -impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav 1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels.
The Electrophysiological Effects of Qiliqiangxin on Cardiac Ventricular Myocytes of Rats
Wei, Yidong; Liu, Xiaoyu; Wei, Haidong; Hou, Lei; Che, Wenliang; The, Erlinda; Li, Gang; Jhummon, Muktanand Vikash; Wei, Wanlin
2013-01-01
Qiliqiangxin, a Chinese herb, represents the affection in Ca channel function of cardiac myocytes. It is unknown whether Qiliqiangxin has an effect on Na current and K current because the pharmacological actions of this herb's compound are very complex. We investigated the rational usage of Qiliqiangxin on cardiac ventricular myocytes of rats. Ventricular myocytes were exposed acutely to 1, 10, and 50 mg/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the acute effects of Qiliqiangxin on Sodium current (I Na), outward currents delayed rectifier outward K+ current (I K), slowly activating delayed rectifier outward K+ current (I Ks), transient outward K+ current (I to), and inward rectifier K+ current (I K1). Qiliqiangxin can decrease I Na by 28.53% ± 5.98%, and its IC50 was 9.2 mg/L. 10 and 50 mg/L Qiliqiangxin decreased by 37.2% ± 6.4% and 55.9% ± 5.5% summit current density of I to. 10 and 50 mg/L Qiliqiangxin decreased I Ks by 15.51% ± 4.03% and 21.6% ± 5.6%. Qiliqiangxin represented a multifaceted pharmacological profile. The effects of Qiliqiangxin on Na and K currents of ventricular myocytes were more profitable in antiarrhythmic therapy in the clinic. We concluded that the relative efficacy of Qiliqiangxin was another choice for the existing antiarrhythmic therapy. PMID:24250713
DiBona, G F; Jones, S Y
2001-04-01
To determine the effects of physiological alterations in endogenous angiotensin II activity on basal renal sympathetic nerve activity (RSNA) and its arterial baroreflex regulation, angiotensin II type 1 receptor antagonists were microinjected into the rostral ventrolateral medulla of anesthetized rats consuming a low, normal, or high sodium diet that were instrumented for simultaneous measurement of arterial pressure and RSNA. Plasma renin activity was increased in rats fed a low sodium diet and decreased in those fed a high sodium diet. Losartan (50, 100, and 200 pmol) decreased heart rate and RSNA (but not mean arterial pressure) dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a high sodium diet. Candesartan (1, 2, and 10 pmol) decreased mean arterial pressure, heart rate, and RSNA dose-dependently; the responses were significantly greater in rats fed a low sodium diet than in those fed a normal or high sodium diet. [D-Ala(7)]Angiotensin-(1-7) (100, 200, and 1000 pmol) did not affect mean arterial pressure, heart rate, or RSNA in rats fed either a low or a high sodium diet. In rats fed a low sodium diet, candesartan reset the arterial baroreflex control of RSNA to a lower level of arterial pressure, and in rats with congestive heart failure, candesartan increased the arterial baroreflex gain of RSNA. Physiological alterations in the endogenous activity of the renin-angiotensin system influence the bradycardic, vasodepressor, and renal sympathoinhibitory responses to rostral ventrolateral medulla injection of antagonists to angiotensin II type 1 receptors but not to angiotensin-(1-7) receptors.
Rojas, John; Guisao, Santiago; Ruge, Vanesa
2012-12-01
Spironolactone is a drug derived from sterols that exhibits an incomplete oral absorption due to its low water solubility and slow dissolution rate. In this study, formulations of spironolactone with four disintegrants named as croscarmellose sodium, crospovidone, sodium starch glycolate and microcrystalline cellulose II (MCCII) were conducted. The effect of those disintegrants on the tensile strength, disintegration time and dissolution rate of spironolactone-based compacts was evaluated using a factorial design with three categorical factors (filler, lubricant, and disintegrant). The swelling values, water uptake and water sorption studies of these disintegrants all suggested that MCCII compacts disintegrate by a wicking mechanism similar to that of crospovidone, whereas a swelling mechanism was dominant for sodium starch glycolate and croscarmellose sodium. The disintegration time of MCCII and sodium starch glycolate remained unchanged with magnesium stearate. However, this lubricant delayed the disintegration time of crospovidone and croscarmellose sodium. MCCII presented the fastest disintegration time independent of the medium and lubricant employed. The water sorption ratio and swelling values determined sodium starch glycolate followed by croscarmellose sodium as the largest swelling materials, whereas crospovidone and MCCII where the least swelling disintegrants. The swelling property of sodium starch glycolate and croscarmellose sodium was strongly affected by the medium pH. The disintegration time of spironolactone compacts was faster when starch was used as a filler due to the formation of soft compacts. In this case, the type of filler employed rather than the disintegrant had a major effect on the disintegration and dissolution times of spironolactone.
Strategies to Reduce Dietary Sodium Intake
Cobb, Laura K; Appel, Lawrence J; Anderson, Cheryl A.M.
2013-01-01
Opinion Excess sodium intake has an important, if not predominant, role in the pathogenesis of elevated blood pressure, one of the most important modifiable determinants of cardiovascular disease (CVD). In the United States, almost 80% of sodium in the diet comes from packaged and restaurant foods. Given the current food environment, educational efforts such as clinician counseling are useful, but a comprehensive public health approach is necessary to achieve meaningful reductions in sodium intake. A successful approach includes several key strategies, which together will both promote positive decisions by individuals and change the context in which they make those decisions. The strategies include: (1) public education, (2) individual dietary counseling, (3) food labeling, (4) coordinated, voluntary industry sodium reduction, (5) government and private sector food procurement policies, and (6) FDA regulations, as recommended by the Institute of Medicine, to modify sodium’s generally regarded as safe (GRAS) status. Population-wide reduction in sodium intake has the potential to substantially reduce the public burden of preventable CVD and reduce health care costs. PMID:22580974
Seman, D L; Quickert, S C; Borger, A C; Meyer, J D
2008-07-01
The effect of sodium benzoate (0.08 to 0.25%) in combination with different concentrations of sodium diacetate (0.05 to 0.15%) and NaClI (0.8 to 2%) and different finished product moisture (55 to 75%) on the growth of Listeria monocytogenes in ready-to-eat meat products was evaluated using a central composite design over 18 weeks of storage at 4 degrees C. The effects of these factors on time to growth were analyzed using a time-to-failure regression method. All main effects were significant except product moisture, which was significant when included in the two- and three-way interactions (P < 0.05). Sodium benzoate was more effective (lengthening time to growth) when used with increasing concentrations of sodium diacetate and salt and decreasing finished product moisture. The model indicated that low-moisture products, e.g., bologna or wieners, could have time-to-growth values longer than 18 weeks if they were formulated with 0.1% sodium benzoate and 0.1% sodium diacetate. Time to growth in high-moisture products, e.g., ham or cured turkey breast at 75% moisture, was predicted to be much shorter for the same basic formulation (0.1% sodium benzoate and 0.1% sodium diacetate). Consequently, high-moisture ready-to-eat products in which sodium benzoate is limited to 0.1% (current standard for generally recognized as safe) may need additional ingredients to effectively inhibit growth of L. monocytogenes.
Endogenous angiotensin affects responses to stimulation of baroreceptor afferent nerves.
DiBona, Gerald F; Jones, Susan Y
2003-08-01
To study effects of endogenous angiotensin II on responses to standardized stimulation of afferent neural input into the central portion of the arterial and cardiac baroreflexes. Different dietary sodium intakes were used to physiologically alter endogenous angiotensin II activity. Candesartan, an angiotensin II type 1 receptor antagonist, was used to assess dependency of observed effects on angiotensin II stimulation of angiotensin II type 1 receptors. Electrical stimulation of arterial and cardiac baroreflex afferent nerves was used to provide a standardized input to the central portion of the arterial and cardiac baroreflexes. In anesthetized rats in balance on low, normal and high dietary sodium intake, arterial pressure, heart rate and renal sympathetic nerve activity responses to electrical stimulation of vagus and aortic depressor nerves were determined. Compared with plasma renin activity values in normal dietary sodium intake rats, those from low dietary sodium intake rats were higher and those from high dietary sodium intake rats were lower. During vagus nerve stimulation, the heart rate, arterial pressure and renal sympathetic nerve activity responses were similar in all three dietary sodium intake groups. During aortic depressor nerve stimulation, the heart rate and arterial pressure responses were similar in all three dietary sodium intake groups. However, the renal sympathetic nerve activity response was significantly greater in the low sodium group than in the normal and high sodium group at 4, 8 and 16 Hz. Candesartan administered to low dietary sodium intake rats had no effect on the heart rate and arterial pressure responses to either vagus or aortic depressor nerve stimulation but increased the magnitude of the renal sympathoinhibitory responses. Increased endogenous angiotensin II in rats on a low dietary sodium intake attenuates the renal sympathoinhibitory response to activation of the cardiac and sinoaortic baroreflexes by standardized vagus and aortic depressor nerve stimulation, respectively.
Dutta, Binita; Lahiri, Susanta; Tomar, B S
2014-02-01
The aqueous biphasic system (ABS) involving sodium malonate-polyethylene glycol (PEG) phases has been applied for the first time for separation of no-carrier-added (183)Re (T1/2=70 d) from α-particle irradiated bulk tantalum target. The various ABS conditions were applied for investigating the separation by varying pH, temperature, PEG-molecular weight, concentration of salt. The extraction pattern was hardly affected by change in pH and the molecular weight of PEG. One step separation of nca (183)Re from Ta was achieved at the optimal conditions of (i) 50% (w/w) PEG-4000-2 M sodium malonate, 40 °C and (ii) 50% (w/w) PEG-4000-3 M sodium malonate, room temperature (27 °C). © 2013 Published by Elsevier Ltd.
Programmed emulsions for sodium reduction in emulsion based foods.
Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina
2015-05-01
In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.
Evaluation of induced color changes in chicken breast meat during simulation of pink color defect.
Holownia, K; Chinnan, M S; Reynolds, A E; Koehler, P E
2003-06-01
The objective of the study was to establish a pink threshold and simulate the pink defect in cooked chicken breast meat with treatment combinations that would induce significant changes in the color of raw and cooked meat. The subjective pink threshold used in judging pink discoloration was established at a* = 3.8. Samples of three color groups (normal, lighter than normal, and darker than normal) of boneless, skinless chicken breast muscles were selected based on instrumental color values. The in situ changes were induced using sodium chloride, sodium tripolyphosphate, sodium erythorbate, and sodium nitrite at two levels: present and not present. Fillets in all treatments were subjected to individual injections, followed by tumbling, cooking, and chilling. Samples were analyzed for color [lightness (L*), red/green axis (a*), yellow/blue axis (b*)] and reflectance spectra. Simulation of the pink defect was achieved in eight of the 16 treatment combinations when sodium nitrite was present and in an additional two treatment combinations when it was absent. Pinking in cooked samples was affected (P < 0.05) by L* of raw meat color. Results confirmed that it was possible to simulate the undesired pinking in cooked chicken white meat when in situ conditions were induced by sodium chloride, sodium tripolyphosphate, and sodium nitrite. The continuation of the simulation study can aid in developing alternative processing methods to eliminate potential pink defects.
Aldosterone induces rapid sodium intake by a nongenomic mechanism in the nucleus tractus solitarius.
Qiao, Hu; Hu, Bo; Zhou, Hong; Yan, Jianqun; Jia, Ru; Lu, Bo; Sun, Bo; Luo, Xiao; Fan, Yuanyuan; Wang, Nan
2016-12-09
The purpose of this study was to determine whether aldosterone has a rapid action in the nucleus tractus solitarius (NTS) that increases sodium intake, and to examine whether this effect of aldosterone, if present, is mediated by G protein-coupled estrogen receptor (GPER). Adult male Sprague-Dawley rats with a stainless-steel cannula in the NTS were used. Aldosterone was injected into the NTS at the doses of 1, 5, 10 and 20 ng 0.1 μl -1 . A rapid dose-related increase of 0.3 M NaCl intake was induced within 30 min and this increase was not suppressed by the mineralocorticoid receptor (MR) antagonist spironolactone (10 ng 0.1 μl -1 ). Water intake was not affected by aldosterone. The GPER agonist G-1 produced a parallel and significant increase in sodium intake, while pre-treatment with GPER antagonist G15 (10 ng 0.1 μl -1 ) blocked the G-1 or aldosterone-induced rapid sodium intake. In addition, sodium intake induced by sodium depletion or low-sodium diet fell within 30 min after injection into the NTS of the MR antagonist spironolactone, while G15 had no effect. Our results confirm previous reports, and support the hypothesis that aldosterone evokes rapid sodium intake through a non-genomic mechanism involving GPER in NTS.
Karpińska-Tymoszczyk, M
2010-12-01
1. The combined effect of sage (S), sodium erythorbate (SE), a mixture of sage and sodium erythorbate (MIX) and vacuum packaging (VP) and modified atmosphere packaging (MAP) on the quality of cooked turkey meatballs stored at 4°C was investigated. The physicochemical properties (colour, MDA, AV, pH, water activity), microbiological quality characteristics (counts of mesophilic and psychrotrophic bacteria, fungi, coliforms and Clostridium sp.) and flavour attributes of meatballs were determined. 2. The values of the colour parameters L*, a* and b* were affected by the additives and packaging method. The colour of meatballs was better protected by sodium erythorbate than by sage or a mixture of sage and sodium erythorbate. The additives effectively stabilised lipids against oxidation and slowed down hydrolytic changes in turkey meatballs. Sage and a mixture of sage and sodium erythorbate showed stronger antioxidant properties than sodium erythorbate added alone. Products with additives were characterised by better sensory quality than control samples. Sage and MIX prevented the growth of mesophilic and psychrotrophic bacteria. All additives inhibited the growth of coliforms. 3. MAP was more effective than VP in maintaining the microbial and sensory quality stability of cooked turkey meatballs. However, VP appears to be a better method as regards the maintaining of lipid stability in turkey meatballs.
NASA Astrophysics Data System (ADS)
Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang
2018-04-01
The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.
NASA Astrophysics Data System (ADS)
Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang
2018-05-01
The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.
Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.
Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing
2016-01-27
A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.
Alawwa, Izzat; Dagash, Rajaa; Saleh, Akram; Ahmad, Abdelaziz
2018-12-01
High dietary sodium is recognized as a silent killer responsible for 2.3 million deaths worldwide in 2010 predominantly secondary to hypertension and its complications. Although high salt consumption is considered a worldwide public health problem, its magnitude is highly variable among different communities; therefore, it is important to study locally. This study aimed to evaluate habitual salt consumption, its important correlations, as well as the knowledge, attitude, and behavior of healthy Jordanian citizens. As potassium consumption is highly correlated and important we aimed to study both jointly. In this descriptive cross-sectional study we enrolled 103 healthy adult Jordanian citizens. All participants were interviewed for questionnaire filling, physical examination, and instructed on proper 24-hour urine collection procedure. We measured sodium and potassium concentration in the provided controlled 24-hour urine collection samples, as it is presently considered the gold standard for evaluating daily intake. The results showed an average sodium intake of 179 mmol (4.1 g) per day [higher in males at 186 mmol (4.3 g) vs. 173 mmol (4.0 g) for females], significantly above the current WHO recommendations, though only 8% regularly add salt to food. Ironically, most participants (82%) believe their salt consumption was appropriate and only 29% thought they may benefit from reducing salt intake. On the other hand, potassium intake is far below the current WHO recommendations. High sodium and low potassium intake have synergistic adverse effects on public health that is not currently addressed in Jordan. We conclude that Jordanian citizens currently consume high sodium and low potassium diet and are mostly unaware of its negative impact on their health. Hence, it is crucial for healthcare providers to intervene and adopt long-term strategies to control salt intake to reduce its negative effects in Jordan and elsewhere.
Hot and cold water as a supercritical solvent
NASA Astrophysics Data System (ADS)
Fuentevilla, Daphne Anne
This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to incorporate solutes. Critical lines emanating from the pure-water critical point show how even small additions of solute may significantly affect the thermodynamic properties and phase behavior of supercooled aqueous solutions. Some solutes, such as glycerol, can prevent spontaneous crystallization, thus making liquid-liquid separation in supercooled water experimentally accessible. This work will help in resolving the question on liquid polyamorphism in supercooled water.
Elmore, Amy R
2005-01-01
Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium Metasilicate, and Sodium Silicate ranged from negligible to severe, depending on the species tested and the molar ratio and concentration tested. Sodium Metasilicate was negative in the local lymph node assay (LLNA), but a delayed-type hypersensitivity response was observed in mice. Potassium Silicate was nonirritating in two acute eye irritation studies in rabbits. Sodium Metasilicate (42.4% H2O) was corrosive to the rabbit eye. Sodium Silicate was a severe eye irritant in some eye irritation studies, but was irritating or nonirritating in others. A skin freshener containing Sodium Silicate was nonirritating. Sodium Metasilicate was nonmutagenic in bacterial cells. Rats given Sodium Silicate (600 and 1200 ppm of added silica) in the drinking water in reproductive studies produced a reduced number of offspring: to 67% of controls at 600 ppm and to 80% of controls at 1200 ppm. Three adult rats injected intratesticularly and subcutaneously with 0.8 mM/kg of Sodium Silicate showed no morphological changes in the testes and no effect on the residual spermatozoa in the ductus deferens. Sodium Metasilicate (37% in a detergent) mixed with water was a severe skin irritant when tested on intact and abraded human skin, but 6%, 7%, and 13% Sodium Silicate were negligible skin irritants to intact and abraded human skin. Sodium Silicate (10% of a 40% aqueous solution) was negative in a repeat-insult predictive patch test in humans. The same aqueous solution of Sodium Silicate was considered a mild irritant under normal use conditions in a study of cumulative irritant properties. The Cosmetic Ingredient Review (CIR) Expert Panel recognized the irritation potential of these ingredients, especially in leave-on products. However, because these ingredients have limited dermal absorption and Sodium Metasilicate is a GRAS direct food substance, the Panel deemed the ingredients safe for use in cosmetic products in the practices of use and concentration described in this safety assessment, when formulated to avoid irritation.
Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia.
Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric; Houillier, Pascal
2017-04-15
Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Endothelin‐1 mediates natriuresis but not polyuria during vitamin D‐induced acute hypercalcaemia
Tokonami, Natsuko; Cheval, Lydie; Monnay, Isabelle; Meurice, Guillaume; Loffing, Johannes; Feraille, Eric
2017-01-01
Key points Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism.A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)‐1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia‐induced effects.In the present study, we demonstrate that, during vitamin D‐induced hypercalcaemia, the activation of ET system by increased ET‐1 is responsible for natriuresis but not for polyuria.Vitamin D‐treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited.We have identified an original pathway that specifically mediates the effects of vitamin D‐induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. Abstract Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D‐induced hypercalcaemia increases the renal expression of endothelin (ET)‐1, we hypothesized that ET‐1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8‐week‐old, parathyroid hormone‐supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT‐treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET‐1 and the transcription factors CCAAT‐enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT‐treated mice. To examine the role of the ET system in hypercalcaemia‐induced natriuresis and polyuria, mice were treated with the ET‐1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT‐treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT‐treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D‐induced hypercalcaemia increases the renal production of ET‐1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria. PMID:28120456
NASA Astrophysics Data System (ADS)
Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong
2018-06-01
The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.
Lateral Parabrachial Nucleus Serotonergic Mechanisms and Salt Appetite Induced by Sodium Depletion
NASA Technical Reports Server (NTRS)
Menani, Jose Vanderlei; DeLuca, Laurival Antonio, Jr.; Johnson, Alan Kim
1998-01-01
This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of d sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT(1/2) receptor antagonist methysergide (4 micro-g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.
Electrolyte profile of Malaysian mothers' milk.
Shaikh Alaudeen; Nor Muslim; Kamarul Faridah; Ali Azman; Hamid Arshat
1988-12-01
The influence of socioeconomic status (ethnicity, income, and parity) on electrolyte composition (sodium and potassium) in human milk is little known. The authors have thus quantitatively analyzed approximately 700 samples of milk (1-90 days postpartum) obtained from healthy Malaysian mothers (Malay, Chinese, and Indians) of full-term infants. Results show that the mean concentration (mmol/1) of sodium is highest 48.2 +/- 1.7; mean +/- SEM) in the Malaysian mothers' colostrum and this value decreased by 30% in their transitional milk and remained constant throughout subsequent days of lactation. Ethnically, it is found that the level of sodium in colostrum of Malay and Chinese mothers was similar but the Indian mothers' colostrum showed apparently higher value (52.7 +/- 3.4 mmpl/1) that is statistically insignificant. The transitional milk of all 3 ethnic groups studied exhibited similar levels of sodium. On subsequent days of lactation (mature milk) the Malay mothers exhibited the lowest concentration (25.9 +/- 2.6 mmol/1) of sodium that is significantly (p .05) different from that of Chinese and Indian mothers. Income and parity do not significantly affect the sodium level in Malaysian mothers' milk during all stages of lactation studied. The level of potassium, however, did not change significantly with days of lactation. Like sodium, potassium too was not influenced by income and parity.
Torres, Vicente E; Abebe, Kaleab Z; Schrier, Robert W; Perrone, Ronald D; Chapman, Arlene B; Yu, Alan S; Braun, William E; Steinman, Theodore I; Brosnahan, Godela; Hogan, Marie C; Rahbari, Frederic F; Grantham, Jared J; Bae, Kyongtae T; Moore, Charity G; Flessner, Michael F
2017-02-01
The CRISP study of polycystic kidney disease (PKD) found that urinary sodium excretion associated with the rate of total kidney volume increase. Whether sodium restriction slows the progression of Autosomal Dominant PKD (ADPKD) is not known. To evaluate this we conducted a post hoc analysis of the HALT-PKD clinical trials of renin-angiotensin blockade in patients with ADPKD. Linear mixed models examined whether dietary sodium affected rates of total kidney volume or change in estimated glomerular filtration rate (eGFR) in patients with an eGFR over 60 ml/min/1.73 m 2 (Study A) or the risk for a composite endpoint of 50% reduction in eGFR, end-stage renal disease or death, or the rate of eGFR decline in patients with an eGFR 25-60 ml/min/1.73 m 2 (Study B) all in patients initiated on an under100 mEq sodium diet. During the trial urinary sodium excretion significantly declined by an average of 0.25 and 0.41 mEq/24 hour per month in studies A and B, respectively. In Study A, averaged and time varying urinary sodium excretions were significantly associated with kidney growth (0.43%/year and 0.09%/year, respectively, for each 18 mEq urinary sodium excretion). Averaged urinary sodium excretion was not significantly associated with faster eGFR decline (-0.07 ml/min/1.73m 2 /year for each 18 mEq urinary sodium excretion). In Study B, the averaged but not time-varying urinary sodium excretion significantly associated with increased risk for the composite endpoint (hazard ratio 1.08 for each 18 mEq urinary sodium excretion) and a significantly faster eGFR decline (-0.09 ml/min/1.73m 2 /year for each mEq 18 mEq urinary sodium excretion). Thus, sodium restriction is beneficial in the management of ADPKD. Copyright © 2016 International Society of Nephrology. All rights reserved.
Quader, Zerleen S.; Gillespie, Cathleen; Sliwa, Sarah A.; Ahuja, Jaspreet K. C.; Burdg, Jinee P.; Moshfegh, Alanna; Pehrsson, Pamela R.; Gunn, Janelle P.; Mugavero, Kristy; Cogswell, Mary E.
2017-01-01
Background Identifying current major dietary sources of sodium can enhance strategies to reduce excess sodium intake, which occurs among 90% of US school-aged children. Objective To describe major food sources, places obtained, and eating occasions contributing to sodium intake among US school-aged children. Design Cross-sectional analysis of data from the 2011–2012 National Health and Nutrition Examination Survey. Participants/setting A nationally representative sample of 2,142 US children aged 6 to 18 years who completed a 24-hour dietary recall. Main outcome measures Population proportions of sodium intake from major food categories, places, and eating occasions. Statistical analyses performed Statistical analyses accounted for the complex survey design and sampling. Wald F tests and t tests were used to examine differences between subgroups. Results Average daily sodium intake was highest among adolescents aged 14 to 18 years (3,565±120 mg), lowest among girls (2,919±74 mg). Little variation was seen in average intakes or the top five sodium contributors by sociodemographic characteristics or weight status. Ten food categories contributed to almost half (48%) of US school-aged children’s sodium intake, and included pizza, Mexican-mixed dishes, sandwiches, breads, cold cuts, soups, savory snacks, cheese, plain milk, and poultry. More than 80 food categories contributed to the other half of children’s sodium intake. Foods obtained from stores contributed 58% of sodium intake, fast-food/pizza restaurants contributed 16%, and school cafeterias contributed 10%. Thirty-nine percent of sodium intake was consumed at dinner, 31% at lunch, 16% from snacks, and 14% at breakfast. Conclusions With the exception of plain milk, which naturally contains sodium, the top 10 food categories contributing to US schoolchildren’s sodium intake during 2011–2012 comprised foods in which sodium is added during processing or preparation. Sodium is consumed throughout the day from multiple foods and locations, highlighting the importance of sodium reduction across the US food supply. PMID:27818138
Rahim, Muhamad Hafiz Abd; Hasan, Hanan; Harith, Hanis H; Abbas, Ali
2017-12-01
This study investigates the effects of viscosity, friction, and sonication on the morphology and the production of lovastatin, (+)-geodin, and sulochrin by Aspergillus terreus ATCC 20542. Sodium alginate and gelatine were used to protect the fungal pellet from mechanical force by increasing the media viscosity. Sodium alginate stimulated the production of lovastatin by up to 329.0% and sulochrin by 128.7%, with inhibitory effect on (+)-geodin production at all concentrations used. However, the use of gelatine to increase viscosity significantly suppressed lovastatin, (+)-geodin, and sulochrin's production (maximum reduction at day 9 of 42.7, 60.8, and 68.3%, respectively), which indicated that the types of chemical play a major role in metabolite production. Higher viscosity increased both pellet biomass and size in all conditions. Friction significantly increased (+)-geodin's titre by 1527.5%, lovastatin by 511.1%, and sulochrin by 784.4% while reducing pellet biomass and size. Conversely, sonication produced disperse filamentous morphology with significantly lower metabolites. Sodium alginate-induced lovastatin and sulochrin production suggest that these metabolites are not affected by viscosity; rather, their production is affected by the specific action of certain chemicals. In contrast, low viscosity adversely affected (+)-geodin's production, while pellet disintegration can cause a significant production of (+)-geodin.
USDA-ARS?s Scientific Manuscript database
The objective of the current study was to evaluate sodium chlorate as a potential pre-harvest intervention for reducing or eliminating Salmonella from the peripheral lymph nodes of experimentally-infected cattle. The peripheral lymph nodes of Holstein steers (approx. BW = 160 kg; 4 and 6 head in co...
Properties of the calcium-activated chloride current in heart.
Zygmunt, A C; Gibbons, W R
1992-03-01
We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.
Sodium and potassium in the lunar atmosphere
NASA Technical Reports Server (NTRS)
Potter, A. E.; Morgan, T. H.
1991-01-01
The discovery that sodium and potassium vapor can be observed in the lunar atmosphere using ground-based telescopes has opened up a field of investigation that was closed after the last Apollo mission to the Moon. Sodium has been detected at altitudes up to 1500 km above the surface. This implies a high effective temperature for sodium, of the order of 1000 K. However, there is some evidence for two populations of sodium and potassium, one at temperatures corresponding to the surface, and another corresponding to high temperatures. The sources for the lunar atmosphere are not understood. Meteoric bombardment of the surface, solar wind sputtering of the surface, and photo-sputtering of the surface have all been suggested as possible sources for the lunar atmosphere. One of the objectives of the current research is to test different hypotheses by measurements of the atmosphere under different conditions of solar illumination and shielding from the solar wind by the Earth.
Sodium-based hydrides for thermal energy applications
NASA Astrophysics Data System (ADS)
Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.
2016-04-01
Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.
Li, Yang; Niu, Hui-Yan; Liu, Nian; Zhang, Cun-Tai; Lu, Zai-Ying; Wang, Shi-Wen
2005-07-01
To investigate the effects of imidapril (IMI) on effective refractory period (ERP) and sodium current (I(Na)) of myocytes in ventricular noninfarction zone of healed myocardial infarction (HMI) in rabbit models. Rabbits with left coronary artery ligation were prepared and IMI (0.625 mg x kg(-1) x d(-1), 8 weeks) was orally administered. The ERP and sodium current were recorded. The ERP in HMI heart was prolonged. The ERP in IMI group was lower significantly than that of HMI group. The I(Na) density of myocyte in HMI ventricle decreased obviously. V 1/2 of steady state inactivation of I(Na) shifted to hyperpolarization, and time constant (tau) of recovery from inactivation in HMI ventricular myocyte was longer than that of sham ventricular myocyte. I(Na) density in IMI group increased markedly as compared with that of HMI group. IMI was shown to reverse the abnormal prolongation of ERP in rabbit heart with the HMI and increase I(Na) density. It may be the mechanism of IMI preventing against antiarrhythmia in healed myocardical infarction.
Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun
2016-03-01
Although reducing dietary salt consumption is the most cost-effective strategy for preventing progression of cardiovascular and renal disease, policy-based approaches to monitor sodium intake accurately and the understanding factors associated with excessive sodium intake for the improvement of public health are lacking. We investigated factors associated with high sodium intake based on the estimated 24-hour urinary sodium excretion, using data from the 2009 to 2011 Korea National Health and Nutrition Examination Survey (KNHANES). Among 21,199 adults (≥19 years of age) who participated in the 2009 to 2011 KNHANES, 18,000 participants (weighted n = 33,969,783) who completed urinary sodium and creatinine evaluations were analyzed in this study. The 24-hour urinary sodium excretion was estimated using Tanaka equation. The mean estimated 24-hour urinary sodium excretion level was 4349 (4286-4413) mg per day. Only 18.5% (weighted n = 6,298,481/3,396,973, unweighted n = 2898/18,000) of the study participants consumed less the 2000 mg sodium per day. Female gender (P < 0.001), older age (P < 0.001), total energy intake ≥50 percentile (P < 0.005), and obesity (P < 0.001) were associated with high sodium intake, even after adjusting for potential confounders. Senior high school/college graduation in education and managers/professionals in occupation were associated with lower sodium intake (P < 0.001). According to hypertension management status, those who had hypertension without medication consumed more sodium than those who were normotensive. However, those who receiving treatment for hypertension consumed less sodium than those who were normotensive (P < 0.001). The number of family members, household income, and alcohol drinking did not affect 24-hour urinary sodium excretion. The logistic regression analysis for the highest estimated 24-hour urinary sodium excretion quartile (>6033 mg/day) using the abovementioned variables as covariates yielded identical results. Our data suggest that age, sex, education level, occupation, total energy intake, obesity, and hypertension management status are associated with excessive sodium intake in Korean adults using nationally representative data. Factors associated with high sodium intake should be considered in policy-based interventions to reduce dietary salt consumption and prevent cardiovascular disease as a public health target.
Diniz, Marcelo R V; Theakston, R David G; Crampton, Julian M; Nascimento Cordeiro, Marta do; Pimenta, Adriano M C; De Lima, Maria Elena; Diniz, Carlos R
2006-11-01
Tx1 from the venom of the Brazilian spider, Phoneutria nigriventer, is a lethal neurotoxic polypeptide of M(r) 8600 Da with 14 cysteine residues. It is a novel sodium channel blocker which reversibly inhibits sodium currents in CHO cells expressing recombinant sodium (Nav1.2) channels. We cloned and expressed the Tx1 toxin as a thioredoxin fusion product in the cytoplasm of Escherichia coli. After semipurification by immobilized Ni-ion affinity chromatography, the recombinant Tx1 was purified by reverse phase chromatography and characterized. It displayed similar biochemical and pharmacological properties to the native toxin, and it should be useful for further investigation of structure-function relationship of Na channels.
Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.
1984-01-01
Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592
2010-01-01
A Randomized Controlled Trial of Local Heat Therapy Versus Intravenous Sodium Stibogluconate for the Treatment of Cutaneous Leishmania major...United States of America Abstract Background: Cutaneous Leishmania major has affected many travelers including military personnel in Iraq and Afghanistan...with other species of Leishmania , or more than 20 lesions were excluded. Primary outcome was complete re-epithelialization or visual healing at two
New Insights into the Instability of Discharge Products in Na–O 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landa-Medrano, Imanol; Pinedo, Ricardo; Bi, Xuanxuan
2016-08-10
Sodium–oxygen batteries currently stimulate extensive research due to their high theoretical energy density and improved operational stability when compared to lithium–oxygen batteries. Cell stability, however, needs to be demonstrated also under resting conditions before future implementation of these batteries. In this work we analyze the effect of resting periods on the stability of the sodium superoxide (NaO 2) discharge product. The instability of NaO 2 in the cell environment is demonstrated leading to the evolution of oxygen during the resting period and the decrease of the cell efficiency. In addition, migration of the superoxide anion (O2–) in the electrolyte ismore » observed and demonstrated to be an important factor affecting Coulombic efficiency.« less
Mondragão, Miguel A; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W; Rose, Christine R
2016-10-01
Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity. Recovery from global sodium loads critically relies on Na(+) /K(+) -ATPase and an intact energy metabolism in both somata and dendrites. For recovery from local sodium loads in dendrites, Na(+) /K(+) -ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10-fold higher than for global sodium signals. Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non-stimulated regions strongly reduces local energy requirements. Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage- and ligand-activated channels. Recovery from resulting sodium transients has mainly been attributed to Na(+) /K(+) -ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole-cell patch-clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min(-1) (∼0.03 mm min(-1 ) μm(-2) ). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10-fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion-based fast dissemination to non-stimulated regions might reduce local energy requirements. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Extrusion versus diffusion: mechanisms for recovery from sodium loads in mouse CA1 pyramidal neurons
Mondragão, Miguel A.; Schmidt, Hartmut; Kleinhans, Christian; Langer, Julia; Kafitz, Karl W.
2016-01-01
Key points Neuronal activity causes local or global sodium signalling in neurons, depending on the pattern of synaptic activity.Recovery from global sodium loads critically relies on Na+/K+‐ATPase and an intact energy metabolism in both somata and dendrites.For recovery from local sodium loads in dendrites, Na+/K+‐ATPase activity is not required per se. Instead, recovery is predominately mediated by lateral diffusion, exhibiting rates that are 10‐fold higher than for global sodium signals.Recovery from local dendritic sodium increases is still efficient during short periods of energy deprivation, indicating that fast diffusion of sodium to non‐stimulated regions strongly reduces local energy requirements. Abstract Excitatory activity is accompanied by sodium influx into neurones as a result of the opening of voltage‐ and ligand‐activated channels. Recovery from resulting sodium transients has mainly been attributed to Na+/K+‐ATPase (NKA). Because sodium ions are highly mobile, diffusion could provide an additional pathway. We tested this in hippocampal neurones using whole‐cell patch‐clamp recordings and sodium imaging. Somatic sodium transients induced by local glutamate application recovered at a maximum rate of 8 mm min−1 (∼0.03 mm min−1 μm−2). Somatic sodium extrusion was accelerated at higher temperature and blocked by ouabain, emphasizing its dependence on NKA. Moreover, it was slowed down during inhibition of glycolysis by sodium fluoride (NaF). Local glutamate application to dendrites revealed a 10‐fold higher apparent dendritic sodium extrusion rate compared to somata. Recovery was almost unaltered by increased temperature, ouabain or NaF. We found that sodium diffused along primary dendrites with a diffusion coefficient of ∼330 μm²/s. During global glutamate application, impeding substantial net diffusion, apparent dendritic extrusion rates were reduced to somatic rates and also affected by NaF. Numerical simulations confirmed the essential role of NKA for the recovery of somatic, but not dendritic sodium loads. Our data show that sodium export upon global sodium increases is largely mediated by NKA and depends on an intact energy metabolism. For recovery from local dendritic sodium increases, diffusion dominates over extrusion, operating efficiently even during short periods of energy deprivation. Although sodium will eventually be extruded by the NKA, its diffusion‐based fast dissemination to non‐stimulated regions might reduce local energy requirements. PMID:27080107
Rikihisa, Y; Johnson, G C; Wang, Y Z; Reed, S M; Fertel, R; Cooke, H J
1992-05-01
Ehrlichia risticii, an obligate intracellular bacterium in the family Rickettsiaceae, causes Potomac horse fever which is often associated with severe watery diarrhoea. The mechanism of the diarrhoea is unknown. The aim of this study was to determine whether sodium and chloride transport, morphology and cyclic adenosine 3', 5'-monophosphate (cyclic AMP) content of colonic mucosa was altered in E risticii-infected horses. Mucosa-submucosa sheets from the large and small colon of nine infected and seven to nine uninfected horses were set up in Ussing chambers for measurement of short-circuit current and transepithelial 22Na and 36Cl fluxes. Uninfected tissues absorbed both sodium and chloride whereas absorption of sodium and chloride was abolished in infected tissues. Bethanechol and histamine evoked a concentration-dependent increase in short-circuit current in both groups, but the responses were attenuated at all concentrations in infected horses. Slight focal degeneration of colonic epithelial cells and loss of microvilli from glandular epithelial cells occurred in infected horses. There was a significant increase in cyclic AMP content in colonic mucosa of infected animals. The results suggest that E risticii infection induces focal microscopic degeneration of epithelial cells and an increase in intracellular cyclic AMP in colonic mucosa. These alterations are associated with malabsorption of sodium and chloride and could cause diarrhoea.
Turner, Nigel; Hulbert, A J; Else, Paul L
2005-02-01
Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.
The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity
Liu, Cheng-Hong; Chen, Bing-Hung
2015-01-01
Currently, the Brown-Schlesinger process is still regarded as the most common and mature method for the commercial production of sodium borohydride (NaBH4). However, the metallic sodium, currently produced from the electrolysis of molten NaCl that is mass-produced by evaporation of seawater or brine, is probably the most costly raw material. Recently, several reports have demonstrated the feasibility of utilizing green electricity such as offshore wind power to produce metallic sodium through electrolysis of seawater. Based on this concept, we have made improvements and modified our previously proposed life cycle of sodium borohydride (NaBH4) and ammonia borane (NH3BH3), in order to further reduce costs in the conventional Brown-Schlesinger process. In summary, the revision in the concept combining the regeneration of the spent borohydrides and the used catalysts with the green electricity is reflected in (1) that metallic sodium could be produced from NaCl of high purity obtained from the conversion of the byproduct in the synthesis of NH3BH3 to devoid the complicated purification procedures if produced from seawater; and (2) that the recycling and the regeneration processes of the spent NaBH4 and NH3BH3 as well as the used catalysts could be simultaneously carried out and combined with the proposed life cycle of borohydrides.
Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters
Pajor, Ana M.
2006-01-01
The SLC13 gene family consists of five members in humans, with corresponding orthologs from different vertebrate species. All five genes code for sodium-coupled transporters that are found on the plasma membrane. Two of the transporters, NaS1 and NaS2, carry substrates such as sulfate, selenate and thiosulfate. The other members of the family (NaDC1, NaDC3, and NaCT) are transporters for di- and tri-carboxylates including succinate, citrate and α-ketoglutarate. The SLC13 transporters from vertebrates are electrogenic and they produce inward currents in the presence of sodium and substrate. Substrate-independent leak currents have also been described. Structure–function studies have identified the carboxy terminal half of these proteins as the most important for determining function. Transmembrane helices 9 and 10 may form part of the substrate permeation pathway and participate in conformational changes during the transport cycle. This review also discusses new members of the SLC13 superfamily that exhibit both sodium-dependent and sodium-independent transport mechanisms. The Indy protein from Drosophila, involved in determining lifespan, and the plant vacuolar malate transporter are both sodium-independent dicarboxylate transporters, possibly acting as exchangers. The purpose of this review is to provide an update on new advances in this gene family, particularly on structure–function studies and new members of the family. PMID:16211368
Król, Żaneta; Marycz, Krzysztof; Kulig, Dominika; Marędziak, Monika; Jarmoluk, Andrzej
2017-01-01
The aim of the study was to investigate the effect of using direct electric current (DC) of 0, 200, and 400 mA for five minutes on the physiochemical properties, cytotoxicity, antibacterial, and antioxidant activity of sodium alginate hydrosols with different sodium chloride concentrations. The pH, oxidation-reduction potential (ORP), electrical conductivity (EC), and available chlorine concentration (ACC) were measured. The effect of sodium alginate hydrosols treated with DC on Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Micrococcus luteus, Escherichia coli, Salmonella enteritidis, Yersinia enterocolitica, Pseudomonas fluorescence, and RAW 264.7 and L929 cells was investigated. Subsequently, the antioxidant properties of hydrosols were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) and ferric reducing antioxidant power (FRAP). The results have shown that after applying 400 mA in hydrosol samples with 0.1% and 0.2% NaCl all tested bacteria were inactivated. The ACC concentration of C400 samples with NaCl was equal to 13.95 and 19.71 mg/L, respectively. The cytotoxicity analysis revealed that optimized electric field conditions and the addition of sodium chloride allow for the avoidance of toxicity effects on normal cells without disturbing the antibacterial effects. Due to the presence of oxidizing substances, the DPPH of variants treated with DC was lower than the DPPH of control samples. PMID:28327520
Król, Żaneta; Marycz, Krzysztof; Kulig, Dominika; Marędziak, Monika; Jarmoluk, Andrzej
2017-03-22
The aim of the study was to investigate the effect of using direct electric current (DC) of 0, 200, and 400 mA for five minutes on the physiochemical properties, cytotoxicity, antibacterial, and antioxidant activity of sodium alginate hydrosols with different sodium chloride concentrations. The pH, oxidation-reduction potential (ORP), electrical conductivity (EC), and available chlorine concentration (ACC) were measured. The effect of sodium alginate hydrosols treated with DC on Staphylococcus aureus , Listeria monocytogenes , Bacillus cereus , Micrococcus luteus , Escherichia coli , Salmonella enteritidis , Yersinia enterocolitica , Pseudomonas fluorescence , and RAW 264.7 and L929 cells was investigated. Subsequently, the antioxidant properties of hydrosols were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) and ferric reducing antioxidant power (FRAP). The results have shown that after applying 400 mA in hydrosol samples with 0.1% and 0.2% NaCl all tested bacteria were inactivated. The ACC concentration of C400 samples with NaCl was equal to 13.95 and 19.71 mg/L, respectively. The cytotoxicity analysis revealed that optimized electric field conditions and the addition of sodium chloride allow for the avoidance of toxicity effects on normal cells without disturbing the antibacterial effects. Due to the presence of oxidizing substances, the DPPH of variants treated with DC was lower than the DPPH of control samples.
Bayés, M; Rabasseda, X; Prous, J R
2002-09-01
Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Studies knowledge area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: Adalimumab, aeroDose insulin inhaler, agomelatine, alendronic acid sodium salt, aliskiren fumarate, alteplase, amlodipine, aspirin, atazanavir; Bacillus Calmette-Guérin, basiliximab, BQ-788, bupropion hydrochloride; Cabergoline, caffeine citrate, carbamazepine, carvedilol, celecoxib, cyclosporine, clopidogrel hydrogensulfate, colestyramine; Dexamethasone, diclofenac sodium, digoxin, dipyridamole, docetaxel, dutasteride; Eletriptan, enfuvirtidie, eplerenone, ergotamine tartrate, esomeprazole magnesium, estramustine phosphate sodium; Finasteride, fluticasone propionate, fosinopril sodium; Ganciclovir, GBE-761-ONC, glatiramer acetate, gliclazide, granulocyte-CSF; Heparin sodium, human isophane insulin (pyr), Hydrochlorothiazide; Ibuprofen, inhaled insulin, interferon alfa, interferon beta-1a; Laminvudine, lansoprazole, lisinopril, lonafarnib, losartan potassium, lumiracoxib; MAb G250, meloxicam methotrexate, methylprednisolone aceponate, mitomycin, mycophenolate mofetil; Naproxen sodium, natalizumab, nelfinavir mesilate, nemifitide ditriflutate, nimesulide; Omalizumab, omapatrilat, omeprazole, oxybutynin chloride; Pantoprazole sodium, paracetamol, paroxetine, pentoxifylline, pergolide mesylate, permixon, phVEGF-A165, pramipexole hydrochloride, prasterone, prednisone, probucol, propiverine hydrochloride; Rabeprazole sodium, resiniferatoxin, risedronate sodium, risperidone, rofecoxib rosiglitazone maleate, ruboxistaurin mesilate hydrate; Selegiline transdermal system, sertraline, sildenafil citrate, streptokinase; Tadalafil, tamsulosin hydrochloride, technosphere/Insulin, tegaserod maleate, tenofovir disoproxil fumarate, testosterone heptanoate, testosterone undecanoate, tipifarnib, tolterodine tartrate, topiramate, troglitazone; Ursodeoxycholic acid; Valdecoxib, valsartan, vardenafil, venlafaxine hydrochloride, VX-745.
Na+/Ca2+ exchange in cardiac myocytes. Effect of ouabain on voltage dependence.
Lee, H C; Clusin, W T
1987-02-01
Sarcolemmal sodium/calcium exchange activity was examined in individual chick embryonic myocardial cell aggregates that were loaded with quin 2. The baseline [Ca2+]i was 68 +/- 4 nM (n = 29). Abrupt superfusion with sodium-free lithium solution produced a fourfold increase in steady-state [Ca2+]i to 290 +/- 19 nM, which was reversible upon sodium restitution. Other methods of increasing [Ca2+]i such as KCl-depolarization or caffeine produced a dose-dependent increase in quin 2 fluorescence, accompanied by sustained contracture. The [Ca2+]i increase in zero sodium was linear, and its half-time (t1/2) of 15.1 +/- 0.1 s was similar to that of the sodium-free contracture (t1/2 = 14.4 +/- 0.5 s) under the same conditions. The sodium-dependent [Ca2+]i increase was not significantly greater when potassium served as the sodium substitute instead of lithium. This suggests that sodium/calcium exchange has little voltage dependence in this situation. However, in aggregates pretreated with ouabain (2.5 microM), the [Ca2+]i increase was almost threefold greater with potassium than with lithium (P less than 0.007). Ouabain therefore potentiated the effect of membrane potential on calcium influx. We propose that elevation of [Na2+]i is a prerequisite for voltage dependence of the sodium/calcium exchange under the conditions studied. Sodium loading will then drastically increase calcium influx during the action potential while inducing an outward membrane current that could accelerate repolarization.
Biofilm formation and granule properties in anaerobic digestion at high salinity.
Gagliano, M C; Ismail, S B; Stams, A J M; Plugge, C M; Temmink, H; Van Lier, J B
2017-09-15
For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Regulation of coal polymer degradation by fungi. Tenth Quartery report, October 1996--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, R.L.; Bumpus, J.A.
1997-01-28
It has long been known that low rank coal such as leonardite can be solubilized by strong base (>pH 12). Recent discoveries have also shown that leonardite is solubilized by Lewis bases at considerably lower pH values and by fungi that secrete certain Lewis bases (i.e., oxalate ion). During the current reporting period we have studied the ability of a strong base (sodium hydroxide, pH 12), and two fungi, Phanerochaete chrysosporium and Trametes versicolor, to solubilize Argonne Premium Coals. In general, Argonne Premium Coals were relatively resistant to base mediated solubilization. However, when these coals were preoxidized (150{degrees}C for sevenmore » days), substantial amounts of several coals were solubilized. Most affected were the Lewiston-Stockton bituminous coal, the Beulah-Zap lignite, the Wyodak-Anderson subbituminous coal and the Blind Canyon bituminous coal. Argonne Premium Coals were previously shown by us to be relatively resistant to solubilization by sodium oxalate. When preoxidized coals were treated with sodium oxalate, only the Beulah-Zap lignite was substantially solubilized. Although very small amounts of the other preoxidized coals were solubilized by treatment with oxalate, the small amount of solubilization that did take place was generally increased relative to that observed for coals that were not preoxidized. None of the Argonne Premium Coals were solubilized by P. chrysosporium or T. versicolor. Of considerable interest, however, is the observation that P. chrysosporium and T. versicolor mediated extensive solubilization of Lewiston-Stockton bituminous coal, the Beulah-Zap lignite and the Wyodak-Anderson subbituminous coal.« less
Sodium sulfur battery flight experiment definition study
NASA Technical Reports Server (NTRS)
Chang, Rebecca R.; Minck, Robert
1989-01-01
Sodium-sulfur batteries were identified as the most likely successor to nickel-hydrogen batteries for space applications. One advantage of the Na/S battery system is that the usable specific energy is two to three times that of nickel-hydrogen batteries. This represents a significant launch cost savings or increased payload mass capabilities. Sodium-sulfur batteries support NASA OAST's proposed Civil Space Technology Initiative goal of a factor of two improvement in spacecraft power system performance, as well as the proposed Spacecraft 2000 initiative. The sodium-sulfur battery operates at between 300 and 400 C, using liquid sodium and sulfur/polysulfide electrodes and solid ceramic electrolyte. The transport of the electrode materials to the surface of the electrolyte is through wicking/capillary forces. These critical transport functions must be demonstrated under actual microgravity conditions before sodium-sulfur batteries can be confidently utilized in space. Ford Aerospace Corporation, under contract to NASA Lewis Research Center, is currently working on the sodium-sulfur battery space flight experiment definition study. The objective is to design the experiment that will demonstrate operation of the sodium-sulfur battery/cell in the space environment with particular emphasis on evaluation of microgravity effects. Experimental payload definitions were completed and preliminary designs of the experiment were defined.
Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore
Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan
2016-01-01
Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991
Usual sodium intakes compared with current dietary guidelines --- United States, 2005-2008.
2011-10-21
High sodium intake can increase blood pressure and the risk for heart disease and stroke. According to the Dietary Guidelines for Americans, 2010, persons in the United States aged ≥2 years should limit daily sodium intake to <2,300 mg. Subpopulations that would benefit from further reducing sodium intake to 1,500 mg daily include 1) persons aged ≥51 years, 2) blacks, and 3) persons with hypertension, diabetes, or chronic kidney disease. To estimate the proportion of the U.S. population for whom the 1,500 mg recommendation applies and to assess the usual sodium intake for those persons, CDC and the National Institutes of Health used data for 2005-2008 from the National Health and Nutrition Examination Survey (NHANES). This report summarizes the results of that assessment, which determined that, although 47.6% of persons aged ≥2 years meet the criteria to limit their daily sodium intake to 1,500 mg, the usual daily sodium intake for 98.6% of those persons was >1,500 mg. Moreover, for 88.2% of the remaining U.S. population, daily sodium intake was greater than the recommended <2,300 mg. New population-based strategies and increased public health and private efforts will be needed to meet the Dietary Guidelines recommendations.
Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.
Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan
2016-07-04
Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.
NASA Astrophysics Data System (ADS)
Sahin, Bünyamin; Kaya, Tolga
2016-01-01
In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.
Peracute sodium toxicity in free-ranging black-bellied whistling duck ducklings
Stolley, D.S.; Meteyer, C.U.
2004-01-01
From 23 to 25 July 2002, 98a??103 newly hatched black-bellied whistling ducks (Dendrocygna autumnalis) were observed alive at an inland saline lake (La Sal Vieja) in Willacy County, Texas (USA). Seventy-one (71%) died after showing signs indicative of sodium toxicity within 5 hr of entering the water; some died within minutes. Six carcasses were sent to the United States Geological Survey, National Wildlife Health Center (Madison, Wisconsin, USA) for analysis, and brain sodium levels of all ducklings were above 2,000 parts per million wet weight. More black-bellied whistling duck ducklings are likely to have been affected, but they were not observed after hatching.
Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim
2014-11-01
Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.
P1,P4-diadenosine tetraphosphate (Ap4A) inhibits proximal tubular reabsorption of sodium in rats.
Stiepanow-Trzeciak, Anna; Jankowski, Maciej; Angielski, Stefan; Szczepanska-Konkel, Miroslawa
2007-01-01
P1,P4-diadenosine tetraphosphate (Ap4A) is a vasoactive dinucleotide possessing natriuretic activity. It is unclear, however, which part of the nephron is the target site of action for Ap4A. We evaluated the tubular sites of Ap4A action using the lithium clearance technique. Ap4A at a priming dose of 2 micromol/kg with subsequent infusion at 20 nmol/kg/min increased fractional water and sodium excretion 2.5- and 5.6-fold, respectively. Moreover, Ap4A increased lithium clearance 1.9-fold and fractional lithium excretion 2.8-fold. Fractional water and sodium excretion from distal nephron segments was not significantly affected by Ap4A. These results suggest that Ap4A induces natriuresis mainly through inhibition of proximal tubular reabsorption of sodium. Copyright 2007 S. Karger AG, Basel.
Fujisawa, T; Aikawa, K; Takahashi, T; Yamai, S
2000-09-01
While the beta-glucuronidase activity of intact cells of Clostridium perfringens was higher in 0.95% sodium chloride (NaCl) than that in 0, 0.1 or 0.5%, that of Escherichia coli was higher in 0.1% NaCl than that in 0, 0.5 or 0.95% NaCl in 0.1 mol l-1 KH2PO4. However, the enzyme activity of both species of intact cells was higher in buffer containing 16 mEq sodium, 134 mEq potassium and 16 mEq chloride per litre than in that containing 146 mEq sodium, 13 mEq potassium and 146 mEq chloride. These findings suggest that bacterial cells are affected by the presence of NaCl and that the effect of NaCl on the activity of bacterial beta-glucuronidase may differ by location in the large intestine.
Pogoda, Janice M.; Gross, Noah B.; Arakaki, Xianghong; Fonteh, Alfred N.; Cowan, Robert P.
2016-01-01
Objective We investigated whether dietary sodium intake from respondents of a national cross‐sectional nutritional study differed by history of migraine or severe headaches. Background Several lines of evidence support a disruption of sodium homeostasis in migraine. Design Our analysis population was 8819 adults in the 1999–2004 National Health and Nutrition Examination Survey (NHANES) with reliable data on diet and headache history. We classified respondents who reported a history of migraine or severe headaches as having probable history of migraine. To reduce the diagnostic conflict from medication overuse headache, we excluded respondents who reported taking analgesic medications. Dietary sodium intake was measured using validated estimates of self‐reported total grams of daily sodium consumption and was analyzed as the residual value from the linear regression of total grams of sodium on total calories. Multivariable logistic regression that accounted for the stratified, multistage probability cluster sampling design of NHANES was used to analyze the relationship between migraine and dietary sodium. Results Odds of probable migraine history decreased with increasing dietary sodium intake (odds ratio = 0.93, 95% confidence interval = 0.87, 1.00, P = .0455). This relationship was maintained after adjusting for age, sex, and body mass index (BMI) with slightly reduced significance (P = .0505). In women, this inverse relationship was limited to those with lower BMI (P = .007), while in men the relationship did not differ by BMI. We likely excluded some migraineurs by omitting frequent analgesic users; however, a sensitivity analysis suggested little effect from this exclusion. Conclusions This study is the first evidence of an inverse relationship between migraine and dietary sodium intake. These results are consistent with altered sodium homeostasis in migraine and our hypothesis that dietary sodium may affect brain extracellular fluid sodium concentrations and neuronal excitability. PMID:27016121
Pogoda, Janice M; Gross, Noah B; Arakaki, Xianghong; Fonteh, Alfred N; Cowan, Robert P; Harrington, Michael G
2016-04-01
We investigated whether dietary sodium intake from respondents of a national cross-sectional nutritional study differed by history of migraine or severe headaches. Several lines of evidence support a disruption of sodium homeostasis in migraine. Our analysis population was 8819 adults in the 1999-2004 National Health and Nutrition Examination Survey (NHANES) with reliable data on diet and headache history. We classified respondents who reported a history of migraine or severe headaches as having probable history of migraine. To reduce the diagnostic conflict from medication overuse headache, we excluded respondents who reported taking analgesic medications. Dietary sodium intake was measured using validated estimates of self-reported total grams of daily sodium consumption and was analyzed as the residual value from the linear regression of total grams of sodium on total calories. Multivariable logistic regression that accounted for the stratified, multistage probability cluster sampling design of NHANES was used to analyze the relationship between migraine and dietary sodium. Odds of probable migraine history decreased with increasing dietary sodium intake (odds ratio = 0.93, 95% confidence interval = 0.87, 1.00, P = .0455). This relationship was maintained after adjusting for age, sex, and body mass index (BMI) with slightly reduced significance (P = .0505). In women, this inverse relationship was limited to those with lower BMI (P = .007), while in men the relationship did not differ by BMI. We likely excluded some migraineurs by omitting frequent analgesic users; however, a sensitivity analysis suggested little effect from this exclusion. This study is the first evidence of an inverse relationship between migraine and dietary sodium intake. These results are consistent with altered sodium homeostasis in migraine and our hypothesis that dietary sodium may affect brain extracellular fluid sodium concentrations and neuronal excitability. © 2016 The Authors Headache published by Wiley Periodicals, Inc. on behalf of American Headache Society.
Global Structure and Sodium Ion Dynamics in Mercury's Magnetosphere With the Offset Dipole
NASA Astrophysics Data System (ADS)
Yagi, M.; Seki, K.; Matsumoto, Y.; Delcourt, D. C.; Leblanc, F.
2017-11-01
We conducted global magnetohydrodynamics (MHD) simulation of Mercury's magnetosphere with the dipole offset, which was revealed by MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) observations, in order to investigate its global structure under northward interplanetary magnetic field conditions. Sodium ion dynamics originating from the Mercury's exosphere is also investigated based on statistical trajectory tracing in the electric and magnetic fields obtained from the MHD simulations. The results reveal a north-south asymmetry characterized by open field lines around the southern polar region and northward deflection of the plasma sheet in the far tail. The asymmetry of magnetic field structure near the planet drastically affects trajectories of sodium ion and thus their pressure distributions and precipitation pattern onto the planet. Weaker magnetic field strength in the southern hemisphere than in the north increases ion loss by precipitation onto the planetary surface in the southern hemisphere. The "sodium ring," which is formed by high-energy sodium ions drifting around the planet, is also found in the vicinity of the planet. The sodium ring is almost circular under nominal solar wind conditions. The ring becomes partial under high solar wind density, because dayside magnetosphere is so compressed that there is no space for the sodium ions to drift around. In both cases, the sodium ring is formed by sodium ions that are picked up, accelerated in the magnetosheath just outside the magnetopause, and reentered into the magnetosphere due to combined effects of finite Larmor radius and convection electric field in the dawnside magnetosphere.
Dewey, George; Wickramasekaran, Ranjana N.; Kuo, Tony
2017-01-01
Introduction In 2010, the Los Angeles County Department of Public Health launched a local sodium-reduction initiative to address the rising prevalence of high blood pressure (hypertension) and related cardiovascular conditions in the population. To inform this effort, we evaluated self-reported knowledge and health behaviors related to sodium intake among Los Angeles County residents. Methods We administered 3 cross-sectional Internet panel surveys on knowledge about dietary sodium to a sample of Los Angeles County adults, at intervals from December 2014 through August 2016. Multinomial and logistic regression models were constructed to describe associations between sodium knowledge and self-reported health behaviors. Results A total of 7,067 panel subjects clicked into the online survey, and 2,862 completed the survey (adjusted response rate = 40.5%). Only 102 respondents (3.6%) were able to accurately report the recommended milligrams of sodium that an average adult should consume daily (1,500 mg to 2300 mg). Knowing about daily sodium intake recommendations was associated with increased odds of using Nutrition Facts labels to make food purchase decisions (adjusted odds ratio [AOR], 3.48; 95% confidence interval [CI], 1.59–7.60) and with decreased odds of taking measures to prevent hypertension (AOR, 0.38; 95% CI, 0.19–0.74). Conclusions Los Angeles County residents had a limited knowledge of recommended daily sodium intake. Efforts to increase understanding of these recommendations may encourage wider engagement in healthy behaviors. Health agencies should integrate sodium reduction messages in their diet and nutrition educational efforts. PMID:29166247
Dewey, George; Wickramasekaran, Ranjana N; Kuo, Tony; Robles, Brenda
2017-11-22
In 2010, the Los Angeles County Department of Public Health launched a local sodium-reduction initiative to address the rising prevalence of high blood pressure (hypertension) and related cardiovascular conditions in the population. To inform this effort, we evaluated self-reported knowledge and health behaviors related to sodium intake among Los Angeles County residents. We administered 3 cross-sectional Internet panel surveys on knowledge about dietary sodium to a sample of Los Angeles County adults, at intervals from December 2014 through August 2016. Multinomial and logistic regression models were constructed to describe associations between sodium knowledge and self-reported health behaviors. A total of 7,067 panel subjects clicked into the online survey, and 2,862 completed the survey (adjusted response rate = 40.5%). Only 102 respondents (3.6%) were able to accurately report the recommended milligrams of sodium that an average adult should consume daily (1,500 mg to 2300 mg). Knowing about daily sodium intake recommendations was associated with increased odds of using Nutrition Facts labels to make food purchase decisions (adjusted odds ratio [AOR], 3.48; 95% confidence interval [CI], 1.59-7.60) and with decreased odds of taking measures to prevent hypertension (AOR, 0.38; 95% CI, 0.19-0.74). Los Angeles County residents had a limited knowledge of recommended daily sodium intake. Efforts to increase understanding of these recommendations may encourage wider engagement in healthy behaviors. Health agencies should integrate sodium reduction messages in their diet and nutrition educational efforts.
Oliver, Caitlin J; Softley, Samantha; Williamson, Sally M; Stevenson, Philip C; Wright, Geraldine A
2015-01-01
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.
Wong, Christina L; Arcand, JoAnne; Mendoza, Julio; Henson, Spencer J; Qi, Ying; Lou, Wendy; L'Abbé, Mary R
2013-06-01
Sodium-related claims on food labels should facilitate lower-sodium food choices; however, consumer attitudes and understanding of such claims are unknown. We evaluated consumer attitudes and understanding of different types of sodium claims and the effect of having hypertension on responses to such claims. Canadian consumers (n = 506), with and without hypertension, completed an online survey that contained a randomized mock-package experiment, which tested 4 packages that differed only by the claims they carried as follows: 3 sodium claims (disease risk reduction, function, and nutrient-content claims) and a tastes-great claim (control). Participants answered the same questions on attitudes and understanding of claims after seeing each package. Food packages with any sodium claim resulted in more positive attitudes toward the claim and the product healthfulness than did packages with the taste control claim, although all mock packages were identical nutritionally. Having hypertension increased ratings related to product healthfulness and purchase intentions, but there was no difference in reported understanding between hypertensives and normotensives. In general, participants attributed additional health benefits to low-sodium products beyond the well-established relation of sodium and hypertension. Sodium claims have the potential to facilitate lower-sodium food choices. However, we caution that consumers do not seem to differentiate between different types of claims, but the nutritional profiles of foods that carry different sodium claims can potentially differ greatly in the current labeling environment. Additional educational efforts are needed to ensure that consumers do not attribute inappropriate health benefits to foods with low-sodium claims. This trial was registered at clinicaltrials.gov as NCT01764724.
Elliott, Charlene D; Conlon, Martin J
2011-03-01
To critically examine child-oriented packaged food products sold in Canada for their sodium content, and to assess them light of intake recommendations, the current policy context and suggested targets. Baby/toddler foods (n 186) and child-oriented packaged foods (n 354) were coded for various attributes (including sodium). Summary statistics were created for sodium, then the children's food products were compared with the UK Food Standards Agency (FSA) 'targets' for sodium in packaged foods. Also assessed were the products' per-serving sodium levels were assessed in light of the US Institute of Medicine's dietary reference intakes and Canada's Food Guide. Calgary, Alberta, Canada. None. Twenty per cent of products could be classified as having high sodium levels. Certain sub-categories of food (i.e. toddler entrées, children's packaged lunches, soups and canned pastas) were problematic. Significantly, when scaled in according to Schedule M or viewed in light of the serving sizes on the Nutrition Facts table, the sodium level in various dry goods products generally fell within, and below, the Adequate Intake (AI)/Tolerable Upper Intake Level (UL) band for sodium. When scaled in accordance with the UK FSA targets, however, none of the (same) products met the targets. In light of AI/UL thresholds based on age and per-serving cut-offs, packaged foodstuffs for youngsters fare relatively well, with the exception of some problematic areas. 'Stealth sodium' and 'subtle sodium' are important considerations; so is use of the FSA's scaling method to evaluate sodium content, because it is highly sensitive to the difference between the reference amount and the actual real-world serving size for the product being considered.
Process for vitrification of contaminated sodium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, H.T.; Mellinger, G.B.
1983-03-01
A glass composition was developed to accommodate 30 wt % sodium oxide and resist devitrification and leaching. An in-can melting process that is compatible with a comtaminated sodium calciner developed by Argonne National Laboratory was tested both on a laboratory and on an engineering scale and found to be viable. The Liquid Metal Fast Breeder Reactor experimental program continues to produce elemental sodium contaminated with radionuclides. This material is presently in temporary storage facilities because the current criterion will not permit alkali metals to be disposed of in shallow land burials. As a first step in treatment, Argonne National Laboratorymore » (ANL) has developed a calciner that will convert the sodium metal to an oxide. In work supported by the U.S. Department of Energy, Pacific Northwest Laboratory (PNL) is developing and demonstrating a process that is compatible with the calciner and facilities at ANL-West for incorporating sodium oxide into a glass. Glass, which normally contains sodium oxide, was chosen as the waste form because it is chemically durable and nondispersible. It is simple to produce, and the technology for incorporating nuclear wastes into glass is well developed.« less
Wang, Xiong; Liu, Fang; Gao, Yuan; Xue, Chang-Hu; Li, Robert W; Tang, Qing-Juan
2018-04-10
Human obesity and overweight, caused by accumulated of fat, is the most commonly phenomenon from all over the world, especially in Western countries and Chinese mainland during the past three decades. Sodium Alginate, a polysaccharide extracted from brown seaweeds, has been proved its strong ability on body weight loss and anti-inflammatory response. However, no studies have been explored the effects of Sodium Alginate on colonic transcriptome, especially in obese individuals. Therefore, the current study was designed to detect whether Sodium Alginate could remit obesity and ease chronic metabolism disease through strengthening the bio-functionality of the lower intestine, particularly in colon. The data showed after Sodium Alginate gavaged for four weeks, the body weight, fat accumulation, triglyceride and total cholesterol were ameliorated in high fat diet induced obese mice. Sodium Alginate also improved the blood glucose level and lipopolysaccharides in serum. Furthermore, data from RNA sequence indicated that there were significantly changes in several genes, which involved in lipid metabolism and carbohydrate metabolism. In conclusion, these results suggested that Sodium Alginate could effectively suppress obesity and obesity related metabolic syndromes, due to the colonic transcriptome changes. Copyright © 2018. Published by Elsevier B.V.
Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel.
Zhorov, Boris S; Dong, Ke
2017-05-01
DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi's group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi's pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids. Copyright © 2016 Elsevier B.V. All rights reserved.
Sumatriptan/Naproxen Sodium: A Review in Migraine.
Syed, Yahiya Y
2016-01-01
Sumatriptan/naproxen sodium (Treximet®) is a fixed-dose combination of a serotonin 5-HT1B/1D receptor agonist (sumatriptan) and an NSAID (naproxen sodium), approved in the USA for the acute treatment of migraine with or without aura in adolescents and adults. In a randomized, phase 3 trial in adolescents, significantly more sumatriptan/naproxen sodium than placebo recipients were pain-free at 2 h. Similarly, in a pair of randomized phase 3 trials in adults, significantly more sumatriptan/naproxen sodium than placebo recipients had relief from migraine symptoms at 2 h, and the combination was more effective than individual components in terms of sustained (2-24 h) pain-free response rate. Sumatriptan/naproxen sodium was generally well tolerated, with ≤11 % of adolescents and ≤22 % of adults reporting treatment-related adverse events in the key clinical trials. The most common adverse reactions were nasopharyngitis, hot flushes and muscle tightness in adolescents, and dizziness, pain or pressure sensations, nausea, somnolence, dry mouth, dyspepsia and paraesthesia in adults. Based on current data, sumatriptan/naproxen sodium is a useful option for the acute treatment of migraine in adolescents and adults. The fixed-dose combination may reduce pill burden and improve adherence in some patients.
Morris, Michael J; Na, Elisa S; Johnson, Alan Kim
2010-04-01
Our laboratory has reported that manipulations that provoke a robust sodium appetite (e.g., sodium depletion, deoxycorticosterone acetate) decrease lateral hypothalamic self-stimulation (LHSS) reward if rats are denied access to hypertonic saline solutions. The following studies investigated the interaction between chronic sodium appetite and the renin-angiotensin-aldosterone system on LHSS reward. In Experiment 1, animals treated with the diuretic furosemide (20 mg/kg) when denied access to saline exhibited an increase in the current required to produce 50% of the maximum LHSS response rate (ECu50) 48 hr after extracellular volume depletion. Furosemide-depleted rats that were allowed to drink 0.3 M saline after depletion, or that were treated with the selective mineralocorticoid receptor (MR) antagonist spironolactone, which significantly reduced sodium appetite, did not show ECu50 changes. In Experiment 2 chronic intracerebroventricular administration of the selective MR antagonist RU 28318 (10 microg/microl/hr) prevented decreases in the ECu50 induced by deoxycorticosterone acetate-no salt treatment. We conclude that an unresolved sodium appetite will reduce responding for rewards and that experimental manipulations that reduce sodium appetite (e.g., access to saline or blockade of MR) decrease hedonic deficits.
Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendleton, Justin; Bhavaraju, Sai; Priday, George
As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodiummore » management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent simulant from the Parsons process in the CRU. The modular CRU is easily scalable as a standalone system for caustic recycling, or for NTTS integration or for use as an In-Tank Treatment System to process sodium bearing waste to meet LLW processing needs at the Hanford site. The standalone pilot operation of the CRU to recycle sodium from NTCR effluent places the technology demonstration at TRL level 6. Multiple operations were performed with the CRU to process up to 500 gallons of the NTCR effluent and demonstrate an efficient separation of up to 70 % of the sodium without solids precipitation while producing 10 M caustic. Batch mode operation was conducted to study the effects of chemistry variation, establish the processing rate, and optimize the process operating conditions to recycle caustic from the NTCR effluent. The performance of the CRU was monitored by tracking the density parameter to control the concentration of caustic produced. Different levels of sodium were separated in tests from the effluent at a fixed operating current density and temperature. The voltage of the modules remained stable during the unit operation which demonstrated steady operation to separate sodium from the NTCR effluent. The sodium transfer current efficiency was measured in testing based on the concentration of caustic produced. Measurements showed a current efficiency of 99.8% for sodium transfer from the NTCR effluent to make sodium hydroxide. The sodium and hydroxide contents of the anolyte (NTCR feed) and catholyte (caustic product) were measured before and after each batch test. In two separate batch tests, samples were taken at different levels of sodium separation and analyzed to determine the stability of the NTCR effluent after sodium separation. The stability characteristics and changes in physical and chemical properties of the NTCR effluent chemistry after separation of sodium hydroxide as a function of storage time were evaluated. Parameters such as level of precipitated alumina, total alkalinity, analysis of Al, Na, K, Cs, Fe, OH, nitrate, nitrite, total dissolved and undissolved solids, viscosity, density, and other parameters of the NTCR effluent were measured. Changes in rheology and properties of NTCR stream to support downstream handling of the effluent after sodium separation was the basis for the analysis. The results show that the NTCR effluent is stable without the precipitation of aluminum hydroxide after 70% of the sodium was separated from the effluent. (authors)« less
A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability
Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi
2015-01-01
Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633
Axonal Dysfunction Precedes Motor Neuronal Death in Amyotrophic Lateral Sclerosis
Iwai, Yuta; Shibuya, Kazumoto; Misawa, Sonoko; Sekiguchi, Yukari; Watanabe, Keisuke; Amino, Hiroshi; Kuwabara, Satoshi
2016-01-01
Wide-spread fasciculations are a characteristic feature in amyotrophic lateral sclerosis (ALS), suggesting motor axonal hyperexcitability. Previous excitability studies have shown increased nodal persistent sodium conductances and decreased potassium currents in motor axons of ALS patients, both of the changes inducing hyperexcitability. Altered axonal excitability potentially contributes to motor neuron death in ALS, but the relationship of the extent of motor neuronal death and abnormal excitability has not been fully elucidated. We performed multiple nerve excitability measurements in the median nerve at the wrist of 140 ALS patients and analyzed the relationship of compound muscle action potential (CMAP) amplitude (index of motor neuronal loss) and excitability indices, such as strength-duration time constant, threshold electrotonus, recovery cycle and current-threshold relationships. Compared to age-matched normal controls (n = 44), ALS patients (n = 140) had longer strength-duration time constant (SDTC: a measure of nodal persistent sodium current; p < 0.05), greater threshold changes in depolarizing threshold electrotonus (p < 0.05) and depolarizing current threshold relationship (i.e. less accommodation; (p < 0.05), greater superexcitability (a measure of fast potassium current; p < 0.05) and reduced late subexcitability (a measure of slow potassium current; p < 0.05), suggesting increased persistent sodium currents and decreased potassium currents. The reduced potassium currents were found even in the patient subgroups with normal CMAP (> 5mV). Regression analyses showed that SDTC (R = -0.22) and depolarizing threshold electrotonus (R = -0.22) increased with CMAP decline. These findings suggest that motor nerve hyperexcitability occurs in the early stage of the disease, and precedes motor neuronal loss in ALS. Modulation of altered ion channel function could be a treatment option for ALS. PMID:27383069
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
MoTe2, A novel anode material for sodium ion battery
NASA Astrophysics Data System (ADS)
Panda, Manas Ranjan; Anish Raj, K.; Bao, Qiaoliang; Mitra, Sagar
2018-04-01
2D layered transition metal dichalcogenides are considered as a potential anode for sodium-ion batteries due to their high specific capacity, structural stability and its well-developed two-dimensional layers. 2D layered structure Molybdenum ditelluride (MoTe2) provides a superior Na-ion storage properties in sodium ion battery due to its comparative more interlayer spacing (0.699 nm). In the current study MoTe2 polycrystalline powder sample has been prepared by solid state reaction process, the structural and morphological studies have been carried out by XRD, FE-SEM and EDS etc. XRD study revealsthe well crystalline structure of the material having hexagonal structure. FE-SEM and EDS studies depict the uniformflakes like structure of the material. When it is tested as sodium-ion battery anode by applying a potential window 0.1-2.5 V, the material demonstrates a high capacity and high power performances. The as prepared MoTe2 shows an initial discharge capacity of 376 mA h g-1 and a corresponding discharge capacity of 303 mA h g-1 after the 50th cycle at a current density of 500 mA g-1.
Discretionary salt use in airline meal service.
Wallace, S; Wellman, N S; Dierkes, K E; Johnson, P M
1987-02-01
Salt use in airline meal service was studied through observation of returned meal trays of 932 passengers. Observation and weighing of salt packets on returned trays revealed that 64% of passengers did not salt their airline dinner, while 6% used the entire salt packet, 0.92 gm NaCl (362 mg Na). Average discretionary salt use among the 234 passengers (25%) who added salt was 0.57 gm NaCl (232 mg Na). Estimates of total sodium in the four airline dinners averaged 2.0 gm NaCl (786 mg Na). Laboratory assays of menu items produced by the airline foodservice differed 3% to 19% from estimated values. Sodium content of the four airline dinner menus was similar and did not affect salt use. Discretionary salt use was related to the total amount of entrée consumed but was not affected by the amount of salad consumed. It is postulated that salt use in the "captive" airline situation is predicated on consistent, habitual practices. Lowering sodium consumption in this setting may require alteration in both food preparation methods and quantity of salt presented in the packets.
Water and sodium balance in space.
Drummer, C; Norsk, P; Heer, M
2001-09-01
We have previously shown that fluid balances and body fluid regulation in microgravity (microG) differ from those on Earth (Drummer et al, Eur J Physiol 441:R66-R72, 2000). Arriving in microG leads to a redistribution of body fluid-composed of a shift of fluid to the upper part of the body and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless, cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary sodium excretion is diminished and a considerable amount of sodium is retained-without accumulating in the intravascular space. An enormous storage capacity for sodium in the extravascular space and a mechanism that allows the dissociation between water and sodium handling likely contribute to the fluid balance adaptation in weightlessness.
Martin-Moreno, Paloma L; Varo, Nerea; Martínez-Ansó, Eduardo; Martin-Calvo, Nerea; Sayón-Orea, Carmen; Bilbao, Jose I; Garcia-Fernandez, Nuria
2015-01-01
Contrast-induced acute kidney injury (CI-AKI) is a common cause of renal failure. We evaluated the effectiveness of oral sodium citrate versus intravenous (IV) sodium bicarbonate for CI-AKI prophylaxis as well as their influence on kidney injury biomarkers. A randomized, controlled, single-center study including 130 hospitalized patients (62.3% men), who were randomized to receive sodium bicarbonate (1/6 men, 3 ml/kg/h for 1 h; n = 43), oral sodium citrate (75 ml/10 kg divided into 4 doses; n = 43) or nonspecific hydration (n = 44) before contrast administration, was conducted. Serum creatinine and kidney injury biomarkers (cystatin C, neutrophil gelatinase-associated lipocalin, interleukin-8, F2-isoprostanes and cardiotrophin-1 [CT-1]) were assessed. Incidence of CI-AKI was 9.2% with no differences found between hydration groups: 7.0% in sodium bicarbonate group, 11.6% in oral sodium citrate group and 9.1% in the nonspecific hydration group. Urinary creatinine and urinary CT-1/creatinine ratio decreased 4 h after contrast infusion (p < 0.001), but none of the biomarkers assessed were affected by the treatments. There were no differences in hydration with oral sodium citrate and IV sodium bicarbonate for the prophylaxis of CI-AKI. Therefore, oral hydration represents a safe, inexpensive and practical method for preventing CI-AKI in low-risk patients. No effect on biomarkers for kidney injury could be demonstrated. © 2015 S. Karger AG, Basel.
Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario
2016-01-01
Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153
The Kinetics of Ouabain Inhibition and the Partition of Rubidium Influx in Human Red Blood Cells
Beauge, L. A.; Adragna, Norma
1971-01-01
In the development of ouabain inhibition of rubidium influx in human red blood cells a time lag can be detected which is a function of at least three variables: the concentrations of external sodium, rubidium, and ouabain. The inhibition is antagonized by rubidium and favored by sodium. Similar considerations could be applied to the binding of ouabain to membrane sites. The total influx of rubidium as a function of external rubidium concentration can be separated into two components: (a) a linear uptake not affected by external sodium or ouabain and not requiring an energy supply, and (b) a saturable component. The latter component, on the basis of the different effects of the aforementioned factors, can be divided into three fractions. The first is ouabain-sensitive, inhibited by external sodium at low rubidium, and requires an energy supply; this represents about 70–80% of the total uptake and is related to the active sodium extrusion mechanism. The second is ouabain-insensitive, activated by external sodium over the entire range of rubidium concentrations studied, and dependent on internal ATP; this represents about 15% of the total influx; it could be coupled to an active sodium extrusion or belong to a rubidium-potassium exchange. The third, which can be called residual influx, is ouabain-insensitive, unaffected by external sodium, and independent of internal ATP; this represents about 10–20% of the total influx. PMID:5553102
Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A
2016-03-01
Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Yuzhe; Song Weizhong; Groome, James R.
2010-08-15
Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action ofmore » pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.« less
Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.
Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng
2014-03-17
The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.
Shan, Dehong; Xie, Yongling; Ren, Guogang; Yang, Zhuo
2013-02-01
Nanomaterials and relevant products are now being widely used in the world, and their safety becomes a great concern for the general public. Tungsten carbide nanoparticles (nano-WC) are widely used in metallurgy, aeronautics and astronautics, however our knowledge regarding the influence of nano-WC on neurons is still lacking. The aim of this study was to investigate the impact of nano-WC on tetrodotoxin (TTX)-sensitive voltage-activated sodium current (I(Na)) of hippocampal CA1 pyramidal neurons. Results showed that acute exposure of nano-WC attenuated the peak amplitudes of I(Na) in a concentration-dependent manner. The minimal effective concentration was 10(-5)g/ml. The exposure of nano-WC significantly decreased current amplitudes of the current-voltage curves of I(Na) from -50 to+50 mV, shifted the steady-state activation and inactivation curves of I(Na) negatively and delayed the recovery of I(Na) from inactivation state. After exposure to nano-WC, the peak amplitudes, overshoots and the V-thresholds of action potentials (APs) were markedly reduced. These results suggested that exposure of nano-WC could influence some characteristics of APs evoked from the hippocampal CA1 neurons by modifying the kinetics of voltage-gated sodium channels (VGSCs). Copyright © 2012 Elsevier Ltd. All rights reserved.
Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, L.J.; Franklin, K.J.; Roth, S.H.
1989-01-01
Low concentrations of sodium sulfide reversibly attenuate the contractile response of the isolate rat uterus to oxytocin without affecting angiotensin II responsiveness. These findings suggest that functionally important disulfide bonds in the rat uterine oxytocin receptor, but not the angiotensin receptor, are sensitive to hydrosulfide ion. Reduction of oxytocin receptors by hydrosulfide ion may be a mechanism by which low level of H{sub 2}S delay parturition in rats.
Water and mineral relations of Atriplex canescens and A. cuneata on saline processed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.G.
1979-01-01
Growth, mineral uptake and water relations of Atriplex canescens and A. cuneata, both native to the arid oil shale region of northeastern Utah, were studied in the greenhouse and laboratory as affected by various salinity levels and specific ions in processed oil shale. Salinity of the shale was manipulated by moistening leached processed oil shale to near field capacity (20% H/sub 2/O by weight) with solutions of shale leachate, sodium sulfate, magnesium sulfate or sodium chloride at equiosmotic concentrations ranging from 0 to -30 bars. Although shale salinity did not affect osmotic adjustment, zero turgor points of A. canescens becamemore » more negative with reductions in shale moisture percentage. Differences in plant growth due to differet ions in the soil solution could not be explained by effects on osmotic adjustment. However, greater growth of A. canescens in Na/sub 2/SO/sub 4/ treated than MgSO/sub 4/ treated leached shale was associated with greater leaf succulence, greater lamina lengths and lamina widths and lower diffusive leaf resistances. Potassium added to leached and unleached processed oil shale increased shoot and root biomass production, shoot/root ratio, leaf K content, and water use efficiency of a sodium-excluding Atriplex canescens biotype but did not increase growth of a sodium-accumulating biotype.« less
Lee, N-Y; Park, S-Y; Lee, Y-M; Choi, S-Y; Jeong, S-H; Chung, M-S; Chang, Y-S; Choi, S-H; Bae, D-H; Ha, S-D
2013-01-01
This study was conducted to help better understand the current sodium intake of Korean children and to establish children's good eating habits through investigation of the sodium content of ready-to-eat foods collected from nine major amusement parks in Korea. The sodium content of a total of 322 products was analysed by using ICP and then the potential risk based on the recommended daily intake of sodium as described in the Korean dietary reference intakes was determined. The results showed that sodium content was the lowest in muffins (245 mg/100 g) and the highest in seasoned dried filefish (1825 mg/100 g). The average amounts of sodium per serving of seasoned dried filefish, tteokbokki and fish paste were 1150, 1248 and 1097 mg, respectively. The values were above 50% of the daily intake of sodium recommended by the Korean dietary reference intake. The ready-to-eat foods were also classified into high, medium and low sodium content on the basis of standards recommended by the Korean Food and Drug Administration. Most snacks were classified as high sodium foods because they exceeded "300 mg (84.5% of the total daily allowance)". Furthermore, the meal substitution foods such as kimbab, tteokbokki, mandus, sandwiches and hamburgers exceeded "600 mg (90.3% of the total daily allowance)" and were also classified as high sodium foods. In addition, ready-to-eat foods in amusement parks are similar to foods eaten on streets and foods around school zones, which contain high sodium content; thus, the intake frequency might be high, which would induce high risk to children health. Koreans already consume a high amount of sodium daily via their usual diets. So, the sodium content in snacks and substitution foods needs to be reduced. Consequently, this study noted that parents and guardians should carefully consider their children's consumption of ready-to-eat foods from Korean amusement parks.
β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.
Körner, Jannis; Meents, Jannis; Machtens, Jan-Philipp; Lampert, Angelika
2018-06-01
The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be modified by interfering with the extracellular end of segment 6 of domain IV. Thus, our data suggest that physiological gating of Nav1.7 may be protected against mechanical stress in a living organism by assembly with the β1 subunit. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Creation of the NaSCoRD Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Jankovsky, Zachary Kyle; Stuart, William
This report was written as part of a United States Department of Energy (DOE), Office of Nuclear Energy, Advanced Reactor Technologies program funded project to re-create the capabilities of the legacy Centralized Reliability Database Organization (CREDO) database. The CREDO database provided a record of component design and performance documentation across various systems that used sodium as a working fluid. Regaining this capability will allow the DOE complex and the domestic sodium reactor industry to better understand how previous systems were designed and built for use in improving the design and operations of future loops. The contents of this report include:more » overview of the current state of domestic sodium reliability databases; summary of the ongoing effort to improve, understand, and process the CREDO information; summary of the initial efforts to develop a unified sodium reliability database called the Sodium System Component Reliability Database (NaSCoRD); and explain both how potential users can access the domestic sodium reliability databases and the type of information that can be accessed from these databases.« less
Pietrasik, Z; Gaudette, N J; Johnston, S P
2017-07-01
The effects of high pressure processing (HPP; 600MPa for 3min at 8°C) on the quality and shelf life of reduced sodium naturally-cured wieners was studied. HPP did not negatively impact processing characteristics and assisted in extending shelf life of all wiener treatments up to a 12week storage period. At week 8, HPP wieners received higher acceptability scores, indicating HPP can effectively extend the sensory quality of products, including sodium reduced formulations containing natural forms of nitrite. Substitution of 50% NaCl with modified KCl had negative effect on textural characteristics of conventionally cured wieners but not those processed with celery powder as a source of nitrite. Celery powder favorably affected hydration of textural properties of wieners, and consumer acceptability of juiciness and texture was higher compared to nitrite. Sodium reduction, independent of curing agent, negatively impacted flavor acceptability, while only nitrite containing reduced sodium wieners scored significantly lower than both regular salt wieners for texture, juiciness and saltiness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J
2002-01-01
Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.
von Stein, Richard T.; Soderlund, David M.
2012-01-01
Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119
Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S
2012-01-17
Because covalent chemistry can diminish the optical and electronic properties of single-walled carbon nanotubes (SWCNTs), there is significant interest in developing methods of controllably functionalizing the nanotube sidewall. To date, most attempts at obtaining such control have focused on reaction stoichiometry or strength of oxidative treatment. Here, we examine the role of surfactants in the chemical modification of single-walled carbon nanotubes with aryl diazonium salts. The adsorbed surfactant layer is shown to affect the diazonium derivatization of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric exclusion, and direct chemical modification of the diazonium reactant. Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and cationic cetyltrimethylammonium bromide, where differences in surfactant charge can significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly enough such that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium taurodeoxycholate, we show that the greatest extent of reaction is observed among a small population of nanotube species, with diameters between 0.88 and 0.92 nm. The anomalous reaction of nanotubes in this diameter range seems to imply that the surfactant is less effective at coating these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile salts studied, sodium cholate enables high selectivity toward metallic species and small band gap semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive diazoesters. Further, it is found that the rigidity of anionic surfactants can significantly influence the ability of the surfactant layer to stabilize the diazonium ion near the nanotube surface. Such Coulombic and surfactant packing effects offer promise toward employing surfactants to controllably functionalize carbon nanotubes. © 2011 American Chemical Society
Kaur, Kuljeet; Zarzoso, Manuel; Ponce-Balbuena, Daniela; Guerrero-Serna, Guadalupe; Hou, Luqia; Musa, Hassan; Jalife, José
2013-01-01
Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (I(Na)) density at -40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (I(to)) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both I(Na) and I(to). In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased I(Na) density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. I(Na) density was -36.25±2.8 pA/pF in control, -59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and -58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, I(to) density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (Na(V)1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; -77%; p<0.01) and KCND2 (K(V)4.2; -50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in I(Na) was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel responsible for the transient outward current. The results provide new mechanistic insight into the electrical remodeling associated with myocardial injury.
Electrolyte profile of Malaysian mothers' milk.
Alaudeen, S; Muslim, N; Faridah, K; Azman, A; Arshat, H
1988-12-01
The influence of socioeconomic status (ethnicity, income and parity) on electrolyte composition (sodium and potassium) in human milk is little known. We have thus quantitatively analyzed approximately 700 samples of milk (1-90 days postpartum) obtained from healthy Malaysian mothers' (Malay, Chinese and Indians) of full term infants. Results show that the mean concentration (mmol/l) of sodium is highest (48.2+or-1.7, Mean+or-SEM) in the Malaysian mothers' colostrum and this value decreased by 30% in their transitional milk and remained constant throughout subsequent days of lactation (mature milk). Ethnically, it is found that the level of sodium in colostrum of Malay and Chinese mothers were similar while the Indian mothers' colostrum showed apparently higher value (52.7+or-3.4 mmol/l) that is statistically insignificant. The transitional milk of all 3 ethnic groups studied exhibited similar levels of sodium. On subsequent days of lactation (mature milk) the Malay mothers exhibited lowest concentration (25.9+or-2.6 mmol/l) of sodium that is significantly (P0.05) different from that of Chinese and Indian mothers. Income and parity do not significantly affect the sodium level in Malaysian mothers' milk during all stages of lactation studied. The level of potassium, however did not change significantly with days of lactation. Like sodium, potassium too was not influenced by income and parity. (Author's).
Ren, Wei; Yuan, Lin; Li, Jun; Huang, Xian-Ju; Chen, Su; Zou, Da-Jiang; Liu, Xiangming; Yang, Xin-Zhou
2012-01-01
Aconiti Brachypodi Radix, belonging to the genus of Aconitum (Family Ranunculaceae), are used clinically as anti-rheumatic, anti-inflammatory and anti-nociceptive in traditional medicine of China. However, its mechanism and influence on nociceptive threshold are unknown and need further investigation. The analgesic effects of ethanolic extract of Aconiti Brachypodi Radix (EABR) were thus studied in vivo and in vitro. Three pain models in mice were used to assess the effect of EABR on nociceptive threshold. In vitro study was conducted to clarify the modulation of the extract on the tetrodotoxin-sensitive (TTX-S) sodium currents in rat's dorsal root ganglion (DRG) neurons using whole-cell patch clamp technique. The results showed that EABR (5-20 mg/kg, i.g.) could produce dose-dependent analgesic effect on hot-plate tests as well as writhing response induced by acetic acid. In addition, administration of 2.5-10 mg/kg EABR (i.g.) caused significant decrease in pain responses in the first and second phases of formalin test without altering the PGE₂ production in the hind paw of the mice. Moreover, EABR (10 µg/ml -1 mg/ml) could suppress TTX-S voltage-gated sodium currents in a dose-dependent way, indicating the underlying electrophysiological mechanism of the analgesic effect of the folk plant medicine. Collectively, our results indicated that EABR has analgesic property in three pain models and useful influence on TTX-S sodium currents in DRG neurons, suggesting that the interference with pain messages caused by the modulation of EABR on TTX-S sodium currents in DRG neurones may explain some of its analgesic effect.
Algalarrondo, Vincent; Wahbi, Karim; Sebag, Frédéric; Gourdon, Geneviève; Beldjord, Chérif; Azibi, Kamel; Balse, Elise; Coulombe, Alain; Fischmeister, Rodolphe; Eymard, Bruno; Duboc, Denis; Hatem, Stéphane N
2015-04-01
Myotonic dystrophy type 1 (DM1) is the most common neuromuscular disorder and is associated with cardiac conduction defects. However, the mechanisms of cardiac arrhythmias in DM1 are unknown. We tested the hypothesis that abnormalities in the cardiac sodium current (INa) are involved, and used a transgenic mouse model reproducing the expression of triplet expansion observed in DM1 (DMSXL mouse). The injection of the class-I antiarrhythmic agent flecainide induced prominent conduction abnormalities and significantly lowered the radial tissular velocities and strain rate in DMSXL mice compared to WT. These abnormalities were more pronounced in 8-month-old mice than in 3-month-old mice. Ventricular action potentials recorded by standard glass microelectrode technique exhibited a lower maximum upstroke velocity [dV/dt](max) in DMSXL. This decreased [dV/dt](max) was associated with a 1.7 fold faster inactivation of INa in DMSXL myocytes measured by the whole-cell patch-clamp technique. Finally in the DMSXL mouse, no mutation in the Scn5a gene was detected and neither cardiac fibrosis nor abnormalities of expression of the sodium channel protein were observed. Therefore, alterations in the sodium current markedly contributed to electrical conduction block in DM1. This result should guide pharmaceutical and clinical research toward better therapy for the cardiac arrhythmias associated with DM1. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Morabito, Rossana; Costa, Roberta; Rizzo, Valentina; Remigante, Alessia; Nofziger, Charity; La Spada, Giuseppa; Marino, Angela; Paulmichl, Markus; Dossena, Silvia
2017-01-01
Cnidarians may negatively impact human activities and public health but concomitantly their venom represents a rich source of bioactive substances. Pelagia noctiluca is the most venomous and abundant jellyfish of the Mediterranean Sea and possesses a venom with hemolytic and cytolytic activity for which the mechanism is largely unknown. Here we show that exposure of mammalian cells to crude venom from the nematocysts of P. noctiluca profoundly alters the ion conductance of the plasma membrane, therefore affecting homeostatic functions such as the regulation and maintenance of cellular volume. Venom-treated cells exhibited a large, inwardly rectifying current mainly due to permeation of Na+ and Cl-, sensitive to amiloride and completely abrogated following harsh thermal treatment of crude venom extract. Curiously, the plasma membrane conductance of Ca2+ and K+ was not affected. Current-inducing activity was also observed following delivery of venom to the cytosolic side of the plasma membrane, consistent with a pore-forming mechanism. Venom-induced NaCl influx followed by water and consequent cell swelling most likely underlie the hemolytic and cytolytic activity of P. noctiluca venom. The present study underscores unique properties of P. noctiluca venom and provides essential information for a possible use of its active compounds and treatment of envenomation.
Mancia, Giuseppe; Oparil, Suzanne; Whelton, Paul K; McKee, Martin; Dominiczak, Anna; Luft, Friedrich C; AlHabib, Khalid; Lanas, Fernando; Damasceno, Albertino; Prabhakaran, Dorairaj; La Torre, Giuseppe; Weber, Michael; O'Donnell, Martin; Smith, Sidney C; Narula, Jagat
2017-03-07
Ingestion of sodium is essential to health, but excess sodium intake is a risk factor for hypertension and cardiovascular disease. Defining an optimal range of sodium intake in populations has been challenging and controversial. Clinical trials evaluating the effect of sodium reduction on blood pressure have shown blood pressure lowering effects down to sodium intake of less than 1.5 g/day. Findings from these blood pressure trials form the basis for current guideline recommendations to reduce sodium intake to less than 2.3 g/day. However, these clinical trials employed interventions that are not feasible for population-wide implementation (i.e. feeding studies or intensive behavioural interventions), particularly in low and middle-income countries. Prospective cohort studies have identified the optimal range of sodium intake to reside in the moderate range (3-5 g/day), where the risk of cardiovascular disease and death is lowest. Therefore, there is consistent evidence from clinical trials and observational studies to support reducing sodium intake to less than 5 g/day in populations, but inconsistent evidence for further reductions below a moderate intake range (3-5 g/day). Unfortunately, there are no large randomized controlled trials comparing low sodium intake (< 3 g/day) to moderate sodium intake (3-5 g/day) in general populations to determine the net clinical effects of low sodium intake. Until such trials are completed, it is likely that controversy about optimal sodium intake range will continue. This working group calls for the completion of large definitive clinical trials to clarify the range of sodium intake for optimal cardiovascular health within the moderate to low intake range. We support interventions to reduce sodium intake in populations who consume high sodium intake (> 5 g/day), which should be embedded within an overall healthy dietary pattern. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For Permissions, please email: journals.permissions@oup.com.
Bigiani, Albertino
2017-05-01
Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping
2013-01-01
Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.
Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping
2013-01-01
Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel. PMID:23826086
High sodium diet converts renal proteoglycans into pro-inflammatory mediators in rats
Shrestha, Pragyi; Sarpong, Kwaku A.; Yazdani, Saleh; el Masri, Rana; de Jong, Wilhelmina H. A.; Navis, Gerjan; Vivès, Romain R.; van den Born, Jacob
2017-01-01
Background High dietary sodium aggravates renal disease by affecting blood pressure and by its recently shown pro-inflammatory and pro-fibrotic effects. Moreover, pro-inflammatory modification of renal heparan sulfate (HS) can induce tissue remodeling. We aim to investigate if high sodium intake in normotensive rats converts renal HS into a pro-inflammatory phenotype, able to bind more sodium and orchestrate inflammation, fibrosis and lymphangiogenesis. Methods Wistar rats received a normal diet for 4 weeks, or 8% NaCl diet for 2 or 4 weeks. Blood pressure was monitored, and plasma, urine and tissue collected. Tissue sodium was measured by flame spectroscopy. Renal HS and tubulo-interstitial remodeling were studied by biochemical, immunohistochemical and qRT-PCR approaches. Results High sodium rats showed a transient increase in blood pressure (week 1; p<0.01) and increased sodium excretion (p<0.05) at 2 and 4 weeks compared to controls. Tubulo-interstitial T-cells, myofibroblasts and mRNA levels of VCAM1, TGF-β1 and collagen type III significantly increased after 4 weeks (all p<0.05). There was a trend for increased macrophage infiltration and lymphangiogenesis (both p = 0.07). Despite increased dermal sodium over time (p<0.05), renal concentrations remained stable. Renal HS of high sodium rats showed increased sulfation (p = 0.05), increased L-selectin binding to HS (p<0,05), and a reduction of sulfation-sensitive anti-HS mAbs JM403 (p<0.001) and 10E4 (p<0.01). Hyaluronan expression increased under high salt conditions (p<0.01) without significant changes in the chondroitin sulfate proteoglycan versican. Statistical analyses showed that sodium-induced tissue remodeling responses partly correlated with observed HS changes. Conclusion We show that high salt intake by healthy normotensive rats convert renal HS into high sulfated pro-inflammatory glycans involved in tissue remodeling events, but not in increased sodium storage. PMID:28594849
Toda, Ryoko; Shiramoto, Masanari; Komai, Emi; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro
2018-04-01
The pharmacokinetics (PK) and pharmacodynamics (PD) of proton pump inhibitors differ among cytochrome P450 (CYP) 2C19 genotypes. Therefore, we developed azeloprazole sodium (Z-215), a novel proton pump inhibitor, whose metabolism is not affected by CYP2C19 activity in vitro. However, the PK and PD of azeloprazole sodium have not been evaluated in Japanese subjects. We conducted an open-label, crossover study in healthy Japanese male volunteers to evaluate the plasma concentration and intragastric pH with respect to CYP2C19 genotype after repeated administration of 10, 20, and 40 mg azeloprazole sodium and 10 and 20 mg rabeprazole sodium (rabeprazole). The plasma concentration profile of azeloprazole sodium was similar among genotypes, whereas that of rabeprazole differed. The 24-hour intragastric pH ≥ 4 holding time ratio (pH ≥ 4 HTR) of azeloprazole sodium was similar among genotypes. The pH ≥ 4 HTR was 52.5%-60.3%, 55.1%-65.8%, and 69.4%-77.1% after administration of 10, 20, and 40 mg azeloprazole sodium, respectively, and 59.2%-72.3% and 64.4%-91.2% after administration of 10 and 20 mg rabeprazole, respectively, on the fifth day of dosing. The maximum plasma concentration (C max ), area under the plasma concentration-time curve (AUC), and pH ≥ 4 HTR of azeloprazole sodium were proportional to dose. The C max , AUC, and pH ≥ 4 HTR on day 5 were slightly higher following administration of 20 mg azeloprazole sodium before comparison with after a meal. No serious adverse events were observed. These results suggest that azeloprazole sodium is useful for treating gastroesophageal reflux disease in all CYP2C19 genotypes. © 2017, The American College of Clinical Pharmacology.
Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo
2016-08-01
Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies. © 2016 American Heart Association, Inc.
Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F
2002-09-01
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism. Copyright 2002 Wiley-Liss Inc.
Tyan, Kevin; Kang, Jason; Jin, Katherine; Kyle, Aaron M
2018-05-23
A novel color additive colorizes chlorine disinfectants blue to improve visibility and enhance spray surface coverage, and it fades to colorless to indicate elapsed contact time. We investigated its interactions with 3 chlorine disinfectants to determine if the additive would adversely affect the disinfectants' antimicrobial efficacy or skin safety. We tested 0.5% sodium hypochlorite, 0.2% calcium hypochlorite, and 0.5% sodium dichloroisocyanurate (NaDCC) alone versus with color additive. An independent laboratory tested efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae, and human coronavirus 229E. An independent laboratory also tested direct skin irritation. Chlorine disinfectants with and without color additive achieved equal levels of efficacy against the tested pathogens. Against S. aureus, 0.5% sodium hypochlorite with and without color additive met Environmental Protection Agency criteria for disinfection success. Against human coronavirus 229E, 0.5% sodium hypochlorite alone failed disinfection success criteria, whereas 0.5% sodium hypochlorite with color additive achieved full viral inactivation (≥4.50 log 10 reduction). Against V. cholerae, 0.2% calcium hypochlorite alone and with color additive achieved 5.99 log 10 and >6.03 log 10 reductions, respectively. Against S. aureus and P. aeruginosa, 0.5% NaDCC with and without color additive achieved >4.9 log 10 and >3.54 log 10 reductions, respectively. All 3 chlorine disinfectants with color additive tested as negligible skin irritants. This color additive can be combined with chlorine disinfectants without adversely affecting antimicrobial efficacy or skin safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Sottovia, André Dotto; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Lauris, José Roberto Pereira
2006-01-01
In cases of delayed tooth replantation, non-vital periodontal ligament remnants have been removed with sodium hypochlorite in an attempt to control root resorption. Nevertheless, reports of its irritating potential in contact with the alveolar connective tissue have been described. Therefore, this study evaluated the healing process on delayed replantation of rat teeth, after periodontal ligament removal by different treatment modalities. Twenty-four rats, assigned to 3 groups (n=8), had their upper right incisor extracted and left on the workbench for desiccation during 60 min. Afterwards, the teeth in group I were immersed in saline for 2 min. In group II, root surfaces were scrubbed with gauze soaked in saline for 2 min; and in group III, scrubbing was done with gauze soaked in 1% sodium hypochlorite solution. Thereafter, root surfaces were etched with 37% phosphoric acid and immersed in 2% acidulate-phosphate sodium fluoride solution, at pH 5.5. Root canals were filled with a calcium hydroxide-based paste and the teeth were replanted. The animals were sacrificed 60 days postoperatively and the pieces containing the replanted teeth were processed and paraffin-embedded. Semi-serial transversally sections were obtained from the middle third of the root and stained with hematoxylin and eosin for histomorphometric analysis. Data were analyzed statistically using Kruskal-Wallis and Dunn's tests. The results showed that root structure and cementum extension were more affected by resorption in group III (p<0.05). All groups were affected by root resorption but the treatment performed in group III was the least effective for its control. The treatment accomplished in groups I and II yielded similar results to each other. PMID:19089038
Sottovia, André Dotto; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Lauris, José Roberto Pereira
2006-04-01
In cases of delayed tooth replantation, non-vital periodontal ligament remnants have been removed with sodium hypochlorite in an attempt to control root resorption. Nevertheless, reports of its irritating potential in contact with the alveolar connective tissue have been described. Therefore, this study evaluated the healing process on delayed replantation of rat teeth, after periodontal ligament removal by different treatment modalities. Twenty-four rats, assigned to 3 groups (n=8), had their upper right incisor extracted and left on the workbench for desiccation during 60 min. Afterwards, the teeth in group I were immersed in saline for 2 min. In group II, root surfaces were scrubbed with gauze soaked in saline for 2 min; and in group III, scrubbing was done with gauze soaked in 1% sodium hypochlorite solution. Thereafter, root surfaces were etched with 37% phosphoric acid and immersed in 2% acidulate-phosphate sodium fluoride solution, at pH 5.5. Root canals were filled with a calcium hydroxide-based paste and the teeth were replanted. The animals were sacrificed 60 days postoperatively and the pieces containing the replanted teeth were processed and paraffin- embedded. Semi-serial transversally sections were obtained from the middle third of the root and stained with hematoxylin and eosin for histomorphometric analysis. Data were analyzed statistically using Kruskal-Wallis and Dunn's tests. The results showed that root structure and cementum extension were more affected by resorption in group III (p<0.05). All groups were affected by root resorption but the treatment performed in group III was the least effective for its control. The treatment accomplished in groups I and II yielded similar results to each other.
Fu, Yi; Cheetham, Tim; Bourn, David; Orwoll, Eric
2013-01-01
The protein product of the AVPR2 gene, coding for the arginine vasopressin receptor type 2, is essential for vasopressin-dependent concentration of the urine. The arginine residue at position 137 in the protein product of this gene is uniquely pivotal for function. The R137H mutant inactivates the receptor conferring congenital nephrogenic diabetes insipidus, whereas activating mutations at this same residue (i.e., R137C and R137L) confer pathological water retention in the nephrogenic syndrome of inappropriate antidiuresis. These mutations were discovered in human subjects with conspicuous phenotypes in clinical water balance. Prevalence of these polymorphisms among asymptomatic individuals has not been assessed, nor has their contribution to broad interindividual variation in serum sodium concentration; no data addressing minor allele frequency are available. We genotyped two large cohorts using a validated high-throughput Pyrosequencing-based assay that we designed to capture the totality of pathological variation at this important residue. In the Osteoporotic Fractures in Men (MrOS) Study, all participants were male (i.e., hemizygous for AVPR2 gene on the X-chromosome), and participants were oversampled at the extremes of the population distribution for serum sodium concentration. In the Offspring Cohort of the Framingham Heart Study, male and female participants were genotyped. No pathological variants affecting R137 were detected among the 5,142 AVPR2 alleles successfully genotyped. Even at the population extremes of serum sodium distribution, we estimate minor allele frequency < 0.06%. We conclude that these disease-associated variants are exceedingly uncommon and do not contribute broadly to interindividual variability in serum sodium concentration or to its heritability. PMID:23362144
Zhou, Bo; Webster, Jacqui; Fu, Ling-Yu; Wang, Hai-Long; Wu, Xiao-Mei; Wang, Wen-Li; Shi, Jing-Pu
2016-07-15
Lowering salt intake is one of the successful and cost-effective methods to reduce blood pressure (BP). In this randomized controlled study, we investigated the effects of a 3-year substitution of table salt with a low-sodium salt substitute in a rural population of North China. Subjects from 200 families residing in five villages in Liaoning, North China were registered in this study and randomly divided into two groups: normal salt (100% sodium chloride) and low salt substitute (65% NaCl, 25% KCl, 10% MgSO4). We compared the effects of the low-sodium salt substitute and normal salt on differences in BP from baseline to various follow-up time points during this 3-year study period. We also examined several factors that may affect the long-term changes in BP. Hypertension was defined per World Health Organization guidelines as BP≥140/90mmHg. The low sodium substitute significantly reduced the increase in both systolic and diastolic BP compared with the regular salt (P=0.000). Also, the population aged 40-70years showed most beneficial response to the salt substitute compared with those aged <40 or >70years. The low salt substitute had similar beneficial effects in both males and females. In addition, the salt type consumed and body mass index significantly affected the change in BP. Use of the salt substitute significantly reduces the increase in BP over a long term, and thus, the salt substitute can be used as a replacement for regular salt in the daily diet to prevent/diminish the incidence of hypertension. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dietary sodium reduction in New Zealand: influence of the Tick label.
Ning, Sherry X; Mainvil, Louise A; Thomson, Rachel K; McLean, Rachel M
2017-01-01
The Tick programme of the National Heart Foundation (NHF) is the longest standing voluntary front of pack signpost nutrition logo in New Zealand. It provides a platform for collaboration with the food industry to encourage development of healthier products. This study evaluated the impact of the Tick programme on sodium in processed food. Fifty-two Tick programme products from food categories known to contribute substantially to sodium intake were identified. Sales volumes (kg) from January 2011 to December 2013 were multiplied by changes in sodium content over that time, producing an estimate of programme impact. Five semi-structured interviews with industry representatives were conducted, to look at other influences for sodium reduction, and themes identified through methods of thematic analysis. Over the period, the Tick programme influenced food companies to remove approximately 16 tonnes of salt through the reformulation and formulation of 52 Tick-approved breakfast cereals, edible oil spreads, cooking sauces and processed poultry products. Other factors influencing sodium reduction reported by company representatives included increased consumer and industry interest in healthier product nutrition profiles and other sodium reduction programmes targeting reformulation/formulation. The Tick remains a credible and well-recognized brand and may provide a competitive edge for participating food manufacturers in the current market. The Tick programme is effective in influencing industry to reduce sodium in processed foods in New Zealand. The combined impact of the Tick and other NHF programmes has the potential to reduce population sodium intake and improve health outcomes.
Sodium-to-Potassium Ratio and Blood Pressure, Hypertension, and Related Factors12
Perez, Vanessa; Chang, Ellen T.
2014-01-01
The potential cost-effectiveness and feasibility of dietary interventions aimed at reducing hypertension risk are of considerable interest and significance in public health. In particular, the effectiveness of restricted sodium or increased potassium intake on mitigating hypertension risk has been demonstrated in clinical and observational research. The role that modified sodium or potassium intake plays in influencing the renin-angiotensin system, arterial stiffness, and endothelial dysfunction remains of interest in current research. Up to the present date, no known systematic review has examined whether the sodium-to-potassium ratio or either sodium or potassium alone is more strongly associated with blood pressure and related factors, including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction, in humans. This article presents a systematic review and synthesis of the randomized controlled trials and observational research related to this issue. The main findings show that, among the randomized controlled trials reviewed, the sodium-to-potassium ratio appears to be more strongly associated with blood pressure outcomes than either sodium or potassium alone in hypertensive adult populations. Recent data from the observational studies reviewed provide additional support for the sodium-to-potassium ratio as a superior metric to either sodium or potassium alone in the evaluation of blood pressure outcomes and incident hypertension. It remains unclear whether this is true in normotensive populations and in children and for related outcomes including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction. Future study in these populations is warranted. PMID:25398734
Chen, Jing; Gu, Dongfeng; Huang, Jianfeng; Rao, Dabeeru C; Jaquish, Cashell E; Hixson, James E; Chen, Chung-Shiuan; Chen, Jichun; Lu, Fanghong; Hu, Dongsheng; Rice, Treva; Kelly, Tanika N; Hamm, L Lee; Whelton, Paul K; He, Jiang
2009-03-07
Since insulin resistance is thought to be the underlying mechanism for metabolic syndrome, affected individuals might be sensitive to a dietary sodium intervention. We aimed to examine the association between metabolic syndrome and salt sensitivity of blood pressure. 1906 Chinese participants without diabetes, aged 16 years or more, were selected to receive a low-sodium diet (51.3 mmol per day) for 7 days followed by a high-sodium diet (307.8 mmol per day) for an additional 7 days. Participants were excluded from the analysis if metabolic risk factor information was missing or if they did not complete their dietary interventions. Blood pressure was measured at baseline and on days 2, 5, 6, and 7 of each intervention. Metabolic syndrome was defined as the presence of three or more of: abdominal obesity, raised blood pressure, high triglyceride concentration, low HDL cholesterol, or high glucose. High salt sensitivity was defined as a decrease in mean arterial blood pressure of more than 5 mm Hg during low-sodium or an increase of more than 5 mm Hg during high-sodium intervention. This study is registered with ClinicalTrials.gov, number NCT00721721. Of the 1881 participants with information regarding metabolic syndrome, 283 had metabolic syndrome. 1853 participants completed the low-sodium diet and 1845 completed the high-sodium diet. Multivariable-adjusted mean changes in blood pressure were significantly greater in participants with metabolic syndrome than in those without on both low-sodium and high-sodium diets (p<0.0001 for all comparisons). Additionally, risk of salt sensitivity rose with increasing numbers of risk factors for metabolic syndrome. Compared with those with no risk factors, participants with four or five had a 3.54-fold increased odds (95% CI 2.05-6.11) of high salt-sensitivity during the low-sodium and a 3.13-fold increased odds (1.80-5.43) of high salt-sensitivity during the high-sodium intervention. These results suggest that metabolic syndrome enhances blood pressure response to sodium intake. Reduction in sodium intake could be an especially important component in reducing blood pressure in patients with multiple risk factors for metabolic syndrome.
Massaro, Laura; Barbati, Cristiana; Vomero, Marta; Ceccarelli, Fulvia; Spinelli, Francesca Romana; Riccieri, Valeria; Spagnoli, Alessandra; Alessandri, Cristiano; Desideri, Giovambattista; Conti, Fabrizio
2017-01-01
We aimed at investigating whether the frequency and function of T helper 17 (Th17) and regulatory T cells (Treg) are affected by a restriction of dietary sodium intake in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We enrolled RA and SLE patients not receiving drugs known to increase urinary sodium excretion. Patients underwent a dietary regimen starting with a restricted daily sodium intake followed by a normal-sodium daily intake. The timepoints were identified at baseline (T0), after 3 weeks of low-sodium dietary regimen (T3), after 2 weeks of normal-sodium dietary regimen (T5). On these visits, we measured the 24-hour urinary sodium excretion, the frequency and function of Th17 and Treg cells in the peripheral blood, the serum levels of cytokines. Analysis of urinary sodium excretion confirmed adherence to the dietary regimen. In RA patients, a trend toward a reduction in the frequencies of Th17 cells over the low-sodium dietary regimen followed by an increase at T5 was observed, while Treg cells exhibited the opposite trend. SLE patients showed a progressive reduction in the percentage of Th17 cells that reached a significance at T5 compared to T0 (p = 0.01) and an increase in the percentage of Treg cells following the low-sodium dietary regimen at both T1 and T3 compared to T0 (p = 0.04 and p = 0.02, respectively). No significant apoptosis or proliferation modulation was found. In RA patients, we found a reduction at T5 compared to T0 in serum levels of both TGFβ (p = 0.0016) and IL-9 (p = 0.0007); serum IL-9 levels were also reduced in SLE patients at T5 with respect to T0 (p = 0.03). This is the first study investigating the effects of dietary sodium intake on adaptive immunity. Based on the results, we hypothesize that a restricted sodium dietary intake may dampen the inflammatory response in RA and SLE patients. PMID:28877244
Scrivo, Rossana; Massaro, Laura; Barbati, Cristiana; Vomero, Marta; Ceccarelli, Fulvia; Spinelli, Francesca Romana; Riccieri, Valeria; Spagnoli, Alessandra; Alessandri, Cristiano; Desideri, Giovambattista; Conti, Fabrizio; Valesini, Guido
2017-01-01
We aimed at investigating whether the frequency and function of T helper 17 (Th17) and regulatory T cells (Treg) are affected by a restriction of dietary sodium intake in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We enrolled RA and SLE patients not receiving drugs known to increase urinary sodium excretion. Patients underwent a dietary regimen starting with a restricted daily sodium intake followed by a normal-sodium daily intake. The timepoints were identified at baseline (T0), after 3 weeks of low-sodium dietary regimen (T3), after 2 weeks of normal-sodium dietary regimen (T5). On these visits, we measured the 24-hour urinary sodium excretion, the frequency and function of Th17 and Treg cells in the peripheral blood, the serum levels of cytokines. Analysis of urinary sodium excretion confirmed adherence to the dietary regimen. In RA patients, a trend toward a reduction in the frequencies of Th17 cells over the low-sodium dietary regimen followed by an increase at T5 was observed, while Treg cells exhibited the opposite trend. SLE patients showed a progressive reduction in the percentage of Th17 cells that reached a significance at T5 compared to T0 (p = 0.01) and an increase in the percentage of Treg cells following the low-sodium dietary regimen at both T1 and T3 compared to T0 (p = 0.04 and p = 0.02, respectively). No significant apoptosis or proliferation modulation was found. In RA patients, we found a reduction at T5 compared to T0 in serum levels of both TGFβ (p = 0.0016) and IL-9 (p = 0.0007); serum IL-9 levels were also reduced in SLE patients at T5 with respect to T0 (p = 0.03). This is the first study investigating the effects of dietary sodium intake on adaptive immunity. Based on the results, we hypothesize that a restricted sodium dietary intake may dampen the inflammatory response in RA and SLE patients.
NASA Technical Reports Server (NTRS)
Machuga, David W.; Kane, Timothy J.; Wheeler, Timothy F.; Croskey, Charles L.; Mathews, John D.; Mitchell, John D.
1997-01-01
The objectives, design and results of the sensor systems for the combined sporadic structures and layers (CSSL) payload are analyzed. The CSSL main objectives were to: validate current models of mesospheric sodium chemistry; explore the relationship between turbulence and Na fluctuations; and to explore the relationship between high latitude electric fields and the formation of Na anomalies.
Current methodology to assess bioequivalence of levothyroxine sodium products is inadequate.
Blakesley, Vicky A
2005-03-30
Levothyroxine sodium is a drug with a narrow therapeutic index for which an individual patient must have his or her dose carefully titrated to achieve the necessary therapeutic effect. In addition, exogenous levothyroxine cannot be distinguished from the endogenously produced hormone. Since 2004, generic formulations have been approved for the most frequently prescribed brands of levothyroxine sodium. This review examines the methodology and statistical acceptance criteria and summarizes findings of a previously published relative bioavailability study that brings into question the use of standard criteria to assess bioequivalence of levothyroxine sodium. The key findings reviewed were the following: (1) in the absence of baseline correction for endogenous T4 levels, products that differed by as much as 25% to 33% would be declared bioequivalent; (2) the use of baseline correction reduced the likelihood of declaring products bioequivalent when they actually differed by 25% to 33%; (3) even with baseline correction, products that differed by 12.5% would be declared bioequivalent; and (4) there was evidence of significant carryover from one dosing period to the next even with washout periods of up to 53 days. In conclusion, the current recommended methodology in the United States to assess bioequivalence for levothyroxine sodium products is inadequate to differentiate products that differ by 12.5%, a clinically relevant difference. Recommendations are made for modifications to the criteria that could improve the likelihood that products that differ by a clinically significant amount in their bioavailability would not be accepted as bioequivalent.
Choi, Kyung-Hwa; Park, Myung-Sook; Kim, Jung Ae; Lim, Ji-Ae
2015-12-08
In this study, we evaluated the associations of smoking and alcohol intake, both independently and collectively, with sodium intake in Korean men. Subjects (6340 men) were from the fifth Korean National Health Examination Survey (2010-2012). Smoking-related factors included smoking status, urinary cotinine level, and pack-years of smoking. Food intake was assessed using a 24-h recall. The odds of excessive sodium intake were estimated using survey logistic regression analysis. The smoking rate was 44.1%. The geometric mean of the urinary cotinine level was 0.05 µg/mL, and the median (min-max) pack-years of smoking was 13.2 (0-180). When adjusted for related factors, the odds (95% confidence interval) of excessive sodium intake were 1.54 (1.00, 2.37), 1.55 (1.23, 1.94), 1.44 (1.07, 1.95), and 1.37 (1.11, 1.68) times higher in the group exposed to smoking and drinking than in the group that never smoked nor drank, the group that never smoked and drank <5 times per month, the group that did not currently smoke and never drank, and the group that did not currently smoke or drink <5 times per month, respectively. There was an interaction effect between smoking and alcohol intake (p-interaction = 0.02). The results suggest that simultaneous exposure to smoking and alcohol intake is associated with increased odds of excessive sodium intake.
Choi, Kyung-Hwa; Park, Myung-Sook; Kim, Jung Ae; Lim, Ji-Ae
2015-01-01
In this study, we evaluated the associations of smoking and alcohol intake, both independently and collectively, with sodium intake in Korean men. Subjects (6340 men) were from the fifth Korean National Health Examination Survey (2010–2012). Smoking-related factors included smoking status, urinary cotinine level, and pack-years of smoking. Food intake was assessed using a 24-h recall. The odds of excessive sodium intake were estimated using survey logistic regression analysis. The smoking rate was 44.1%. The geometric mean of the urinary cotinine level was 0.05 µg/mL, and the median (min–max) pack-years of smoking was 13.2 (0–180). When adjusted for related factors, the odds (95% confidence interval) of excessive sodium intake were 1.54 (1.00, 2.37), 1.55 (1.23, 1.94), 1.44 (1.07, 1.95), and 1.37 (1.11, 1.68) times higher in the group exposed to smoking and drinking than in the group that never smoked nor drank, the group that never smoked and drank <5 times per month, the group that did not currently smoke and never drank, and the group that did not currently smoke or drink <5 times per month, respectively. There was an interaction effect between smoking and alcohol intake (p-interaction = 0.02). The results suggest that simultaneous exposure to smoking and alcohol intake is associated with increased odds of excessive sodium intake. PMID:26670236
2005-09-29
The Food and Drug Administration (FDA) is amending its regulations concerning the maximum sodium levels permitted for foods that bear the implied nutrient content claim "healthy." The agency is retaining the currently effective, less restrictive, "first-tier" sodium level requirements for all food categories, including individual foods (480 milligrams (mg)) and meals and main dishes (600 mg), and is dropping the "second-tier" (more restrictive) sodium level requirements for all food categories. Based on the comments received about technological barriers to reducing sodium in processed foods and poor sales of products that meet the second-tier sodium level, the agency has determined that requiring the more restrictive sodium levels would likely inhibit the development of new "healthy" food products and risk substantially eliminating existing "healthy" products from the marketplace. After reviewing the comments and evaluating the data from various sources, FDA has become convinced that retaining the higher first-tier sodium level requirements for all food products bearing the term "healthy" will encourage the manufacture of a greater number of products that are consistent with dietary guidelines for a variety of nutrients. The agency has also revised the regulatory text of the "healthy" regulation to clarify the scope and meaning of the regulation and to reformat the nutrient content requirements for "healthy" into a more readable set of tables, consistent with the Presidential Memorandum instructing that regulations be written in plain language.
Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique.
van Buren, Leo; Dötsch-Klerk, Mariska; Seewi, Gila; Newson, Rachel S
2016-04-21
Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106). Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day). Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.
Yu, Xiaofeng; Zhao, Lijun; Yu, Zhiping; Yu, Changzheng; Bi, Jianfei; Sun, Binglong; Cong, Haibo
2017-08-01
As a specific inhibitor of neutrophil elastase, sivelestat sodium hydrate has primarily been used in the treatment of acute lung injury caused by various factors since its approval in 2002. Sivelestat sodium hydrate also improves post-traumatic knee osteoarthritis (KOA), although its underlying mechanisms of action have yet to be elucidated. The aim of the current study was to determine if sivelestat sodium hydrate improves post-traumatic KOA through nuclear factor (NF)-κB in a rat model. Treatment with sivelestat sodium hydrate significantly inhibited the induction of structural changes and significantly increased the vertical episode count and ipsilateral static weight bearing of the joint in KOA rats (all P<0.01). Sivelestat sodium hydrate significantly inhibited tumor necrosis factor-α and interleukin-6 production, serum nitrite levels, inducible nitric oxide synthase protein expression and high mobility group box 1 (HMGB1) secretion in KOA rats compared with the model group (all P<0.01). Sivelestat sodium hydrate also significantly suppressed p50/p65 DNA binding activity and NF-κB and phosphorylated inhibitor of κB protein expression in the joints of KOA rats compared with the model group (all P<0.01). These results suggest that sivelestat sodium hydrate improves post-traumatic KOA through HMGB1 and NF-κB in rats.
Yu, Xiaofeng; Zhao, Lijun; Yu, Zhiping; Yu, Changzheng; Bi, Jianfei; Sun, Binglong; Cong, Haibo
2017-01-01
As a specific inhibitor of neutrophil elastase, sivelestat sodium hydrate has primarily been used in the treatment of acute lung injury caused by various factors since its approval in 2002. Sivelestat sodium hydrate also improves post-traumatic knee osteoarthritis (KOA), although its underlying mechanisms of action have yet to be elucidated. The aim of the current study was to determine if sivelestat sodium hydrate improves post-traumatic KOA through nuclear factor (NF)-κB in a rat model. Treatment with sivelestat sodium hydrate significantly inhibited the induction of structural changes and significantly increased the vertical episode count and ipsilateral static weight bearing of the joint in KOA rats (all P<0.01). Sivelestat sodium hydrate significantly inhibited tumor necrosis factor-α and interleukin-6 production, serum nitrite levels, inducible nitric oxide synthase protein expression and high mobility group box 1 (HMGB1) secretion in KOA rats compared with the model group (all P<0.01). Sivelestat sodium hydrate also significantly suppressed p50/p65 DNA binding activity and NF-κB and phosphorylated inhibitor of κB protein expression in the joints of KOA rats compared with the model group (all P<0.01). These results suggest that sivelestat sodium hydrate improves post-traumatic KOA through HMGB1 and NF-κB in rats. PMID:28810618
Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu
2015-08-26
Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).
Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome
Deschênes, Georges; Fila, Marc
2011-01-01
Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures. PMID:21941653
Effect of salting on back fat hydrolysis and oxidation
NASA Astrophysics Data System (ADS)
Tunieva, E. К; Nasonova, V. V.; Stanovova, I. A.; Spiridonov, К I.; Kurzova, A. A.
2017-09-01
Technological factors significantly affect the rate of hydrolytic and oxidative changes in fat. The aim of the research was to study the effect of sodium chloride on hydrolysis and oxidation of fat raw material, including the impact of thermal treatment. Back fat was minced, sodium chloride was added (in amounts of 0.0, 2.0, 3.5 or 5.0%), then it was thermally treated or not. Determination of the acid value (AV) was carried out by titration with aqueous potassium hydroxide of free fatty acids in the ether-alcohol solution of back fat; the peroxide value (PV) was based on oxidation of iodhydric acid with peroxides contained in fat followed by titration of released iodine with sodium thiosulphate. The thiobarbituric acid value (TBAV) was determined by the development of stained substances due to interaction of fat oxidation products with 2-thiobarbituric acid and measurement of color intensity using a spectrophotometer. Adding 5.0% sodium chloride to back fat led to a 30.1% decrease in AV. Addition of 2.0% sodium chloride inhibited the development of the oxidation products and led to a 17% decrease in the PV and to a 25% decrease in TBAV (p<0.05). In the presence of 5.0% sodium chloride, the secondary oxidation products significantly increased by 34.1% (p<0.05) and 24.3% (p<0.05) on days 1 and 3 of storage, respectively. Thermal treatment mitigated the effect of sodium chloride on the indicators of hydrolytic and oxidative spoilage (p>0.05). The results obtained showed an ambiguous effect of sodium chloride on the processes of fat oxidation, depending on dosage and the use of thermal treatment, justifying the necessity to develop approaches that allow reduction of the sodium chloride content in meat products that are not subjected to thermal treatment.
Reducing sodium across the board: a pilot program in Schenectady County independent restaurants.
Schuldt, June; Levings, Jessica Lee; Kahn-Marshall, Jennifer; Hunt, Glynnis; Mugavero, Kristy; Gunn, Janelle Peralez
2014-01-01
Excess sodium intake can lead to increased blood pressure. Restaurant foods contribute nearly a quarter of the sodium consumed in the American diet. The objective of the pilot project was to develop and implement in collaboration with independent restaurants a tool, the Restaurant Assessment Tool and Evaluation (RATE), to assess efforts to reduce sodium in independent restaurants and measure changes over time in food preparation categories, including menu, cooking techniques, and products. Twelve independent restaurants in Schenectady County, New York, voluntarily participated. From initial assessment to a 6-month follow-up assessment using the RATE, 11 restaurants showed improvement in the cooking category, 9 showed improvement in the menu category, and 7 showed improvement in the product category. Menu analysis conducted by the Schenectady County Health Department staff suggested that reported sodium-reduction strategies might have affected approximately 25% of the restaurant menu items. The findings from this project suggest that a facilitated assessment, such as the RATE, can provide a useful platform for independent restaurant owners and public health practitioners to discuss and encourage sodium reduction. The RATE also provides opportunities to build and strengthen relationships between public health care practitioners and independent restaurant owners, which may help sustain the positive changes made.
Shea, Michael E; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca
2013-10-25
The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).
Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca
2013-01-01
The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824
Sepúlveda, Ignacio; Barrientos, Herna; Mahn, Andrea; Moenne, Alejandra
2013-05-07
The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, N.; Lorcet, H.; Beauchamp, F.
2012-07-01
Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, amore » functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)« less
Summary of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.
2001-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Design of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.
2003-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Controlling Blown Pack Spoilage Using Anti-Microbial Packaging
Reid, Rachael; Tyuftin, Andrey A.; Kerry, Joe P.; Whyte, Paul; Bolton, Declan
2017-01-01
Active (anti-microbial) packaging was prepared using three different formulations; Auranta FV; Inbac-MDA and sodium octanoate at two concentrations (2.5 and 3.5 times their minimum inhibitory concentration (MIC, the lowest concentration that will inhibit the visible growth of the organisms) against Clostridium estertheticum, DSMZ 8809). Inoculated beef samples were packaged using the active packaging and monitored for 100 days storage at 2 °C for blown pack spoilage. The time to the onset of blown pack spoilage was significantly (p < 0.01) increased using Auranta FV and sodium octanoate (caprylic acid sodium salt) at both concentrations. Moreover, sodium octanoate packs had significantly (p < 0.01) delayed blown pack spoilage as compared to Auranta FV. It was therefore concluded that Auranta FV or sodium octanoate, incorporated into the packaging materials used for vacuum packaged beef, would inhibit blown pack spoilage and in the case of the latter, well beyond the 42 days storage period currently required for beef primals. PMID:28805679
Controlling Blown Pack Spoilage Using Anti-Microbial Packaging.
Reid, Rachael; Bolton, Declan; Tiuftin, Andrey A; Kerry, Joe P; Fanning, Séamus; Whyte, Paul
2017-08-12
Active (anti-microbial) packaging was prepared using three different formulations; Auranta FV; Inbac-MDA and sodium octanoate at two concentrations (2.5 and 3.5 times their minimum inhibitory concentration (MIC, the lowest concentration that will inhibit the visible growth of the organisms) against Clostridium estertheticum , DSMZ 8809). Inoculated beef samples were packaged using the active packaging and monitored for 100 days storage at 2 °C for blown pack spoilage. The time to the onset of blown pack spoilage was significantly ( p < 0.01) increased using Auranta FV and sodium octanoate (caprylic acid sodium salt) at both concentrations. Moreover, sodium octanoate packs had significantly ( p < 0.01) delayed blown pack spoilage as compared to Auranta FV. It was therefore concluded that Auranta FV or sodium octanoate, incorporated into the packaging materials used for vacuum packaged beef, would inhibit blown pack spoilage and in the case of the latter, well beyond the 42 days storage period currently required for beef primals.
Compressed sodium chloride as a fast-acting antimicrobial surface: results of a pilot study.
Whitlock, B D; Smith, S W
2016-10-01
Antimicrobial surfaces are currently being studied as an aid to reduce transmission of pathogens leading to healthcare-associated infections (HAIs). Among the most harmful and costly pathogens that cause HAIs is meticillin-resistant Staphylococcus aureus (MRSA). Currently available and previously investigated antimicrobial surface technologies that are effective against MRSA (e.g. copper alloy surfaces) take 30min to several hours to achieve significant reduction. This article presents a new antimicrobial surface technology made of compressed sodium chloride that reduces MRSA 20-30 times faster than copper alloy surfaces. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium
NASA Astrophysics Data System (ADS)
Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.
1983-09-01
The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.
Experiments on Turbulent Modifications to Ohm's Law in the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Goldwin, J.; O'Connell, R.; Kendrick, R.; Bastian, N.; Forest, C. B.
1998-11-01
Theories of MHD turbulence predict the existence of an anomalous resistivity and field-aligned current generation: j = β nabla × B + α B. The dynamo experiment being built at the University of Wisconsin-Madison is well suited for quantifying the turbulent transport coefficients α and β. The experiment is a spherical volume of liquid sodium with helical flows driven by propellers and high Reynolds number (Re ≈ 10^7), making it well suited for these studies. Two experiments are proposed: (1) A Helmholtz coil will produce a magnetic field in the z-direction, and the resulting toroidal field will be measured for the anomalous resistivity-the β-effect and (2) A toroidal magnetic field will be applied to the sphere through currents in a center column, and the induced toroidal current will be measured with a Rogowski coil-the α-effect. Complete measurements of turbulent velocity fields (including the turbulent helicity density) are being made in a dimensionally similar water experiment (water and sodium have the same viscosity and mass density) such that the magnitude of the α and β values can be estimated for the sodium experiment.
Mechanism and molecular basis for the sodium channel subtype specificity of µ-conopeptide CnIIIC
Markgraf, René; Leipold, Enrico; Schirmeyer, Jana; Paolini-Bertrand, Marianne; Hartley, Oliver; Heinemann, Stefan H
2012-01-01
BACKGROUND AND PURPOSE Voltage-gated sodium channels (NaV channels) are key players in the generation and propagation of action potentials, and selective blockade of these channels is a promising strategy for clinically useful suppression of electrical activity. The conotoxin µ-CnIIIC from the cone snail Conus consors exhibits myorelaxing activity in rodents through specific blockade of skeletal muscle (NaV1.4) NaV channels. EXPERIMENTAL APPROACH We investigated the activity of µ-CnIIIC on human NaV channels and characterized its inhibitory mechanism, as well as the molecular basis, for its channel specificity. KEY RESULTS Similar to rat paralogs, human NaV1.4 and NaV1.2 were potently blocked by µ-CnIIIC, the sensitivity of NaV1.7 was intermediate, and NaV1.5 and NaV1.8 were insensitive. Half-channel chimeras revealed that determinants for the insensitivity of NaV1.8 must reside in both the first and second halves of the channel, while those for NaV1.5 are restricted to domains I and II. Furthermore, domain I pore loop affected the total block and therefore harbours the major determinants for the subtype specificity. Domain II pore loop only affected the kinetics of toxin binding and dissociation. Blockade by µ-CnIIIC of NaV1.4 was virtually irreversible but left a residual current of about 5%, reflecting a ‘leaky’ block; therefore, Na+ ions still passed through µ-CnIIIC-occupied NaV1.4 to some extent. TTX was excluded from this binding site but was trapped inside the pore by µ-CnIIIC. CONCLUSION AND IMPLICATIONS Of clinical significance, µ-CnIIIC is a potent and persistent blocker of human skeletal muscle NaV1.4 that does not affect activity of cardiac NaV1.5. PMID:22537004
Dussault, Dominic; Vu, Khanh Dang; Lacroix, Monique
2016-02-01
The objective of this study was to evaluate the impact of seven independent factors consisting of sodium nitrite, pH, sodium chloride, sodium acetate, sodium lactate syrup, calcium propionate and a blend of nisin and hop alpha acids on the growth rate of Listeria monocytogenes in ham as a model of ready-to-eat (RTE) meat products. A central composite consisted of seven factors mentioned above was designed and the response surface methodology was applied for creating a mathematic model to predict the growth rate of L. monocytogenes in RTE meat products. Six parameters showed a significant (P ≤ 0.1) influence on the growth rate of L. monocytogenes. Only the blend of nisin and hop alpha acids did not show any significant effect (P > 0.1) in the concentrations used in this study. Increasing concentration of sodium chloride, sodium nitrite, sodium acetate, potassium lactate and calcium propionate in meat reduced bacterial growth rate while increasing pH in meat increased the growth rate of L. monocytogenes. The current mathematical equation will be an important tool in order to reduce the required number of challenge studies performed in order to ensure a safe food product. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sodium intake reduction efforts in Lebanon
Almedawar, Mohamad M.; Nasreddine, Lara; Olabi, Ammar; Hamade, Haya; Awad, Elie; Toufeili, Imad; Arnaout, Samir
2015-01-01
Sodium intake reduction efforts in Lebanon are quite recent and have just started to take effect on the national level. Starting out from an academic institution, the Lebanese Action on Sodium and Health (LASH) campaign was established to counter the increasing prevalence of hypertension and associated adverse health effects. The campaign’s strategy was based on four pillars: research, health communication, advocacy, and monitoring. The LASH group set out with determining: baseline sodium intake of the population, main sources of sodium intake, and the knowledge, attitudes, and behaviors (KAB) of the population as a situation analysis that prompts for action. This gave LASH tangible evidence of the magnitude of the problem and the need for the government, the food industry, and the consumers, to be mobilized to take part in devising a solution. Currently, Lebanon is at a stage of technically working to reduce the sodium content in the major sources of sodium, namely local bread and bread-like products. The next steps will include implementation of a plan for monitoring industry compliance, while studying other food targets, including dairy products and processed meat. Meanwhile, the health communication plan is ongoing and the Salt Awareness Week is celebrated every year with media appearances of LASH researchers to raise the issue to the public eye. PMID:26090328
Dietary Sodium and Other Nutrient Intakes among Patients Undergoing Hemodialysis in New Zealand.
Xie, Zhengxiu; McLean, Rachael; Marshall, Mark
2018-04-18
This study describes baseline intakes of sodium and other nutrients in a multi-ethnic sample of hemodialysis patients in New Zealand participating in the SoLID Trial between May/2013 to May/2016. Baseline 3-day weighed food record collections were analyzed using Foodworks 8 Professional food composition database, supplemented by other sources of nutrient information. Intakes of dietary sodium and other nutrients were compared with relevant guidelines and clinical recommendations. Eighty-five participants completed a 3-day weighed food record. The mean (SD) sodium intake was 2502 (957) mg/day at and more than half of the participants exceeded recommended intake levels. Sodium intake was positively associated with energy intake. Only 5% of participants met the recommended calorie density; nine percent of participants ate the recommended minimum of 1.2 g/kg of protein per day; 68% of participants were consuming inadequate fiber at baseline. A high proportion of dialysis patients in SoLID Trial did not meet current renal-specific dietary recommendations. The data show excess sodium intake. It is also evident that there was poor adherence to dietary guidelines for a range of other nutrients. A total diet approach is needed to lower sodium intake and improve total diet quality among hemodialysis patients in New Zealand.
Dietary Sodium and Other Nutrient Intakes among Patients Undergoing Hemodialysis in New Zealand
Xie, Zhengxiu; Marshall, Mark
2018-01-01
This study describes baseline intakes of sodium and other nutrients in a multi-ethnic sample of hemodialysis patients in New Zealand participating in the SoLID Trial between May/2013 to May/2016. Baseline 3-day weighed food record collections were analyzed using Foodworks 8 Professional food composition database, supplemented by other sources of nutrient information. Intakes of dietary sodium and other nutrients were compared with relevant guidelines and clinical recommendations. Eighty-five participants completed a 3-day weighed food record. The mean (SD) sodium intake was 2502 (957) mg/day at and more than half of the participants exceeded recommended intake levels. Sodium intake was positively associated with energy intake. Only 5% of participants met the recommended calorie density; nine percent of participants ate the recommended minimum of 1.2 g/kg of protein per day; 68% of participants were consuming inadequate fiber at baseline. A high proportion of dialysis patients in SoLID Trial did not meet current renal-specific dietary recommendations. The data show excess sodium intake. It is also evident that there was poor adherence to dietary guidelines for a range of other nutrients. A total diet approach is needed to lower sodium intake and improve total diet quality among hemodialysis patients in New Zealand. PMID:29670030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkan, A.; Hunt, T.K.
1998-07-01
Upcoming designs for AMTEC modules capable of delivering as much as 150 watts will see the introduction of higher voltages into sodium vapor at pressures spanning a wide range. In theory, with any value for two out of three parameters: voltage, pressure, and electrode geometry, a value exists for the third parameter where DC electrical breakdown can occur; due to its low ionization energy, sodium vapor may be particularly susceptible to breakdown. This destructive event is not desirable in AMTEC modules, and sets a limit on the maximum voltage that can be built-up within any single enclosed module. An experimentalmore » cell was fabricated with representative electrode configurations and a separately heated sodium reservoir to test conditions typically expected during start-up, operation, and shutdown of AMTEC cells. Breakdown voltages were investigated in both sodium vapor and, for comparison, argon gas. The dependence on electrode material and polarity was also investigated. Additional information about leakage currents and the insulating properties of {alpha}-alumina in the presence of sodium vapor was collected, revealing a reversible tendency for conductive sodium films to build up under certain conditions, electrically shorting-out previously isolated components. In conclusion, safe operating limits on voltages, temperatures, and pressures are discussed.« less
Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S
2011-10-28
Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011
Amigó-Correig, Marta; Barceló-Batllori, Sílvia; Soria, Guadalupe; Krezymon, Alice; Benani, Alexandre; Pénicaud, Luc; Tudela, Raúl; Planas, Anna Maria; Fernández, Eduardo
2012-01-01
Objective This study aims at exploring the effects of sodium tungstate treatment on hypothalamic plasticity, which is known to have an important role in the control of energy metabolism. Methods Adult lean and high-fat diet-induced obese mice were orally treated with sodium tungstate. Arcuate and paraventricular nuclei and lateral hypothalamus were separated and subjected to proteomic analysis by DIGE and mass spectrometry. Immunohistochemistry and in vivo magnetic resonance imaging were also performed. Results Sodium tungstate treatment reduced body weight gain, food intake, and blood glucose and triglyceride levels. These effects were associated with transcriptional and functional changes in the hypothalamus. Proteomic analysis revealed that sodium tungstate modified the expression levels of proteins involved in cell morphology, axonal growth, and tissue remodeling, such as actin, CRMP2 and neurofilaments, and of proteins related to energy metabolism. Moreover, immunohistochemistry studies confirmed results for some targets and further revealed tungstate-dependent regulation of SNAP25 and HPC-1 proteins, suggesting an effect on synaptogenesis as well. Functional test for cell activity based on c-fos-positive cell counting also suggested that sodium tungstate modified hypothalamic basal activity. Finally, in vivo magnetic resonance imaging showed that tungstate treatment can affect neuronal organization in the hypothalamus. Conclusions Altogether, these results suggest that sodium tungstate regulates proteins involved in axonal and glial plasticity. The fact that sodium tungstate could modulate hypothalamic plasticity and networks in adulthood makes it a possible and interesting therapeutic strategy not only for obesity management, but also for other neurodegenerative illnesses like Alzheimer’s disease. PMID:22802935
Alternative foaming agents for topical treatment of ulcerative colitis.
Asama, Martin; Hall, Alex; Qi, Yijun; Moreau, Branden; Walthier, Heidi; Schaschwary, Matthew; Bristow, Blaine; Wang, Qun
2018-05-01
Approximately 907,000 Americans currently suffer from ulcerative colitis, a condition characterized by inflammation of the large intestine or rectum. Treatment of this disease often includes anti-inflammatory medication or immunosuppressants. Here foams are an attractive delivery platform, offering relatively high bioavailability, low systemic exposure, and improved patient comfort. However, the surfactants that generate these foams may adversely affect the diseased mucosa. Therefore, this project evaluated two alternative surfactants for use in topical drug delivery platforms: sodium caseinate and l-α-phosphatidylcholine. Both were compared to the biocompatible surfactant Pluronic ® F-127 using stability and density tests, and biocompatibility tests performed on mini-guts. Sodium caseinate foams were less stable but denser than Pluronic ® foams; however, they exhibited an unexpectedly low shelf-life. l-α-phosphatidylcholine was an unsuccessful primary foaming agent owing to poor foamability at low concentrations. Mini-gut growth rates were not significantly altered by surfactants, while morphology and an MTT assay identified Pluronic ® as the most biocompatible surfactant at higher concentrations. These results clarify the possible challenges that the tested surfactants may present in topical delivery platforms and show the relevance of permeability to tissue-surfactant interaction tests. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1448-1456, 2018. © 2017 Wiley Periodicals, Inc.
Molecular Dynamics Study of Surfactant Self-Assembly on Single-Walled Carbon Nanotubes (SWCNTs)
NASA Astrophysics Data System (ADS)
Phelan, Frederick, Jr.
2015-03-01
Single-walled carbon nanotubes (SWNCTs) are materials with structural, electronic and optical properties that make them attractive for a myriad of advanced technology applications. Increased adaptation of these materials requires advancement in separation techniques which enables them to be sorted with increased reliability into monodisperse fractions with respect to length and chirality. Most separation techniques currently in use rely on dispersion of tubes in aqueous solution using surfactants. This results in a colloidal mixture in which tubes are packed and individually dispersed in a surfactant shell. Understanding the structure and properties of the SWCNT-surfactant complex at the molecular level, and how this is affected by chirality, will help to improve separations processes. In this work, we study the structure and properties of SWCNT-surfactant colloidal complexes using all-atom molecular dynamics. Self-assembled structures are computed for a number of combinations SWCNT/surfactant, and also, co-surfactant mixtures for the bile salt surfactant sodium deoxycholate (DOC) and the anionic surfactant sodium dodecyl sulfate (SDS). From the radial distribution function we estimate the size of the SWCNT hydration layer, and use that information to compute the buoyant densities of unfilled tubes for a number of concentrations. Estimates of the change in hydrodynamic radius with increased surfactant packing and the binding energies of the individual surfactants are also obtained.
Song, Ji-Hoon; Lee, Hae-Rim; Shim, Soon-Mi
2017-01-01
The objectives of the current study were to determine S-methyl-L-methionine (SMM) from various Brassicaceae family vegetables by using validated analytical method and to characterize the intestinal transport mechanism of SMM by the Caco-2 cells. The SMM is well known to provide therapeutic activity in peptic ulcers. The amount of SMM from various Brassicaceae family vegetables ranged from 89.08 ± 1.68 μg/g to 535.98 ± 4.85 μg/g of dry weight by using validated ultra-performance liquid chromatography-electrospray ionization-mass spectrometry method. For elucidating intestinal transport mechanism, the cells were incubated with or without transport inhibitors, energy source, or a metabolic inhibitor. Phloridzin and verapamil as inhibitors of sodium glucose transport protein (SGLT1) and P-glycoprotein, respectively, were not responsible for cellular uptake of SMM. Glucose and sodium azide were not affected by the cellular accumulation of SMM. The efflux ratio of SMM was 0.26, implying that it is not effluxed through Caco-2 cells. The apparent coefficient permeability (P app ) of SMM was 4.69 × 10 -5 cm/s, indicating that it will show good oral absorption in in vivo. © 2016 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.R.
2002-06-07
Personnel performed engineering-scale tests at the Filtration Research Engineering Demonstration (FRED) to determine crossflow filter performance with a 5.6 M sodium solution containing varying concentrations of sludge and sodium permanganate. The work represents another in a series of collaborative efforts between the University of South Carolina and the Savannah River Technology Center in support of the process development efforts for the Savannah River Site. The current tests investigated filter performance with slurry containing simulated Tank 40H Sludge and sodium permanganate at concentrations between 0.070 weight percent and 3.04 weight percent insoluble solids.
Dense proton injection into phosphate glasses using corona discharge treatment
NASA Astrophysics Data System (ADS)
Kinoshita, Takuya; Miyazaki, Atsushi; Kawaguchi, Keiga; Sakai, Daisuke; Yamaguchi, Takuya; Omata, Takahisa; Ishiyama, Tomohiro; Fujioka, Masaya; Kaiju, Hideo; Nishii, Junji
2018-01-01
Sodium ions in 25NaO1/2-6LaO3/2-6GeO2-63PO5/2 (mol%) glasses were substituted with protons using corona discharge treatment (CDT) under a H2 atmosphere. The substitution of sodium ion to proton proceeded from the anode side to the cathode side with constant current flow during the CDT. A crystalline free and transparent glass plate of 0.3 mm thickness was obtained after CDT for 96 h. The maximum decrease rate from sodium ion to proton was 78 ± 10%. The proton conductivity of 8.5 × 10-4 S/cm was attained at 400 °C.
Sodium valproate induced gingival enlargement with pre-existing chronic periodontitis.
Joshipura, Vaibhavi
2012-04-01
Gingival enlargement is a common clinical feature of gingival and periodontal diseases. Currently, more than 20 prescription medications are associated with gingival enlargement. Although the mechanisms of action may be different, the clinical and microscopic appearance of drug-induced gingival enlargement is similar with any drug. Gingival enlargement produces esthetic changes, and clinical symptoms including pain, tenderness, bleeding, speech disturbances, abnormal tooth movement, dental occlusion problems, enhancement of caries development and periodontal disorders. Sodium valproate is considered to produce gingival enlargement, but very rarely. This case report features sodium valproate induced gingival enlargement in a patient with pre-existing chronic periodontitis, who came to the Dental Department, Chinmaya Mission Hospital, Bangalore. The case is special as the patient did not develop the enlargement in spite of taking phenytoin for 1 year and developed enlargement with sodium valproate within 6 months.
Molecular Mechanism of Action and Selectivity of Sodium Channel Blocker Insecticides
Silver, Kristopher; Dong, Ke; Zhorov, Boris S.
2017-01-01
Sodium channel blocker insecticides (SCBIs) are a relatively new class of insecticides that are represented by two commercially registered compounds, indoxacarb and metaflumizone. SCBIs, like pyrethroids and DDT, target voltage-gated sodium channels (VGSCs) to intoxicate insects. In contrast to pyrethroids, however, SCBIs inhibit VGSCs at a distinct receptor site that overlaps those of therapeutic inhibitors of sodium channels, such as local anesthetics, anticonvulsants and antiarrhythmics. This review will recount the development of the SCBI insecticide class from its roots as chitin synthesis inhibitors, discuss the symptoms of poisoning and evidence supporting inhibition of VGSCs as their mechanism of action, describe the current model for SCBI-induced inhibition of VGSCs, present a model for the receptor for SCBIs on VGSCs, and highlight differences between data collected from mammalian and insect experimental models. PMID:27993108