Science.gov

Sample records for affects soil water

  1. The chemistry of salt-affected soils and waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  2. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  3. Using Gypsum to Affect Soil Erosion Processes and Water Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A driving force in soil erosion is the low electrolyte content of rain water. Various electrolyte sources have proven useful in serving as electrolyte sources such as phosphogypsum, lime and various salts, however, each has other potential problems. We performed a number of studies on low cost gypsu...

  4. Do soil textural properties affect water use efficiency?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil-Plant-Environment Research (SPER) facility at USDA-ARS, Bushland, TX, was conceived by Terry A. Howell, Sr., and developed by the evapotranspiration (ET) research scientists at Bushland. It consists of a rain shelter and 48 weighing lysimeters containing monolithic soil cores of four soil ...

  5. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  6. COSMOS soil water sensing affected by crop biomass and water status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensing methods are widely used to characterize water content in the root zone and below, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, evaluated: a) the Cos...

  7. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  8. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  9. Effects of rock fragments on water dynamics in a fire-affected soil

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; García-Moreno, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    Rock fragments (RF) are common in the surface of Mediterranean semiarid soils, and have important effects on the soil physical (bulk density and porosity) and hydrological processes (infiltration, evaporation, splash erosion and runoff generation) (Poesen and Lavee, 1994; Rieke-Zapp et al., 2007). In some cases, RFs in Mediterranean areas have been shown to protect bare soils from erosion risk (Cerdà, 2001; Martínez-Zavala, Jordán, 2008; Zavala et al., 2010). Some of these effects are much more relevant when vegetation cover is low or has been reduced after land use change or other causes, as forest fires. Although very few studies exist, the interest on the hydrological effects of RFs in burned areas is increasing recently. After a forest fire, RFs may contribute significantly to soil recovery. In this research we have studied the effect of surface and embedded RFs on soil water control, infiltration and evaporation in calcareous fire-affected soils from a Mediterranean area (SW Spain). For this study, we selected an area with soils derived from limestone under holm oak forest, recently affected by a moderate severity forest fire. The proportion of RF cover showed a significant positive relation with soil water-holding capacity and infiltration rates, although infiltration rate reduced significantly when RF cover increased above a certain threshold. Soil evaporation rate decreased with increasing volumetric content of RFs and became stable with RF contents approximately above 30%. Evaporation also decreased with increasing RF cover. When RF cover increased above 50%, no significant differences were observed between burned and control vegetated plots. REFERENCES Poesen, J., Lavee, H. 1994. Rock fragments in top soils: significance and processes. Catena Supplement 23, 1-28. Cerdà, A. 2001. Effect of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science 52, 59-68. DOI: 10.1046/j.1365-2389.2001.00354.x. Rieke

  10. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i < 0.02 cm3 cm-3) to near saturation. In the field and in the laboratory replicate measurements were made of ash, reference soils, soils unaffected by fire, and fire-affected soils. Each has a different degrees of water repellency that influences Kf and S(??i). Values of Kf ranged from 4.5 ?? 10-3 to 53 ?? 10-3 cm s-1 for ash; from 0.93 ?? 10-3 to 130 ?? 10-3 cm s-1 for reference soils; and from 0.86 ?? 10-3 to 3.0 ?? 10-3 cm s-1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(??i) could be represented by an empirical non-linear function of ??i with a sorptivity maximum of 0.18-0.20 cm s-0.5, between 0.03 and 0.08 cm3 cm-3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(??i) for rainfall-runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to

  11. The Phosphorus Transfer From Soil To Water As Affected By The Agronomic Management

    NASA Astrophysics Data System (ADS)

    Borda, Teresa; Celi, Luisella; Buenemann, Else; Oberson, Astrid; Frossard, Emmanuel; Barberis, Elisabetta

    2010-05-01

    Fertilizer management, in the long term, can affect the amount of P that can be in excess compared to the cultural needs and modify the soil P buffer capacity. These factors can led to P losses from soil to waters, especially via runoff and as particulate P (90% of TP). Soil texture and the amount of organic matter are the main key factors to estimate soil disperdibility but, in turn, the P amount and its forms can also have a dispersive effect and can influence P enrichment of particles potentially lost during runoff processes and its contribution to water eutrophication. The environmental impact due to the P transfer depends on P speciation, because only the inorganic and soluble P forms, or the most degradable organic P ones, are bioavailable. To evaluate the effect of agronomic practices on P losses and on its bioavailability in the long term, soil samples from a middle term experiment have been selected. The field experiment is based on maize cropping systems applying different fertilizers, mineral, as NPK and PK, and organic, as manure (M) and slurry (S) since 1992. To obtain the suspended sediment from soil, a simple water dispersion test was applied (Withers et al., 2007) and the different P forms were characterized. On soil and on suspended sediment the Hedley fractionation (Hedley et al., 1982) was used to determine the P forms, their potential lability and the effect on soil disperdibility. The adoption of isotopic techniques was considered to compare different methods and to estimate the risk of P losses in the long-term. Dispersion test, to simulate the rainy event and the irrigation practices effect on soil, showed that the amount of total suspended sediment lost (TSS) was lower in the organic fertilized plots, while the particulate P bounded to sediment (PP/TSS) was higher than in the mineral fertilized plots. Indeed the complexive effect of organic fertilization, increasing organic matter content and Olsen P, was reflected in a lower soil

  12. Use of advanced information technologies for water conservation on salt-affected soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation on arid and semi-arid soils must be done with constant and careful consideration of the distribution of salinity across the landscape and through the soil profile. Soil salinity can be managed through leaching and the application of various soil amendments. The field-scale manag...

  13. On the structural factors of soil humic matter related to soil water repellence in fire-affected soils

    NASA Astrophysics Data System (ADS)

    Almendros, G.; González-Vila, F. J.; González-Pérez, J. A.; Knicker, H.; De la Rosa, J. M.; Dettweiler, C.; Hernández, Z.

    2012-04-01

    In order to elucidate the impact of forest fires on physical and chemical properties of the soils as well as on the chemical composition of the soil organic matter, samples from two Mediterranean soils with contrasted characteristics and vegetation (O horizon, Lithic Leptosols under Quercus ilex and Pinus pinaster) and one agricultural soil (Ap horizon, Luvisol) were heated at 350 °C in laboratory conditions for three successive steps up to 600 s. The C- and N-depletion in the course of the heating showed small changes up to an oxidation time of 300 s. On the other side, and after 600 s, considerable C-losses (between 21% in the Luvisol and 50% in the Leptosols) were observed. The relatively low N-depletion ca. 4% (Luvisol) and 21% (Leptosol under pine) suggested preferential loss of C and the subsequent relative enrichment of nitrogen. Paralleling the progressive depletion of organic matter, the Leptosols showed a significant increase of both pH and electrical conductivity. The former change paralleled the rapid loss of carboxyl groups, whereas the latter point to the relative enrichment of ash with a bearing on the concentration of inorganic ions, which could be considered a positive effect for the post-fire vegetation. The quantitative and qualitative analyses by solid-state 13C NMR spectra of the humic fractions in the samples subjected to successive heating times indicate significant concentration of aromatic structures newly-formed in the course of the dehydration and cyclization of carbohydrates (accumulation of black carbon-type polycyclic aromatic structures), and probably lipids and peptides. The early decarboxylation, in addition to the depletion of O-alkyl hydrophilic constituents and further accumulation of secondary aromatic structures resulted in the dramatic increase in the soil water drop penetration time. It was confirmed that this enhancement of the soil hydrophobicity is not related to an increased concentration of soil free lipid, but is

  14. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    PubMed

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  15. Water treatment residuals and biosolids co-applications affect phosphatases in a semi-arid rangeland soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids and water treatment residuals (WTR) land co-application has not been extensively studied, but may be beneficial by sorbing excess biosolids-borne or soil P onto WTR, reducing the likelihood of off-site movement. Reduction of excess soil P may affect the role of specific P-cleaving enzymes...

  16. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  17. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  18. Factors affecting soil cohesion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  19. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention.

  20. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration.

  1. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  2. Soil water and transpirable soil water fraction variability within vineyards of the Penedès DO (NE Spain) affected by management practices

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria

    2015-04-01

    This work investigated the variability in soil water recorded within the vineyard plots related to soil properties and management practices and its influence on the transpirable sol water fraction. The study was carried out in vineyards in the Penedès Designation of Origin, planted with Chardonnay, with different disturbance degree and with compost treated and untreated areas within the plots. The response in years with different rainfall distributions, included years with extreme situations were evaluated. The main soil types are Typic Xerorthent and Calcixerollic Xerorthent and soil is bare most of the time. Soil water content was measured at different depths using TDR probes. The transpirable soil water fraction was estimated as the ratio between available soil water (ASW) at a given date and the total transpirable soil water (TTSW). TTSW was estimated as the soil water reserve held between an upper and lower limit (respectively, the soil water content near field capacity and soil water content at the end of a dry summer) and integrated over the estimated effective rooting depth. Both minimum and maximum soil water values varied within the plot at all depths. On the surface the minimum values ranged between 4.45 to about 10%, while on deeper layers it ranged between 7.8 and 17.8%. Regarding the maximum value varied between 17.45 and 24.8%. The transpirable soil water fraction for a given year varied significantly within the plot, with differences greater than 20% between the treated and untreated areas. The results were more exacerbated in the driest years an in those with more irregular distribution. Water available has a significant effect on yield. The results indicate the need of using different strategies for water management within the plots.

  3. Rapid Percolation of Water through Soil Macropores Affects Reading and Calibration of Large Encapsulated TDR Sensors

    NASA Astrophysics Data System (ADS)

    Matula, Svatopluk; Dolezal, Frantisek; Moreira Barradas, Joao Manuel

    2015-04-01

    The electromagnetic soil water content sensors are invaluable tools because of their selective sensitivity to water, versatility, ease of automation and large resolution. A common drawback of most their types is their preferential sensitivity to water near to their surfaces. The ways in which the drawback manifests itself were explored for the case of large Time-Domain Reflectometry (TDR) sensors Aqua-Tel-TDR (Automata, Inc., now McCrometer CONNECT). Their field performance was investigated and compared with the results of field and laboratory calibration. The field soil was loamy Chernozem on a carbonate-rich loess substrate, while the laboratory calibration was done in fine quartz sand. In the field, the sensors were installed horizontally into pre-bored holes after being wrapped in slurry of native soil or fine earth. Large sensor-to-sensor variability of readings was observed. It was partially removed by field calibration. The occurrence of percolation events could be easily recognised, because they made the TDR readings suddenly rising and sometimes considerably exceeding the saturated water content. After the events, the TDR readings fell, usually equally suddenly, remaining afterwards at the levels somewhat higher than those before the event. These phenomena can be explained by the preferential flow of water in natural and artificial soil macropores around the sensors. It is hypothesised that the percolating water which enters the gaps and other voids around the sensors accumulates there for short time, being hindered by the sensors themselves. This water also has a enlarged opportunity to get absorbed by the adjacent soil matrix. The variance of TDR readings obtained during the field calibration does not differ significantly from the variance of the corresponding gravimetric sampling data. This suggests that the slope of the field calibration equation is close to unity, in contrast to the laboratory calibration in quartz sand. This difference in slopes can

  4. Changes in soil moisture affect carbon and water fluxes from trees and soils differently in a young semi-arid ponderosa pine stand

    NASA Astrophysics Data System (ADS)

    Ruehr, N. K.; Martin, J.; Pettijohn, J. C.; Law, B. E.

    2010-12-01

    A potential decline in the global trend in land evapotranspiration due to soil moisture limitation may alter the C balance of forest ecosystems, especially in water-limited Mediterranean and semi-arid climate zones. Despite the wide distribution of ponderosa pine forests in semi-arid climate zones of the USA, detailed studies on how these ecosystems may respond to changes in soil water availability are rather rare. To provide better insights on this relevant topic, we conducted a soil moisture manipulation experiment and investigated the response of tree and soil carbon and water fluxes in a young ponderosa pine stand in Oregon (Ameriflux site US-Me6) during summer 2010. Irrigation started with the onset of the dry season at the end of June, maintaining volumetric soil moisture content constantly above 20%. In contrast, in the control treatment soil moisture dried down with regional drought and was below 10% and 15% in 10 cm and 30 cm depth by the end of August. Results show that irrigation increased soil CO2 efflux by 40% at the end of July and reached a maximum of 60% in mid August, with about one-third to two-thirds originating from root-rhizosphere respiration (soil CO2 efflux under tree - soil CO2 efflux in the open). Photosynthesis (Amax), stomatal conductance (gs) and transpiration (T) rates were not affected by irrigation in early summer. However, Amax, gs and T rates in both treatments suddenly decreased, most likely caused by increased VPD and decreased soil water availability (predawn needle water potentials) at the end of July. Irrigation dampened that decrease and caused Amax, gs and T to remain on average about 25% higher, following largely the course of VPD during August. In summary, our preliminary results indicate that higher soil water content affected in particular soil activity and root-rhizosphere respiration rates. Photosynthesis and transpiration appeared to depend to a lesser extent and later in the season on irrigation water, yet both

  5. Temporal stability of soil water contents as affected by weather patterns: a simulation study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) is a natural phenomenon that recently attracts attention and finds multiple applications. Large variations in the interannual and interseasonal TS SWC have been encountered among locations studied by various authors. The objective of this work was ...

  6. Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue.

    PubMed

    Zhou, X B; Cébron, A; Béguiristain, T; Leyval, C

    2009-10-01

    Polycyclic aromatic hydrocarbon (PAH) dissipation efficiency can be increased in the plant rhizosphere, but may be affected by various environmental factors. We investigated the effects of the watering regime and phosphorus concentration on PAH dissipation in the rhizosphere of mycorrhizal plants in a pot experiment. Two plant species, alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea), were co-cultured and inoculated with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) in PAH (phenanthrene (PHE)=500 mg kg(-1), pyrene (PYR)=500 mg kg(-1), dibenzo(a,h)anthracene (DBA)=65 mg kg(-1)) spiked agricultural soil for 6 weeks. Treatments with different phosphorus concentrations and watering regimes were compared. The PHE dissipation reached 90% in all treatments and was not affected by the treatments. The major finding was the significant positive impact of mycorrhizal plants on the dissipation of high molecular weight PAH (DBA) in high-water low-phosphorus treatment. Such an effect was not observed in high-water high-phosphorus and low-water low-phosphorus treatments, where AM colonization was very low. A positive linear relationship was detected between PYR dissipation and the percentage of Gram-positive PAH-ring hydroxylating dioxygenase genes in high-water high-phosphorus treatments, but not in the other two treatments with lower phosphorus concentrations and water contents. Such results indicated that the phosphorus and water regime were important parameters for the dissipation of HMW-PAH.

  7. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    NASA Astrophysics Data System (ADS)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  8. Water and salt extractable organic matter as affected by soil depth and tillage system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soluble organic matter (OM) has been suggested to reflect shifts in soil management. We characterized the pool size and properties of soluble OM along a soil profile to 125 cm in a maize-based agricultural system that was managed under conventional tillage (CT) and no-tillage (NT) systems for 23 yea...

  9. Water Retention and Structure Stability in Smectitic or Kaolinitic Loam and Clay Soils Affected by Polyacrylamide Addition

    NASA Astrophysics Data System (ADS)

    Mamedov, Amirakh; Levy, Guy

    2015-04-01

    Studying the effects of polyacrylamide (PAM) on soil aggregate and structure stability is important in developing effective soil and water conservation practices and in sustaining soil and water quality. Five concentrations of an anionic PAM (0, 25, 50, 100 and 200 mg L-1) with a high molecular weight were tested on loam and clay soils having either a predominant smectitic or kaolinitic clay mineralogy. The effects of the PAM and of soil texture on soil water retention at near saturation and on aggregate and structure stability were investigated using the high energy moisture characteristic (HEMC) method. The S-shaped water retention curves obtained by the HEMC method were characterized by the modified van Genuchten (1980) model that provided: (i) the model parameters α and n, which represent the location of the inflection point and the steepness of the water retention curve, respectively; and (ii) the soil structure index, SI =VDP/MS, where VDP is the volume of drainable pores, an indicator of the quantity of water released by a soil over the range of applied suctions (0-5 J kg-1), and MS is the modal suction representing the most frequent pore sizes (> 60 μm). In general, the treatments tested (clay mineralogy, soil type and PAM concentration) resulted in: (i) a considerable modification of the shape of the water retention curves as indicated by the changes in the α and n values; and; (ii) substantial effects on the stability indices and other model parameters. The contribution of PAM concentration to soil structure stability depended on the clay mineralogy, being more effective in the smectitic soils than in the kaolinitic ones. Although kaolinitic soils are usually more stable than smectitic soils, when the latter were treated with PAM (25-200 mg L-1) the opposite trend was observed. In the loam soils, increasing the PAM concentration notably decreased the differences between values of the stability indices of the smectitic and kaolinitic samples. The

  10. [Seasonal characteristics of soil respiration and affecting factors under typical vegetations in the water-wind erosion crisscross region of the Loess Plateau].

    PubMed

    Xie, Hui-Hui; Fan, Jun; Qi, Li-Bin; Hao, Ming-De

    2010-12-01

    By the soil respiration system, the characteristics of soil respiration were investigated to explore the correlations between soil respiration and soil temperature, soil water and soil nutrient under different land use patterns in the water-wind erosion crisscross region of the Loess Plateau. The results indicated that the seasonal changing characteristics of soil respiration were distinguished significantly among different vegetations, and soil water content and temperature were the main influencing factors. Soil respiration seasonal changing ranges, such as bare land, crop land, Medicago sativa land, Caragana korshinskii land, abandoned wild grass land, Stipa bungeana land, wild grass land, degraded Medicago sativa land, sloping Medicago sativa land, sloping abandoned wild grass land, sloping crop land and terraced crop land, were 0.32-0.82, 0.41-2.83, 0.74-2.81, 0.76-3.07, 0.67-2.79, 0.51-2.12, 0.56-2.05, 0.59-1.66, 0.42-2.09, 0.31-1.86, 0.32-1.93 and 0.41-3.17 micromol x (m2 x s)(-1). Comparing seasonal changing magnitudes of soil respiration, crop land was the biggest (167% - 203%), abandoned wild grass land (117% -154%), Caragana korshinskii land (134%), Stipa bungeana land (129%), Medicago sativa land (119%-120%) and bare land (94%) followed crop land. The smallest was degraded Medicago sativa land (92%). Bare land and degraded Medicago sativa land had small seasonal variation during the study period. Monthly average values of soil carbon flux (soil respiration) of Medicago sativa land and Caragana korshinskii land were maximal, but the maximum values under crop land were observed in July and August. Besides Q10 of crop land was also maximal, which reached 1.86. There were significant correlations between soil respiration and soil organic matter and available K. Moreover, soil respiration was affected by soil organic matter and total nitrogen in July and August when the water and heat condition were plentiful, but soil ammonium nitrogen had negative impact

  11. Small scale hydrology in a pristine and an affected peatland: effects of flood water on soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Vorenhout, Michel; Cusell, Casper

    2014-05-01

    Many peatlands have a water regime of fluctuating water levels. Flooding of peatsoils occurs in several Dutch peatlands. The quality of this floodwater is important for the ecological value of the peatlands. Well known are the eutrophying effects of polluted flood water on the N- and P- limited vegetation. Nutrients can, however, also be released from the soil; anoxic conditions are known to release Fe-bound phosphorus. It is therefore important to focus on small scale hydrology in projects where water levels are manipulated and floodings are induced. Three types of peatlands have been the subject of two separate studies on hydrology, ecological value and soil biogeochemistry. Two pristine sites and one recently restored flood water storage basin were monitored during 2009-2013. These three sites cover the natural range of peatsoils: from floating fens to degraded and fixed peat soils. All sites have peat as the main soil type, but the age and typology differs. The two pristine sites, the Wieden and Weerribben, are characterized by limited natural and/or induced flooding events. These sites have peaty soils. The soils in the Wieden are fixed to the sandy substrate below, the peaty soils in the Weerribben are completely floating on a water layer. The ecological value of the Wieden and the Weerribben is high, but their value may decline due to low variation in water levels. The third site, the Onlanden area, is a large created storm water storage basin. The Onlanden area is a former agricultural area, inhabited since the Medieval period. It has a fixed and rather degraded peaty soil. Large scale restoration of water inlets and dams has created an area that will get flooded at regular intervals. The Onlanden was the subject of an archaeological monitoring project. All sites were equipped with monitoring stations for local and regional water levels, soil moisture and soil redox potential as the indicator for the local biogeochemistry. Cusell et al (2013) studied the

  12. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange.

    PubMed

    Domec, Jean-Christophe; King, John S; Noormets, Asko; Treasure, Emrys; Gavazzi, Michael J; Sun, Ge; McNulty, Steven G

    2010-07-01

    *Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

  13. Normal water irrigation as an alternative to effluent irrigation in improving rice grain yield and properties of a paper mill effluent affected soil.

    PubMed

    Boruah, D; Hazarika, S

    2010-07-01

    Rice crop (var. Luit) was grown under controlled conditions in paper mill effluent contaminated soil and irrigated with undiluted paper mill effluent as well as normal water and compared the results against a control treatment consisting of similar unaffected soil irrigated with normal water. The effluent was alkaline (pH 7.5), containing high soluble salts (EC 2.93 dS m(-1)), chloride (600 mg L(-1)) and total dissolved solids (1875 mg L(-1)). At maximum tillering (MT) stage effluent irrigation significantly (P < 0.05) reduced the leaf numbers per hill and leaf area by 19.8 and 36.4 %, respectively. Tiller number and maximum root length were reduced by 19.3% and 12.5%, respectively at fifty percent flowering (FF) stage. Effluent irrigated crop recorded significant reduction in the dry matter production (17.5-24.9%) and grain yield (19%). Unfilled grain was increased by 10.7%. Higher concentration of sodium, calcium and magnesium in the effluent irrigated soil affected K uptake. Available soil P was lowest while available N, K, S and exchangeable and water soluble Na, K, Ca, Mg were highest in effluent irrigated soil. Chloride content found to increase (3-7 folds) while microbial biomass carbon reduced (10-37%). The adverse effect of the paper mill effluent on the crop as well as on the affected soil could be reduced significantly through normal water irrigation.

  14. Soil water availability in rainfed cultivation affects more than cultivar some nutraceutical components and the sensory profile of virgin olive oil.

    PubMed

    Bucelli, Pierluigi; Costantini, Edoardo A C; Barbetti, Roberto; Franchini, Elena

    2011-08-10

    This research considered the varieties 'Frantoio' and 'Moraiolo' growing in rainfed olive trees (Olea europaea) and took place in Tuscany, central Italy. Soil moisture was monitored during the very meteorologically contrasting years 2002 and 2003 in two nearby olive groves. The plots had the same morphological and climatic conditions, but different soil types. Monocultivar oil samples were analyzed to determine fatty acids, minor polar compounds, and tocopherols content and were submitted to organoleptic analysis by a panel of trained tasters. The results highlighted that soil water regimen affects some nutraceutical components and the sensory evaluation of olive oil. Cultivar also affected yield components, polyphenols, and tocopherols content, but less than soil water availability. The plants on the soil inducing a relatively more intense and longer water deficit during summer (a Skeleti Calcaric Regosol) had an early ripening and gave the best results in terms of phenolic compounds and, consequently, antioxidant properties of the olive oil. The sensorial properties of the oil obtained from both cultivars on the Regosol were superior in both years of the trial.

  15. Small-scale soil water repellency in pine rizhosphere associated with ectomycorrhiza is affected by nutrient patchiness: a soil microcosms study

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Hallett, Paul; Johnson, David; Moore, Lucy; Mataix-Solera, Jorge; Jiménez-Pinilla, Patricia; Arcenegui, Victoria

    2014-05-01

    Soil water repellency (SWR) or hydrophobicity has been commonly related to organic compounds released from the roots or decomposition of different plant species (Doerr et al., 2000). In addition, fungi and microorganisms that are associated with specific plants, could also influence SWR through the production of exudates or cellular material that form hydrophobic coatings on soil surfaces (Feeney et al., 2004; Hallett and Young, 1999) or act as surfactants. Nutrient availability, microbial biomass, organic matter and specific exudates have all been associated with the development of SWR. In terms of plant productivity, these impacts can be significant as their interaction with pore structure changes at the root-soil interface regulates both water transport and storage (Sperry et al., 1998). In boreal forests, basidiomycetous fungi are known to have a large impact on the development of SWR. These fungi are important degraders of organic material and symbionts forming ectomycorrhizal fungi (EF) associations with trees. Although many researchers have suggested a strong positive impact of EF on the ability of plants to capture water from soils, their impact on SWR at the root-soil interface and spatially within soil with a patchy nutrient distribution has not yet been investigated. This study used microcosms with mycelia systems of the EF extending from Pinus sylvestris host plants. Each microcosm was incubated during 15 days and contained plastic cup with 33P under the roots. The transfer of P from the mycelium to the host plant was monitored using a radioactive tracers and a non-destructive electronic autoradiography system in another study (data not published). SWR was measured using different approaches; as repellency index, R using a microinfiltrometer with a contact radius of 0.1 mm (modified from Hallet et al., 2002) and with the water drop penetration time test (WDPT). Sorptivity and SWR were measured between 40-50 points/microcosms. Results obtained with both

  16. Reduced soil wettability can affect greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2015-04-01

    Soil moisture is known to be an important factor affecting the carbon (C) dynamics in soils including decomposition of organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. Most studies and process models looking at the soil C dynamics assume, however, that soils are easily wettable and water is relatively uniformly distributed within the soil pores. Most soils, however, do not wet spontaneously when dry or moderately moist, but instead exhibit some degree of soil water repellency (i.e. hydrophobicity), which can restrict infiltration and conductivity of water for weeks or months. This is world-wide occurring phenomenon which affects all soil textural types but is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. Soil water repellency is most profound during drier seasons, when the soil moisture content is relatively low. Although prolonged contact with water can gradually decrease water repellency, some soils do not recover to being completely wettable even after very wet winter months or substantial rainfall events. It has been recognized that with the predicted climatic changes the phenomenon of soil water repellency will become even more pronounced and severe, additionally it may occur in the areas and climatic zones where the effect have not been currently recognized. One of the main implications of soil water repellency is restricted water infiltration and reduced conductivity, which results in reduced soil water availability for plants and soil biota, even after prolonged periods of rainfall. As the process of C mineralization and consequently CO2 efflux from soil is driven by the accessibility of organic matter to decomposing organisms, which in turn is directly dependent on (i) soil moisture and (ii) soil temperature it is, therefore hypothesised that carbon decomposition and CO2 efflux in water repellent soils will also be affected when soil in the water repellent state. The CO2

  17. Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought

    PubMed Central

    2016-01-01

    High-resolution time series of stem radius variations (SRVs) record fluctuations in tree water status and temporal dynamics of radial growth. The focus of this study was to evaluate the influence of tree size (i.e., saplings vs. mature trees) and soil water availability on SRVs. Dendrometers were installed on Pinus sylvestris at an open xeric site and on Picea abies at a dry-mesic site, and the SRVs of co-occurring saplings and mature trees were analyzed during two consecutive years. The results revealed that irrespective of tree size, radial growth in P. sylvestris occurred in April–May, whereas the main growing period of P. abies was April–June (saplings) and May–June (mature trees). Linear relationships between growth-detrended SRVs (SSRVs) of mature trees vs. saplings and climate-SSRV relationships revealed greater use of water reserves by mature P. abies compared with saplings. This suggests that the strikingly depressed growth of saplings compared with mature P. abies was caused by source limitation, i.e., restricted photosynthesis beneath the dense canopy. In contrast, a tree size effect on the annual increment, SSRV, and climate–SSRV relationships was less obvious in P. sylvestris, indicating comparable water status in mature trees and saplings under an open canopy. The results of this study provided evidence that water availability and a canopy atmosphere can explain differences in temporal dynamics of radial growth and use of stem water reserves among mature trees and saplings. PMID:28381902

  18. Time-Dependent Soil Hydraulic Conductivity in Salt-Affected Soils

    NASA Astrophysics Data System (ADS)

    Russo, D.

    2012-04-01

    Mixed salts such as sodium-calcium salts interact with the soil matrix. The physico chemical interactions between the soil solution and the soil matrix (SS-SM), particularly in the presence of smectite minerals (e.g., montmorillonite), may change the soil pore-size distribution; the latter could affect the soil hydraulic properties, i.e., the soil hydraulic conductivity and soil water retention. Since the magnitude of the SS-SM interactions depend on time-dependent flow-controlled attributes, i.e., soil solution concentration and composition and water content, the resultant hydraulic properties are also time-dependent. The present talk focuses on the effect of mixed-ion solutions on soil hydraulic properties relevant to water flow and solute transport. Experimental evidence on, and an approach for modeling of the effect of soil solution concentration and composition on the local- (Darcy) scale soil hydraulic properties are presented and discussed. Long-term effect of the soil solution concentration and composition on the soil hydraulic properties, and, concurrently, on water flow and solute transport are presented through simulations of field-scale flow and transport.

  19. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  20. Modeling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many or most subsurface pollution problems at the field scale involve such simultaneous processes as water flow, multicomponent solute transport, heat transport and biogeochemical processes and reactions. Process-based models that integrate these various processes can be valuable tools for investiga...

  1. Physico-chemical change in vertical soil horizon characteristics of distillery affected soil.

    PubMed

    Ansari, Farid; Awasthi, A K; Kumar, P

    2013-10-01

    Effect of treated distillery effluent on the physico-chemical characteristics of vertical soil horizon was studied to observe the impact of effluent on soil of nearby area where distillery canal flows. The studies were also carried out with respect to the unaffected region to compare the soil characteristics. The results showed that in distillery affected soil pH, bulk density and alkalinity increased with depth whereas water holding capacity, chloride, organic carbon, available nitrogen, phosphorus and potassium decreased with depth compared to unaffected soil horizon. Preliminary study revealed that although most of the parameters were high in distillery affected soil horizon which might promote growth of plants but increase in pH and other toxic substances with depth could cause ground water pollution through constant and continuous leaching.

  2. Pore size distribution of soil near saturation as affected by soil type, land use, and soil amendments

    NASA Astrophysics Data System (ADS)

    Mamedov, A. I.; Wagner, L. E.; Levy, G. J.

    2008-12-01

    Storage and flow of water in soil voids, which are related to the size and geometry of the voids and flow rate are usually controlled by the void of the smallest size. Another reason for the complexity of water flow in soils is the intricate nature and change of the soil pores due to the modification of soil structure under different agricultural management and climatic conditions. Shrinking and swelling stresses enhance breakdown of aggregates and to subsequent collapse of pores, thus adversely affecting the movement of water and solutes in the soil. Our objective was to study the role of soil type, nature of cultivation, waste and soil stabilizers application, and soil condition on disturbed soil pore-size distribution, drainable porosity and water holding capacity at near saturation (infiltration porosity) using the high energy moisture characteristic method. In this method, the wetting process of the aggregates is accurately controlled, and the energy of hydration and entrapped air are the main forces responsible for aggregate breakdown. We studied a large number (> 300) of soil samples from different climatic regions varying (i) in their inherent properties (clay mineralogy, dispersion potential, texture, organic matter, Fe and Al oxides content), and; (ii) the conditions prevailing in the soil (water quality, salinity, sodicity, redox potential, type of tillage); and finally that were subjected to the addition of different soil amendments (polymers, gypsum, manure, sludge). The results showed that structural stability and pore size distribution strongly depended on soil type, conditions prevailing in the soil and the type of amendment used. Detailed analyses of the results provided valuable information on inter- and intra- aggregate porosities that may have vital bearing on the understanding of (i) solution transport processes in different soil types under different treatments or with different solute concentration, and (ii) down-profile transport of soil

  3. Container Soil-Water Reactions.

    ERIC Educational Resources Information Center

    Spomer, L. Art; Hershey, David R.

    1990-01-01

    Presented is an activity that illustrates the relationship between the soil found in containers and soil in the ground including the amount of air and water found in each. Sponges are used to represent soil. Materials, procedures, and probable results are described. (KR)

  4. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  5. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  6. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  7. Infrared warming affects intrarow soil carbon dioxide efflux during early vegetative growth of spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming will likely affect carbon cycles in agricultural soils. Our objective was to deploy infrared (IR) warming to characterize the effect of global warming on soil temperature (Ts), volumetric soil-water content ('s), and intrarow soil CO2 efflux (Fs) of an open-field spring wheat (Triticu...

  8. Desert gerbils affect bacterial composition of soil.

    PubMed

    Kuznetsova, Tatyana A; Kam, Michael; Khokhlova, Irina S; Kostina, Natalia V; Dobrovolskaya, Tatiana G; Umarov, Marat M; Degen, A Allan; Shenbrot, Georgy I; Krasnov, Boris R

    2013-11-01

    Rodents affect soil microbial communities by burrow architecture, diet composition, and foraging behavior. We examined the effect of desert rodents on nitrogen-fixing bacteria (NFB) communities by identifying bacteria colony-forming units (CFU) and measuring nitrogen fixation rates (ARA), denitrification (DA), and CO2 emission in soil from burrows of three gerbil species differing in diets. Psammomys obesus is folivorous, Meriones crassus is omnivorous, consuming green vegetation and seeds, and Dipodillus dasyurus is predominantly granivorous. We also identified NFB in the digestive tract of each rodent species and in Atriplex halimus and Anabasis articulata, dominant plants at the study site. ARA rates of soil from burrows of the rodent species were similar, and substantially lower than control soil, but rates of DA and CO2 emission differed significantly among burrows. Highest rates of DA and CO2 emission were measured in D. dasyurus burrows and lowest in P. obesus. CFU differed among bacteria isolates, which reflected dietary selection. Strains of cellulolytic representatives of the family Myxococcaceae and the genus Cytophaga dominated burrows of P. obesus, while enteric Bacteroides dominated burrows of D. dasyurus. Burrows of M. crassus contained both cellulolytic and enteric bacteria. Using discriminant function analysis, differences were revealed among burrow soils of all rodent species and control soil, and the two axes accounted for 91 % of the variance in bacterial occurrences. Differences in digestive tract bacterial occurrences were found among these rodent species. Bacterial colonies in P. obesus and M. crassus burrows were related to bacteria of A. articulata, the main plant consumed by both species. In contrast, bacteria colonies in the burrow soil of D. dasyurus were related to bacteria in its digestive tract. We concluded that gerbils play an important role as ecosystem engineers within their burrow environment and affect the microbial complex of

  9. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  10. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  11. Soil and Water: Some Teaching Suggestions.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1987-01-01

    Outlines six soil and water investigations that students can pursue outdoors, in nature centers, or in classrooms: soil characteristics; relationship between soil ph and plant life; what aggregates tell us; differences in soil structure; differences in rate of water absorption by soil; and soil exploration with a Berlesi funnel. (NEC)

  12. [Soil water and its karst effect in epikarst dynamic system].

    PubMed

    Deng, Yan; Qin, Xing-Ming; Jiang, Zhong-Cheng; Luo, Wei-Qun; Qi, Xiao-Fan

    2009-07-01

    This paper studied the soil physical properties, soil CO2, soil water and spring water chemistry in a mature forest and a shrub in Nongla of Guangxi, China, as well as the relationships between the chemistry of soil water and spring water, aimed to understand the karst effect of the soil water in Nongla epikarst dynamic system. Significant differences were observed in the soil bulk density and non-capillary porosity under forest and shrub, which affected soil water content. The fixed CO2 in soil water had a significant negative correlation with soil CO2, and the free CO2 in soil water was 0 mg x m(-3) in the forest and 5.33 x 10(3) mg x m(-3) in the shrub. In soil water and spring water, there was a negative correlation between pH and Ca2+, Mg2+, and Cl- concentrations, and a positive correlation between K+, Na+, and HCO3- concentrations and organic C content. After the eluviation of rain water, the ion concentrations in leached soil water increased greatly, and accordingly, its corrosion ability enhanced greatly. The karst process in forest environment was stable and intensive, while that in shrub environment was active but weak.

  13. Profiling soil water content sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...

  14. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water.

    PubMed

    Kalderis, Dimitrios; Hawthorne, Steven B; Clifford, Anthony A; Gidarakos, Evangelos

    2008-11-30

    Subcritical water was used at laboratory scale to reveal information with respect to the degradation mechanism of TNT on contaminated soil. Highly contaminated soil (12% TNT) was heated with water at four different temperatures, 150, 175, 200 and 225 degrees C and samples were obtained at appropriate time intervals. At the same time, similar experiments were performed with TNT spiked on to clean soil, sand and pure water in order to compare and eliminate various factors that may be present in the more complex contaminated soil system. Subcritical water was successful at remediating TNT-contaminated soil. TNT destruction percentages ranged between 98 and 100%. The aim of this work was to study the soil-water-contaminant interaction and determine the main physical parameters that affect TNT degradation. It was shown that the rate-limiting step of the process is the extraction/diffusion of TNT molecules from the soil core to the soil surface, where they degrade. Additionally, it was determined that the soil matrix also catalyses degradation to a lesser extent. Autocatalytic effects were not clearly observed.

  15. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  16. Evaluation of the Parameters Affecting the Cohesion of Fine Grained Soil

    NASA Astrophysics Data System (ADS)

    Vondráčková, Terezie; Kmec, Ján; Čejka, Jiří; Bartuška, Ladislav; Stopka, Ondrej

    2016-10-01

    Cohesion of the soils is one of the most important parameters which soil is evaluated in terms of its suitability for building foundations. Safety of construction is in fact dependent on the strength of soil, respectively shear strength. Fine-grained soil represents very specific group, in which is distinguished an effective and total cohesion of soils. The water in the soil thus drastically affects its cohesion contrary to gravel and sandy soils. The publication compares the tabular values of the effective and total cohesion and define the influence of water, grain size and consistency of her behaviour.

  17. Soil salinity study in Northern Great Plains sodium affected soil

    NASA Astrophysics Data System (ADS)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  18. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  19. Soil resources area affects herbivore health.

    PubMed

    Garner, James A; Ahmad, H Anwar; Dacus, Chad M

    2011-06-01

    Soil productivity effects nutritive quality of food plants, growth of humans and animals, and reproductive health of domestic animals. Game-range surveys sometimes poorly explained variations in wildlife populations, but classification of survey data by major soil types improved effectiveness. Our study evaluates possible health effects of lower condition and reproductive rates for wild populations of Odocoileus virginianus Zimmerman (white-tailed deer) in some physiographic regions of Mississippi. We analyzed condition and reproductive data for 2400 female deer from the Mississippi Department of Wildlife, Fisheries, and Parks herd health evaluations from 1991-1998. We evaluated age, body mass (Mass), kidney mass, kidney fat mass, number of corpora lutea (CL) and fetuses, as well as fetal ages. Region affected kidney fat index (KFI), which is a body condition index, and numbers of fetuses of adults (P≤0.001). Region affected numbers of CL of adults (P≤0.002). Mass and conception date (CD) were affected (P≤0.001) by region which interacted significantly with age for Mass (P≤0.001) and CD (P<0.04). Soil region appears to be a major factor influencing physical characteristics of female deer.

  20. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  1. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  2. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  3. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the North

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to assess if urban environments affect floodwater quality, and to determine the quantity and quality of overbank sediment deposited in an urban environment after floodwaters recede. Water samples during major flooding of the Red River of the North (RR) were taken on...

  4. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3(-)) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3(-) addition were the main factors affecting N2O fluxes, whilst glucose, NO3(-) and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

  5. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  6. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  7. How surface roughness affects chemical transfer from soil to surface runoff?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil surface roughness affects transport processes, e.g., runoff generation, infiltration, sediment detachment, etc., occurring on the surface. Nevertheless, how soil roughness affects chemical transport is less known. In this study, we partitioned roughness elements into mounds which diverge water ...

  8. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  9. Monitoring the Remediation of Salt-Affected Soils and Groundwater

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Callaghan, M. V.; Cey, E. E.

    2008-12-01

    Salt-affected soil is one of the most common environmental issues facing the petroleum hydrocarbon industry. Large quantities of brines are often co-produced with gas and oil and have been introduced into the environment through, for example, flare pits, drilling operations and pipe line breaks. Salt must be flushed from the soil and tile drain systems can be used to collect salt water which is then be routed for disposal. A flushing experiment over a 2 m deep tile drain system is being monitored by arrays of tensiometers, repeated soil coring, direct push electrical conductivity profiles (PTC), electromagnetic surveys and electrical resistivity tomography (ERT) surveys. Water table elevation is monitored with pressure transducers. Thermocouple arrays provide temperature profiles that are used to adjust electrical conductivity data to standard temperature equivalents. A 20 m by 20 m plot was deep tilled and treated with soil amendments. Numerous infiltration tests were conducted inside and outside the plot area using both a tension infiltrometer and Guelph permeameter to establish changes in soil hydraulic properties and macroporosity as a result of deep tillage. The results show that till greatly diminished the shallow macroporosity and increased the matrix saturated hydraulic conductivity. A header system is used to evenly flood the plot with 10 m3 of water on each of three consecutive days for an approximate total of 7.5 cm of water. The flood event is being repeated four times over a period of 6 weeks. Baseline PTC and ERT surveys show that the salt is concentrated in the upper 2 to 3 m of soil. Tensiometer data show that the soil at 30 cm depth responds within 2 to 3 hours to flooding events once the soil is wetted and begins to dry again after one week. Soil suction at 1.5 m does not show immediate response to the daily flooding events, but is steadily decreasing in response to the flooding and rainfall events. An ERT survey in October will provide the first

  10. Recrystallization and stability of Zn and Pb minerals on their migration to groundwater in soils affected by Acid Mine Drainage under CO2 rich atmospheric waters.

    PubMed

    Goienaga, N; Carrero, J A; Zuazagoitia, D; Baceta, J I; Murelaga, X; Fernández, L A; Madariaga, J M

    2015-01-01

    The extent of vertical contamination is intimately related to the soil solution and surface chemistry of the soil matrix with reference to the metal and waste matrix in question. The present research demonstrated the impact that the dissolved CO2 of the meteoric waters, which acidify the environment with pH values below 4, has in the increase of the metal mobility. Although under the given conditions the Zn remains mainly dissolved, the initial PbS and ZnS have evolved into newly formed secondary carbonates and sulphates (i.e., hydrozincite, gunningite, hydrocerussite) that can be found in the efflorescences. The chemical simulation done on the weathering of the original sulphide ores for the formation of these secondary minerals has proved the transient storage mainly of Pb. Nonetheless, many of the minerals formed inside the galleries will be easily dissolved in the next rains and release in an ionic form to the groundwater. The analytical procedure exposed has been proved to be useful not only for the characterization of AMD but also for the prediction of the mobility of metals.

  11. Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools.

    PubMed

    Newberry, Sarah L; Prechsl, Ulrich E; Pace, Matthew; Kahmen, Ansgar

    2017-03-23

    Cryogenic vacuum extraction is the well-established method of extracting water from soil for isotopic analyses of waters moving through the soil-plant-atmosphere continuum. We investigate if soils can alter the isotopic composition of water through isotope memory effects, and determined which mechanisms are responsible for it. Soils with differing physicochemical properties were re-wetted with reference water and subsequently extracted by cryogenic water distillation. Results suggest some reference waters bind tightly to the soil and not all of this tightly bound water is removed during cryogenic vacuum extraction. Kinetic isotopic fractionation occurring when reference water binds to the soil is likely responsible for the (18)O-depletion of re-extracted reference water, suggesting an enrichment of the tightly bound soil water pool. Further re-wetting of cryogenically extracted soils indicates an isotopic memory effect of tightly bound soil water on water added to the soil. The data suggest tightly bound soil water can influence the isotopic composition of mobile soil water. Findings show that soils influence the isotope composition of soil water by (i) kinetic fractionation when water is bound to the soil and (ii) equilibrium fractionation between different soil water pools. These findings could be relevant for plant water uptake investigations and complicate ecohydrological and paleohydrological studies.

  12. Assessing water salinity along River Limón and Caño San Miguel irrigation paleochannel (Maracaibo, Venezuela) as affected by the balance of soluble salts in alluvium soils

    NASA Astrophysics Data System (ADS)

    Rodriguez, Raquel; Moreno, Juan; Hermosilla, Daphne; Gascó, Antonio

    2013-04-01

    The saline degradation of soils that are irrigated with brackish water is worrisome increasing worldwide, and it may further affect the salinity of fresh water in those streams flowing across. The problem that is caused by an increasing concentration of salts that are more soluble than gypsum depends on the quality of irrigation water, climatic aridity, and drainage limitations. All these conditions meet in the alluvium soils of River Limón basin that are crossed by Caño San Miguel irrigation paleochannel. River Limón's regulation by closing Manuelote and Tulé artificial reservoirs has diminished the input of water and sediments from flooding events, which exerted dilutive effects in the past. In addition, the balance of soluble salts in these soils has also registered further net accumulation during those extremely dry years happened before 2006, because the great dilution contribution of ombrogenic dammed water coming from rain has not been enough to compensate salts concentration generated by water evapotranspiration in those irrigated soils of the middle basin, particularly in the absence of superficial runoff and deep drainage. Considering those semi-arid climate conditions prevailing in the area (annual precipitation = 710 mm; potential evapotransporation = 2361 mm), it resulted that water analyses in River Limón showed a ten-fold increased maximum annual salinity concentration (March) along the stream; that is, an electric conductivity (Ce) of 0.37 dS•m-1 (at 25 °C) at Puente Carrasquero pumping station, where water for crop irrigation is subtracted, turns to 34.60 dS•m-1 (at 25 °C) at its base level in Puerto Mara, where it discharges to Lake Maracaibo. In addition, the quality of irrigation water from Caño San Miguel, which aggregates to those coming from River Limón at the pumping station located in Carrasquero just before running through the alluvium of this water stream, resulted pretty irregular. In short, it spanned form C1 to C4 soil

  13. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  14. Displacement of soil pore water by trichloroethylene

    SciTech Connect

    Wershaw, R.L.; Aiken, G.R.; Imbrigiotta, T.E.

    1994-07-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter am very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone. 15 refs., 6 figs., 4 tabs.

  15. Effect of Thickness of a Water Repellent Soil Layer on Soil Evaporation Rate

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Im, S.; Doerr, S.

    2012-04-01

    A water repellent soil layer overlying wettable soil is known to affect soil evaporation. This effect can be beneficial for water conservation in areas where water is scarce. Little is known, however, about the effect of the thickness of the water repellent layer. The thickness of this layer can vary widely, and particularly after wildfire, with the soil temperature reached and the duration of the fire. This study was conducted to investigate the effect of thickness of a top layer of water repellent soil on soil evaporation rate. In order to isolate the thickness from other possible factors, fully wettable standard sand (300~600 microns) was used. Extreme water repellency (WDPT > 24 hours) was generated by 'baking' the sand mixed with oven-dried pine needles (fresh needles of Pinus densiflora) at the mass ratio of 1:13 (needle:soil) at 185°C for 18 hours. The thicknesses of water repellent layers were 1, 2, 3 and 7 cm on top of wettable soil. Fully wettable soil columns were prepared as a control. Soil columns (8 cm diameter, 10 cm height) were covered with nylon mesh. Tap water (50 ml, saturating 3 cm of a soil column) was injected with hypoderm syringes from three different directions at the bottom level. The injection holes were sealed with hot-melt adhesive immediately after injection. The rate of soil evaporation through the soil surface was measured by weight change under isothermal condition of 40°C. Five replications were made for each. A trend of negative correlation between the thickness of water repellent top layer and soil evaporation rate is discussed in this contribution.

  16. Drainage and leaching dynamics in a cropped hummocky soil landscape with erosion-affected pedogenesis

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Rieckh, Helene; Sommer, Michael

    2016-04-01

    Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows. Pedogenetic variations in soil horizons at the different hillslope positions suggested feedback effects between erosion affected soil properties, the water balances, and the crop growth and leaching rates. Water balance simulations compared uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil, the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, a reduced crop growth caused an relative increase in drainage, suggesting an accelerated leaching, which in the long term could accelerate the soil development and more soil variations along eroding hillslopes in arable soil landscapes.

  17. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  18. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  19. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  20. Soil Water and Temperature System (SWATS) Handbook

    SciTech Connect

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  1. Data assimilation with soil water content sensors and pedotransfer functions in soil water flow modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water flow models are based on a set of simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Soil water content monitoring data can be used to reduce the errors in models. Data assimilation (...

  2. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  3. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  4. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  5. Comparison of soil water potential sensors

    NASA Astrophysics Data System (ADS)

    Degre, Aurore; van der Ploeg, Martine; Caldwell, Todd; Gooren, Harm

    2015-04-01

    Temporal and spatial monitoring of soil water potential and soil water content are necessary for quantifying water flow in the domains of hydrology, soil science and crop production as knowledge of the soil water retention curve is important for solving Richards' equation. Numerous measurement techniques exist nowadays that use various physical properties of the soil-water complex to record changes in soil water content or soil water potential. Laboratory techniques are very useful to determine static properties of the soil water retention curve, and have been used to show the impacts of hysteresis. Yet, other spatiotemporal dynamics resulting from for example growing root systems, biological activity, periodic tillage and their impact on the soil structure cannot satisfactory be quantified in static setups in the laboratory. ). To be able to quantify the influence of soil heterogeneity, and spatiotemporal dynamics on the soil water retention curve, an in situ approach combining soil moisture and soil water potential measurements could provide useful data. Such an in situ approach would require sensors that can measure a representative part of the soil water retention curve. The volumetric soil water content is often measured using time domain reflectometry, and has gained widespread acceptance as a standard electronic means of volumetric water content measurement. To measure the soil water potential, water filled tensiometers are used in most studies. Unfortunately, their range remains limited due to cavitation. Recently, several new sensors for use under in situ conditions have been proposed to cover a wider range of pressure head: Polymer tensiometers, MPS (Decagon) and pF-meter (ecoTech). In this study, we present the principles behind each measurement technique. Then we present the results of a fully controlled experiment where we compared two MPS sensors, two pF-meter sensors and two POT sensors in the same repacked soil. It allows us to discuss advantages

  6. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  7. Least limiting water range of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The least limiting water range (LLWR) has been developed as an index of the soil structural quality. The LLWR was defined as the region bounded by the upper and lower soil water content over which water, oxygen, and mechanical resistance become major limitations for root growth. Thus, it combines th...

  8. A modified soil water based Richards equation for layered soils

    NASA Astrophysics Data System (ADS)

    Kalinka, F.; Ahrens, B.

    2010-09-01

    Most Soil-Vegetation-Atmosphere-Transfer (SVAT) models like TERRA-ML (implemented e.g. in the CCLM model (www.clm-community.eu)) use the soil moisture based Richards equation to simulate vertical water fluxes in soils, assuming a homogeneous soil type. Recently, high-resolution soil type datasets (e.g. BüK 1000, only for Germany (Federal Institute for Geosciences and Natural Resources, BGR, www.bgr.bund.de) or Harmonized World Soil Database (HWSD, version 1.1, FAO/IIASA/ISRIC/ISSCAS/JRC, March 2009)) have been developed. Deficiencies in the numerical solution of the soil moisture based Richards equation may occur if inhomogeneous soil type data is implemented, because there are possibly discontinuities in soil moisture due to various soil type characteristics. One way to fix this problem is to use the potential based Richards equation, but this may lead to problems in conservation of mass. This presentation will suggest a possible numerical solution of the soil moisture based Richards equation for inhomogeneous soils. The basic idea is to subtract the equilibrium state of it from soil moisture fluxes. This should reduce discontinuities because each soil layer aspires the equilibrium state and therefore differences might be of the same order. First sensitivity studies have been done for the Main river basin, Germany.

  9. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies.

  10. [Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China].

    PubMed

    Pan, Yan-Xia; Wang, Xin-Ping; Zhang, Ya-Feng; Hu, Rui

    2013-03-01

    By the method of field experiment combined with laboratory analysis, this paper studied the ecological significance of hygroscopic and condensate water on the biological soil crusts in the vegetation sand-fixing area in Shapotou region of China. In the study area, 90% of hygroscopic and condensate water was within the 3 cm soil depth, which didn' t affect the surface soil water content. The hygroscopic and condensate water generated at night involved in the exchange process of soil surface water and atmosphere water vapor, made up the loss of soil water due to the evaporation during the day, and made the surface soil water not reduced rapidly. The amount of the generated hygroscopic and condensate water had a positive correlation with the chlorophyll content of biological soil crusts, indicating that the hygroscopic and condensate water could improve the growth activity of the biological soil crusts, and thus, benefit the biomass accumulation of the crusts.

  11. Rock fragments induce patchy distribution of soil water repellency in burned soils

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel; García-Moreno, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Solera, Jorge; Jordán, Antonio; Zavala, Lorena M.

    2013-04-01

    Forest fires are recurrent phenomena in the Mediterranean area and are one of the main causes of changes in the Mediterranean ecosystems, increasing the risk of soil erosion and desertification. Fire is an important agent which can induce important changes in the chemical and physical characteristics of soils. During wildfires, only a small part of the heat generated is transmitted to the first centimetres of the soil profile. The intensity of the changes produced in the physical and chemical characteristics of the soil depends on the temperatures reached at different soil depths, the time of residence of temperature peaks, and the stability of the different soil components. One of the soil physical properties strongly affected by fire is soil water repellency (WR). Depending on temperature, time of heating, type of soil and fuel, fire can induce, enhance or destroy soil WR. Soil WR is a key factor in controlling soil hydrology and water availability in burnt soils together with other factors as texture or aggregation. Although the occurrence and consequences of fire-induced soil WR have been deeply studied, some gaps still exist, as the influence of rock fragment cover during burning. During combustion of litter and aerial biomass, the soil surface under rock fragments is heated and reachs temperature peaks after a certain delay respect to exposed areas. In contrast, temperature peaks are longer, increasing the time of residence of high temperature. In consequence, rock fragments may change the expected spatial distribution of soil WR. Up to date, very scarce research concerns the effect of rock fragments at the soil surface on the fire-induced pattern of soil water repellency. METHODS Two experiments were carried out in this research. In the first case, an experiment was conducted in an experimental farm in Sevilla (southern Spain). The effect of a low severity prescribed fire was studied in soil plots under different rock fragment covers (0, 15, 30, 45 and 60

  12. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    PubMed

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils.

  13. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  14. Citrus orchards management and soil water repellency in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; González Peñaloza, F. A.; Jordán, A.; Zavala, L. M.

    2012-04-01

    Water repellent soils are found around the world, although originally was found on fire affected soil (DeBano, 1981). However, for decades, water repellency was found to be a rare soil property. One of the pioneer research that shown that water repellency was a common soil property is the Wander (1949) publication in Science. Wander researched the water repellency on citrus groves, and since then, no information is available about the water repellency on citrus plantations. The Mediterranean soils are prone to water repellency due to the summer dry conditions (Cerdà and Doerr, 2007). And Land Use and Land Management are key factors (Harper et al., 2000; Urbanek et al., 2007) to understand the water repellency behaviour of agriculture soils. Valencia region (Eastern Spain) is the largest exporter in the world and citrus plantations located in the alluvial plains and fluvial terraces are moving to alluvial fans and slopes where the surface wash is very active (Cerdà et al., 2009). This research aims to show the water repellency on citrus orchards located on the sloping terrain (< 15 % angle slope). Measurement were conducted in four experimental plots located in the Canyoles River watershed to assess the soil water repellency in citrus orchards under different managements: annual addition of plant residues and manure with no tilling and no fertilizer (MNT), annual addition of plant residues with no tillage (NT), application of conventional herbicides and no tilling (HNT) and conventional tillage in June (CT). The period for each type of management ranged from 2 and 27 (MNT), 1 and 25 (NT), 2 and 27 (HNT) and 3 and 29 years (CT). At each plot, a ten points were selected every 10 cm along inter-rows and water drop penetration time test (WDTP; DeBano, 1981) was performed. The results show that the MNT treatment induced slight water repellency in citrus-cropped soils compared to other treatments. Small but significant soil water repellency was observed under NT and HNT

  15. Fractal processes in soil water retention

    SciTech Connect

    Tyler, S.W.; Wheatcraft, S.W. )

    1990-05-01

    The authors propose a physical conceptual model for soil texture and pore structure that is based on the concept of fractal geometry. The motivation for a fractal model of soil texture is that some particle size distributions in granular soils have already been shown to display self-similar scaling that is typical of fractal objects. Hence it is reasonable to expect that pore size distributions may also display fractal scaling properties. The paradigm that they used for the soil pore size distribution is the Sierpinski carpet, which is a fractal that contains self similar holes (or pores) over a wide range of scales. The authors evaluate the water retention properties of regular and random Sierpinski carpets and relate these properties directly to the Brooks and Corey (or Campbell) empirical water retention model. They relate the water retention curves directly to the fractal dimension of the Sierpinski carpet and show that the fractal dimension strongly controls the water retention properties of the Sierpinski carpet soil. Higher fractal dimensions are shown to mimic clay-type soils, with very slow dewatering characteristics and relatively low fractal dimensions are shown to mimic a sandy soil with relatively rapid dewatering characteristics. Their fractal model of soil water retention removes the empirical fitting parameters from the soil water retention models and provides paramters which are intrinsic to the nature of the fractal porous structure. The relative permeability functions of Burdine and Mualem are also shown to be fractal directly from fractal water retention results.

  16. Pore size distribution of soil near saturation as affected by soil type, land use, and soil amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage and flow of water in soil voids, which are related to the size and geometry of the voids and flow rate are usually controlled by the void of the smallest size. Another reason for the complexity of water flow in soils is the intricate nature and change of the soil pores due to the modificatio...

  17. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  18. Water as a Reagent for Soil Remediation

    SciTech Connect

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  19. America's Soil and Water: Condition and Trends.

    ERIC Educational Resources Information Center

    1981

    A review of conditions and trends regarding soil and water resources of rural nonfederal lands of the United States is presented in this publication. Maps, charts, and graphs illustrate the data collected on various aspects of soil and water use and practice. Topic areas considered include: (1) land use patterns; (2) classes of land; (3)…

  20. Investigating Unstable Water Infiltration into Alcohol Contaminated Soils

    NASA Astrophysics Data System (ADS)

    McLeod, H. C.; Smith, J. E.; Henry, E. J.; Brodsky, Y.

    2009-05-01

    A new mechanism causing highly focused, unstable flow exists in soils contaminated with alcohols due to their surface-activity. For example, surface-active compounds can significantly decrease the interfacial tension of the air-water interface and change the pressure-head of the soil water; directly affecting water flow and solute transport in the vadose zone. This study evaluated the fundamental effects of surface-active alcohols on water infiltration into contaminated soils under controlled laboratory conditions. A small scale 3-D glass flow cell and a mini disk tension infiltrometer were used to monitor the rates and physical characteristics of water infiltration from a constant head point source into sands of various textures contaminated with a butanol solution. The results confirmed that water infiltration into these soils is fundamentally and substantially different than the current understanding of infiltration patterns, including previously described mechanisms of wetting front instability. In butanol-contaminated soils, the wetting fronts exhibited highly focused flow with smaller wetted soil volumes, deeper penetration and substantially higher infiltration rates. In addition, the extent of fingered focused flow was confirmed to be texturally dependent, decreasing with grain size and dependent on the constant head boundary. This study characterized a new mechanism of focused, unstable flow with significant implications for groundwater management and solute transport in alcohol contaminated soils.

  1. Soil organic matter composition affected by potato cropping managements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  2. Water repellent soils as they occur on UK golf greens

    NASA Astrophysics Data System (ADS)

    York, C. A.; Canaway, P. M.

    2000-05-01

    Water repellent soils have been identified as a major problem in the management of golf greens in the UK for over 60 years. The cause of this problem has provoked much speculation, but prior to this work, no research into the possible cause of water repellent soils in the UK had been completed. One of the commonly believed links with water repellent soils on UK golf greens was the activity of basidiomycete fungi. This was proposed as a possible causal factor because the symptoms expressed on the turf above affected soils, were similar in many instances to those symptoms expressed by the activity of superficial fairy rings. Since it was impractical to study superficial fairy rings, it was decided to observe other basidiomycete fairy rings (Type 1 fairy rings) to see if any water-repellence could be identified as being associated with them. Three of these rings, caused by the fungus Marasmius oreades (Bolt ex. Fr) Fr., were studied on each of the two different sites. Soil samples were removed at intervals from the centre of the rings, across the obvious symptoms of the rings (i.e. the zone of dead grass bordered on both sides by a zone of stimulated grass growth) and beyond, into the uncolonised soil. These samples were taken to the laboratory, allowed to air dry and were then tested to determine relative levels of water repellence. It was found that on the 'outside' of the fairy rings where the fungus had not yet colonised, the soils were less water repellent than they were in the other zones of the rings (i.e. the dead zone and the inner zone). In the region of the dead zone of these fairy rings, the soil was very water repellent. This may have been expected because the fungus was present in this area in large quantities and the fungus itself repels water. However, of particular interest, were the results from the inner part of the ring where the fungus had been present in the past, but where it no longer colonised the soil. In these soil samples, the rootzone soil

  3. Characteristics of water infiltration in layered water repellent soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  4. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  5. Occurrence of soil water repellency in arid and humid climates

    NASA Astrophysics Data System (ADS)

    Jaramillo, D. F.; Dekker, L. W.; Ritsema, C. J.; Hendrickx, J. M. H.

    2000-05-01

    Soil water repellency generally tends to increase during dry weather while it decreases or completely vanishes after heavy precipitation or during extended periods with high soil water contents. These observations lead to the hypothesis that soil water repellency is common in dry climates and rare in humid climates. The study objective is to test this hypothesis by examining the occurrence of soil water repellency in an arid and humid climate. The main conclusion of this study is that the effect of climate on soil water repellency is very limited. Field observations in the arid Middle Rio Grande Basin in New Mexico (USA) and the humid Piedras Blancas Watershed in Colombia show that the main impact of climate seems to be in which manner it affects the production of organic matter. An extremely dry climate will result in low organic matter production rates and, therefore, less potential for the development of soil water repellency. On the other hand, a very humid climate is favorable for organic matter production and, therefore, for the development of water repellency.

  6. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  7. Hygrometric Measurement of Soil Water Potential

    NASA Astrophysics Data System (ADS)

    Butler, C. D.; Tyner, J. S.

    2004-12-01

    Knowledge of soil water potential as a function of water content is required to make unsaturated flow and transport predictions. Although numerous methods are available to measure soil water potential, they are largely difficult and time consuming procedures. The goal of the research is to develop a hygrometric method that will perform satisfactorily with minimal required hardware or technician time. The volume of a drop of saline water will change due to evaporation or condensation until its salinity, and hence osmotic potential, is equal to the water potential in the adjacent gas phase. This relationship is exploited by our method to measure soil moisture potential. To begin, a drop of KCl solution with known mass and KCL concentration is placed adjacent to a soil sample with known water content inside a hermetically sealed container. The mass of the KCl drop is recorded over time with an electronic balance. As thermodynamic equilibrium is achieved, the mass of water within the KCl drop changes until its osmotic potential is equal to the capillary potential of water within the soil sample. After the mass of the KCl drop reaches equilibrium, the KCl concentration is calculated, which enables direct determination of the water potential within the soil sample. Unlike transient hygrometric measurements of water potential using psychrometers, no calibration is required.

  8. [Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan].

    PubMed

    Tian, Ri-Chang; Chen, Hong-Song; Song, Xian-Fang; Wang, Ke-Lin; Yang, Qing-Qing; Meng, Wei

    2009-09-15

    Stable isotope techniques provide a new approach to study soil water movement. The process of water movement in soils under two kinds of plant types (oil tea and corn) were studied based on the observed values of hydrogen and oxygen isotopes of precipitation and soil water at different depths in red-soil sloping land. The results showed that stable isotopes of precipitation in this area had obvious seasonal effect and rainfall effect. The stable isotopes at 0-50 cm depth in oil tea forestland and at 0-40 cm depth in corn cropland increased with the increase in depth, respectively, but they had the opposite tendency after rainfall in arid time. The stable isotopes decreased with the increase in depth below 50 cm depth in oil tea forestland and below 40 cm depth in corn cropland where evaporation influence was weak. The infiltrate rate of soil in oil tea land was affected by precipitation obviously, and it was about 50-100 mm/d after 2-3 days in heavy rain, slowed sharply later, and soil water at 50 cm depth often became a barrier layer. The permeability of soil in corn land was poor and the infiltration rate was lower. The change of stable isotopes in soil water in red soil hilly region was mainly affected by the mixing water which was formed by the antecedent precipitation, and evaporation effect took the second place. The evaporation intensity in oil tea land was lower than that in corn land, but the evaporation depth was higher.

  9. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  10. Formation of Soil Water Repellency by Laboratory Burning and Its Effect on Soil Evaporation

    NASA Astrophysics Data System (ADS)

    Ahn, Sujung; Im, Sangjun

    2010-05-01

    formed at a fuel load of 300 g. Pine needle litter formed the most severe soil water repellency and fresh pine needle formed the thickest water repellent layer, whilst broad-leaf litter did only cause water repellency on the surface of the sand. The soil evaporation rate was measured by a gravitational method at an isothermal condition. Undisturbed soil columns were sealed after adding 50 ml of tap water through the bottom. After twelve hours of stabilization, the columns were opened and covered with filter paper. The rate of soil evaporation through the soil surface was measured by the hourly weight change at 45° C. The initial 65 hours' evaporation rate was analyzed, while the slope of cumulative evaporation over time maintained its linearity. It was found that as the thickness of the water repellent layer increased, the evaporation rate tended to decrease. These two variables showed a good correlation (Pearson's correlation coefficient =-0.8916, p=0.0170) and a large coefficient of determination (R2=0.795) in the linear regression. This suggests that a layer of water repellent soil can affect water evaporation rate and that the rate is negatively correlated with the thickness of the repellent layer.

  11. Soil water retention dynamics in Luvisols at contrasting slope positions in lysimeter monoliths from an eroded soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2015-04-01

    Modeling water flow and solute transport in variably saturated soils requires the proper description of the soil water retention curve. The problem is that under field conditions, water retention may be hysteretic or otherwise changing in time due to changing soil properties. In arable soil landscapes, these changes may depend on the erosion history which created spatial patterns of soil properties such as texture and organic matter content and differences in crop development. The objective of this study was to analyze the dynamics in field-measured water retention data for Luvisols in 10 cm, 30 cm and 50 cm soil depth (Ap, E, and Bt horizons) at two contrasting at slope positions characterized by different degrees of soil erosion under intensive agricultural cultivation. Drying and wetting water retention was obtained from tensiometer/MPS and TDR data in depths representing same soil horizons. For comparison, we used drying retention data obtained from soil cores using the evaporation method (Hyprop). Drying data were fitted to the unconstrained water retention function proposed by van Genuchten (1980) and the bimodal model of Durner (1994). For wetting data, hydraulic model parameters were determined by using the Pedroso-Williams model (2010). The water contents of wetting and drying branches were dynamically changing. These changes in water retention were different for several horizons of the more eroded Luvisol as compared to the less eroded one. Differences in water retention dynamics could be related to soil tillage and the erosion history at the different slope positions. The water differences in retention could be explained by hysteresis and temporal changes in soil water repellency. Field and lab retention data differed as reported earlier. The results suggest that estimation of soil water retention curves without resorting to time-consuming field measurements remains challenging. The results suggest that for erosion-affected arable soils of the hummocky

  12. Transpiration affects soil CO2 production in a dry grassland

    NASA Astrophysics Data System (ADS)

    Balogh, János; Fóti, Szilvia; Pintér, Krisztina; Burri, Susanne; Eugster, Werner; Papp, Marianna; Nagy, Zoltán

    2014-05-01

    Although soil CO2 efflux can be highly variable on the diel time scale, it is often measured during daytime only. However, to get a full understanding of soil CO2 efflux and its impact on carbon cycle processes, looking at diurnal processes is crucial. Therefore, our aim was to investigate how diel variation in soil CO2 efflux from a dry, sandy grassland in Hungary depends on variations in potential drivers, such as gross primary production (GPP) and evapotranspiration (ET). In order to reach this goal, we combined measurements of CO2 and H2O fluxes by eddy covariance, soil chambers and soil CO2 gradient system. Surface CO2 fluxes were partitioned into the three CO2 production components originating from the three soil layers to clarify the timing and the source of the CO2 within the top 50 cm of the soil. CO2 production rates during the growing season were higher during nighttime than during daytime. This diel course was not only driven by soil temperature and soil moisture, but also by ET. This was shown by changes of ET causing a hysteresis loop in the diel response of CO2 production to soil temperature. CO2 production was coupled to soil temperature at night and during midday (12-14 h), when ET remained relatively constant. However, when ET was changing over time, CO2 production was decoupled from soil temperature. In order to disentangle these effects, we carried out time-lag analyses between CO2 production and efflux residuals after having subtracted the main effects of soil temperature and soil water content from measured CO2 fluxes. The results showed a strong negative correlation between ET rates and residuals of soil CO2 production, and a less strong, but still significantly time-lagged positive correlation between GPP and residuals of soil CO2 production. Thus, we could show that there is a rapid negative response of soil CO2 production rates to transpiration (suggesting CO2 transport in the xylem stream) and a delayed positive response to GPP

  13. Water movement in stony soils: The influence of stoniness on soil water content profiles

    NASA Astrophysics Data System (ADS)

    Novak, Viliam; Knava, Karol

    2010-05-01

    WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil

  14. Soil-restoration rate and initial soil formation trends on example of anthropogenically affected soils of opencast mine in Kursk region, Russian Federation

    NASA Astrophysics Data System (ADS)

    Pigareva, Tatiana

    2015-04-01

    The mining industry is one of the main factors which anthropogenically change the environment. Mining process results in removing of the rocks and mechanical changes of considerable amounts of ground. One of the main results of mining arising of antropic ecosystems as well as increasing of the new created soils total area is technosols. The main factor controlling the soil formation in postmining environment is the quality of spoiled materials. Initial soil formation has been investigated on spoils of the largest iron ore extraction complex in Russia - Mikhailovsky mining and concentration complex which is situated in Kursk region, Russia. Investigated soils are presented by monogenetic weak developed soils of different age (10-15-20 years). Young soils are formed on the loess parent materials (20 year-old soil), or on a mix of sand and clay overburdens (15 and 10-year-old soils). Anthropogenically affected soils are characterized by well-developed humus horizon which is gradually replaced by weakly changed soil-building rocks (profile type A-C for 10-, 15-years old soils, and A-AC-C for 20 years old soils). Gray-humus soils are characterized by presence of diagnostic humus horizon gradually replaced by soil-building rock. The maximum intensity of humus accumulation has been determined in a semi-hydromorphic 10-year-old soil developed on the mixed heaps which is connected with features of water-air conditions complicating mineralization of plant remnants. 20-year-old soil on loess is characterized by rather high rate of organic substances accumulation between all the automorphous soils. It was shown that one of the most effective restoration ways for anthropogenically affected soils is a biological reclamation. Since overburdens once appeared on a day surface are overgrown badly in the first years, they are subject to influence of water and wind erosion. Our researchers have found out that permanent grasses are able to grow quickly; they accumulate a considerable

  15. Soil type affects Pinus ponderosa var. scopulorum (Pinaceae) seedling growth in simulated drought experiments1

    PubMed Central

    Lindsey, Alexander J.; Kilgore, Jason S.

    2013-01-01

    • Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. • Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite), a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering) produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. • Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies. PMID:25202578

  16. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    USGS Publications Warehouse

    Ebel, Brian A.

    2012-01-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  17. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    NASA Astrophysics Data System (ADS)

    Ebel, Brian A.

    2012-12-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  18. Water chemistry affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While columnaris disease has been well-studied, little is known about how specific water chemistries can affect attachment. Recent studies in our labs offer new insight on this subject. Well waters from the USDA/ARS Stuttgart National Aquaculture Research Center (SNARC; Stuttgart, Arkansas) and fr...

  19. Water hardness affects catfish susceptibility to columnaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease can cause tremendous losses of freshwater fish. While it has been studied exhaustively, little is known about its affinity to specific water chemistries that affects attachment. Recent studies in our labs have illuminated this subject. In the first experiment, two waters were ...

  20. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    composition (Pereira and Úbeda, 2010) and Pereira et al., 2012). Some of the new research challenges related to ash impact in the fire affected soils are related to the ash redistribution after the fire, the impact of ash in soil and water chemistry, the temporal changes of soil erosion, the control ash exert on vegetation recovery and the role to be played by ash in the best management of fire affected land. Those topics needs new ideas and new scientists such as Paulo Pereira show in the Part II of this abstract. Acknowledgements, Lithuanian Research Council. Project LITFIRE, Fire effects on Lithuanian soils and ecosystems (MIP-48/2011) and the research projects GL2008-02879/BTE and LEDDRA 243857. References Bodí, M., Mataix-Solera, J., Doerr, S., and Cerdà, A. 2011b. The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 160, 599-607. Cerdà, A. 1998a. Postfire dynamics of erosional processes under mediterranean climatic conditions. Z. Geomorphol., 42 (3) 373-398. Cerdà, A. 1998b. Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12, 1031-1042. Cerdà, A., and Doerr, S. H.2010. The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 3, 392-401. Cerdà, A., and Doerr, S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Pereira, P., and Úbeda, X. 2010. Spatial distribution of heavy metals released from ashes after a wildfire, Journal of Environment Engineering and Landscape Management, 18, 13-22. Pereira, P., Ubeda, X., Martin, D.A. 2012. Fire severity effects on ash chemical composition and extractable elements. Geoderma, 191, 105 - 114. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M.T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio

  1. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  2. Effect of Clay Content and Soil-water Potential On Mobilization and Leaching of Colloids In Unsaturated Macroporous Soil

    NASA Astrophysics Data System (ADS)

    Kjaergaard, C.; de Jonge, L. W.; Moldrup, P.

    The transport of strongly sorbed environmental contaminants may be enhanced due to sorption to mobile soil colloids. The most common source of mobile colloids in soil is the in-situ release of water-dispersible colloids (WDC), however experimental investigations of colloid mobilization in unsaturated macroporous soil are scarce. An understanding of the arrangement of colloids in aggregates, and the influence of clay on the development of the soil fabric and pore-size distributions is essential for the in- terpretation of colloid mobilization in soils. This emphasizes the important role of clay content, when evaluating the susceptibility of soils to release colloids and associated contaminants. This study was conducted to determine the effect of clay content and initial soil- water potential on colloid mobilization and leaching. Intact soil cores were sampled from an arable field at six locations along a naturally occurring texture gradient. Soil dispersibility was investigated using capillary saturation and drainage of field-moist packed aggregates. The amount of WDC in the soil was measured for each com- bination of clay content and initial soil-water potential (-2.5, -98 and -15530 hPa). Mobilization and leaching of colloids was investigated from unsaturated intact soil cores. The soils were irrigated at low intensity (1 mm/h), and effluent sampling was conducted at 5 cm tension. The results showed that colloid dispersion was significantly affected by both clay con- tent and initial soil-water potential. With a soil-water potential of -15530 hPa the col- loid release was generally low and no variation occurred between the soils. With in- creasing soil-water potential there was an increase in the amount of WDC for all soils. The increase in WDC was negatively correlated with clay content. The leaching of colloids from intact soil cores also decreased with increasing clay content at an ini- tial soil-water potential of -98 and -2.5 hPa, and no difference between

  3. Water and heat transport in boreal soils: implications for soil response to climate change.

    PubMed

    Fan, Zhaosheng; Neff, Jason C; Harden, Jennifer W; Zhang, Tingjun; Veldhuis, Hugo; Czimczik, Claudia I; Winston, Gregory C; O'Donnell, Jonathan A

    2011-04-15

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.

  4. Water and heat transport in boreal soils: Implications for soil response to climate change

    USGS Publications Warehouse

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  5. Grinding and sieving soil affects the availability of organic contaminants: a kinetic analysis.

    PubMed

    ter Laak, Thomas L; Barendregt, Arjan; Hermens, Joop L M

    2007-09-01

    Field contaminated soils are often homogenized before application in bioassays and chemical assays that estimate the (bio)availability of their contaminants. The homogenization of the soil might affect the availability, and thereby the outcome of a bioassay might not reflect field situations. In this study, uptake kinetics of polycyclic aromatic hydrocarbons (PAH) by a negligible depletive passive sampler exposed to a ground and non-ground field contaminated soil were tested. The measurements illustrate how freely dissolved pore water concentrations of contaminants can be affected by soil treatment. It took more than a month, and over a year to reach steady state in the passive sampler exposed to the ground and non-ground soil, respectively. The uptake rate seemed to be limited by desorption from the soil, even though the fiber only extracted 0.2% of the soil-sorbed PAH at maximum. If these observations are translated to the field situation, where contaminants are not homogeneously distributed and disappear by (bio)degradation or physical transport processes, it is unlikely that pore water concentrations are solely determined by a thermodynamic equilibrium. Hence, exposure of organisms in these soils cannot always be estimated by sorption studies and an equilibrium partitioning approach.

  6. Compost improves urban soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  7. Intrusion of Soil Water through Pipe Cracks

    EPA Science Inventory

    This report describes a series of experiments conducted at U.S. EPA’s Test and Evaluation Facility in 2013-2014 to study the intrusion of contaminated soil water into a pipe crack during simulated backflow events. A test rig was used consisting of a 3’ x 3’ x 3’ acrylic soil bo...

  8. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  9. New soil water sensors for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  10. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  11. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    NASA Astrophysics Data System (ADS)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    Atmospheric concentrations of methane (CH4) are higher now than they have ever been during the past 420,000 years. However, concentrations have remained stable since 1999. Emissions associated with livestock husbandry are unlikely to have changed, so some combination of reduced production in wetlands, more efficient capture by landfills, or increased consumption by biological CH4 oxidation in upland soils may be responsible. Methane oxidizing bacteria are ubiquitous in upland soils and little is known about how these bacteria respond to anthropogenic global change, and how they will influence - or already are influencing - the radiative balance of the atmosphere. Might ongoing and future global changes increase biological CH4 oxidation? Soils were sampled from two field experiments to assess changes in rates of CH4 oxidation in response to global change simulations. Potential activities of CH4 oxidizing bacterial communities were measured through laboratory incubations under optimal temperature, soil moisture, and atmospheric CH4 concentrations (~18 ppm, or 10x ambient). The ongoing 6-year multifactorial Jasper Ridge Global Change Experiment (JRGCE) simulates warming, elevated precipitation, elevated atmospheric CO2, elevated atmospheric N deposition, and increased wildfire frequency in an annual grassland in a Mediterranean-type climate in central California. The ongoing 1-year multifactorial Merriam Climate Change Experiment (MCCE) simulates warming, elevated precipitation, and reduced precipitation in four different types of ecosystems along an elevational gradient in a semi-arid climate in northern Arizona. The high desert grassland, pinyon-juniper woodland, ponderosa pine forest, and mixed conifer forest ecosystems range in annual precipitation from 100 to 1000 mm yr-1, and from productivity being strongly water limited to strongly temperature limited. Among JRGCE soils, elevated atmospheric CO2 increased potential CH4 oxidation rates (p=0.052) and wildfire

  12. Soil water stress affects both cuticular wax content and cuticle-related gene expression in young saplings of maritime pine (Pinus pinaster Ait)

    PubMed Central

    2013-01-01

    Background The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. Results This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. Conclusions The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers. PMID:23815794

  13. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  14. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  15. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes

    PubMed Central

    Gutierrez, Mario; Reynolds, Matthew P.; Klatt, Arthur R.

    2010-01-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r2 >0.6–0.8) with leaf water potential (ψleaf) across a broad range of values (–2.0 to –4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (ψsoil) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision phenotyping

  16. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  17. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  18. Emission and distribution of fumigants as affected by soil moistures in three different textured soils.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein

    2013-01-01

    Water application is a low-cost strategy to control emissions of soil fumigant to meet the requirements of the stringent environmental regulations and it is applicable for a wide range of commodity groups. Although it is known that an increase in soil moisture reduces emissions, the range of soil moisture for minimizing emissions without risking pest control, is not well defined for various types of soils. With two column studies, we determined the effect of different soil moisture levels on emission and distribution of 1,3-dichloropropene and chloropicrin in three different textured soils. Results on sandy loam and loam soils showed that by increasing soil moisture from 30% to 100% of field capacity (FC), peak fluxes were lowered by 77-88% and their occurrences were delayed 5-15 h, and cumulative emissions were reduced 24-49%. For the sandy soil, neither peak fluxes nor the cumulative emissions were significantly different when soil moisture increased from 30% to 100% FC. Compared to the drier soils, the wetter soils retained consistently higher fumigant concentrations in the gas-phase, suggesting efficacy may not be impacted in these soils. The air-filled porosity positively and linearly correlated with the cumulative emission loss across all soil types indicating that it may serve as a good indicator for estimating emissions. These laboratory findings can be further tested under field conditions to conclude what irrigation regime should be used for increasing soil water content before fumigant application that can achieve maximum emission reduction and uniform fumigant distribution with high exposure index values.

  19. Soil water balance scenario studies using predicted soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Nemes, A.; Wösten, J. H. M.; Bouma, J.; Várallyay, G.

    2006-03-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in terms of examining the expected outcome of certain changes in soil and water management practices. This paper describes three scenario studies that show some aspects of how PTFs may help improve decision making about land management practices. We use an exploratory research approach using simulation modelling to explore the potential effect of alternative solutions in land management. We: (i) evaluate benefits and risks when irrigating a field, and the impact of soil heterogeneity; (ii) examine which changes can be expected (in terms of soil water balance and supply) if organic matter content is changed as a result of an alternative management system; (iii) evaluate the risk of leaching to deeper horizons in some soils of Hungary. Using this research approach, quantitative answers are provided to what if? type questions, allowing the distinction of trends and potential problems, which may contribute to the development of sustainable management systems.

  20. Gas Transport Parameters for Landfill Cover Soils: Effects of Soil Compaction and Water Blockages

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Hamamoto, S.; Kawamoto, K.; Nawagamuwa, U.; Komatsu, T.; Moldrup, P.

    2009-12-01

    increased rather linearly with increasing soil air content (ɛ) for both compacted and repacked samples using different size fractions and compaction levels in Japanese and Sri Lankan soils. This suggests that the gas diffusion was controlled primarily by the air-filled pore space and was less affected by the pore structure variations such as tortuosity and connectivity. On the other hand, measured ka values showed nonlinear relations with ɛ and were highly affected by compaction levels and water blockage effects. For the compacted soils at high energy level, peak values in ka appeared at drier conditions than optimum water contents in the compaction curves. This would be partially caused by the pore structure changes at different water conditions under compaction. Combined effects of soil compaction and water reduction will be further discussed taking pore structure characteristics derived from measured Dp and ka into account.

  1. Difficulties in the evaluation and measuring of soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  2. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    NASA Astrophysics Data System (ADS)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  3. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield.

    PubMed

    Olmo, Manuel; Lozano, Ana María; Barrón, Vidal; Villar, Rafael

    2016-08-15

    Biochar (BC) is a carbonaceous material obtained by pyrolysis of organic waste materials and has been proposed as a soil management strategy to mitigate global warming and to improve crop productivity. Once BC has been applied to the soil, its imperfect and incomplete mixing with soil during the first few years and the standard agronomic practices (i.e. tillage, sowing) may generate spatial heterogeneity of the BC content in the soil, which may have implications for soil properties and their effects on plant growth. We investigated how, after two agronomic seasons, the spatial heterogeneity of olive-tree prunings BC applied to a vertisol affected soil characteristics and wheat growth and yield. During the second agronomic season and just before wheat germination, we determined the BC content in the soil by an in-situ visual categorization based on the soil darkening, which was strongly correlated to the BC content of the soil and the soil brightness. We found a high spatial heterogeneity in the BC plots, which affected soil characteristics and wheat growth and yield. Patches with high BC content showed reduced soil compaction and increased soil moisture, pH, electrical conductivity, and nutrient availability (P, Ca, K, Mn, Fe, and Zn); consequently, wheat had greater tillering and higher relative growth rate and grain yield. However, if the spatial heterogeneity of the soil BC content had not been taken into account in the data analysis, most of the effects of BC on wheat growth would not have been detected. Our study reveals the importance of taking into account the spatial heterogeneity of the BC content.

  4. Soil-water dynamics and unsaturated storage during snowmelt following wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Hinckley, E.S.; Martin, Deborah

    2012-01-01

    Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ∼1–2 °C warmer on average than north-facing burned soils and ∼1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that the amount of snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.

  5. Mechanical impedance of soil crusts and water content in loamy soils

    NASA Astrophysics Data System (ADS)

    Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa

    2013-04-01

    Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows

  6. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress.

    PubMed

    Chodak, Marcin; Gołębiewski, Marcin; Morawska-Płoskonka, Justyna; Kuduk, Katarzyna; Niklińska, Maria

    Reaction of soil bacteria to drought and rewetting stress may depend on soil chemical properties. The objectives of this study were to test the reaction of different bacterial phyla to drought and rewetting stress and to assess the influence of different soil chemical properties on the reaction of soil bacteria to this kind of stress. The soil samples were taken at ten forest sites and measured for pH and the contents of organic C (Corg) and total N (Nt), Zn, Cu, and Pb. The samples were kept without water addition at 20 - 30 °C for 8 weeks and subsequently rewetted to achieve moisture equal to 50 - 60 % of their maximum water-holding capacity. Prior to the drought period and 24 h after the rewetting, the structure of soil bacterial communities was determined using pyrosequencing of 16S rRNA genes. The drought and rewetting stress altered bacterial community structure. Gram-positive bacterial phyla, Actinobacteria and Firmicutes, increased in relative proportion after the stress, whereas the Gram-negative bacteria in most cases decreased. The largest decrease in relative abundance was for Gammaproteobacteria and Bacteroidetes. For several phyla the reaction to drought and rewetting stress depended on the chemical properties of soils. Soil pH was the most important soil property influencing the reaction of a number of soil bacterial groups (including all classes of Proteobacteria, Bacteroidetes, Acidobacteria, and others) to drought and rewetting stress. For several bacterial phyla the reaction to the stress depended also on the contents of Nt and Corg in soil. The effect of heavy metal pollution was also noticeable, although weaker compared to other chemical soil properties. We conclude that soil chemical properties should be considered when assessing the effect of stressing factors on soil bacterial communities.

  7. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  8. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  9. Arid soil microbial enzymatic activity profile as affected by geographical location and soil degradation status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil health is critical for any successful remediation effort. Arid lands, with their minimal carbon and water contents, low nutritional status and restricted, seasonal microbial activity pose specific challenges to soil health restoration and by extension, restoration of ecosystem repr...

  10. Soil erodibility and processes of water erosion on hillslope

    NASA Astrophysics Data System (ADS)

    Bryan, Rorke B.

    2000-03-01

    The importance of the inherent resistance of soil to erosional processes, or soil erodibility, is generally recognized in hillslope and fluvial geomorphology, but the full implications of the dynamic soil properties that affect erodibility are seldom considered. In Canada, a wide spectrum of soils and erosional processes has stimulated much research related to soil erodibility. This paper aims to place this work in an international framework of research on water erosion processes, and to identify critical emerging research questions. It focuses particularly on experimental research on rill and interrill erosion using simulated rainfall and recently developed techniques that provide data at appropriate temporal and spatial scales, essential for event-based soil erosion prediction. Results show that many components of erosional response, such as partitioning between rill and interrill or surface and subsurface processes, threshold hydraulic conditions for rill incision, rill network configuration and hillslope sediment delivery, are strongly affected by spatially variable and temporally dynamic soil properties. This agrees with other recent studies, but contrasts markedly with long-held concepts of soil credibility as an essentially constant property for any soil type. Properties that determine erodibility, such as soil aggregation and shear strength, are strongly affected by climatic factors such as rainfall distribution and frost action, and show systematic seasonal variation. They can also change significantly over much shorter time scales with subtle variations in soil water conditions, organic composition, microbiological activity, age-hardening and the structural effect of applied stresses. Property changes between and during rainstorms can dramatically affect the incidence and intensity of rill and interrill erosion and, therefore, both short and long-term hillslope erosional response. Similar property changes, linked to climatic conditions, may also

  11. Measured and simulated soil water evaporation from four Great Plains soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  12. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms.

    PubMed

    Bonkowski, Michael; Roy, Jacques

    2005-03-01

    A gradient of microbial diversity in soil was established by inoculating pasteurized soil with microbial populations of different complexity, which were obtained by a combination of soil fumigation and filtering techniques. Four different soil diversity treatments were planted with six different grass species either in monoculture or in polyculture to test how changes of general microbial functions, such as catabolic diversity and nutrient recycling efficiency would affect the performance of the plant communities. Relatively harsh soil treatments were necessary to elicit visible effects on major soil processes such as decomposition and nitrogen cycling due to the high redundancy and resilience of soil microbial communities. The strongest effects of soil diversity manipulations on plant growth occurred in polycultures where interspecific competition between plants was high. In polycultures, soil diversity reduction led to a gradual, linear decline in biomass production of one subordinate grass species (Bromus hordeaceus), which was compensated by increased growth of two intermediate competitors (Aegilops geniculata, B. madritensis). This negative covariance in growth of competing grass species smoothed the effects of soil diversity manipulations at the plant community level. As a result, total shoot biomass production remained constant. Apparently the effects of soil diversity manipulations were buffered because functional redundancy at both, the microbial and the plant community level complemented each other. The results further suggests that small trade-offs in plant fitness due to general functional shifts at the microbial level can be significant for the outcome of competition in plant communities and thus diversity at much larger scales.

  13. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    PubMed

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  14. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    PubMed Central

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  15. Temperature dependence of soil water potential

    SciTech Connect

    Mohamed, A.M.O.; Yong, R.N. ); Cheung, S.C.H. )

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed within the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.

  16. Effect of corn or soybean row position on soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop plants can funnel water to the soil and increase water content more in the row relative to the interrow. Because the row intercepts more soil water after rains and higher root density, the soil may also dry out more between rains than does soil in the interrow. The purpose of this study was to ...

  17. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  18. Does distance from the sea affect a soil microarthropod community?

    NASA Astrophysics Data System (ADS)

    Wasserstrom, Haggai; Steinberger, Yosef

    2016-10-01

    Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0-10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.

  19. Stover removal effects on seasonal soil water availability under full and deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removing corn (Zea mays L.) stover for livestock feed or bioenergy feedstock may impact water availability in the soil profile to support crop growth. The role of stover in affecting soil profile water availability will depend on annual rainfall inputs as well as irrigation level. To assess how res...

  20. Water and heat fluxes in desert soils: 2. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Milly, P. C. D.

    1994-03-01

    yielded identical solutions in the upper 0.2 m of soil after infiltration of summer rain; however, the various initial water potentials were preserved throughout the year at depths greater than 0.2 m. Comparison of all four simulations showed that the predominantly upward liquid fluxes below a depth of 0.2 m were very sensitive to the differences in water retention functions and initial water potentials among simulations, because these factors strongly affected hydraulic conductivities. Comparison of numerical modeling results with chemical tracer data showed that values of downward vapor flux below the surface evaporation zone were of the same order of magnitude as those previously estimated by analysis of depth distributions of bomb 3H (volatile) and bomb 36Cl (nonvolatile).

  1. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    fluctuations in water content changes, with both root water uptake and root water excretion. The magnitude of the water content change was in the same order for all treatments, thus suggesting compensatory uptake. References Bakker G, Van der Ploeg MJ, de Rooij GH, Hoogendam CW, Gooren HPA, Huiskes C, Koopal LK and Kruidhof H. New polymer tensiometers: Measuring matric pressures down to the wilting point. Vadose Zone J. 6: 196-202, 2007. Blackman PG and Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48, 1985. Davies WJ and Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76, 1991. Gollan T, Passioura JB and Munns R. Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leafs. Aust. J. Plant Physiol. 13: 459-464, 1986. Gowing DJG, Davies WJ and Jones HG. A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J. Exp. Bot. 41: 1535-1540, 1990. Grace J. Environmental controls of gas exchange in tropical rain forests. In: Press, M.C, J.D. Scholes and M.G. Barker (ed.). Physiological plant ecology: the 39th Symposium of the British Ecological Society. Blackwell Science, United Kingdom, 1999. Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology 184: 56- 70, 2014. Mansfield TA and De Silva DLR. Sensory systems in the roots of plants and their role in controlling stomatal function in the leaves. Physiol. Chem. Phys. & Med. 26: 89-99, 1994. Sadras VO and Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Res. 47: 253-266, 1996. Schröder N, Lazarovitch N, Vanderborcht J, Vereecken H, Javaux M. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. Plant Soil 2013

  2. [Sizes of soil macropores and related main affecting factors on a vegetated basalt slope].

    PubMed

    Guan, Qi; Xu, Ze-Min; Tian, Lin

    2013-10-01

    The landslide on vegetated slopes caused by extreme weather has being increased steadily, and the preferential flow in soil macropores plays an important role in the landslide. By using water breakthrough curve and Poiseuille equation, this paper estimated the radius range, amount, and average volume of soil macropores on a vegetated basalt slope of Maka Mountain, Southwest China, and analyzed the distribution of the soil macropores and the main affecting factors. In the study area, the radius of soil macropores ranged from 0.3 to 1.8 mm, mainly between 0.5 and 1.2 mm. The large-radius macropores (1.4-1.8 mm) were lesser, while the small-radius macropores (< 1.4 mm) were more. With the development of soil profile, soil macropores were more in upper layers and lesser in deeper layers. The average volume of the macropores contributed 84.7% to the variance of steady effluent rate. Among the factors affecting the average volume of the large macropores, vegetations root mass had a linear relationship, with the correlation coefficient being 0.70, and soil organic matter content also had a linear relationship, with the correlation coefficient being 0.64.

  3. Temporal and soil management effects on soil infiltration and water content in a hillslope vineyard

    NASA Astrophysics Data System (ADS)

    Biddoccu, Marcella; Ferraris, Stefano; Cavallo, Eugenio

    2015-04-01

    The maintenance of bare soil in the vineyard's inter-rows with tillage, as well as other mechanized operations which increase the vehicle traffic, expose the soil to degradation, favoring overland flow and further threats as compaction, reduction of soil water holding capacity and water infiltration. Water infiltration is strongly controlled by field-saturated hydraulic conductivity, which depends primarily on soil texture and structure, and it is characterized by high spatial and temporal variability. Beyond the currently adopted soil management, some major causes in variability of infiltration rates are the history of cultivation and the structure of the first centimeters of the vineyard's soil. A study was carried out in two experimental vineyard plots included in the 'Tenuta Cannona Experimental Vine and Wine Centre of Regione Piemonte', located in NW Italy. The study was addressed to evaluate the temporal variations of the field-saturated hydraulic conductivity, in relation to the soil management adopted in the inter-rows of a hillslope vineyard. The investigation was carried out in a vineyard comparing the adoption of two different soil managements in the inter-rows: 1) conventional tillage and 2) controlled grass cover. Several series of double-ring of infiltration tests were carried out during a 2-years period of observation, using the simplified falling head technique (SFH). In order to take into account the effect of tractor traffic, the tests were done both inside the the track, the portion of soil affected by the transit of tractor wheels or tracks, and outside the track. Before the execution of each test, bulk density and initial soil water content close to the investigated area were determined. Relations among infiltration behavior and these parameters were analyzed. Field-saturated hydraulic conductivity (Kfs) at different sampling dates showed high variability, especially in the vineyard with cultivated soil. Indeed, highest infiltration rates were

  4. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  5. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  6. Sorption of dissolved organic matter in salt-affected soils: effect of salinity, sodicity and texture.

    PubMed

    Mavi, Manpreet S; Sanderman, Jonathan; Chittleborough, David J; Cox, James W; Marschner, Petra

    2012-10-01

    Loss of dissolved organic matter (DOM) from soils can have negative effects on soil fertility and water quality. It is known that sodicity increases DOM solubility, but the interactive effect of sodicity and salinity on DOM sorption and how this is affected by soil texture is not clear. We investigated the effect of salinity and sodicity on DOM sorption in soils with different clay contents. Four salt solutions with different EC and SAR were prepared using combinations of 1M NaCl and 1M CaCl(2) stock solutions. The soils differing in texture (4, 13, 24 and 40% clay, termed S-4, S-13, S-24 and S-40) were repeatedly leached with these solutions until the desired combination of EC and SAR (EC(1:5) 1 and 5dSm(-1) in combination with SAR <3 or >20) was reached. The sorption of DOC (derived from mature wheat straw) was more strongly affected by SAR than by EC. High SAR (>20) at EC1 significantly decreased sorption in all soils. However, at EC5, high SAR did not significantly reduce DOC sorption most likely because of the high electrolyte concentration of the soil solution. DOC sorption was greatest in S-24 (which had the highest CEC) at all concentrations of DOC added whereas DOC sorption did not differ greatly between S-40 and S-4 or S-13 (which had higher concentrations of Fe/Al than S-40). DOC sorption in salt-affected soil is more strongly controlled by CEC and Fe/Al concentration than by clay concentration per se except in sodic soils where DOC sorption is low due to the high sodium saturation of the exchange complex.

  7. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  8. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems.

    PubMed

    Pavelic, P; Dillon, P J; Mucha, M; Nakai, T; Barry, K E; Bestland, E

    2011-05-01

    In this study the effect of soil type, level of pre-treatment, ponding depth, temperature and sunlight on clogging of soil aquifer treatment (SAT) systems was evaluated over an eight week duration in constant temperature and glasshouse environments. Of the two soil types tested, the more permeable sand media clogged more than the loam, but still retained an order of magnitude higher absolute permeability. A 6- to 8-fold difference in hydraulic loading rates was observed between the four source water types tested (one potable water and three recycled waters), with improved water quality resulting in significantly higher infiltration. Infiltration rates for ponding depths of 30 cm and 50 cm were higher than 10 cm, although for 50 cm clogging rates were higher due to greater compaction of the clogging layer. Overall, physical clogging was more significant than other forms of clogging. Microbial clogging becomes increasingly important when the particulate concentrations in the source waters are reduced through pre-treatment and for finer textured soils due to the higher specific surface area of the media. Clogging by gas binding took place in the glasshouse but not in the lab, and mechanical clogging associated with particle rearrangement was evident in the sand media but not in the loam. These results offer insight into the soil, water quality and operating conditions needed to achieve viable SAT systems.

  9. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants' source water

    NASA Astrophysics Data System (ADS)

    Tang, Kuilian; Feng, Xiahong

    2001-02-01

    Many studies have demonstrated that the isotopic composition of plants' source water is the main factor affecting the isotopic composition of tree rings. Because of soil hydrological processes, soil water as the source water for plants may isotopically differ from precipitation that contains climatic information (such as surface temperature). This study addresses the effects of soil hydrological processes on the isotopic compositions of soil water and discusses how these effects affect interpretations of tree ring data in isotopic dendroclimatology. We collected precipitation, soil gas at two depths (20 and 50 cm), and twigs from a maple tree ( Acer saccharum) on a biweekly basis during the growing season in 1997-1999 at Hanover, NH, USA. Water was extracted from the twig samples by vacuum distillation. All water samples were analyzed for both δD and δ 18O. Soil CO 2 was extracted from soil gas and measured for the δ 18O values, and using the soil temperature and assuming isotopic equilibrium between CO 2 and H 2O, we calculated the δ 18O values of soil water. Comparisons among the isotopic time series of each type of sample indicate the following. (1) The isotopic composition of soil water is much less variable than that of precipitation, suggesting isotopic mixing between waters of different precipitation events. (2) In early spring, soil water at all depths is isotopically similar to winter precipitation, but with time the surface soil water becomes progressively enriched in deuterium and 18O due to infiltration of summer rain and enrichment through soil water evaporation. (3) The influence of summer precipitation decreases with increasing depth, and soil at 50 cm can only receive water from large storms. (4) Replacement of old soil water with new infiltrating water is dependent upon frequency and intensity of growing season precipitation, and it is generally more efficient in a wet year than in a dry year. (5) The tree we studied uses water mainly from near

  10. Estimating root zone soil water content using limited soils information and surface soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Heathman, Gary Claude

    2001-10-01

    The various hydrologic processes of infiltration, redistribution, drainage, evaporation, and water uptake by plants are strongly interdependent, as they occur sequentially or simultaneously. An important state variable that strongly influences the magnitude to which these rate processes occur is the amount of water present within the root zone, and in particular, the top few centimeters near the soil surface. Traditionally, measurements of soil moisture have been limited to point measurements made in the field. In general, averages of point measurements are used to characterize the soil moisture of an area, but these averages seldom yield information that is adequate to characterize large scale hydrologic processes. Recent advancements in remote sensing now make it possible to obtain areal estimates of surface soil moisture. The use of remotely sensed data to estimate surface soil moisture, combined with soil water and hydrologic modeling, provides a unique opportunity to advance our understanding of hydrologic processes at a much larger scale. Standard techniques for measuring soil moisture have been well documented, with commercial instrumentation being widely available. Various computer models have been developed to estimate soil moisture in the root and vadose zone, although their application over large scales is limited due to varying spatial and temporal field conditions. It is the combination of ground-based data (in-situ measurements), near-surface soil moisture data, and modeling that form the basis for this research. The interactive use of field research, remote sensing ground truth data, and integrated systems modeling is used to describe surface and profile soil moisture conditions at several locations within a large watershed. Successful application of this approach should improve our capabilities for estimating soil hydraulic properties and to better estimate water and chemical transport in the root zone, thus enhancing water use efficiency and plant

  11. A comparative modeling study of soil water dynamics in a desert ecosystem

    NASA Astrophysics Data System (ADS)

    Kemp, Paul R.; Reynolds, James F.; Pachepsky, Yakov; Chen, Jia-Lin

    1997-01-01

    We compared three different soil water models to evaluate the extent to which variation in plant growth form and cover and soil texture along a topographic gradient interact to affect relative rates of evaporation and transpiration under semiarid conditions. The models all incorporated one-dimensional distribution of water in the soil and had separate functions for loss of water through transpiration and soil evaporation but differed in the degree of mechanism and emphasis. PALS-SW (Patch Arid Lands Simulator-Soil Water) is a mechanistic model that includes soil water fluxes and emphasizes the physiological control of water loss by different plant life forms along the gradient. 2DSOIL is a mechanistic model that emphasizes the physical aspects of soil water fluxes. SWB (Soil Water Budget) is a simple water budget model that has no soil water redistribution and includes simplified schemes for soil evaporation and transpiration by different life forms. The model predictions were compared to observed soil water distributions at five positions along the gradient. All models predicted soil water distributions reasonably well and, for the most part, predicted similar trends along the transect in the fractions of water lost as soil evaporation versus transpiration. Transpiration was lowest (about 40% of total evapotranspiration (ET)) for the creosote bush community, which had the lowest plant cover (30% peak cover). The fraction of ET as transpiration increased with increasing plant cover, with 2DSOIL predicting the highest transpiration (60% of total ET) for the mixed vegetation community (60% peak cover) on relatively fine textured soil and PALSr SW predicting highest transpiration (69% of total ET) for the mixed vegetation community (70% peak cover) on relatively coarse textured soil. The community type had an effect on the amount of water lost as transpiration primarily via depth and distribution of roots. In this respect, PALS-SW predicted greatest differences among

  12. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  13. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  14. Water percolation through the root-soil interface

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Kroener, Eva; Vontobel, Peter; Kaestner, Anders; Carminati, Andrea

    2016-09-01

    Plant roots exude a significant fraction of the carbon assimilated via photosynthesis into the soil. The mucilaginous fraction of root exudates affects the hydraulic properties of the soil near the roots, the so called rhizosphere, in a remarkable and dynamic way. After drying, mucilage becomes hydrophobic and limits the rewetting of the rhizosphere. Here, we aim to find a quantitative relation between rhizosphere rewetting, particle size, soil matric potential and mucilage concentration. We used a pore-network model in which mucilage was randomly distributed in a cubic lattice. The general idea was that the mucilage concentration per solid soil surface increases the contact angle between the liquid and solid phases consequently limiting the rewetting of pores covered with dry mucilage. We used the Young-Laplace equation to calculate the mucilage concentration at which pores are not wettable for varying particle sizes and matric potentials. Then, we simulated the percolation of water across a cubic lattice. Our simulations predicted that above a critical mucilage concentration water could not flow through the porous medium. The critical mucilage concentration decreased with increasing particle size and decreasing matric potential. The model was compared with experiments of capillary rise in soils of different particle size and mucilage concentration. The experiments confirmed the percolation behaviour of the rhizosphere rewetting. Mucilage turned hydrophobic at concentrations above 0.1 mg/cm2. The critical mucilage concentration at matric potential of -2.5 hPa was ca. 1% [g/g] for fine sand and 0.1 % [g/g] for coarse sand. Our conceptual model is a first step towards a better understanding of the water dynamics in the rhizosphere during rewetting and it can be used to predict in what soil textures rhizosphere water repellency becomes a critical issue for root water uptake.

  15. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L.) Grain Yield, Yield Components and Water Productivity in Three Water Regimes

    PubMed Central

    Dou, Fugen; Soriano, Junel; Tabien, Rodante E.; Chen, Kun

    2016-01-01

    The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar (‘Cocodrie’ and ‘Rondo’), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice. PMID:26978525

  16. Scaling preferential flow processes in agricultural soils affected by tillage and trafficking at the field scale

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves

    2016-04-01

    There is an accumulation of experimental evidences that agricultural soils, at least the top horizons affected by tillage practices, are not homogeneous and present a structure that is strongly dependent on farming practices like tillage and trafficking. Soil tillage and trafficking can create compacted zones in the soil with hydraulic properties and porosity which are different from those of the non-compacted zones. This spatial variability can strongly influence transport processes and initiate preferential flow. Two or three dimensional models can be used to account for spatial variability created by agricultural practices, but such models need a detailed assessment of spatial heterogeneity which can be rather impractical to provide. This logically raises the question whether and how one dimensional model may be designed and used to account for the within-field spatial variability in soil structure created by agricultural practices. Preferential flow (dual-permeability) modelling performed with HYDRUS-1D will be confronted to classical modelling based on the Richards and convection-dispersion equations using HYDRUS-2D taking into account the various soil heterogeneities created by agricultural practices. Our goal is to derive one set of equivalent 1D soil hydraulic parameters from 2D simulations which accounts for soil heterogeneities created by agricultural operations. A field experiment was carried out in two phases: infiltration and redistribution on a plot by uniform sprinkle irrigation with water or bromide solution. Prior to the field experiment the soil structure of the tilled layer was determined along the face of a large trench perpendicular to the tillage direction (0.7 m depth and 3.1 m wide). Thirty TDR probes and tensiometers were installed in different soil structural zones (Δ compacted soil and Γ macroporous soil) which ensured soil water monitoring throughout the experiment. A map of bromide was constructed from small core samples (4 cm diam

  17. Cob component of corn residue can be used as a biofuel feedstock with little impact on soil and water conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of corn residue as a biofuel feedstock raises a number of concerns related to soil and water conservation. Soil compaction, increased susceptibility for wind and water erosion, increased nutrient removal, and loss of soil organic matter are potential negative affects associated with residue remo...

  18. Capacitive Soil Moisture Sensor for Plant Watering

    NASA Astrophysics Data System (ADS)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  19. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    PubMed

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides.

  20. Modeling structural influences on soil water retention

    USGS Publications Warehouse

    Nimmo, J.R.

    1997-01-01

    A new model quantities the effect of soil structure, considered as the arrangement of particles in the soil, on soil water retention. The model partitions the pore space into texture-related and structure-related components, the textural component being what can be deduced to exist if the arrangement of the particles were random, and the structural component being the remainder. An existing model, based on particle-size distributions, represents the textural component, and a new model, based on aggregate-size distributions, represents the structural component. This new model makes use of generalized properties that vary little from one medium to another, thereby eliminating any need for empirically tilted parameters. It postulates a particular character of the structural pore space that in same ways resembles texture-related pore space, but with pore shape related to the breadth of the aggregate-size distribution. To predict a soil water retention curve, this model requires the soil's porosity and particle- and aggregate-size distributions. Tested with measurements for 17 samples from two sources, it fits the data much better than does a model based on texture alone. Goodness of fit indicated by correlation coefficients ranged from 0.908 to 0.998 for the new model, compared with a range of 0.686 in 0.955 for the texture-based model.

  1. Microclimate affects soil chemical and mineralogical properties of cold-alpine soils of the Altai Mountains (Russia)

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Lessovaia, Sofia; Chistyakov, Kirill; Inozemzev, Svyatoslav

    2013-04-01

    Precipitation and temperature particularly influence soil properties by affecting the type and rates of chemical, biological, and physical processes. To a great extent, element leaching and weathering rates are governed by these processes. Vegetation growth and decomposition, that depend on temperature and the other environmental factors, influence weathering reactions through the production of acidity and organic ligands that may promote chemical weathering and subsequent elemental leaching. The present work focuses on cold-alpine soils of the Altai Mountains (Siberia, Russia). The investigated field site (2380 m asl) is characterised by cold winters (with absolute minimum temperatures of -50°C; a mean temperature in January is -21°C) and cool summers (+8°C mean temperature in July). The mean annual temperature is -5.4°C. Annual precipitations are relatively low (500 mm with 20% of precipitation in July). Permafrost is widespread and occurs sometimes at a depth of 30 to 50 cm. Several studies have shown the influence of slope aspect and the resulting microclimate on soil weathering and development. There is however no unanimous agreement whether weathering is more intense on north- or south-facing slopes and whether small differences in thermal conditions may lead to detectable differences. Higher temperatures do not necessarily lead to higher weathering rates in cold alpine regions as shown by previous investigations in the European Alps. Water fluxes through the soils seemed to be more important. We consequently investigated soils in the cold-alpine environment of the Central Altai Mountains on a very small area close to a local glacier tongue. Half of the investigated soil profiles were south-facing (5) and the other half north-facing (5). The soils have the same parent material (mica-rich till), altitude, topography, and soil age. The vegetation is alpine grassland that is partially intersected with some juniper and mosses, which portion in the soil

  2. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Jordi Diaz-Ferraro

    2000-02-28

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology for remediating petroleum-contaminated soils. Most current remediation practices generally fail (or are cost prohibitive) to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites or they require the use of organic solvents to achieve removal, at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. Initial work is being conducted at SRI to measure the solubility and rate of solubilization of selected PAHs (anthracene, fluoranthene, pyrene, and chrysene) in water, using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. Preliminary results with pyrene and fluoranthene in water clearly indicate a significant enhancement of solubility with increase in temperature. During this quarter, we conducted experiments with pyrene in the temperature range 200 to 300 C and observed a great enhancement in solubility with an increase in temperature. We also started experiments with real-world soil samples purchased from the subcontractor.

  3. Behavior of fenhexamid in soil and water.

    PubMed

    Abbate, Cristina; Borzì, Daniela; Caboni, Pierluigi; Baglieri, Andrea; Gennari, Mara

    2007-01-01

    A study was conducted to investigate fenhexamid (FEX) behavior in soil and in water. FEX proved to be rather stable at acid pH but showed slight degradation at neutral and alkaline pH. After 101 days of FEX spiking of a soil sample, 94% at pH 4, 12% at pH 7 and 23% at pH 9 of the active ingredient was still present. In natural water the rate of FEX disappearance appeared to be slow which may be due to abiotic rather than biotic processes. The soil degradation tests showed low persistence of the active ingredient if a good microflora activity is guaranteed (DT(50) about 1 day). Moreover, in absence of microorganisms, FEX proved to be stable. Humidities of 25 and 50% of Water Holding Capacity (WHC) influenced in equal measure the rate of degradation. From the same soil, a bacterium was isolated and identified as Bacillus megaterium, which was able to metabolize FEX with the hydroxylation of the cyclohexane ring. Moreover, FEX showed an elevated affinity for humic acid (73%), smectite (31%), and ferrihydrite(20%) and low affinity for vermiculite (11%) and kaolinite (7%).

  4. Simulation of Soil Water Content Variability in a Heavy Clay Soil under Contrasting Soil Managements

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; Vanderlinden, K.; Martínez, G.; Espejo, A. J.; Giráldez, J. V.

    2012-04-01

    Soil water content (SWC) is a key variable for numerous physical, chemical and biological processes that take place at or near the soil surface. Understanding the spatial and temporal variability of SWC at the field scale is of prime importance for implementing efficient measurement strategies in applications. The aim of this study was to characterize the spatial and temporal variation of gravimetric SWC in a heavy clay soil, in a wheat-sunflower-legume rotation under conventional (CT) and no-till (NT) using a simple water balance model. An experimental field in SW Spain, where conventional (CT) and no-till (NT) management of a heavy clay soil are being compared since 1983, was sampled for gravimetric SWC on 38 occasions during 2008 and 2009. Topsoil clay content across the six plots was on average 55%, with a standard deviation of 2.7%. The soil profile was sampled at 54 locations, evenly distributed over the three CT and NT plots, at depths of 0-10, 25-35, and 55-65 cm. Topsoil water retention curves (SWRC) were determined in the laboratory on undisturbed soil samples from each of the 54 locations. A weather station recorded daily precipitation and evapotranspiration, as calculated by the Penman-Monteith FAO equation. The water balance was calculated using the Thornthwaite-Mather model with a daily time step. Three parameters, water holding capacity, and water evaporation corrector coefficients for each of the two years, were inversely estimated at the 54 SWC observation points and probability density functions were identified. Spatial variability of SWC was estimated using a Monte Carlo approach, and simulated and observed variability were compared. This Monte Carlo scheme, using a simple water balance model with only three parameters, was found to be useful for evaluating the influence of soil management on the variability of SWC in heavy clay soils.

  5. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  6. Proteomic profiling: a novel approach to understanding the biological causes of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Doerr, Stefan H.; Urbanek, Emilia; Jones, Alun; Dudley, Ed

    2010-05-01

    Soil water repellency is a common phenomenon affecting a wide range of soil and land use types in different climates and is considered "the norm rather than the exception with its degree being variable". In all but the most severe cases, soil water repellency is transient with soils wetting eventually after prolonged wet weather and returning, when soil moisture content falls below the critical value. Despite the far-reaching environmental and (agro-)economic consequences, the fundamental biological causes of soil water repellency and its transient behaviour remain poorly understood. It is widely accepted that soil water repellency is caused by organic compounds coating soil particle surfaces. This reduces the particle's surface tension to values lower than that of water, which, as a net effect, inhibits the intrusion of liquid water into the soil pore space. Microbial as well as plant-derived substances have been implicated as sources of these organic materials, while some microbes have also been identified as degraders and/or emulsifiers of hydrophobic compounds. Common hydrophobic compounds and metabolites (e.g. alkanes and fatty acids) have been isolated from both wettable and water repellent soils in similar amounts indicating that their relevance is ambiguous. Even greater uncertainty exists about the role of soil micro-organisms in the development, reduction and temporal variability of soil water repellency. Importantly, certain filamentous fungi and actinomycete bacteria are able to render their hydrophilic cell surface hydrophobic, for example, during spore formation and hyphal foraging through air-containing pores in soil, by producing extracellular hydrophobic proteins. Beyond their own cell surface, the extracellular proteins can form highly recalcitrant hydrophobic surfaces on the hydrophilic side of amphiphilic, i.e. air-water or soil particle, interfaces. Remarkably, the proteins from fungi can also adhere to hydrophobic surfaces under drying

  7. Herbicide retention in soil as affected by sugarcane mulch residue.

    PubMed

    Selim, H M; Zhou, L; Zhu, H

    2003-01-01

    Reducing surface and subsurface losses of herbicides in the soil and thus their potential contamination of water resources is a national concern. This study evaluated the effectiveness of sugarcane (Saccharum spp.) residue (mulch cover) in reducing nonpoint-source contamination of applied herbicides from sugarcane fields. Specifically, the effect of mulch residue on herbicide retention was quantified. Two main treatments were investigated: a no-till treatment and a no-mulch treatment. The amounts of extractable atrazine [2-chloro-4-(isopropylamino)-6-ethylamino-s-triazine], metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one], and pendimethalin [N-(ethylpropyl)-3,4-dimethyl-2,6-dinitroaniline] from the mulch residue and the surface soil layer were quantified during the 1999 and 2000 growing seasons. Significant amounts of applied herbicides were intercepted by the mulch residue. Extractable concentrations were at least one order of magnitude higher for the mulch residue compared with that retained by the soil. Moreover, the presence of mulch residue on the sugarcane rows was highly beneficial in minimizing runoff losses of the herbicides applied. When the residue was not removed, a reduction in runoff-effluent concentrations, as much as 50%, for atrazine and pendimethalin was realized. Moreover, the presence of mulch residue resulted in consistently lower estimates for rates of decay or disappearance of atrazine and pendimethalin in the surface soil.

  8. Soil Water Sensing-Focus on Variable Rate Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  9. Sensible heat observations reveal soil-water evaporation dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet, routine measurments are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth a...

  10. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    at least 45% and soil loss by at least 59% in relation to an abandoned and degraded soil (bare soil) (Garcia-Estringana et al., 2010a). D. pentaphyllum, M. strasseri and C. arborescens were more effective in reducing runoff and soil loss (at least 83% and 97% respectively) than R. sphaerocarpa (45% and 59% respectively). Pisctacia Lentiscus L reduced the soil losses in 87% and the runoff rates (68%) meanwhile Quercus coccifera L reached a larger reduction (95% and 88 %) in comparison to herbicide treated agriculture soil. So, all shrub species protected the soil, but not in the same way. In relation to rainfall reaching the soil surface, great differences were observed among species, with interception losses varying between 10% for R. sphaerocarpa to greater than 36% for D. pentaphyllum and M. strasseri, and with stemflow percentages changing between less than 11% for D. pentaphyllum and M. strasseri and 20% for R. sphaerocarpa (Garcia-Estringana et al., 2010b). Rainfall interception on Pistacia Lentiscus and Quercus coccifera were 24% and 34% respectively for the two years of measurements. The integration of the effects of Mediterranean shrub vegetation on soil protection and rainfall partitioning fluxes facilitates understanding the effects of changes in vegetation type on soil and water resources. From this perspective, the interesting protective effect of D. pentpahyllum and M. strasseri, reducing intensely runoff and soil loss contrasts with the dangerous reduction in rainfall reaching the soil surface. Soil protection is essential in semiarid and arid environments, but a proper assessment of the effects on water availability is critical because of water is a scant resource in these kinds of environments. Pistacia Lentiscus and Quercus coccifera shown both a high capacity to intercept rainfall, increase infiltration and reduce the soil losses. We suggest to apply similar research programs into recently fire affected land as the role of vegetation after the fire

  11. Archaeol: an indicator of methanogenesis in water-saturated soils.

    PubMed

    Lim, Katie L H; Pancost, Richard D; Hornibrook, Edward R C; Maxfield, Peter J; Evershed, Richard P

    2012-01-01

    Oxic soils typically are a sink for methane due to the presence of high-affinity methanotrophic Bacteria capable of oxidising methane. However, soils experiencing water saturation are able to host significant methanogenic archaeal communities, potentially affecting the capacity of the soil to act as a methane sink. In order to provide insight into methanogenic populations in such soils, the distribution of archaeol in free and conjugated forms was investigated as an indicator of fossilised and living methanogenic biomass using gas chromatography-mass spectrometry with selected ion monitoring. Of three soils studied, only one organic matter-rich site contained archaeol in quantifiable amounts. Assessment of the subsurface profile revealed a dominance of archaeol bound by glycosidic headgroups over phospholipids implying derivation from fossilised biomass. Moisture content, through control of organic carbon and anoxia, seemed to govern trends in methanogen biomass. Archaeol and crenarchaeol profiles differed, implying the former was not of thaumarcheotal origin. Based on these results, we propose the use of intact archaeol as a useful biomarker for methanogen biomass in soil and to track changes in moisture status and aeration related to climate change.

  12. Experimental manipulation of water levels in two French riverine grassland soils

    NASA Astrophysics Data System (ADS)

    van Oorschot, Mark; van Gaalen, Nils; Maltby, Ed; Mockler, Natalie; Spink, Andrew; Verhoeven, Jos T. A.

    2000-01-01

    In this experimental study, we simulated the effects of different river flooding regimes on soil nutrient availability, decomposition and plant production in floodplain grasslands. This was done to investigate the influences of soil water contents on nutrient cycling. Water levels were manipulated in mesocosms with intact soil turfs from two French floodplain grasslands. Three water levels were established: a `wet' (water level at the soil surface), an `intermediate' (water level at -20 cm) and a `dry' treatment (water level at -120 cm). With increasing soil moisture, soil pH became more neutral, while redox-potential and oxygen concentration decreased. The `dry' treatment showed much lower values for process rates in soil and vegetation than the `intermediate' and `wet' treatments. Regressions showed that soil C-evolution and N-mineralization were positively related to soil moisture content. Not all mineralized N was available for plant uptake in the wet treatment, as a considerable part was denitrified here. Denitrification was especially high as soil water contents increased to levels above field capacity, where redox-potentials sharply dropped. Further, soil P availability was higher under wet conditions. In the `dry' treatment, soil water content was close to the wilting point and plant production was low. In the `intermediate' treatment, plant production was most likely limited by nitrogen. The `wet' treatment did not result in a further increase in plant production. Dam construction and river bed degradation can result in lower river levels and summer drought on floodplains. This experimental study suggests that summer drought on floodplain soils reduces decomposition of soil organic matter, nutrient availability, denitrification, plant production and nutrient uptake. This can affect the capacity of floodplains to remove or retain nutrients from river water in a negative way.

  13. Plant Response to Differential Soil Water Content and Salinity

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Dara, A.; Kamai, T.; Ngo, A.; Walker, R.; Hopmans, J. W.

    2011-12-01

    Root-zone soil water content is extremely dynamic, governed by complex and coupled processes such as root uptake, irrigation, evaporation, and leaching. Root uptake of water and nutrients is influenced by these conditions and the processes involved. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants

  14. Soil organic carbon covariance with soil water content; a geostatistical analysis in cropland fields

    NASA Astrophysics Data System (ADS)

    Manns, H. R.; Berg, A. A.; von Bertoldi, P.

    2013-12-01

    Soil texture has traditionally represented the rate of soil water drainage influencing soil water content (WC) in the soil characteristic curves, hydrological models and remote sensing field studies. Although soil organic carbon (OC) has been shown to significantly increase the water holding capacity of soil in individual field studies, evidence is required to consider soil OC as a significant factor in soil WC variability at the scale of a remote sensing footprint (25 km2). The relationship of soil OC to soil WC was evaluated over 50 fields during the Soil Moisture Active Passive (SMAP) soil WC field sampling campaign over southern Manitoba, Canada. On each field, soil WC was measured at 16 sample points, at 100 m spacing to 5 cm depth with Stevens hydra probe sensors on 16 sampling dates from June 7 to July 19, 2012. Soil cores were also taken at sampling sites on each field, each sampling day, to determine gravimetric moisture, bulk density and particle size distribution. On 4 of the sampling dates, soil OC was also determined by loss on ignition on the dried soil samples from all fields. Semivariograms were created from the field mean soil OC and field mean surface soil WC sampled at midrow, over all cropland fields and averaged over all sampling dates. The semivariogram models explained a distinct relationship of both soil OC and WC within the soil over a range of 5 km with a Gaussian curve. The variance in soil that soil OC and WC have in common was a similar Gaussian curve in the cross variogram. Following spatial interpolation with Kriging, the spatial maps of soil OC and WC were also very similar with high covariance over the majority of the sampling area. The close correlation between soil OC and WC suggests they are structurally related in the soil. Soil carbon could thus assist in improving downscaling methods for remotely sensed soil WC and act as a surrogate for interpolation of soil WC.

  15. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  16. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  17. Emission and distribution of fumigants as affected by soil moistures in three different textured soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stringent environmental regulations are being developed to control the emission of soil fumigants to reduce air pollution. Water application is a low-cost strategy for fumigant emission control and applicable for a wide range of commodity groups, especially those with low profit margins. Although it...

  18. Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †

    PubMed Central

    Tate, Robert L.

    1979-01-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393

  19. Chemical and physical interactions of an in situ oil-shale process water with a surface soil

    SciTech Connect

    Leenheer, J.A.; Stuber, H.A.; Noyes, T.I.

    1981-01-01

    Chemical and physical interactions of an in situ oil-shale process (retort) water with a surface soil were investigated by soil and effluent analyses of three soil-column experiments whereby soil was leached with: (1) Distilled water, (2) a synthetic retort water containing only inorganic solutes, and (3) an actual retort water produced by in situ processing of oil shale. Major findings of this study include an ion exchange-precipitation reaction, in which exchangeable calcium in the soil is displaced by ammonium from retort water and precipitated as carbonate by inorganic carbon in retort water. This precipitation process affects soil permeability. Ammonium was strongly adsorbed from retort water by the soil, and was not removed by subsequent distilled-water leaching and drying. 26 refs.

  20. Observational Evidence that Soil Moisture Variations Affect Precipitation

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Higgins, R. Wayne; VandenDool, Huug M.

    2002-01-01

    Land-atmosphere feedback, by which precipitation-induced soil moisture anomalies affect subsequent precipitation, may be an important element of Earth's climate system, but its very existence has never been demonstrated conclusively at regional to continental scales. Evidence for the feedback is sought in a 50-year observational precipitation dataset covering the United States. The precipitation variance and autocorrelation fields are characterized by features that agree (in structure, though not in magnitude) with those produced by an atmospheric general circulation model (AGCM). Because the model-generated features are known to result from land-atmosphere feedback alone, the observed features are highly suggestive of the existence of feedback in nature.

  1. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water

  2. Application of minidisk infiltrometer to estimate soil water repellency

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír

    2016-04-01

    accounts for the effects of gravity and lateral expansion. According to Pekárová et al. (2015), the combination of all the ethanol and water sorptivities was used to calculate an aggregated repellency index, RIa, that accounts for the influence of spatial variability. Alternatively, the plot of the water cumulative infiltration vs. square root of time, exhibiting a clear "hockey-stick-like" shape, was used to estimate a single-test repellency index, RI∗, that overcomes the limitations of the traditional approach given that information on both the hydrophobic and the wettable states of soil are gathered from a unique infiltration test. The mean RI values were affected by the technique used to estimate Sw and Se. In particular, the choice of a fixed time interval lead to overestimation of RI up to a factor of 3.2 as compared with the other techniques. The RIa yielded unbiased estimations of the mean RI values and also allowed to quantify the variability of SWR within a given area. A statistically significant relationship was found between RI∗ and RI but also between RI∗ and the water retention cessation time, that is the time hydrophobic turns into wettable soil, thus indicating that RI∗ is potentially able detect both the degree and the persistence of SWR. Pekárová P., Pekár J., Lichner Ľ. 2015. A new method for estimating soil water repellency index. Biologia, 70(11):1450-1455.

  3. Soil water and temperature patterns in an arid desert dune sand

    NASA Astrophysics Data System (ADS)

    Berndtsson, Ronny; Nodomi, Kanichi; Yasuda, Hiroshi; Persson, Thomas; Chen, Heshen; Jinno, Kenji

    1996-11-01

    Under arid natural conditions, soil water content governs and limits the number and size of perennial plant species. Thus, plant-available soil water is the main constraint for sustainable control of desert encroachment. To evaluate possibilities for re-vegetation of bare sand surfaces, soil water and temperature patterns for typical sand dunes in a desert climate were investigated. Bare and vegetated soil transects were selected for observation of soil water content and temperature. The investigated soil transects covered crest-to-crest spacings (about 60 m horizontally and 15 m vertically) in a shifting sand dune area. Observations were made at Shapotou field research station bordering the Tengger Desert in Northwestern China. The paper presents two-dimensional properties of soil water content (0.1-3.0 m depth) and temperature (0-1.0 m depth) before and after rainfall. Rainfall (15-22 mm) affected soil water distribution down to 1.5-2.0 m and temperature distribution down to 1.0 m. Soil water appeared to be transported through the apparently highly pervious and homogeneous sand along the dune slopes. High water contents and, thus, infiltration occurred mainly at the non-sloping parts, i.e. the dune crests and bottoms. Rainfall changed the temperature patterns from a mainly horizontally layered appearance before the rainfall to increasingly vertically shaped patterns.

  4. The diversity of permafrost-affected soils in the Lena River Delta and its hinterland

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Kutzbach, Lars; Yakshina, Irina; Pfeiffer, Eva-Maria

    2013-04-01

    The North-Siberian Lena River Delta is the largest Arctic delta and an important interface between the Arctic Ocean in the North and the large Siberian land masses in the South. This delta consists not only of Holocene deltaic sediment deposits as a river terrace and the modern active floodplains but also of remnants of the former Pleistocene mainland including large islands of ice-complex sediments and the Arga-Muora-Sise Island, which is composed of pure sand sediments of still debated origin. The highly diverse landscape structure of the Lena River Delta is reflected by a great variety of permafrost-affected soils (gelisols). This study aims at describing this great gelisol diversity and at analysing the dominant soil-forming processes in this comparatively scarcely studied soil region. The soil development in the investigated continuous permafrost region is limited by the short thawing period of around three months (June to September) and takes place in the shallow (< 1 m) seasonally thawed active layer. The geological parent material plays an important role for the development of soils in the Lena River Delta region. The distribution of the various soil types closely follows the pattern of the geomorphic units characterised by differing sedimentation conditions. The properties and genesis of the soils on the Holocene river terrace and the modern floodplains are strongly affected by the enormous amounts of fluvial sediments (about 12 x 106 tons per year) brought by the Lena River into its delta. The fluvial sedimentation together with the also pronounced aeolian sedimentation results in a fast vertical growth of soils. The upward rise of the soil surface leads to an upward movement of the permafrost table resulting in fast incorporation of soil material formed in the supra-permafrost zone into the permafrost. Due to the morphodynamics of ice-wedge polygons and resulting formation of patterned ground with elevated rims and depressed and water-saturated centres

  5. Characterization of soil water content variability and soil texture using GPR groundwave techniques

    SciTech Connect

    Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y.

    2010-08-15

    Accurate characterization of near-surface soil water content is vital for guiding agricultural management decisions and for reducing the potential negative environmental impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this parameter is often both spatially and temporally variable, and obtaining sufficient measurements to describe the heterogeneity can be prohibitively expensive. Understanding the spatial correlation of near-surface soil water content can help optimize data acquisition and improve understanding of the processes controlling soil water content at the field scale. In this study, ground penetrating radar (GPR) methods were used to characterize the spatial correlation of water content in a three acre field as a function of sampling depth, season, vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas, and measurements of the GPR groundwave were used to estimate soil water content at four different times. Additional water content estimates were obtained using time domain reflectometry measurements, and soil texture measurements were also acquired. Variograms were calculated for each set of measurements, and comparison of these variograms showed that the horizontal spatial correlation was greater for deeper water content measurements than for shallower measurements. Precipitation and irrigation were both shown to increase the spatial variability of water content, while shallowly-rooted vegetation decreased the variability. Comparison of the variograms of water content and soil texture showed that soil texture generally had greater small-scale spatial correlation than water content, and that the variability of water content in deeper soil layers was more closely correlated to soil texture than were shallower water content measurements. Lastly, cross-variograms of soil texture and water content were calculated, and co-kriging of water content estimates and soil texture

  6. Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands

    NASA Astrophysics Data System (ADS)

    Manns, Hida R.; Berg, Aaron A.; Colliander, Andreas

    2015-09-01

    Remote sensing has the potential to deliver global soil water content (SWC) on vast scales with frequent revisit times for progress in the fields of climate, weather forecasting, agriculture and hydrology. Although surface roughness, vegetation and soil texture have been established as sources of variability in passive microwave interpretation, soil organic carbon (SOC) has not typically been considered as a factor that affects SWC estimation during field sampling campaigns. SOC was observed along with soil texture and bulk density during the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12), the Soil Moisture Active Passive (SMAP) satellite algorithm development field sampling campaign held June 6 to July 19 in Southern Manitoba, Canada. Aerial measurements from the PALS (Passive Active L-band System) instrument were recorded over agricultural fields and forest areas from aircraft while SWC was measured simultaneously on the ground with resistance probes on 17 sampling dates. Additionally, fields were sampled for surface roughness, vegetation growth and water content, soil and vegetation temperature and soil physical characteristics. A soil core was collected on each field each sampling time to assess bulk density, soil particle size and SOC. SOC accounted for more variability in the anomalies between PALS and ground sampled SWC than sand, clay or bulk density, although all soil variables explained significant variability. With analysis by partial least squares multiple regression over 11 sampling dates and 39 fields where both ground and PALS data were well represented, only SOC contributed significantly to the regression of SWC beyond the variance all soil variables had in common. The significance of SOC in the relative SWC anomalies was highest in very wet and very dry conditions and in loam soil over all sampling dates, while bulk density was more significant in sand soils. This analysis suggests SOC is a simple variable that incorporates

  7. In situ soil water extraction: a review.

    PubMed

    Weihermüller, L; Siemens, J; Deurer, M; Knoblauch, S; Rupp, H; Göttlein, A; Pütz, T

    2007-01-01

    The knowledge of the composition and fluxes of vadose zone water is essential for a wide range of scientific and practical fields, including water-use management, pesticide registration, fate of xenobiotics, monitoring of disposal from mining and industries, nutrient management of agricultural and forest ecosystems, ecology, and environmental protection. Nowadays, water and solute flow can be monitored using either in situ methods or minimally invasive geophysical measurements. In situ information, however, is necessary to interpret most geophysical data sets and to determine the chemical composition of seepage water. Therefore, we present a comprehensive review of in situ soil water extraction methods to monitor solute concentration, solute transport, and to calculate mass balances in natural soils. We distinguished six different sampling devices: porous cups, porous plates, capillary wicks, pan lysimeters, resin boxes, and lysimeters. For each of the six sampling devices we discuss the basic principles, the advantages and disadvantages, and limits of data acquisition. We also give decision guidance for the selection of the appropriate sampling system. The choice of material is addressed in terms of potential contamination, filtering, and sorption of the target substances. The information provided in this review will support scientists and professionals in optimizing their experimental set-up for meeting their specific goals.

  8. Assessment of a calibration procedure to estimate soil water content with Sentek Diviner 2000 capacitance probe

    NASA Astrophysics Data System (ADS)

    Rallo, G.; Giordano, G.; Provenzano, G.

    2012-04-01

    soil pores, affecting the bulk density/water content relationship (Allbrook, 1992). Field experiments in shrinking-swelling clay soils evidenced that soil water content can be affect by errors of 20-30% if the soil shrinkage curve is not considered (Fares et al., 2004). The main objective of the paper was to propose a practical calibration procedure for FDR sensor using mini-lysimeter containing undisturbed soil, allowing to take in to account the possible variations of the bulk density with the soil water content. Moreover, the possibility of using disturbed soil samples for determining the sensor calibration curve was also investigated, in order to simplify the proposed methodology. Experiments were carried out on three different soil, two of which containing a percentage of clay higher than 40%, in order to compare the specific calibration curves with that suggested by the manufactures. The investigation showed how for swelling/shrinkage soils it is necessary the knowledge of the actual soil bulk density and also that using disturbed soil sample is not possible to consider the effects of the soil shrinkage consequent to the soil water content reductions.

  9. Effect of water seal on reducing 1,3-dichloropropene emissions from different soil textures.

    PubMed

    McDonald, Jason A; Gao, Suduan; Qin, Ruijun; Hanson, Bradley D; Trout, Thomas J; Wang, Dong

    2009-01-01

    Soil physical conditions can affect diffusion, environmental fate, and efficacy of fumigants in soil disinfestation treatments. Water seals (applying water using sprinklers to soil following fumigation) can effectively reduce fumigant emissions from sandy loam soils. Soil column studies compared the effectiveness of water seals in reducing cis-1,3-dichloropropene (1,3-D) emissions from three different textured soils (loamy sand, sandy loam, and loam). Treatments included an untreated control, an initial water seal (9 mm water applied immediately before fumigant injection), and intermittent water seals (initial 9 mm water seal followed by 3 mm at 12 and 24 h). For the loamy sand, instead of the initial water seal treatment, a reduced-amount intermittent water seal (initial 3 mm water followed by 1 mm at 12 and 24 h) treatment was tested. Overall emission loss of 1,3-D from the control over 2 wk was 56% for the loamy sand, 51% for the sandy loam, and 43% for the loam. The initial water seal reduced total 1,3-D emissions to 46% in the sandy loam and 31% in the loam. The intermittent water seals reduced emission loss to 26% for the loamy sand, 41% for the sandy loam, and 21% for the loam. The reduced-amount intermittent water seal for loamy sand had little effect. Low emission loss was associated with high surface soil water content. None of the water applications reduced gaseous fumigant concentrations. Results indicate that water seal techniques may be able to effectively reduce emissions for different soil textures without reducing fumigant concentration in the soil.

  10. Aging and soil organic matter content affect the fate of silver nanoparticles in soil.

    PubMed

    Coutris, Claire; Joner, Erik Jautris; Oughton, Deborah Helen

    2012-03-15

    Sewage sludge application on soils represents an important potential source of silver nanoparticles (Ag NPs) to terrestrial ecosystems, and it is thus important to understand the fate of Ag NPs once in contact with soil components. Our aim was to compare the behavior of three different forms of silver, namely silver nitrate, citrate stabilized Ag NPs (5nm) and uncoated Ag NPs (19nm), in two soils with contrasting organic matter content, and to follow changes in binding strength over time. Soil samples were spiked with silver and left to age for 2h, 2 days, 5 weeks or 10 weeks before they were submitted to sequential extraction. The ionic silver solution and the two Ag NP types were radiolabeled so that silver could be quantified by gamma spectrometry by measuring the (110m)Ag tracer in the different sequential extraction fractions. Different patterns of partitioning of silver were observed for the three forms of silver. All types of silver were more mobile in the mineral soil than in the soil rich in organic matter, although the fractionation patterns were very different for the three silver forms in both cases. Over 20% of citrate stabilized Ag NPs was extractible with water in both soils the first two days after spiking (compared to 1-3% for AgNO(3) and uncoated Ag NPs), but the fraction decreased to trace levels thereafter. Regarding the 19nm uncoated Ag NPs, 80% was not extractible at all, but contrary to AgNO(3) and citrate stabilized Ag NPs, the bioaccessible fraction increased over time, and by day 70 was between 8 and 9 times greater than that seen in the other two treatments. This new and unexpected finding demonstrates that some Ag NPs can act as a continuous source of bioaccessible Ag, while AgNO(3) is rapidly immobilized in soil.

  11. Rain water transport and storage in a model sandy soil with hydrogel particle additives.

    PubMed

    Wei, Y; Durian, D J

    2014-10-01

    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone.

  12. Soil and stream-water impacts of sewage effluent irrigation onto steeply sloping land

    SciTech Connect

    Speir, T.W.; Schaik, A.P. van; Kettles, H.A.; Vincent, K.W.; Campbell, D.J.

    1999-08-01

    In a pilot study, the authors investigated how irrigation of secondary sewage effluent onto steeply sloping land affected soil physical, chemical, and biochemical properties, the composition of soil- and surface-waters and the vegetation of the site. The 3.36-ha site received up to 44 mm effluent/wk for 65 wk. Irrigation significantly improved total- and Olsen-P status of the soils and greatly enhanced nitrification potential. Respiration increased with increasing soil water content, but microbial biomass was not greatly affected by irrigation. Soil phosphatase activity decreased with increasing P fertility. Soil physical properties were not affected by effluent and hydraulic conductivities were sufficient to conduct water into and through the soil profiles. Soil- and surface-water NO{sub 3}{sup {minus}}-N concentrations increased markedly, especially in the second half of the trial when soil nitrification rates were also high. However, the streamwater NO{sub 3}{sup {minus}}-N concentrations remained well below the drinking water limit concentration of 11.3 g m{sup {minus}3}. In contrast, streamwater NH{sub 4}{sup +}-N and PO{sub 4}{sup 3{minus}}-P concentrations remained low and results indicated that concentrations of PO{sub 4}{sup 3{minus}}-P in river water, resulting from a full-scale irrigation scheme, would not exceed the target limit level of 0.0056 g m{sup {minus}3}. Irrigation accelerated natural successional changes in the vegetation, with a decline in undesirable fire-prone and shrubby species and an increase in native trees and tree ferns. These results demonstrated that, in the short term at least, a carefully designed and implemented irrigation scheme on steepland could renovate secondary sewage effluent, without adversely affecting soil properties and surface water quality.

  13. Water and heat transport in hilly red soil of southern China: II. Modeling and simulation.

    PubMed

    Lu, Jun; Huang, Zhi-Zhen; Han, Xiao-Fei

    2005-05-01

    Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top end, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation from Taylor and Lary (1964), the effects of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that K(h), soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, K(S), and the water diffusivity, D(theta), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.

  14. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  15. Impact of Hydrologic Variability on Ecosystem Dynamics and the Sustainable Use of Soil and Water Resources

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2013-05-01

    We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.

  16. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    USGS Publications Warehouse

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  17. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  18. Soil-water contact angle of some soils of the Russian Plane

    NASA Astrophysics Data System (ADS)

    Bykova, Galina; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2016-04-01

    INTRODUCTION Soil wettability affects the aggregate water resistance, the movement of moisture and dissolved substances, preferential flows, etc. There are many factors affecting the soil's wettability (the content of organic matter (OM), soil's mineralogical composition, particle size distribution), so it can reflect changes in the soil, including results of human impact. The quantitative characteristic of soil wettability is a contact angle (CA), its measurement is a new and difficult problem because of the complexity, heterogeneity and polydispersity of the object of investigation. The aim of this work is to study soil-water CA of some soils of the Russian Plane. MATERIALS AND METHODS The objects of study were sod-podzolic (Umbric Albeluvisols Abruptic, Eutric Podzoluvisols), grey forest non-podzolised (Greyic Phaeozems Albic, Haplic Greyzems), typical Chernozems (Voronic Chernozems pachic, Haplic Chernozems) - profiles under the forest and the arable land, and the chestnut (Haplic Kastanozems Chromic, Haplic Kastanozems) soils. The CA's determination was performed by a Drop Shape Analyzer DSA100 by the static sessile drop method. For all samples was determined the content of total and organic carbon (OC and TC) by dry combustion in oxygen flow. RESULTS AND DISCUSSION There is CA increasing from 85,1° (5 cm) to 40-45° (deeper, than 45 cm) in the sod-podzolic soil; OC content is changed at the same depths from 1,44 to 0.22%. We can see the similar picture in profiles of chernozems. In the forest profile the highest OC content and CA value are achieved on the surface of profile (6,41% and 78,1°), and by 90 cm these values are 1.9% and 50.2°. In the chernozem under the arable land the OC content is almost two times less and the profile is more wettable (from 50° to 19° at 5 and 100 cm). Corresponding with the OC content, the curve describing changes of CA in the profile of grey forest soil is S-shaped with peaks at 20 and 150 cm (81,3° and 70° respectively

  19. Mucilage exudation facilitates root water uptake in dry soils

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Kroener, Eva; Holz, Maire; Zarebanadkouki, Mohsen; Carminati, Andrea

    2014-05-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during root water uptake. On the other hand, after irrigation the rhizosphere remained markedly dry and it rewetted only after one-two days. We hypothesize that: 1) drying/wetting rates of the rhizosphere are controlled by mucilage exuded by roots; 2) mucilage alters the soil hydraulic conductivity: in particular, wet mucilage increases the soil hydraulic conductivity and dry mucilage makes the soil water repellent; 3) mucilage exudation favors root water uptake in dry soil; and 4) dry mucilage limits water loss from roots to dry soils. We used a root pressure probe to measure the hydraulic conductance of artificial roots sitting in soils. As an artificial root we employed a suction cup with a diameter of 2 mm and a length of 45 mm. The root pressure probe gave the hydraulic conductance of the soil-root continuum during pulse experiments in which water was injected into or sucked from the soil. First, we performed experiments with roots in a relatively dry soil with a volumetric water content of 0.03. Then, we repeated the experiment with artificial roots covered with mucilage and then placed into the soil. As a model for mucilage, we collected mucilage from Chia seeds. The water contents (including that of mucilage) in the experiments with and without mucilage were equal. The pressure curves were fitted with a model of root water that includes rhizosphere dynamics. We found that the artificial roots covered with wet mucilage took up water more easily. In a second experimental set-up we measured the outflow of water from the artificial roots into dry soils. We compared two soils: 1) a sandy soil and 2) the same soil wetted with mucilage from Chia seeds and then let dry. The latter soil became water repellent. Due to the water repellency, the outflow of water from

  20. Soil organic matter dynamics under Beech and Hornbeam as affected by soil biological activity

    NASA Astrophysics Data System (ADS)

    Kooijman, A. M.; Cammeraat, L. H.

    2009-04-01

    Organic matter dynamics are highly affected both the soil fauna as well as the source of organic matter, having important consequences for the spatial heterogeneity of organic matter storage and conversion. We studied oldgrowth mixed deciduous forests in Central-Luxemburg on decalcified dolomitic marl, dominated by high-degradable hornbeam (Carpinus betulus L.) or low-degradable beech (Fagus sylvatica L.). Decomposition was measured both in the laboratory and in the field. Litter decomposition was higher for hornbeam than for beech under laboratory conditions, but especially in the field, which is mainly to be attributed to macro-fauna activity, specifically to earthworms (Lumbricus terrestris and Allolobophora species). We also investigated differences between beech and hornbeam with regard to litter input and habitat conditions. Total litter input was the same, but contribution of beech and hornbeam litter clearly differed between the two species. Also, mass of the ectorganic horizon and soil C:N ratio were significantly higher for beech, which was reflected in clear differences in the development of ectorganic profiles on top of the soil. Under beech a mull-moder was clearly present with a well developed fermentation and litter horizon, whereas under hornbeam all litter is incorporated into the soil, leaving the mineral soil surface bear in late summer (mull-type of horizon). In addition to litter quality, litter decomposition was affected by pH and soil moisture. Both pH and soil moisture were higher under hornbeam than under beech, which may reflect differences in soil development and litter quality effects over longer time scales. Under beech, dense layers of low-degradable litter may prevent erosion, and increase clay eluviation and leaching of base cations, leading to acid and dry conditions, which further decrease litter decay. Under hornbeam, the soil is not protected by a litter layer, and clay eluviation and acidification may be counteracted by erosion

  1. Spatial variability in the soil water content of a Mediterranean agroforestry system with high soil heterogeneity

    NASA Astrophysics Data System (ADS)

    Molina, Antonio Jaime; Llorens, Pilar; Aranda, Xavier; Savé, Robert; Biel, Carmen

    2013-04-01

    Variability of soil water content is known to increase with the size of spatial domain in which measurements are taken. At field scale, heterogeneity in soil, vegetation, topography, water input volume and management affects, among other factors, hydrologic plot behaviour under different mean soil water contents. The present work studies how the spatial variability of soil water content (SWC) is affected by soil type (texture, percentage of stones and the combination of them) in a timber-orientated plantation of cherry tree (Prunus avium) under Mediterranean climatic conditions. The experimental design is a randomized block one with 3 blocks * 4 treatments, based on two factors: irrigation (6 plots irrigated versus 6 plots not irrigated) and soil management (6 plots tillaged versus 6 plots not tillaged). SWC is continuously measured at 25, 50 and 100 cm depth with FDR sensors, located at two positions in each treatment: under tree influence and 2.5 m apart. This study presents the results of the monitoring during 2012 of the 24 sensors located at the 25 cm depth. In each of the measurement point, texture and percentage of stones were measured. Sandy-loam, sandy-clay-loam and loam textures were found together with a percentage of stones ranging from 20 to 70 %. The results indicated that the relationship between the daily mean SWC and its standard deviation, a common procedure used to study spatial variability, changed with texture, percentage of stones and the estimation of field capacity from the combination of both. Temporal stability analysis of SWC showed a clear pattern related to field capacity, with the measurement points of the sandy-loam texture and the high percentage of stones showing the maximun negative diference with the global mean. The high range in the mean relative difference observed (± 75 %), could indicate that the studied plot may be considered as a good field-laboratory to extrapolate results at higher spatial scales. Furthermore, the

  2. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    PubMed

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm(-3)) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  3. Stratification of soil organic matter and its importance on soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key component of soil quality that sustains many important soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infilt...

  4. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  5. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem

    NASA Astrophysics Data System (ADS)

    Keller, C. K.; White, T. M.; O'Brien, R.; Smith, J. L.

    2006-09-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground biomass was removed. Lack of physical disturbance, strict prevention of plant regrowth, and a comparison ecosystem without rooted plants facilitated isolation of the microclimatic and biochemical effects of instantaneous canopy removal and cessation of photosynthesis. Preharvest gas-phase CO2 levels fluctuated with growing-season soil temperature but reached their greatest levels (up to 10,000 ppmV) during late winter beneath snow and ice cover. This pattern, and the annual CO2 efflux of ˜500 g C m-2 yr-1, continued for 2 years following harvest; the efflux declined by half in the third year. The surprising continuity of preharvest and postharvest rates of soil CO2 production reflects the replacement of root respiration with microbial respiration of root and litter substrates of declining lability, but boosted by soil temperature increases. Mass balance is consistent with a bulk root+litter exponential decay time (-1/k) of 4-6 years, such that most of the subsurface biomass accumulated over 15 years of tree growth would be lost in a decade after the harvest. The preharvest bicarbonate C efflux, which was less than 0.1% of the gas-phase efflux, trebled after the harvest owing to elimination of evapotranspiration and consequent increases in drainage while soil CO2 levels remained high. A large fraction of this "hydrospheric" sink for atmospheric CO2 is attributed to weathering under high soil CO2 levels before spring snowmelt and soil-water flushing. These observations suggest that disturbance may enhance long-term chemical-weathering CO2 sinks.

  6. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    PubMed

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied (13) C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R(2)  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties.

  7. Soil organic matter transformation in cryoturbated horizons of permafrost affected soils

    NASA Astrophysics Data System (ADS)

    Capek, Petr; Diakova, Katerina; Dickopp, Jan-Erik; Barta, Jiri; Santruckova, Hana; Wild, Birgit; Schnecker, Joerg; Guggenberg, Georg; Gentsch, Norman; Hugelius, Gustaf; Kuhry, Peter; Lashchinsky, Nikolaj; Gittel, Antje; Schleper, Christa; Mikutta, Robert; Palmtag, Juri; Shibistova, Olga; Urich, Tim; Zimov, Sergey; Richter, Andreas

    2014-05-01

    Cryoturbated soil horizons are special feature of permafrost affected soils. These soils are known to store great amount of organic carbon and cryoturbation undoubtedly contribute to it to large extent. Despite this fact there is almost no information about soil organic matter (SOM) transformation in cryoturbated horizons. Therefore we carried out long term incubation experiment in which we inspect SOM transformation in cryoturbated as well as in organic and mineral soil horizons under different temperature and redox regimes as potential drivers. We found out that lower SOM transformation in cryoturbated horizons compared to organic horizons was mainly limited by the amount of microbial biomass, which is extremely low in absolute numbers or expressed to SOM concentration. The biochemical transformation ensured by extracellular enzymes is relatively high leading to high concentrations of dissolved organic carbon in cryoturbated horizons. Nevertheless the final step of SOM transformation leading to C mineralization to CO2 or CH4 seems to be restricted by low microbial biomass. Critical step of biochemical transformation of complex SOM is dominated by phenoloxidases, which break down complex organic compounds to simple ones. Their oxygen consumption greatly overwhelms oxygen consumption of the whole microbial community. However the phenoloxidase activity shows strong temperature response with optimum at 13.7° C. Therefore we suggest that apparent SOM stability in cryoturbated horizons, which is expressed in old C14 dated age, is caused by low amount of microbial biomass and restricted diffusion of oxygen to extracellular enzymes in field.

  8. Biodegradability of soil water soluble organic carbon extracted from seven different soils.

    PubMed

    Scaglia, Barbara; Adani, Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on the both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, and provided useful information to soil fertility.

  9. Measuring and modelling water related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2013-08-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objectives of this study are to test the potential of integrated non invasive geophysical methods and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  10. Measuring and modeling water-related soil-vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, N.; Cassiani, G.; Deiana, R.; Vignoli, G.; Boaga, J.

    2014-03-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil-vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.

  11. Least Limiting Water Range of soils in the Colonia Agrícola de Turen, Venezuela

    NASA Astrophysics Data System (ADS)

    Perez, Maiby Yolanda; Florentino de Andreu, Adriana

    2013-04-01

    Soil physical degradation is a major problem affecting the soil quality for crops production in Venezuelan agricultural areas. The least limiting water range (LLWR) is considered a soil physical quality index defined as the range in soil water content within which the limitations to plant response associated with water potential, poor aeration and high mechanical resistance are minimal. The study was carried out to characterize the LLWR and to determine the LLWR response to structural changes on soils of the Colonia Agricola de Turen, Venezuela. The soils were cropped with maize under different tillage systems (no tillage, conventional and conventional - fallow) and non-cropped under native forest. Hundred and seventy undisturbed samples were taken from specific sites under each of the above soil conditions to determine the water retention curve, the soil resistance curve and bulk density. Disturbed samples were also taken from each site to determine particle size and organic matter content. Pedotransfer functions relating the water retention curve and soil resistance curve with particle size distribution, organic matter content and bulk density were developed and use to calculate the LLWR for each site. According to the results, soil physical degradation under conventional tillage and high clay content had the highest negative impact on the LLWR. For this case (silty clay loam soil), the LLWR became narrower due to the lower water content associated with poor aeration and the higher water content associated with high mechanical resistance. In contrast, for non degraded soils with high sand content (sandy loam) the LLWR showed the highest values associated with the water content at field capacity and the water content at permanent wilting point, both the upper and lower critical limits of LLWR. For silty loam and loam soils the LLWR declined with increasing bulk density and clay content associated with water content at field capacity and water content at high

  12. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    SciTech Connect

    Li, X.; Sawatsky, N.

    1995-12-31

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils.

  13. The effect of biological activity on soil water retention and diffusivity

    NASA Astrophysics Data System (ADS)

    Choudhury, Burhan U.; Ferraris, Stefano; Ashton, Rhys W.; Powlson, David S.; Whalley, William R.

    2016-04-01

    Root exudates of both living and artificial origins are known to affect various rhizosphere microbial and micro-faunal activities. However, information on effects on root exudates on soil hydraulic properties responsible for water transmission and distribution in the vadose zone is inadequate, especially in dry soils. To study the effect of artificial root exudates (carbohydrate, amino acids and organic acids mixture) on soil water retention and diffusion process, a laboratory experiment was carried out using soil cores filled with air dried 2-mm sieved loamy sand soils of Cambric Arenosol subclass. Root exudates at three concentrations (1.25, 2.5 & 5.0 g C kg-1 dry soil) were added and the soil cores were saturated in distilled water for 48 hours at 20 oC together with a control. To determine whether microbes have any influence on diffusivity, two additional treatments with sterilization of microbes using mercuric chloride solution (0.10%) in root exudates (2.5 g C kg-1 dry soil) and distilled water saturated soil cores were studied. The water in the soil cores was allowed to evaporate at constant temperature (20 ± 1oC) and at a relative humidity of 0.3. The evaporation loss in terms of volumetric water content in the core was measured regularly until the water content was constant with time. Soil water diffusivity was determined numerically. To determine the water retention properties, soils were saturated and incubated for 14 days at 20 oC with the same six treatments and retention curves were generated for 8 different suctions, ranging from 0.01 bars to 15 bars. Results revealed that evaporation from soil cores, initially at a uniform moisture content of saturation, initially decreased linearly with the square root of time. The rate of decrease was gradual in the root exudate treated soils but more rapid in soils treated to stop microbial activity. Addition of root exudates considerably decreased the diffusivity compared to a control treatment. By stopping

  14. Natural attenuation of zinc pollution in smelter-affected soil.

    PubMed

    Vespa, M; Lanson, M; Manceau, A

    2010-10-15

    Previous synchrotron X-ray microprobe measurements of Zn speciation in contaminated and uncontaminated soils have identified phyllosilicate as the main sequestration phase. The emphasis now is focused on comparing the nature and properties of neoformed and geogenic phyllosilicate species to understand natural attenuation processes. Refined structural characterization of the two types of Zn-containing phyllosilicate in slightly basic smelter-affected agricultural soils were obtained using a so far unprecedented combination of X-ray microscopic techniques, including fluorescence (μ-XRF), absorption (μ-EXAFS), and diffraction (μ-XRD), and X-ray bulk-sensitive techniques, including powder and polarized EXAFS spectroscopy. The unpolluted and polluted species are both dioctahedral smectites, but the first which contains minor Zn (ca. 150 mg/kg) is aluminous and Fe-free, and the second, which contains several hundreds to a few thousands mg/kg Zn depending on the distance to the smelter and wind direction, is ferruginous with an average Fe/Al atomic ratio of 1.1 ± 0.5. The Zn(2+) and Fe(3+) in the neoformed smectite are derived from the weathering of ZnS, ZnO, FeS(2), and ZnFe(2)O(4) particles from the smelter. These cations diffuse away from their particulate mineral sources and coprecipitate with Al and Si in the soil clay matrix. Zinc sequestration in the octahedral sheet of dioctahedral smectite is potentially irreversible, because this type of phyllosilicate is stable over a large pH range, and the neoformed species is analogous to the native species which formed over time during pedogenesis.

  15. Measurement and inference of profile soil-water dynamics at different hillslope positions in a semiarid agricultural watershed

    NASA Astrophysics Data System (ADS)

    Green, Timothy R.; Erskine, Robert H.

    2011-12-01

    Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.

  16. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    PubMed

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  17. Effects of spatial variability of soil hydraulic properties on water dynamics

    NASA Astrophysics Data System (ADS)

    Gumiere, Silvio Jose; Caron, Jean; Périard, Yann; Lafond, Jonathan

    2013-04-01

    Soil hydraulic properties may present spatial variability and dependence at the scale of watersheds or fields even in man-made single soil structures, such as cranberry fields. The saturated hydraulic conductivity (Ksat) and soil moisture curves were measured at two depths for three cranberry fields (about 2 ha) at three different sites near Québec city, Canada. Two of the three studied fields indicate strong spatial dependence for Ksat values and soil moisture curves both in horizontal and vertical directions. In the summer of 2012, the three fields were equipped with 55 tensiometers installed at a depth of 0.10 m in a regular grid. About 20 mm of irrigation water were applied uniformly by aspersion to the fields, raising soil water content to near saturation condition. Soil water tension was measured once every hour during seven days. Geostatistical techniques such as co-kriging and cross-correlograms estimations were used to investigate the spatial dependence between variables. The results show that soil tension varied faster in high Ksat zones than in low Ksatones in the cranberry fields. These results indicate that soil water dynamic is strongly affected by the variability of saturated soil hydraulic conductivity, even in a supposed homogenous anthropogenic soil. This information may have a strong impact in irrigation management and subsurface drainage efficiency as well as other water conservation issues. Future work will involve 3D numerical modeling of the field water dynamics with HYDRUS software. The anticipated outcome will provide valuable information for the understanding of the effect of spatial variability of soil hydraulic properties on soil water dynamics and its relationship with crop production and water conservation.

  18. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  19. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit.

    PubMed

    Simonin, Kevin A; Santiago, Louis S; Dawson, Todd E

    2009-07-01

    Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil-plant-atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.

  20. Soil solid materials affect the kinetics of extracellular enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Lammirato, C.; Miltner, A.; Kästner, M.

    2009-04-01

    INTRODUCTION Soil solid materials affect the degradation processes of many organic compounds by decreasing the bioavailability of substrates and by interacting with degraders. The magnitude of this effect in the environment is shown by the fact that xenobiotics which are readily metabolized in aquatic environments can have long residence times in soil. Extracellular enzymatic hydrolysis of cellobiose (enzyme: beta-glucosidase from Aspergillus niger) was chosen as model degradation process since it is easier to control and more reproducible than a whole cell processes. Furthermore extracellular enzymes play an important role in the environment since they are responsible for the first steps in the degradation of organic macromolecules; beta-glucosidase is key enzyme in the degradation of cellulose and therefore it is fundamental in the carbon cycle and for soil in general. The aims of the project are: 1) quantification of solid material effect on degradation, 2) separation of the effects of minerals on enzyme (adsorption →change in activity) and substrate (adsorption →change in bioavailability). Our hypothesis is that a rate reduction in the enzymatic reaction in the presence of a solid phase results from the sum of decreased bioavailability of the substrate and decreased activity of enzyme molecules. The relative contribution of the two terms to the overall effect can vary widely depending on the chemical nature of the substrate, the properties of the enzyme and on the surface properties of the solid materials. Furthermore we hypothesize that by immobilizing the enzyme in an appropriate carrier the adsorption of enzymes to soil materials can be eliminated and that therefore immobilization can increase the overall reaction rate (activity loss caused by immobilization < activity loss caused by adsorption to soil minerals). MATERIALS AND METHODS Enzymatic kinetic experiments are carried out in homogeneous liquid systems and in heterogeneous systems where solid

  1. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  2. WATER AS A REAGENT FOR SOIL REMEDIATION

    SciTech Connect

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-03-29

    SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and

  3. Effects of soil water repellency on microbial community structure and functions in Mediterranean pine forests

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Grayston, Sue J.; Mataix-Solera, Jorge; Arcenegui, Victoria; Jimenez-Pinilla, Patricia; Mataix-Beneyto, Jorge

    2015-04-01

    Soil water repellency (SWR) is a property commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. SWR can greatly influence the hydrology and the ecology of forest soils. The capacity of soil microorganisms to degrade different organic compounds depends upon species composition, so this may affect changes in SWR on the microsite scale (such as the presence of soil water repellent patches; Mülleret al., 2010). In the Mediterranean forest context, SWR has been found to be related to microbial community composition. The accumulation of different hydrophobic compounds might be causing the shifts in microbial community structure (Lozano et al., 2014). In this study we investigated the effects of SWR persistence on soil microbial community structure and enzyme activity under Pinus halepensis forest in three different sites: Petrer, Gorga and Jávea (Alicante, E Spain). Soil samples were classified into three different water repellency classes (wettable, slight or strongly water repellent samples) depending on the SWR persistence. The soil microbial community was determined through phospholipid fatty acids (PLFAs). Enzyme activities chosen for this study were cellulase, β-glucosidase and N-acetyl-β-glucosaminide (NAG). The relationships between microbiological community structure and some soil properties such as pH, Glomalin Related Soil Protein, soil organic matter content and soil respiration were also studied. Redundancy analyses and decomposition of the variances were performed to clarify how microbial community composition and enzyme activities are affected by SWR and soil properties. The effect of SWR on microbial community composition differed between locations. This effect was clearer in the Petrer site. Enzyme activity varied considerably depending on SWR persistence. The highest activities were found in slightly SWR samples and the lowest mostly in the strongly water repellent ones. These preliminary

  4. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    NASA Astrophysics Data System (ADS)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and

  5. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  6. Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration.

    PubMed

    Barron-Gafford, Greg A; Cable, Jessica M; Bentley, Lisa Patrick; Scott, Russell L; Huxman, Travis E; Jenerette, G Darrel; Ogle, Kiona

    2014-04-01

    Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics.

  7. Multiple factors affect diversity and abundance of ammonia-oxidizing microorganisms in iron mine soil.

    PubMed

    Xing, Yi; Si, Yan-Xiao; Hong, Chen; Li, Yang

    2015-07-01

    Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. In this study, four soil samples collected from a desert zone in an iron-exploration area and others from farmland and planted forest soil in an iron mine surrounding area. We analyzed the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in iron-mining area near the Miyun reservoir using ammonia monooxygenase. A subunit gene (amoA) as molecular biomarker. Quantitative polymerase chain reaction was applied to explore the relationships between the abundance of AOA and AOB and soil physicochemical parameters. The results showed that AOA were more abundant than AOB and may play a more dominant role in the ammonia-oxidizing process in the whole region. PCR-denaturing gradient gel electrophoresis was used to analyze the structural changes of AOA and AOB. The results showed that AOB were much more diverse than AOA. Nitrosospira cluster three constitute the majority of AOB, and AOA were dominated by group 1.1b in the soil. Redundancy analysis was performed to explore the physicochemical parameters potentially important to AOA and AOB. Soil characteristics (i.e. water, ammonia, organic carbon, total nitrogen, available phosphorus, and soil type) were proposed to potentially contribute to the distributions of AOB, whereas Cd was also closely correlated to the distributions of AOB. The community of AOA correlated with ammonium and water contents. These results highlight the importance of multiple drivers in microbial niche formation as well as their affect on ammonia oxidizer composition, both which have significant consequences for ecosystem nitrogen functioning.

  8. [Inhibitory effect of DMPP on soil nitrification as affected by soil moisture content, pH and organic matter].

    PubMed

    Xue, Yan; Wu, Zhi-Jie; Zhang, Li-Li; Gong, Ping; Dong, Xin-Xin; Nie, Yan-Xia

    2012-10-01

    A laboratory incubation test with meadow brown soil was conducted to study the inhibitory effect of 3,4-dimethylpyrazole phosphate (DMPP) on soil nitrification as affected by soil moisture content (40%, 60% and 80% of the maximum field capacity), pH (4, 7 and 10), and organic matter (retained and removal). With the decrease of soil moisture content, the degradation of DMPP in soil tended to slow down, and the oxidation of soil NH4+ was more inhibited. At pH 10, more DMPP was remained in soil, and had the greatest inhibitory effect; at pH 7 and pH 4, the DMPP was lesser remained, with a smaller inhibitory effect. The removal of organic matter prolonged the remaining time of DMPP in soil, and decreased the apparent soil nitrification rate significantly.

  9. Hydrologic modeling of soil water storage in landfill cover systems

    SciTech Connect

    Barnes, F.J.; Rodgers, J.C.

    1987-01-01

    The accuracy of modeling soil water storage by two hydrologic models, CREAMS and HELP, was tested by comparing simulation results with field measurements of soil moisture in eight experimental landfill cover systems having a range of well-defined soil profiles and vegetative covers. Regression analysis showed that CREAMS generally represented soil moisture more accurately than HELP simulations. Soil profiles that more closely resembled natural agricultural soils were more accurately modeled than highly artificial layered soil profiles. Precautions for determining parameter values for model input and for interpreting simulation results are discussed.

  10. Soil abandonment in artificial soil terraces in marginal areas. Preliminary results of a case of water shortage effect in soils from Sultanate of Oman.

    NASA Astrophysics Data System (ADS)

    Saadi, Sara Kalifah Al; Kindi, Samaya Salim Al; Pracejus, Bernhard; Moraetis, Daniel

    2016-04-01

    deflation and desert pavement development after the terraces abandonment. The water shortage has probably affected severely the soil characteristics (pavement development and strong wind erosion) and it has enforced the locals to search for alternative domestic income towards lower land areas. Hard soil horizons on those areas showed to have developed in relatively short time after soil terraces construction.

  11. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  12. Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.

    PubMed

    Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.

  13. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  14. STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS

    EPA Science Inventory

    Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...

  15. Agrichemicals in ground water of the midwestern USA: Relations to soil characteristics

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; Jaquis, R.J.; Cole, K.J.

    1999-01-01

    A comprehensive set of soil characteristics were examined to determine the effect of soil on the transport of agrichemicals to ground water. This paper examines the relation of local soil characteristics to concentrations and occurrence of nitrate, atrazine (2-chloro-4 ethylamino-6-isopropylamino-s-trazine), and atrazine residue [atrazine + deethylatrazine (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)] from 99 wells completed in unconsolidated aquifers across the midwestern USA. The occurrence and concentrations of nitrate and atrazine in ground water were directly related to soil characteristics that determine the rate of water movement. The substantial differences in the relations found among soil characteristics and nitrate and atrazine in ground water suggest that different processes affect the transformation, adsorption, and transport of these contaminants. A multivariate analysis determined that the soil characteristics examined explained the amount of variability in concentrations for nitrate (19.0%), atrazine (33.4%), and atrazine residue (28.6%). These results document that, although soils do affect the transport of agrichemicals to ground water, other factors such as hydrology, land use, and climate must also be considered to understand the occurrence of agrichemicals in ground water.

  16. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    little adsorption to soil colloidal particles. However, other ions such as sulfate, calcium, magnesium, and sodium also displayed significant increases in concentration in July. This can be explained by the movements of soluble salt to the surface due to evaporation and capillary rise and subsequent precipitation of the salts during high temperatures and low rainfall. Rainfall or irrigation events enhance the leaching of salts to deeper soil horizons. The most affected area is located in the west of the study area, at the lowest altitude within the study area. Depressions favour accumulation of salts, due to both runoffs from higher areas during rainfall periods and poor quality irrigation water. It is recommended to use a better quality of water, at least before the summer, in order to reduce the amount of salts in the surface layer, likely to cause stress to crops growing on the soil in question. In conclusion, the spatial distribution of anions in the soil solution is very useful for predicting where higher increases in salinity will be produced. This will allow for identification of vulnerable areas and subsequent implementation of the necessary measures to decrease the risk for sensitive crops. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  17. Semiempirical model of soil water hysteresis

    USGS Publications Warehouse

    Nimmo, J.R.

    1992-01-01

    In order to represent hysteretic soil water retention curves accurately using as few measurements as possible, a new semiempirical model has been developed. It has two postulates related to physical characteristics of the medium, and two parameters, each with a definite physical interpretation, whose values are determined empirically for a given porous medium. Tests of the model show that it provides high-quality optimized fits to measured water content vs. matric pressure wetting curves for a wide variety of media. A practical use of this model is to provide a complete simulated main wetting curve for a medium where only a main drying curve and two points on the wetting curve have been measured. -from Author

  18. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    PubMed

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow.

  19. Influence of soil properties and climate characteristics on transpirable soil water for two varieties with differences in their crop cycle timing

    NASA Astrophysics Data System (ADS)

    Ramos, Maria C.

    2014-05-01

    This paper presents an analysis of soil water content in two vineyards planted with Chardonnay and Cabernet Sauvignon in the Penedès Designation of Origin (DO). Climate is Mediterranean with maritime influence. The main soil types are Typic Xerorthent and Fluventic Haploxerept and soil is bare most of the time to avoid the competition of weeds for water. The plantation pattern was uniform in both cultivars, 1.3*3m. Soil moisture was analysed at each area from 10 to 90 cm every 20 cm, using TDF probes during two crop growing cycles (2010-2012). Soil water balance for years with different rainfall amount and distribution throughout the year was simulated using the Soil and Water Assessment Tool (SWAT). Differences in phenology of about one month existed among both varieties. In addition, the soil hydrological properties variability, resulted from land levelling operations before vineyard establishment, affects crop's soil water availability. These two facts made that, under the same rainfall amount and distribution, water available during the crop cycle were different for both varieties. The transpirable soil water fraction reached very low values, close to 0.1, particularly in the variety with early phenology timing. This pattern was repeated in different years depending on rainfall distribution, which affected grape production with significant yield reductions (up to 38% in relation to the average were found in some years).

  20. Geographic information science: Contribution to understanding salt and sodium affected soils in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Ndiaye, Ramatoulaye

    The Senegal River valley and delta (SRVD) are affected by long term climate variability. Indicators of these climatic shifts include a rainfall deficit, warmer temperatures, sea level rise, floods, and drought. These shifts have led to environmental degradation, water deficits, and profound effects on human life and activities in the area. Geographic Information Science (GIScience), including satellite-based remote sensing methods offer several advantages over conventional ground-based methods used to map and monitor salt-affected soil (SAS) features. This study was designed to assess the accuracy of information on soil salinization extracted from Landsat satellite imagery. Would available imagery and GIScience data analysis enable an ability to discriminate natural soil salinization from soil sodication and provide an ability to characterize the SAS trend and pattern over 30 years? A set of Landsat MSS (June 1973 and September 1979), Landsat TM (November 1987, April 1994 and November 1999) and ETM+ (May 2001 and March 2003) images have been used to map and monitor salt impacted soil distribution. Supervised classification, unsupervised classification and post-classification change detection methods were used. Supervised classifications of May 2001 and March 2003 images were made in conjunction field data characterizing soil surface chemical characteristics that included exchange sodium percentage (ESP), cation exchange capacity (CEC) and the electrical conductivity (EC). With this supervised information extraction method, the distribution of three different types of SAS (saline, saline-sodic, and sodic) was mapped with an accuracy of 91.07% for 2001 image and 73.21% for 2003 image. Change detection results confirmed a decreasing trend in non-saline and saline soil and an increase in saline-sodic and sodic soil. All seven Landsat images were subjected to the unsupervised classification method which resulted in maps that separate SAS according to their degree of

  1. Temporal variations of low molecular mass organic acids during vegetation period in temperate forest soil affected by acidification

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Drabek, O.; Bradová, M.; Němeček, K.; Šebek, O.; Zenáhlíková, J.; Boruvka, L.

    2011-12-01

    The Low Molecular Mass Organic Acids (LMMOA) are essential in processes affecting the soils and represent reactive fraction of dissolved organic carbon (DOC). LMMOA influence soil-chemistry behaviour, participate in transport of mineral nutrition and reduce potential toxicity of selected elements like Al. The aim of this research was to assess behaviour, amount and composition of LMMOA in forest soil under different vegetation cover. The researched area is located in the naturally acid Jizera Mountains (Czech Republic), which was further affected by acid deposition and improper forest management. Soil samples from organic F and H horizons, organo-mineral A horizon and spodic or cambic mineral B horizons were taken under beech and spruce stands monthly (from April to October). Both stands were located immediately next to each other. The collected soil samples were analyzed immediately in a "fresh" state. Contents of LMMOA in deionised water extract were determined by means of ion-exchange chromatography (ICS-1600, Dionex, USA) with suppressed conductivity and gradient elution of KOH mobile phase. The contents of LMMOAS were also determined in precipitation samples. In addition, other selected elements (Al, Fe, Ca, Na, Mg and K), Al speciation and main inorganic anions were determined in water extract and precipitation samples. The highest amounts of LMMOA (mainly lactic, acetic, formic, malic and oxalic acid) were observed in organic F and H horizons and measured amounts decreased with increasing soil profile depth. Higher contents were determined in soil under spruce forest than under beech forest. External inputs of LMMOA in a form of precipitation were assessed as less significant in comparison with the soil processes (e.g. soil biological activity, soil organic matter decomposition processes). LMMOA amounts were higher in spring and summer (from April to August), caused by increased biological activity, while lower amounts were observed during the autumn period

  2. Water and temperature relations of soil Actinobacteria.

    PubMed

    Stevenson, Andrew; Hallsworth, John E

    2014-12-01

    Actinobacteria perform essential functions within soils, and are dependent on available water to do so. We determined the water-activity (aw ) limits for cell division of Streptomyces albidoflavus, Streptomyces rectiviolaceus, Micromonospora grisea and Micromonospora (JCM 3050) over a range of temperatures, using culture media supplemented with a biologically permissive solute (glycerol). Each species grew optimally at 0.998 aw (control; no added glycerol) and growth rates were near-optimal in the range 0.971-0.974 (1 M glycerol) at permissive temperatures. Each was capable of cell division at 0.916-0.924 aw (2 M glycerol), but only S. albidoflavus grew at 0.895 or 0.897 aw (3 M glycerol, at 30 and 37°C respectively). For S. albidoflavus, however, no growth occurred on media at ≤ 0.870 (4 M glycerol) during the 40-day assessment period, regardless of temperature, and a theoretical limit of 0.877 aw was derived by extrapolation of growth curves. This level of solute tolerance is high for non-halophilic bacteria, but is consistent with reported limits for the growth and metabolic activities of soil microbes. The limit, within the range 0.895-0.870 aw , is very much inferior to those for obligately halophilic bacteria and extremely halophilic or xerophilic fungi, and is inconsistent with earlier reports of cell division at 0.500 aw . These findings are discussed in relation to planetary protection policy for space exploration and the microbiology of arid soils.

  3. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The ability to read the 24-channel MSS CCT tapes, select specified agricultural land use areas from the CCT, and perform multivariate statistical and pattern recognition analyses has been demonstrated. The 5 optimum channels chosen for classifying an agricultural scene were, in the order of their selection the far red visible, short reflective IR, visible blue, thermal infrared, and ultraviolet portions of the electromagnetic spectrum, respectively. Although chosen by a training set containing only vegetal categories, the optimum 4 channels discriminated pavement, water, bare soil, and building roofs, as well as the vegetal categories. Among the vegetal categories, sugar cane and cotton had distinctive signatures that distinguished them from grass and citrus. Acreages estimated spectrally by the computer for the test scene were acceptably close to acreages estimated from aerial photographs for cotton, sugar cane, and water. Many nonfarmable land resolution elements representing drainage ditch, field road, and highway right-of-way as well as farm headquarters area fell into the grass, bare soil plus weeds, and citrus categories and lessened the accuracy of the farmable acreage estimates in these categories. The expertise developed using the 24-channel data will be applied to the ERTS-1 data.

  4. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    NASA Astrophysics Data System (ADS)

    Reardon, E. J.; Mozeto, A. A.; Fritz, P.

    1980-11-01

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (-2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO 2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution.

  5. Mucilage exudation facilitates root water uptake in dry soils

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Carminati, A.; Kroener, E.; Holz, M.; Zarebanadkouki, M.

    2014-12-01

    As plant roots take up water and the soil dries, water depletion is expected to occur in the rhizosphere. However, recent experiments showed that the rhizosphere was wetter than the bulk soil during root water uptake. We hypothesise that the increased water content in the rhizosphere was caused by mucilage exuded by roots. It is probably that the higher water content in the rhizosphere results in higher hydraulic conductivity of the root-soil interface. In this case, mucilage exudation would favour the uptake of water in dry soils. To test this hypothesis, we covered a suction cup, referred to as an artificial root, with mucilage. We placed it in soil with a water content of 0.03 cm3 cm-3, and used the root pressure probe technique to measure the hydraulic conductivity of the root-soil continuum. The results were compared with measurements with roots not covered with mucilage. The root pressure relaxation curves were fitted with a model of root water uptake including rhizosphere dynamics. The results demonstrated that when mucilage is added to the root surface, it keeps the soil near the roots wet and hydraulically well conductive, facilitating the water flow from dry soils towards the root surface. Mucilage exudation seems to be an optimal plant trait that favours the capture of water when water is scarce.

  6. Ecohydrology of dry regions: storage versus pulse soil water dynamics

    USGS Publications Warehouse

    Lauenroth, William K.; Schlaepfer, Daniel R.; Bradford, John B.

    2014-01-01

    Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in

  7. Predicting and mapping soil available water capacity in Korea

    PubMed Central

    Hong, Suk Young; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils. PMID:23646290

  8. Analytical solution for soil water redistribution during evaporation process.

    PubMed

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.

  9. Soil water monitoring using heated distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Striegl, A. M.; Loheide, S. P.

    2010-12-01

    Traditionally, soil water measurements could only be obtained as point-in-time and point-in-space samples. These methods result in uncertainty in understanding the soil water dynamics of a site because of issues of scale, soil and vegetation spatial heterogeneity, and temporal variability of climatic conditions. Previous researchers have demonstrated the feasibility of obtaining distributed soil water content measurements using the heat pulse method with fiber optic temperature sensing. Numerical simulations of multiple proposed hybrid cable cross-sections guided the design and fabrication of a custom bundle of fiber optics, resistance heating conductors, and protective coatings for soil water monitoring. The conductors introduce a heat pulse to the surrounding soil, while temperature rise versus time is monitored with a Distributed Temperature Sensing (DTS) system using the fiber optics in the bundle. The temperature rise versus time response is related to the matric potential and water content of the soil surrounding the cable. In order to monitor the near-surface hydrology of a recently restored southwestern Wisconsin floodplain, the cable was buried at a depth of 20cm along a transect perpendicular to the Upper East Branch of the Pecatonica River near Barneveld, Wisconsin. Spatial variations of soil water can be readily observed with this technology as the cable spans various vegetation communities, soil types, and moisture conditions at this site. This new technology will help bridge the existing gaps of scale in soil water monitoring networks by providing high resolution, continuous measurements over large spatial scales.

  10. Physical and chemical effects of biochar on natural and artificial water repellent soils

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Douglas, Peter; Doerr, Stefan H.; Bryant, Rob; Matthews, Ian; Charbonneau, Cecile

    2014-05-01

    Water repellency (WR) affects soils worldwide. Hydrophobic compounds accumulate in soil through organic matter decomposition, microbial activity, condensation of organic compounds during vegetation fires, or through anthropogenic impacts such as oil spills. WR hinders vegetation establishment, which can lead to soil erosion and increased runoff. Biochar is currently being evaluated for its potential to increase soil carbon and as a soil amendment. To date, the effect of biochar on water repellent soils has remained largely undetermined. This study considered the potential of biochar as both a physical and chemical amendment for water repellent soils by asking two questions: does adding biochar reduce the observed degree of soil water repellency; and does biochar remove hydrophobic compounds from soil? The potential of biochar as a physical amendment to water repellent soils was evaluated by mixing 5, 10, 25 and 40% (by weight) each of coarse and fine ground biochar with two naturally water repellent soils and measuring the water drop penetration time (WDPT) for each mixture. Biochar particles beyond the range of existing soil particle diameters increased WDPT variability, which could be explained by increased surface roughness and the resulting enhancement of water repellency effects through Cassie-Baxter interactions. Overall, fine biochar was more effective at reducing water repellency: 25% w/w rendered both soils studied wettable. Removal of hydrophobic compounds by biochar was tested by mixing 1, 5, 10, 25 and 40% biochar with acid washed sand (AWS) coated with 1.2x10-5 mol octadecane and octadecanoic acid (per gram AWS, which corresponds to approximately 50 monolayers hydrophobic compound per gram AWS). Each mix stood for 1 to 30 days in a solution of pH 3, 6 or 9 before the AWS was extracted and the quantity of hydrophobic compound remaining determined by infrared spectroscopy and/or gas chromatography. Biochar successfully removed the hydrophobic compounds

  11. Effects of soil management techniques on soil water erosion in apricot orchards.

    PubMed

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  12. Non-invasive observation of the shallow soil profile stratification and its effect on soil water regime

    NASA Astrophysics Data System (ADS)

    Jeřábek, Jakub; Zumr, David

    2016-04-01

    Arable soils are exhibited to many stresses resulting in changes of the soil structure and properties at various scales. The most affected layer is the topsoil, which is periodically disrupted and consolidated due to tillage, rapid crop growth and changing weather conditions. The compacted layer often forms below the topsoil as a result of the pressure induced by the agriculture machinery and because of the finest particles caught on the divide between the tilled soil and untreated subsoil. The compacted layer is rather homogeneous, but there are features of different sizes, such as wheel tracks, till drainage shafts, local depressions, wormholes or cracks which redirect the water flow pathways or allow water to percolate into deeper horizon. The data acquisition targeting the spatial evaluation of the soil structure is, however, complicated. In this study, we utilize electrical resistance tomography in combination with penetration resistance tests and compare the results with complementary measured soil characteristics. Soil profile samples were taken to gain more complex information of soil physical characteristics possibly influencing the soil resistivity. We tried to relate the observed features to previous management activities at the field. Results showed, that the proposed technique can be used to compacted layer identification, but the information about its macroscopic heterogeneities is only in qualitative manner. The research was performed within the framework of a postdoctoral project granted by Czech Science Foundation No. 13-20388P and internal CTU project.

  13. Water quality and surfactant effects on the water repellency of a sandy soil

    NASA Astrophysics Data System (ADS)

    Lehrsch, G. A.; Sojka, R. E.

    2011-06-01

    SummaryDifferences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split plot design with two irrigation water qualities, three surfactant application rates, two irrigations, and 12 sampling depths as fixed effects, with four replications. Each water quality × rate × irrigation combination was a main plot and depth was a repeated-measures subplot. A slightly water repellent Quincy soil (average water drop penetration time, WDPT, of 2.5 s) was packed in 25-mm lifts (or layers) to a bulk density of 1.6 Mg m -3 into 0.15-m-high × 0.105-m-diameter plastic columns. We studied a nonionic surfactant, a blend of an ethylene oxide/propylene oxide block copolymer and an alkyl polyglycoside. We sprayed the surfactant at rates of 0, 9.4, and 46.8 L ha -1, diluted with reverse osmosis water (RW) to apply 187 L ha -1 of solution, onto the soil surface of each packed column. About 1 and 5 days after surfactant application, columns were sprinkler irrigated with either RW or well water (WW). The WDPT was then measured with depth on soil air-dried after the first and after the second irrigation. After the first irrigation, WDPT at depths from 97 to 117 mm averaged across surfactant rates reached a maximum of 28 s, regardless of irrigation water quality. WDPT was greatest at 117 mm with RW but only at 97 mm with WW. After the second irrigation, maximum WDPT was 1202 s at 139 mm with RW but only 161 s at 117 mm with WW, nearly 7.5 fold less than with RW. WDPT was greatest near the wetting front, irrespective of water quality. We conclude that irrigation water containing modest amounts of electrolytes or salts, in this case mostly salts of Ca 2+, reduces water repellency in the presence or absence of surfactant. Our experimental results may also help

  14. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  15. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  16. Modeling as a tool for management of saline soils and irrigation waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  17. Effects of waste water irrigation on soil properties and soil fauna of spinach fields in a West African urban vegetable production system.

    PubMed

    Stenchly, Kathrin; Dao, Juliane; Lompo, Désiré Jean-Pascal; Buerkert, Andreas

    2017-03-01

    The usage of inadequately processed industrial waste water (WW) can lead to strong soil alkalinity and soil salinization of agricultural fields with negative consequences on soil properties and biota. Gypsum as a soil amendment to saline-sodic soils is widely used in agricultural fields to improve their soil physical, chemical and hence biological properties. This study aimed at analysing the effects of intensive WW irrigation on the structure and composition of soil-dwelling arthropods on spinach fields (Spinacia oleracea L.) in a West African urban vegetable production system. We used gypsum as a soil amendment with the potential to alleviate soil chemical stress resulting in a potentially positive impact on soil arthropods. A total of 32 plots were established that showed a gradient in soil pH ranging from slight to strong soil alkalinity and that were irrigated with WW (n = 12) or clean water (CW; n = 20), including eight plots into which gypsum was incorporated. Our study revealed a high tolerance of soil-dwelling arthropods for alkaline soils, but spinach fields with increased soil electrical conductivity (EC) showed a reduced abundance of Hymenoptera, Diptera and Auchenorrhyncha. Arthropod abundance was positively related to a dense spinach cover that in turn was not affected by WW irrigation or soil properties. Gypsum application reduced soil pH but increased soil EC. WW irrigation and related soil pH affected arthropod composition in the investigated spinach fields which may lead to negative effects on agronomical important arthropod groups such as pollinators and predators.

  18. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  19. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using

  20. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  1. Autoclaving soil samples affects algal-available phosphorus.

    PubMed

    Anderson, Brandon H; Magdoff, Frederick R

    2005-01-01

    Unwanted microbial interference in samples used for biological assays of P availability has routinely been eliminated by autoclaving samples before inoculation with algae. Twenty-three soils were selected to evaluate the relationship between algal growth in P-deficient solutions containing small quantities of soil and the level of P determined by a variety of tests used to evaluate P availability in soils and sediments. Soils were either autoclaved or not before addition to flasks containing P-starved algae in a nutrient solution without P. Compared to non-autoclaved samples, autoclaving soil resulted in approximately 60% more available P as estimated by increased algal growth. However, algal growth in the presence of autoclaved soil was highly correlated with growth in the presence of non-autoclaved samples. There was no consistent change in the correlations (r) between autoclaving or non-autoclaving samples in the relationships of algal numbers with P extracted by a number of soil tests. The effect of autoclaving soil on soluble P was also evaluated for a subset of six soils. Autoclaved soils had significantly greater concentrations of soluble P than non-autoclaved soils, with 78% more orthophosphate monoesters, 60% more orthophosphate diesters, and 54% more soluble inorganic P. Inhibition of algal growth may have occurred with two high-Zn soils that produced relatively low numbers of algae despite being very high in estimated available P by all extraction methods. Removing those samples from the calculations dramatically improved correlations between soil P measured by various methods and algal growth. With these two soils removed from calculations, algal growth with autoclaved soil was most highly correlated with Olsen P (r = 0.95), with other correlations as follows: Fe-oxide strip (r = 0.80), Mehlich 3 (r = 0.75,), modified Morgan (r = 0.61), and Bray-Kurtz 1 (r = 0.57).

  2. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  3. How hydrophobic buckminsterfullerene affects surrounding water structure.

    PubMed

    Weiss, Dahlia R; Raschke, Tanya M; Levitt, Michael

    2008-03-13

    The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.

  4. Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in Powder River Basin, Wyoming

    USGS Publications Warehouse

    Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.

    2005-01-01

    Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.

  5. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  6. Natural 'background' soil water repellency in conifer forests: its prediction and relationship to wildfire occurrence

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Woods, Scott; Martin, Deborah; Casimiro, Marta

    2013-04-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by col- lecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were fur- ther analyzed for repellency using WDPT and contact angle (hsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelma- nii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long- unburnt conifer forest soils of the north-western USA is

  7. Microbial enhancement of hydrazine degradation in soil and water

    SciTech Connect

    Ou, L.T.; Street, J.J.

    1987-09-01

    In an early study, the authors reported that hydrazine was rapidly degraded in Arredondo fine sand. By comparing the degradation results in sterile and nonsterile soils, it was concluded that biological degradation was responsible for about 20% of hydrazine disappearance from soils. They isolated a heterotrophic bacterium, Achromobacter sp., from the Arredondo soil and found that the organism had a high capacity to degrade hydrazine to the nontoxic product dinitrogen gas. In the present study, the authors attempted to enhance hydrazine degradation in water and soil samples by inoculating with a hydrazine-degrading bacterium, Achromobacter sp. Factors that influence hydrazine degradation in water and soil are discussed.

  8. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  9. Percolation behavior of tritiated water into a soil packed bed

    SciTech Connect

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  10. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  11. Measuring and Modelling water related soil - vegetation feedbacks in a fallow plot

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Cassiani, Giorgio; Deiana, Rita; Vignoli, Giulio; Boaga, Jacopo

    2013-04-01

    Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field scale water balance. The objective of this study was to test the potential of integrated non invasive geophysics and ground-image analysis and to quantify the effect of the soil vegetation interaction on the water balance of a fallow land at the local and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during an infiltration experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of the experimental data evidenced a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the site.

  12. Evaluation of wetting area and water distribution on different soils in subsurface drip irrigation emitters

    NASA Astrophysics Data System (ADS)

    Karimi, B.; Sohrabi, T.; Mirzaei, F.; Rodríguez-Sinobas, L.

    2012-04-01

    Growing pressure on the world's available water resources has led to an increase in the efficiency and productivity of water-use of irrigation systems in arid and semi-arid regions with water scarcity. In this context, sub-surface drip irrigation, where emitters discharge water underneath the soil surface, might help by saving water since soil evaporation, surface runoff, and deep percolation are greatly reduced or eliminated. In this paper, the wetting area and water distribution on light, medium and heavy texture homogeneous soils in subsurface drip irrigation emitters were evaluated. Experimental tests were carried out in a plexiglass lysimeter container with transparent walls. Emitters were buried at 15, 30 and 45 cm depths and discharge rates of 2 and 4 L/h were applied. Observations of wetting bulbs dimensions showed that water moved more laterally than downwards for higher emitter discharges. However, small emitter discharges enhanced water to move downwards. Likewise, higher emitter discharges also favored water to move upwards toward the soil surface. Water redistribution was affected by emitter depth. For the same emitter discharge, the deepest depth showed less water redistributed in the down vertical and horizontal directions but the contrary was observed for shallow depths. This could be explained considering the dry soil area above the emitter that is larger in the deepest emitters. Observations on wetting bulb dimensions and water distributions could aim at the selection of proper design variables (emitter depth), and/or operation variables (inlet head and irrigation time) in the studied soils under different scenarios of cropping patterns. Key Words: subsurface drip irrigation, wetting bulb, soil water distribution, water redistribution, optimum management

  13. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems.

    PubMed

    Hussain, Sarfraz; Hartley, Carol J; Shettigar, Madhura; Pandey, Gunjan

    2016-12-01

    Neonicotinoids are neurotoxic systemic insecticides used in plant protection worldwide. Unfortunately, application of neonicotinoids affects both beneficial and target insects indiscriminately. Being water soluble and persistent, these pesticides are capable of disrupting both food chains and biogeochemical cycles. This review focuses on the biodegradation of neonicotinoids in soil and water systems by the bacterial community. Several bacterial strains have been isolated and identified as capable of transforming neonicotinoids in the presence of an additional carbon source. Environmental parameters have been established for accelerated transformation in some of these strains. Studies have also indicated that enhanced biotransformation of these pesticides can be accomplished by mixed microbial populations under optimised environmental conditions. Substantial research into the identification of neonicotinoid-mineralising bacterial strains and identification of the genes and enzymes responsible for neonicotinoid degradation is still required to complete the understanding of microbial biodegradation pathways, and advance bioremediation efforts.

  14. Reclamation of soil affected by oilfield salts: Investigation, assessment, planning and implementation

    SciTech Connect

    Evans, G.B. Jr.; Barck, J.A.

    1995-12-01

    From well sites to water collection systems and disposal facilities across the U.S., salt in produced waters and waste residues has affected agricultural and range soils and shallow groundwater. Increasing concerns about these effects by producers, surface owners, trustees, and regulatory agencies suggest the need for realistic approaches to assessment and management of saline materials generated by the oil and gas industry. Salt impact assessment and management approaches have received much attention by agriculturalists, especially in irrigated desert regions, and these methods and tools can be adapted to the unique needs of the oil and gas industry. This paper demonstrates salt assessment and management principles as applied to a typical site. Rapid quantification of the environmental setting and extent of impacts, using tools such as electromagnetic inductance (EM), accurately and inexpensively provides the basis for management decisions. Reclamation goals are then determined, accounting for the resource capability classification of soils and groundwater and the effects of local agricultural practices. Site specific reclamation alternatives are evaluated, supported by simple laboratory treatability screening of standard and innovative soil amendments. These efforts and associated cost analysis provide a basis for the development of an appropriate reclamation plan. Remedy selection attempts to optimize costs by taking maximum advantage of site conditions, natural forces, and time. Reclamation then results in return of the land to agricultural production.

  15. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  16. Soil and Water Challenges for Pacific Northwest Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  17. Remote sensing of soil water content at large scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water content at the near surface is a critical parameter for understanding land surface atmosphere interactions, influencing surface energy balances. Using microwave radiometry, an accurate global map of surface soil water content can be generated on a near daily basis. The accuracy of the p...

  18. Automated soil water balance sensing: From layers to control volumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous sensing of soil water status has been possible in some ways since the advent of chart recorders, but the widespread adoption of soil water sensing systems did not occur until relatively inexpensive dataloggers became available in the late 1970s and early 1980s. Early systems relied on pre...

  19. Comparison of corn transpiration, eddy covariance, and soil water loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  20. Cadmium content of plants as affected by soil cadmium concentration

    SciTech Connect

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  1. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  2. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  3. Responses of amphibian populations to water and soil factors in experimentally-treated aquatic macrocosms

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.; Day, D.; Dolan, K.

    1995-01-01

    Survival of anuran embryos and tadpoles is reduced in acidic (pH < 5.0) waters under laboratory conditions. However, field data on the presence-absence of amphibian species and acidity are equivocal. This study attempts to reconcile some of this discrepancy by using macrocosms to examine the interaction of soil type and water acidification on free-ranging tadpole populations. Tadpoles were caught with activity traps in 24 aquatic macrocosms experimentally treated with H2SO4 and Al2(SO4)3 and lined with either comparatively high metal, Iow organic matter clay soils or lower metal, higher organic matter loams. Northern cricket frog (Acris crepitans) tadpole abundance was less in acidified macrocosms than in circumneutral ones (p < 0.05) and less in those with loam soils than in macrocosms with clay soils (p < 0.04). Gray treefrog (Hyla versicolor) abundance was affected by an interaction between soil and acidification (p < 0.07) in that treatment effects were only observed in macrocosms with clay soils (p < 0.01). No differences were observed among treatments for green frog (Rana clamitans) or southern leopard frog (R. utricularia) tadpoles. The study shows that soil type may interact with water conditions to affect amphibian populations in acidified waters

  4. [Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains].

    PubMed

    Wang, Miao; Li, Qiurong; Hao, Zhanqing; Dong, Baili

    2004-10-01

    This paper studied the response of the seedlings of Quercus mongolica, one of the dominant tree species in Changbai Mountains, to the artificially controlled three soil water gradients, including their morphology, biomass and photosynthetic characteristics. The results indicated that various water regimes significantly affected the biomass and its distribution pattern in the leaves, branches and roots, as well as the leaf gas exchange. Under soil water stress, the crown structure changed, and the tree height, groundline diameter, single leaf area, and aboveground and belowground biomass were inhibited. As soil water content decreased, the ratio of belowground and aboveground biomass dry weight significantly increased. Water stress had a negative effect on net photosynthetic rate, CO2 use efficiency and carbon use efficiency. The responses of stomatal conductance, transpiration rate and water use efficiency to water stress were complicated. Only at low soil water content, the stomatal conductance and transpiration rate significantly decreased, while water use efficiency increased. It was demonstrated that Quercus mongolica was the tree species with variable resistance to drought, and the resistance could be improved by long-term soil water stress.

  5. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment

    NASA Astrophysics Data System (ADS)

    Chikoski, Jennifer M.; Ferguson, Steven H.; Meyer, Lense

    2006-09-01

    We investigated the effect of water addition and season on soil arthropod abundance and soil characteristics (%C, %N, C:N, moisture, pH). The experimental design consisted of 24 groups of five boxes distributed within a small aspen stand in Saskatchewan, Canada. The boxes depressed the soil to create a habitat with suitable microclimate for soil arthropods, and by overturning boxes we counted soil arthropods during weekly surveys from April to September 1999. Soil samples were collected at two-month intervals and water was added once per week to half of the plots. Of the eleven recognizable taxonomic units identified, only mites (Acari) and springtails (Collembola) responded to water addition by increasing abundance, whereas ants decreased in abundance with water addition. During summer, springtail numbers increased with water addition, whereas pH was a stronger determinant of mite abundance. In autumn, springtails were positively correlated with water and negatively correlated with mites, whereas mite abundance was negatively correlated with increasing C:N ratio, positively correlated to water addition, and negatively correlated with springtail abundance. Although both mite and springtail numbers decreased in autumn with a decrease in soil moisture, mites became more abundant than springtails suggesting a predator-prey (mite-springtail) relationship. Water had a significant effect on both springtails and mites in summer and autumn supporting the assertion that prairie soil communities are water limited.

  6. Soil biological activity as affected by tillage intensity

    NASA Astrophysics Data System (ADS)

    Gajda, A.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  7. Soil water and vegetation responses to precipitation and changes in depth to ground water in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Dileanis, Peter D.; Branson, Farrel A.

    1991-01-01

    Vegetation on the floor of Owens Valley, California, is composed predominantly of phreatophytic desert communities that are adapted to small quantities of precipitation and alkaline soils. These plant communities are believed to be dependent on the continuing presence of a shallow water table. Maintaining existing plant communities is important to preserve the environmental quality of the valley. Proposals to pump additional quantities of ground water from the valley for export to the city of Los Angeles caused concern about the effect of pumping on the existing vegetation and how the plants would adapt to short- or long-term declines of the shallow water table. To test the ability of selected major shrub species to adapt to water-table decline, four sites were selected, pump-equipped wells were installed, and water-table drawdown was monitored. Soil samples were collected with a hand auger and analyzed by using the filter-paper method to monitor changes in soil water content and soil matric potential at test sites. Plant reactions were determined by measurements of plant cover, shoot growth, and xylem pressure potential. Results of 3 years of monitoring show that growth and cover repetition of the shrubs studied are affected greatly by the quantity of annual precipitation, especially at sites with coarse-textured soils. Plants were not affected by drying soil in the root zone until the maximum matric potential exceeded 4.3 pF (-1,950 kilopascal) at depths greater than 0.5 meter. Rabbit-brush was most sensitive to dry soil and was the only shrub species that died as the result of water stress from water-table drawdown. The change in cover repetition correlated positively with the magnitude of water-table drawdown at one site and negatively at another site. Measurements of xylem pressure potential taken before dawn correlated well with water content in the upper 1.5 meters of soil. The magnitude of water-table drawdown achieved by the pump-equipped wells was less

  8. Different degrees of plant invasion significantly affect the richness of the soil fungal community.

    PubMed

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.

  9. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  10. Effects of Soil and Water Content on Methyl Bromide Oxidation by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea†

    PubMed Central

    Duddleston, Khrystyne N.; Bottomley, Peter J.; Porter, Angela; Arp, Daniel J.

    2000-01-01

    Little information exists on the potential of NH3-oxidizing bacteria to cooxidize halogenated hydrocarbons in soil. A study was conducted to examine the cooxidation of methyl bromide (MeBr) by an NH3-oxidizing bacterium, Nitrosomonas europaea, under soil conditions. Soil and its water content modified the availability of NH4+ and MeBr and influenced the relative rates of substrate (NH3) and cosubstrate (MeBr) oxidations. These observations highlight the complexity associated with characterizing soil cooxidative activities when soil and water interact to differentially affect substrate and cosubstrate availabilities. PMID:10831449

  11. Modeling the soil system: Bridging the gap between pedology and soil-water physics

    NASA Astrophysics Data System (ADS)

    Braudeau, Erik; Mohtar, Rabi H.

    2009-05-01

    The biological and geochemical processes in soil such as organic matter mineralization, microbiological activity, and plant alimentation can be accurately assessed and modeled only with the knowledge of the thermodynamic status of the soil medium where these processes take place. However, current soil water models do not define and characterize the soil structure or the thermodynamic state of the soil water interacting with this structure. This article presents a new paradigm in characterizing and modeling the organized soil medium and the physical properties resulting from this organization. It describes a framework of the modeling approach as a contribution to the General Systems theory. The basic concept of Representative Elementary Volume (REV) in soil physics and hydrology was transformed into the concept of Structure Representative Volume (SREV) which takes into account the hierarchical organization of the structured soil medium. The pedostructure is defined as the SREV of the soil medium and this concept is at the basis of the new paradigm including variables, equations, parameters, and units in soil physics, in a similar way that the REV is at the basis of the continuous porous media mechanics applied to soils. The paradigm allows for a thermodynamic characterization of the structured soil medium with respect to soil water content then bridging the gap between pedology and soil physics. We show that the two points of view (REV and SREV) are complementary and must be used in the scaling of information. This approach leads to a new dimension in soil-water properties characterization that ensures a physically based modeling of processes in soil and the transfer of information from the physical scale of processes (pedostructure or laboratory measurements scale) to the application scale of the other disciplines (modeling and mapping scale).

  12. Soil water availability as controlling factor for actual evapotranspiration in urban soil-vegetation-systems

    NASA Astrophysics Data System (ADS)

    Thomsen, Simon; Reisdorff, Christoph; Gröngröft, Alexander; Jensen, Kai; Eschenbach, Annette

    2015-04-01

    The City of Hamburg is characterized by a large number of greens, parks and roadside trees: 600.000 trees cover about 14% of the city area, and moreover, 245.000 roadside trees can be found here. Urban vegetation is generally known to positively contribute to the urban micro-climate via cooling by evapotranspiration (ET). The water for ET is predominantly stored in the urban soils. Hence, the actual evapotranspiration (ETa) is - beside atmospheric drivers - determined by soil water availability at the soil surface and in the rooting zones of the respective vegetation. The overall aim of this study is to characterize soil water availability as a regulative factor for ETa in urban soil-vegetation systems. The specific questions addressed are: i) What is the spatio-temporal variation in soil water availability at the study sites? ii) Which soil depths are predominantly used for water uptake by the vegetation forms investigated? and iii) Which are the threshold values of soil water tension and soil water content (Θ), respectively, that limit ETa under dry conditions on both grass-dominated and tree-dominated sites? Three study areas were established in the urban region of Hamburg, Germany. We selected areas featuring both single tree stands and grass-dominated sites, both representing typical vegetation forms in Hamburg. The areas are characterized by relatively dry soil conditions. However, they differ in regard to soil water availability. At each area we selected one site dominated by Common Oak (Quercus ruber L.) with ages from 40 to 120 years, and paired each oak tree site with a neighboring grass-dominated site. All field measurements were performed during the years 2013 and 2014. At each site, we continuously measured soil water tension and Θ up to 160 cm depth, and xylem sap flux of each of three oak trees per site in a 15 min-resolution. Furthermore, we measured soil hydraulic properties as pF-curve, saturated and unsaturated conductivity at all sites

  13. Deforestation effects on soil quality and water retention curve parameters in eastern Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Asghari, Sh.; Ahmadnejad, S.; Keivan Behjou, F.

    2016-03-01

    The land use change from natural to managed ecosystems causes serious soil degradation. The main objective of this research was to assess deforestation effects on soil physical quality attributes and soil water retention curve (SWRC) parameters in the Fandoghlou region of Ardabil province, Iran. Totally 36 surface and subsurface soil samples were taken and soil water contents measured at 13 suctions. Alfa (α) and n parameters in van Genuchten (1980) model were estimated by fitting SWRC data by using RETC software. The slope of SWRC at inflection point (SP) was calculated by Dexter (2004) equation. The results indicated that with changing land use from forest (F) to range land (R) and cultivated land (C), and also with increasing soil depth from 0-25 to 75-100 cm in each land use, organic carbon, micropores, saturated and available water contents decreased and macropores and bulk density increased significantly ( P < 0.05). The position of SWRC shape in F was higher than R and C lands at all soil depths. Changing F to R and C lands and also increasing soil depth in each land use significantly ( P < 0.05) increased α and decreased n and SP. The average values of SP were obtained 0.093, 0.051 and 0.031 for F, R and C, respectively. As a result, deforestation reduced soil physical quality by affecting SWRC parameters.

  14. Factors affecting soil phosphorus and potassium estimation by reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible and near infrared (VNIR) diffuse reflectance spectroscopy has potential in site-specific measurement of soil properties. However, previous studies have reported VNIR estimates of plant available soil phosphorus (P) and potassium (K) to be of variable accuracy. In this study, we used a databa...

  15. Reuse of laundry greywater as affected by its interaction with saturated soil

    NASA Astrophysics Data System (ADS)

    Misra, Rabindra K.; Sivongxay, Amphone

    2009-03-01

    SummaryWe conducted laboratory experiments on a well aggregated, non-swelling clay soil to measure water retention, saturated hydraulic conductivity ( Ks) and salts present in the irrigation and drainage water to study the impacts of reusing untreated laundry greywater (GW) to irrigate soils in the residential garden beds. We used undisturbed (field) and disturbed (loose and compacted) soil cores to represent situations typical in old and recently established garden beds. Using tap water (TW), soil water retention within 0-10 kPa matric suction was found to be significantly lower and hysteresis significantly higher for the loose soil than the field or compacted soil. Measured values of Ks with TW were in the order loose >field>compacted soil, but these values were reduced to 5-16% when GW was used. Further measurements of Ks with application of TW to soil cores which had been previously saturated with GW, greater reduction in Ks occurred with Ks → 0 for the compacted soil. A comparison of the quality of GW with TW as irrigation water indicated an approx. increase in pH of GW by 3 pH units over TW, twofold increase in EC, fivefold increase in Na concentration and a 10-fold increase in Sodium Adsorption Ratio (SAR). Measurements of drainage water during the water flux measurements for Ks showed that the soil was able to reduce pH and EC of infiltrating water, store some salts (Na and K) and released Ca and Mg from soil so that the quality of drainage water improved substantially to become similar in quality to TW. Thus, long-term use of untreated laundry greywater may reduce salt contamination of groundwater, but predispose soils to future environmental hazards from excess sodium accumulation.

  16. Geomorphic and biophysical factors affecting water tracks in northern Alaska

    NASA Astrophysics Data System (ADS)

    Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.

    2016-03-01

    A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.

  17. Soil and water losses on citrus orchards under Mediterranean Type Ecosystems. Organic against chemical farming

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Bodí, M. B.; García-Orenes, F.

    2012-04-01

    Soil erosion in Mediterranean Type Ecosystems is highly dependent on the land use and land management (Cerdà et al., 2010). This is due mainly to the impact of agriculture (Cerdà et al., 2009) as a consequence of tillage and the use of herbicides. Both strategies contribute to a reduction in the vegetation cover and the soil biological activities (García-Orenes et al., 2009). The impact of soil erosion on agronomic productivity and environmental quality is widely known (Lal, 1998), although little has been researched in the Mediterranean. The impact of agriculture on soil erosion and water losses in the Mediterranean basin has been studied in olive orchards (Gómez, 2004); vineyards (Ramos and Martínez Casasnovas, 2004), citrus (Cerdà et al., 2009), cereals (De Santisteban et al., (2005), and the high erosion rates were found to be related to the land management and land use (García Ruiz, 2010). The current Mediterranean agriculture is based on tillage and herbicides, which contribute to high soil and water losses. The development of sustainable agriculture practices is a challenge for farmers, technicians and politicians. Organic farming use strategies to reduce the soil losses and develop new strategies of soil conservation. Moreover organic farming recover the soil fertility and biodiversity (Maeder et al., 2002). Organic farming is growing in the Mediterranean but little is know about his effect on soil conservation. There is a lack in the knowledge of how organic farming affect the soil properties and, there is no information on his effect on soil and water losses. This paper aims to measure the impact of organic farming on soil and water losses. 10 plots of 1 x 0,5 m were selected in a chemically managed farm in Montesa (Eastern Spain) and 10 plots in a nearby organic farming managed farm. Both of them were cultivated with citrus. The ten paired plots were monitored. After earch rainfall event the sediment and water collected were measured and analized

  18. Soil water characteristics of two soil catenas in Illinois: Implications for irrigation

    SciTech Connect

    Schaetzl, R.J. ); Kirsch, S.W. ); Hendrie, L.K.

    1989-10-01

    Soil water was monitored by neutron scattering in six soils, three each within two drainage catenas in east-central Illinois, over a 15-month time span. The prairie soils have formed in: (1) 76-152 cm of silt loam, eolian sediments (loess) over glacial till (Catlin-Flanagan-Drummer catena), and (2) loess greater than 152 cm in thickness (Tama-Ipava-Sable catena). The authors characterized the water content of these soils over the total time span and for wet and dry climatic subsets, as an aid to potential irrigation decisions. Soils of the thin loess, C-F-D catena dried out to lower water contents and had greater soil water variability than did the thick loess soils. Under wet conditions, soil water contents in the two catenas were quite similar. Alleviation of surface and subsurface drying via irrigation would thus be more advantageous to yields on the C-F-D soils than on the T-I-S soils.

  19. Retrieving soil water contents from soil temperature measurements by using linear regression

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Zhou, Binbin

    2003-11-01

    A simple linear regression method is developed to retrieve daily averaged soil water content from diurnal variations of soil temperature measured at three or more depths. The method is applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 10, and 30 cm during 11 20 June 1995. The retrieved bulk soil water contents are compared with direct measurements for one pair of nearly collocated Mesonet and ARM stations and also compared with the retrievals of a previous method at 14 enhanced Oklahoma Mesonet stations. The results show that the current method gives more persistent retrievals than the previous method. The method is also applied to Oklahoma Mesonet soil temperature data collected at the depths of 5, 25, 60, and 75 cm from the Norman site during 20 30 July 1998 and 1 31 July 2000. The retrieved soil water contents are verified by collocated soil water content measurements with rms differences smaller than the soil water observation error (0.05 m3 m-3). The retrievals are found to be moderately sensitive to random errors (±0.1 K) in the soil temperature observations and errors in the soil type specifications.

  20. Effect of soil water content on soil thermal conductivity under field conditions

    NASA Astrophysics Data System (ADS)

    Vico, G.; Daly, E.; Manzoni, S.; Porporato, A.

    2008-12-01

    Knowledge of the thermal properties of soils is required in many areas of engineering, meteorology, agronomy, and ecosystem and soil science. Soil thermal conductivity varies in time and space, since it is influenced by soil properties as well as soil temperature and moisture conditions. We use the one dimensional heat conduction equation in conjunction with two-year data measured in a grass-covered field in North Carolina Piedmont to estimate soil thermal conductivity and to investigate how it is impacted by water content. In agreement with laboratory experiments reported in the literature, our results suggest that under dry conditions soil thermal conductivity increases across a relatively narrow range of soil water contents, above which a further increase in water content does not significantly change thermal conductivity. However, when soil approaches saturation, heat transfer is further improved, a fact not previously noted. This nonlinear behavior is consistent with the formation at high water contents of a continuous film of liquid water in soil aggregates of mineral and organic matter.

  1. Volatilization of lindance from water in soil-free and flooded soil systems.

    PubMed

    Siddaramppa, R; Sethunathan, N

    1976-01-01

    Volatilization of 14C-lindane from water in planchets and under flooded soil ecosystem was investigated. Lindane disappeared faster than parathion from planchets. More rapid loss of both insecticides occurred from water than from chloroform. Loss of lindane and parathion was related to measured losses of water by evaporation. During 5-day incubation under flooded soil conditions, disappearance of lindane was faster from open vials than from sealed vials, whereas in nonflooded soil, no volatile loss of the insecticide was evident despite water evaporation. Over 5 day incubation under flooded conditions, greater volatile loss of lindane occurred in sandy soil than in alluvial soil apparanetly due to greater adsorption to the soil colloids decreasing the insecticide concentration in the standing water on the laterite soil. Under identical conditions of water evaporation, lindane loss was directly proportional to its initial concentration in the water. These results suggest that considerable loss of soil applied pesticides can occur by volatilization from the standing water in flooded rice fields, particularly under tropical conditions.

  2. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  3. Factors affecting the microbial degradation of phenanthrene in soil. (Reannouncement with new availability information)

    SciTech Connect

    Manilal, V.B.; Alexander, M.

    1991-12-31

    Because phenanthrene was mineralized more slowly in soils than in liquid media, a study was conducted to determine the environmental factors that may account for the slow biodegradation in soil. Mineralization was enhanced by additions of phosphate but not potassium, and it was reduced by additions of nitrate. Aeration or amending the soil with glucose affected the rate of mineralization, although not markedly. Phenanthrene was sorbed to soil constituents, the extent of sorption being directly related to the percentage of organic matter in the soil. Soluble phenanthrene was not detected after addition of the compound to a muck soil. The rate of mineralization was slow in the organic soil and higher in mineral soils with lower percentages of organic matter. We suggest that sorption by soil organic matter slows the biodegradation of polycyclic aromatic hydrocarbons that are otherwise readily metabolized.

  4. Impacts of soil and water pollution on food safety and health risks in China.

    PubMed

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.

  5. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  6. [Factors affecting activation and transference of soil colloidal phosphorus and related analysis technologies].

    PubMed

    Zhao, Yue; Liang, Xin-qiang; Fu, Chao-dong; Zhu, Si-rui; Zhang, Yi-xiang; Ji, Yuan-jing

    2015-04-01

    Colloids play a key role in the transference process of phosphorus (P) in soil. Activation and transference of soil colloidal phosphorus have great effect on soil P pool and the surrounding water quality. This paper summarized the current studies on soil colloidal P, discussing the effects of the various factors (e. g., soil physical and chemical properties, fertilization, rainfall and soil amendments) on the transference of soil colloidal P. Some advanced analysis technologies (e.g., flow field-flow fractionation, transmission electron microscope-energy dispersive X-ray spectrometer, X-ray absorption near-edge structure and nuclear magnetic resonance) and methods of reducing soil colloidal P were also involved. This review would provide important information on the mechanism of soil colloidal P transference.

  7. Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.

    2013-12-01

    The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of

  8. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    PubMed

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor.

  9. Analysis of matrix effects critical to microbial transport in organic waste-affected soils across laboratory and field scales

    NASA Astrophysics Data System (ADS)

    Unc, Adrian; Goss, Michael J.; Cook, Simon; Li, Xunde; Atwill, Edward R.; Harter, Thomas

    2012-06-01

    Organic waste applications to soil (manure, various wastewaters, and biosolids) are among the most significant sources of bacterial contamination in surface and groundwater. Transport of bacteria through the vadose zone depends on flow path geometry and stability and is mitigated by interaction between soil, soil solution, air-water interfaces, and characteristics of microbial surfaces. After initial entry, the transport through soil depends on continued entrainment of bacteria and resuspension of those retained in the porous structure. We evaluated the retention of bacteria-sized artificial microspheres, varying in diameter and surface charge and applied in different suspending solutions, by a range of sieved soils contained in minicolumns, the transport of hydrophobic bacteria-sized microspheres through undisturbed soil columns as affected by waste type under simulated rainfall, and the field-scale transport of Enterococcus spp. to an unconfined sandy aquifer after the application of liquid manure. Microsphere retention reflected microsphere properties. The soil type and suspending solution affected retention of hydrophilic but not hydrophobic particles. Retention was not necessarily facilitated by manure-microsphere-soil interactions but by manure-soil interactions. Undisturbed column studies confirmed the governing role of waste type on vadose-zone microsphere transport. Filtration theory applied as an integrated analysis of transport across length scales showed that effective collision efficiency depended on the distance of travel. It followed a power law behavior with the power coefficient varying from ˜0.4 over short distances to >0.9 over 1 m (i.e., very little filtration for a finite fraction of biocolloids), consistent with reduced influence of soil solution and biocolloid properties at longer travel distances.

  10. Development, calibration, and performance of a novel biocrust wetness probe (BWP) measuring the water content of biological soil crusts and surface soils

    NASA Astrophysics Data System (ADS)

    Weber, Bettina; Berkemeier, Thomas; Ruckteschler, Nina; Caesar, Jennifer; Ritter, Holger; Heintz, Henno; Brass, Henning

    2015-04-01

    The surface layer of soils as transition zone between pedosphere and atmosphere plays a crucial role in exchange processes of nutrients, atmospheric gases and water. In arid and semiarid regions, this uppermost soil layer is commonly colonized by biological soil crusts (biocrusts), which cover about 46 million km2 worldwide being highly relevant in the global terrestrial carbon and nitrogen cycles. Their water status is of major concern, as activity of these poikilohydric organisms is directly controlled by their water content. On-site analyses of both bare and crusted soils thus are urgently needed to correctly model exchange processes of water, nutrients and trace gases at the soil surface. In this study we present the biocrust wetness probe (BWP), which is the first low-cost sensor to reliably measure the water content within biocrusts or the uppermost 5 mm of the substrate. Using a weak alternating current, the electrical conductivity is assessed and an automatic calibration routine allows calculating the water content and precipitation equivalent of the surface layer over time. During one year of continuous field measurements, 60 BWPs were installed in different types of biocrusts and bare soil to measure at 5-minute intervals in the Succulent Karroo, South Africa. All sensors worked reliably and responded immediately and individually upon precipitation events. Upon completion of field measurements, soil and biocrust samples were collected from all measurement spots to compile calibration curves in the lab. In most soil and biocrust samples the water content rose linearly with increasing electrical conductivity values and only for few samples an exponential relationship was observed. Measurements revealed characteristic differences in biocrust and soil wetness patterns, which affect both the water regime and physiological processes in desert regions. Thus BWPs turned out to be well suited sensors for spatio-temporal monitoring of soil water content, allowing

  11. Moderately haloalkaliphilic actinomycetes in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2009-12-01

    It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1-3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8-9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.

  12. Landscape position moderates how ant nests affect hydrology and soil chemistry across a Chihuahuan Desert watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ants moderate the supply of critical resources such as water and nutrients in desert environments by changing the physical arrangement of soils during nest construction. We measured water infiltration and soil physical and chemical properties on and off the nests of two ant species (Pogonomyrmex rug...

  13. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  14. Phosphorus runoff from two water sources on a calcareous soil.

    PubMed

    Aase, J K; Bjorneberg, D L; Westermann, D T

    2001-01-01

    Phosphorus (P) in irrigation runoff may enrich offsite water bodies and streams and be influenced by irrigation water quality and antecedent soil surface conditions. Runoff, soil loss, and P fractions in runoff using reverse osmosis (RO) water or mixed RO and well water (RO/ Tap) were studied in a laboratory sprinkler study to evaluate water source effects on P transport. A top- or subsoil Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid), either amended or not amended with manure and/or with cheese whey, with Olsen P from 20 to 141 mg kg(-1) and lime from 108 to 243 g kg(-1), was placed in 1.5 x 1.2 x 0.2-m-deep containers with 2.4% slope and irrigated three times from a 3-m height for 15 min, applying 20 mm of water. The first irrigation was on a dry loose surface, the second on a wet surface, and the third on a dry crusted surface. Surface (ca. 2 cm) soil samples, prior to the first irrigation, were analyzed for Olsen P, water-soluble P (Pws), and iron-oxide impregnated paper-extractable P (FeO-P) analyses. Following each irrigation we determined runoff, sediment, dissolved reactive phosphorus (DRP) in a 0.45-microm filtered sample, and FeO-P and total P in unfiltered samples. Soil surface conditions had no effect on P runoff relationships. Water source had no significant effect on the relationship between DRP or FeO-P runoff and soil test P, except for DRP in RO runoff versus water-soluble soil P (r2 = 0.90). Total P in RO runoff versus soil P were not related; but weakly correlated for RO/Tap (r2 < 0.50). Water source and soil surface conditions had little or no effect on P runoff from this calcareous soil.

  15. Cosmic Ray Neutron Probe Soil Water Measurements over Complex Terrain in Austria

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Weltin, Georg; Kheng Heng, Lee; Wahbi, Ammar; Oismueller, Markus; Dercon, Gerd

    2014-05-01

    The importance of surface soil water (rooting zone) has become evident with climate change affecting rainfall patterns and crop production. The use of Cosmic Ray Neutron Probe (CRNP) for measuring surface soil water has become increasingly popular. The advantage of CRNP is that it is a non-invasive technique for measuring soil water content at an area-wide scale, in contrast to more conventional, techniques which measure mainly at field scale (point level). The CRNP integrates over a circular area of ca. 600 meters in diameter, to a depth of 70 cm, giving an average value for soil water content. Cosmic radiation interacting with the Earth's atmosphere continuously generates neutrons. At Earth's surface, these neutrons interact with surface water, and are slowed down. At sub-micrometer geometrics, these neutrons affect semiconductor devices, so they can be counted, slow and fast ones separately. From the difference in numbers between fast and slow neutrons, soil water content is calculated. As first in Austria, a CRNP (CRS 1000/B model) consisting of two neutron counters (one tuned for slow, the other one for fast neutrons), data logger and an Iridium modem, has been installed at Petzenkirchen research station of the Doctoral Programme for Water Resource Systems (TU Vienna) at 48.14 latitude and 15.17 longitude, 100 km west of Vienna, in late autumn 2013. The research station is located in an undulating agricultural landscape, characterized by heavy Cambisols and Planosols, and winter wheat and barley as main crops in winter, and maize and sunflower in summer. In addition, an in-situ soil moisture network consisting of 32 stations of Time Domain Transmissivity (TDT) sensors measuring soil water at 4 depths (0.05, 0.10,0.20 and 0.50 m) over an area of 64 ha has been established. This TDT network is currently being used to validate the use of the innovative CRNP technique. First results will be shown at the EGU 2014.

  16. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  17. Mycelial actinobacteria in salt-affected soils of arid territories of Ukraine and Russia

    NASA Astrophysics Data System (ADS)

    Grishko, V. N.; Syshchikova, O. V.; Zenova, G. M.; Kozhevin, P. A.; Dubrova, M. S.; Lubsanova, D. A.; Chernov, I. Yu.

    2015-01-01

    A high population density (up to hundreds of thousands or millions CFU/g soil) of mycelial bacteria (actinomycetes) is determined in salt-affected soils of arid territories of Ukraine, Russia, and Turkmenistan. Of all the studied soils, the lowest amounts of actinomycetes (thousands and tens of thousands CFU/g soil) are isolated from sor (playa) and soda solonchaks developed on the bottoms of drying salt lakes in Buryatia and in the Amu Darya Delta. Actinomycetes of the Streptomyces, Micromonospora, and Nocardiopsis genera were recorded in the studied soils. It is found that conditions of preincubation greatly affect the activity of substrate consumption by the cultures of actinomycetes. This could be attributed to changes in the metabolism of actinomycetes as a mechanism of their adaptation to the increased osmotic pressure of the medium. The alkali tolerance of halotolerant actinomycetes isolated from the salt-affected soils is experimentally proved.

  18. The effect of soil: water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil.

    PubMed

    Doick, Kieron J; Semple, Kirk T

    2003-03-14

    Contamination of soil by polycyclic aromatic hydrocarbons is frequently associated with non-aqueous-phase liquids. Measurement of the catabolic potential of a soil or determination of the biodegradable fraction of a contaminant can be done using a slurried soil respirometric system. This work assessed the impact of increasing the concentration of transformer oil and soil:water ratio on the microbial catabolism of [(14)C]phenanthrene to (14)CO(2) by a phenanthrene-degrading inoculum. Slurrying (1:1, 1:2, 1:3 and 1:5 soil:water ratios) consistently resulted in statistically higher rates and extents of mineralisation than the non-slurried system (2:1 soil:water ratio; P<0.01). The maximum extents of mineralisation observed occurred in the 1:2-1:5 soil:water ratio microcosms irrespective of transformer oil concentration. Transformer oil concentrations investigated displayed no statistically significant effect on total mineralisation (P>0.05). Soil slurries 1:2 or greater, but less than 1:5 (soil:water), are recommended for bioassay determinations of total contaminant bioavailability due to greater overall mineralisation and improved reproducibility.

  19. Distinct Soil Microbial Communities in habitats of differing soil water balance on the Tibetan Plateau.

    PubMed

    Li, Yuntao; Adams, Jonathan; Shi, Yu; Wang, Hao; He, Jin-Sheng; Chu, Haiyan

    2017-04-12

    Global change may be a severe threat to natural and agricultural systems, partly through its effects in altering soil biota and processes, due to changes in water balance. We studied the potential influence of changing soil water balance on soil biota by comparing existing sites along a natural water balance gradient in the Qinghai-Tibetan Plateau. In this study, the community structure of bacteria, archaea and eukaryotes differed between the different soil water conditions. Soil moisture was the strongest predictor of bacterial and eukaryotic community structure, whereas C/N ratio was the key factor predicting variation in the archaeal community. Bacterial and eukaryotic diversity was quite stable among different soil water availability, but archaeal diversity was dramatically different between the habitats. The auxotype of methanogens also varied significantly among different habitats. The co-varying soil properties among habitats shaped the community structure of soil microbes, with archaea being particularly sensitive in terms of community composition, diversity and functional groups. Bacterial and archaeal phylogenetic community turnover was mainly driven by deterministic processes while stochastic processes had stronger effects on eukaryotic phylogenetic community turnover. Our work provides insight into microbial community, functional group and phylogenetic turnover under different soil conditions in low-latitude alpine ecosystem.

  20. A critical evaluation of soil water retention parameterizations with respect to their behaviour near saturation and in the dry range

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit; Mai, Juliane; Mielenz, Henrike

    2016-04-01

    Flow of liquid water and movement of water vapor in the unsaturated zone affect in-soil processes (e.g., root water uptake) and exchanges of water between the soil and the groundwater (e.g., aquifer recharge) and between the soil and the atmosphere (e.g., evaporation). Evapotranspiration in particular is a key factor in the way soils moderate weather and respond to climate change. Soil physicists typically model these processes at scales of individual fields and smaller. They solve Richards' equation using soil water retention curves and hydraulic conductivity curves (soil hydraulic property curves) that are typically valid for even smaller soil volumes. Over the years, many parametric expressions have been proposed as models for the soil hydraulic property curves. Before Richards' equation and the associated soil hydraulic properties can be upscaled or modified for use on scales that are more useful for climate modeling and other applications of practical relevance, the small scale soil hydraulic property curves should at least perform well on the scale for which they were originally developed. Research over the past couple of decades revealed that the fit of soil water retention curves in the dry end is often quite poor, which is particularly risky when vapor flow is a significant factor. It also emerged that the shape of the retention curve for matric potentials very close to zero can generate physically unrealistic behavior of the hydraulic conductivity near saturation when combined with a popular class of conductivity models. We critically examined most of the existing soil water retention parameterizations with respect to these two aspects, and introduced minor modifications to a few of them to improve their performance. The presentation will highlight the results of this review, and demonstrate the effect on calculated fluxes of liquid water and water vapor in soils for illustrative hypothetical scenarios.

  1. Land use type significantly affects microbial gene transcription in soil.

    PubMed

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  2. Fate of carbamazepine and anthracene in soils watered with UV-LED treated wastewaters.

    PubMed

    Chevremont, A-C; Boudenne, J-L; Coulomb, B; Farnet, A-M

    2013-11-01

    Water disinfection technologies based on ultraviolet (UV) radiations emitted by Light-Emitting Diodes (LED), as a wastewater tertiary treatment, have been shown to be promising for water reuse. Here, we assessed the fate of two ubiquitous pollutants, carbamazepine and anthracene, in soil watered with either UV-LED treated wastewaters or irrigation water. After 3 months, anthracene and carbamazepine were transformed two and three times faster respectively, in soils watered with UV-LED wastewater than in soils watered with tap water (probably because of the addition of organic matter by the effluent). Laccase activity was induced in the presence of the pollutants and anthraquinone was found as anthracene product of oxidation by laccases. Moreover, the addition of these pollutants into soil did not affect the functional diversity of autochthonous microbial communities assessed by Ecolog plates. Cellulase, protease and urease activities increased in soils watered with UV-LED treated wastewaters (UV-LED WW), showing transformation of organic matter from the effluent and lipase activity increased by anthracene addition, confirming the potential role of these enzymes as indicators of hydrocarbon contamination.

  3. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  4. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  5. Isolation of the combined water content and salinity effects on ERT measurement to locate the preferential flow pathways in water repellent soils

    NASA Astrophysics Data System (ADS)

    Brindt, Naaran; Rahav, Matan; Furman, Alex; Wallach, Rony

    2016-04-01

    Electrical resistivity tomography (ERT) has been used for measuring the dynamics of water flow in soils without disturbing the soil, and recently for identifying the preferential flow pathways that are reported to develop in water repellent soils. Since electrical resistivity is affected mainly by soil saturation and salinity, and given that in many cases salinity in the root zone reaches high values, the isolation of spatial and temporal distribution of water content or salinity in the root zone from ERT scans is a challenge. A model for transient variation of soil water content and salinity within a well-mixed soil unit was developed in the frame of this challenge. The model aims to isolate the temporal changes in water content from subsequent ERT scans. The model assumes that four stages of water dynamics occur in the root zone during an irrigation cycle: 1) Soil water content decreases by evapotranspiration - no irrigation, 2) Irrigation with saline water begins, water content increases but remains below field capacity - negligible drainage, 3) Irrigation continues and drainage starts as the water content becomes higher than field capacity, and 4) Irrigation stops, water content is higher than field capacity, and water content decreases by drainage and evapotranspiration. These four stages restart when drainage stops and water content decreases solely by evapotranspiration. The model was solved analytically and successfully applied to a series of sequential ERT scans accomplished during and between subsequent irrigation events for a soil that was rendered hydrophobic by olive trees irrigated with saline water, and a soil in a citrus orchard that was rendered hydrophobic by prolonged effluent irrigation. The suggested model helps in distinguishing between the temporal changes in water content and salinity within a given soil volume, locating the preferential plow pathways, and tracking the spatial and temporal salinity variation within the root zone during and

  6. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    PubMed

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh(-1), and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh(-1)), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh(-1)) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact.

  7. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    NASA Astrophysics Data System (ADS)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  8. Responses of soil microbial communities to water stress: results from a meta-analysis.

    PubMed

    Manzoni, Stefano; Schimel, Joshua P; Porporato, Amilcare

    2012-04-01

    Soil heterotrophic respiration and nutrient mineralization are strongly affected by environmental conditions, in particular by moisture fluctuations triggered by rainfall events. When soil moisture decreases, so does decomposers' activity, with microfauna generally undergoing stress sooner than bacteria and fungi. Despite differences in the responses of individual decomposer groups to moisture availability (e.g., bacteria are typically more sensitive than fungi to water stress), we show that responses of decomposers at the community level are different in soils and surface litter, but similar across biomes and climates. This results in a nearly constant soil-moisture threshold corresponding to the point when biological activity ceases, at a water potential of about -14 MPa in mineral soils and -36 MPa in surface litter. This threshold is shown to be comparable to the soil moisture value where solute diffusion becomes strongly inhibited in soil, while in litter it is dehydration rather than diffusion that likely limits biological activity around the stress point. Because of these intrinsic constraints and lack of adaptation to different hydro-climatic regimes, changes in rainfall patterns (primary drivers of the soil moisture balance) may have dramatic impacts on soil carbon and nutrient cycling.

  9. Plant water use affects competition for nitrogen: why drought favors invasive species in California.

    PubMed

    Everard, Katherine; Seabloom, Eric W; Harpole, W Stanley; de Mazancourt, Claire

    2010-01-01

    Abstract: Classic resource competition theory typically treats resource supply rates as independent; however, nutrient supplies can be affected by plants indirectly, with important consequences for model predictions. We demonstrate this general phenomenon by using a model in which competition for nitrogen is mediated by soil moisture, with competitive outcomes including coexistence and multiple stable states as well as competitive exclusion. In the model, soil moisture regulates nitrogen availability through soil moisture dependence of microbial processes, leaching, and plant uptake. By affecting water availability, plants also indirectly affect nitrogen availability and may therefore alter the competitive outcome. Exotic annual species from the Mediterranean have displaced much of the native perennial grasses in California. Nitrogen and water have been shown to be potentially limiting in this system. We parameterize the model for a Californian grassland and show that soil moisture-mediated competition for nitrogen can explain the annual species' dominance in drier areas, with coexistence expected in wetter regions. These results are concordant with larger biogeographic patterns of grassland invasion in the Pacific states of the United States, in which annual grasses have invaded most of the hot, dry grasslands in California but perennial grasses dominate the moister prairies of northern California, Oregon, and Washington.

  10. Numerical and Experimental Quantification of coupled water and water vapor fluxes in very dry soils.

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit

    2015-04-01

    In arid and semi-arid regions with deep groundwater and very dry soils, vapor movement in the vadose zone may be a major component in the total water flux. Therefore, the coupled movement of liquid water, water vapor and heat transport in the unsaturated zone should be explicitly considered to quantify subsurface water fluxes in such regions. Only few studies focused on the importance of vapor water diffusion in dry soils and in many water flow studies in soil it was neglected. We are interested in the importance of water vapor diffusion and condensation in very dry sand. A version of Hydrus-1D capable of solving the coupled water vapor and heat transport equations will be used to do the numerical modeling. The soil hydraulic properties will be experimentally determined. A soil column experiment was developed with negligible liquid flow in order to isolate vapor flux for testing. We have used different values of initial water contents trying to generate different scenarios to assess the role of the water vapor transport in arid and semi-arid soils and how it changes the soil water content using different soil hydraulic parametrization functions. In the session a preliminary experimental and modelling results of vapor and water fluxes will be presented.

  11. Performance of chromatographic systems to model soil-water sorption.

    PubMed

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients.

  12. Soil structure, colloids, and chemical transport as affected by short-term reducing conditions: a laboratory study

    NASA Astrophysics Data System (ADS)

    de-Campos, A. B.; Mamedov, A. I.; Huang, C.; Wagner, L. E.

    2008-12-01

    Upland soils in the Midwestern US often undergo reducing conditions when soils are temporally flooded during the spring and remain water saturated for days or weeks. Short-term reducing conditions change the chemistry of the soil and may affect soil structure and solution chemical transport. The effects of short-term reducing conditions on chemical and physical properties of the soils, colloids, and associated chemical/nutrients transport are still not well understood and was the objective of our study. A biogeochemical reactor was built to achieve reducing conditions. Three cultivated and three uncultivated soils with different organic carbon contents were incubated in the reactor for 1 hour and 3 days under anaerobic conditions. Effects of the redox state on soil structure (pore size distribution) and drainable porosity, colloids mobility, and chemical transport were determined using high energy moisture characteristic and analytical methods. After each treatment, the soil solution was collected for redox potential (Eh), pH, and electrical conductivity (EC) measurements, and chemical analysis of metals (Ca, Mg, K), nutrients (N, P), and dissolved organic carbon. Strongly reducing conditions were achieved after 3 days of incubation and were followed by a decrease in soil porosity and an increase in pH, EC, clay dispersion, swelling, colloids mobility, and associated chemical transport. The trend for each soil depended on their initial structural stability and chemical properties. The structure of cultivated soils and the leaching of nutrients and carbon from uncultivated soils were more sensitive to the redox state. A strong correlation was found between changes in Eh and drainable porosity. The role of short-term reducing conditions on changes in redox sensitive elements, organic matter decomposition, pH, and EC and their influence on soil structure and soil particles or colloids/chemical transport for both soil groups are discussed in the paper. This study

  13. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  14. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    PubMed Central

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-01-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities. PMID:26195343

  15. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  16. An Evaluation of Total Solar Reflectance and Spectral Band Ratioing Techniques for Estimating Soil Water Content

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Vedder, J. F.; Idso, S. B.; Jackson, R. D.; Blanchard, M. B.; Goettelman, R.

    1977-01-01

    For several days in March of 1975, reflected solar radiation measurements were obtained from smooth and rough surfaces of wet, drying, and continually dry Avondale loam at Phoenix, Arizona, with pyranometers located 50 cm above the ground surface and a multispectral scanner flown at a 300-m height. The simple summation of the different band radiances measured by the multispectral scanner proved equally as good as the pyranometer data for estimating surface soil water content if the multispectral scanner data were standardized with respect to the intensity of incoming solar radiation or the reflected radiance from a reference surface, such as the continually dry soil. Without this means of standardization, multispectral scanner data are most useful in a spectral band ratioing context. Our results indicated that, for the bands used, no significant information on soil water content could be obtained by band ratioing. Thus the variability in soil water content should insignificantly affect soil-type discrimination based on identification of type-specific spectral signatures. Therefore remote sensing, conducted in the 0.4- to 1.0-micron wavelength region of the solar spectrum, would seem to be much More suited to identifying crop and soil types than to estimating of soil water content.

  17. Integrating water by plant roots over spatially distributed soil salinity

    NASA Astrophysics Data System (ADS)

    Homaee, Mehdi; Schmidhalter, Urs

    2010-05-01

    In numerical simulation models dealing with water movement and solute transport in vadose zone, the water budget largely depends on uptake patterns by plant roots. In real field conditions, the uptake pattern largely changes in time and space. When dealing with soil and water salinity, most saline soils demonstrate spatially distributed osmotic head over the root zone. In order to quantify such processes, the major difficulty stems from lacking a sink term function that adequately accounts for the extraction term especially under variable soil water osmotic heads. The question of how plants integrate such space variable over its rooting depth remains as interesting issue for investigators. To move one step forward towards countering this concern, a well equipped experiment was conducted under heterogeneously distributed salinity over the root zone with alfalfa. The extraction rates of soil increments were calculated with the one dimensional form of Richards equation. The results indicated that the plant uptake rate under different mean soil salinities preliminary reacts to soil salinity, whereas at given water content and salinity the "evaporative demand" and "root activity" become more important to control the uptake patterns. Further analysis revealed that root activity is inconstant when imposed to variable soil salinity. It can be concluded that under heterogeneously distributed salinity, most water is taken from the less saline increment while the extraction from other root zone increments with higher salinities never stops.

  18. Soil water repellency under pastoral land-use in New Zealand

    NASA Astrophysics Data System (ADS)

    Jeyakumar, Paramsothy; Müller, Karin; Deurer, Markus; Mason, Karen; van den Dijssel, Carlo; Clothier, Brent

    2014-05-01

    Soil water repellency (SWR) is a surface property of soil particles that reduces or prevents the infiltration of water into soils. It affects soils in a wide range of agricultural and natural environments in different climatic conditions, and has been observed worldwide. SWR has also been reported in New Zealand, but its spatial extent and importance for New Zealand pastoral industry are poorly understood. We thus conducted a survey on the occurrence of SWR in the top 4 cm of soils under pastoral land use across New Zealand. Our hypotheses were that SWR is dependent on the soil order and that it is correlated to the drought proneness of top-soils and the summer rainfall in humid temperate regions. We stratified our sampling taking into consideration the eleven major soil orders of New Zealand, six classes of drought proneness and three summer rainfall classes resulting in a total of 76 sampling sites. The top-soils of 67 out of 76 pastoral sites (=88%) showed the potential to become hydrophobic if they dried out, and 47 out of 76 (=62%) of the field fresh top-soils were hydrophobic at the time of sampling. Both potential persistence (P=0.012) and degree (P=0.007) of SWR were significantly higher in the North Island than the South Island, even under similar soil orders and identical summer rainfall or drought conditions. The soil orders Podzols and Histosols exhibited the highest degree and persistence of SWR, followed by Fluvisols and Luvisols. Andosols were least prone to SWR. There was no significant relationship between SWR and drought-proneness, but summer rainfall significantly influenced the degree of SWR (P=0.004). We further investigated potential correlations between measures of SWR and other soil properties such as organic carbon and nitrogen contents, pH, soil water content, and bulk density. The degree of SWR was positively correlated with the soil organic carbon (R=0.49) and nitrogen (R=0.47) contents, and negatively (R=-0.5) with bulk density. Our

  19. Soil Water Retention as Indicator for Soil Physical Quality - Examples from Two SoilTrEC European Critical Zone Observatories

    NASA Astrophysics Data System (ADS)

    Rousseva, Svetla; Kercheva, Milena; Shishkov, Toma; Dimitrov, Emil; Nenov, Martin; Lair, Georg J.; Moraetis, Daniel

    2014-05-01

    Soil water retention is of primary importance for majority of soil functions. The characteristics derived from Soil Water Retention Curve (SWRC) are directly related to soil structure and soil water regime and can be used as indicators for soil physical quality. The aim of this study is to present some parameters and relationships based on the SWRC data from the soil profiles characterising the European SoilTrEC Critical Zone Observatories Fuchsenbigl and Koiliaris. The studied soils are representative for highly productive soils managed as arable land in the frame of soil formation chronosequence at "Marchfeld" (Fuchsenbigl CZO), Austria and heavily impacted soils during centuries through intensive grazing and farming, under severe risk of desertification in context of climatic and lithological gradient at Koiliaris, Crete, Greece. Soil water retention at pF ≤ 2.52 was determined using the undisturbed soil cores (100 cm3 and 50 cm3) by a suction plate method. Water retention at pF = 4.2 was determined by a membrane press method and at pF ≥ 5.6 - by adsorption of water vapour at controlled relative humidity, both using ground soil samples. The soil physical quality parameter (S-parameter) was defined as the slope of the water retention curve at its inflection point (Dexter, 2006), determined with the obtained parameters of van Genuhten (1980) water retention equation. The S-parameter values were categorised to assess soil physical quality as follows: S < 0.020 very poor, 0.020 ≤ S < 0.035 poor, 0.035 ≤ S < 0.050 good, S ≥ 0.050 very good (Dexter, 2004). The results showed that most of the studied topsoil horizons have good physical quality according to both the S-parameter and the Plant-Available Water content (PAW), with the exception of the soils from croplands at CZO Fuxenbigl (F4, F5) which are with poor soil structure. The link between the S-parameter and the indicator of soil structure stability (water stable soil aggregates with size 1-3 mm) is not

  20. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    EPA Science Inventory

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy me...

  1. Using biopolymers to remove heavy metals from soil and water

    SciTech Connect

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  2. Effect of Water Logging Conditions on Solubility of Soil Nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide use of herbicides, fungicides, fertilizers, and soil amendments affect the rhizosphere biochemistry and ecology. Soils in the Midwest of the US tend to be saturated in the early spring when snow and ice melt, and frequent rain occurs. Saturated conditions also occur after heavy rainfall eve...

  3. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.

  4. Micronutrient Fractionation in Coal Mine-Affected Agricultural Soils, India.

    PubMed

    Agrawal, Rahul; Kumar, Bijendra; Priyanka, Kumari; Narayan, Chandravir; Shukla, Kriti; Sarkar, Jhuma; Anshumali

    2016-04-01

    Assessment of the anthropogenic impacts on bioavailability, mobility, immobility and toxicity of four micronutrients (Cu, Fe, Mn, and Zn) were carried out by Community Bureau of Reference (BCR) fractionation scheme in agricultural soils (n = 10) around Jharia coalfield, eastern India. The relative abundance of micronutrients was as follows: Fe > Mn > Zn > Cu. The enrichment factor was >1 for Zn (6.1) and Cu (1.8) near coal mining area indicated toward soil pollution due to coal mining activities and application of inorganic fertilizers. The I geo values of micronutrients were <0 suggest no pollution with respect to Cu, Fe, Mn and Zn. Correlation analysis showed geogenic origin of soil micronutrients and derived mainly from weathering of minerals present in the parent rock. The mean values of Cu, Mn and Zn were less than certified reference material indicating highly leached agricultural soils in the study region. BCR fractionation of micronutrients showed that a single element could not reveal all types of chemical reactions occurring in soil consortium.

  5. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard.

    PubMed

    Calderon, Maria Jesus; De Luna, Elena; Gomez, Jose Alfonso; Hermosin, M Carmen

    2016-11-01

    Occurrences of surface water contamination by herbicides in areas where olive orchards are established reveal a need to understand soil processes affecting herbicide fate at field scale for this popular Mediterranean crop. A monitoring study with two herbicides (terbuthylazine and oxyfluorfen) in the first 2cm of soil, runoff waters, and sediments, was carried out after under natural rainfall conditions following winter herbicide application. At the end of the 107day field experiment, no residues of the soil applied terbuthylazine were recovered, whereas 42% of the oxyfluorfen applied remained in the top soil. Very low levels of both herbicides were measured in runoff waters; however, concentrations were slightly higher for terbuthylazine (0.53% of applied) than for oxyfluorfen (0.03% of applied), relating to their respective water solubilities. Congruent with soil residue data, 38.15% of the applied oxyfluorfen was found in runoff-sediment, compared to only 0.46% for terbuthylazine. Accordingly, the herbicide soil distribution coefficients measured within runoff field tanks was much greater for oxyfluorfen (Kd=3098) than for terbuthylazine (Kd=1.57). The herbicide oxyfluorfen is co-transported with sediment in runoff, remaining trapped and/or adsorbed to soil particle aggregates, due in part to its low water solubility. In contrast, terbuthylazine soil dissipation may be associated more so with leaching processes, favored by its high water solubility, low sorption, and slow degradation. By comparing these two herbicides, our results reaffirm the importance of herbicide physico-chemical properties in dictating their behavior in soil and also suggest that herbicides with low solubility, as seen in the case oxyfluorfen, remain susceptible to offsite transport associated with sediments.

  6. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  7. Effects of long-term poultry litter application on phosphorus soil chemistry and runoff water quality.

    PubMed

    Reiter, Mark S; Daniel, Tommy C; DeLaune, Paul B; Sharpley, Andrew N; Lory, John A

    2013-11-01

    Continuous application of poultry litter (PL) significantly changes many soil properties, including soil test P (STP); Al, Fe, and Ca concentrations; and pH, which can affect the potential for P transport in surface runoff water. We conducted rainfall simulations on three historically acidic silt loam soils in Arkansas, Missouri, and Virginia to establish if long-term PL applications would affect soil inorganic P fractions and the resulting dissolved reactive P (DRP) in runoff water. Soil samples (0-5 cm depth) were taken to find sites ranging in Mehlich-3 STP from 20 to 1154 mg P kg. Simulated rainfall events were conducted on 3-m plots at 6.7 cm h, and runoff was collected for 30 min. Correlation between Mehlich-3 and runoff DRP indicated a linear relationship to 833 mg Mehlich-3 P kg. As Mehlich-3 STP increased, a concomitant increase in soil pH and Ca occurred on all soils. Soil P fractionation demonstrated that, as Mehlich-3 STP generally increased above 450 mg P kg (from high to very high), the easily soluble and loosely bound P fractions decreased by 3 to 10%. Water-insoluble complexes of P bound to Al and Ca were the main drivers in the reduction of DRP in runoff, accounting for up to 43 and 38% of total P, respectively. Basing runoff DRP concentration projections solely on Mehlich-3 STP may overestimate runoff P losses from soils receiving long-term PL applications due to dissolution of water-insoluble Ca-P compounds.

  8. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  9. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  10. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  11. [Characteristics of water infiltration in urban soils of Nanjing City].

    PubMed

    Yang, Jin-Ling; Zhang, Gan-Lin; Yuan, Da-Gang

    2008-02-01

    By using dual-ring method, this paper measured the water infiltration rate in urban soils under representative land use patterns in Nanjing City, and studied the characteristics of water infiltration in the soils with different compaction degree. The results showed that there was a great difference in the infiltration rate among the soils with different compactness. Soil infiltration rate decreased with increasing bulk density and decreasing porosity, and the water-transport-limiting layer existed in heavily compacted soils resulted in a dramatic decrease of final stabilized infiltration rate. There was a significant linear relationship between the initial and final infiltration rates in the same soil though their absolute values had a great difference. The urban soils in Nanjing City had a wide range of final infiltration rate varied from 1 mm X h(-1) to 679 mm X h(-1), which was highly related to the soil compactness, structural status, and skeleton grain contents. The decrease of urban soil infiltration rate could induce the increase of runoff and of the probability and intensity of flooding.

  12. Improving irrigation efficiency of sandy soils by subsurface water retaining membranes

    NASA Astrophysics Data System (ADS)

    Guber, Andrey; Smucker, Alvin; Berhanu, Samrawi

    2014-05-01

    Sustainable crop production in sandy soils is challenging due to low soil water holding capacity and high water permeability. The subsurface water retention technology (SWRT) is a relatively new long-term approach that offers precision control of water and nutrients in the root zone. However, multiple design of SWRT membrane configurations and spatial distributions require more modeling for best application in arid regions with relevant irrigation methods. The objective of this study was to define optimal geometric parameters of the SWRT membranes and the most accurate irrigation rates for corn production in sandy soils. HYDRUS-2D model, that describes two-dimensional water flow in unsaturated soil, was calibrated and validated on data in a large sand-filled lysimeter with SWRT membranes installed at different depths with different aspect ratios. The model adequately reproduced soil water content dynamics measured at 12 locations inside the sand profile. Then HYDRUS-2D simulations were repeated with different SWRT installation depths and aspect ratios. The installation depths in these simulations were 20 cm, 40 cm, and 60 cm, while the aspect ratios were 2:1, 3:1, 5:1 and 10:1. The results of simulations confirmed water holding capacity of the soil can be differentially controlled by aspect ratios of SWRT membranes. SWRT membranes with an aspect ratio of 2:1 substantially increased soil water content at 20-cm soil layer above the membrane, and this effect diminished with increasing aspect ratio of the membrane. Installation depth within the soil profile had no significant effect on water loss. The HYDRUS-2D simulations were repeated with SWRT installed at depth of 20 cm for sprinkle, surface drip and subsurface drip irrigation. Corn irrigation was triggered at pressure head of -30cm at a depth of 15 cm for all irrigation techniques. Simulated water losses by deep infiltration in sands without SWRT membranes approached 60% with approximately 15% losses when SWRT

  13. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohai; Zhou, Jian; Kinzelbach, Wolfgang; Stauffer, Fritz

    2014-12-01

    The freezing temperature of water in soil is not constant but varies over a range determined by soil texture. Consequently, the amounts of unfrozen water and ice change with temperature in frozen soil, which in turn affects hydraulic, thermal, and mechanical properties of frozen soil. In this paper, an Am-241 gamma ray source and time-domain reflectometry (TDR) were combined to measure unfrozen water content and ice content in frozen soil simultaneously. The gamma ray attenuation was used to determine total water content. The TDR was used to determine the dielectric constant of the frozen soil. Based on a four-phase mixing model, the amount of unfrozen water content in the frozen soil could be determined. The ice content was inferred by the difference between total water content and unfrozen water content. The gamma ray attenuation and the TDR were both calibrated by a gravimetric method. Water contents measured by gamma ray attenuation and TDR in an unfrozen silt column under infiltration were compared and showed that the two methods have the same accuracy and response to changes of water content. Unidirectional column freezing experiments were performed to apply the combined method of gamma ray attenuation and TDR for measuring unfrozen water content and ice content. The measurement error of the gamma ray attenuation and TDR was around 0.02 and 0.01 m3/m3, respectively. The overestimation of unfrozen water in frozen soil by TDR alone was quantified and found to depend on the amount of ice content. The higher the ice content, the larger the overestimation. The study confirmed that the combined method could accurately determine unfrozen water content and ice content in frozen soil. The results of soil column freezing experiments indicate that total water content distribution is affected by available pore space and the freezing front advance rate. It was found that there is similarity between the soil water characteristic and the soil freezing characteristic of

  14. Measurement of soil water content with dielectric dispersion frequency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frequency domain reflectometry (FDR) is an inexpensive and attractive methodology for repeated measurements of soil water content (SWC). Although there are some known measurement limitations for dry soil and sand, a fixed-frequency method is commonly employed using commercially available FDR probes....

  15. A review on temporal stability of soil water contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) has been observed across a wide range of soil types, landscapes, climates and scales. A better understanding of TS SWC controls and their interactions needs to be developed. The objective of this work is to develop a comprehensive inventory of publis...

  16. Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is an amendment that can augment soil water storage; however, its projected cost per ton could be financially limiting at field application scales. It may be more monetarily convenient if an alternate amendment were available that could deliver similar soil enhancements. We compared two swi...

  17. Oribatida (Acari) in grassy arable fallows are more affected by soil properties than habitat age and plant species.

    PubMed

    Wissuwa, Janet; Salamon, Jörg-Alfred; Frank, Thomas

    2013-11-01

    Oribatid mites are one of the numerically dominant arthropod groups in soils. They play an important role in soil food webs via regulating the decomposition of organic matter and propagating microorganisms within the soil. To our knowledge, the influence of different plant functional groups on oribatid mites has not been studied in abandoned farmland with undisturbed succession before. The density and assemblage structure of oribatid mites in nine grassy arable fallows relative to three habitat age classes (2-3, 6-8, 12-15 years) and three selected plant species (legume: Medicago sativa, forb: Taraxacum officinale, grass: Bromus sterilis) were investigated in soil associated with single plants. Mite density declined marginally not significant with habitat age because of high abundances of the ubiquitous species Tectocepheus velatus sarekensis and Punctoribates punctum in young and mid-aged fallows and their subsequent decline in old fallows. Oribatid mite density and species assemblage were not affected by plant species. Only P. punctum had significantly higher densities in B. sterilis samples than in T. officinale samples due to a higher amount of fine roots. Distance-based linear models revealed that 65% of the variation in mite assemblage was explained by soil properties, soil type, exposition and geographic position, while habitat age was of minor importance. Canonical correspondence analysis revealed that the mite assemblage was best explained by soil organic and microbial carbon, water content and pH.

  18. Oribatida (Acari) in grassy arable fallows are more affected by soil properties than habitat age and plant species☆

    PubMed Central

    Wissuwa, Janet; Salamon, Jörg-Alfred; Frank, Thomas

    2013-01-01

    Oribatid mites are one of the numerically dominant arthropod groups in soils. They play an important role in soil food webs via regulating the decomposition of organic matter and propagating microorganisms within the soil. To our knowledge, the influence of different plant functional groups on oribatid mites has not been studied in abandoned farmland with undisturbed succession before. The density and assemblage structure of oribatid mites in nine grassy arable fallows relative to three habitat age classes (2–3, 6–8, 12–15 years) and three selected plant species (legume: Medicago sativa, forb: Taraxacum officinale, grass: Bromus sterilis) were investigated in soil associated with single plants. Mite density declined marginally not significant with habitat age because of high abundances of the ubiquitous species Tectocepheus velatus sarekensis and Punctoribates punctum in young and mid-aged fallows and their subsequent decline in old fallows. Oribatid mite density and species assemblage were not affected by plant species. Only P. punctum had significantly higher densities in B. sterilis samples than in T. officinale samples due to a higher amount of fine roots. Distance-based linear models revealed that 65% of the variation in mite assemblage was explained by soil properties, soil type, exposition and geographic position, while habitat age was of minor importance. Canonical correspondence analysis revealed that the mite assemblage was best explained by soil organic and microbial carbon, water content and pH. PMID:26109839

  19. Water Bouncing Balls: how material stiffness affects water entry

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  20. The estimation of soil water fluxes using lysimeter data

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  1. Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Seuntjens, P.; Joris, I.; Boënne, W.; Van Hoey, S.; Campling, P.; Cornelis, W. M.

    2015-07-01

    Monitoring and modeling tools may improve irrigation strategies in precision agriculture. We used non-invasive soil moisture monitoring, a crop growth and a soil hydrological model to predict soil-water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. The sensitivity of the model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed. Free drainage and incremental constant head conditions was implemented in a lower boundary sensitivity analysis. A time-dependent sensitivity analysis showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks and the Mualem-van Genuchten retention curve shape parameters n and α. Results further showed that different parameter optimization strategies (two-, three-, four- or six-parameter optimizations) did not affect the calculated water stress and water content as significantly as does the bottom boundary. For this case, a two-parameter scenario, where Ks was optimized for each layer under the condition of a constant groundwater depth at 135-140 cm, performed best. A larger yield reduction, and a larger number and longer duration of stress conditions occurred in the free drainage condition as compared to constant boundary conditions. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to 12-22 % irrigation water as compared to the current irrigation regime. This resulted in a yield increase of 4.5-6.5 %, simulated by crop growth model.

  2. Sorption of tannin-C by soils affects soil cation exchange capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some tannins, produced by plants, are able to sorb to soil, and thus influence soil organic matter and nutrient cycling. However, studies are needed that compare sorption of tannins to other related phenolic compounds, evaluate their effects across a broad range of soils, and determine if sorption ...

  3. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water

    EPA Pesticide Factsheets

    Reductive dehalogenation is a process which may prove to be of paramount importance in dealing with a particularly persistent class of contaminants often found in soil and ground water at superfund sites.

  4. Studies of soil-water transport by MRI.

    PubMed

    Amin, M H; Richards, K S; Chorley, R J; Gibbs, S J; Carpenter, T A; Hall, L D

    1996-01-01

    Sequential spin-echo spin-warp MRI pulse sequences have been used to study soil-water transport processes including infiltration, redistribution, and drainage of water in soil columns. Those images provide a means for monitoring and quantifying spatial and temporal changes of soil-water distributions and the movement of wetting fronts. In addition, temporal-geometric changes of unstable wetting fronts during water redistribution were estimated from 2D images and the temporal development of the longest length of finger was described by a fractal relation t approximately L1.38. Bulk dispersion-time-dependent displacement and velocity spectra, as well as 2D maps of flow velocities and dispersion coefficients in soil macropores during saturated steady-state flow, were reconstructed from data obtained using the alternating-pulsed-field-gradient (APFG) pulse sequences.

  5. Soil water samplers in ion balance studies on acidic forest soils

    SciTech Connect

    Rasmussen, L.; Joergensen, P.; Kruse, S.

    1986-04-01

    During the last years an increasing consciousness has appeared of the injurious effects of acid rain on the forest ecosystems both in Europe and North America. At several localities ion balance studies have been implemented in order to evaluate the impact of the atmospheric deposition of acidic substances and heavy metals on the forest ecosystem. In many localities the leaching of material to the ground water or output from the ecosystem has to be determined by means of tensiometer measurements and soil water sampling. Many different soil water samplers are available on the market and they show useful applicability under the given circumstances. But in many cases soil water samples taken with different equipment give incommensurable results leading to differing explanations of the effects of acid precipitation on elements and their cycling in the ecosystem. The purpose of the present study is twofold. Firstly, the sorption characteristics of different types of soil water samplers are examined under acidic soil conditions both by installation in the field and by laboratory experiments. Secondly, a new method is introduced for current and constant soil water sampling under varying soil suctions in the unsaturated zone.

  6. Does Gray-Tailed Vole Activity Affect Soil Quality?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Voles are well-known crop pests, especially when peak populations are present, but their role in soil fertility and impacts on agricultural sustainability are not well understood. Five months after the abrupt disappearance of a peak in a gray-tailed vole (Microtus canicaudus) population, we examined...

  7. How irrigation affects soil erosion estimates of RUSLE2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RUSLE2 is a robust and computationally efficient conservation planning tool that estimates soil, climate, and land management effects on sheet and rill erosion and sediment delivery from hillslopes, and also estimates the size distribution and clay enrichment of sediment delivered to the channel sys...

  8. Do long-lived ants affect soil microbial communities?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to test the hypothesis that desert ant species that build nests that remain viable at a particular point in space for more than a decade produce soil conditions that enhance microbial biomass and functional diversity. We studied the effects of a seed-harvester ant, Pogonomyrm...

  9. Aminopyralid soil residues affect rotational vegetable crops in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field experiments were conducted to determine the sensitivity of bell pepper, eggplant, tomato, muskmelon, and watermelon to aminopyralid soil residues. Aminopyralid was applied at six rates ranging from 0.0014 kg ae ha 1 to 0.0448 kg ae ha 1, and vegetable crops were planted in the treated areas. ...

  10. Soil Surface Structure: A key factor for the degree of soil water repellency

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  11. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  12. High frequency space and time temperature observations for the monitoring of soil water content in a clay-rich subsoil

    NASA Astrophysics Data System (ADS)

    Gance, Julien; Malet, Jean-Philippe; Sailhac, Pascal; Malet, Florian; Marc, Vincent

    2015-04-01

    The tracing of water infiltration and the monitoring of soil water content at high spatial and temporal frequency in the vadose zone is a key element of various hydrological, agronomical, ecological and environmental studies. In this work, we evaluate the ability of soil temperature monitoring for the quantification of soil water content changes for a heterogeneous clay-rich soil. A Distributed Temperature Sensing system (AP Sensing) constituted of a datalogger, 250 m of reinforced fiber optic cable buried at 0.1, 0.2 and 0.3 m of depth and at the soil surface along a 60 m profile is used. The monitoring site is the Draix-Bleone catchment in the South French Alps, mainly composed of weathered clay-shales. The monitoring profile crosses three different soil units consisting of argillaceous weathered black marls, silty colluvium under grass and silty colluvium under forest. Soil temperature is measured every 6 minutes at a spatial resolution of 0.5 m. We show that the spatial and temporal variation, although first linked to the air temperature variations are related at the second order to the occurrence of rainfall events. The spatial and temporal evolution of the temperature in the subsoil is governed by the heat equation which involve soil thermal properties (such as thermal diffusivity). These properties are themselves affected by the soil water content. The processing of the temperature data therefore consists in inverting the soil water content that impacts the soil thermal properties such as the temperature computed from the heat equation fit the measured data. The changes of soil temperature and soil water content for the three units are compared for a period of four months. They indicate different processes of water infiltration at different velocities in relation to the presence of roots and the soil permeability. This indirect measurement technique is promising for the future; some limitations in the measurements are also discussed.

  13. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    USGS Publications Warehouse

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are < 0.01 ??g/L. Evidence of contributions from point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil

  14. Effect of Straw Amendment on Soil Zn Availability and Ageing of Exogenous Water-Soluble Zn Applied to Calcareous Soil

    PubMed Central

    Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke

    2017-01-01

    Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120–165 and 180–210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered. PMID:28081179

  15. Effect of Straw Amendment on Soil Zn Availability and Ageing of Exogenous Water-Soluble Zn Applied to Calcareous Soil.

    PubMed

    Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke

    2017-01-01

    Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.

  16. Soil water repellency characteristic curves for soil profiles with natural organic carbon gradients

    NASA Astrophysics Data System (ADS)

    Kawamoto, Ken; Müller, Karin; Moldrup, Per; de Jonge, Lis; Clothier, Brent; Hiradate, Syuntaro; Komatsu, Toshiko

    2014-05-01

    Soil water repellency (SWR) is a phenomenon that influences many soil hydrologic processes such as reduction of infiltration, increase in overland flow, and enhanced preferential flow. SWR has been observed in various soil types and textures, and the degree of SWR is greatly controlled by soil moisture content and levels of organic matter and clay. One of the key topics in SWR research is how to describe accurately the seasonal and temporal variation of SWR with the controlling factors such as soil moisture, organic matter, and clay contents for soil profiles with natural organic carbon gradients. In the present study, we summarize measured SWR data for soil profiles under different land uses and vegetation in Japan and New Zealand, and compared these with literature data. We introduce the contact angle-based evaluation of SWR and predictive models for soil water repellency characteristic curves, in which the contact angle is a function of the moisture content. We also discuss a number of novel concepts, including i) the reduction in the contact angle with soil-water contact time to describe the time dependence of SWR, ii) the relationship between the contact angles from the measured scanning curves under controlled wetting and drying cycles, and iii) the initial contact angles measured by the sessile drop method.

  17. Mobility of prometryne in soil as affected by dissolved organic matter.

    PubMed

    Jiang, Lei; Huang, Jing; Liang, Lu; Zheng, Peng Yu; Yang, Hong

    2008-12-24

    Incorporation of organic fertilizers/amendments in soils has been, and will continue to be, a popular strategy for improving the quality of arable soils. However, the mechanism by which the dissolved organic matters (DOMs) affect soil properties or interact with other substances in soils is largely unknown. In this study, a batch equilibrium experiment was performed to evaluate the effect of two types of DOMs on the behavior of prometryne (a herbicide) in soils. Two sorts of DOMs were derived from lakebed sludge (SL) and rice straw (ST), respectively. The results show that sorption capacity in one soil for prometryne was significantly reduced by application of DOMs, whereas desorption of prometryne was promoted by DOM treatments. To understand the mobility behavior of prometryne in soils with DOMs, a column leaching experiment was carried out. It is shown that both DOMs enhanced the solubility and migration of prometryne in soils. To confirm the role of DOMs in regulating the mobility of prometryne in soils, a soil thin-layer chromatography was performed. The migration of prometryne was promoted by DOMs, which were used as a developing solvent or directly incorporated in the soil thin layer. The data indicate that DOM extracts can modify the mobility of prometryne in soil.

  18. Soil Diversity as Affected by Land Use in China: Consequences for Soil Protection

    PubMed Central

    Shangguan, Wei; Gong, Peng; Liang, Lu; Dai, YongJiu; Zhang, Keli

    2014-01-01

    Rapid land-use change in recent decades in China and its impact on terrestrial biodiversity have been widely studied, particularly at local and regional scales. However, the effect of land-use change on the diversity of soils that support the terrestrial biological system has rarely been studied. Here, we report the first effort to assess the impact of land-use change on soil diversity for the entire nation of China. Soil diversity and land-use effects were analyzed spatially in grids and provinces. The land-use effects on different soils were uneven. Anthropogenic soils occupied approximately 12% of the total soil area, which had already replaced the original natural soils. About 7.5% of the natural soil classes in China were in danger of substantial loss, due to the disturbance of agriculture and construction. More than 80% of the endangered soils were unprotected due to the overlook of soil diversity. The protection of soil diversity should be integrated into future conservation activities. PMID:25250394

  19. Causes and consequences of fire-induced soil water repellency

    NASA Astrophysics Data System (ADS)

    Letey, J.

    2001-10-01

    A wettable surface layer overlying a water-repellent layer is commonly observed following a fire on a watershed. High surface temperatures burn off organic materials and create vapours that move downward in response to a temperature gradient and then condense on soil particles causing them to become water repellent. Water-repellent soils have a positive water entry pressure hp that must be exceeded or all the water will runoff. Water ponding depths ho that exceeds hp will cause infiltration, but the profile is not completely wetted. Infiltration rate and soil wetting increase as the value of ho/hp increases. The consequence is very high runoff, which also contributes to high erosion on fire-induced water-repellent soils during rain storms. Grass establishment is impaired by seeds being eroded and lack of soil water for seeds that do remain and germinate. Extrapolation of these general findings to catchment or watershed scales is difficult because of the very high temporal and spatial variabilities that occur in the field.

  20. Measurement and modeling of soil-water dynamics and evapotranspiration of drained peatland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural peat soils serve as important sinks for nutrients, organic components, and water. Peat soils can pose major environmental problems when they are drained for agricultural production, which may change their role in the landscape from a sink to a source. To successfully restore and conserve pea...

  1. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  2. Modeling the soil water retention properties of same-textured soils with different initial void ratios

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Zhou, Wan-Huan; Yuen, Ka-Veng

    2016-11-01

    This study presents a method of predicting the soil water retention curve (SWRC) of a soil using a set of measured SWRC data from a soil with the same texture but different initial void ratio. The relationships of the volumetric water contents and the matric suctions between two samples with different initial void ratios are established. An adjustment parameter (β) is introduced to express the relationships between the matric suctions of two soil samples. The parameter β is a function of the initial void ratio, matric suction or volumetric water content. The function can take different forms, resulting in different predictive models. The optimal predictive models of β are determined for coarse-grained and fine-grained soils using the Bayesian method. The optimal models of β are validated by comparing the estimated matric suction and measured data. The comparisons show that the proposed method produces more accurate SWRCs than do other models for both coarse-grained and fine-grained soils. Furthermore, the influence of the model parameters of β on the predicted matric suction and SWRC is evaluated using Latin Hypercube sampling. An uncertainty analysis shows that the reliability of the predicted SWRC decreases with decreasing water content in fine-grained soils, and the initial void ratio has no apparent influence on the reliability of the predicted SWRCs in coarse-grained and fine-grained soils.

  3. Soil Salinity Controls on Water and Carbon Cycling by Sunflower Plants

    NASA Astrophysics Data System (ADS)

    Runkle, B.; Liang, X.; Dracup, J.; Hao, F.; Zeng, A.; Zhang, J.; He, B.; Oki, T.

    2007-12-01

    Agricultural effects on water cycling are of great importance for regional water resources management. These effects vary based on local soil and climate conditions, and are particularly modulated by high soil salinity levels, which stress plant growth and change their water use efficiency. Increasing salinization is predicted under hotter, drier conditions resulting from global climate change and from increased societal pressure on agricultural lands. This increased ionic presence creates a higher soil osmotic pressure that increases the resistance to water flow through the plant. This change also impacts the assimilation of carbon dioxide through the stomatal opening, and so affects rates of both photosynthesis and transpiration. Current agricultural and land-surface models that account for salinity do so in an overly empirical manner that cannot account for changes at different time scales in meteorological conditions. They tend to be ill equipped to examine how changing carbon dioxide levels may modify a plant's response to soil salinity. As a result, we present a new model of soil-vegetation- atmosphere water transfer that explicitly incorporates the role of soil salinity in changing this system's behavior. This model will allow for much greater flexibility in examining how vegetation may change the local water cycle under the joint impacts of both salinity and climate change. This model is supported by field research on the effects of salinity on sunflower plants in a large irrigation district in Inner Mongolia, China. Results presented include the role of salinity in changing stomatal regulation of water use efficiency, sub-canopy changes in leaf pressure, and changes in root activity. Modeling at sub-hourly time scales allows for a more precise understanding of how soil salinity changes the diurnal cycle of plant water use.

  4. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  5. Simulation of the soil water balance of an undeveloped prairie in west-central Florida

    USGS Publications Warehouse

    Bidlake, W.R.; Boetcher, P.F.

    1996-01-01

    A one-dimensional numerical model was developed to simulate the soil water balance of a densely vegetated prairie site in west-central Florida. Transient simulations of the soil water balance were performed using field-measured soil and vegetation properties. Simulated and measured soil water content generally agreed to within 0.04; however, simulated water storage and recharge were sensitive to air-entry soil-water pressure potential and depth to the water table.

  6. Effects of soil-type datasets on regional terrestrial water cycle simulations under different climatic regimes

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Yang, Z.-L.

    2016-12-01

    Hydrological simulations play an important role in estimating terrestrial water budgets and monitoring extreme events such as floods. This study investigates how these simulations are affected by soil-type datasets and characterizes how these effects vary with climate. We study the differences between two ensemble simulations in China with the Noah-MP land surface model using two soil datasets from the Food and Agriculture Organization and Beijing Normal University. The differences in ensemble means are analyzed over a 10 year period from 2003 to 2012 with respect to estimated soil moisture, the partition of precipitation between evapotranspiration and runoff, and a flood magnitude index. Results show that the hydrological simulations using sandier soil types result in lower soil moisture, lower evapotranspiration, and higher subsurface runoff. Each of these effects varies uniquely with aridity. The changes in soil moisture decrease with increasing aridity, while the changes in water balance components (evapotranspiration and runoff) peak in the transitional zone between humid and arid regions. The flood magnitude, expressed as the maximum daily flow normalized by annual flow, is also substantially influenced by the input soil type. Soil types with more clay and less sand content yield significantly bigger floods, especially in arid regions.

  7. Long-term toxicity assessment of soils in a recovered area affected by a mining spill.

    PubMed

    Romero-Freire, A; García Fernández, I; Simón Torres, M; Martínez Garzón, F J; Martín Peinado, F J

    2016-01-01

    Residual pollution in the Guadiamar Green Corridor still remains after Aználcollar mine spill in 1998. The polluted areas are identified by the absence of vegetation, soil acidic pH and high concentrations of As, Pb, Zn and Cu. Soil toxicity was assessed by lettuce root elongation and induced soil respiration bioassays. In bare soils, total As and Pb concentrations and water-extractable levels for As, Zn and Cu exceeded the toxicity guidelines. Pollutants responsible for toxicity were different depending on the tested organism, with arsenic being most toxic for lettuce and the metal mixture to soil respiration. Soil properties, such as pH or organic carbon content, are key factors to control metal availability and toxicity in the area. According to our results, there is a risk of pollution to living organisms and the soil quality criteria established in the area should be revised to reduce the risk of toxicity.

  8. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area.

    PubMed

    Neher, Deborah A; Asmussen, David; Lovell, Sarah Taylor

    2013-04-01

    The spatial extent of the transported materials from three road types was studied in forest soil and vegetative communities in Vermont. Hypotheses were two-fold: 1) soil chemical concentrations above background environment would reflect traffic volume and road type (highway>2-lane paved>gravel), and 2) plant communities close to the road and near roads with greater traffic will be disturbance-tolerant and adept at colonization. Soil samples were gathered from 12 randomly identified transects for each of three road types classified as "highway," "two-lane paved," and "gravel." Using GIS mapping, transects were constructed perpendicular to the road, and samples were gathered at the shoulder, ditch, backslope, 10 m from the edge of the forest, and 50 m from road center. Sample locations were analyzed for a suite of soil elements and parameters, as well as percent area coverage by plant species. The main effects from roads depended on the construction modifications required for a roadway (i.e., vegetation clearing and topography modification). The cleared area defined the type of plant community and the distance that road pollutants travel. Secondarily, road presence affected soil chemistry. Metal concentrations (e.g., Pb, Cd, Cu, and Zn) correlated positively with road type. Proximity to all road types made the soils more alkaline (pH 7.7) relative to the acidic soil of the adjacent native forest (pH 5.6). Roadside microtopography had marked effects on the composition of plant communities based on the direction of water flow. Ditch areas supported wetland plant species, greater soil moisture and sulfur content, while plant communities closer to the road were characteristic of drier upland zones. The area beyond the edge of the forest did not appear to be affected chemically or physically by any of the road types, possibly due to the dense vegetation that typically develops outside of the managed right-of-way.

  9. Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.

    2015-12-01

    The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a

  10. mySoil: Crowd-Sourcing Soil Water Repellency Data to Create a Global Assessment

    NASA Astrophysics Data System (ADS)

    Hallin, Ingrid; Robinson, David A.; Doerr, Stefan H.; Douglas, Peter; Lawley, Russell; Shelley, Wayne; Urbanek, Emilia

    2014-05-01

    Soil water repellency (SWR) alters the way water interacts with soil by impacting hydrological and biogeochemical cycling to an extent which is not yet fully understood. Most studies have focused on SWR in specific environments and habitats, mostly in Mediterranean climates, but SWR has been increasingly observed in a range of habitats from the tropics to the northern latitudes. To better assess the distribution of this phenomenon, we propose using citizen science to create a means of crowd-sourcing SWR data from around the globe using the mySoil app. The water drop penetration time (WDPT) test, in which the length of time a drop of water remains on the soil surface is measured and a corresponding qualitative water repellency class is assigned to the soil, provides useful data and is easy to use. We propose adding a simple, standardised WDPT protocol to the mySoil app and web portal so both academics and non-scientists can contribute to the collection of SWR data from around the world. The protocol would include guidelines on drop size and the number of drops to apply, and would encourage inclusion of details such as vegetation cover, soil moisture conditions, last rainfall, and broad habitat. By initially engaging with researchers to create a back bone of respondents, we believe we can develop a global assessment that will reveal the distribution of the SWR phenomenon.

  11. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K

    2014-05-01

    The dissipation of sulfamethoxazole (SMO) antibiotic in three different soils was investigated through laboratory incubation studies. The experiments were conducted under different incubation conditions such as initial chemical concentration, soil depth, temperature, and with sterilisation. The results indicate that SMO dissipated rapidly in New Zealand pasture soils, and the 50% dissipation times (DT50) in Hamilton, Te Kowhai and Horotiu soils under non-sterile conditions were 9.24, 4.3 and 13.33 days respectively. During the incubation period for each sampling event the soil dehydrogenase activity (DHA) and the variation in microbial community were monitored thorough phospholipid fatty acid extraction analysis (PLFA). The DHA data correlated well with the dissipation rate constants of SMO antibiotic, an increase in the DHA activity resulted in faster antibiotic dissipation. The PLFA analysis was indicative of higher bacterial presence as compared to fungal community, highlighting the type of microbial community responsible for dissipation. The results indicate that with increasing soil depth, SMO dissipation in soil was slower (except for Horotiu) while with increase in temperature the antibiotic loss was faster, and was noticeable in all the soils. Both the degree of biological activity and the temperature of the soil influenced overall SMO dissipation. SMO is not likely to persist more than 5-6 months in all three soils suggesting that natural biodegradation may be sufficient for the removal of these contaminants from the soil. Its dissipation in sterile soils indicated abiotic factors such as strong sorption onto soil components to play a role in the dissipation of SMO.

  12. Factors Affecting Mineral Nitrogen Transformations by Soil Heating: A Laboratory Simulated Fire Study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two forest soils from the Sierra Nevada Mountains of California were brought into the laboratory and subjected to simulated burning in a muffle furnace at several durations, oven temperatures, and water contents. Soils were analyzed for NO3-, NH4+, mineral N, total N, total C, and C:N responses to t...

  13. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  14. Soil water balance changes in engineered soil surfaces

    SciTech Connect

    Saskschewsky, M.R.; Kemp, C.J.; Link, S.O.; Waugh, W.J.

    1995-03-01

    Permanent disposal of radioactive waste requires the construction of isolation barriers that minimize both recharge and erosion. Recharge can be prevented by storing precipitation near the surface so that it will be returned to the atmosphere via evapotranspiration. Erosion can be reduced with gravel mulch, but thick gravel layers may increase recharge. Gravel mixed into the surface soil may provide erosion protection without increasing recharge. To comprae the effects that erosion control has on infiltration, two lysimeter experiments were conducted to examine the effects of sand and gravel mulches and gravel admixitures, using two precipitation regimens and with or without vegetation.

  15. Fire and grazing effects on wind erosion, soil water content, and soil temperature.

    PubMed

    Vermeire, Lance T; Wester, David B; Mitchell, Robert B; Fuhlendorf, Samuel D

    2005-01-01

    Selective grazing of burned patches can be intense if animal distribution is not controlled and may compound the independent effects of fire and grazing on soil characteristics. Our objectives were to quantify the effects of patch burning and grazing on wind erosion, soil water content, and soil temperature in sand sagebrush (Artemisia filifolia Torr.) mixed prairie. We selected 24, 4-ha plots near Woodward, OK. Four plots were burned during autumn (mid-November) and four during spring (mid-April), and four served as nonburned controls for each of two years. Cattle were given unrestricted access (April-September) to burned patches (<2% of pastures) and utilization was about 78%. Wind erosion, soil water content, and soil temperature were measured monthly. Wind erosion varied by burn, year, and sampling height. Wind erosion was about 2 to 48 times greater on autumn-burned plots than nonburned plots during the dormant period (December-April). Growing-season (April-August) erosion was greatest during spring. Erosion of spring-burned sites was double that of nonburned sites both years. Growing-season erosion from autumn-burned sites was similar to nonburned sites except for one year with a dry April-May. Soil water content was unaffected by patch burn treatments. Soils of burned plots were 1 to 3 degrees C warmer than those of nonburned plots, based on mid-day measurements. Lower water holding and deep percolation capacity of sandy soils probably moderated effects on soil water content and soil temperature. Despite poor growing conditions following fire and heavy selective grazing of burned patches, no blowouts or drifts were observed.

  16. Effect of reclamation on the structure of silty-clay soils irrigated with saline-sodic waters

    NASA Astrophysics Data System (ADS)

    Cucci, Giovanna; Lacolla, Giovanni; Pagliai, Marcello; Vignozzi, Nadia

    2015-01-01

    The objective of the work was to evaluate, by using the micromorphometric method, the effects of reclamation on porosity of two different clay loam soils irrigated with saline-sodic waters. Soil samples of the Ap horizon were put in cylindrical containers and irrigated with 9 types of saline-sodic waters (3 levels of salinity combined with 3 levels of sodicity). After a 4-year period, correction treatments were initiated by addition of calcium sulphate and leaching until electrical conductivity and sodium absorption ratio values of the drainage water matched 3 dS m-1 and 9, respectively. After 2 years of correction treatments, undisturbed soil samples were taken from the surface layer and soil thin sections for porosity measurements. Both soils did not show critical macroporosity values (> 10%, below this threshold a soil is classified as compact). Nevertheless, the soils exhibited a different behaviour: total porosity of the Pachic Haploxeroll soil was not affected by difference in water salinity and alkalinity; on the contrary, the Udertic Ustochrept soil showed a lower porosity associated with higher salt concentration in the irrigation waters. This may be due to the different iron and aluminium sesquioxides content and, as a consequence, a different effect on soil aggregate stability.

  17. Influence of soil pH on properties of the soil-water interface

    NASA Astrophysics Data System (ADS)

    Diehl, Doerte

    2010-05-01

    Surface characteristics of soils are one of the main factors controlling processes at the soil-water interface like wetting, sorption or dissolution processes and, thereby, have a high impact on natural soil functions like habitat, filter, buffer, storage and transformation functions. Since surface characteristics, like wettability or repellency, are not static soil properties but continuously changing, the relevant processes and mechanisms are in the focus of the presented study. These mechanisms help to gain further insight into the behaviour of soil and its dynamics under changing environmental conditions. The influence of water content, relative air humidity and drying temperature on soil water repellency has been investigated in many studies. In contrast, few studies have systematically investigated the relationship between soil water repellency (SWR) and soil pH. Several studies found alkaline soils to be less prone to SWR compared to acidic soils (e.g., Cerdà, and Doerr 2007; Mataix-Solera et al. 2007). Furthermore, SWR has been successfully reduced in acidic soils by increasing soil pH via liming (e.g., Karnok et al. 1993; Roper 2005). However, SWR has also been reported in calcareous soils in the Netherlands (Dekker and Jungerius 1990), California, USA (Holzhey 1968) and Spain (Mataix-Solera and Doerr 2004). The hypothesis that the pH may control repellency via changes in the variable surface charge of soil material has not yet been tested. Previously it has been shown that it is necessary to eliminate the direct influence of changes in soil moisture content so that the unique relationship between pH and SWR can be isolated (Bayer and Schaumann 2007). A method has been developed which allows adjustment of the pH of soils with low moisture content via the gas phase with minimal change in moisture content. The method was applied to 14 soil samples from Germany, Netherlands, the UK and Australia, using the water drop penetration time (WDPT) as the indicator

  18. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  19. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    NASA Astrophysics Data System (ADS)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  20. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  1. Decadal predictability of soil water, vegetation, and wildfire frequency over North America

    NASA Astrophysics Data System (ADS)

    Chikamoto, Yoshimitsu; Timmermann, Axel; Stevenson, Samantha; DiNezio, Pedro; Langford, Sally

    2015-10-01

    The potential decadal predictability of land hydrological and biogeochemical variables in North America is examined using a 900-year-long pre-industrial control simulation, conducted with the NCAR Community Earth System Model (CESM) version 1.0.3. Th