Sample records for affects surface temperature

  1. Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1976-01-01

    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

  2. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  3. Brain surface temperature under a craniotomy

    PubMed Central

    Kalmbach, Abigail S.

    2012-01-01

    Many neuroscientists access surface brain structures via a small cranial window, opened in the bone above the brain region of interest. Unfortunately this methodology has the potential to perturb the structure and function of the underlying brain tissue. One potential perturbation is heat loss from the brain surface, which may result in local dysregulation of brain temperature. Here, we demonstrate that heat loss is a significant problem in a cranial window preparation in common use for electrical recording and imaging studies in mice. In the absence of corrective measures, the exposed surface of the neocortex was at ∼28°C, ∼10°C below core body temperature, and a standing temperature gradient existed, with tissue below the core temperature even several millimeters into the brain. Cooling affected cellular and network function in neocortex and resulted principally from increased heat loss due to convection and radiation through the skull and cranial window. We demonstrate that constant perfusion of solution, warmed to 37°C, over the brain surface readily corrects the brain temperature, resulting in a stable temperature of 36–38°C at all depths. Our results indicate that temperature dysregulation may be common in cranial window preparations that are in widespread use in neuroscience, underlining the need to take measures to maintain the brain temperature in many physiology experiments. PMID:22972953

  4. Temperature of surface waters in the conterminous United States

    USGS Publications Warehouse

    Blakey, James F.

    1966-01-01

    Temperature is probably the most important, but least discussed, parameter in determining water quality. The purpose of this report is to present the average or most probable temperatures of surface waters in the conterminous United States and to cite factors that affect and are affected by water temperature. Temperature is related, usually directly, to all the chemical, physical, and biological properties of water. The ability of water to dissolve or precipitate materials is temperature dependent, the ability of water to transport or deposit suspended material is temperature dependent, and the aquatic life of a lake or stream may thrive or die because of the water temperature.Everyone is concerned, though often unknowingly, about water temperature. The amount and type of treatment necessary for a municipal supply are temperature dependent; therefore it affects the consumer cost. Temperature determines the volume of cooling water needed for industrial processes and steampower generation. Conservation and recreation practices are affected by water temperature, and the farmers' irrigation practices and livestock production may be affected by the water temperature.

  5. Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.

    PubMed

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-25

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  6. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Treesearch

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  7. Assimilation of Surface Temperature in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1998-01-01

    Hydrological models have been calibrated and validated using catchment streamflows. However, using a point measurement does not guarantee correct spatial distribution of model computed heat fluxes, soil moisture and surface temperatures. With the advent of satellites in the late 70s, surface temperature is being measured two to four times a day from various satellite sensors and different platforms. The purpose of this paper is to demonstrate use of satellite surface temperature in (a) validation of model computed surface temperatures and (b) assimilation of satellite surface temperatures into a hydrological model in order to improve the prediction accuracy of soil moistures and heat fluxes. The assimilation is carried out by comparing the satellite and the model produced surface temperatures and setting the "true"temperature midway between the two values. Based on this "true" surface temperature, the physical relationships of water and energy balance are used to reset the other variables. This is a case of nudging the water and energy balance variables so that they are consistent with each other and the true" surface temperature. The potential of this assimilation scheme is demonstrated in the form of various experiments that highlight the various aspects. This study is carried over the Red-Arkansas basin in the southern United States (a 5 deg X 10 deg area) over a time period of a year (August 1987 - July 1988). The land surface hydrological model is run on an hourly time step. The results show that satellite surface temperature assimilation improves the accuracy of the computed surface soil moisture remarkably.

  8. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  9. Evaluation of Surface Fatigue Strength Based on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Deng, Gang; Nakanishi, Tsutomu

    Surface temperature is considered to be an integrated index that is dependent on not only the load and the dimensions at the contact point but also the sliding velocity, rolling velocity, surface roughness, and lubrication conditions. Therefore, the surface durability of rollers and gears can be evaluated more exactly and simply by the use of surface temperature rather than Hertzian stress. In this research, surface temperatures of rollers under different rolling and sliding conditions are measured using a thermocouple. The effects of load P, mean velocity Vm and sliding velocity Vs on surface temperature are clarified. An experimental formula, which expresses the linear relationship between surface temperature and the P0.86Vs1.31Vm-0.83 value, is used to determine surface temperature. By comparing calculated and measured temperature on the tooth surface of a gear, this formula is confirmed to be applicable for gear tooth surface temperature calculation.

  10. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  11. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  12. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2016-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project, i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  13. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1997-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  14. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1999-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  15. How do temperature and rainfall affect nitrous oxide emissions from open-lot beef cattle feedyard pens?

    USDA-ARS?s Scientific Manuscript database

    Temperature is a primary factor affecting greenhouse gas (GHG) emissions from agricultural soils, but little is known about how temperature affects nitrous oxide (N2O) emissions from manure. The majority of grain-fed cattle in the Texas Panhandle are finished in large, earthen-surfaced, open-lot fee...

  16. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  17. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin

  18. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  19. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  20. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short

  1. Method and apparatus for measuring surface contour on parts with elevated temperatures

    DOEpatents

    Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George

    1991-01-01

    The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.

  2. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  3. Investigation of transient temperature's influence on damage of high-speed sliding electrical contact rail surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Sun, Shasha; Guo, Quanli; Yang, Degong; Sun, Dongtao

    2016-11-01

    In the high speed sliding electrical contact with large current, the temperature of contact area rises quickly under the coupling action of the friction heating, the Joule heating and electric arc heating. The rising temperature seriously affects the conductivity of the components and the yield strength of materials, as well affects the contact state and lead to damage, so as to shorten the service life of the contact elements. Therefore, there is vital significance to measure the temperature accurately and investigate the temperature effect on damage of rail surface. Aiming at the problem of components damage in high speed sliding electrical contact, the transient heat effect on the contact surface was explored and its influence and regularity on the sliding components damage was obtained. A kind of real-time temperature measurement method on rail surface of high speed sliding electrical contact is proposed. Under the condition of 2.5 kA current load, based on the principle of infrared radiation non-contact temperature sensor was used to measure the rail temperature. The dynamic distribution of temperature field was obtained through the simulation analysis, further, the connection between temperature changes and the rail surface damage morphology, the damage volume was analyzed and established. Finally, the method to reduce rail damage and improve the life of components by changing the temperature field was discussed.

  4. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.

    1985-01-01

    Simulations of the thermally induced breeze involved with a relatively narrow, elongated water body is presented in conjunction with evaluations of sensible heat fluxes in a stable marine atmospheric surface layer. The effect of the water surface temperature and of the large-scale synoptic winds on the development of surface flows over the water is examined. As implied by the sensible heat flux patterns, the simulation results reveal the following trends: (1) when the synoptic flow is absent or light, the induced surface breeze is not affected noticeably by a reduction of the water surface temperature; and (2) for stronger synoptic flow, the resultant surface flow may be significantly affected by the water surface temperature.

  5. Flexible Multiplexed Surface Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, L. A.; Johnson, Preston B.; Ash, Robert L.

    1995-01-01

    Unitary array of sensors measures temperatures at points distributed over designated area on surface. Useful in measuring surface temperatures of aerodynamic models and thermally controlled objects. Made of combination of integrated-circuit microchips and film circuitry. Temperature-sensing chips scanned at speeds approaching 10 kHz. Operating range minus 40 degrees C to 120 degrees C. Flexibility of array conforms to curved surfaces. Multiplexer eliminates numerous monitoring cables. Control of acquisition and recording of data effected by connecting array to microcomputers via suitable interface circuitry.

  6. Rough-surface model for surface temperature calculations on Vesta

    NASA Astrophysics Data System (ADS)

    Palmer, E.; Sykes, M.

    2014-07-01

    We model observations by the Dawn Visual and Infrared spectrometer (VIR) [1] to reproduce the observed surface temperature of Vesta. The VIR instrument has collected over 3,700 spectral cubes of Vesta out to 5.1 microns. The observed surface temperature is derived by matching the irradiance near 5 microns with a grey body, the Planck function after removing a reflected-light component per previous procedures [2--5] with similar results. We noted that the observed surface temperatures are significantly hotter than what simple theoretical models would predict [2]. To better understand this, we used a high-resolution topographic model of Vesta [6] that provided exact phase, incidence, and emission angles for every VIR pixel. We assume an emissivity of 0.9, Bond albedo of between 0.16 and 0.22 [5], and a variety of thermal inertia values for a low-contrast, highly degraded, homogenous crater. We have created a ''rough-surface'' thermal model that takes into account how irregular grains create sub-pixel variations in the thermal spectrum and describe the effect it has on the observed surface temperatures of Vesta. We have applied this method to the VIR observations of Vesta, which produced a high level of agreement with the observed surface temperatures.

  7. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  8. The relationship between surface temperature, tissue temperature, microbubble formation, and steam pops.

    PubMed

    Thompson, Nathaniel; Lustgarten, Daniel; Mason, Bryan; Mueller, Enkhtuyaa; Calame, James; Bell, Stephen; Spector, Peter

    2009-07-01

    It has been proposed that microbubble (MB) monitoring can be used to safely titrate radiofrequency (RF) power. However, MB formation has been found to be an insensitive indicator of tissue temperature during RF delivery. We hypothesized that MB formation corresponds to surface-not tissue--temperature, and therefore would be an insensitive predictor of steam pops. An in vitro bovine heart model was used to measure surface and tissue temperatures during RF delivery under conditions designed to cause steam pops. Sensitivity of type II MB (MBII) formation as a predictor of steam pops and for surface temperatures more than 80 degrees C was calculated. Of 105 lesions delivered, 99 steam pops occurred. Twenty-one steam pops were preceded by MBII. MBII were seen in 26 lesions, five of which were not associated with steam pop. Surface temperature at onset of MBII was 87 +/- 9 degrees C versus a tissue temperature of 78 +/- 23 degrees C (P = 0.044). Surface temperature at the time of steam pops was 71 +/- 17 degrees C versus a tissue temperature of 102 +/- 17 degrees C (P < 0.0001). The sensitivity of MBII for steam pops was 21%, and 58% for detecting surface temperature in excess of 80 degrees C. MBII correlated better with surface temperature than with tissue temperature; steam pops, on the other hand, correlated better with tissue temperature. MBII was an insensitive marker of steam pops and surface temperature in excess of 80 degrees C. Therefore, MBII should not be used to titrate RF power.

  9. Global temperature definition affects achievement of long-term climate goals

    NASA Astrophysics Data System (ADS)

    Richardson, Mark; Cowtan, Kevin; Millar, Richard J.

    2018-05-01

    The Paris Agreement on climate change aims to limit ‘global average temperature’ rise to ‘well below 2 °C’ but reported temperature depends on choices about how to blend air and water temperature data, handle changes in sea ice and account for regions with missing data. Here we use CMIP5 climate model simulations to estimate how these choices affect reported warming and carbon budgets consistent with the Paris Agreement. By the 2090s, under a low-emissions scenario, modelled global near-surface air temperature rise is 15% higher (5%–95% range 6%–21%) than that estimated by an approach similar to the HadCRUT4 observational record. The difference reduces to 8% with global data coverage, or 4% with additional removal of a bias associated with changing sea-ice cover. Comparison of observational datasets with different data sources or infilling techniques supports our model results regarding incomplete coverage. From high-emission simulations, we find that a HadCRUT4 like definition means higher carbon budgets and later exceedance of temperature thresholds, relative to global near-surface air temperature. 2 °C warming is delayed by seven years on average, to 2048 (2035–2060), and CO2 emissions budget for a >50% chance of <2 °C warming increases by 67 GtC (246 GtCO2).

  10. Extreme Maximum Land Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  11. Ecoregional analysis of nearshore sea-surface temperature in the North Pacific

    EPA Science Inventory

    Aim Sea surface temperature (SST) has been a parameter widely-identified to be useful to the investigation of marine species distribution, migration, and invasion, especially as SSTs are predicted to be affected by climate change. Here we use a remotely-sensed dataset to focus on...

  12. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  13. Upscaling and Downscaling of Land Surface Fluxes with Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kustas, W. P.; Anderson, M. C.; Hain, C.; Albertson, J. D.; Gao, F.; Yang, Y.

    2015-12-01

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status in the surface and root zone. Data from airborne and satellite-based platforms provide LST from ~10 km to sub meter resolutions. A land surface scheme called the Two-Source Energy Balance (TSEB) model has been incorporated into a multi-scale regional modeling system ALEXI (Atmosphere Land Exchange Inverse) and a disaggregation scheme (DisALEXI) using higher resolution LST. Results with this modeling system indicates that it can be applied over heterogeneous land surfaces and estimate reliable surface fluxes with minimal in situ information. Consequently, this modeling system allows for scaling energy fluxes from subfield to regional scales in regions with little ground data. In addition, the TSEB scheme has been incorporated into a large Eddy Simulation (LES) model for investigating dynamic interactions between variations in the land surface state reflected in the spatial pattern in LST and the lower atmospheric air properties affecting energy exchange. An overview of research results on scaling of fluxes and interactions with the lower atmosphere from the subfield level to regional scales using the TSEB, ALEX/DisALEX and the LES-TSEB approaches will be presented. Some unresolved issues in the use of LST at different spatial resolutions for estimating surface energy balance and upscaling fluxes, particularly evapotranspiration, will be discussed.

  14. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    PubMed

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  15. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  16. Understanding Arctic surface temperature differences in reanalyses

    NASA Astrophysics Data System (ADS)

    Cullather, R. I.; Zhao, B.; Shuman, C. A.; Nowicki, S.

    2017-12-01

    Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. For example, the 1980-2009 mean surface air temperature for the north polar cap (70°N-90°N) among global reanalyses span a range of 2.4 K, which approximates the average warming trend from these reanalyses over the 30-year period of 2.1 K. Understanding these differences requires evaluation over the three principal surface domains of the Arctic: glaciated land, the unglaciated terrestrial surface, and sea ice/ocean. An examination is conducted of contemporary global reanalyses of the ECMWF Interim project, NASA MERRA, MERRA-2, JRA-55, and NOAA CFSR using available in situ data and assessments of the surface energy budget. Overly-simplistic representations of the Greenland Ice Sheet surface are found to be associated with local warm air temperature biases in winter. A review of progress made in the development of the MERRA-2 land-ice representation is presented. Large uncertainty is also found in temperatures over the Arctic tundra and boreal forest zone. But a key focus of temperature differences for northern high latitudes is the Arctic Ocean. Near-surface air temperature differences over the Arctic Ocean are found to be related to discrepancies in sea ice and sea surface temperature boundary data, which are severely compromised in current reanalyses. Issues with the modeled representation of sea ice cover are an additional factor in reanalysis temperature trends. Differences in the representation of the surface energy budget among the various reanalyses are also reviewed.

  17. Understanding Arctic Surface Temperature Differences in Reanalyses

    NASA Technical Reports Server (NTRS)

    Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie

    2017-01-01

    Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. For example, the 1980-2009 mean surface air temperature for the north polar cap (70ÂdegN-90ÂdegN) among global reanalyses span a range of 2.4 K, which approximates the average warming trend from these reanalyses over the 30-year period of 2.1 K. Understanding these differences requires evaluation over the three principal surface domains of the Arctic: glaciated land, the unglaciated terrestrial surface, and sea ice/ocean. An examination is conducted of contemporary global reanalyses of the ECMWF Interim project, NASA MERRA, MERRA-2, JRA-55, and NOAA CFSR using available in situ data and assessments of the surface energy budget. Overly-simplistic representations of the Greenland Ice Sheet surface are found to be associated with local warm air temperature biases in winter. A review of progress made in the development of the MERRA-2 land-ice representation is presented. Large uncertainty is also found in temperatures over the Arctic tundra and boreal forest zone. But a key focus of temperature differences for northern high latitudes is the Arctic Ocean. Near-surface air temperature differences over the Arctic Ocean are found to be related to discrepancies in sea ice and sea surface temperature boundary data, which are severely compromised in current reanalyses. Issues with the modeled representation of sea ice cover are an additional factor in reanalysis temperature trends. Differences in the representation of the surface energy budget among the various reanalyses are also reviewed.

  18. The relationship between surface topography, gravity anomalies, and temperature structure of convection

    NASA Technical Reports Server (NTRS)

    Parsons, B.; Daly, S.

    1983-01-01

    Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.

  19. Unexpected and Unexplained Surface Temperature Variations on Mimas

    NASA Astrophysics Data System (ADS)

    Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

    2010-12-01

    could cause surface defects. For this process to also explain the observed temperature differences it would have to affect the surface’s thermal inertia to a depth comparable to the diurnal thermal skin-depth (~0.5 cm). However, whether the formation of the giant Herschel crater (which lies in the middle of the observed portion of the cold region) contributed to the observed temperature anomaly or if electron bombardment alone is able to explain the thermal anomaly is currently unknown. Future CIRS observations should be able to map the full spatial extent of the thermal anomaly and clarify whether it is centered on (and thus likely related to) Herschel, or is centered on the trailing hemisphere and thus likely to be related to the observed color anomaly.

  20. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    NASA Astrophysics Data System (ADS)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe

    2016-03-01

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  1. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micromore » structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.« less

  2. Seasonal Changes in Titan's Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Jennins, Donald E.; Cottini, V.; Nixon, C. A.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Romani, P. N.; Hesman, B. E.; Carlson, R. C.; Gorius, N. J. P.; hide

    2011-01-01

    Seasonal changes in Titan's surface brightness temperatures have been observed by Cassini in the thermal infrared. The Composite Infrared Spectrometer (CIRS) measured surface radiances at 19 micron in two time periods: one in late northern winter (Ls = 335d eg) and another centered on northern spring equinox (Ls = 0 deg). In both periods we constructed pole-to-pole maps of zonally averaged brightness temperatures corrected for effects of the atmosphere. Between late northern winter and northern spring equinox a shift occurred in the temperature distribution, characterized by a warming of approximately 0.5 K in the north and a cooling by about the same amount in the south. At equinox the polar surface temperatures were both near 91 K and the equator was 93.4 K. We measured a seasonal lag of delta Ls approximately 9 in the meridional surface temperature distribution, consistent with the post-equinox results of Voyager 1 as well as with predictions from general circulation modeling. A slightly elevated temperature is observed at 65 deg S in the relatively cloud-free zone between the mid-latitude and southern cloud regions.

  3. Clouds not important for control of short-term surface temperatures

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-01-01

    In two recent papers, R. W. Spencer and W. D. Braswell (Remote Sens., 3(8), 1603- 1613, doi:10.3390/rs3081603, 2011) (SB) and R. S. Lindzen and Y.-S. Choi (Asia Pac. J. Atmos. Sci., 47(4), 377-390, doi:10.1007/s13143-011-0023-x, 2011) (LC) argue that clouds act as a primary initiator of surface temperature changes in Earth's climate system. The two sets of authors reached this conclusion by developing a method that tries to determine the Earth's surface temperature by calculating how much energy is stored in the ocean's upper layers, how much of this heat is transferred to the rest of the climate system, how clouds affect the rate at which energy escapes Earth's atmosphere, and how the surface's energy flux changes with temperature. Both studies spurred substantial debate within the media and the public, with the research by SB causing the editor of the journal in which it was published to resign, claiming it should not have been accepted by the journal. Assessing the two studies, Dessler found what he suggests are a number of methodological errors.

  4. Sea surface temperature measurements with AIRS

    NASA Technical Reports Server (NTRS)

    Aumann, H.

    2003-01-01

    The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

  5. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Differential response of surface temperature and atmospheric temperature to the biogeophysical effects of deforestation

    NASA Astrophysics Data System (ADS)

    Winckler, J.; Reick, C. H.; Lejeune, Q.; Pongratz, J.

    2017-12-01

    Deforestation influences temperature locally by changing the water, energy and momentum balance. While most observation-based studies and some modeling studies focused on the effects on surface temperature, other studies focused on the effects on near-surface air temperature. However, these two variables may respond differently to deforestation because changes in albedo and surface roughness may alter the land-atmosphere coupling and thus the vertical temperature distribution. Thus it is unclear whether it is possible to compare studies that assess the impacts of deforestation on these two different variables. Here, we analyze the biogeophysical effects of global-scale deforestation in the climate model MPI-ESM separately for surface temperature, 2m-air temperature and temperature the lowest atmospheric model layer. We investigate why the response of these variables differs by isolating the effects of only changing surface albedo and only changing surface roughness and by separating effects that are induced at the location of deforestation (local effects) from effects that are induced by advection and changes in circulation (nonlocal effects). Concerning surface temperature, we find that the local effects of deforestation lead to a global mean warming which is overcompensated by the nonlocal effects (up to 0.1K local warming versus -0.3K nonlocal cooling). The surface warming in the local effects is largely driven by the change in surface roughness while the cooling in the nonlocal effects is largely driven by the change in surface albedo. The nonlocal effects are largely consistent across surface temperature, 2m-air temperature, and the temperature of the lowest atmospheric layer. However, the local effects strongly differ across the three considered variables. The local effects are strong for surface temperature, but substantially weaker in the 2m-air temperature and largely absent in the lowest atmospheric layer. We conclude that studies focusing on the

  7. Nest temperatures in a loggerhead nesting beach in Turkey is more determined by sea surface than air temperature.

    PubMed

    Girondot, Marc; Kaska, Yakup

    2015-01-01

    While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for sea surface temperature 4-times higher than for air temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of air temperature measured at beach level and sea surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    2003-12-01

    Hiroshima Institute of Technology (HIT) in Japan has established a LANDSAT-7 Ground Station in cooperation with NASDA for receiving and processing the ETM+ data on March 15 th, 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of temperatures around Hiroshima city and bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6 (10.40-12.50μm), and then the estimation of the surface temperature distribution around the test site was examined.In this study, the authors estimated the surface temperature distribution equivalent to the land cover categories around the test site for establishing a guideline of surface temperature detection by LANDSAT7/ETM+ data. As the result of comparison of the truth data and the estimated surface temperature, the correlation coefficients of the approximate function referred to the truth data are from 0.9821 to 0.9994, and the differences are observed from +0.7 to -1.5°C in summer, from +0.4 to -0.9 *C in autumn, from -1.6 to -3.4°C in winter and from +0.5 to -0.5C in spring season respectively. It is clearly found that the estimation of surface temperature based on the approximate functions for converting the spectral radiance into the surface temperature referred to the truth data is improved over the directly estimated surface temperature obtained from satellite data. Finally, the successive seasonal change of surface temperature distribution pattern of the test site is precisely detected with the temperature legend of 0 to 80'C derived from LANDSAT-7/ETM+ band 6 image data for the

  9. Outdoor surface temperature measurement: ground truth or lie?

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  10. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  11. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng

    2018-06-01

    This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  12. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  13. Low temperature self-cleaning properties of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  14. Influence of Agricultural Practice on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.

    2006-12-01

    Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.

  15. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’E-2 microwave radiometer

    NASA Astrophysics Data System (ADS)

    Fang, Tuo; Fa, Wenzhe

    2014-04-01

    Near surface temperature of the Moon and thermal behaviors of the lunar regolith can provide important information for constraining thermal and magmatic evolution models of the Moon and engineering constrains for in situ lunar exploration system. In this study, China’s Chang’E-2 (CE-2) microwave radiometer (MRM) data at high frequency channels are used to investigate near surface temperature of the Moon given the penetration ability of microwave into the desiccated and porous lunar regolith. Factors that affect high frequency brightness temperature (TB), such as surface slope, solar albedo and dielectric constant, are analyzed first using a revised Racca’s temperature model. Radiative transfer theory is then used to model thermal emission from a semi-infinite regolith medium, with considering dielectric constant and temperature profiles within the regolith layer. To decouple the effect of diurnal temperature variation in the uppermost lunar surface, diurnal averaged brightness temperatures at high frequency channels are used to invert mean diurnal surface and subsurface temperatures based on their bilinear profiles within the regolith layer. Our results show that, at the scale of the spatial resolution of CE-2 MRM, surface slope of crater wall varies typically from about 20° to 30°, and this causes a variation in TB about 10-15 K. Solar albedo can give rise to a TB difference of about 5-10 K between maria and highlands, whereas a ∼2-8 K difference can be compensated by the dielectric constant on the other hand. Inversion results indicate that latitude (ϕ) variations of the mean diurnal surface and subsurface temperatures follow simple rules as cos0.30ϕ and cos0.36ϕ, respectively. The inverted mean diurnal temperature profiles at the Apollo 15 and 17 landing sites are also compared with the Apollo heat flow experiment data, showing an inversion uncertainty <4 K for surface temperature and <1 K for subsurface temperature.

  16. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  17. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  18. Greenhouse gas emissions from beef feedlot surface materials as affected by diet, moisture, temperature, and time

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open-lot pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distille...

  19. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    NASA Astrophysics Data System (ADS)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  20. Modeling sea-surface temperature and its variability

    NASA Technical Reports Server (NTRS)

    Sarachik, E. S.

    1985-01-01

    A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.

  1. ALMA observation of Ceres' Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  2. Climatic change by cloudiness linked to the spatial variability of sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.

  3. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  4. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  5. Volatile Organic Compound (VOC) emissions from feedlot pen surface materials as affected by within pen location, moisture, and temperature

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to evaluate the effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC) from surface materials obtained from feedlot pens where beef cattle were fed a diet containing 30% wet distillers grain plus solubles. Surface material...

  6. Global Surface Temperature Change and Uncertainties Since 1861

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  7. Low temperature surface chemistry and nanostructures

    NASA Astrophysics Data System (ADS)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  8. Eye surface temperature detects stress response in budgerigars (Melopsittacus undulatus).

    PubMed

    Ikkatai, Yuko; Watanabe, Shigeru

    2015-08-05

    Previous studies have suggested that stressors not only increase body core temperature but also body surface temperature in many animals. However, it remains unclear whether surface temperature could be used as an alternative to directly measure body core temperature, particularly in birds. We investigated whether surface temperature is perceived as a stress response in budgerigars. Budgerigars have been used as popular animal models to investigate various neural mechanisms such as visual perception, vocal learning, and imitation. Developing a new technique to understand the basic physiological mechanism would help neuroscience researchers. First, we found that cloacal temperature correlated with eye surface temperature. Second, eye surface temperature increased after handling stress. Our findings suggest that eye surface temperature is closely related to cloacal temperature and that the stress response can be measured by eye surface temperature in budgerigars.

  9. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  10. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE PAGES

    Ma, H. -Y.; Klein, S. A.; Xie, S.; ...

    2018-02-27

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  11. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  12. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Precipitation and temperature changes in the major Chinese river basins during 1957-2013 and links to sea surface temperature

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Prange, Matthias; Merkel, Ute

    2016-05-01

    The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific

  14. Surface temperatures and temperature gradient features of the US Gulf Coast waters

    NASA Technical Reports Server (NTRS)

    Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.

    1977-01-01

    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.

  15. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    Hiroshima Institute of Technology (HIT) in Japan has established LANDSAT-7 Ground Station in cooperated with NASDA for receiving and processing the ETM+ data on March 15t h , 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT- 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of the thermal condition around Hiroshima City and Bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6, and then the estimation of the surface temperature distribution around the test site was examined. In this paper, the authors estimated the surface temperature distribution equivalent to the land cover types around Hiroshima City and Bay area. For the further study, the authors performed the modification of approximate functions for converting the spectral radiance into the surface temperature by the field and satellite observation throughout a year and the development of various monitoring systems for the environmental issues such as the sea surface anomalies and heat island phenomena.

  16. Temperature sensitive surfaces and methods of making same

    DOEpatents

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  17. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  18. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    USDA-ARS?s Scientific Manuscript database

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  19. Global surface temperatures and the atmospheric electrical circuit

    NASA Technical Reports Server (NTRS)

    Price, Colin

    1993-01-01

    To monitor future global temperature trends, it would be extremely useful if parameters nonlinearly related to surface temperature could be found, thereby amplifying any warming signal that may exist. Evidence that global thunderstorm activity is nonlinearly related to diurnal, seasonal and interannual temperature variations is presented. Since global thunderstorm activity is also well correlated with the earth's ionospheric potential, it appears that variations of ionospheric potential, that can be measured at a single location, may be able to supply valuable information regarding global surface temperature fluctuations. The observations presented enable a prediction that a 1 percent increase in global surface temperatures may result in a 20 percent increase in ionospheric potential.

  20. Estimating morning changes in land surface temperature from MODIS day/night land surface temperature: Applications for surface energy balance modeling

    USDA-ARS?s Scientific Manuscript database

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required...

  1. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    NASA Technical Reports Server (NTRS)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  2. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years

    NASA Astrophysics Data System (ADS)

    Meissner, K. J.; Lippmann, T.; Sen Gupta, A.

    2012-06-01

    One-third of the world's coral reefs have disappeared over the last 30 years, and a further third is under threat today from various stress factors. The main global stress factors on coral reefs have been identified as changes in sea surface temperature (SST) and changes in surface seawater aragonite saturation (Ωarag). Here, we use a climate model of intermediate complexity, which includes an ocean general circulation model and a fully coupled carbon cycle, in conjunction with present-day observations of inter-annual SST variability to investigate three IPCC representative concentration pathways (RCP 3PD, RCP 4.5, and RCP 8.5), and their impact on the environmental stressors of coral reefs related to open ocean SST and open ocean Ωarag over the next 400 years. Our simulations show that for the RCP 4.5 and 8.5 scenarios, the threshold of 3.3 for zonal and annual mean Ωarag would be crossed in the first half of this century. By year 2030, 66-85% of the reef locations considered in this study would experience severe bleaching events at least once every 10 years. Regardless of the concentration pathway, virtually every reef considered in this study (>97%) would experience severe thermal stress by year 2050. In all our simulations, changes in surface seawater aragonite saturation lead changes in temperatures.

  3. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes

    USGS Publications Warehouse

    Houser, J.N.

    2006-01-01

    The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.

  4. Effects of wintertime atmospheric river landfalls on surface air temperatures in the Western US: Analyses and model evaluation

    NASA Astrophysics Data System (ADS)

    Kim, J.; Guan, B.; Waliser, D. E.; Ferraro, R.

    2016-12-01

    Landfalling atmospheric rivers (ARs) affect the wintertime surface air temperatures as shown in earlier studies. The AR-related surface air temperatures can exert significant influence on the hydrology in the US Pacific coast region especially through rainfall-snowfall partitioning and the snowpack in high elevation watersheds as they are directly related with the freezing-level altitudes. These effects of temperature perturbations can in turn affect hydrologic events of various time scales such as flash flooding by the combined effects of rainfall and snowmelt, and the warm season runoff from melting snowpack, especially in conjunction with the AR effects on winter precipitation and rain-on-snow events in WUS. Thus, understanding the effects of AR landfalls on the surface temperatures and examining the capability of climate models in simulating these effects are an important practical concern for WUS. This study aims to understand the effects of AR landfalls on the characteristics of surface air temperatures in WUS, especially seasonal means and PDFs and to evaluate the fidelity of model data produced in the NASA downscaling experiment for the 10 winters from Nov. 1999 to Mar. 2010 using an AR-landfall chronology based on the vertically-integrated water vapor flux calculated from the MERRA2 reanalysis. Model skill is measured using metrics including regional means, a skill score based on correlations and mean-square errors, the similarity between two PDF shapes, and Taylor diagrams. Results show that the AR landfalls are related with higher surface air temperatures in WUS, especially in inland regions. The AR landfalls also reduce the range of surface air temperature PDF, largely by reducing the events in the lower temperature range. The shift in the surface air temperature PDF is consistent with the positive anomalies in the winter-mean temperature. Model data from the NASA downscaling experiment reproduce the AR effects on the temperature PDF, at least

  5. Does the Economy or Surface Warfare Officer Career Pay Affect Surface Warfare Officer Retention?

    DTIC Science & Technology

    2014-12-01

    be a career SWO (Surface Warfare Enterprise, 2013). 6 Military pay was more important to men than women ...OR SURFACE WARFARE OFFICER CAREER PAY AFFECT SURFACE WARFARE OFFICER RETENTION? by Meagan B. Makarenko December 2014 Thesis Advisor...2014 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DOES THE ECONOMY OR SURFACE WARFARE OFFICER CAREER PAY AFFECT

  6. Temperature Dependence of Arn+ Cluster Backscattering from Polymer Surfaces: a New Method to Determine the Surface Glass Transition Temperature.

    PubMed

    Poleunis, Claude; Cristaudo, Vanina; Delcorte, Arnaud

    2018-01-01

    In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Ar n + clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar 2 + /(Ar 2 + + Ar 3 + ) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (T g ) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

  7. Satellite and Skin Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Bates, John J.; Scott, Donna J.

    2000-01-01

    The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in our ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and our ability to estimate and interpret the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES Imagers on the GOES 8-10 satellites are shown to have very small bias (less than 0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known "satellite midnight" calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.

  8. GISS Analysis of Surface Temperature Changes

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Ruedy, R.; Glascoe, J.; Sato, M.

    1999-01-01

    We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.

  9. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  10. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status.

    PubMed

    Giloh, M; Shinder, D; Yahav, S

    2012-01-01

    Extreme thermal conditions may dramatically affect the performance of broilers and other domestic animals, thereby impairing animal welfare and causing economic losses. Although body core temperature is the parameter that best reflects a bird's thermal status, practical and physiological obstacles make it irrelevant as a source of information on the thermal status of commercial flocks. Advances in the technology of infrared thermal imaging have enabled highly accurate, noncontact, and noninvasive measurements of skin surface temperature. Providing that skin surface temperature correlates with body temperature, this technology could enable acquisition of reliable information on the thermal status of animals, thereby improving diagnoses of environmental stress in a flock. This study of broiler chickens found a strong positive correlation between body core temperature and facial surface temperature, as recorded by infrared thermal imaging. The correlation was equally strong at all ages from 8 to 36 d during exposure to acute heat stress with or without proper ventilation and after acclimation to chronic heat exposure. A similar correlation was found by measurements in commercial flocks of broilers. Measurements of blood plasma concentrations of corticosterone, thyroid hormones, and arginine vasotocin confirmed that metabolic activity was low after acclimation to chronic exposure to heat, whereas ventilation was at least as efficient as acclimation in reducing thermal stress but did not impair metabolism. In light of these novel results, commercial benefits of infrared thermal imaging technology are suggested, especially in climate control for commercial poultry flocks. The application of this technique to other domestic animals should be investigated in future experiments.

  11. Surface Temperature Data Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  12. Miocene Surface Temperature Estimates of the Southern Altiplano and Their Implications for Surface Uplift

    NASA Astrophysics Data System (ADS)

    Smith, J. J.; Garzione, C.; Higgins, P.; MacFadden, B.; Auerbach, D.; Croft, D.

    2008-12-01

    Surface temperature estimates derived from stable isotopes can be used to infer tectonic history and subsequent climate change of the Bolivian Altiplano. This study compares surface temperatures calculated from two fossil localities (Cerdas and Quehua) that span middle to late Miocene age in the southern Altiplano. Temperatures were calculated using the approach of Zanazzi et al. (2007) by comparing the stable isotopes of fossil tooth enamel and concurrent fossilized bones. The δ18O of the surface water is derived from fossil tooth enamel that mineralized at a known mammal body temperature. Surface water compositions are then used to calculate the temperature at which fossil bones were diagenetically altered, using the assumption that most alteration of fossil bones occurs within 20 to 50 thousand years of deposition. These surface temperature estimates can be used as a proxy for the amount of surface uplift based on modern temperature lapse rates. The vertical surface temperature gradient observed in the present-day Andes is about 4.66°C/km. Changes in surface elevations may explain large temperature changes reflected throughout the middle to late Miocene. Cerdas and Quehua, at modern elevations of ~3800m, have fossil records that include teeth and diagenetically altered bones that were deposited before and during a period of inferred rapid surface uplift of the northern Altiplano of 2.5 ± 1 km between ~10 to 6 Ma. Both sites have been dated by magnetostratigraphy and by 40Ar/39Ar dating of tuffs: Cerdas dates from 16.358 ± 0.071 to 15.105 ± 0.073 Ma, and Quehua ranges from 12.611 ± 0.034 to 6.844 ± 0.386 Ma. The close proximity and current elevation of Cerdas (21.9°S, 3800m) and Quehua (20.0°S, 3800m) allows for the assumption that their elevations were closely correlated through time. Thus the temperatures and elevation estimates derived from each location are assumed to reflect the larger extent of the southern Altiplano. If analysis of fossil enamel

  13. High-frequency fluctuations of surface temperatures in an urban environment

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  14. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  15. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    PubMed Central

    Cahon, Thomas; Caillon, Robin

    2018-01-01

    Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342

  16. Processes Affecting the Annual Surface Energy Budget at High-Latitude Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, P. O. G.; Stone, R. S.; Grachev, A.; Matrosova, L.

    2012-04-01

    Instrumentation at four Study of Environmental Arctic Change (SEARCH) sites (Barrow, Eureka, Alert, and Tiksi) have been enhanced in the past 6 years, including during the 2007-2008 IPY. Data from these sites are used to investigate the annual cycle of the surface energy budget (SEB), its coupling to atmospheric processes, and for Alert, its interannual variability. The comprehensive data sets are useful for showing interactions between the atmosphere, surface, and soil at high temporal resolution throughout the annual cycle. Processes that govern the SEB variability at each site are identified, and their impacts on the SEB are quantified. For example, mesoscale modulation of the SEB caused by forcing from the local terrain (downslope wind events) and coastlines (sea and land breezes) are significant at Alert and Eureka, with these processes affecting both radiative, turbulent, and ground heat flux terms in the SEB. Sub-seasonal and interannual variations in atmospheric processes and SEB impact soil thermal structures, such as the depth and timing of the summer active layer. These analyses provide an improved understanding of the processes producing changes in surface and soil temperature, linking them through the SEB as affected by atmospheric processes.

  17. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  18. Clouds, surface temperature, and the tropical and subtropical radiation budget

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1980-01-01

    Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.

  19. Surface temperature effect on subsonic stall.

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Norton, D. J.; Young, J. C.

    1972-01-01

    Results of an analytical and experimental study of boundary layer flow over an aerodynamic surface rejecting heat to a cool environment. This occurs following reentry of a Space Shuttle vehicle. Analytical studies revealed that a surface to freestream temperature ratio, greater than unity tended to destabilize the boundary layer, hastening transition and separation. Therefore, heat transfer accentuated the effect of an adverse pressure gradient. Wind tunnel tests of a 0012-64 NACA airfoil showed that the stall angle was significantly reduced while drag tended to increase for freestream temperature ratios up to 2.2.

  20. Method for measuring surface temperature

    DOEpatents

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  1. Comparison between AVHRR surface temperature data and in-situ weather station temperatures over the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.

    2011-12-01

    Advanced Very-High Resolution Radiometer (AVHRR) images have been exhaustively used to measure surface temperature time series of the Greenland Ice sheet. The purpose of this study is to assess the accuracy of monthly average ice sheet surface temperatures, derived from thermal infrared AVHRR satellite imagery on a 6.25 km grid. In-situ temperature data sets are from the Greenland Collection Network (GC-Net). GC-Net stations comprise sensors monitoring air temperature at 1 and 2 meter above the snow surface, gathered at every 60 seconds and monthly averaged to match the AVHRR temporal resolution. Our preliminary results confirm the good agreement between satellite and in-situ temperature measurements reported by previous studies. However, some large discrepancies still exist. While AVHRR provides ice surface temperature, in-situ stations measure air temperatures at different elevations above the snow surface. Since most in-situ data on ice sheets are collected by Automatic Weather Station (AWS) instruments, it is important to characterize the difference between surface and air temperatures. Therefore, we compared and analyzed average monthly AVHRR ice surface temperatures using data collected in 2002. Differences between these temperatures correlate with in-situ temperatures and GC-Net station elevations, with increasing differences at lower elevations and higher temperatures. The Summit Station (3199 m above sea level) and the Swiss Camp (1176 m above sea level) results were compared as high altitude and low altitude stations for 2002, respectively. Our results show that AVHRR derived temperatures were 0.5°K warmer than AWS temperature at the Summit Station, while this difference was 2.8°K in the opposite direction for the Swiss Camp with surface temperatures being lower than air temperatures. The positive bias of 0.5°K at the high altitude Summit Station (surface warmer than air) is within the retrieval error of AVHRR temperatures and might be in part due to

  2. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  3. Temperature and doping dependent changes in surface recombination during UV illumination of (Al)GaN bulk layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Netzel, Carsten; Jeschke, Jörg; Brunner, Frank

    2016-09-07

    We have studied the effect of continuous illumination with above band gap energy on the emission intensity of polar (Al)GaN bulk layers during the photoluminescence experiments. A temporal change in emission intensity on time scales from seconds to hours is based on the modification of the semiconductor surface states and the surface recombination by the incident light. The temporal behavior of the photoluminescence intensity varies with the parameters such as ambient atmosphere, pretreatment of the surface, doping density, threading dislocation density, excitation power density, and sample temperature. By means of temperature-dependent photoluminescence measurements, we observed that at least two differentmore » processes at the semiconductor surface affect the non-radiative surface recombination during illumination. The first process leads to an irreversible decrease in photoluminescence intensity and is dominant around room temperature, and the second process leads to a delayed increase in intensity and becomes dominant around T = 150–200 K. Both processes become slower when the sample temperature decreases from room temperature. They cease for T < 150 K. Stable photoluminescence intensity at arbitrary sample temperature was obtained by passivating the analyzed layer with an epitaxially grown AlN cap layer.« less

  4. Global Surface Temperatures of the Moon

    NASA Astrophysics Data System (ADS)

    Williams, J. P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.

    2015-12-01

    The Diviner instrument aboard the Lunar Reconnaissance Orbiter (LRO) is providing the most comprehensive view of how regoliths on airless body store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 hour local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Daytime maximum temperatures are sensitive to the radiative properties of the surface and are ~387-397 K at the equator, dropping to ~95 K before sunrise. Asymmetry between the morning and afternoon temperatures is observed due to the thermal inertia of the regolith with the dusk terminator ~30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed temperatures with latitude. At incidence angles >40° topography and surface roughness result in increasing anisothermality between spectral passbands and scatter in temperatures. Minimum temperatures reflect variations in thermophysical properties (Figure). Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (~3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact are observed to be broad (~200 km).

  5. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  6. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1994-01-01

    A generalized split-window method for retrieving land-surface temperature (LST) from AVHRR and MODIS data has been developed. Accurate radiative transfer simulations show that the coefficients in the split-window algorithm for LST must depend on the viewing angle, if we are to achieve a LST accuracy of about 1 K for the whole scan swath range (+/-55.4 deg and +/-55 deg from nadir for AVHRR and MODIS, respectively) and for the ranges of surface temperature and atmospheric conditions over land, which are much wider than those over oceans. We obtain these coefficients from regression analysis of radiative transfer simulations, and we analyze sensitivity and error by using results from systematic radiative transfer simulations over wide ranges of surface temperatures and emissivities, and atmospheric water vapor abundance and temperatures. Simulations indicated that as atmospheric column water vapor increases and viewing angle is larger than 45 deg it is necessary to optimize the split-window method by separating the ranges of the atmospheric column water vapor and lower boundary temperature, and the surface temperature into tractable sub-ranges. The atmospheric lower boundary temperature and (vertical) column water vapor values retrieved from HIRS/2 or MODIS atmospheric sounding channels can be used to determine the range where the optimum coefficients of the split-window method are given. This new LST algorithm not only retrieves LST more accurately but also is less sensitive than viewing-angle independent LST algorithms to the uncertainty in the band emissivities of the land-surface in the split-window and to the instrument noise.

  7. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  8. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  9. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  10. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  11. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  12. Temperature distribution and heat radiation of patterned surfaces at short wavelengths.

    PubMed

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  13. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  14. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    DOE PAGES

    Safi, E.; Valles, G.; Lasa, A.; ...

    2017-03-27

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower

  15. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safi, E.; Valles, G.; Lasa, A.

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower

  16. Multi-scale modelling to relate beryllium surface temperature, deuterium concentration and erosion in fusion reactor environment

    NASA Astrophysics Data System (ADS)

    Safi, E.; Valles, G.; Lasa, A.; Nordlund, K.

    2017-05-01

    Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this work, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First, we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300-800 K) and impact energy (10-200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D

  17. The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1984-01-01

    The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.

  18. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  19. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  20. Satellite observations of surface temperature during the March 2015 total solar eclipse.

    PubMed

    Good, Elizabeth

    2016-09-28

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).

  1. Satellite observations of surface temperature during the March 2015 total solar eclipse

    PubMed Central

    2016-01-01

    The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=−0.47; larger obscuration = larger LST drop), eclipse duration (r=−0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550764

  2. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  3. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  4. Recent Development on the NOAA's Global Surface Temperature Dataset

    NASA Astrophysics Data System (ADS)

    Zhang, H. M.; Huang, B.; Boyer, T.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.

    2016-12-01

    Global Surface Temperature (GST) is one of the most widely used indicators for climate trend and extreme analyses. A widely used GST dataset is the NOAA merged land-ocean surface temperature dataset known as NOAAGlobalTemp (formerly MLOST). The NOAAGlobalTemp had recently been updated from version 3.5.4 to version 4. The update includes a significant improvement in the ocean surface component (Extended Reconstructed Sea Surface Temperature or ERSST, from version 3b to version 4) which resulted in an increased temperature trends in recent decades. Since then, advancements in both the ocean component (ERSST) and land component (GHCN-Monthly) have been made, including the inclusion of Argo float SSTs and expanded EOT modes in ERSST, and the use of ISTI databank in GHCN-Monthly. In this presentation, we describe the impact of those improvements on the merged global temperature dataset, in terms of global trends and other aspects.

  5. Multilevel measurements of surface temperature over undulating terrain planted to barley

    NASA Technical Reports Server (NTRS)

    Reginato, R. J. (Principal Investigator); Millard, J. P.; Hatfield, J. L.; Jackson, R. D.

    1981-01-01

    A ground and aircraft program was conducted to extend ground based methods for measuring soil moisture and crop water stress to aircraft and satellite altitudes. A 260ha agricultural field in California was used over the 1977-78 growing season. For cloud free days ground based temperature measurements over bare soil were related to soil moisture content. Water stress resulted from too much water, not from lack of it, as was expected. A theoretical examination of the canopy air temperature difference as affected by vapor pressure deficit and net radiation was developed. This analysis shows why surface temperatures delineate crop water stress under conditions of low humidity, but not under high humidity conditions. Multilevel temperatures acquired from the ground, low and high altitude aircraft, and the Heat Capacity Mapping Mission (HCMM) spacecraft were compared for two day and one night overpasses. The U-2 and low altitude temperatures were within 0.5 C. The HCMM data were analyzed using both the pre- and post-launch calibrations, with the former being considerably closer in agreement with the aircraft data than the latter.

  6. Trends in Surface Temperature at High Latitudes

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  7. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  8. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  9. Ice Surface Temperature Variability in the Polar Regions and the Relationships to 2 Meter Air Temperatures

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Madsen, K. S.; Englyst, P. N.

    2017-12-01

    Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over

  10. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-07-28

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  11. Global Surface Temperature Anomalies and Attribution

    NASA Astrophysics Data System (ADS)

    Pietrafesa, L. J.

    2017-12-01

    We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.

  12. Surface alloying in Sn/Au(111) at elevated temperature

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Pampa; Singh, Vipin Kumar; Rai, Abhishek; Bhattacharya, Kuntala; Barman, Sudipta Roy

    2018-04-01

    On the basis of x-ray photoelectron spectroscopy, we show that when Sn is deposited on Au(111) single crystal surface at a substrate temperature TS=373 K, surface alloying occurs with the formation of AuSn phase. The evolution of the surface structure and the surface morphology has been studied by low energy electron diffraction and scanning tunneling microscopy, respectively as a function of Sn coverage and substrate temperatures.

  13. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  14. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model

    NASA Astrophysics Data System (ADS)

    Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore

    2013-03-01

    This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.

  15. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  16. Surface air temperature in a maritime metropolitan region

    Treesearch

    J. D. McTaggart-Cowen; J. W. S. Young

    1977-01-01

    In investigations of the micrometeorology of any area, one of the basic parameters required is the spatial and temporal distribution of the surface air temperature. A mobile instrument mounted on an automobile was used for measuring temperatures within the surface mixed layer. Details are presented of a case study at Saint John, New Brunswick, in a summer period. The...

  17. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Roadhouse, Emily A.

    related to the winter air temperatures. The application of n-factor modeling techniques within the permafrost region, and the verification of these techniques for a range of natural surfaces, is essential to the determination of the thermal and physical response to potential climate warming in permafrost regions. The presence of temperature inversions presents a unique challenge to permafrost probability mapping in mountainous terrain. While elsewhere the existence of permafrost can be linearly related to elevation, the presence of frequent inversions challenges this assumption, affecting permafrost distribution in ways that the current modeling techniques cannot accurately predict. At sites across the Yukon, inversion-prone sites were predominantly situated in U-shaped valleys, although open slopes, mid-slope ridges and plains were also identified. Within the Wolf Creek basin and surrounding area, inversion episodes have a measurable effect on local air temperatures, occurring during the fall and winter seasons along the Mount Sima trail, and year-round in the palsa valley. Within the discontinuous permafrost zone, where average surface temperatures are often close to zero, even a relatively small change in temperature in the context of future climate change could have a widespread impact on permafrost distribution.

  18. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    PubMed

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  19. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  20. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  1. Understanding Arctic Surface Temperature Differences in Reanalyses

    NASA Technical Reports Server (NTRS)

    Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie

    2017-01-01

    Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. A review of surface temperature differences is presented with a particular focus on differences in contemporary reanalyses. An important consideration is the significant differences in Arctic surfaces, including the central Arctic Ocean, the Greenland Ice Sheet, and non-glaciated land. While there is significant correlation among reanalyses in annual time series, there is substantial disagreement in mean values. For the period 1980-2013, the trend in annual temperature ranges from 0.3 to 0.7K per decade. Over the central Arctic Ocean, differences in mean values and trends are larger. Most of the uncertainty is associated with winter months. This is likely associated with the constraint imposed by melting processes (i.e. 0 deg. Celsius), rather than seasonal changes to the observing system.

  2. Temperature affects the timing of spawning and migration of North Sea mackerel

    NASA Astrophysics Data System (ADS)

    Jansen, Teunis; Gislason, Henrik

    2011-01-01

    Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.

  3. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and

  4. Volatile organic compound (VOC) emissions from beef feedlot pen surface as affected by within pen location, moisture, and temperature

    USDA-ARS?s Scientific Manuscript database

    A laboratory study was conducted to determine effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC). Feedlot surface material (FSM) was obtained from pens where cattle were fed a diet containing 30% wet distillers grain plus soluble (WDGS). The FSM were ...

  5. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.

    2016-12-01

    The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.

  6. Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.

    2010-01-01

    Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.

  7. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    NASA Astrophysics Data System (ADS)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  8. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  9. Mapping surface heat fluxes by assimilating GOES land surface temperature and SMAP products

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Steele-Dunne, S. C.; Van De Giesen, N.

    2017-12-01

    Surface heat fluxes significantly affect the land-atmosphere interaction, but their modelling is often hindered by the lack of in-situ measurements and the high spatial heterogeneity. Here, we propose a hybrid particle assimilation strategy to estimate surface heat fluxes by assimilating GOES land surface temperature (LST) data and SMAP products into a simple dual-source surface energy balance model, in which the requirement for in-situ data is minimized. The study aims to estimate two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). CHN scales the sum of surface energy fluxes, and EF represents the partitioning between flux components. To bridge the huge resolution gap between GOES and SMAP data, SMAP data are assimilated using a particle filter to update soil moisture which constrains EF, and GOES data are assimilated with an adaptive particle batch smoother to update CHN. The methodology is applied to an area in the US Southern Great Plains with forcing data from NLDAS-2 and the GPM mission. Assessment against in-situ observations suggests that the sensible and latent heat flux estimates are greatly improved at both daytime and 30-min scale after assimilation, particularly for latent heat fluxes. Comparison against an LST-only assimilation case demonstrates that despite the coarse resolution, assimilating SMAP data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the modelling uncertainties are large. Since the methodology is independent on in-situ data, it can be easily applied to other areas.

  10. Different combination of MODIS land surface temperature data for daily air surface temperature estimation in North West Vietnam

    NASA Astrophysics Data System (ADS)

    Noi Phan, Thanh; Kappas, Martin; Degener, Jan

    2017-04-01

    Land air temperature (Ta) with high spatial and temporal resolution plays an important role in various applications, such as: crop growth monitoring and simulations, environmental risk models, weather forecasting, land use cover change, urban heat islands, etc. Daily Ta (including Ta-max, Ta-min, and Ta-mean) is usually measured by weather stations (often at 2 m above the ground); thus, Ta is limited in spatial coverage. Satellite data, especially MODIS land surface temperature (LST) data at 1 kilometre and high temporal resolution (4 times per day, combining TERRA and AQUA) are free available and easily to access. However, there is a difference between Ta and LST because of the complex surface energy budget and multiple related variables between them. Several researches states that the Ta could be estimated using MODIS LST data with accurate of 2-4oC. However, there are only a handful of studies using dynamically combining of four MODIS LST data for Ta estimation. In this study, we evaluated all 15 - possible - combinations of four MODIS LST using support vector machine (SVM) and random forests (RFs) models. MODIS LST and Ta data was extracted from 4 weather stations in rural area in North West Vietnam from 2010 to 2012 (three years). Our results indicated that the accuracy of Ta estimation was affected by the different combination and the combined data (multiple variables) gave better results than those of single LST (solely variable), the best result was achieved (coefficient of determination (R2) = 0.95, 0.97, 0.97; root mean square error (RMSE) =1.7, 1.4, 1.2 oC for Ta-min, Ta-max, Ta-mean respectively) when all four LSTs were combined and RFs performed better than SVM.

  11. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may

  12. Near Surface Thermal Stratification during Summer at Summit, Greenland, and its Impact on MODIS-derived Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Hall, D. K.

    2017-12-01

    As rapid warming of the Arctic occurs, it is imperative that we monitor climate parameters such as temperature over large areas to understand and predict the extent of climate changes. Temperatures are often tracked using in-situ 2 m air temperatures, but in remote locations such as on the Greenland Ice Sheet, temperature can be studied more comprehensively using remote sensing techniques. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and skin temperature can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign at Summit Station in Greenland to study surface temperature using the following measurements: skin temperature measured by IR sensors, thermochrons, and thermocouples; 2 m air temperature measured by a NOAA meteorological station; and two different MODerate-resolution Imaging Spectroradiometer (MODIS) surface temperature products. We confirm prior findings that in-situ 2 m air temperature is often significantly higher in the summer than in-situ skin temperature when incoming solar radiation and wind speed are low. This inversion may account for biases in previous MODIS surface temperature studies that used 2 m air temperature for validation. As compared to the in-situ IR skin temperature measurements, the MOD/MYD11 Collection 6 surface-temperature standard product has an RMSE of 1.0°C, and that the MOD29 Collection 6 product has an RMSE of 1.5°C, spanning a range of temperatures from -35°C to -5°C. For our study area and time series, MODIS surface temperature products agree with skin temperatures better than many previous studies have indicated, especially at temperatures below -20°C where other studies found a significant cold bias. Further investigation at temperatures below -35°C is warranted to determine if this bias does indeed exist.

  13. Effects of temperature and surface orientation on migration behaviours of helium atoms near tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing

    2015-10-01

    Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.

  14. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    USDA-ARS?s Scientific Manuscript database

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  15. Experimental and ecosystem model approach to assessing the sensitivity of High arctic deep permafrost to changes in surface temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Rasmussen, L. H.; Zhang, W.; Elberling, B.; Cable, S.

    2016-12-01

    Permafrost affected areas in Greenland are expected to experience large temperature increases within the 21st century. Most previous studies on permafrost consider near-surface soil, where changes will happen first. However, how sensitive the deep permafrost temperature is to near-surface conditions through changes in soil thermal properties, snow depth and soil moisture, is not known. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed deep permafrost sediments from deltaic, alluvial and fluvial depositional environments in the Zackenberg valley, NE Greenland. We also calibrated a coupled heat and water transfer model, the "CoupModel", for the two closely situated deltaic sites, one with average snow depth and the other with topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four scenarios with changes in surface forcing: a. 3 °C warming and 20 % increase in precipitation; b. 3 °C warming and 100 % increase in precipitation; c. 6 °C warming and 20 % increase in precipitation; d. 6 °C warming and 100 % increase in precipitation.Our results indicated that frozen sediments had higher TC than thawed sediments. All sediments showed a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Fluvial sediments had high sensitivity, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments were less sensitive to soil moisture than deltaic and fluvial sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher annual mean ground temperature than the average snow site. The soil temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Precipitation had no significant additional effect to warming. We conclude

  16. Temperature dependent droplet impact dynamics on flat and textured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at variousmore » temperatures.« less

  17. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  18. Total ozone and surface temperature correlations during 1972 - 1981

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1983-01-01

    Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.

  19. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  20. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15more » K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.« less

  1. Surface Temperatures on Titan During Northern Winter and Spring

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde ,V. G.; Romani, P. N.; Samuelson, R. E.; Mamoutkine, A.; Gorius, N. J. P.; hide

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004-2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 plus or minus 0.3 to 89.7 plus or minus 0.5 K while at the north pole the temperature increased by 1 K from 90.7 plus or minus 0.5 to 91.5 plus or minus 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the subsolar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 plus or minus 0.15 K. In 2010 our temperatures repeated the north-south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  2. Investigating the Impacts of Surface Temperature Anomalies due to Burned Area Albedo in Northern sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gabbert, T.; Matsui, T.; Capehart, W. J.; Ichoku, C. M.; Gatebe, C. K.

    2015-12-01

    The northern Sub-Saharan African region (NSSA) is an area of intense focus due to periodic severe droughts that have dire consequences on the growing population, which relies mostly on rain fed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate burned area surface albedo inducing surface temperature anomalies and other potential effects to environmental processes. Preliminary sensitivity results suggest an altered surface radiation budget, regional warming of the surface temperature, slight increase in average rainfall, and a change in precipitation locations.

  3. Modeling the Surface Temperature of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Vladilo, Giovanni; Silva, Laura; Murante, Giuseppe; Filippi, Luca; Provenzale, Antonello

    2015-05-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface energy balance model (EBM) complemented by: radiative-convective atmospheric column calculations, a set of physically based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (ɛ ≲ 45{}^\\circ ). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ≈ 5 K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5≲ {Ω }/{{{Ω }}\\oplus }≲ 2, 0.75≲ S/{{S}\\circ }≲ 1.25, 0.3≲ p/(1 bar)≲ 10, and 0.5≲ R/{{R}\\oplus }≲ 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ˜ 60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.

  4. The effect of ultrasonic post instrumentation on root surface temperature.

    PubMed

    Huttula, Andrew S; Tordik, Patricia A; Imamura, Glen; Eichmiller, Frederick C; McClanahan, Scott B

    2006-11-01

    This study measured root surface temperature changes when ultrasonic vibration, with and without irrigation, was applied to cemented endodontic posts. Twenty-six, extracted, single-rooted premolars were randomly divided into two groups. Root lengths were standardized, canals instrumented, obturated, and posts cemented into prepared spaces. Thermocouples were positioned at two locations on the proximal root surfaces. Samples were embedded in plaster and brought to 37 degrees C in a water bath. Posts were ultrasonically vibrated for 4 minutes while continuously measuring temperature. Two-way ANOVA compared effects of water coolant and thermocouple location on temperature change. Root surface temperatures were significantly higher (p < 0.001) when posts were instrumented dry. A trend for higher temperatures was observed at coronal thermocouples of nonirrigated teeth and at apical thermocouples of irrigated teeth (p = 0.057). Irrigation during post removal with ultrasonics had a significant impact on the temperature measured at the external root surface.

  5. Infrared camera assessment of skin surface temperature--effect of emissivity.

    PubMed

    Bernard, V; Staffa, E; Mornstein, V; Bourek, A

    2013-11-01

    Infrared thermoimaging is one of the options for object temperature analysis. Infrared thermoimaging is unique due to the non-contact principle of measurement. So it is often used in medicine and for scientific experimental measurements. The presented work aims to determine whether the measurement results could be influenced by topical treatment of the hand surface by various substances. The authors attempted to determine whether the emissivity can be neglected or not in situations of topical application of substances such as ultrasound gel, ointment, disinfection, etc. The results of experiments showed that the value of surface temperature is more or less distorted by the topically applied substance. Our findings demonstrate the effect of emissivity of applied substances on resulting temperature and showed the necessity to integrate the emissivity into calculation of the final surface temperature. Infrared thermoimaging can be an appropriate method for determining the temperature of organisms, if this is understood as the surface temperature, and the surrounding environment and its temperature is taken into account. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. The Relationship Between Facial Skin Surface Temperature Reactivity and Traditional Polygraph Measures Used in the Psychophysiological Detection of Deception: A Preliminary Investigation

    DTIC Science & Technology

    2002-03-01

    Surface Temperature and Polygraph Measures 19 References Cook , E. and Turpin , G. ( 1997 ). Differentiating orienting, startle, and defense responses... Turpin , 1997 ). The results of the present study also suggest that, in the forehead and periorbital region, the situation is complex. A multivariate...Facial Skin Surface Temperature and Polygraph Measures 3 areas would be differentially affected by participants’ fear-induced central and ANS responses to

  7. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    PubMed

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Walking cadence affects rate of plantar foot temperature change but not final temperature in younger and older adults.

    PubMed

    Reddy, Prabhav Nadipi; Cooper, Glen; Weightman, Andrew; Hodson-Tole, Emma; Reeves, Neil D

    2017-02-01

    This study examined the relationship between (1) foot temperature in healthy individuals and walking cadence, (2) temperature change at different locations of the foot, and (3) temperature change and its relationship with vertical pressures exerted on the foot. Eighteen healthy adult volunteers (10 between 30 and 40 years - Age: 33.4±2.4years; 8 above 40 years - Age: 54.1±7.7years) were recruited. A custom-made insole with temperature sensors was placed directly onto the plantar surface of the foot and held in position using a sock. The foot was placed on a pressure sensor and the whole system placed in a canvas shoe. Participants visited the lab on three separate occasions when foot temperature and pressure data were recorded during walking on a treadmill at one of three cadences (80, 100, 120steps/min). The plantar foot temperature increased during walking in both age groups 30-40 years: 4.62±2.00°C, >40years: 5.49±2.30°C, with the rise inversely proportional to initial foot temperature (30-40 years: R 2 =-0.669, >40years: R 2 =-0.816). Foot temperature changes were not different between the two age groups or the different foot locations and did not depend on vertical pressures. Walking cadence affected the rate of change of plantar foot temperature but not the final measured value and no association between temperature change and vertical pressure was found. These results provide baseline values for comparing foot temperature changes in pathological conditions which could inform understanding of pathophysiology and support development of evidence based healthcare guidelines for managing conditions such as diabetic foot ulceration (DFU). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Surface temperatures and glassy state investigations in tribology, part 1

    NASA Technical Reports Server (NTRS)

    Winer, W. O.; Sanborn, D. M.

    1978-01-01

    The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.

  10. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to

  11. A comparison of all-weather land surface temperature products

    NASA Astrophysics Data System (ADS)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere

  12. Ground-based measurement of surface temperature and thermal emissivity

    NASA Technical Reports Server (NTRS)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  13. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  14. Surface roughness and packaging tightness affect calcium lactate crystallization on Cheddar cheese.

    PubMed

    Rajbhandari, P; Kindstedt, P S

    2014-01-01

    Calcium lactate crystals that sometimes form on Cheddar cheese surfaces are a significant expense to manufacturers. Researchers have identified several postmanufacture conditions such as storage temperature and packaging tightness that contribute to crystal formation. Anecdotal reports suggest that physical characteristics at the cheese surface, such as roughness, cracks, and irregularities, may also affect crystallization. The aim of this study was to evaluate the combined effects of surface roughness and packaging tightness on crystal formation in smoked Cheddar cheese. Four 20-mm-thick cross-section slices were cut perpendicular to the long axis of a retail block (~300g) of smoked Cheddar cheese using a wire cutting device. One cut surface of each slice was lightly etched with a cheese grater to create a rough, grooved surface; the opposite cut surface was left undisturbed (smooth). The 4 slices were vacuum packaged at 1, 10, 50, and 90kPa (very tight, moderately tight, loose, very loose, respectively) and stored at 1°C. Digital images were taken at 1, 4, and 8 wk following the first appearance of crystals. The area occupied by crystals and number of discrete crystal regions (DCR) were quantified by image analysis. The experiment was conducted in triplicate. Effects of storage time, packaging tightness, surface roughness, and their interactions were evaluated by repeated-measures ANOVA. Surface roughness, packaging tightness, storage time, and their 2-way interactions significantly affected crystal area and DCR number. Extremely heavy crystallization occurred on both rough and smooth surfaces when slices were packaged loosely or very loosely and on rough surfaces with moderately tight packaging. In contrast, the combination of rough surface plus very tight packaging resulted in dramatic decreases in crystal area and DCR number. The combination of smooth surface plus very tight packaging virtually eliminated crystal formation, presumably by eliminating available

  15. Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Stock, Larry

    1997-01-01

    The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.

  16. Hot surface temperatures of domestic appliances.

    PubMed

    Bassett, Malcolm; Arild, Anne-Helene

    2002-09-01

    Domestic appliances are burning people. In the European Union, accidents requiring hospital treatment due to burns from hot objects account for between 0 and 1% of all such accidents. Young children are particularly at risk. These reported accidents requiring hospital treatment are also likely to be a small proportion of the total number of burns from hot objects. There is a lack of hard evidence about the level of accidents, typical consumer expectation and use, and on the state of the art of appliances. Results of technical laboratory tests carried out on products are used to demonstrate the state of the art and also show how consumer expectations could be changing. Results of a survey into accidents, based on a written questionnaire following telephone contact, provide information on non-hospital cases. Results of tests on products show that there are significant differences in the temperatures of touchable surfaces, even in products of the same type. Typically, these differences are due to variations in design and/or materials of construction. Some products are hot enough to burn skin. Accident research indicates that non-hospital medical practices are treating burn injuries, which are therefore not being included into the current accident statistics. For products with the same function, some types of design or materials of construction are safer, with lower surface temperatures. Many product standards have no or unnecessarily high limits on surface temperatures. Many standards do not address the realities of who is using their products, for what purpose or where they are located. Some standards use unreasonable general limitations and exclusions that allow products with higher surface temperatures than they should have. Many standards rely on the experience factor for avoiding injury that is no longer valid, with the increased availability of safer products of the same type. A major field of work ahead is to carry out more surveys and in-depth studies of non

  17. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  18. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  19. Surface-mount sapphire interferometric temperature sensor.

    PubMed

    Zhu, Yizheng; Wang, Anbo

    2006-08-20

    A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.

  20. Effective surface Debye temperature for NiMnSb(100) epitaxial films

    NASA Astrophysics Data System (ADS)

    Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.

    2000-07-01

    The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.

  1. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  2. The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique

    NASA Astrophysics Data System (ADS)

    Isa, N. A.; Mohd, W. M. N. Wan; Salleh, S. A.; Ooi, M. C. G.

    2018-02-01

    Matured trees contain high concentration of chlorophyll that encourages the process of photosynthesis. This process produces oxygen as a by-product and releases it into the atmosphere and helps in lowering the ambient temperature. This study attempts to analyse the effect of green area on air surface temperature of the Kuala Lumpur city. The air surface temperatures of two different dates which are, in March 2006 and March 2016 were simulated using the Weather Research and Forecasting (WRF) model. The green area in the city was extracted using the Normalized Difference Vegetation Index (NDVI) from two Landsat satellite images. The relationship between the air surface temperature and the green area were analysed using linear regression models. From the study, it was found that, the green area was significantly affecting the distribution of air temperature within the city. A strong negative correlation was identified through this study which indicated that higher NDVI values tend to have lower air surface temperature distribution within the focus study area. It was also found that, different urban setting in mixed built-up and vegetated areas resulted in different distributions of air surface temperature. Future studies should focus on analysing the air surface temperature within the area of mixed built-up and vegetated area.

  3. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  4. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    NASA Astrophysics Data System (ADS)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  5. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    NASA Astrophysics Data System (ADS)

    Griffin, Alison R.

    a bubble growing over the TFTC junction on both the sapphire and fused silica heater surfaces. When the fused silica heater produced a temperature drop of 1.4°C, the sapphire heater produced a drop of only 0.04°C under the same conditions. These results verified that the lack of temperature drops present in the sapphire data was due to the thermal properties of the sapphire layer. By observing the bubble departure frequency and site density on the heater, as well as the bubble departure diameter, the contribution of nucleate boiling to the overall heat removal from the surface could be calculated. These results showed that bubble vapor generation contributed to approximately 10% at 1 W/cm2, 23% at 1.75 W/cm2, and 35% at 2.9 W/cm 2 of the heat removed from a fused silica heater. Bubble growth and contact ring growth were observed and measured from images obtained with the high-speed camera. Bubble data recorded on a fused silica heater at 3 W/cm2, 4 W/cm2, and 5 W/cm 2 showed that bubble departure diameter and lifetime were negligibly affected by the increase in heat flux. Bubble and contact ring growth rates demonstrated significant differences when compared on the fused silica and sapphire heaters at 3 W/cm2. The bubble departure diameters were smaller, the bubble lifetimes were longer, and the bubble departure frequency was larger on the sapphire heater, while microlayer evaporation was faster on the fused silica heater. Additional considerations revealed that these differences may be due to surface conditions as well as differing thermal properties. Nucleate boiling curves were recorded on the fused silica and sapphire heaters by adjusting the heat flux input and monitoring the local surface temperature with the TFTCs. The resulting curves showed a temperature drop at the onset of nucleate boiling due to the increase in heat transfer coefficient associated with bubble nucleation. One of the TFTC locations on the sapphire heater frequently experienced a second

  6. Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1999-01-01

    Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.

  7. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  8. A model of the ground surface temperature for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  9. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  10. Temperature and body weight affect fouling of pig pens.

    PubMed

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P < 0.05). Increasing temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P < 0.001). At increasing temperatures, pigs lay more on their sides and less against other pigs (P < 0.001). Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  11. Consequences arising from elevated surface temperatures on human blood.

    PubMed

    Hamilton, Kathrin F; Schmidt, Verena I; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2010-09-01

    Heat in blood pumps is generated by losses of the electrical motor and bearings. In the presented study the influence of tempered surfaces on bulk blood and adhesions on these surfaces was examined. Titanium alloy housing dummies were immersed in 25 mL heparinized human blood. The dummies were constantly tempered at specific temperatures (37-45 °C) over 15 min. Blood samples were withdrawn for blood parameter analysis and the determination of the plasmatic coagulation cascade. The quantities of adhesion on surfaces were determined by drained weight. Blood parameters do not alter significantly up to surface temperatures of 45 °C. In comparison to the control specimen, a drop in the platelet count can be observed, but is not significantly temperature dependent. The mean mass of adhesions at 41 °C increased up to 66% compared to 37 °C. Thus, heat generated in electrical motors and contact bearings may influence the amount of adhesions on surfaces. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  13. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  14. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  15. Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).

    PubMed

    Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W

    2015-07-01

    Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  17. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    PubMed

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  18. Mathematical model of the metal mould surface temperature optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz; Srb, Radek, E-mail: radek.srb@tul.cz

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensitymore » is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.« less

  19. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular

  20. NASA GISS Surface Temperature (GISTEMP) Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, G.; Ruedy, R.; Persin, A

    The NASA GISS Surface Temperature (GISTEMP) analysis provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. The input data that the GISTEMP Team use for the analysis, collected by many national meteorological services around the world, are the adjusted data of the Global Historical Climatology Network (GHCN) Vs. 3 (this represents a change from prior use of unadjusted Vs. 2 data) (Peterson and Vose, 1997 and 1998), United States Historical Climatology Network (USHCN) data, and SCAR (Scientific Committee on Antarctic Research) datamore » from Antarctic stations. Documentation of the basic analysis method is provided by Hansen et al. (1999), with several modifications described by Hansen et al. (2001). The GISS analysis is updated monthly, however CDIAC's presentation of the data here is updated annually.« less

  1. Automated measurement of cattle surface temperature and its correlation with rectal temperature

    PubMed Central

    Ren, Kang; Chen, XiaoLi; Lu, YongQiang; Wang, Dong

    2017-01-01

    The body temperature of cattle varies regularly with both the reproductive cycle and disease status. Establishing an automatic method for monitoring body temperature may facilitate better management of reproduction and disease control in cattle. Here, we developed an Automatic Measurement System for Cattle’s Surface Temperature (AMSCST) to measure the temperature of metatarsus by attaching a special shell designed to fit the anatomy of cattle’s hind leg. Using AMSCST, the surface temperature (ST) on the metatarsus of the hind leg was successively measured during 24 hours a day with an interval of one hour in three tested seasons. Based on ST and rectal temperature (RT) detected by AMSCST and mercury thermometer, respectively, a linear mixed model was established, regarding both the time point and seasonal factors as the fixed effects. Unary linear correlation and Bland-Altman analysis results indicated that the temperatures measured by AMSCST were closely correlated to those measured by mercury thermometer (R2 = 0.998), suggesting that the AMSCST is an accurate and reliable way to detect cattle’s body temperature. Statistical analysis showed that the differences of STs among the three seasons, or among the different time points were significant (P<0.05), and the differences of RTs among the different time points were similarly significant (P<0.05). The prediction accuracy of the mixed model was verified by 10-fold cross validation. The average difference between measured RT and predicted RT was about 0.10 ± 0.10°C with the association coefficient of 0.644, indicating the feasibility of this model in measuring cattle body temperature. Therefore, an automated technology for accurately measuring cattle body temperature was accomplished by inventing an optimal device and establishing the AMSCST system. PMID:28426682

  2. Study on factors affecting the droplet temperature in plasma MIG welding process

    NASA Astrophysics Data System (ADS)

    Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani

    2018-04-01

    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.

  3. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    NASA Astrophysics Data System (ADS)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  4. Measuring the Surface Temperature of the Cryosphere using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    2012-01-01

    A general description of the remote sensing of cryosphere surface temperatures from satellites will be provided. This will give historical information on surface-temperature measurements from space. There will also be a detailed description of measuring the surface temperature of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data which will be the focus of the presentation. Enhanced melting of the Greenland Ice Sheet has been documented in recent literature along with surface-temperature increases measured using infrared satellite data since 1981. Using a recently-developed climate data record, trends in the clear-sky ice-surface temperature (IST) of the Greenland Ice Sheet have been studied using the MODIS IST product. Daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 are now freely available to download at 6.25-km spatial resolution on a polar stereographic grid. Maps showing the maximum extent of melt for the entire ice sheet and for the six major drainage basins have been developed from the MODIS IST dataset. Twelve-year trends of the duration of the melt season on the ice sheet vary in different drainage basins with some basins melting progressively earlier over the course of the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The consistency of this IST record, with temperature and melt records from other sources will be discussed.

  5. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    NASA Astrophysics Data System (ADS)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  6. Corresponding states correlation for temperature dependent surface tension of normal saturated liquids

    NASA Astrophysics Data System (ADS)

    Yi, Huili; Tian, Jianxiang

    2014-07-01

    A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The correlation is a linear one and strongly stands for 41 saturated normal liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to represent the experimental surface tension data for these 41 saturated normal liquids with a mean absolute average percent deviation of 1.26% in the temperature regions considered. For most substances, the temperature covers the range from the triple temperature to the one beyond the boiling temperature.

  7. Surface electronic states of low-temperature H-plasma-exposed Ge(100)

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon; Nemanich, R. J.

    1992-11-01

    The surface of low-temperature H-plasma-cleaned Ge(100) was studied by angle-resolved UV-photoemission spectroscopy and low-energy electron diffraction (LEED). The surface was prepared by an ex situ preclean followed by an in situ H-plasma exposure at a substrate temperature of 150-300 °C. Auger-electron spectroscopy indicated that the in situ H-plasma clean removed the surface contaminants (carbon and oxygen) from the Ge(100) surface. The LEED pattern varied from a 1×1 to a sharp 2×1, as the substrate temperature was increased. The H-induced surface state was identified at ~5.6 eV below EF, which was believed to be mainly due to the ordered or disordered monohydride phases. The annealing dependence of the spectra showed that the hydride started to dissociate at a temperature of 190 °C, and the dangling-bond surface state was identified. A spectral shift upon annealing indicated that the H-terminated surfaces were unpinned. After the H-plasma clean at 300 °C the dangling-bond surface state was also observed directly with no evidence of H-induced states.

  8. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    NASA Astrophysics Data System (ADS)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  9. Nocturnal Near-Surface Temperature, but not Flow Dynamics, can be Predicted by Microtopography in a Mid-Range Mountain Valley

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.

    2017-11-01

    We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.

  10. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  11. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    PubMed

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Evaluation of Rock Surface Characterization by Means of Temperature Distribution

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Incekara, A. H.; Acar, A.; Kaya, S.; Bayram, B.; Sivri, N.

    2017-12-01

    Rocks have many different types which are formed over many years. Close range photogrammetry is a techniques widely used and preferred rather than other conventional methods. In this method, the photographs overlapping each other are the basic data source of the point cloud data which is the main data source for 3D model that provides analysts automation possibility. Due to irregular and complex structures of rocks, representation of their surfaces with a large number points is more effective. Color differences caused by weathering on the rock surfaces or naturally occurring make it possible to produce enough number of point clouds from the photographs. Objects such as small trees, shrubs and weeds on and around the surface also contribute to this. These differences and properties are important for efficient operation of pixel matching algorithms to generate adequate point cloud from photographs. In this study, possibilities of using temperature distribution for interpretation of roughness of rock surface which is one of the parameters representing the surface, was investigated. For the study, a small rock which is in size of 3 m x 1 m, located at ITU Ayazaga Campus was selected as study object. Two different methods were used. The first one is production of producing choropleth map by interpolation using temperature values of control points marked on object which were also used in 3D model. 3D object model was created with the help of terrestrial photographs and 12 control points marked on the object and coordinated. Temperature value of control points were measured by using infrared thermometer and used as basic data source in order to create choropleth map with interpolation. Temperature values range from 32 to 37.2 degrees. In the second method, 3D object model was produced by means of terrestrial thermal photographs. Fort this purpose, several terrestrial photographs were taken by thermal camera and 3D object model showing temperature distribution was created

  13. A comparison of root surface temperatures using different obturation heat sources.

    PubMed

    Lee, F S; Van Cura, J E; BeGole, E

    1998-09-01

    This study compared root surface temperatures produced during warm vertical obturation using the System B Heat Source (SB), the Touch 'n Heat device (TH), and a flame-heated carrier (FH). The root canals of 30 maxillary incisor, premolar, and mandibular incisor teeth were prepared; divided into three groups; and obturated using each heat source. A thermocouple placed 2 mm below the cementoenamel junction transferred the temperature rise on the external root surface to a digital thermometer. SB surface temperature rise was < 10 degrees C for all experimental teeth. TH temperature rise in maxillary incisors and premolars was < 10 degrees C; however, > 10 degrees C was observed for mandibular incisors. FH produced a > 10 degrees C surface temperature rise in all experimental teeth. The critical level of root surface heat required to produce irreversible bone damage is believed to be > 10 degrees C. The findings of this study suggest that warm vertical condensation with the SB should not damage supporting periradicular tissues. However, caution should be used with TH and FH on mandibular incisors.

  14. The Interrelationship Between Temperature Changes in the Free Atmosphere and Sea Surface Temperature Changes

    NASA Astrophysics Data System (ADS)

    Newell, Reginald E.; Wu, Zhong-Xiang

    1992-03-01

    Fields of sea surface temperature anomalies from the Global Ocean Surface Temperature Atlas (GOSTA) and microwave sounding measurements (MSU) of temperature in the troposphere are examined separately and together for the 1979-1988 period. Global correlation patterns of both sets of fields are investigated at a range of leads and lags up to 6 months and exhibit a wide range of correlation structure. There are regions, such as the tropical eastern Pacific, where sea surface temperature anomalies persist for several months and are associated with local air temperature anomalies; in this particular example, about 0.7°C air temperature change is associated with a 1.0°C sea temperature change. By contrast, some ocean regions and many atmospheric regions, mostly in middle and high latitude, show only local spatial correlations that disappear completely in a month or two. The most persistent and extensive spatial correlation patterns are quite different for the sea and the air. In the sea the "butterfly" pattern of the Pacific is the most important and reverses sign between the eastern equatorial Pacific and the western Pacific and subtropics. In the warm phase the temperature anomalies associated with this pattern are similar to the correlation pattern. For the atmosphere the main correlation pattern is an equatorial belt with no sign changes in the tropics; this pattern is linked to the oceanic El Niño mode. In the warm phase the temperature anomalies show peak values on both sides of the equator in the eastern and central Pacific. Based mainly on the results from the spatial patterns, certain regions are selected for intercomparison of time series. In the tropical eastern Pacific the sea leads the air by about a month while in the Gulf Stream and Kuroshio regions the sequence is reversed.

  15. The international surface temperature initiative

    NASA Astrophysics Data System (ADS)

    Thorne, P. W.; Lawrimore, J. H.; Willett, K. M.; Allan, R.; Chandler, R. E.; Mhanda, A.; de Podesta, M.; Possolo, A.; Revadekar, J.; Rusticucci, M.; Stott, P. A.; Strouse, G. F.; Trewin, B.; Wang, X. L.; Yatagai, A.; Merchant, C.; Merlone, A.; Peterson, T. C.; Scott, E. M.

    2013-09-01

    The aim of International Surface Temperature Initiative is to create an end-to-end process for analysis of air temperature data taken over the land surface of the Earth. The foundation of any analysis is the source data. Land surface air temperature records have traditionally been stored in local, organizational, national and international holdings, some of which have been available digitally but many of which are available solely on paper or as imaged files. Further, economic and geopolitical realities have often precluded open sharing of these data. The necessary first step therefore is to collate readily available holdings and augment these over time either through gaining access to previously unavailable digital data or through data rescue and digitization activities. Next, it must be recognized that these historical measurements were made primarily in support of real-time weather applications where timeliness and coverage are key. At almost every long-term station it is virtually certain that changes in instrumentation, siting or observing practices have occurred. Because none of the historical measures were made in a metrologically traceable manner there is no unambiguous way to retrieve the true climate evolution from the heterogeneous raw data holdings. Therefore it is desirable for multiple independent groups to produce adjusted data sets (so-called homogenized data) to adequately understand the data characteristics and estimate uncertainties. Then it is necessary to benchmark the performance of the contributed algorithms (equivalent to metrological software validation) through development of realistic benchmark datasets. In support of this, a series of successive benchmarking and assessment cycles are envisaged, allowing continual improvement while avoiding over-tuning of algorithms. Finally, a portal is proposed giving access to related data-products, utilizing the assessment results to provide guidance to end-users on which product is the most suited to

  16. Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Steffen, Konrad

    1998-01-01

    The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.

  17. Three modes of interdecadal trends in sea surface temperature and sea surface height

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Pradal, M.

    2013-12-01

    It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption

  18. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  19. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  20. Effect of design factors on surface temperature and wear in disk brakes

    NASA Technical Reports Server (NTRS)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  1. Estimation of surface temperature in remote pollution measurement experiments

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.

  2. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS

    PubMed Central

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data. PMID:26090852

  3. Retrieval and Mapping of Soil Texture Based on Land Surface Diurnal Temperature Range Data from MODIS.

    PubMed

    Wang, De-Cai; Zhang, Gan-Lin; Zhao, Ming-Song; Pan, Xian-Zhang; Zhao, Yu-Guo; Li, De-Cheng; Macmillan, Bob

    2015-01-01

    Numerous studies have investigated the direct retrieval of soil properties, including soil texture, using remotely sensed images. However, few have considered how soil properties influence dynamic changes in remote images or how soil processes affect the characteristics of the spectrum. This study investigated a new method for mapping regional soil texture based on the hypothesis that the rate of change of land surface temperature is related to soil texture, given the assumption of similar starting soil moisture conditions. The study area was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely available land surface temperature product of MODIS as the main data source. We analyzed the relationships between the content of different particle soil size fractions at the soil surface and land surface day temperature, night temperature and diurnal temperature range (DTR) during three selected time periods. These periods occurred after rainfalls and between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008. Then, linear regression models were developed between the land surface DTR and sand (> 0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each day were used to estimate soil texture. The spatial distribution of soil texture from the studied area was mapped based on the model with the minimum RMSE. A validation dataset produced error estimates for the predicted maps of sand, clay and physical clay, expressed as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions is largely influenced by variations in land cover. Additionally, the maps produced by the models illustrate the natural spatial continuity of soil texture. This study demonstrates the potential for digitally mapping regional soil texture variations in flat areas using readily available MODIS data.

  4. Surface refraction of sound waves affects calibration of three-dimensional ultrasound.

    PubMed

    Ballhausen, Hendrik; Ballhausen, Bianca Désirée; Lachaine, Martin; Li, Minglun; Parodi, Katia; Belka, Claus; Reiner, Michael

    2015-05-27

    Three-dimensional ultrasound (3D-US) is used in planning and treatment during external beam radiotherapy. The accuracy of the technique depends not only on the achievable image quality in clinical routine, but also on technical limitations of achievable precision during calibration. Refraction of ultrasound waves is a known source for geometric distortion, but such an effect was not expected in homogenous calibration phantoms. However, in this paper we demonstrate that the discontinuity of the refraction index at the phantom surface may affect the calibration unless the ultrasound probe is perfectly perpendicular to the phantom. A calibration phantom was repeatedly scanned with a 3D-US system (Elekta Clarity) by three independent observers. The ultrasound probe was moved horizontally at a fixed angle in the sagittal plane. The resulting wedge shaped volume between probe and phantom was filled with water to couple in the ultrasound waves. Because the speed of sound in water was smaller than the speed of sound in Zerdine, the main component of the phantom, the angle of the ultrasound waves inside the phantom increased. This caused an apparent shift in the calibration features which was recorded as a function of the impeding angle. To confirm the magnitude and temperature dependence, the experiment was repeated by two of the observers with a mixture of ice and water at 0 °C and with thermalized tap water at 21 °C room temperature. During the first series of measurements, a linear dependency of the displacements dx of the calibration features on the angle α of the ultrasound probe was observed. The three observers recorded significantly nonzero (p < 0.0001) and very consistent slopes of dx/dα of 0.12, 0.12, and 0.13 mm/°, respectively.. At 0 °C water temperature, the slope increased to 0.18 ± 0.04 mm/°. This matched the prediction of Snell's law of 0.185 mm/° for a speed of sound of 1,402 m/s at the melting point of ice. At 21 °C, slopes of 0.11 and 0

  5. Possible rainfall reduction through reduced surface temperatures due to overgrazing

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.

  6. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Buck, G. M.

    1991-01-01

    A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.

  7. Seasonality and Management Affect Land Surface Temperature Differences Between Loblolly Pine and Switchgrass Ecosystems in Central Virginia

    NASA Astrophysics Data System (ADS)

    Ahlswede, B.; Thomas, R. Q.; O'Halloran, T. L.; Rady, J.; LeMoine, J.

    2017-12-01

    Changes in land-use and land management can have biogeochemical and biophysical effects on local and global climate. While managed ecosystems provide known food and fiber benefits, their influence on climate is less well quantified. In the southeastern United States, there are numerous types of intensely managed ecosystems but pine plantations and switchgrass fields represent two biogeochemical and biophysical extremes; a tall, low albedo forest with trees harvested after multiple decades vs. a short, higher albedo C4 grass field that is harvested annually. Despite the wide spread use of these ecosystems for timber and bioenergy, a quantitative, empirical evaluation of the net influence of these ecosystems on climate is lacking because it requires measuring both the greenhouse gas and energy balance of the ecosystems while controlling for the background weather and soil environment. To address this need, we established a pair of eddy flux towers in these ecosystems that are co-located (1.5 km apart) in Central Virginia and measured the radiative energy, non-radiative energy and carbon fluxes, along with associated biometeorology variables; the paired site has run since April 2016. During the first 1.5 years (two growing seasons), we found strong seasonality in the difference in surface temperature between the two ecosystems. In the growing seasons, both sites had similar surface temperature despite higher net radiation in pine. Following harvest of the switchgrass in September, the switchgrass temperatures increased relative to pine. In the winter, the pine ecosystem was warmer. We evaluate the drivers of these intra-annual dynamics and compare the climate influence of these biophysical differences to the differences in carbon fluxes between the sites using a suite of established climate regulation services metrics. Overall, our results show tradeoffs exist between the biogeochemical and biophysical climate services in managed ecosystems in the southeastern United

  8. Relationship between clouds and sea surface temperatures in the western tropical Pacific

    NASA Technical Reports Server (NTRS)

    Arking, Albert; Ziskin, Daniel

    1994-01-01

    Analysis of four years of earth radiation budget, cloud, and sea surface temperature data confirms that cloud parameters change dramatically when and where sea surface temperatures increase above approximately 300K. These results are based upon monthly mean values within 2.5 deg x 2.5 deg grid points over the 'warm pool' region of the western tropical Pacific. The question of whether sea surface temperatures are influenced, in turn, by the radiative effects of these clouds (Ramanathan and Collins) is less clear. Such a feedback, if it exists, is weak. The reason why clouds might have so little influence, despite large changes in their longwave and shortwave radiative effects, might be that the sea surface responds to both the longwave heating and the shortwave cooling effects of clouds, and the two effects nearly cancel. There are strong correlations between the rate of change of sea surface temperature and any of the radiation budget parameters that are highly correlated with the incident solar flux-implying that season and latitude are the critical factors determining sea surface temperatures. With the seasonal or both seasonal and latitudinal variations removed, the rate of change of sea surface temperature shows no correlation with cloud-related parameters in the western tropical Pacific.

  9. Effect of surface condition to temperature distribution in living tissue during cryopreservation

    NASA Astrophysics Data System (ADS)

    Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.

    2017-12-01

    The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.

  10. Titan's Surface Brightness Temperatures and H2 Mole Fraction from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.; hide

    2008-01-01

    The atmosphere of Titan has a spectral window of low opacity around 530/cm in the thermal infrared where radiation from the surface can be detected from space. The Composite Infrared spectrometer1 (CIRS) uses this window to measure the surface brightness temperature of Titan. By combining all observations from the Cassini tour it is possible to go beyond previous Voyager IRIS studies in latitude mapping of surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, which is close to the 93.65+/-0.25 K value measured at the surface by Huygens HASi. The temperature decreases toward the poles, reaching 91.6+/-0.7 K at 90 S and 90.0+/-1.0 K at 87 N. The temperature distribution is centered in latitude at approximately 12 S, consistent with Titan's season of late northern winter. Near the equator the temperature varies with longitude and is higher in the trailing hemisphere, where the lower albedo may lead to relatively greater surface heating5. Modeling of radiances at 590/cm constrains the atmospheric H2 mole fraction to 0.12+/-0.06 %, in agreement with results from Voyager iris.

  11. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  12. Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature

    NASA Astrophysics Data System (ADS)

    Grimbacher, T.; Schmid, W.

    2003-04-01

    Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar

  13. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  14. High temperature exposure did not affect induced 2n pollen viability in Populus.

    PubMed

    Tian, Mengdi; Zhang, Yuan; Liu, Yan; Kang, Xiangyang; Zhang, Pingdong

    2018-02-11

    High temperature exposure is widely used as a physical mutagenic agent to induce 2n gametes in Populus. However, whether high temperature exposure affects induced 2n pollen viability remains unknown. To clarify whether high temperature exposure affected the induced 2n pollen viability, 2n pollen induced by 38 and 41 °C temperatures, pollen morphology, 2n pollen germination in vitro, and crossing induced 2n pollen with normal gametes to produce a triploid was, based on observations of meiosis, conducted in Populus canescens. We found that the dominant meiotic stages (F = 56.6, p < .001) and the treatment duration (F = 21.4, p < .001) significantly affected the occurrence rate of induced 2n pollen. A significant decrease in pollen production and an increase in aborted pollen were observed (p < .001). High temperature sometimes affected in ectexine deposition and some narrow furrows were also analysed via details of ectexine structure. However, no significant difference in 2n pollen germination rate was observed between natural 2n pollen (26.7%) and high-temperature-induced 2n pollen (26.2%), and 42 triploids were created by crossing high-temperature-induced 2n pollen, suggesting that 38 and 41 °C temperatures exposure will not result in dysfunctional induced 2n pollen. © 2018 John Wiley & Sons Ltd.

  15. High temperature low friction surface coating

    DOEpatents

    Bhushan, Bharat

    1980-01-01

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  16. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    NASA Astrophysics Data System (ADS)

    Mallick, Kaniska; Boegh, Eva; Trebs, Ivonne; Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Niyogi, Dev; Das, Narendra; Drewry, Darren T.; Hoffmann, Lucien; Jarvis, Andrew J.

    2015-08-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data source for retrieving the "near surface" moisture availability (M) and the Priestley-Taylor coefficient (α). The performance of STIC is tested using high-temporal resolution TR observations collected from different international surface energy flux experiments in conjunction with corresponding net radiation (RN), ground heat flux (G), air temperature (TA), and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance measurements of λE and H revealed RMSDs of 7-16% and 40-74% in half-hourly λE and H estimates. These statistics were 5-13% and 10-44% in daily λE and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating spatially explicit surface energy fluxes and independent of submodels for boundary layer developments. This article was corrected on 27 AUG 2015. See the end of the full text for details.

  17. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  18. Soil moisture sensing with aircraft observations of the diurnal range of surface temperature

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B.; Anderson, A.; Wang, V.

    1977-01-01

    Aircraft observations of the surface temperature were made by measurements of the thermal emission in the 8-14 micrometers band over agricultural fields around Phoenix, Arizona. The diurnal range of these surface temperature measurements were well correlated with the ground measurement of soil moisture in the 0-2 cm layer. The surface temperature observations for vegetated fields were found to be within 1 or 2 C of the ambient air temperature indicating no moisture stress. These results indicate that for clear atmospheric conditions remotely sensed surface temperatures are a reliable indicator of soil moisture conditions and crop status.

  19. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  20. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  1. Satellite-Derived Sea Surface Temperature: Workshop 1

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.

  2. Evaluation of alternative formulae for calculation of surface temperature in snowmelt models using frequency analysis of temperature observations

    Treesearch

    C. H. Luce; D. G. Tarboton

    2010-01-01

    The snow surface temperature is an important quantity in the snow energy balance, since it modulates the exchange of energy between the surface and the atmosphere as well as the conduction of energy into the snowpack. It is therefore important to correctly model snow surface temperatures in energy balance snowmelt models. This paper focuses on the relationship between...

  3. Vegetation placement for summer built surface temperature moderation in an urban microclimate.

    PubMed

    Millward, Andrew A; Torchia, Melissa; Laursen, Andrew E; Rothman, Lorne D

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  4. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    NASA Astrophysics Data System (ADS)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  5. Partitioning Evapotranspiration in Semiarid Grassland and Shrubland Ecosystems Using Diurnal Surface Temperature Variation

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; Scott, Russell L.; Keefer, Timothy O.; Paige, Ginger B.; Emmerich, William E.; Cosh, Michael H.; O'Neill, Peggy E.

    2007-01-01

    The encroachment of woody plants in grasslands across the Western U.S. will affect soil water availability by altering the contributions of evaporation (E) and transpiration (T) to total evapotranspiration (ET). To study this phenomenon, a network of flux stations is in place to measure ET in grass- and shrub-dominated ecosystems throughout the Western U.S. A method is described and tested here to partition the daily measurements of ET into E and T based on diurnal surface temperature variations of the soil and standard energy balance theory. The difference between the mid-afternoon and pre-dawn soil surface temperature, termed Apparent Thermal Inertia (I(sub A)), was used to identify days when E was negligible, and thus, ET=T. For other days, a three-step procedure based on energy balance equations was used to estimate Qe contributions of daily E and T to total daily ET. The method was tested at Walnut Gulch Experimental Watershed in southeast Arizona based on Bowen ratio estimates of ET and continuous measurements of surface temperature with an infrared thermometer (IRT) from 2004- 2005, and a second dataset of Bowen ratio, IRT and stem-flow gage measurements in 2003. Results showed that reasonable estimates of daily T were obtained for a multi-year period with ease of operation and minimal cost. With known season-long daily T, E and ET, it is possible to determine the soil water availability associated with grass- and shrub-dominated sites and better understand the hydrologic impact of regional woody plant encroachment.

  6. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  7. High-Temperature Surface Thermometry Technique based on Upconversion Nano-Phosphors

    NASA Astrophysics Data System (ADS)

    Combs, C.; Clemens, N.; Guo, X.; Song, H.; Zhao, H.; Li, K. K.; Zou, Y. K.; Jiang, H.

    2011-11-01

    Downconversion thermographic phosphors have been extensively used for high-temperature surface thermometry applications (e.g., aerothermodynamics, turbine blades) where temperature-sensitive paint is not viable. In downconversion techniques the phosphorescence is at longer wavelengths than the excitation source. We are developing a new upconversion thermographic phosphor technique that employs rare-earth-doped ceramics whose phosphorescence exhibit a strong temperature dependence. In the upconversion technique the phosphor is excited with near-IR light and emission is at visible wavelengths; thus, it does not require expensive UV windows and does not suffer from interference from background fluorescence. In this work the upconversion phosphors have been characterized in terms of their intensity, lifetimes and spectral content over a temperature range of 300K to 1500K. The technique has been evaluated for applications of 2D surface temperature measurements by using the total integrated intensity and the ratio of emission in different visible color bands. The results indicate that upconversion phosphor thermometry is a promising technique for making non-contact high-surface temperature measurements with good accuracy. Work supported by NASA under contract NNX11CG89P.

  8. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  9. Greenland ice sheet surface temperature, melt and mass loss: 2000-06

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.

    2008-01-01

    A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (<15 days) and sustained mass loss below 2000 m elevation was triggered in 2004 and 2005 as recorded by GRACE when surface melt begins. Initiation of large-scale surface melt was followed rapidly by mass loss. This indicates that surface meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.

  10. Erosion processes in molassic cliffs: the role of the rock surface temperature and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellán, Antonio; Guerin, Antoine; Jaboyedoff, Michel; Voumard, Jérémie

    2014-05-01

    The morphology of the Swiss Plateau is modeled by numerous steep cliffs of Molasse. These cliffs are mainly composed of sub-horizontal alternated layers of sandstone, shale and conglomerates deposed in the Alps foreland basin during the Tertiary period. These Molasse cliffs are affected by erosion processes inducing numerous rockfall events. Thus, it is relevant to understand how different external factors influence Molasse erosion rates. In this study, we focus on analyzing temperature variation during a winter season. As pilot study area we selected a cliff which is formed by a sub-horizontal alternation of outcropping sandstone and shale. The westward facing test site (La Cornalle, Vaud, Switzerland), which is a lateral scarp of a slow moving landslide area, is currently affected by intense erosion. Regarding data acquisition, we monitored both in-situ rock and air temperatures at 15 minutes time-step since October 2013: (1) on the one hand we measured Ground Surface Temperature (GST) at near-surface (0.1 meter depth) using a GST mini-datalogger M-Log5W-Rock model; (2) On the other hand we monitored atmospheric conditions using a weather station (Davis Vantage pro2 plus) collecting numerous parameters (i.e. temperature, irradiation, rain, wind speed, etc.). Furthermore, the area was also seasonally monitored by Ground-Based (GB) LiDAR since 2010 and monthly monitored since September 2013. In order to understand how atmospheric conditions (such as freeze and thaw effect) influence the erosion of the cliff, we modeled the temperature diffusion through the rock mass. To this end, we applied heat diffusion and radiation equation using a 1D temperature profile, obtaining as a result both temperature variations at different depths together with the location of the 0°C isotherm. Our model was calibrated during a given training set using both in-situ rock temperatures and atmospheric conditions. We then carried out a comparison with the rockfall events derived from the

  11. In situ high temperature microwave microscope for nondestructive detection of surface and sub-surface defects.

    PubMed

    Wang, Peiyu; Li, Zhencheng; Pei, Yongmao

    2018-04-16

    An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.

  12. Atmospheric carbon dioxide and chlorofluoromethanes - Combined effects on stratospheric ozone, temperature, and surface temperature

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1981-01-01

    The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.

  13. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  14. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  15. Improving the Performance of Temperature Index Snowmelt Model of SWAT by Using MODIS Land Surface Temperature Data

    PubMed Central

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations. PMID:25165746

  16. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  17. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  18. Preparation and High-temperature Anti-adhesion Behavior of a Slippery Surface on Stainless Steel.

    PubMed

    Zhang, Pengfei; Huawei, Chen; Liu, Guang; Zhang, Liwen; Zhang, Deyuan

    2018-03-29

    Anti-adhesion surfaces with high-temperature resistance have a wide application potential in electrosurgical instruments, engines, and pipelines. A typical anti-wetting superhydrophobic surface easily fails when exposed to a high-temperature liquid. Recently, Nepenthes-inspired slippery surfaces demonstrated a new way to solve the adhesion problem. A lubricant layer on the slippery surface can act as a barrier between the repelled materials and the surface structure. However, the slippery surfaces in previous studies rarely showed high-temperature resistance. Here, we describe a protocol for the preparation of slippery surfaces with high-temperature resistance. A photolithography-assisted method was used to fabricate pillar structures on stainless steel. By functionalizing the surface with saline, a slippery surface was prepared by adding silicone oil. The prepared slippery surface maintained the anti-wetting property for water, even when the surface was heated to 300 °C. Also, the slippery surface exhibited great anti-adhesion effects on soft tissues at high temperatures. This type of slippery surface on stainless steel has applications in medical devices, mechanical equipment, etc.

  19. Influence of oxygen partial pressure on surface tension and its temperature coefficient of molten iron

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Suzuki, S.; Hibiya, T.; Fukuyama, H.

    2011-01-01

    Influences of oxygen partial pressure, PO2, of ambient atmosphere and temperature on surface tension and its temperature coefficient for molten iron were experimentally investigated by an oscillating droplet method using an electromagnetic levitation furnace. We successfully measured the surface tension of molten iron over a very wide temperature range of 780 K including undercooling condition in a well controlled PO2 atmosphere. When PO2 is fixed at 10-2 Pa at the inlet of the chamber, a "boomerang shape" temperature dependence of surface tension was experimentally observed; surface tension increased and then decreased with increasing temperature. The pure surface tension of molten iron was deduced from the negative temperature coefficient in the boomerang shape temperature dependence. When the surface tension was measured under the H2-containing gas atmosphere, surface tension did not show a linear relationship against temperature. The temperature dependence of the surface tension shows anomalous kink at around 1850 K due to competition between the temperature dependence of PO2 and that of the equilibrium constant of oxygen adsorption.

  20. Systems and Methods for Integrated Emissivity and Temperature Measurement of a Surface

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  1. Temperature profile of graphite surface burning in a stream of oxygen

    NASA Technical Reports Server (NTRS)

    Kisch, D.

    1978-01-01

    Using methods for the objective measurement of the spectrum line reversal temperature in burning gases, the temperature profile at a graphite surface burning in a stream of oxygen was measured. From the behavior of the reversal temperature, it follows that particles in long-lived, high-energy states are present in the burning gas, and these bring about an overexcitation of the atomic species emitting the reversal line. Qualitative measurements show that a temperature maximum occurs at the expected distance of 1-2 mm from the graphite surface.

  2. Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift

    PubMed Central

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127

  3. Maintenance of coastal surface blooms by surface temperature stratification and wind drift.

    PubMed

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.

  4. City landscape changes effects on land surface temperature in Bucharest metropolitan area

    NASA Astrophysics Data System (ADS)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.; Dida, Adrian I.

    2017-10-01

    This study investigated the influences of city land cover changes and extreme climate events on land surface temperature in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from IKONOS, Landsat TM/ETM+ and time series MODIS Terra/Aqua and NOAA AVHRR sensors have been used to assess urban land cover- temperature interactions over 2000 - 2016 period. Time series Thermal InfraRed (TIR) satellite remote sensing data in synergy with meteorological data (air temperatureAT, precipitations, wind, solar radiation, etc.) were applied mainly for analyzing land surface temperature (LST) pattern and its relationship with surface landscape characteristics, assessing urban heat island (UHI), and relating urban land cover temperatures (LST). The land surface temperature, a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, LST and AT possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at metropolitan scale respectively. The NDVI was significantly correlated with precipitation. The spatial average air temperatures in urban test areas rise with the expansion of the urban size.

  5. Global Land Surface Temperature From the Along-Track Scanning Radiometers

    NASA Astrophysics Data System (ADS)

    Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.

    2017-11-01

    The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).

  6. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  7. Spatial-temporal analysis of building surface temperatures in Hung Hom

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  8. Brillouin-scattering measurements of surface-acoustic-wave velocities in silicon at high temperatures

    NASA Astrophysics Data System (ADS)

    Stoddart, P. R.; Comins, J. D.; Every, A. G.

    1995-06-01

    Brillouin-scattering measurements of the angular dependence of surface-acoustic-wave velociites at high temperatures are reported. The measurements have been performed on the (001) surface of a silicon single crystal at temperatures up to 800 °C, allowing comparison of the results with calculated velocities based on existing data for the elastic constants and thermal expansion of silicon in this temperature range. The change in surface-acoustic-wave velocity with temperature is reproduced well, demonstrating the value of this technique for the characterization of the high-temperature elastic properties of opaque materials.

  9. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  10. Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures

    NASA Technical Reports Server (NTRS)

    Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.

  11. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    PubMed

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  12. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  13. Mapping Surface Temperatures on a Debris-Covered Glacier with an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip D. A.; Shea, Joseph M.; Litt, Maxime; Steiner, Jakob F.; Treichler, Désirée; Koch, Inka; Immerzeel, Walter W.

    2018-05-01

    A mantel of debris cover often accumulates across the surface of glaciers in active mountain ranges with exceptionally steep terrain, such as the Andes, Himalaya and New Zealand Alps. Such a supraglacial debris layer has a major influence on a glacier's surface energy budget, enhancing radiation absorption and melt when the layer is thin, but insulating the ice when thicker than a few cm. Information on spatially distributed debris surface temperature has the potential to provide insight into the properties of the debris, its effects on the ice below and its influence on the near-surface boundary layer. Here, we deploy an unmanned aerial vehicle (UAV) equipped with a thermal infrared sensor on three separate missions over one day to map changing surface temperatures across the debris-covered Lirung Glacier in the Central Himalaya. We present a methodology to georeference and process the acquired thermal imagery, and correct for emissivity and sensor bias. Derived UAV surface temperatures are compared with distributed simultaneous in situ temperature measurements as well as with Landsat 8 thermal satellite imagery. Results show that the UAV-derived surface temperatures vary greatly both spatially and temporally, with -1.4±1.8, 11.0 ±5.2 and 15.3±4.7 °C for the three flights (mean±sd), respectively. The range in surface temperatures over the glacier during the morning is very large with almost 50 °C. Ground-based measurements are generally in agreement with the UAV imagery, but considerable deviations are present that are likely due to differences in measurement technique and approach, and validation is difficult as a result. The difference in spatial and temporal variability captured by the UAV as compared with much coarser satellite imagery is striking and it shows that satellite derived temperature maps should be interpreted with care. We conclude that UAVs provide a suitable means to acquire surface temperature maps of debris-covered glacier surfaces at

  14. Automation of temperature control for large-array microwave surface applicators.

    PubMed

    Zhou, L; Fessenden, P

    1993-01-01

    An adaptive temperature control system has been developed for the microstrip antenna array applicators used for large area superficial hyperthermia. A recursive algorithm which allows rapid power updating even for large antenna arrays and accounts for coupling between neighbouring antennas has been developed, based on a first-order difference equation model. Surface temperatures from the centre of each antenna element are the primary feedback information. Also used are temperatures from additional surface probes placed within the treatment field to protect locations vulnerable to excessive temperatures. In addition, temperatures at depth are observed by mappers and utilized to restrain power to reduce treatment-related complications. Experiments on a tissue-equivalent phantom capable of dynamic differential cooling have successfully verified this temperature control system. The results with the 25 (5 x 5) antenna array have demonstrated that during dynamic water cooling changes and other experimentally simulated disturbances, the controlled temperatures converge to desired temperature patterns with a precision close to the resolution of the thermometry system (0.1 degree C).

  15. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  16. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    PubMed

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    NASA Astrophysics Data System (ADS)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  18. Coherent changes of wintertime surface air temperatures over North Asia and North America.

    PubMed

    Yu, Bin; Lin, Hai

    2018-03-29

    The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.

  19. Temperature dependence of surface tension of molten iron under reducing gas atmosphere

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Takahashi, S.; Fukuyama, H.; Watanabe, M.

    2011-12-01

    Surface tension of molten iron was measured under Ar-He-5vol.%H2 gas by oscillating droplet method using electromagnetic levitation furnace in consideration of the temperature dependence of oxygen partial pressure, Po2, of the gas. For comparison, the measurement was carried under Ar-He atmosphere to fix the Po2 of the inlet gas at 10-2Pa. The surface tension was successfully measured over a wide temperature range of about 780K including undercooling condition. When Po2 is fixed at 10-2 Pa, the surface tension increased and then decreased with increasing temperature like a boomerang shape. When the measurement was carried out under the H2-containing gas atmosphere, the temperature dependence of the surface tension shows unique kink at around 1810K instead of liner relationship due to competition between the temperature dependence of the Po2 and that of the equilibrium constant of oxygen adsorption reaction. The relationship between the calculated lnKad with respect to inverse temperature using Szyszkowski model was different between the atmospheric gases.

  20. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  1. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  2. Projected change in characteristics of near surface temperature inversions for southeast Australia

    NASA Astrophysics Data System (ADS)

    Ji, Fei; Evans, Jason Peter; Di Luca, Alejandro; Jiang, Ningbo; Olson, Roman; Fita, Lluis; Argüeso, Daniel; Chang, Lisa T.-C.; Scorgie, Yvonne; Riley, Matt

    2018-05-01

    Air pollution has significant impacts on human health. Temperature inversions, especially near surface temperature inversions, can amplify air pollution by preventing convective movements and trapping pollutants close to the ground, thus decreasing air quality and increasing health issues. This effect of temperature inversions implies that trends in their frequency, strength and duration can have important implications for air quality. In this study, we evaluate the ability of three reanalysis-driven high-resolution regional climate model (RCM) simulations to represent near surface inversions at 9 sounding sites in southeast Australia. Then we use outputs of 12 historical and future RCM simulations (each with three time periods: 1990-2009, 2020-2039, and 2060-2079) from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project to investigate changes in near surface temperature inversions. The results show that there is a substantial increase in the strength of near surface temperature inversions over southeast Australia which suggests that future inversions may intensify poor air quality events. Near surface inversions and their future changes have clear seasonal and diurnal variations. The largest differences between simulations are associated with the driving GCMs, suggesting that the large-scale circulation plays a dominant role in near surface inversion strengths.

  3. Effect of Melt Temperature on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-12-01

    Graphite powder was adopted to prevent AZ91D alloy from oxidizing during melting and casting. The microstructure of the resultant surface films, formed at 933 K, 973 K, 1013 K, and 1053 K (660 °C, 700 °C, 740 °C, and 780 °C) for 30 minutes, was investigated by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction, and the phase composition of the surface films was analyzed by the standard Gibbs free energy change of the reactions between the graphite powder, the alloy melt, and the ambient atmosphere. The effect and mechanism of melt temperature on the resultant surface films were also discussed. The results indicated that the surface films, of which the surface morphology comprised folds and wrinkles, were composed of a protective layer and MgF2 particles. The protective layer was contributive to the prevention of the molten alloy from oxidizing, and consisted of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium existing in the form of MgO, MgF2, C, and MgAl2O4. The layer thickness was 200 to 900 nm. The melt temperature may affect the surface films through the increased interaction between the graphite powder, the melt, and the ambient atmosphere. The oxygen content and thickness of the protective layer decreased and then increased, while the height of the folds increased with melt temperature.

  4. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    PubMed

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and

  5. Surface Temperature Prediction of a Bridge for Tactical Decision Aide Modelling

    DTIC Science & Technology

    1988-01-01

    Roadway And Piling Surface Temperature Predictions (No Radiosity Incident on Lower Surface) Compared to Temperature Estimates...Heat gained from water = Heat lost by long wave radiosity radiation. Algebraically, with the conduction term expressed in the same manner as for...5 10 15 20 LOCAL TIME (hrs.) Figure 8. Effect of No Radiosity Incident on Lower Surface. 37 U 8a M OT U% 60-- 0- o.. 20- 0- 1 T I I 5 10 15 20 LOCAL

  6. Some Physical and Computational Issues in Land Surface Data Assimilation of Satellite Skin Temperatures

    NASA Astrophysics Data System (ADS)

    Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour

    2012-03-01

    Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.

  7. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  8. Multi-temporal analysis of land surface temperature in highly urbanized districts

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.

    2017-12-01

    Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.

  9. Modeling apple surface temperature dynamics based on weather data.

    PubMed

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  10. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    PubMed Central

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-01-01

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management. PMID:25350507

  11. Comparison of Surface Ground Temperature from Satellite Observations and the Off-Line Land Surface GEOS Assimilation System

    NASA Technical Reports Server (NTRS)

    Yang, R.; Houser, P.; Joiner, J.

    1998-01-01

    The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.

  12. Global surface temperature change analysis based on MODIS data in recent twelve years

    NASA Astrophysics Data System (ADS)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  13. Assimilation of Goes-Derived Skin Temperature Tendencies into Mesoscale Models to Improve Forecasts of near Surface Air Temperature and Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; McNider, Richard T.; Suggs, Ron; Jedlovec, Gary; Robertson, Franklin R.

    1998-01-01

    A technique has been developed for assimilating GOES-FR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature chance closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48 h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, the need to specify poorly known soil and vegetative characteristics is eliminated. The GOES assimilation technique has been incorporated into the PSU/NCAR MM5. Results will be presented to demonstrate the ability of the assimilation scheme to improve short- term (0-48h) simulations of near-surface air temperature and mixing ratio during the warm season for several selected cases which exhibit a variety of atmospheric and land-surface conditions. In addition, validation of terms in the simulated surface energy budget will be presented using in situ data collected at the Southern Great Plains (SGP) Cloud And Radiation Testbed (CART) site as part of the Atmospheric Radiation Measurements Program (ARM).

  14. A Spatio-Temporal Analysis of the Relationship Between Near-Surface Air Temperature and Satellite Land Surface Temperatures Using 17 Years of Data from the ATSR Series

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Good, E.; Bulgin, C.; Remedios, J. J.

    2017-12-01

    Surface temperatures (ST) over land have traditionally been measured at weather stations. There are many parts of the globe with very few stations, e.g. across much of Africa, leading to gaps in ST datasets, affecting our understanding of how ST is changing, and the impacts of extreme events. Satellites can provide global ST data but these observations represent how hot the land ST (LST; including the uppermost parts of e.g. trees, buildings) is to touch, whereas stations measure the air temperature just above the surface (T2m). Satellite LST data may only be available in cloud-free conditions and data records are frequently <10-15 years in length. Consequently, satellite LST data have not yet featured widely in climate studies. In this study, the relationship between clear-sky satellite LST and all-sky T2m is characterised in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer (ATSR) series, which has been produced within the European Space Agency GlobTemperature project. The results demonstrate the dependency of the global LST-T2m differences on location, land cover, vegetation and elevation. LSTnight ( 10 pm local solar time) is found to be closely coupled with minimum T2m (Tmin) and the two temperatures generally consistent to within ±5 °C (global median LSTnight- Tmin= 1.8 °C, interquartile range = 3.8 °C). The LSTday ( 10 am local time)-maximum T2m (Tmax) variability is higher because LST is strongly influenced by insolation and surface regime (global median LSTday-Tmax= -0.1 °C, interquartile range = 8.1 °C). Correlations for both temperature pairs are typically >0.9 outside of the tropics. A crucial aspect of this study is a comparison between the monthly global anomaly time series of LST and CRUTEM4 T2m. The time series agree remarkably well, with a correlation of 0.9 and 90% of the CDR anomalies falling within the T2m 95% confidence limits (see figure

  15. Sea surface temperature 1871-2099 in 14 cells around the United Kingdom.

    PubMed

    Sheppard, Charles

    2004-07-01

    Monthly sea surface temperature is provided for 14 locations around the UK for a 230 year period. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 climate model for predicted SST (1950-2099). Two adjustments of the forecast data sets are needed to produce confluent SST series: the 50 year overlap is used for a gross adjustment, and a statistical scaling on the forecast data ensures that annual variations in forecast data match those of historical data. These monthly SST series are available on request. The overall rise in SST over time is clear for all sites, commencing in the last quarter of the 20th century. Apart from expected trends of overall warmer mean SST with more southerly latitudes and overall cooler mean SST towards the East, more interesting statistically significant general trends include a greater decadal rate of rise from warmer starting conditions. Annual temperature variation is not affected by absolute temperature, but is markedly greater towards the East. There is no correlation of annual range of SST with latitude, or with present SST values.

  16. Therapeutic Magnets Do Not Affect Tissue Temperatures

    PubMed Central

    Sweeney, Kathleen B.; Ingersoll, Christopher D.; Swez, John A.

    2001-01-01

    Objective: Manufacturers of commercially available “therapeutic” magnets claim that these magnets cause physiologic thermal effects that promote tissue healing. We conducted this study to determine if skin or intramuscular temperatures differed among magnet, sham, and control treatments during 60 minutes of application to the quadriceps muscle. Design and Setting: A 3 × 3 mixed-model, factorial design with repeated measures on both independent variables was used. The first independent variable, application duration, had 3 random levels (20, 40, and 60 minutes). The second independent variable, treatment, had 3 fixed levels (magnet, sham, and control). The dependent variable was tissue temperature (°C). Measurement depth served as a control variable, with 2 levels: skin and 1 cm below the fat layer. Data were collected in a thermoneutral laboratory setting and analyzed using a repeated-measures analysis of variance. Subjects: The study included 13 healthy student volunteers (8 men, 5 women; age, 20.5 ± 0.9 years; height, 176.8 ± 10.4 cm; weight, 73.8 ± 11.8 kg; anterior thigh skinfold thickness, 16.9 ± 6.5 mm). Measurements: Temperatures were measured at 30-second intervals using surface and implantable thermocouples. Temperature data at 20, 40, and 60 minutes were used for analysis. Each subject received all 3 treatments on different days. Results: Neither skin nor intramuscular temperatures were different across the 3 treatments at any time. For both skin and intramuscular temperatures, a statistically significant but not clinically meaningful temperature increase (less than 1°C), was observed over time within treatments, but this increase was similar in all treatment groups. Conclusions: No meaningful thermal effect was observed with any treatment over time, and treatments did not differ from each other. We conclude that flexible therapeutic magnets were not effective for increasing skin or deep temperatures, contradicting one of the fundamental claims

  17. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  18. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  19. Sea surface temperature: Observations from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Bates, John J.; Smith, William L.

    1985-11-01

    A procedure is developed for estimating sea surface temperatures (SST) from multispectral image data acquired from the VISSR atmospheric sounder (VAS) on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned by using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys from 1982. The empirical regression equations are then used to produce daily regional analyses of SST. The daily analyses are used to study the response of SST's to the passage of Hurricane Alicia (1983) and Hurricane Debbie (1982) and are also used as a first guess surface temperature in the retrieval of atmospheric temperature and moisture profiles over the oceanic regions. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the NASA/JPL SST intercomparison workshop series. Workshop results showed VAS SST's have a scatter of 0.8°-1.0°C and a slight warm bias with respect to the other measurements of SST. Subsequently, a second set of VAS/ buoy matches collected during 1983 and 1984 was used to produce a set of bias corrected regression relations for VAS.

  20. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles < 2°, which effectively increases the spherically integrated albedo. They suggest that forward scattering by the H2SO4/H2O aerosols of the upper cloud is responsible for Venus' high albedo at very low phase angles. The present work investigates the implications of such a high albedo for understanding and modeling the energy balance of Venus' atmosphere. Using the successful 1D radiative transfer model SimVenus that incorporates the opacity due to 9 major gases in Venus' atmosphere, as well as multiple scattering calculations of radiation within the clouds, the sensitivity of surface temperature was studied as a function of Bond albedo. Results of these model calculations are shown in Fig. 1. Figure 1a (left). Venus' atmospheric temperature profile for different values of Bond albedo. The structure and radiative effects of the clouds are fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally

  1. Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.

    PubMed

    King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew

    2017-04-20

    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.

  2. Surface mass diffusion over an extended temperature range on Pt(111)

    NASA Astrophysics Data System (ADS)

    Rajappan, M.; Swiech, W.; Ondrejcek, M.; Flynn, C. P.

    2007-06-01

    Surface mass diffusion is investigated on Pt(111) at temperatures in the range 710-1220 K. This greatly extends the range over which diffusion is known from step fluctuation spectroscopy (SFS). In the present research, a beam of Pt- self-ions is employed to create a suitable structure on step edges. The surface mass diffusion coefficients then follow from the decay of Fourier components observed by low-energy electron microscopy (LEEM) at selected annealing temperatures. The results agree with SFS values where they overlap, and continue smoothly to low temperature. This makes it unlikely that diffusion along step edges plays a major role in step edge relaxation through the temperature range studied. The surface mass diffusion coefficient for the range 710-1520 K deduced from the present work, together with previous SFS data, is Ds = 4 × 10-3 exp(-1.47 eV/kBT) cm2 s-1.

  3. Surface temperature statistics over Los Angeles - The influence of land use

    NASA Technical Reports Server (NTRS)

    Dousset, Benedicte

    1991-01-01

    Surface temperature statistics from 84 NOAA AVHRR (Advanced Very High Resolution Radiometer) satellite images of the Los Angeles basin are interpreted as functions of the corresponding urban land-cover classified from a multispectral SPOT image. Urban heat islands observed in the temperature statistics correlate well with the distribution of industrial and fully built areas. Small cool islands coincide with highly watered parks and golf courses. There is a significant negative correlation between the afternoon surface temperature and a vegetation index computed from the SPOT image.

  4. Effects of environmental variables on surface temperature of breeding adult female northern elephant seals, Mirounga angustirostris, and pups.

    PubMed

    Codde, Sarah A; Allen, Sarah G; Houser, Dorian S; Crocker, Daniel E

    2016-10-01

    Pinnipeds spend extended periods of time on shore during breeding, and some temperate species retreat to the water if exposed to high ambient temperatures. However, female northern elephant seals (Mirounga angustirostris) with pups generally avoid the water, presumably to minimize risks to pups or male harassment. Little is known about how ambient temperature affects thermoregulation of well insulated females while on shore. We used a thermographic camera to measure surface temperature (T s ) of 100 adult female elephant seals and their pups during the breeding season at Point Reyes National Seashore, yielding 782 thermograms. Environmental variables were measured by an onsite weather station. Environmental variables, especially solar radiation and ambient temperature, were the main determinants of mean and maximum T s of both females and pups. An average of 16% of the visible surface of both females and pups was used as thermal windows to facilitate heat loss and, for pups, this area increased with solar radiation. Thermal window area of females increased with mean T s until approximately 26°C and then declined. The T s of both age classes were warmer than ambient temperature and had a large thermal gradient with the environment (female mean 11.2±0.2°C; pup mean 14.2±0.2°C). This large gradient suggests that circulatory adjustments to bypass blubber layers were sufficient to allow seals to dissipate heat under most environmental conditions. We observed the previously undescribed behavior of females and pups in the water and determined that solar radiation affected this behavior. This may have been possible due to the calm waters at the study site, which reduced the risk of neonates drowning. These results may predict important breeding habitat features for elephant seals as solar radiation and ambient temperatures change in response to changing climate. Published by Elsevier Ltd.

  5. Temperature Dependence of Proton Electroreduction Kinetics at Gold(111) and (210) Surfaces

    DTIC Science & Technology

    1991-05-31

    Temperature Dependence of Proton Electroreduction Kinetics at Gold (111) and (210) Surfaces 12 PERSONAL AUTHOR(S) A. Hamelin, L. Stoicoviciu, S.-C...Technical Report No. 98 Temperature Dependence of Proton Electroreduction Kinetics at Gold (lll) and (210) Surfaces by A. Hamelin, L. Stoicoviciu, S...approved for public release and sale: its distribution is unlimited. Temperature Dependence of Proton Electroreduction Kinetics at Gold (Ill) and (210

  6. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  7. Surface emissivity and temperature retrieval for a hyperspectral sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less

  8. Comparison of two surface temperature measurement using thermocouples and infrared camera

    NASA Astrophysics Data System (ADS)

    Michalski, Dariusz; Strąk, Kinga; Piasecka, Magdalena

    This paper compares two methods applied to measure surface temperatures at an experimental setup designed to analyse flow boiling heat transfer. The temperature measurements were performed in two parallel rectangular minichannels, both 1.7 mm deep, 16 mm wide and 180 mm long. The heating element for the fluid flowing in each minichannel was a thin foil made of Haynes-230. The two measurement methods employed to determine the surface temperature of the foil were: the contact method, which involved mounting thermocouples at several points in one minichannel, and the contactless method to study the other minichannel, where the results were provided with an infrared camera. Calculations were necessary to compare the temperature results. Two sets of measurement data obtained for different values of the heat flux were analysed using the basic statistical methods, the method error and the method accuracy. The experimental error and the method accuracy were taken into account. The comparative analysis showed that although the values and distributions of the surface temperatures obtained with the two methods were similar but both methods had certain limitations.

  9. Effect of temperature and concentration on the surface tension of chia seed mucilage

    NASA Astrophysics Data System (ADS)

    Fu, Yuting; Arye, Gilboa

    2017-04-01

    The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.

  10. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less

  11. Body Segment Differences in Surface Area, Skin Temperature and 3D Displacement and the Estimation of Heat Balance during Locomotion in Hominins

    PubMed Central

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-01-01

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID

  12. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    PubMed

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  13. On the effect of surface emissivity on temperature retrievals. [for meteorology

    NASA Technical Reports Server (NTRS)

    Kornfield, J.; Susskind, J.

    1977-01-01

    The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.

  14. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species.

    PubMed

    Bowman, Larry L; Kondrateva, Elizaveta S; Timofeyev, Maxim A; Yampolsky, Lev Y

    2018-06-01

    Local adaptation and phenotypic plasticity are main mechanisms of organisms' resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimated SNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in both SNP and transcript abundance differentiation is the SW-NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance. SNP differentiation is stronger for nonsynonymous than synonymous SNPs and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with the SNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat-shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature-mediated selection and possesses both genetic variation and plasticity to respond to novel temperature-related environmental pressures. © 2018 John Wiley & Sons Ltd.

  15. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2014-12-01

    Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  17. Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.

    2005-03-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.

  18. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  19. Phonons on fcc (100), (110), and (111) surfaces using Lennard-Jones potentials. II. Temperature dependence of surface phonons studied with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Sibener, S. J.

    In this paper we present temperature dependent studies of the surface phonon dispersion relations for fcc (100), (110), and (111) faces using molecular dynamics (MD) simulations and Lennard-Jones potentials. This study was conducted in order to investigate how anharmonic potential terms influence the dynamical properties of the surface. This was accomplished by examining the temperature dependence of the Q-resolved phonon spectral density function. All phonon frequencies were found to decrease linearly in T as the temperature was increased, while at low temperatures the phonon linewidths increased linearly with T. At higher temperatures, some of the phonon linewidths changed from having a linear to a quadratic dependence on T. The temperature at which this T to T2 change occurs is surface dependent and occurs at the lowest temperature on the (110) surface. The T2 dependence arises from the increasing importance of higher-order phonon-phonon scattering terms. The phonons which exhibit T2 dependence tend to be modes which propagate perpendicularly or nearly perpendicularly to the direction of maximum root-mean-squared displacement (RMSD). This is especially true for the linewidth of the S 1 mode at overlineX on the (110) surface where, at T ≈ 15-23% of the melting temperature, the RMSD perpendicular to the atomic rows become larger than the RMSD normal to the surface. Our results indicate that the dynamics on the (110) surface may be significantly influenced by anharmonic potential terms at temperatures as low as 15% of the melting temperature.

  20. Submesoscale Sea Surface Temperature Variability from UAV and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Castro, S. L.; Emery, W. J.; Tandy, W., Jr.; Good, W. S.

    2017-12-01

    Technological advances in spatial resolution of observations have revealed the importance of short-lived ocean processes with scales of O(1km). These submesoscale processes play an important role for the transfer of energy from the meso- to small scales and for generating significant spatial and temporal intermittency in the upper ocean, critical for the mixing of the oceanic boundary layer. Submesoscales have been observed in sea surface temperatures (SST) from satellites. Satellite SST measurements are spatial averages over the footprint of the satellite. When the variance of the SST distribution within the footprint is small, the average value is representative of the SST over the whole pixel. If the variance is large, the spatial heterogeneity is a source of uncertainty in satellite derived SSTs. Here we show evidence that the submesoscale variability in SSTs at spatial scales of 1km is responsible for the spatial variability within satellite footprints. Previous studies of the spatial variability in SST, using ship-based radiometric data suggested that variability at scales smaller than 1 km is significant and affects the uncertainty of satellite-derived skin SSTs. We examine data collected by a calibrated thermal infrared radiometer, the Ball Experimental Sea Surface Temperature (BESST), flown on a UAV over the Arctic Ocean and compare them with coincident measurements from the MODIS spaceborne radiometer to assess the spatial variability of SST within 1 km pixels. By taking the standard deviation of all the BESST measurements within individual MODIS pixels we show that significant spatial variability exists within the footprints. The distribution of the surface variability measured by BESST shows a peak value of O(0.1K) with 95% of the pixels showing σ < 0.45K. More importantly, high-variability pixels are located at density fronts in the marginal ice zone, which are a primary source of submesoscale intermittency near the surface in the Arctic Ocean

  1. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.

  2. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  3. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures

    DOE PAGES

    Daniel, Daniel; Mankin, Max N.; Belisle, Rebecca A.; ...

    2013-06-10

    Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of- the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structured surfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factormore » of 1000.« less

  4. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  5. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.

    PubMed

    Vidojkovic, Sonja M; Rakin, Marko P

    2017-07-01

    Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge

  6. Impacts of Wind Farms on Local Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L. F.; Hu, Y.

    2012-12-01

    The U.S. wind industry has experienced a remarkably rapid expansion of capacity in recent years and this rapid growth is expected to continue in the future. While converting wind's kinetic energy into electricity, wind turbines modify surface-atmosphere exchanges and transfer of energy, momentum, mass and moisture within the atmosphere. These changes, if spatially large enough, may have noticeable impacts on local to regional weather and climate. Here we present observational evidence for such impacts based on analyses of satellite derived land surface temperature (LST) data at ~1.1 km for the period of 2003-2011 over a region in West-Central Texas, where four of the world's largest wind farms are located. Our results show a warming effect of up to 0.7 degrees C at nighttime for the 9-year period during which data was collected, over wind farms relative to nearby non wind farm regions and this warming is gradually enhanced with time, while the effect at daytime is small. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. These results suggest that the warming effect is very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer conditions due to wind farm operations. Figure 1: Nighttime land surface temperature (LST, C) differences between 2010 and 2003 (2010 minus 2003) in summer (June-July-August). Pixels with plus symbol have at least one wind turbine. A regional mean value (0.592 C) was removed to emphasize the relative LST changes at pixel level and so the resulting warming or cooling rate represents a change relative to the regional mean

  7. A Simple Downscaling Algorithm for Remotely Sensed Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Sandholt, I.; Nielsen, C.; Stisen, S.

    2009-05-01

    The method is illustrated using a combination of MODIS NDVI data with a spatial resolution of 250m and 3 Km Meteosat Second Generation SEVIRI LST data. Geostationary Earth Observation data carry a large potential for assessment of surface state variables. Not the least the European Meteosat Second Generation platform with its SEVIRI sensor is well suited for studies of the dynamics of land surfaces due to its high temporal frequency (15 minutes) and its red, Near Infrared (NIR) channels that provides vegetation indices, and its two split window channels in the thermal infrared for assessment of Land Surface Temperature (LST). For some applications the spatial resolution in geostationary data is too coarse. Due to the low statial resolution of 4.8 km at nadir for the SEVIRI sensor, a means of providing sub pixel information is sought for. By combining and properly scaling two types of satellite images, namely data from the MODIS sensor onboard the polar orbiting platforms TERRA and AQUA and the coarse resolution MSG-SEVIRI, we exploit the best from two worlds. The vegetation index/surface temperature space has been used in a vast number of studies for assessment of air temperature, soil moisture, dryness indices, evapotranspiration and for studies of land use change. In this paper, we present an improved method to derive a finer resolution Land Surface Temperature (LST). A new, deterministic scaling method has been applied, and is compared to existing deterministic downscaling methods based on LST and NDVI. We also compare our results from in situ measurements of LST from the Dahra test site in West Africa.

  8. Temperature and thermal emissivity of the surface of Neptune's satellite Triton

    NASA Technical Reports Server (NTRS)

    Nelson, Robert M.; Smythe, William D.; Wallis, Brad D.; Horn, Linda J.; Lane, Arthur L.; Mayo, Marvin J.

    1990-01-01

    Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the about 100-micron scale as might be expected given the active renewal processes which appear to dominate Triton's surface.

  9. Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentration of ozone and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L. B.; Boughner, R. E.

    1976-01-01

    A radiative-convective model is proposed for estimating the sensitivity of the atmospheric radiative heating rates and atmospheric and surface temperatures to perturbations in the concentration of O3 and NO2 in the stratosphere. Contribution to radiative energy transfer within the atmosphere from H2O, CO2, O3, and NO2 is considered. It is found that the net solar radiation absorbed by the earth-atmosphere system decreases with a reduction in O3; if the reduction of O3 is accompanied by an increase in NO2, there is a compensating effect due to solar absorption by NO2. The surface temperature and atmospheric temperature decrease with decreasing stratospheric O3. Another major conclusion is the strong sensitivity of surface temperature to the vertical distribution of O3 within the atmosphere. The results should be considered as reflecting the sensitivity of the proposed model rather than the sensitivity of the actual earth-atmosphere system.

  10. Land Surface Temperature Measurements from EOD MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    1998-01-01

    We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from

  11. Reconstruction of Arctic surface temperature in past 100 years using DINEOF

    NASA Astrophysics Data System (ADS)

    Zhang, Qiyi; Huang, Jianbin; Luo, Yong

    2015-04-01

    Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that

  12. Validation of Land Surface Temperature from Sentinel-3

    NASA Astrophysics Data System (ADS)

    Ghent, D.

    2017-12-01

    One of the main objectives of the Sentinel-3 mission is to measure sea- and land-surface temperature with high-end accuracy and reliability in support of environmental and climate monitoring in an operational context. Calibration and validation are thus key criteria for operationalization within the framework of the Sentinel-3 Mission Performance Centre (S3MPC). Land surface temperature (LST) has a long heritage of satellite observations which have facilitated our understanding of land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. These observations have been acquired from a variety of satellite instruments on platforms in both low-earth orbit and in geostationary orbit. Retrieval accuracy can be a challenge though; surface emissivities can be highly variable owing to the heterogeneity of the land, and atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. As such, a rigorous validation is critical in order to assess the quality of the data and the associated uncertainties. Validation of the level-2 SL_2_LST product, which became freely available on an operational basis from 5th July 2017 builds on an established validation protocol for satellite-based LST. This set of guidelines provides a standardized framework for structuring LST validation activities. The protocol introduces a four-pronged approach which can be summarised thus: i) in situ validation where ground-based observations are available; ii) radiance-based validation over sites that are homogeneous in emissivity; iii) intercomparison with retrievals from other satellite sensors; iv) time-series analysis to identify artefacts on an interannual time-scale. This multi-dimensional approach is a necessary requirement for assessing the performance of the LST algorithm for the Sea and Land Surface Temperature Radiometer (SLSTR) which is designed around biome

  13. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    PubMed

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban

  14. Recent surface temperature trends in the interior of East Antarctica from borehole firn temperature measurements and geophysical inverse methods

    USGS Publications Warehouse

    Muto, A.; Scambos, T.A.; Steffen, K.; Slater, A.G.; Clow, G.D.

    2011-01-01

    We use measured firn temperatures down to depths of 80 to 90 m at four locations in the interior of Dronning Maud Land, East Antarctica to derive surface temperature histories spanning the past few decades using two different inverse methods. We find that the mean surface temperatures near the ice divide (the highest-elevation ridge of East Antarctic Ice Sheet) have increased approximately 1 to 1.5 K within the past ???50 years, although the onset and rate of this warming vary by site. Histories at two locations, NUS07-5 (78.65S, 35.64E) and NUS07-7 (82.07S, 54.89E), suggest that the majority of this warming took place in the past one or two decades. Slight cooling to no change was indicated at one location, NUS08-5 (82.63S, 17.87E), off the divide near the Recovery Lakes region. In the most recent decade, inversion results indicate both cooler and warmer periods at different sites due to high interannual variability and relatively high resolution of the inverted surface temperature histories. The overall results of our analysis fit a pattern of recent climate trends emerging from several sources of the Antarctic temperature reconstructions: there is a contrast in surface temperature trends possibly related to altitude in this part of East Antarctica. Copyright 2011 by the American Geophysical Union.

  15. Probing Pluto's underworld: Ice temperatures from microwave radiometry decoupled from surface conditions

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Lorenz, Ralph D.; Le Gall, Alice

    2016-04-01

    Present models admit a wide range of 2015 surface conditions at Pluto and Charon, where the atmospheric pressure may undergo dramatic seasonal variation and for which measurements are imminent from the New Horizons mission. One anticipated observation is the microwave brightness temperature, heretofore anticipated as indicating surface conditions relevant to surface-atmosphere equilibrium. However, drawing on recent experience with Cassini observations at Iapetus and Titan, we call attention to the large electrical skin depth of outer Solar System materials such as methane, nitrogen or water ice, such that this observation may indicate temperatures averaged over depths of several or tens of meters beneath the surface. Using a seasonally-forced thermal model to determine microwave emission we predict that the southern hemisphere observations (in polar night) of New Horizons in July 2015 will suggest effective temperatures of ∼40 K, reflecting deep heat buried over the last century of summer, even if the atmospheric pressure suggests that the surface nitrogen frost point may be much lower.

  16. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

    2016-01-01

    Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.

  17. Crack growth measured on flat and curved surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Orange, T. W.; Sullivan, T. L.

    1967-01-01

    Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.

  18. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  19. Titan's Thermal Emission: Analysis Of Near-surface Temperatures Via Mid-infrared Measurements

    NASA Astrophysics Data System (ADS)

    Sadino, Jeff; Parrish, P. D.; Orton, G. S.; Burl, M. C.; Davies, A. G.; Irwin, P. G.; Teanby, N. A.; Flasar, F. M.; Cassini/CIRS investigation Team

    2006-09-01

    After Courtin and Kim 2002, tropospheric and near-surface temperatures of Titan may be obtained by examining mid-infrared radiances at 300 and 500 wavenumbers (33 and 20 microns). Here, the measured radiance is (respectively) sensitive to the temperature near the tropopause and sufficient to discern variations in surface topography and emissivity. Our search, as a function of location and time, compares brightness temperatures derived from measurements by the Cassini Composite Infrared Spectrometer (CIRS) and variations of radiance as a function of Titan's rotation derived from ground-based measurements at NASA's Infrared Telescope Facility. Although the variation of the tropopause and zonal near-surface temperatures are fairly homogenous, similar to Courtin and Kim 2002, the meridional distribution of near-surface temperatures varies symmetrically from Equator to pole. While no significant thermal variations suggestive of localized hotspots have yet been observed, such diversity is suggestive of active surface geology, in support of other optical and near-infrared investigations. Although the spatial coverage of the CIRS dataset is severely limited, the approximately 10 degrees field of view (450km at the Equator) is de-convolved somewhat to extract meaningful, sub-pixel maps of Titan's surface. Courtin, R. and Kim, S. (2002). Planet. and Sp. Sci., 50: 309-321. The acquisition of data described here was accomplished through the coordinated effort of Cassini-Huygens project staff, Deep Space Network personnel and the CIRS instrument and science-planning teams with funding provided by the National Research Council, NASA/JPL and NASA/GSFC and the UK Particle Physics and Astronomy council.

  20. A Combined Surface Temperature Dataset for the Arctic from MODIS and AVHRR

    NASA Astrophysics Data System (ADS)

    Dodd, E.; Veal, K. L.; Ghent, D.; Corlett, G. K.; Remedios, J. J.

    2017-12-01

    Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations of STs and other changes associated with climate change increasingly confirm these predictions in the Arctic. Furthermore, recent high profile events of anomalously warm temperatures have increased interest in Arctic surface temperatures. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar Regions as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations of STs are much sparser. Previous work at the University of Leicester has produced a combined land, ocean and ice ST dataset for the Arctic using ATSR data (AAST) which covers the period 1995 to 2012. In order to facilitate investigation of more recent changes in the Arctic (2010 to 2016) we have produced another combined surface temperature dataset using MODIS and AVHRR; the Metop-A AVHRR and MODIS Arctic Surface Temperature dataset (AMAST). The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type in AMAST will be described. AAST and AMAST were compared in the time period common to both datasets. We will provide results from this intercomparison, as well as an assessment of the impact of utilising data from wide and narrow swath sensors. Time series of ST anomalies over the Arctic region produced from AMAST will be presented.

  1. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  2. Calculations of microwave brightness temperature of rough soil surfaces: Bare field

    NASA Technical Reports Server (NTRS)

    Mo, T.; Schmugge, T. J.; Wang, J. R.

    1985-01-01

    A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.

  3. Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Koenig, L. S.; DiGirolamo, N. E.; Comiso, J.; Shuman, C. A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites

  4. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  5. Quantifying changes in spatial patterns of surface air temperature dynamics over several decades

    NASA Astrophysics Data System (ADS)

    Zappalà, Dario A.; Barreiro, Marcelo; Masoller, Cristina

    2018-04-01

    We study daily surface air temperature (SAT) reanalysis in a grid over the Earth's surface to identify and quantify changes in SAT dynamics during the period 1979-2016. By analysing the Hilbert amplitude and frequency we identify the regions where relative variations are most pronounced (larger than ±50 % for the amplitude and ±100 % for the frequency). Amplitude variations are interpreted as due to changes in precipitation or ice melting, while frequency variations are interpreted as due to a northward shift of the inter-tropical convergence zone (ITCZ) and to a widening of the rainfall band in the western Pacific Ocean. The ITCZ is the ascending branch of the Hadley cell, and thus by affecting the tropical atmospheric circulation, ITCZ migration has far-reaching climatic consequences. As the methodology proposed here can be applied to many other geophysical time series, our work will stimulate new research that will advance the understanding of climate change impacts.

  6. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  7. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  8. Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water.

    PubMed

    Ueta, Hirokazu; Watanabe, Naoki; Hama, Tetsuya; Kouchi, Akira

    2016-06-24

    The surface temperature dependence of the ortho-to-para conversion of H_{2} on amorphous solid water is first reported. A combination of photostimulated desorption and resonance-enhanced multiphoton ionization techniques allowed us to sensitively probe the conversion on the surface of amorphous solid water at temperatures of 9.2-16 K. Within a narrow temperature window of 8 K, the conversion time steeply varied from ∼4.1×10^{3} to ∼6.4×10^{2}  s. The observed temperature dependence is discussed in the context of previously suggested models and the energy dissipation process. The two-phonon process most likely dominates the conversion rate at low temperatures.

  9. Stratospheric Impact of Varying Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  10. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.

    PubMed

    do Nascimento, Rodney Marcelo; Cottin-Bizonne, Cécile; Pirat, Christophe; Ramos, Stella M M

    2016-03-01

    We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition.

  11. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    PubMed

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.

  12. Study on the surface sulfidization behavior of smithsonite at high temperature

    NASA Astrophysics Data System (ADS)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  13. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    PubMed

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  14. Effect of a surface-to-gap temperature discontinuity on the heat transfer to reusable surface insulation tile gaps. [of the space shuttle

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1976-01-01

    An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.

  15. MISST: The Multi-Sensor Improved Sea Surface Temperature Project

    DTIC Science & Technology

    2009-06-01

    climate change studies, fisheries management, and a wide range of other applications. Measurements are taken by several satellites carrying infrared and...TEMPERATURE PROJECT ABSTRACT. Sea surface temperature (SST) measurements are vital to global weather prediction, climate change studies, fisheries management...important variables related to the global ocean-atmosphere system. It is a key indicator of climate change , is widely applied to studies of upper

  16. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    NASA Technical Reports Server (NTRS)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  17. Surface Layering Near Room Temperature in a Nonmetallic Liquid

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudeshna; Stripe, Benjamin; Shively, Patrick; Evmenenko, Geunnadi; Dutta, Pulak; Ehrlich, Steven; Mo, Haiding

    2009-03-01

    Oscillatory density profiles (layers) have been observed at the free surfaces of many liquid metals at and above room temperature [1]. A surface-layered state has been previously reported only in one dielectric liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), and only at lower temperatures [2]. We have used x-ray reflectivity to study a molecular liquid, pentaphenyl trimethyl trisiloxane. Below T˜ 267K (well above the freezing point for this liquid), density oscillations appear at the surface. This liquid has a higher Tc (˜1200K) than TEHOS (˜950K), so that layers appear at T/Tc 0.2 in both cases. Our results indicate that surface order is a universal phenomenon in both metallic and dielectric liquids, and that the underlying physics is likely to be the same since layers always appear at T<˜0.2Tc as theoretically predicted [3] [3pt] REFERENCES: [0pt] [1]. e.g. O. M. Magnussen et al., Phys. Rev. Lett. 74, 4444 (1995) [0pt] [2]. H. Mo et al. Phys. Rev. Lett. 96, 096107 (2006); Phys. Rev. B 76, 024206 (2007) [0pt] [3]. e.g. E. Chac'on et al., Phys. Rev. Lett. 87, 166101 (2001)

  18. Enhanced Pacific Ocean Sea Surface Temperature and Its Relation to Typhoon Haiyan

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Perez, Gay Jane P.; Stock, Larry V.

    2015-01-01

    Typhoon Haiyan, which devastated the Visayan Islands in the Philippines on November 8, 2013 was recorded as the strongest typhoon ever-observed using satellite data. Typhoons in the region usually originate from the mid-Pacific region that includes the Warm Pool, which is regarded as the warmest ocean surface region globally. Two study areas were considered: one in the Warm Pool Region and the other in the West Pacific Region near the Philippines. Among the most important factors that affect the strength of a typhoon are sea surface temperature (SST) and water vapor. It is remarkable that in November 2013 the average SST in the Warm Pool Region was the highest observed during the 1981 to 2014 period while that of the West Pacific Region was among the highest as well. Moreover, the increasing trend in SST was around 0.20C per decade in the warm pool region and even higher at 0.23C per decade in the West Pacific region. The yearly minimum SST has also been increasing suggesting that the temperature of the ocean mixed layer is also increasing. Further analysis indicated that water vapor, clouds, winds and sea level pressure for the same period did not reveal strong signals associated with the 2013 event. The SST is shown to be well-correlated with wind strength of historically strong typhoons in the country and the observed trends in SST suggest that extremely destructive typhoons like Haiyan are likely to occur in the future.

  19. Seasonal surface circulation, temperature, and salinity in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Musgrave, David L.; Halverson, Mark J.; Scott Pegau, W.

    2013-02-01

    Salinity, temperature, and depth profiles from 1973 to 2010 were used to construct a seasonal climatology of surface temperature, surface salinity, mixed layer depth (MLD), potential energy of mixing, and surface geostrophic circulation in Prince William Sound (PWS) and the adjacent Gulf of Alaska. Surface salinity is greatest in winter and least in summer due to the influence of increased freshwater runoff in summer. It is generally lowest in the northwest and highest in the Gulf of Alaska. The surface temperature is lowest in the winter and highest in the summer when surface heating is greatest, with little spatial variability across the Sound. The MLD is deepest in winter (9-27 m) and shallowest in summer (4-5 m). The work by winds was estimated from meteorological buoy data in central PWS and compared to the potential energy of mixing of the upper water column. The potential depth to which winds mix the upper water column was generally consistent with the MLD. The surface geostrophic circulation in the central Sound has: a southerly flow in the western central Sound in the winter; a closed, weak anticyclonic cell in spring; a closed, cyclonic cell in the summer; an open, cyclonic circulation in the fall. In the western passages, a southerly flow occurs in spring, summer, and fall. These results have important implications for oil spill response in PWS, the use of oil dispersants, and for comparison to numerical studies.

  20. Genetic particle filter application to land surface temperature downscaling

    NASA Astrophysics Data System (ADS)

    Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz

    2014-03-01

    Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.

  1. A microscale three-dimensional urban energy balance model for studying surface temperatures

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. Scott; Voogt, James A.

    2007-06-01

    A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

  2. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  3. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    PubMed Central

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-01-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002

  4. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    PubMed

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  5. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    NASA Astrophysics Data System (ADS)

    Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.

    2016-09-01

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  6. Global Monitoring RSEM System for Crop Production by Incorporating Satellite-based Photosynthesis Rates and Anomaly Data of Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kaneko, D.; Sakuma, H.

    2014-12-01

    The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because

  7. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  8. An Analysis of Bore Surface Temperatures in Electrothermal-Chemical Guns

    DTIC Science & Technology

    1991-10-01

    bore surface. As the fluid is heated by the combustion gases, it is assumed to vaporize at its critical temperature and to be swept into the gas flow...subsequently vaporizes as it reaches its critical temperature. However, two questions are pertinent: 1) Can the thermal properties of the working fluid... critical temperature, 647.3 K, mixtures containing hydrogen peroxide or methanol decompose exothermically, that is, with the liberation of heat

  9. Applications of Land Surface Temperature from Microwave Observations

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  10. Multi-scale modeling to relate Be surface temperatures, concentrations and molecular sputtering yields

    NASA Astrophysics Data System (ADS)

    Lasa, Ane; Safi, Elnaz; Nordlund, Kai

    2015-11-01

    Recent experiments and Molecular Dynamics (MD) simulations show erosion rates of Be exposed to deuterium (D) plasma varying with surface temperature and the correlated D concentration. Little is understood how these three parameters relate for Be surfaces, despite being essential for reliable prediction of impurity transport and plasma facing material lifetime in current (JET) and future (ITER) devices. A multi-scale exercise is presented here to relate Be surface temperatures, concentrations and sputtering yields. Kinetic Monte Carlo (MC) code MMonCa is used to estimate equilibrium D concentrations in Be at different temperatures. Then, mixed Be-D surfaces - that correspond to the KMC profiles - are generated in MD, to calculate Be-D molecular erosion yields due to D irradiation. With this new database implemented in the 3D MC impurity transport code ERO, modeling scenarios studying wall erosion, such as RF-induced enhanced limiter erosion or main wall surface temperature scans run at JET, can be revisited with higher confidence. Work supported by U.S. DOE under Contract DE-AC05-00OR22725.

  11. The Effect of Simulated Lunar Dust on the Absorptivity, Emissivity, and Operating Temperature on AZ-93 and Ag/FEP Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Panko, Scott R.; Rogers, Kerry J.; Larkin, Elizabeth M. G.

    2008-01-01

    JSC-1AF lunar simulant has been applied to AZ-93 and AgFEP thermal control surfaces on aluminum or composite substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator and cooled in a 30 K coldbox. Thermal modeling was used to determine the absorptivity ( ) and emissivity ( ) of the thermal control surfaces in both their clean and dusted states. Then, a known amount of power was applied to the samples while in the coldbox and the steady state temperatures measured. It was found that even a submonolayer of simulated lunar dust can significantly degrade the performance of both white paint and second-surface mirror type thermal control surfaces under these conditions. Contrary to earlier studies, dust was found to affect as well as . Dust lowered the emissivity by as much as 16 percent in the case of AZ-93, and raised it by as much as 11 percent in the case of AgFEP. The degradation of thermal control surface by dust as measured by / rose linearly regardless of the thermal control coating or substrate, and extrapolated to degradation by a factor 3 at full coverage by dust. Submonolayer coatings of dust were found to not significantly change the steady state temperature at which a shadowed thermal control surface will radiate.

  12. Correcting the spectroscopic surface gravity using transits and asteroseismology. No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.

    2014-12-01

    Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the

  13. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2017-11-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  14. Estimating the urban bias of surface shelter temperatures using upper-air and satellite data. Part 1: Development of models predicting surface shelter temperatures

    NASA Technical Reports Server (NTRS)

    Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.

    1995-01-01

    Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root

  15. 3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.

    NASA Astrophysics Data System (ADS)

    Irvine, M.; Lagouarde, J. P.

    2017-12-01

    Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low

  16. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  17. High Predictive Skill of Global Surface Temperature a Year Ahead

    NASA Astrophysics Data System (ADS)

    Folland, C. K.; Colman, A.; Kennedy, J. J.; Knight, J.; Parker, D. E.; Stott, P.; Smith, D. M.; Boucher, O.

    2011-12-01

    We discuss the high skill of real-time forecasts of global surface temperature a year ahead issued by the UK Met Office, and their scientific background. Although this is a forecasting and not a formal attribution study, we show that the main instrumental global annual surface temperature data sets since 1891 are structured consistently with a set of five physical forcing factors except during and just after the second World War. Reconstructions use a multiple application of cross validated linear regression to minimise artificial skill allowing time-varying uncertainties in the contribution of each forcing factor to global temperature to be assessed. Mean cross validated reconstructions for the data sets have total correlations in the range 0.93-0.95,interannual correlations in the range 0.72-0.75 and root mean squared errors near 0.06oC, consistent with observational uncertainties.Three transient runs of the HadCM3 coupled model for 1888-2002 demonstrate quite similar reconstruction skill from similar forcing factors defined appropriately for the model, showing that skilful use of our technique is not confined to observations. The observed reconstructions show that the Atlantic Multidecadal Oscillation (AMO) likely contributed to the re-commencement of global warming between 1976 and 2010 and to global cooling observed immediately beforehand in 1965-1976. The slowing of global warming in the last decade is likely to be largely due to a phase-delayed response to the downturn in the solar cycle since 2001-2, with no net ENSO contribution. The much reduced trend in 2001-10 is similar in size to other weak decadal temperature trends observed since global warming resumed in the 1970s. The causes of variations in decadal trends can be mostly explained by variations in the strength of the forcing factors. Eleven real-time forecasts of global mean surface temperature for the year ahead for 2000-2010, based on broadly similar methods, provide an independent test of the

  18. Ground-based thermal imaging of stream surface temperatures: Technique and evaluation

    USGS Publications Warehouse

    Bonar, Scott A.; Petre, Sally J.

    2015-01-01

    We evaluated a ground-based handheld thermal imaging system for measuring water temperatures using data from eight southwestern USA streams and rivers. We found handheld thermal imagers could provide considerably more spatial information on water temperature (for our unit one image = 19,600 individual temperature measurements) than traditional methods could supply without a prohibitive amount of effort. Furthermore, they could provide measurements of stream surface temperature almost instantaneously compared with most traditional handheld thermometers (e.g., >20 s/reading). Spatial temperature analysis is important for measurement of subtle temperature differences across waterways, and identification of warm and cold groundwater inputs. Handheld thermal imaging is less expensive and equipment intensive than airborne thermal imaging methods and is useful under riparian canopies. Disadvantages of handheld thermal imagers include their current higher expense than thermometers, their susceptibility to interference when used incorrectly, and their slightly lower accuracy than traditional temperature measurement methods. Thermal imagers can only measure surface temperature, but this usually corresponds to subsurface temperatures in well-mixed streams and rivers. Using thermal imaging in select applications, such as where spatial investigations of water temperature are needed, or in conjunction with stationary temperature data loggers or handheld electronic or liquid-in-glass thermometers to characterize stream temperatures by both time and space, could provide valuable information on stream temperature dynamics. These tools will become increasingly important to fisheries biologists as costs continue to decline.

  19. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is

  20. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  1. Optimal Experimental Design of Borehole Locations for Bayesian Inference of Past Ice Sheet Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Huan, X.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    Borehole data are essential for calibrating ice sheet models. However, field expeditions for acquiring borehole data are often time-consuming, expensive, and dangerous. It is thus essential to plan the best sampling locations that maximize the value of data while minimizing costs and risks. We present an uncertainty quantification (UQ) workflow based on rigorous probability framework to achieve these objectives. First, we employ an optimal experimental design (OED) procedure to compute borehole locations that yield the highest expected information gain. We take into account practical considerations of location accessibility (e.g., proximity to research sites, terrain, and ice velocity may affect feasibility of drilling) and robustness (e.g., real-time constraints such as weather may force researchers to drill at sub-optimal locations near those originally planned), by incorporating a penalty reflecting accessibility as well as sensitivity to deviations from the optimal locations. Next, we extract vertical temperature profiles from these boreholes and formulate a Bayesian inverse problem to reconstruct past surface temperatures. Using a model of temperature advection/diffusion, the top boundary condition (corresponding to surface temperatures) is calibrated via efficient Markov chain Monte Carlo (MCMC). The overall procedure can then be iterated to choose new optimal borehole locations for the next expeditions.Through this work, we demonstrate powerful UQ methods for designing experiments, calibrating models, making predictions, and assessing sensitivity--all performed under an uncertain environment. We develop a theoretical framework as well as practical software within an intuitive workflow, and illustrate their usefulness for combining data and models for environmental and climate research.

  2. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    NASA Astrophysics Data System (ADS)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  3. Modeling of surface temperature effects on mixed material migration in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  4. The influence of local sea surface temperatures on Australian east coast cyclones

    NASA Astrophysics Data System (ADS)

    Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.

    2016-11-01

    Cyclones are a major cause of rainfall and extreme weather in the midlatitudes and have a preference for genesis and explosive development in areas where a warm western boundary current borders a continental landmass. While there is a growing body of work on how extratropical cyclones are influenced by the Gulf Stream and Kuroshio Current in the Northern Hemisphere, there is little understanding of similar regions in the Southern Hemisphere including the Australian east coast, where cyclones that develop close to the coast are the main cause of severe weather and coastal flooding. This paper quantifies the impact of east Australian sea surface temperatures (SSTs) on local cyclone activity and behavior, using three different sets of sea surface temperature boundary conditions during the period 2007-2008 in an ensemble of Weather Research and Forecasting Model physics parameterizations. Coastal sea surface temperatures are demonstrated to have a significant impact on the overall frequency of cyclones in this region, with warmer SSTs acting as a trigger for the intensification of weak or moderate cyclones, particularly those of a subtropical nature. However, sea surface temperatures play only a minor role in the most intense cyclones, which are dominated by atmospheric conditions.

  5. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  6. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  7. Global surface temperature/heat transfer measurements using infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1992-01-01

    A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.

  8. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  9. True temperature measurement on metallic surfaces using a two-color pyroreflectometer method.

    PubMed

    Hernandez, D; Netchaieff, A; Stein, A

    2009-09-01

    In the most common case of optical pyrometry, the major obstacle in determining the true temperature is the knowledge of the thermo-optical properties for in situ conditions. We present experimental results obtained with a method able to determine the true temperature of metallic surfaces above 500 degrees C when there is not parasitic effect by surrounding radiation. The method is called bicolor pyroreflectometry and it is based on Planck's law, Kirchhoff's law, and the assumption of identical reflectivity indicatrixes for the target surface at two different close wavelengths (here, 1.3 and 1.55 microm). The diffusion factor eta(d), the key parameter of the method, is introduced to determine the convergence temperature T(*), which is expected to be equal to the true temperature T. Our goal is to asses this method for different metallic surfaces. The validation of this method is made by comparison with thermocouples. Measurements were made for tungsten, copper, and aluminum samples of different roughnesses, determined by a rugosimeter. After introducing a theoretical model for two-color pyroreflectometry, we give a description of the experimental setup and present experimental applications of the subject method. The quality of the results demonstrates the usefulness of two-color pyroreflectometry to determine the temperatures of hot metals when the emissivity is not known and for the commercially important case of specular surfaces.

  10. Analyses of global sea surface temperature 1856-1991

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexey; Cane, Mark A.; Kushnir, Yochanan; Clement, Amy C.; Blumenthal, M. Benno; Rajagopalan, Balaji

    1998-08-01

    Global analyses of monthly sea surface temperature (SST) anomalies from 1856 to 1991 are produced using three statistically based methods: optimal smoothing (OS), the Kaiman filter (KF) and optimal interpolation (OI). Each of these is accompanied by estimates of the error covariance of the analyzed fields. The spatial covariance function these methods require is estimated from the available data; the timemarching model is a first-order autoregressive model again estimated from data. The data input for the analyses are monthly anomalies from the United Kingdom Meteorological Office historical sea surface temperature data set (MOHSST5) [Parker et al., 1994] of the Global Ocean Surface Temperature Atlas (GOSTA) [Bottomley et al., 1990]. These analyses are compared with each other, with GOSTA, and with an analysis generated by projection (P) onto a set of empirical orthogonal functions (as in Smith et al. [1996]). In theory, the quality of the analyses should rank in the order OS, KF, OI, P, and GOSTA. It is found that the first four give comparable results in the data-rich periods (1951-1991), but at times when data is sparse the first three differ significantly from P and GOSTA. At these times the latter two often have extreme and fluctuating values, prima facie evidence of error. The statistical schemes are also verified against data not used in any of the analyses (proxy records derived from corals and air temperature records from coastal and island stations). We also present evidence that the analysis error estimates are indeed indicative of the quality of the products. At most times the OS and KF products are close to the OI product, but at times of especially poor coverage their use of information from other times is advantageous. The methods appear to reconstruct the major features of the global SST field from very sparse data. Comparison with other indications of the El Niño-Southern Oscillation cycle show that the analyses provide usable information on

  11. Recombination of 5-eV O(3P) atoms with surface-adsorbed NO - Spectra and their dependence on surface material and temperature

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Martus, K. E.; Chutjian, A.; Murad, E.

    1992-01-01

    Measurements have been conducted of the 300-850 nm recombination spectra associated with 5-eV collisions of O(3P) atoms with NO adsorbed on surfaces of MgF2, Ni, and Ti. Attention is given to the dependence of chemiluminescence intensity on surface temperature over the 240-340 K range. While all three materials tend to emit at the lower temperatures, MgF2 exhibits the greatest tendency to chemiluminescence. Both results are reflective of the greater packing density of surface-adsorbed NO at the lower temperatures for each surface. The activation energy for each surface is independent of emission wavelength, so that the same species is emitting throughout the wavelength range.

  12. Core body temperature, skin temperature, and interface pressure. Relationship to skin integrity in nursing home residents.

    PubMed

    Knox, D M

    1999-06-01

    To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored < 3 on the Short Portable Mini-Mental Status Questionnaire and did not have (1) open wounds; (2) albumin levels < 3.3 mg/dL; (3) severe arthritis; (4) cortisone, anticoagulation, insulin therapy or 3 medications for hypertension; and/or (5) were totally bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.

  13. Spatial correlations of interdecadal variation in global surface temperatures

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Park, Jeffrey

    1993-01-01

    We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.

  14. Some fundamental properties and reactions of ice surfaces at low temperatures.

    PubMed

    Park, Seong-Chan; Moon, Eui-Seong; Kang, Heon

    2010-10-14

    Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.

  15. Temperature dependent dispersion and electron-phonon coupling surface states on Be(1010)

    NASA Astrophysics Data System (ADS)

    Tang, Shu-Jung; Ismail; Sprunger, Philip; Plummer, Ward

    2002-03-01

    Temperature dependent dispersion and electron-phonon coupling surface states on Be(10-10) S.-J Tang*, Ismail* , P.T . Sprunger#, E. W. Plummer* * Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996 , # Center for Advanced Microstructures and Devices (CAMD), Louisiana State University The surface states dispersing in a large band gap from -A to -Γ in Be(10-10) were studied with high-resolution, angle-resolved photoemission. Spectra reveal that the two zone-boundary surface states, S1 and S2, behave significantly different with respect to band dispersion, the temperature dependence of binding energies, and the electron-phonon coupling. The band dispersion of S1 is purely free-electron like with the maximum binding energy of 0.37+-0.05 eV at -A and effective mass m*/m =0835. However, the maximum binding energy 2.74+-0.05 eV of the S2 is located 0.2Åaway from -A and disperses into the bulk band edge at a binding energy of 1.75+-0.05 eV. Temperature dependent data reveal that the binding energies of S1 and S2 at -A shift in opposite directions at the rate of (-0.61+-0.3)+- 10E-4 eV/K and (1.71+-0.8)+-10E-4 eV/K, respectively. Moreover, from the temperature-dependent spectral widths of the surface states S1 and S2 at , the electron-phonon coupling parameters,λ, have been determined. Unusually different, the coupling strength λ for S1 and S2 are 0.67+-0.03 and 0.51+-0.04, respectively. The differences between the electron-phonon coupling, temperature dependent binding energies, and dispersions between these two zone-centered surface states will be discussed in light unique bonding at the surface and localization.

  16. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  17. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    NASA Astrophysics Data System (ADS)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  18. Infrared surface temperature measurements for the surface tension driven convection experiment. M.S. Thesis - Case Western Reserve Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.

    1989-01-01

    In support of the Surface Tension Driven Convection Experiment (STDCE), a planned space transportation system (STS) flight experiment, a commercially available infrared thermal imaging system is used to quantify the imposed thermal signature along the free surface. The system was tested and calibrated for the STDCE with ground-based equivalents of the STDCE hardware. Before using the system, consideration was given to the radiation characteristics of the target (silicone oil). Absorption coefficients were calculated to understand the surface depth as seen by the imager and the penetration depth of the surface heater (CO2 laser). The performance and operational specifications for the imager and image processing system are described in detail to provide an understanding of the equipment. Measurements made with the system were compared to thermocouple measurements and a calculated surface temperature distribution. This comparison showed that in certain regions the IR imager measurements were within 5 percent of the overall temperature difference across the free surface. In other regions the measurements were within + or - 10 percent of the overall temperature gradient across the free surface. The effective emissivity of silicone oil for these experimental conditions was also determined. Measurement errors and their possible solutions are discussed.

  19. On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, P. A.; Garfinkel, C. I.

    2012-01-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High Low differences are consistent with a weakened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in late winter, affecting the April clear-sky UV index at Northern Hemisphere mid-latitudes.

  20. Thin sectioning and surface replication of ice at low temperature.

    USGS Publications Warehouse

    Daley, M.A.; Kirby, S.H.

    1984-01-01

    We have developed a new technique for making thin sections and surface replicas of ice at temperatures well below 273d K. The ability to make thin sections without melting sample material is important in textural and microstructural studies of ice deformed at low temperatures because of annealing effects we have observed during conventional section making.-from Author

  1. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    NASA Astrophysics Data System (ADS)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  2. Cold Blooded: Evaluating Brain Temperature by MRI During Surface Cooling of Human Subjects.

    PubMed

    Curran, Eric J; Wolfson, Daniel L; Watts, Richard; Freeman, Kalev

    2017-10-01

    Targeted temperature management (TTM) confers neurological and survival benefits for post-cardiac arrest patients with return of spontaneous circulation (ROSC) who remain comatose. Specialized equipment for induction of hypothermia is not available in the prehospital setting, and there are no reliable methods for emergency medical services personnel to initiate TTM. We hypothesized that the application of surface cooling elements to the neck will decrease brain temperature and act as initiators of TTM. Magnetic resonance (MR) spectroscopy was used to evaluate the effect of a carotid surface cooling element on brain temperature in healthy adults. Six individuals completed this study. We measured a temperature drop of 0.69 ± 0.38 °C (95% CI) in the cortex of the brain following the application of the cooling element. Application of a room temperature element also caused a measurable decrease in brain temperature of 0.66 ± 0.41 °C (95% CI) which may be attributable to baroreceptor activation. The application of surface cooling elements to the neck decreased brain temperature and may serve as a method to initiate TTM in the prehospital setting.

  3. Regional and circadian variations of sweating rate and body surface temperature in camels (Camelus dromedarius).

    PubMed

    Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A

    2012-07-01

    It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  4. The Remote Sensing of Surface Radiative Temperature over Barbados.

    DTIC Science & Technology

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  5. Calculation of surface temperature and surface fluxes in the GLAS GOM

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Abeles, J. A.

    1981-01-01

    Because the GLAS model's surface fluxes of sensible and latent heat exhibit strong 2 delta t oscillations at the individual grid points as well as in the zonal hemispheric averages and because a basic weakness of the GLAS model lower evaporation over oceans and higher evaporation over land in a typical monthly simulation, the GLAS model PBL parameterization was changed to calculate the mixed layer temperature gradient by solution of a quadratic equation for a stable PBL and by a curve fit relation for an unstable PBL. The new fluxes without any 2 delta t oscillation. Also, the geographical distributions of the surface fluxes are improved. The parameterization presented is incorporated into the new GLAS climate model. Some results which compare the evaporation over land and ocean between old and new calculations are appended.

  6. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  7. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  8. Sex and hibernaculum temperature predict survivorship in white-nose syndrome affected little brown myotis (Myotis lucifugus).

    PubMed

    Grieneisen, Laura E; Brownlee-Bouboulis, Sarah A; Johnson, Joseph S; Reeder, DeeAnn M

    2015-02-01

    White-nose syndrome (WNS), an emerging infectious disease caused by the novel fungus Pseudogymnoascus destructans, has devastated North American bat populations since its discovery in 2006. The little brown myotis, Myotis lucifugus, has been especially affected. The goal of this 2-year captive study was to determine the impact of hibernacula temperature and sex on WNS survivorship in little brown myotis that displayed visible fungal infection when collected from affected hibernacula. In study 1, we found that WNS-affected male bats had increased survival over females and that bats housed at a colder temperature survived longer than those housed at warmer temperatures. In study 2, we found that WNS-affected bats housed at a colder temperature fared worse than unaffected bats. Our results demonstrate that WNS mortality varies among individuals, and that colder hibernacula are more favourable for survival. They also suggest that female bats may be more negatively affected by WNS than male bats, which has important implications for the long-term survival of the little brown myotis in eastern North America.

  9. The annual and interannual variabilities of precipitable water, surface wind speed, and sea surface temperature over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1989-01-01

    The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.

  10. On the relationship between the early spring Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer

    NASA Astrophysics Data System (ADS)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.

    2018-05-01

    In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.

  11. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  12. Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature

    NASA Astrophysics Data System (ADS)

    Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.

    2009-08-01

    We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.

  13. Atmospheric Compensation and Surface Temperature and Emissivity Retrieval with LWIR Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Pieper, Michael

    Accurate estimation or retrieval of surface emissivity spectra from long-wave infrared (LWIR) or Thermal Infrared (TIR) hyperspectral imaging data acquired by airborne or space-borne sensors is necessary for many scientific and defense applications. The at-aperture radiance measured by the sensor is a function of the ground emissivity and temperature, modified by the atmosphere. Thus the emissivity retrieval process consists of two interwoven steps: atmospheric compensation (AC) to retrieve the ground radiance from the measured at-aperture radiance and temperature-emissivity separation (TES) to separate the temperature and emissivity from the ground radiance. In-scene AC (ISAC) algorithms use blackbody-like materials in the scene, which have a linear relationship between their ground radiances and at-aperture radiances determined by the atmospheric transmission and upwelling radiance. Using a clear reference channel to estimate the ground radiance, a linear fitting of the at-aperture radiance and estimated ground radiance is done to estimate the atmospheric parameters. TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the sharp features added by the atmosphere. The ground temperature and emissivity are found by finding the temperature that provides the smoothest emissivity estimate. In this thesis we develop models to investigate the sensitivity of AC and TES to the basic assumptions enabling their performance. ISAC assumes that there are perfect blackbody pixels in a scene and that there is a clear channel, which is never the case. The developed ISAC model explains how the quality of blackbody-like pixels affect the shape of atmospheric estimates and the clear channel assumption affects their magnitude. Emissivity spectra for solids usually have some roughness. The TES model identifies four sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect

  14. Temperature response surfaces for mortality risk of tree species with future drought

    DOE PAGES

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; ...

    2017-11-17

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits

  15. Temperature response surfaces for mortality risk of tree species with future drought

    NASA Astrophysics Data System (ADS)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for

  16. Temperature response surfaces for mortality risk of tree species with future drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P . ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits

  17. Temperature response surfaces for mortality risk of tree species with future drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits

  18. Analysis of near-shore sea surface temperatures in the Northern Pacific

    EPA Science Inventory

    Recent studies report a warming trend in Pacific Ocean temperatures over the last 50 years. However, much less is known about temperature change in the near-coastal environment, which is particularly sensitive to climatic change. In near-shore regions in situ sea surface temper...

  19. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature.

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Groisman, Pavel Ya.; Bradley, Raymond S.; Keimig, Frank T.

    2000-12-01

    The relationship between cloud cover and near-surface air temperature and its decadal changes are examined using the hourly synoptic data for the past four to six decades from five regions of the Northern Hemisphere: Canada, the United States, the former Soviet Union, China, and tropical islands of the western Pacific. The authors define the normalized cloud cover-surface air temperature relationship, NOCET or dT/dCL, as a temperature anomaly with a unit (one-tenth) deviation of total cloud cover from its average value. Then mean monthly NOCET time series (night- and daytime, separately) are area-averaged and parameterized as functions of surface air humidity and snow cover. The day- and nighttime NOCET variations are strongly anticorrelated with changes in surface humidity. Furthermore, the daytime NOCET changes are positively correlated to changes in snow cover extent. The regionally averaged nighttime NOCET varies from 0.05 K tenth1 in the wet Tropics to 1.0 K tenth1 at midlatitudes in winter. The daytime regional NOCET ranges from 0.4 K tenth1 in the Tropics to 0.7 K tenth1 at midlatitudes in winter.The authors found a general strengthening of a daytime surface cooling during the post-World War II period associated with cloud cover over the United States and China, but a minor reduction of this cooling in higher latitudes. Furthermore, since the 1970s, a prominent increase in atmospheric humidity has significantly weakened the effectiveness of the surface warming (best seen at nighttime) associated with cloud cover.The authors apportion the spatiotemporal field of interactions between total cloud cover and surface air temperature into a bivariate relationship (described by two equations, one for daytime and one for nighttime) with surface air humidity and snow cover and two constant factors. These factors are invariant in space and time domains. It is speculated that they may represent empirical estimates of the overall cloud cover effect on the surface air

  20. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  1. Theoretical algorithms for satellite-derived sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  2. Surface temperature measurements of a levitated water drop during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Tracey, Timothy

    2016-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high liklihood of turbulence, fog, and rain or sea spray within the beam path. Laser interactions with large water drops (diameters of approximately 1-mm), such as those found in a light rain, have received relatively less attention. In this regime a high energy laser will rapidly heat and vaporize a water drop as it traverses the beam path, but the exact heating / vaporization rate, its dependence on impurities, and ancillary effects on the drop or surroundings are unclear. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 500 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, yet based on the time history of the drop volume vaporization begins almost immediately upon laser strike. Inferences on the turbulence characteristics within the drop are also made from measurements of the fluctuations in the surface temperature. Supported by ONR, HEL-JTO, and USNA Trident Scholar Program.

  3. Venus: estimates of the surface temperature and pressure from radio and radar measurements.

    PubMed

    Wood, A T; Wattson, R B; Pollack, J B

    1968-10-04

    The radio brightness temperature and radar cross section spectra of Venus are in much better accord with surface boundary conditions deduced from a combination of the Mariner V results and the radar radius than those obtained by the Venera 4 space probe. The average surface temperature and pressure are approximately 750 degrees K and 90 atmospheres.

  4. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    PubMed

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  5. Downscaling of land surface temperatures from SEVIRI

    NASA Astrophysics Data System (ADS)

    Bechtel, B.; Zaksek, K.

    2013-12-01

    Land surface temperature (LST) determines the radiance emitted by the surface and hence is an important boundary condition of the energy balance. In urban areas, detailed knowledge about the diurnal cycle in LST can contribute to understand the urban heat island (UHI). Although the increased surface temperatures compared to the surrounding rural areas (surface urban heat island, SUHI) have been measured by satellites and analysed for several decades, an operational SUHI monitoring is still not available due to the lack of sensors with appropriate spatiotemporal resolution. While sensors on polar orbiting satellites are still restricted to approx. 100 m spatial resolution and coarse temporal coverage (about 1-2 weeks), sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (>3 km). Further, all polar orbiting satellites have a similar equator crossing time and hence the SUHI can at best be observed at two times a day. A downscaling DS scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 8 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg. Various data were tested as predictors, including multispectral data and derived indices, morphological parameters from interferometric SAR and multitemporal thermal data. All predictors were upscaled to the coarse resolution approximating the point spread function of SEVIRI. Then empirical relationships between the predictors and LST were derived which are then transferred to the high resolution domain, assuming they are scale invariant. For validation LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Enhanced Thematic Mapper Plus (ETM+) for two dates were used. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results

  6. Turbulent Flow past High Temperature Surfaces

    NASA Astrophysics Data System (ADS)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  7. Theoretical study of cathode surfaces and high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Mueller, Wolfgang

    1994-01-01

    The surface-dipole properties of model cathode surfaces have been investigated with relativistic scattered-wave cluster calculations. Work-function/coverage curves have been derived from these data by employing the depolarization model of interacting surface dipoles. Accurate values have been obtained for the minimum work functions of several low-work-function surfaces. In the series BaO on bcc W, hcp Os, and fcc Pt, BaO/Os shows a lower and BaO/Pt a higher work function than BaO/W, which is attributed to the different substrate crystal structures involved. Results are also presented on the electronic structure of the high-temperature superconductor YBa2Cu3O7, which has been investigated with fully relativistic calculations for the first time.

  8. Decadal trends in Red Sea maximum surface temperature.

    PubMed

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  9. Surface compositional variations of Mo-47Re alloy as a function of temperature

    NASA Technical Reports Server (NTRS)

    Hoekje, S. J.; Outlaw, R. A.; Sankaran, S. N.

    1993-01-01

    Molybdenum-rhenium alloys are candidate materials for the National Aero-Space Plane (NASP) as well as for other applications in generic hypersonics. These materials are expected to be subjected to high-temperature (above 1200 C) casual hydrogen (below 50 torr), which could potentially degrade the material strength. Since the uptake of hydrogen may be controlled by the contaminant surface barriers, a study of Mo-47Re was conducted to examine the variations in surface composition as a function of temperature from 25 C to 1000 C. Pure molybdenum and rhenium were also examined and the results compared with those for the alloy. The analytical techniques employed were Auger electron spectroscopy, electron energy loss spectroscopy, ion scattering spectroscopy, and x ray photoelectron spectroscopy. The native surface was rich in metallic oxides that disappeared at elevated temperatures. As the temperature increased, the carbon and oxygen disappeared by 800 C and the surface was subsequently populated by the segregation of silicon, presumably from the grain boundaries. The alloy readily chemisorbed oxygen, which disappeared with heating. The disappearance temperature progressively increased for successive dosings. When the alloy was exposed to 800 torr of hydrogen at 900 C for 1 hour, no hydrogen interaction was observed.

  10. Quantitative Surface Emissivity and Temperature Measurements of a Burning Solid Fuel Accompanied by Soot Formation

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Pettegrew, Richard D.; Ferkul, Paul; Sacksteder, K. (Technical Monitor)

    2001-01-01

    Surface radiometry is an established technique for noncontact temperature measurement of solids. We adapt this technique to the study of solid surface combustion where the solid fuel undergoes physical and chemical changes as pyrolysis proceeds, and additionally may produce soot. The physical and chemical changes alter the fuel surface emissivity, and soot contributes to the infrared signature in the same spectral band as the signal of interest. We have developed a measurement that isolates the fuel's surface emissions in the presence of soot, and determine the surface emissivity as a function of temperature. A commercially available infrared camera images the two-dimensional surface of ashless filter paper burning in concurrent flow. The camera is sensitive in the 2 to 5 gm band, but spectrally filtered to reduce the interference from hot gas phase combustion products. Results show a strong functional dependence of emissivity on temperature, attributed to the combined effects of thermal and oxidative processes. Using the measured emissivity, radiance measurements from several burning samples were corrected for the presence of soot and for changes in emissivity, to yield quantitative surface temperature measurements. Ultimately the results will be used to develop a full-field, non-contact temperature measurement that will be used in spacebased combustion investigations.

  11. Relationship Between Sea Surface Temperature and Surface Heat Balance Trends in the Tropical Oceans: The Crucial Role of Surface Wind Trends

    NASA Astrophysics Data System (ADS)

    Cook, K. H.; Vizy, E. K.; Sun, X.

    2016-12-01

    Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface heat balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface heat budgets and sea surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net heat flux from the atmosphere to the ocean. Trends in the net longwave and sensible heat fluxes are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent heat flux trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent heat flux dominates and explains much of the regionality of the multi-decadal heat flux trends. However, trends in the net surface heat flux alone do not match the observed SSTs trends well, indicating that the redistribution of heat within the ocean mixed layer is also important. Ocean mixed layer heat budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.

  12. Bacterial production of sunscreen pigments increase arid land soil surface temperature

    NASA Astrophysics Data System (ADS)

    Couradeau, Estelle; Karaoz, Ulas; Lim, HsiaoChien; Nunes da Rocha, Ulisses; Northern, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2015-04-01

    Biological Soil Crusts (BSCs) are desert top soils formations built by complex microbial communities and dominated by the filamentous cyanobacterium Microcoleus sp. BSCs cover extensive desert areas where they correspond to millimeters size mantles responsible of soil stability and fertility. Despite their ecological importance, little is known about how these communities will endure climate change. It has been shown in North America that different species of Microcoleus showed distinct temperature preferences and that their continental biogeography may be susceptible to small changes in temperature with unknown consequences for the ecosystem function. Using a combination of physical, biochemical and microbiological analyses to characterize a successional gradient of crust maturity from light to dark BSCs (Moab, Utah) we found that the concentration of scytonemin (a cyanobacterial sunscreen pigment) increased with crust maturity. We also confirmed that scytonemin was by far the major pigment responsible of light absorption in the visible spectrum in BSCs, and is then responsible of the darkening of the BSCs (i.e decrease of albedo) with maturity. We measured the surface temperature and albedo and found, as predicted, a negative linear relationship between these two parameters. The decrease in albedo across the gradient of crust maturity corresponded to an increase in surface temperature up to 10° C. Upon investigation of microbial community composition using SSU rRNA gene analysis, we demonstrate that warmer crust surface temperatures (decreased albedo) are associated with a replacement of the dominant cyanobacterium; the thermosensitive Microcoleus sp. being replaced by a thermotolerant Microcoleus sp. in darker BSCs. This study supports at the local scale a finding previously made at the continental scale, but also sheds light on the importance of scytonemin as a significant warmer of soils with important consequences for BSC composition and function. Based on

  13. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry.

    PubMed

    Mei, Jie; Riedel, Nico; Grittner, Ulrike; Endres, Matthias; Banneke, Stefanie; Emmrich, Julius Valentin

    2018-02-23

    Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.

  14. Elevated surface temperature depresses survival of banner-tailed kangaroo rats: will climate change cook a desert icon?

    PubMed

    Moses, Martin R; Frey, Jennifer K; Roemer, Gary W

    2012-01-01

    Modest increases in global temperature have been implicated in causing population extirpations and range shifts in taxa inhabiting colder environs and in ectotherms whose thermoregulation is more closely tied to environmental conditions. Many arid-adapted endotherms already experience conditions at their physiological limits, so it is conceivable that they could be similarly affected by warming temperatures. We explored how climatic variables might influence the apparent survival of the banner-tailed kangaroo rat (Dipodomys spectabilis), a rodent endemic to the Chihuahuan Desert of North America and renowned for its behavioral and physiological adaptations to arid environments. Relative variable weight, strength of variable relationships, and other criteria indicated that summer, diurnal land surface temperature (SD_LST) was the primary environmental driver of apparent survival in these arid-adapted rodents. Higher temperatures had a negative effect on apparent survival, which ranged from 0.15 (SE = 0.04) for subadults to 0.50 (SE = 0.07) for adults. Elevated SD_LST may negatively influence survival through multiple pathways, including increased water loss and energy expenditure that could lead to chronic stress and/or hyperthermia that could cause direct mortality. Land surface temperatures are predicted to increase by as much 6.5°C by 2099, reducing apparent survival of adults to ~0.15 in some regions of the species' range, possibly causing a shift in their distribution. The relationship between SD_LST and survival suggests a mechanism whereby physiological tolerances are exceeded resulting in a reduction to individual fitness that may ultimately cause a shift in the species' range over time.

  15. In-situ ellipsometric studies of optical and surface properties of GaAs(100) at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.

    1991-01-01

    A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.

  16. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tang, Qiuhong; Xu, Di; Yang, Zhiyong

    2018-03-01

    A large proportion of meteorological stations in mainland China are located in or near either urban or agricultural lands that were established throughout the period of rapid urbanization and agricultural development (1961-2006). The extent of the impacts of urbanization and agricultural development on observed air temperature changes across different climate regions remains elusive. This study evaluates the surface air temperature trends observed by 598 meteorological stations in relation to the urbanization and agricultural development over the arid northwest, semi-arid intermediate, and humid southeast regions of mainland China based on linear regressions of temperature trends on the fractions of urban and cultivated land within a 3-km radius of the stations. In all three regions, the stations surrounded by large urban land tend to experience rapid warming, especially at minimum temperature. This dependence is particularly significant in the southeast region, which experiences the most intense urbanization. In the northwest and intermediate regions, stations surrounded by large cultivated land encounter less warming during the main growing season, especially at the maximum temperature changes. These findings suggest that the observed surface warming has been affected by urbanization and agricultural development represented by urban and cultivated land fractions around stations in with land cover changes in their proximity and should thus be considered when analyzing regional temperature changes in mainland China.

  17. Remotely sensed sea surface temperature variability off California during a 'Santa Ana' clearing

    NASA Technical Reports Server (NTRS)

    Lynn, R. J.; Svejkovsky, J.

    1984-01-01

    Multichannel atmospheric correction equations for the NOAA 6 proposed by Bernstein (1982) and by McClain (1981) are evaluated by using satellite and in situ data collected over and in the Southern California Bight. The temporal and spatial variation of sea surface temperature over small scales is estimated from the data, and the effect of this variation in matching satellite and in situ data sets is discussed. Changes in the temperature fields between images are examined for diurnal variation and for surface advection of horizontal temperature gradients.

  18. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands

    NASA Astrophysics Data System (ADS)

    Quan, Jinling; Zhan, Wenfeng; Chen, Yunhao; Wang, Mengjie; Wang, Jinfei

    2016-03-01

    Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual, and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to decompose LST time series into trend, seasonal, and noise components. The trend component indicates long-term climate change and land development and is described as a piecewise linear function with iterative breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging Spectroradiometer (MODIS)/LST time series during 2000-2012 over Beijing yielded an overall root-mean-square error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual MODIS/LSTs. LST decreased (~ -0.086 K/yr, p < 0.1) in 53% of the study area, whereas it increased with breakpoints in 2009 (~0.084 K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The decreasing trend was stronger over croplands than over urban lands (p < 0.05), resulting in an increasing trend in surface urban heat island intensity (SUHII, 0.022 ± 0.006 K/yr). This was mainly attributed to the trends in urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).

  19. Plasticity of Noddy Parents and Offspring to Sea-Surface Temperature Anomalies

    PubMed Central

    Devney, Carol A.; Caley, M. Julian; Congdon, Bradley C.

    2010-01-01

    Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus), during two breeding seasons. The first season had anomalously high sea-surface temperatures and ‘low’ prey availability, while the second was a season of below average sea-surface temperatures and ‘normal’ food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited. PMID:20686693

  20. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  1. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  2. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  3. Proteomic analysis of tree peony (Paeonia ostii 'Feng Dan') seed germination affected by low temperature.

    PubMed

    Ren, Xiu-Xia; Xue, Jing-Qi; Wang, Shun-Li; Xue, Yu-Qian; Zhang, Ping; Jiang, Hai-Dong; Zhang, Xiu-Xin

    Seed germination is a critical process that is influenced by various factors. In the present study, the effect of low temperature (4 °C) on tree peony seed germination was investigated. Compared to seeds maintained at 25 °C, germination was inhibited when seeds were kept at 4 °C. Furthermore, low-temperature exposure of seeds resulted in a delay in water uptake, starch degradation, and soluble sugar consumption and a subsequent increase in soluble protein levels. Two-dimensional gel electrophoresis (2-DE) proteomic analysis identified 100 protein spots. Comparative analysis indicated that low-temperature exposure apparently mainly affected glycolysis and the tricarboxylic acid (TCA) cycle, while also significantly affecting proteometabolism-related factors. Moreover, low-temperature exposure led to the induction of abscisic acid, whereas the gibberellin pathway was not affected. Further comparison of the two temperature conditions showed that low-temperature exposure delays carbohydrate metabolism, adenosine triphosphate (ATP) production, respiration, and proteolysis and increases defense response factors. To further examine the obtained proteomic findings, four genes were evaluated by quantitative polymerase chain reaction (qPCR). The obtained transcriptional results for the GAPC gene coincided with the translational results, thus further suggesting that the delay in glycolysis may play a key role in low-temperature-induced inhibition of seed germination. However, the other three genes examined, which included FPP synthase, PCNT115, and endochitinase, showed non-correlative transcriptional and translational profiles. Our results suggest that the exposure of tree peony seeds to low temperature results in a delay in the degradation of starch and other metabolites, which in turn affects glycolysis and some other processes, thereby ultimately inhibiting seed germination. Copyright © 2017. Published by Elsevier GmbH.

  4. Tribological properties and surface chemistry of silicon carbide at temperatures to 1500 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Silicon carbide surfaces were heated to 1500 C in a vacuum and analyzed at room temperature with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The basic unit of the surfaces was considered as a plane of a tetrahedron of either SiC4 and CSi4 composition. AES spectra were obtained from 250-1500 C, with an analysis depth of 1 nm revealed the presence of little Si and mostly graphite. XPS analysis depth was 2 nm or less, and Si was found in the second 1 nm. Sliding friction tests with single-crystal silicon carbide in contact with iron in a vacuum were characterized by a stock-slip value. The coefficient of friction increased with increasing temperature up to 400 C, then decreased with increasing temperature from 400-600 C. Reheating surfaces to 800 C after preheating them to that temperature produced no changes in AES readings. It is concluded that the maximum density of silicon and silicon-carbide is at 800 C, and the higher the sliding temperature, the more metal that is transferred.

  5. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  6. Low Temperature Surface Carburization of Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatmentmore » retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other

  7. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  8. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  9. A surface temperature and moisture parameterization for use in mesoscale numerical models

    NASA Technical Reports Server (NTRS)

    Tremback, C. J.; Kessler, R.

    1985-01-01

    A modified multi-level soil moisture and surface temperature model is presented for use as in defining lower boundary conditions in mesoscale weather models. Account is taken of the hydraulic and thermal diffusion properties of the soil, their variations with soil type, and the mixing ratio at the surface. Techniques are defined for integrating the surface input into the multi-level scheme. Sample simulation runs were performed with the modified model and the original model defined by Pielke, et al. (1977, 1981). The models were applied to regional weather forecasting over soils composed of sand and clay loam. The new form of the model avoided iterations necessary in the earlier version of the model and achieved convergence at reasonable profiles for surface temperature and moisture in regions where the earlier version of the model failed.

  10. Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Xueqian; Guo, Weidong; Qiu, Bo; Liu, Ye; Sun, Jianning; Ding, Aijun

    2017-04-01

    Anthropogenic land use has a significant impact on climate change. Located in the typical East Asian monsoon region, the land-atmosphere interaction in the lower reaches of the Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface factors to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (ΔTa). It is found that the cropland cooling effect decreases Ts by 1.76° and the urban heat island effect increases Ts by 1.25°. They have opposite impacts but are both significant in this region. Various changes in surface factors affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region and accounts for 1.40° of the crop cooling and 2.29° of the urban warming. Moreover, the background atmospheric circulation is also an indispensable part in land-atmosphere feedback induced by land use change and reinforces both these effects.

  11. Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.

    2000-01-01

    Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.

  12. Spatial and Temporal Variations in Titan's Surface Temperatures from Cassini CIRS Observations

    NASA Technical Reports Server (NTRS)

    Cottini, V.; Nixon, C. A.; Jennings, D. E.; deKok, R.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2012-01-01

    We report a wide-ranging study of Titan's surface temperatures by analysis of the Moon's outgoing radiance through a spectral window in the thermal infrared at 19 mm (530/cm) characterized by lower atmospheric opacity. We begin by modeling Cassini Composite Infrared Spectrometer (CIRS) far infrared spectra collected in the period 2004-2010, using a radiative transfer forward model combined with a non-linear optimal estimation inversion method. At low-latitudes, we agree with the HASI near-surface temperature of about 94 K at 101S (Fulchignoni et al., 2005). We find a systematic decrease from the equator toward the poles, hemispherically asymmetric, of approx. 1 K at 60 deg. south and approx. 3 K at 60 deg. north, in general agreement with a previous analysis of CIRS data and with Voyager results from the previous northern winter. Subdividing the available database, corresponding to about one Titan season, into 3 consecutive periods, small seasonal changes of up to 2 K at 60 deg N became noticeable in the results. In addition, clear evidence of diurnal variations of the surface temperatures near the equator are observed for the first time: we find a trend of slowly increasing temperature from the morning to the early afternoon and a faster decrease during the night. The diurnal change is approx. 1.5 K, in agreement with model predictions for a surface with a thermal inertia between 300 and 600 J/ sq. m s (exp -1/2) / K. These results provide important constraints on coupled surface-atmosphere models of Titan's meteorology and atmospheric dynamic.

  13. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  14. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  15. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  16. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  17. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  18. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    PubMed

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  19. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  20. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  1. The heat is on: room temperature affects laboratory equipment--an observational study.

    PubMed

    Butler, Julia M; Johnson, Jane E; Boone, William R

    2013-10-01

    To evaluate the effect of ambient room temperature on equipment typically used in in vitro fertilization (IVF). We set the control temperature of the room to 20 °C (+/-0.3) and used CIMScan probes to record temperatures of the following equipment: six microscope heating stages, four incubators, five slide warmers and three heating blocks. We then increased the room temperature to 26 °C (+/-0.3) or decreased it to 17 °C (+/-0.3) and monitored the same equipment again. We wanted to determine what role, if any, changing room temperature has on equipment temperature fluctuation. There was a direct relationship between room temperature and equipment temperature stability. When room temperature increased or decreased, equipment temperature reacted in a corresponding manner. Statistical differences between equipment were found when the room temperature changed. What is also noteworthy is that temperature of equipment responded within 5 min to a change in room temperature. Clearly, it is necessary to be aware of the affect of room temperature on equipment when performing assisted reproductive procedures. Room and equipment temperatures should be monitored faithfully and adjusted as frequently as needed, so that consistent culture conditions can be maintained. If more stringent temperature control can be achieved, human assisted reproduction success rates may improve.

  2. Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.

    2016-12-01

    Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise

  3. Large ground surface temperature changes of the last three centuries inferred from borehole temperatures in the Southern Canadian Prairies, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Safanda, Jan; Harris, Robert N.; Skinner, Walter R.

    1999-05-01

    New temperature logs in wells located in the grassland ecozone in the Southern Canadian Prairies in Saskatchewan, where surface disturbance is considered minor, show a large curvature in the upper 100 m. The character of this curvature is consistent with ground surface temperature (GST) warming in the 20th century. Repetition of precise temperature logs in southern Saskatchewan (years 1986 and 1997) shows the conductive nature of warming of the subsurface sediments. The magnitude of surface temperature change during that time (11 years) is high (0.3-0.4°C). To assess the conductive nature of temperature variations at the grassland surface interface, several precise air and soil temperature time series in the southern Canadian Prairies (1965-1995) were analyzed. The combined anomalies correlated at 0.85. Application of the functional space inversion (FSI) technique with the borehole temperature logs and site-specific lithology indicates a warming to date of approximately 2.5°C since a minimum in the late 18th century to mid 19th century. This warming represents an approximate increase from 4°C around 1850 to 6.5°C today. The significance of this record is that it suggests almost half of the warming occurred prior to 1900, before dramatic build up of atmospheric green house gases. This result correlates well with the proxy record of climatic change further to the north, beyond the Arctic Circle [Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamourex, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries, Science 278, 1251-1256.].

  4. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Temperature

    EPA Pesticide Factsheets

    water temperature changes associated with urbanization, heated surface runoff associated with urbanization, how temperature changes associated with urbanization can affect stream biota, interactive effects of urbanizaiton and climate change.

  5. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Li, Shuguang; shi, Min; Feng, Xinxing

    2018-07-01

    A high sensitivity photonic crystal fiber (PCF) temperature sensor based on surface plasmon resonance is proposed and evaluated using the finite element method. Besides, the coupling phenomenon is studied. The gold layer deposited on the polishing surface of D-shape PCF is used as the metal to stimulate surface plasma, which can improves the sensitivity. Through exquisite design, the birefringence of the fiber is improved, which makes the loss of y-polarization far greater than the loss of x-polarization. The D-shape fiber avoids filling metal and liquid into the air-holes, which can contact with fluid directly to feel temperature. When the phase matching condition is satisfied, the core mode will couple with the surface plasma mode. The resonance position of y-polarization is very sensitive to the temperature change. The simulation shows that the PCF has high sensitivity of 36.86 nm/°C in y-polarization and wide detection that from 10 °C to 85 °C.

  6. Soil and surface temperatures at the Viking landing sites

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.

    1976-01-01

    The annual temperature range for the Martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the Martian soil.

  7. Soil and surface temperatures at the viking landing sites.

    PubMed

    Kieffer, H H

    1976-12-11

    The annual temperature range for the martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the martian soil.

  8. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  9. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa.

    PubMed

    Chudecka, Monika; Lubkowska, Anna

    2016-01-01

    The drastic reduction in body weight observed in anorexia nervosa (AN) leads to various endocrine changes and consequently to disturbance in thermoregulation mechanisms and body temperature. Thermography allows for a noninvasive diagnosis of the distribution of skin surface temperatures, which is especially important for difficult patients such as women with AN, who are often very sensitive and difficult to treat. The main aim of this study was to measure the mean temperatures (Tmean ) of selected body areas in young women diagnosed with AN and identify those areas where the temperature differences were particularly significant between healthy women and them. Additionally, we determined the relationships between body mass index, body composition (especially subcutaneous and VFM) and the value of mean surface temperature (Tmean ) in AN woman. In the subjects with AN, Tmean of the abdomen, lower back and thighs were significantly higher than in the reference group, while Tmean of the hands were significantly lower. Among other things, analysis showed a significant negative correlation between Tmean of the abdomen, lower back and thighs, and the mass of subcutaneous and visceral fat. The lower Tmean of the hand was directly proportional to the reduced anthropomorphic parameters. The direct evaluation of body surface temperature distribution could provide clinical implications for the treatment of anorexic patients, including the potential use of thermotherapy in stimulating the circulatory system, especially in hypothermia, bradycardia and hypotension. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  10. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1982-01-01

    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.

  11. The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Candy, B.; Saunders, R. W.; Ghent, D.; Bulgin, C. E.

    2017-09-01

    Land surface temperature (LST) observations from a variety of satellite instruments operating in the infrared have been compared to estimates of surface temperature from the Met Office operational numerical weather prediction (NWP) model. The comparisons show that during the day the NWP model can underpredict the surface temperature by up to 10 K in certain regions such as the Sahel and southern Africa. By contrast at night the differences are generally smaller. Matchups have also been performed between satellite LSTs and observations from an in situ radiometer located in Southern England within a region of mixed land use. These matchups demonstrate good agreement at night and suggest that the satellite uncertainties in LST are less than 2 K. The Met Office surface analysis scheme has been adapted to utilize nighttime LST observations. Experiments using these analyses in an NWP model have shown a benefit to the resulting forecasts of near-surface air temperature, particularly over Africa.

  12. ARIMA representation for daily solar irradiance and surface air temperature time series

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  13. Geostatistical Analysis of Surface Temperature and In-Situ Soil Moisture Using LST Time-Series from Modis

    NASA Astrophysics Data System (ADS)

    Sohrabinia, M.; Rack, W.; Zawar-Reza, P.

    2012-07-01

    The objective of this analysis is to provide a quantitative estimate of the fluctuations of land surface temperature (LST) with varying near surface soil moisture (SM) on different land-cover (LC) types. The study area is located in the Canterbury Plains in the South Island of New Zealand. Time series of LST from the MODerate resolution Imaging Spectro-radiometer (MODIS) have been analysed statistically to study the relationship between the surface skin temperature and near-surface SM. In-situ measurements of the skin temperature and surface SM with a quasi-experimental design over multiple LC types are used for validation. Correlations between MODIS LST and in-situ SM, as well as in-situ surface temperature and SM are calculated. The in-situ measurements and MODIS data are collected from various LC types. Pearson's r correlation coefficient and linear regression are used to fit the MODIS LST and surface skin temperature with near-surface SM. There was no significant correlation between time-series of MODIS LST and near-surface SM from the initial analysis, however, careful analysis of the data showed significant correlation between the two parameters. Night-time series of the in-situ surface temperature and SM from a 12 hour period over Irrigated-Crop, Mixed-Grass, Forest, Barren and Open- Grass showed inverse correlations of -0.47, -0.68, -0.74, -0.88 and -0.93, respectively. These results indicated that the relationship between near-surface SM and LST in short-terms (12 to 24 hours) is strong, however, remotely sensed LST with higher temporal resolution is required to establish this relationship in such time-scales. This method can be used to study near-surface SM using more frequent LST observations from a geostationary satellite over the study area.

  14. Ocean backscatter across the Gulf Stream sea surface temperature front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. Themore » sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.« less

  15. Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Kania, L. A.; Chitty, A.

    1983-01-01

    A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.

  16. The Role of Surface Protection for High-Temperature Performance of TiAl Alloys

    NASA Astrophysics Data System (ADS)

    Schütze, Michael

    2017-12-01

    In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.

  17. Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.

    PubMed

    Goldobin, Denis S; Krauzin, Pavel V

    2015-12-01

    We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.

  18. Florida Current surface temperature and salinity variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Lund, David C.; Curry, William

    2006-06-01

    The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial timescales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA) (˜1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (˜0.1‰) of this shift may be an artifact of anthropogenically driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4-1 increase in salinity after 200 years B.P. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Variable atmospheric 14C paralleled Dry Tortugas δ18Ow, suggesting that solar irradiance paced centennial-scale migration of the Inter-Tropical Convergence Zone and changes in Florida Current salinity during the last millennium.

  19. Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Newton, Aric G.

    2016-10-01

    The surfaces of clay minerals, which are abundant in atmospheric mineral dust, serve as an important medium to catalyze ice nucleation. The lateral edge surface of 2:1 clay minerals is postulated to be a potential site for ice nucleation. However, experimental investigations of the edge surface structure itself have been limited compared to the basal planes of clay minerals. Density functional theory (DFT) computational studies have provided insights into the pyrophyllite edge surface. Pyrophyllite is an ideal surrogate mineral for the edge surfaces of 2:1 clay minerals as it possesses no or little structural charge. Of the two most-common hydrated edge surfaces, the AC edge, (1 1 0) surface in the monoclinic polytype notation, is predicted to be more stable than the B edge, (0 1 0) surface. These stabilities, however, were determined based on the total energies calculated at 0 K and did not consider environmental effects such as temperature and humidity. In this study, atomistic thermodynamics based on periodic DFT electronic calculations was applied to examine the effects of environmental variables on the structure and thermodynamic stability of the common edge surfaces in equilibrium with bulk pyrophyllite and water vapor. We demonstrate that the temperature-dependent vibrational energy of sorbed water molecules at the edge surface is a significant component of the surface free energy and cannot be neglected when determining the surface stability of pyrophyllite. The surface free energies were calculated as a function of temperature from 240 to 600 K and water chemical potential corresponding to conditions from ultrahigh vacuum to the saturation vapor pressure of water. We show that at lower water chemical potentials (dry conditions), the AC and B edge surfaces possessed similar stabilities; at higher chemical potentials (humid conditions) the AC edge surface was more stable than the B edge surface. At high temperatures, both surfaces showed similar stabilities

  20. Modelling of surface-water temperature for the estimation of the Czech fishery productivity under the climate change

    NASA Astrophysics Data System (ADS)

    Svobodová, Eva; Trnka, Miroslav; Kopp, Radovan; Mareš, Jan; Dubrovský, Martin; Spurný, Petr; Žalud, Zděněk

    2015-04-01

    Freshwater fish production is significantly correlated with water temperature which is expected to increase under the climate change. This study is dealing with the estimation of the change of water temperature in productive ponds and its impact on the fishery in the Czech Republic. Calculation of surface-water temperature which was based on three-day mean of the air temperature was developed and tested in several ponds in three main fish production areas. Output of surface-water temperature model was compared with measured data and showed that the lower range of model accuracy is surface-water temperature 3°C, under this temperature threshold the model loses its predictive competence. In the expecting of surface-water temperature above the temperature 3°C the model has proved the well consistence between observed and modelled surface-water temperature (R 0.79 - 0.96). Verified model was applied in the conditions of climate change determined by the pattern scaling method, in which standardised scenarios were derived from five global circulation models MPEH5, CSMK3, IPCM4, GFCM21 and HADGEM. Results were evaluated with regard to thresholds which characterise the fish species requirements on water temperature. Used thresholds involved the upper temperature threshold for fish survival and the tolerable number of days in continual period with mentioned threshold surface-water temperature. Target fish species were Common carp (Cyprinus carpio), Maraene whitefish (Coregonus maraena), Northern whitefish (Coregonus peled) and Rainbow trout (Oncorhynchus mykis). Results indicated the limitation of the Czech fish-farming in terms of i) the increase of the length of continual periods with surface-water temperature above the threshold appropriate to given fish species toleration, ii) the increase of the number of continual periods with surface-water temperature above the threshold, both appropriate to given fish species toleration, and iii) the increase of overall number of

  1. Insolation and Resulting Surface Temperatures of the Kuiper-Rudaki Study Region on Mercury.

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; D'Amore, Mario; Helbert, Jörn; Weinauer, Julia

    2016-04-01

    The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2017 [1]. The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40μm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia [1, 2]. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. In order to calculate insolation and surface temperatures, we use a numerical model, which has been described by [7]. Surface temperatures are dependent on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, topography, and albedo. Lunar and Mercurian surface temperatures show the same general characteristics. Both have very steep temperature gradients at sunrise and sunset, due to the lack of an atmosphere. However, there are major differences due to the orbital characteristics. On Mercury the 3:2 resonant rotation rate and the eccentric orbit causes local noon at longitudes 0° and 180° to coincide with perihelion, which leads to "hot poles". At longitudes 90° and 270° , local noon coincides with aphelion, which results in "cold poles" [8]. At these longitudes brief secondary sunrises and sunsets are visible, when Mercury's orbital angular velocity exceeds the spin rate during perihelion [8]. Here we present diurnal temperature curves of the Kuiper-Rudaki study region, based on thermophysical estimates and MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging [9]) albedo data with a resolution of 1000m/px. Our study region spans more than 90° along the equator, thus allowing us to study both, hot and

  2. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system.

    PubMed

    Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique

    2017-01-01

    To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.

  3. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system

    PubMed Central

    Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique

    2017-01-01

    Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin. PMID:29069151

  4. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  5. Theoretical study of cathode surfaces and high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  6. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  7. Storage at low temperature differentially affects the colour and carotenoid composition of two cultivars of banana.

    PubMed

    Facundo, Heliofabia Virginia De Vasconcelos; Gurak, Poliana Deyse; Mercadante, Adriana Zerlotti; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2015-03-01

    Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05). Published by Elsevier Ltd.

  8. Rapid control of mold temperature during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less

  9. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  10. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  11. Areas of Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  12. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  13. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  14. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  15. Surface shape affects the three-dimensional exploratory movements of nocturnal arboreal snakes.

    PubMed

    Jayne, Bruce C; Olberding, Jeffrey P; Athreya, Dilip; Riley, Michael A

    2012-12-01

    Movement and searching behaviors at diverse spatial scales are important for understanding how animals interact with their environment. Although the shapes of branches and the voids in arboreal habitats seem likely to affect searching behaviors, their influence is poorly understood. To gain insights into how both environmental structure and the attributes of an animal may affect movement and searching, we compared the three-dimensional exploratory movements of snakes in the dark on two simulated arboreal surfaces (disc and horizontal cylinder). Most of the exploratory movements of snakes in the dark were a small fraction of the distances they could reach while bridging gaps in the light. The snakes extended farther away from the edge of the supporting surface at the ends of the cylinder than from the sides of the cylinder or from any direction from the surface of the disc. The exploratory movements were not random, and the surface shape and three-dimensional directions had significant interactive effects on how the movements were structured in time. Thus, the physical capacity for reaching did not limit the area that was explored, but the shape of the supporting surface and the orientation relative to gravity did create biased searching patterns.

  16. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  17. MEaSUREs Land Surface Temperature from GOES Satellites

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  18. Effects of surface inactivation, high temperature drying and preservative treatment on surface roughness and colour of alder and beech wood

    NASA Astrophysics Data System (ADS)

    Aydin, Ismail; Colakoglu, Gursel

    2005-10-01

    Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder ( Alnus glutinosa subsp. barbata) and beech ( Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (Δ E*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in Δ E* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile ( Ra) decreased slightly in Ra values after the natural inactivation process.

  19. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  20. Biological control of surface temperature in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.